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Abstract

The recent increase in obesity levels across many countries is likely to be driven by
nongenetic factors. The epigenetic modification DNA methylation (DNAm) may help to
explore this as it is sensitive to both genetic and environmental exposures. While the
relationship between DNAm and body fat traits has been extensively studied [1-9], there is
limited literature on the shared associations of DNAm variation across such traits. Akin to
genetic correlation estimates, which measure the degree of common genetic control between
two traits, here we introduce an approach to evaluate the similarities in DNAm associations
between traits, DNAm correlations. As DNAm can be both a cause and consequence of
complex traits [5, 10, 11], DNAm correlations have the potential to provide novel insights
into trait relationships above that currently obtained from genetic and phenotypic
correlations. Utilising 7,519 unrelated individuals from Generation Scotland (GS), we
calculated DNAm correlations using the bivariate OREML framework in the OSCA software
[12] to investigate the shared associations of DNAm variation between traits. For each trait
we also estimated the shared contribution of DNAm between sexes. We identified strong,
positive DNAm correlations between each of the body fat traits (BMI, body fat % and waist
to hip ratio; ranging from 0.96 to 1.00), finding larger associations than those identified by
genetic and phenotypic correlations. We identified a significant deviation from 1 in the ronam
for BMI between males and females, with sex-specific DNAm changes associated with BMI
identified at eight DNAm probes. Employing genome-wide DNAmM correlations to evaluate
the similarities in the associations of DNAm with complex traits has provided novel insight
into obesity related traits beyond that provided by genetic correlations.
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Introduction

Obesity constitutes a growing healthcare burden and is a major risk factor for several chronic
diseases including cardiovascular diseases and diabetes [13, 14]. Body mass index (BMI), the
most widely used measure of obesity, results from the complex interplay between genetic,
environmental, and modifiable lifestyle factors. The increase in BMI levels in recent years
[15] is likely to be driven by nongenetic factors. DNA methylation (DNAm) is a commonly
studied epigenetic modification that is responsive to both genetics and the environment,
making it an ideal target for studying the consequences of modifiable health factors, such as
obesity. The relationship between DNAm and BMI, as well as other body fat and adiposity-
related biochemical traits, has been extensively studied [1-9]. However, the shared
associations of DNAm variation across such traits represents an important gap in our
understanding of the biological processes pertaining to obesity.

AKkin to genetic correlation estimates, which measure the degree of common genetic control
between two traits, here, we introduce an approach to evaluate the similarities in DNAm
associations between traits, DNAm correlations (rpnam). In contrast to genetic variants,
DNAm reflects a wide range of environmental exposures and may reflect the cumulative
burden of adverse exposures throughout the life course. In addition, variation in DNAm has
been implicated as arising from individual differences in traits such as BMI and smoking [5,
10], with some evidence suggesting BMI in childhood may be predictive of adolescent
DNAmMm levels at sites throughout the genome [1]. Thus, while genetic correlations capture
causal effects on the traits, DNAm correlations will capture consequence too. Ascertaining
effects from both directions may result in the detection of additional biological mechanisms
underlying the relationship between these traits. We also recognise that with a large portion
of the DNA methylome under genetic control [11], DNAm correlations will likely capture
part of the shared genetic contribution between these traits. However, recent work [4, 5, 10,
16] has demonstrated that DNAm associated with BMI trait variance is independent of
genetic variation. This indicates that DNAm correlations have the potential to provide novel
insights into trait relationships as well as the molecular underpinnings and subsequent
consequences of these traits above that currently obtained from genetic correlations.

We estimate DNAm correlations for six body fat and adiposity-related biochemical traits for
7,519 unrelated individuals from Generation Scotland (GS). DNAm correlations are
estimated by extending the OREML method in the OSCA software [12] to a bivariate model,
akin to bivariate GREML as implemented in the GCTA software [17, 18]. These DNAmM
correlation estimates provide a measure of the shared similarity of DNAm variation between
phenotypes, noting that while SNPs explain the variation in traits, DNAm only captures this
variation and reflects both cause and consequence. We compared these DNAm correlations to
genetic and phenotypic correlations to investigate if they provide novel insights into the
molecular underpinnings of these traits.
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Results

Generation Scotland (GS) is a Scottish family-based study with over 24,000 participants
recruited between 2006 and 2011 [19, 20] . We analysed data from 7,519 unrelated
individuals (genetic relationship matrix (GRM) pruned at 0.05) from the larger GS dataset to
avoid confounding between genetic relatedness and epigenetic similarity. Blood-based
DNAm levels at 781,379 DNAm sites were quantified using the Illumina Methylation EPIC
array in three sets based on time of generation of DNAm array processing. Three
anthropometric measurements and three biochemical phenotypes were investigated: body
mass index (BMI; kg/m?), body fat percentage (%), waist to hip ratio (WHR), glucose
(mmol/L), high-density lipoprotein cholesterol (HDL, mmol/L) and total cholesterol
(mmol/L). Demographic and summary information from Generation Scotland (GS) for the
six phenotypes are presented in Table 1. We estimated the proportion of phenotypic variation
captured by DNAm for each trait based on a methylation relationship matrix (MRM) using
OSCA [12], the variation explained by SNPs based on a GRM, as well as that captured
jointly by DNAmM and SNPs. As demonstrated previously [10], we observed non-zero
estimates for the proportion of variance captured by DNAm when estimated jointly with
SNPs which demonstrates that some of the variation captured by DNAm is additional to that
being captured by SNPs (see Supplementary Results, Supplementary Figure 1 and
Supplementary Table 1). The additional variation captured by DNAm indicates that there is a
potential to gain novel insights into trait relationships with DNAm correlations that are not
currently captured by genetic correlations based on common SNPs.

Table 1: Cohort summary for Generation Scotland (GS; N=7,519)

Covariates N Mean |
Age 7,519 51.7 13.2
N N Female % Female
Sex 7,519 4,261 56.7
N %
Sl 1988 26.4
Set 2 4228 56.2
St 3 1303 17.3
Traits N Mean d
BMI 7452 26.9 5.0
Body Fat % 7324 30.4 9.3
Waist to hip ratio 7403 0.9 0.1
Glucose 7291 4.8 0.6
HDL Cholesterol 7438 1.5 0.4
Total Cholesterol 7455 5.2 1.1

We extended the OREML approach of the OSCA to a bivariate model that simultaneously
estimates the proportion of variance in the two traits captured by DNAm as well as
quantifying the shared associations between DNAmM and the two traits. We term this shared
association as a DNAm correlation, or ronam, reflecting the similarity of the approach to
estimating genetic correlations via the GREML model.
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DNAm correlation between sets

As a proof-of-principle illustration of the application of genetic correlation methods to
DNAm, and to demonstrate strong concordance between the three sample sets with GS, we
estimated the DNAm correlation of the six traits across sample set. The underlying
assumption is that there should be no inter-set variation in contribution of DNAm to each of
the traits and thus the DNAm correlation estimates should not be different from 1. We first
test this assumption by performing EWAS within each set for each trait to determine if there
is concordance in probe effects using simple linear regression in the OSCA software [12].
Due to differences in sample size between the sets which impacts discovery, only those
probes that were nominally significant across all sets (p<0.001) were compared. The
concordance in probe association coefficients was evaluated using Pearson’s correlation and
was found to be very high ( 0.95) between all sets (Supplementary Figure 3). This
suggests that the estimated effect sizes between DNAmM and each of the traits is consistent
between sets. We subsequently calculated the DNAm correlation between sets for each trait.
Most of the correlations were found to not significantly deviate from 1 (p<0.05) consistent
with our expectation (Figure 1, Supplementary Table 4). We note that the slight deviations
from 1 observed for glucose and HDL cholesterol as well as large standard errors, while not
significant after adjusting for multiple testing using a Bonferroni correction, may reflect
deviations from sample collection protocols and measurement errors rather than a reflection
of the method.

BMI o — ._._.
Body Fat %
Waist to Hip Ratio 1 '_‘__' — ——
Glucose 1 —— —_————— ——————————
HDL Cholesterol
Total Cholesterol |-¢-4 ;_¢_| ;_._4
0.9 1.0 0.9 1.0 0.9 1.0

DNAm correlation

Figure 1: DNAm correlation between sets for each trait. The DNAm correlations between
each of the set pairs is displayed on the x-axis with standard errors indicated by error bars. P-
values from a log likelihood test for the hypothesis of fixing the DNAm correlation at 1 are
presented in text below each estimate and in Supplementary Table 4.

DNAm Correlation between traits

We estimated the DNAm correlation between the six body fat related phenotypes using the
bivariate OREML framework that estimates the similarity of DNAm associations between
traits. The DNAm correlations are presented in Figure 2 (Supplementary Table 7) alongside
genetic correlations calculated using the bivariate GREML framework with a GRM
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implemented in the GCTA software [18] and phenotypic correlations. We identified strong,
positive DNAmM correlations between each of the body fat traits (BMI, body fat % and waist
to hip ratio; ranging from 0.96 to 1.00), with correlation between BMI and waist to hip ratio
found to be not significant different from 1 (rpnam=1.00, se=0.0005). These associations were
observed to be of greater magnitude than both genetic (rg ranging from 0.65 to 0.86) and
phenotypic correlations (rp ranging from 0.51 to 0.85). The body fat traits demonstrated
moderate DNAm correlations with glucose (ronam ranging from 0.42 to 0.62), again of a
greater magnitude than both genetic and phenotypic correlations. We observed negative
DNAm correlations between each of the body fat traits and HDL cholesterol, with a slightly
stronger correlation observed for BMI. These correlations were in the same direction as
genetic correlations, with a similar magnitude while phenotypic correlations were observed to
be closer to zero. DNAmM correlations for each of the body fat traits with total cholesterol
were found to not be significantly different from zero. This is consistent with genetic
correlations between total cholesterol and both BMI and body fat %, while the genetic
correlation between waist to hip ratio and total cholesterol was non zero (ronam=0.43,
se=0.22, pvalue=0.02). Similarly, DNAm correlations between HDL cholesterol and glucose
were observed to be similar to genetic correlations although of slightly less magnitude We
observed moderate positive DNAm correlation between total cholesterol and both glucose
and HDL cholesterol while the genetic correlation was found to be not significantly different
from zero between these trait pairs. Further, we demonstrate these results are independent of
variance attributable to data structure, by finding practically identical estimates for DNAmM
correlations when adjusting for the first 20 principal components of the DNAm levels and the
first 20 principal components of the genetic data (Supplementary Table 8).
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Figure 2: DNAm (left), genetic (middle) and phenotypic (right) correlations among six traits.
Red, positive correlation; blue, negative correlation.

DNAm correlations between sexes

Given previously reported genetic [21-23] and DNAmM [4, 24] sex differences for body fat-
related traits, we investigated if the contribution of DNAm for each trait was consistent
across sex. First, we estimated the proportion of variance captured by DNAm in each sex. For
BMI and body fat percentage the proportion of variance captured by DNAm was largely
consistent across sexes while for waist to hip ratio, glucose, HDL cholesterol and total
cholesterol the variance captured by DNAm in males was greater than that captured in
females (Figure 3, Supplementary Table 5). Next DNAm correlations were calculated for
each trait between sexes. Two traits were identified as having DNAm correlations
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significantly different from 1 however only BMI survived multiple testing using a Bonferroni
correction (BMI rpnam=0.79, se 0.07, pvalue=7.0x10"*; WHR rpnam=0.95, se=0.04,
pvalue=0.016; Figure 3 and Supplementary Table 6). Several previous studies have presented
genetic correlations for BMI between the sexes that were significantly different from 1
(ranging from 0.93 to 0.96; [21-23]) however the greater deviation between the sexes
captured by DNAm correlation potentially suggests the presence of novel sex differential
biological consequences of BMI.

We further examined sex differences in the contribution of DNAm for BMI by investigating
the presence of probe-by-sex interactions. We performed an EWAS for BMI including probe,
sex and the interaction between probe and sex as covariates in a linear model. We identified
eight probes across four chromosomes with significant probe-by-sex interactions at p<6.4x10
8 which is Bonferroni corrected for the number of DNAm probes analysed. We note this set
of probes represented six independent probes, with two pairs of probes that were closely
located together likely co-methylated (correlation between DNAmM M-values>0.8 between
probe pairs: ¢g16936953 and ¢g12054453, and ¢g18181703 and cg11047325). For all eight
probes DNAm was higher for females as BMI increased, with no significant association
observed in males (Table 2), with trend plots provided in Supplementary Figure 4. This may
reflect a unique response in females to BMI levels.
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Figure 3: The proportion of phenotypic variance captured by DNAm by sex for each trait
(left) and the DNAmM correlation between sexes for each trait (right).
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Table 2: DNAm probes identified with probe by sex interactions (p<6.4x10®) with BMI.

Probe ID CHR Probe BP CpG Related Gene Probe Probe se  Probe Interaction Interaction  Interaction
Island effectin in pvalue in effect se pvalue
Females Females @ females
912269535 6 43142014 Shore SRF -0.66 0.07 3.6x10%°  0.60 0.11 4.0x10%
916936953 17 57915665 Opensea VMP1 -0.37 0.05 1.3x10™  0.40 0.07 3.3x10™%
cg12054453 17 57915717 Opensea VMP1 -0.27 0.04 6.4x10™ 031 0.05 9.0x10™
cg19748455 17 76274856 Opensea LOC100996291 -0.75 0.06 1.3x10% 063 0.10 2.2x107%
cg18181703 17 76354621 Shore SOCS3 -0.79 0.07 6.2x10%  0.60 0.11 1.3x10™®
cg11047325 17 76354934 Island SOCS3 -0.43 0.04 2.6x10%®° 035 0.06 1.1x10%
cg00840791 19 16453259  Intergenic -0.45 0.03 8.6x10""  0.29 0.05 7.4x10™°
cg09349128 22 50327986 Shore CRELD2 -1.05 0.08 25x10%°  0.79 0.12 1.3x101°
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Discussion

We investigated the shared associations of DNAmM variation between body fat and adiposity-
related biochemical traits by extending the OREML framework to a bivariate model, similar
to the estimation of genetic correlations through GREML. For the majority of trait pairs the
DNAm correlations, whilst strongly concordant in direction, were observed to be greater in
magnitude compared to both genetic and phenotypic correlations, particularly between body
fat traits. There are several potential explanations for this. DNAm is known to capture risk
factors beyond genetics, suggesting DNAm correlations are likely capturing common
environmental or lifestyle factors between traits such as dietary factors. DNAm correlation
may also be capturing common consequence of these traits, that is the consequence of both
traits affecting downstream pathways e.g. inflammation. This hypothesis is supported by
previous studies which have demonstrated that while large amounts of the phenotypic
variance can be captured by DNAm for some traits (e.g. BMI and smoking), for the most part
these have been implicated as arising from trait consequence [5, 10]. In particular, Wahl et al.
suggested that changes in DNAm (measured in blood and adiposity tissue) associated with
BMI may be the consequence of changes in lipid and glucose metabolism associated with
BMI [5]. This ascertainment of both causal and consequential effects may explain why
DNAm correlations were observed to be of greater magnitude than their genetic counterparts.
The strong positive DNAm correlations between each of the body fat traits is consistent with
DNAm derived from whole blood reflecting a general response to adiposity, while genetic
correlations are capturing differences in the genetic control of specific fat distribution.
Support for such a conclusion in literature is conflicting. A recent study of DNAmM in adipose
tissue in women identified associations with body fat distribution, of which 50% of sites
replicated whole blood derived DNAm [25]. Several other studies have demonstrated strong
overlap between CpG sites associated with BMI, waist circumference and body fat %
indicating common methylation sites are similarly influenced by both general and abdominal
obesity [26-28]. However, Crocker et al. [28] found a low degree of overlap between waist
circumference and body fat percentage from subsequent gene ontology enrichment and
differentially methylated region analyses, suggesting these measurements represent
biologically distinct concepts. We note the inconsistency in conclusions from Crocker et al.
may have been impacted by the investigation of overlap in significant results rather than
formally testing for differences and additionally limited by sample size (N=2,325).

We also recognise that, given a large portion of the DNA methylome is under genetic control
[11], DNAm correlations are likely capturing part of the shared genetic contribution between
these traits. We demonstrated that a large portion of the phenotypic variation captured by
DNAm is separate from that being explained by SNPs, a conclusion which is supported in the
literature [4, 5, 10, 16]. Further, we identified independence between the MRM and GRM
when fit as random effects in the univariate GREML framework using the CORE-GREML
approach. Despite this, we were unable to formally determine if the contribution of DNAmM
which was shared between traits was similarly separate of the shared genetic influence. This
limitation in our study was likely due to sample size, with joint MRM and GRM bivariate
REML models unable to converge and therefore unable to estimate DNAm correlations
conditional on SNPs.

Given previously reported genetic [21-23] and DNAm [4, 24] sex differences for body fat
related traits, we investigated whether these are also captured by DNAm correlations. We
identified a significant deviation from 1 in the DNAm correlation for BMI between males
and females. Several previous studies have presented genetic correlations for BMI between
the sexes that were significantly different from 1 (ranging from 0.93 to 0.96; [21-23]). The
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greater deviation captured by the DNAm correlation however potentially suggests the
presence of sex differential novel biological consequences of BMI. We further identified
eight DNAm probe-by-sex interactions for BMI (which represent six independent DNAm
sites), observing hypermethylation in females as BMI increased, with no associated observed
in males. Of note, all but one of these probes having been previously shown to be associated
with BMI [4, 5, 27, 29, 30]. In particular, probe cg18181703 is located the SOCS3 gene, a
suppressor of the cytokine signalling pathway, and has been found to be inversely associated
with BMI, waist to hip ratio, triglycerides and metabolic syndrome, and positively associated
with HDL [4]. It has also been shown to moderate the effect of cumulative stress on obesity
[31]. DNAm of cg09349128 located in PIM3, a gene involved in energy metabolism, has
been found to mediate the association between famine exposure and BMI. Additionally,
probes cg16936953 and cg12054453 are located in the VMPL gene, which has been
implicated broadly in lipid homeostasis and regulation in the formation of lipid droplets and
lipoproteins, for which dysregulation is involved in a variety of diseases including obesity,
fatty liver disease and cholesterol ester storage [32, 33]. We also found evidence for a probe-
by-sex interaction with DNAm at probe cg12269535 located in the SRF gene, which is
associated with insulin resistance and may contribute to the pathogenesis of Type 2 Diabetes
[34]. We note that probe-by-sex interactions have been previously investigated in the context
of BMI [4, 35], with each study identifying only a single CpG, however we were unable to
replicate any previous findings (Supplementary Figure 5).

We recognise there are some caveats and further considerations for this work. The EPIC
array captures only a small proportion of the methylome, with Hillary et al. previously
demonstrating that decreasing the number of methylation sites reduces estimates of variance
captured by DNAm and prediction metrics [36]. This impacts the interpretability our analyses
as a low variance captured by DNAm doesn’t necessarily indicate a lack of correlation
between DNAm and traits as DNAm sites which are unmeasured may contribute to the
association. As such, greater coverage may resultingly influence DNAm correlation
estimates. Similarly, while variance component estimation based on DNAm requires smaller
samples sizes than needed for accurate estimation of genetic correlation due to the MRM
capturing more variance, there is value in increasing sample sizes as well. In these analyses
we were unable to report on DNAm correlations conditional on SNPs as joint MRM and
GRM bivariate REML models were unable to convergence. We attempt to address this by
adjusting univariate and bivariate OREML models based on DNAm with covariate
adjustment for first 20 principal components of the genetic data. We find models with and
without these adjustments yield practically identical estimates for both proportion of variance
captured and DNAm correlations. While it has been previously shown that much of the
genetic control of DNAmM is shared across populations [37-40], as DNAm is also responsive
to the environment, it would not be unexpected for such estimates to vary by ancestry, or
geography. While we suspect our results will be generalisable across comparable samples,
replication in similar populations as well as populations of different ancestry, ethnicity or
geography would provide greater insight into these results.

Overall, we present an approach to investigating shared biology across traits using DNAmM
correlations. This has provided novel insight into obesity related traits, showing the shared
associations of DNAm between BMI, waist to hip ratio and body fat %, beyond that
recognised through genetic correlation analysis and has identified sex specific DNAmM
changes associated with BMI.
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Methods

Study cohort

All data for the study came from Generation Scotland: Scottish Family Health Study (GS).
The family-based genetic epidemiological cohort consists of over 24,000 volunteers which
has been described previously [19, 20]. Recruitment took place between 2006 and 2011,
when individuals their family members aged 18+ years were invited to a baseline clinic visit
that included health questionnaires and sample donation for genomic analyses. This study
uses phenotypic, DNAm and genetic data from unrelated samples (N = 7,519, GRM<0.05),
with DNAm levels quantified in three sets based on time of DNAm array processing.

Phenotypic data

Three anthropometric measurements and three biochemical phenotypes were investigated:
body mass index (BMI; kg/m?), body fat percentage (%), waist to hip ratio, glucose
(mmol/L), high-density lipoprotein (HDL) cholesterol (mmol/L) and total cholesterol
(mmol/L). All phenotypes were trimmed for outliers (values that were + 4 SDs from the
mean). In addition, BMI was trimmed for extreme values at <17 and >50 kg/m2. For each
trait we stratified the samples by sex then adjusted the phenotype for age and standardized the
residuals by rank based inverse normal transformation before recombining the data. There
was no adjustment for set as there were minimal differences in the mean across sets.
Residualised phenotypes were entered as dependent variables in the subsequent analysis.
Smoking pack years were calculated by multiplying the number of packs of cigarettes
smoked per day by the number of years the individual has smoked and used in the adjustment
of DNAm data.

Genetic data

Genome wide genotypic details have been described previously [41]. Briefly, GS participants
were genotyped with either lllumina HumanOmniExpressExome8v1-2_A or
HumanOmniExpressExome-8v1_A arrays. SNPs were excluded for missing genotype call
rate (>2%), and marked departure from Hardy—Weinberg equilibrium (HWE;
pI<110x1107°), low MAF (<1%). Duplicate samples were removed alongside individuals
with gender mismatch and missing genotype call rate (>2%). Principal components were
calculated in the GCTA software [18] using the 1,092 individuals of the 1000 Genomes
population [42]. Outliers were defined as observations more than six standard deviations
away from the mean of the GS individuals for the first two principal components and were
subsequently removed [43]. Genotype data was imputed against HRC panel v1.1 [44].
Unrelated individuals were retained (GRM<[10.05) using the GCTA software [18]. All
subsequent analyses were conducted on the unrelated individuals using HapMap3 SNPs only.

DNA methylation data

Genome-wide blood-based DNA methylation profiled using the lllumina Methylation EPIC
array and was processed in three separate sets. DNAm quality control was performed as
reported previously [45]. Briefly, outliers were excluded based on the visual inspection of
methylated to unmethylated log intensities, in addition to poorly performing probes and
samples, and sex mismatches. Further filtering was performed to exclude non-autosomal CpG
sites, CpGs that were predicted to cross-hybridise and those with polymorphisms at the target
site which can alter probe binding [46, 47]. Poor performing probes, X/Y chromosome
probes and participants with unreliable self-report data, saliva samples and potential XXY
genotype were excluded along with probes with almost invariable beta values across
individuals (standard deviation <710.02). All 3 sets were normalised together with the final
discovery dataset comprised M values at 781,379 loci for 7,519 participants. Before analysis,
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DNAm was adjusted in the OSCA software for age, sex, batch, slide, cell type proportions
(estimated using the algorithm proposed by Houseman et al. [48]), smoking status and pack
years.

Variance component analyses

Utilising 7,519 unrelated individuals from Generation Scotland (GS), we estimate the
proportion of phenotypic variance captured by genome-wide DNAm across six body fat and
adiposity-related biochemical traits using omics-restricted maximum likelihood (OREML)
framework in the OSCA software. This method estimates the variance captured by DNAm by
construction of a DNAm relationship matrix (MRM) based on all DNAm probes and which is
used to model the covariance between individuals in a univariate linear mixed model via
restricted maximum likelihood (REML). This allows us to obtain the proportion of variation
for each trait captured by all probes which is analogous to that of estimating SNP-based
heritability based on genetic data [18, 49]. Unlike SNP-based heritability, we note that the
proportion of captured by all probes may be capturing both cause and consequence of the
phenotype. The GCTA software was used to calculate the GRM and similarly implemented
in the OSCA software to estimate SNP-based heritability, referred to here as the proportion of
phenotypic variance explained by all SNPs. We also estimated these quantities jointly in the
OSCA software using --multi-orm which allows for multiple random effects.

DNAm correlations

We estimate the DNAm correlation between phenotypes implemented using the bivariate
OREML framework in OSCA utilising DNAm relationship matrices rather than the standard
GRM, where the DNAm correlation is estimated from the one of the covariance components.
Here the phenotypic and DNAm information came from the same unrelated individuals. This
approach estimates the shared contribution of DNAm based on the MRM between
phenotypes. Likelihood ratio tests were performed to test the hypotheses of fixing the
correlations at both zero and one. We additionally estimated genetic correlations using GCTA
and phenotypic correlations using Pearson’s correlation and compared these with rpyam to
investigate if this metric provides novel insights into the molecular underpinnings of these
traits. Joint estimation of rg and rpnam Was not reported due as the models were unable to
converge.
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