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Abstract  
The recent increase in obesity levels across many countries is likely to be driven by 
nongenetic factors. The epigenetic modification DNA methylation (DNAm) may help to 
explore this as it is sensitive to both genetic and environmental exposures. While the 
relationship between DNAm and body fat traits has been extensively studied [1-9], there is 
limited literature on the shared associations of DNAm variation across such traits. Akin to 
genetic correlation estimates, which measure the degree of common genetic control between 
two traits, here we introduce an approach to evaluate the similarities in DNAm associations 
between traits, DNAm correlations. As DNAm can be both a cause and consequence of 
complex traits [5, 10, 11], DNAm correlations have the potential to provide novel insights 
into trait relationships above that currently obtained from genetic and phenotypic 
correlations. Utilising 7,519 unrelated individuals from Generation Scotland (GS), we 
calculated DNAm correlations using the bivariate OREML framework in the OSCA software 
[12] to investigate the shared associations of DNAm variation between traits. For each trait 
we also estimated the shared contribution of DNAm between sexes. We identified strong, 
positive DNAm correlations between each of the body fat traits (BMI, body fat % and waist 
to hip ratio; ranging from 0.96 to 1.00), finding larger associations than those identified by 
genetic and phenotypic correlations. We identified a significant deviation from 1 in the rDNAm 
for BMI between males and females, with sex-specific DNAm changes associated with BMI 
identified at eight DNAm probes. Employing genome-wide DNAm correlations to evaluate 
the similarities in the associations of DNAm with complex traits has provided novel insight 
into obesity related traits beyond that provided by genetic correlations. 
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Introduction 
Obesity constitutes a growing healthcare burden and is a major risk factor for several chronic 
diseases including cardiovascular diseases and diabetes [13, 14]. Body mass index (BMI), the 
most widely used measure of obesity, results from the complex interplay between genetic, 
environmental, and modifiable lifestyle factors. The increase in BMI levels in recent years 
[15] is likely to be driven by nongenetic factors. DNA methylation (DNAm) is a commonly 
studied epigenetic modification that is responsive to both genetics and the environment, 
making it an ideal target for studying the consequences of modifiable health factors, such as 
obesity. The relationship between DNAm and BMI, as well as other body fat and adiposity-
related biochemical traits, has been extensively studied [1-9]. However, the shared 
associations of DNAm variation across such traits represents an important gap in our 
understanding of the biological processes pertaining to obesity.  
 
Akin to genetic correlation estimates, which measure the degree of common genetic control 
between two traits, here, we introduce an approach to evaluate the similarities in DNAm 
associations between traits, DNAm correlations (rDNAm). In contrast to genetic variants, 
DNAm reflects a wide range of environmental exposures and may reflect the cumulative 
burden of adverse exposures throughout the life course. In addition, variation in DNAm has 
been implicated as arising from individual differences in traits such as BMI and smoking [5, 
10], with some evidence suggesting BMI in childhood may be predictive of adolescent 
DNAm levels at sites throughout the genome [1]. Thus, while genetic correlations capture 
causal effects on the traits, DNAm correlations will capture consequence too. Ascertaining 
effects from both directions may result in the detection of additional biological mechanisms 
underlying the relationship between these traits. We also recognise that with a large portion 
of the DNA methylome under genetic control [11], DNAm correlations will likely capture 
part of the shared genetic contribution between these traits. However, recent work [4, 5, 10, 
16] has demonstrated that DNAm associated with BMI trait variance is independent of 
genetic variation. This indicates that DNAm correlations have the potential to provide novel 
insights into trait relationships as well as the molecular underpinnings and subsequent 
consequences of these traits above that currently obtained from genetic correlations. 
 
We estimate DNAm correlations for six body fat and adiposity-related biochemical traits for 
7,519 unrelated individuals from Generation Scotland (GS). DNAm correlations are 
estimated by extending the OREML method in the OSCA software [12] to a bivariate model, 
akin to bivariate GREML as implemented in the GCTA software [17, 18]. These DNAm 
correlation estimates provide a measure of the shared similarity of DNAm variation between 
phenotypes, noting that while SNPs explain the variation in traits, DNAm only captures this 
variation and reflects both cause and consequence. We compared these DNAm correlations to 
genetic and phenotypic correlations to investigate if they provide novel insights into the 
molecular underpinnings of these traits.   
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Results 
Generation Scotland (GS) is a Scottish family-based study with over 24,000 participants 
recruited between 2006 and 2011 [19, 20] . We analysed data from 7,519 unrelated 
individuals (genetic relationship matrix (GRM) pruned at 0.05) from the larger GS dataset to 
avoid confounding between genetic relatedness and epigenetic similarity. Blood-based 
DNAm levels at 781,379 DNAm sites were quantified using the Illumina Methylation EPIC 
array in three sets based on time of generation of DNAm array processing. Three 
anthropometric measurements and three biochemical phenotypes were investigated: body 
mass index (BMI; kg/m2), body fat percentage (%), waist to hip ratio (WHR), glucose 
(mmol/L), high-density lipoprotein cholesterol (HDL, mmol/L) and total cholesterol 
(mmol/L). Demographic and summary information from Generation Scotland (GS) for the 
six phenotypes are presented in Table 1. We estimated the proportion of phenotypic variation 
captured by DNAm for each trait based on a methylation relationship matrix (MRM) using 
OSCA [12], the variation explained by SNPs based on a GRM, as well as that captured 
jointly by DNAm and SNPs. As demonstrated previously [10], we observed non-zero 
estimates for the proportion of variance captured by DNAm when estimated jointly with 
SNPs which demonstrates that some of the variation captured by DNAm is additional to that 
being captured by SNPs (see Supplementary Results, Supplementary Figure 1 and 
Supplementary Table 1). The additional variation captured by DNAm indicates that there is a 
potential to gain novel insights into trait relationships with DNAm correlations that are not 
currently captured by genetic correlations based on common SNPs. 
 
Table 1: Cohort summary for Generation Scotland (GS; N=7,519) 

Covariates N Mean Sd 
Age 7,519 51.7 13.2 
 N N Female % Female 
Sex 7,519 4,261 56.7 
 N  % 
Set 1 1988  26.4 
Set 2 4228  56.2 
Set 3 1303  17.3 
    
Traits N Mean Sd 
BMI 7452 26.9 5.0 
Body Fat % 7324 30.4 9.3 
Waist to hip ratio 7403 0.9 0.1 
Glucose 7291 4.8 0.6 
HDL Cholesterol 7438 1.5 0.4 
Total Cholesterol 7455 5.2 1.1 

 
We extended the OREML approach of the OSCA to a bivariate model that simultaneously 
estimates the proportion of variance in the two traits captured by DNAm as well as 
quantifying the shared associations between DNAm and the two traits. We term this shared 
association as a DNAm correlation, or rDNAm, reflecting the similarity of the approach to 
estimating genetic correlations via the GREML model. 
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DNAm correlation between sets 
As a proof-of-principle illustration of the application of genetic correlation methods to 
DNAm, and to demonstrate strong concordance between the three sample sets with GS, we 
estimated the DNAm correlation of the six traits across sample set. The underlying 
assumption is that there should be no inter-set variation in contribution of DNAm to each of 
the traits and thus the DNAm correlation estimates should not be different from 1. We first 
test this assumption by performing EWAS within each set for each trait to determine if there 
is concordance in probe effects using simple linear regression in the OSCA software [12]. 
Due to differences in sample size between the sets which impacts discovery, only those 
probes that were nominally significant across all sets (p<0.001) were compared. The 
concordance in probe association coefficients was evaluated using Pearson’s correlation and 
was found to be very high ( 0.95) between all sets (Supplementary Figure 3). This 
suggests that the estimated effect sizes between DNAm and each of the traits is consistent 
between sets. We subsequently calculated the DNAm correlation between sets for each trait. 
Most of the correlations were found to not significantly deviate from 1 (p<0.05) consistent 
with our expectation (Figure 1, Supplementary Table 4). We note that the slight deviations 
from 1 observed for glucose and HDL cholesterol as well as large standard errors, while not 
significant after adjusting for multiple testing using a Bonferroni correction, may reflect 
deviations from sample collection protocols and measurement errors rather than a reflection 
of the method. 
 

 
Figure 1: DNAm correlation between sets for each trait. The DNAm correlations between 
each of the set pairs is displayed on the x-axis with standard errors indicated by error bars. P-
values from a log likelihood test for the hypothesis of fixing the DNAm correlation at 1 are 
presented in text below each estimate and in Supplementary Table 4. 
 
DNAm Correlation between traits 
We estimated the DNAm correlation between the six body fat related phenotypes using the 
bivariate OREML framework that estimates the similarity of DNAm associations between 
traits. The DNAm correlations are presented in Figure 2 (Supplementary Table 7) alongside 
genetic correlations calculated using the bivariate GREML framework with a GRM 
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implemented in the GCTA software [18] and phenotypic correlations. We identified strong, 
positive DNAm correlations between each of the body fat traits (BMI, body fat % and waist 
to hip ratio; ranging from 0.96 to 1.00), with correlation between BMI and waist to hip ratio 
found to be not significant different from 1 (rDNAm=1.00, se=0.0005). These associations were 
observed to be of greater magnitude than both genetic (rG ranging from 0.65 to 0.86) and 
phenotypic correlations (rP ranging from 0.51 to 0.85). The body fat traits demonstrated 
moderate DNAm correlations with glucose (rDNAm ranging from 0.42 to 0.62), again of a 
greater magnitude than both genetic and phenotypic correlations. We observed negative 
DNAm correlations between each of the body fat traits and HDL cholesterol, with a slightly 
stronger correlation observed for BMI. These correlations were in the same direction as 
genetic correlations, with a similar magnitude while phenotypic correlations were observed to 
be closer to zero. DNAm correlations for each of the body fat traits with total cholesterol 
were found to not be significantly different from zero. This is consistent with genetic 
correlations between total cholesterol and both BMI and body fat %, while the genetic 
correlation between waist to hip ratio and total cholesterol was non zero (rDNAm=0.43, 
se=0.22, pvalue=0.02). Similarly, DNAm correlations between HDL cholesterol and glucose 
were observed to be similar to genetic correlations although of slightly less magnitude. We 
observed moderate positive DNAm correlation between total cholesterol and both glucose 
and HDL cholesterol while the genetic correlation was found to be not significantly different 
from zero between these trait pairs. Further, we demonstrate these results are independent of 
variance attributable to data structure, by finding practically identical estimates for DNAm 
correlations when adjusting for the first 20 principal components of the DNAm levels and the 
first 20 principal components of the genetic data (Supplementary Table 8). 

 
 
Figure 2: DNAm (left), genetic (middle) and phenotypic (right) correlations among six traits. 
Red, positive correlation; blue, negative correlation.  
 
DNAm correlations between sexes 
Given previously reported genetic [21-23] and DNAm [4, 24] sex differences for body fat-
related traits, we investigated if the contribution of DNAm for each trait was consistent 
across sex. First, we estimated the proportion of variance captured by DNAm in each sex. For 
BMI and body fat percentage the proportion of variance captured by DNAm was largely 
consistent across sexes while for waist to hip ratio, glucose, HDL cholesterol and total 
cholesterol the variance captured by DNAm in males was greater than that captured in 
females (Figure 3, Supplementary Table 5). Next DNAm correlations were calculated for 
each trait between sexes. Two traits were identified as having DNAm correlations 
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significantly different from 1 however only BMI survived multiple testing using a Bonferroni 
correction (BMI rDNAm=0.79, se 0.07, pvalue=7.0x10-4; WHR rDNAm=0.95, se=0.04, 
pvalue=0.016; Figure 3 and Supplementary Table 6). Several previous studies have presented 
genetic correlations for BMI between the sexes that were significantly different from 1 
(ranging from 0.93 to 0.96; [21-23]) however the greater deviation between the sexes 
captured by DNAm correlation potentially suggests the presence of novel sex differential 
biological consequences of BMI. 
 
We further examined sex differences in the contribution of DNAm for BMI by investigating 
the presence of probe-by-sex interactions. We performed an EWAS for BMI including probe, 
sex and the interaction between probe and sex as covariates in a linear model. We identified 
eight probes across four chromosomes with significant probe-by-sex interactions at p<6.4x10-

8, which is Bonferroni corrected for the number of DNAm probes analysed. We note this set 
of probes represented six independent probes, with two pairs of probes that were closely 
located together likely co-methylated (correlation between DNAm M-values>0.8 between 
probe pairs: cg16936953 and cg12054453, and cg18181703 and cg11047325). For all eight 
probes DNAm was higher for females as BMI increased, with no significant association 
observed in males (Table 2), with trend plots provided in Supplementary Figure 4. This may 
reflect a unique response in females to BMI levels. 
 

 
Figure 3: The proportion of phenotypic variance captured by DNAm by sex for each trait 
(left) and the DNAm correlation between sexes for each trait (right).  
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Table 2: DNAm probes identified with probe by sex interactions (p<6.4x10-8) with BMI. 
Probe ID CHR Probe BP CpG 

Island 
Related Gene Probe 

effect in 
Females  

Probe se 
in 
Females 

Probe 
pvalue in 
females 

Interaction 
effect 

Interaction 
se  

Interaction 
pvalue 

cg12269535 6 43142014 Shore SRF -0.66 0.07 3.6x10-20 0.60 0.11 4.0x10-08 
cg16936953 17 57915665 Open sea VMP1 -0.37 0.05 1.3x10-14 0.40 0.07 3.3x10-08 
cg12054453 17 57915717 Open sea VMP1 -0.27 0.04 6.4x10-14 0.31 0.05 9.0x10-09 
cg19748455 17 76274856 Open sea LOC100996291 -0.75 0.06 1.3x10-30 0.63 0.10 2.2x10-10 
cg18181703 17 76354621 Shore SOCS3 -0.79 0.07 6.2x10-28 0.60 0.11 1.3x10-08 
cg11047325 17 76354934 Island SOCS3 -0.43 0.04 2.6x10-25 0.35 0.06 1.1x10-08 
cg00840791 19 16453259 Intergenic  -0.45 0.03 8.6x10-47 0.29 0.05 7.4x10-10 
cg09349128 22 50327986 Shore CRELD2 -1.05 0.08 2.5x10-39 0.79 0.12 1.3x10-10 
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Discussion 
We investigated the shared associations of DNAm variation between body fat and adiposity-
related biochemical traits by extending the OREML framework to a bivariate model, similar 
to the estimation of genetic correlations through GREML. For the majority of trait pairs the 
DNAm correlations, whilst strongly concordant in direction, were observed to be greater in 
magnitude compared to both genetic and phenotypic correlations, particularly between body 
fat traits. There are several potential explanations for this. DNAm is known to capture risk 
factors beyond genetics, suggesting DNAm correlations are likely capturing common 
environmental or lifestyle factors between traits such as dietary factors. DNAm correlation 
may also be capturing common consequence of these traits, that is the consequence of both 
traits affecting downstream pathways e.g. inflammation. This hypothesis is supported by 
previous studies which have demonstrated that while large amounts of the phenotypic 
variance can be captured by DNAm for some traits (e.g. BMI and smoking), for the most part 
these have been implicated as arising from trait consequence [5, 10]. In particular, Wahl et al. 
suggested that changes in DNAm (measured in blood and adiposity tissue) associated with 
BMI may be the consequence of changes in lipid and glucose metabolism associated with 
BMI [5]. This ascertainment of both causal and consequential effects may explain why 
DNAm correlations were observed to be of greater magnitude than their genetic counterparts. 
The strong positive DNAm correlations between each of the body fat traits is consistent with 
DNAm derived from whole blood reflecting a general response to adiposity, while genetic 
correlations are capturing differences in the genetic control of specific fat distribution. 
Support for such a conclusion in literature is conflicting. A recent study of DNAm in adipose 
tissue in women identified associations with body fat distribution, of which 50% of sites 
replicated whole blood derived DNAm [25]. Several other studies have demonstrated strong 
overlap between CpG sites associated with BMI, waist circumference and body fat % 
indicating common methylation sites are similarly influenced by both general and abdominal 
obesity [26-28]. However, Crocker et al. [28] found a low degree of overlap between waist 
circumference and body fat percentage from subsequent gene ontology enrichment and 
differentially methylated region analyses, suggesting these measurements represent 
biologically distinct concepts. We note the inconsistency in conclusions from Crocker et al. 
may have been impacted by the investigation of overlap in significant results rather than 
formally testing for differences and additionally limited by sample size (N=2,325). 
 
We also recognise that, given a large portion of the DNA methylome is under genetic control 
[11], DNAm correlations are likely capturing part of the shared genetic contribution between 
these traits. We demonstrated that a large portion of the phenotypic variation captured by 
DNAm is separate from that being explained by SNPs, a conclusion which is supported in the 
literature [4, 5, 10, 16]. Further, we identified independence between the MRM and GRM 
when fit as random effects in the univariate GREML framework using the CORE-GREML 
approach. Despite this, we were unable to formally determine if the contribution of DNAm 
which was shared between traits was similarly separate of the shared genetic influence. This 
limitation in our study was likely due to sample size, with joint MRM and GRM bivariate 
REML models unable to converge and therefore unable to estimate DNAm correlations 
conditional on SNPs.  
 
Given previously reported genetic [21-23] and DNAm [4, 24] sex differences for body fat 
related traits, we investigated whether these are also captured by DNAm correlations. We 
identified a significant deviation from 1 in the DNAm correlation for BMI between males 
and females. Several previous studies have presented genetic correlations for BMI between 
the sexes that were significantly different from 1 (ranging from 0.93 to 0.96; [21-23]). The 
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greater deviation captured by the DNAm correlation however potentially suggests the 
presence of sex differential novel biological consequences of BMI. We further identified 
eight DNAm probe-by-sex interactions for BMI (which represent six independent DNAm 
sites), observing hypermethylation in females as BMI increased, with no associated observed 
in males. Of note, all but one of these probes having been previously shown to be associated 
with BMI [4, 5, 27, 29, 30]. In particular, probe cg18181703 is located the SOCS3 gene, a 
suppressor of the cytokine signalling pathway, and has been found to be inversely associated 
with BMI, waist to hip ratio, triglycerides and metabolic syndrome, and positively associated 
with HDL [4]. It has also been shown to moderate the effect of cumulative stress on obesity 
[31]. DNAm of cg09349128 located in PIM3, a gene involved in energy metabolism, has 
been found to mediate the association between famine exposure and BMI. Additionally, 
probes cg16936953 and cg12054453 are located in the VMP1 gene, which has been 
implicated broadly in lipid homeostasis and regulation in the formation of lipid droplets and 
lipoproteins, for which dysregulation is involved in a variety of diseases including obesity, 
fatty liver disease and cholesterol ester storage [32, 33]. We also found evidence for a probe-
by-sex interaction with DNAm at probe cg12269535 located in the SRF gene, which is 
associated with insulin resistance and may contribute to the pathogenesis of Type 2 Diabetes 
[34]. We note that probe-by-sex interactions have been previously investigated in the context 
of BMI [4, 35], with each study identifying only a single CpG, however we were unable to 
replicate any previous findings (Supplementary Figure 5).  
 
We recognise there are some caveats and further considerations for this work. The EPIC 
array captures only a small proportion of the methylome, with Hillary et al. previously 
demonstrating that decreasing the number of methylation sites reduces estimates of variance 
captured by DNAm and prediction metrics [36]. This impacts the interpretability our analyses 
as a low variance captured by DNAm doesn’t necessarily indicate a lack of correlation 
between DNAm and traits as DNAm sites which are unmeasured may contribute to the 
association. As such, greater coverage may resultingly influence DNAm correlation 
estimates. Similarly, while variance component estimation based on DNAm requires smaller 
samples sizes than needed for accurate estimation of genetic correlation due to the MRM 
capturing more variance, there is value in increasing sample sizes as well. In these analyses 
we were unable to report on DNAm correlations conditional on SNPs as joint MRM and 
GRM bivariate REML models were unable to convergence. We attempt to address this by 
adjusting univariate and bivariate OREML models based on DNAm with covariate 
adjustment for first 20 principal components of the genetic data. We find models with and 
without these adjustments yield practically identical estimates for both proportion of variance 
captured and DNAm correlations. While it has been previously shown that much of the 
genetic control of DNAm is shared across populations [37-40], as DNAm is also responsive 
to the environment, it would not be unexpected for such estimates to vary by ancestry, or 
geography. While we suspect our results will be generalisable across comparable samples, 
replication in similar populations as well as populations of different ancestry, ethnicity or 
geography would provide greater insight into these results. 
 
Overall, we present an approach to investigating shared biology across traits using DNAm 
correlations. This has provided novel insight into obesity related traits, showing the shared 
associations of DNAm between BMI, waist to hip ratio and body fat %, beyond that 
recognised through genetic correlation analysis and has identified sex specific DNAm 
changes associated with BMI.  
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Methods 
Study cohort 
All data for the study came from Generation Scotland: Scottish Family Health Study (GS). 
The family-based genetic epidemiological cohort consists of over 24,000 volunteers which 
has been described previously [19, 20]. Recruitment took place between 2006 and 2011, 
when individuals their family members aged 18+ years were invited to a baseline clinic visit 
that included health questionnaires and sample donation for genomic analyses. This study 
uses phenotypic, DNAm and genetic data from unrelated samples (N = 7,519, GRM<0.05), 
with DNAm levels quantified in three sets based on time of DNAm array processing. 
 
Phenotypic data  
Three anthropometric measurements and three biochemical phenotypes were investigated: 
body mass index (BMI; kg/m2), body fat percentage (%), waist to hip ratio, glucose 
(mmol/L), high-density lipoprotein (HDL) cholesterol (mmol/L) and total cholesterol 
(mmol/L). All phenotypes were trimmed for outliers (values that were ± 4 SDs from the 
mean). In addition, BMI was trimmed for extreme values at <17 and >50 kg/m2. For each 
trait we stratified the samples by sex then adjusted the phenotype for age and standardized the 
residuals by rank based inverse normal transformation before recombining the data. There 
was no adjustment for set as there were minimal differences in the mean across sets. 
Residualised phenotypes were entered as dependent variables in the subsequent analysis. 
Smoking pack years were calculated by multiplying the number of packs of cigarettes 
smoked per day by the number of years the individual has smoked and used in the adjustment 
of DNAm data. 
 
Genetic data 
Genome wide genotypic details have been described previously [41]. Briefly, GS participants 
were genotyped with either Illumina HumanOmniExpressExome8v1-2_A or 
HumanOmniExpressExome-8v1_A arrays. SNPs were excluded for missing genotype call 
rate (>2%), and marked departure from Hardy–Weinberg equilibrium (HWE; 
p�<�1�×�10−6), low MAF (<1%). Duplicate samples were removed alongside individuals 
with gender mismatch and missing genotype call rate (>2%). Principal components were 
calculated in the GCTA software [18] using the 1,092 individuals of the 1000 Genomes 
population [42]. Outliers were defined as observations more than six standard deviations 
away from the mean of the GS individuals for the first two principal components and were 
subsequently removed [43]. Genotype data was imputed against HRC panel v1.1 [44]. 
Unrelated individuals were retained (GRM<�0.05) using the GCTA software [18]. All 
subsequent analyses were conducted on the unrelated individuals using HapMap3 SNPs only. 
 
DNA methylation data 
Genome-wide blood-based DNA methylation profiled using the Illumina Methylation EPIC 
array and was processed in three separate sets. DNAm quality control was performed as 
reported previously [45]. Briefly, outliers were excluded based on the visual inspection of 
methylated to unmethylated log intensities, in addition to poorly performing probes and 
samples, and sex mismatches. Further filtering was performed to exclude non-autosomal CpG 
sites, CpGs that were predicted to cross-hybridise and those with polymorphisms at the target 
site which can alter probe binding [46, 47]. Poor performing probes, X/Y chromosome 
probes and participants with unreliable self-report data, saliva samples and potential XXY 
genotype were excluded along with probes with almost invariable beta values across 
individuals (standard deviation <�0.02). All 3 sets were normalised together with the final 
discovery dataset comprised M values at 781,379 loci for 7,519 participants. Before analysis, 
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DNAm was adjusted in the OSCA software for age, sex, batch, slide, cell type proportions 
(estimated using the algorithm proposed by Houseman et al. [48]), smoking status and pack 
years. 
 
Variance component analyses 
Utilising 7,519 unrelated individuals from Generation Scotland (GS), we estimate the 
proportion of phenotypic variance captured by genome-wide DNAm across six body fat and 
adiposity-related biochemical traits using omics-restricted maximum likelihood (OREML) 
framework in the OSCA software. This method estimates the variance captured by DNAm by 
construction of a DNAm relationship matrix (MRM) based on all DNAm probes and which is 
used to model the covariance between individuals in a univariate linear mixed model via 
restricted maximum likelihood (REML). This allows us to obtain the proportion of variation 
for each trait captured by all probes which is analogous to that of estimating SNP-based 
heritability based on genetic data [18, 49]. Unlike SNP-based heritability, we note that the 
proportion of captured by all probes may be capturing both cause and consequence of the 
phenotype. The GCTA software was used to calculate the GRM and similarly implemented 
in the OSCA software to estimate SNP-based heritability, referred to here as the proportion of 
phenotypic variance explained by all SNPs. We also estimated these quantities jointly in the 
OSCA software using --multi-orm which allows for multiple random effects. 
 
DNAm correlations 
We estimate the DNAm correlation between phenotypes implemented using the bivariate 
OREML framework in OSCA utilising DNAm relationship matrices rather than the standard 
GRM, where the DNAm correlation is estimated from the one of the covariance components. 
Here the phenotypic and DNAm information came from the same unrelated individuals. This 
approach estimates the shared contribution of DNAm based on the MRM between 
phenotypes. Likelihood ratio tests were performed to test the hypotheses of fixing the 
correlations at both zero and one. We additionally estimated genetic correlations using GCTA 
and phenotypic correlations using Pearson’s correlation and compared these with rDNAm to 
investigate if this metric provides novel insights into the molecular underpinnings of these 
traits. Joint estimation of rG and rDNAm was not reported due as the models were unable to 
converge.  
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