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Significance Statement

e Nephron progenitor cells (NPCs) are a multipotent population giving rise to all cell
types of the nephron. At any given time, the NPC’s choice to self-renew or
differentiate is determined not only by its transcription factor (TF) repertoire but
also by the genome accessibility of the cognate cis-regulatory elements.

e Using single-cell analysis, we demonstrate the heterogeneity of NPCs at the
epigenetic level and observe dynamic and cell type-specific changes in chromatin
accessibility. Fate-determining TFs harbor domains rich in interactive chromatin
that are established prior to gene activation.

e These findings illustrate the importance of chromatin-based mechanisms in the
regulation of nephrogenesis and may have implications for nephron regeneration

and repair.
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STRUCTURED ABSTRACT

Background: Cis-regulatory elements (CREs), such as enhancers and promoters, and
their cognate transcription factors play a central role in cell fate specification. Bulk
analysis of CREs has provided insights into gene regulation in nephron progenitor cells
(NPCs). However, the cellular resolution required to unravel the dynamic changes in
regulatory elements associated with cell fate choices remains to be defined.

Methods: We integrated single-cell chromatin accessibility (scATAC-seq) and gene
expression (scRNA-seq) in embryonic E16.5 (self-renewing) and postnatal P2 (primed)
mouse Six2¢FP NPCs. This analysis revealed NPC diversity and identified candidate
CREs. To validate these findings and gain additional insights into more differentiated cell
types, we performed a multiome analysis of E16.5 and P2 kidneys.

Results: CRE accessibility recovered the diverse states of NPCs and precursors of
differentiated cells. Single-cell types such as podocytes, proximal and distal precursors
are marked by differentially accessible CREs. Domains of regulatory chromatin as defined
by rich CRE-gene associations identified NPC fate-determining transcription factors (TF).
Likewise, key TF expression correlates well with its regulon activity. Young NPCs
exhibited enrichment in accessible motifs for bHLH, homeobox, and Forkhead TFs, while
older NPCs were enriched in AP-1, HNF1, and HNF4 motif activity. A subset of Forkhead
factors exhibiting high chromatin activity in podocyte precursors.

Conclusion: Defining the regulatory landscape of nephrogenesis at single-cell resolution
informs the basic mechanisms of nephrogenesis and provides a foundation for future

studies in disease states characterized by abnormal nephrogenesis.


https://doi.org/10.1101/2021.10.13.464099
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.13.464099; this version posted October 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

In the developing kidney, nephron progenitor cells (NPCs) reside in a niche called
the cap mesenchyme, a crescent-shaped cellular compartment surrounding the adjacent
ureteric branch tip. Based on molecular marker analysis, the cap mesenchyme is divided
into a self-renewing Cited1*/Six2* compartment, a transit Cited1/Six2* compartment, and
a late Six2'°%/Wnt4* compartment called the pretubular aggregate, the precursor of the
renal vesicle, and the earliest epithelial precursor of the nephron (1, 2). Single-cell
transcriptomics of human and mouse kidneys refined the signatures of NPC states and
delineated the developmental trajectories and the potential transcriptional regulatory
networks associated with cell fate decisions (3-7). The NPC’s choice to self-renew or
differentiate and gain a new identity is determined not only by its transcription factor (TF)
repertoire but also by the accessibility of the cognate cis-regulatory elements (CREs).
Accordingly, to fully characterize the NPC states and fates, it is necessary to have an
integrated view of chromatin and gene expression states across cell types, developmental
trajectory, and life span.

Chromatin accessibility is a dynamic process that drives tissue development by
permitting or restricting access of TFs to cognate CREs. ATAC-seq (Assay for
Transposase Accessible Chromatin) has become the assay of choice to decipher open
(accessible) chromatin domains composed of promoters and enhancers (8). We
previously reported using bulk ATAC-seq in native embryonic and neonatal mouse
Six26FP NPCs that NPCs undergo age-dependent changes in chromatin accessibility at

active enhancers of renewal and differentiation genes (9). These differential dynamic
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chromatin states were also observed in expanding NPCs ex vivo, suggesting that young
and old NPCs are intrinsically different at the epigenetic level (9). Changes in chromatin
accessibility to TCF/LEF factors at pro-differentiation enhancers were also shown to
mediate gene expression in response to R-catenin activation (10), underscoring the
importance of concerted actions of chromatin and transcription factors in gene regulation.
However, given the dynamic changes in NPC states that occur during differentiation, it is
difficult to accurately assign a chromatin state to a specific cell population using bulk
analysis. In a recent study to address this issue (11) the investigators performed
snRNA/snATAC-seq in newborn and adult mouse kidneys revealing key developmental
regulators of NPC commitment decisions to the podocyte, proximal and distal fates and
linking single nucleotide variants associated with human kidney disease to regulatory
elements in key developmental genes. In the present study, we integrated single-cell
chromatin accessibility and gene expression profiles obtained from embryonic and
neonatal mouse NPCs and subsequently validated our singleomes using single-cell
profiles derived from the same cell (multiome). These paired maps recovered a class of
genes, frequently lineage-determining transcription factors, enriched in putative

enhancers whose accessibility was strongly linked to gene expression.
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MATERIALS AND METHODS
Animal protocols utilized in this study were approved by and in strict adherence to
guidelines established by the Tulane University Institutional Animal Care and Use

Committee.

Mice

Six2CFP NPCs were isolated from kidneys of embryonic day E16.5 (n=3) and
postnatal day P2 (n=4) Six2GFPCre (Six2"¢) mice bred on a mixed genetic background
by fluorescent-activated cell sorting (FACS), as described (9). For multiomics, cells were

isolated from kidneys of E16.5 and P2 C57BI/6 mice.

Single-cell ATAC seq data generation from E16.5 and P2 Six2¢FP kidneys

Nuclei were prepared from freshly explanted kidneys in accordance to the protocol
outlined in CG000169 | RevB (10X Genomics). Approximately 100,000 dissociated cells
were washed in ice-cold 1X PBS supplemented with 0.04% BSA. Cells were spun down
at 500g for 5min at 4°C. The cell pellet was re-suspended by gentle pipetting in 45ul
Lysis buffer 10 mM Tris pH 7.4, 10 mM NaCl, 3 mM MgCI2 0.1% NP-40, 0.1% Tween-20,
0.01% Digitonin and 1% BSA. Lysis was allowed to proceed on ice for 5 minutes after
which 50ul of ice-cold wash buffer (10 mM Tris pH 7.4, 10 mM NaCl, 3 mM MgClI2, 0.1%
Tween-20 and 1% BSA) was added before spinning down again and re-suspending in 45
uL 1X Nuclei Dilution Buffer (10x Genomics). After the last centrifugation step, 7ul of 1X
diluted Nuclei Buffer was added to the nuclei pellet. Two microliters of the nuclei

preparation plus 8ul of diluted Nuclei buffer was stained with 10ul of AO/PI staining
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solution (Nexcelom, MA). Both concentration and viability of the sample was read using
the Cellometer Auto 2000 Cell Viability Counter (Nexcelom, MA). The remaining 5ul of
nuclei was adjusted for a targeted nuclei recovery of 5000 before proceeding to the
Chromium Single Cell ATAC Reagents and Gel Bead Kit protocol CG000168
(PN1000111,10x Genomics).

Paired-end dual index libraries were sequenced on the lllumina NextSeq 550
sequencer. Raw data was extracted and processed using the Cell Ranger pipeline

(v1.2.0, 10X Genomics) and the mm10 Mus musculus reference assembly.

Multiome data generation

Cells were isolated from mouse kidneys explanted at E16.5 and P2. The kidneys
were dissociated by incubation in Accutase (AT104, Innovative Cell Technologies, Inc.)
with slow rotation at 37°C for up to an hour with intermittent gentle pipetting. The reaction
was stopped with FBS and the cells were spun down at 500rpm for 5Smin. The cell pellet
was resuspended in 1XPBS supplemented with 10mM EDTA and 2%FBS. Following
resuspension, the cells were passed through a 40um cell strainer to obtain a single cell
suspension (BD Falcon, catalog# 352235).

Nuclei isolation was achieved with 800,000 cells per age group using the protocol
CG000366 RevB (10XGenomics) established for mouse tissues. To achieve cell lysis,
we incubated the cells in 0.1X Lysis Buffer for 8min on ice. After the wash and
centrifugation steps, the nuclei pellet was resuspended in cold 1X Nuclei Buffer.
Approximately 6000 nuclei per sample were used to prepare the libraries in accordance

with the steps detailed in the Chromium Next GEM Single Cell Multiome ATAC + Gene
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Expression protocol (CG000338, RevD) and the 10X Reagent Kit PN-1000284. Briefly,
nuclei suspensions were incubated in a Transposition Mix to transpose and barcode
accessible DNA fragments. The transposed nuclei were partitioned into nanoliter-scale
Gel Bead-In EMulsion (GEMs). The barcoded transposed DNA and barcoded full-length
cDNA from poly-adenylated mRNA were generated and amplified by PCR to obtain
sufficient complexity for both ATAC and gene expression library constructions. P7 and a
sample index were added to transposed DNA during ATAC library construction via PCR.
Barcoded cDNA enzymatic fragmentation, end-repair, A-tailing, and adaptor ligation were
followed by PCR amplification. Both the ATAC and 3'- Gene Expression libraries
generated contained standard lllumina P5 and P7 paired-end constructs. Library quality
controls were performed with an Agilent High Sensitivity DNA kit on the Agilent 2100
Bioanalyzer together with quantitation on a Qubit 2.0 fluorometer. Libraries were
sequenced separately with individual parameter settings. Pooled libraries at a final
concentration of 650pM were sequenced with paired end dual index configuration on an
lllumina NextSeq 550 using lllumina High-Output 150 cycle kits (Cat N0.20024907). Cell
Ranger-arc version 1.0.1 software (10X Genomics) was used to process raw sequencing

data for further downstream analyses.

Analysis using ArchR package

Fragment files generated with cell-ranger -arc version 1.0.1 pipeline (10X
Genomics) were used as input for ArchR (Analysis of Regulatory Chromatin in R)
(archproject.com)(12). The input fragment file was processed as chunks per

chromosome and stored in HDF5 format (hierarchical data format version 5) allowing
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rapid access and efficient read and write functions during analysis. The QC steps involved
the removal of all low-quality cells and predicted heterotypic doublets from our analysis.
All cells with a TSS enrichment score greater than or equal to 4 and with ATAC fragment
counts greater than 1000 but less than 100,000 per cell were retained in our analysis.

A chromatin accessibility matrix was generated using a genome-wide, non-
overlapping, tile matrix of 500bp bins. The gene score algorithm allowed the prediction of
gene activity/expression based on ATAC-seq data. It measures accessibility at promoter
plus gene body and distal regulatory elements at weighted distances from the gene TSS
and TTS while accounting for gene size differences and neighboring gene boundaries.
We used a default of 100kb window flanking the gene.

To obtain a low dimensional representation of single-cell ATAC datasets in terms
of principal components and UMAP coordinates, we applied an iterative latent semantic
indexing approach (13, 14). In brief, Dimensionality reduction was achieved by TF-IDF
normalization and Singular Value Decomposition (SVD)/Latent Semantic Indexing (LSI)
through user-defined iterations. The first iteration uses top accessible features while the
second uses top variable features. Clustering is achieved by Shared Nearest Neighbor
algorithm implemented by Seurat followed by 2D embedding in the UMAP (Uniform
Manifold Approximation and Projection) space for visualization. Peak analysis was
preceded by calling pseudo-bulk replicates of each cluster using default parameters.
MACS2 was used for peak calling and the generation of a non-overlapping union peak
matrix. ChromVAR (15) (v.1.6) was used to obtain TF accessibility profiles using position

weight matrices from the CisBP mouse_pwms_v2 database (16).
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Co-accessibility detection in ArchR follows an approach introduced by Cicero (17)
by creating low-overlapping aggregates of single cells. ArchR uses optimized methods
for calculating significantly correlated peak-peak as well as cis-regulatory peak-to-gene
associations (correlation cutoff = 0.45, resolution =1000). The primary difference between
peak-to-gene links and peak-peak co-accessibility is that co-accessibility correlates
accessibility between two peaks (ATAC-seq only analysis), while peak-to-gene linkage
leverages integrates scRNA-seq data to correlate peak accessibility and gene expression
which may be a more pertinent approach to identifying gene regulatory interactions.

We applied the GetAssayData function (Seuart 4.0 Package) to recover the log-
normalized information stored at the data slot of the RNA assay from the E16.5 Seurat
object. This information was used to construct the expression matrix used for regulatory
network analysis. Next, to identify TFs and characterize cell states, we employed cis-
regulatory analysis using the R package SCENIC v1.1.1 (Aibar et al., 2017), which infers
the gene regulatory network based on co-expression and DNA motif analysis. The
network activity is then analyzed in each cell to identify recurrent cellular states. We used
GENIES3 to identify TFs were identified and compiled into modules (regulons), which were
subsequently subjected to cis-regulatory motif analysis using RcisTarget mm9 files with
two gene-motif rankings: 10 kb around the TSS and 500 bp upstream. Regulon activity in
every cell was then scored using AUCell. Finally, binarized regulon activity was projected

onto Seurat-create UMAP clustering.

RNAscope in situ hybridization. RNAscope was applied to formalin-fixed, paraffin-

embedded tissue sections from E16.5 kidneys using the Multiplex Fluorescent Assay

10
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(Advanced Cell Diagnostics, Cat# 323100) following the manufacturer’s

recommendations. The list of probes used are as follows: FoxI1 (Cat# 407401), Foxp1

((Cat#485221), Foxn3 (Cat# 586011), Nabp1 (Cat#1049221), Mcmdc2 (Cat#477971).
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RESULTS AND DISCUSSION

CRE accessibility reveals NPC precursor states and novel cellular markers

To elucidate the cellular heterogeneity of nephron progenitors, we created gene-
regulatory datasets using the Chromium platform (10x Genomics) to generate single-cell
ATAC-seq (scATAC) and single-cell RNA-seq (scRNA) libraries from fluorescence-
activated sorted Six2CP cells freshly harvested from E16.5 and P2 kidneys of transgenic
Six2-GFP-Cre (Six2"¢€) mice. We reasoned that while embryonic NPCs are engaged in
self-renewal, neonatal NPCs are primed for differentiation nearing the time of cessation
of nephrogenesis (P3-P4 in mice). Overall, we obtained 13,506 (E16.5) and 7,232 (P2)
single-cell epigenomes and 10,544 (E16.5) and 7,250 (P2) single-cell transcriptomes
after quality control and filtering (Figure S1, A,B and Figure S2 A,B). After data
processing using the Cell Ranger pipeline (10x Genomics), we employed ArchR (12) for
downstream pipeline analysis, as described in the Methods section.

To reveal global similarities and differences between individual cells, we performed
dimension reduction using uniform manifold approximation and projection (UMAP) and
clustering. We employed the latent semantic indexing (LSI) approach for scATAC to
obtain a low-dimensional embedding, cell clustering and consensus sets of 753614
(E16.5) and 309584 accessible peaks representing potential CREs. We next called
clusters in both scATAC and scRNA (GSE124804) datasets and annotated these clusters
using gene activity scores (a metric defined by the aggregate local chromatin accessibility
of genes) [Methods] and gene expression (Figure 1 A, B, E, F). Integrating the derived

gene activity scores with gene expression levels using canonical correlation analyses
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(CCA) to match cells from one modality to their nearest neighbors in the other (Figure 1
C, G) showed that the major NPC states were recovered at both E16.5 and P2. Thus,
chromatin accessibility is comparable to gene expression in predicting the major cell
states of NPCs.

We examined the gene scores matrix (derived from chromatin accessibility) to
determine whether we can identify precursor cell states in the embryonic stage NPC. The
results revealed that chromatin accessibility can identify precursor states of podocyte,
proximal and distal fates (Figure 1 D). For example, Cluster 1, which contains markers
of cell cycle genes, also features the distal tubule fate marker Hoxd8, whereas clusters 3
and 5 feature markers of proximal progenitors Osr2 and Cdh6. The Clusters 2 and 4,
representing early nephron progenitors, feature markers of podocytes. Similarly,
progenitor cell states were also identified at P2 based on chromatin accessibility gene
scores (Figure 1 H), although by this advanced stage of maturation scATAC-seq and
scRNA-seq were equivalent in identifying precursor states. Collectively, these findings
demonstrate that single-cell chromatin accessibility offers a sensitive means to recover
precursor cell states in fetal NPCs.

SCATAC-seq also allowed the detection of novel markers, Mcmdc2
(Minichromosone Maintenance Domain Containing-2) and Nabp1(Nucleic acid-binding
protein-1), showing selective chromatin accessibility in proximal or distal cell precursors,
respectively (Figure S3 A,C). Using RNAScope in situ hybridization, we confirmed the
RNA expression of Mcmdc2 in proximal (LTL-positive) tubules, whereas Nabp1 was
expressed in distal (LTL-negative) segments (Figure S3 B, D). Interestingly, both genes

are involved in DNA repair pathways.

13
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We used the R package Cicero (17) to predict cis-regulatory chromatin interactions
for individual cell types. Cis co-accessibility networks (CCAN) are families of chromatin
regions that co-vary in their accessibility and can be used to predict chromatin
interactions. Within NPCs at E16.5 and P2, most Cicero connections were either within
a promoter region or between a promoter and another location like introns and intergenic
regions (Figure S4 A-C). Overall, there were twice as many CCANs in P2 than E16.5

NPCs reflecting increasing complexity of transcriptional regulation with maturation.

CRE-Gene associations identify potential regulatory chromatin

Because co-variations in chromatin co-accessibility generally have only modest
correlations with gene expression, we linked distal peaks to genes in cis, based on co-
variation in chromatin accessibility and gene expression across all cells to identify CRE-
gene pairs during NPC differentiation. Ma and colleagues (18) called chromatin domains
enriched in more than 10 CRE-gene associations Domains of Regulatory Chromatin
(DORCs). DORCs identified lineage-determining genes in the hair follicle that are
accessible prior to onset of gene expression. Trevino and colleagues (BioxRv 2021, pre-
print) referred to genes enriched in more than 10 peak-gene links as Genes with
Predictive Chromatin (GPCs); GPCs identified lineage-determining factors during neural
corticogenesis. In the present study, we applied similar principles by generating
pseudobulk aggregates of matched ATAC/RNA annotations across NPCs linking gene-
distal CRE accessibility to gene expression. We identified 7039 and 21788 CRE-gene
pairs that represent potential regulatory interactions in E16.5 and P2 Six2¢"P datasets,

respectively (Figure 2 A, B). CRE-gene links correlated strongly with cell type-specific
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expression of TFs (Figure S5). Annotation using the Genomic Regions Enrichment
Annotations Tool (GREAT-R) (19) recovered biological processes relating to basic
aspects of nephrogenesis ranging from chromatin organization to renal vesicle formation
and cell-cell interactions. (Figure 2 A, B).

To determine whether CRE-gene associations have a predictive value in
identifying key developmental regulators, we ranked genes across all NPCs based on the
number of peak-gene associations and exceeding an inflection point (“elbow”) (18). This
analysis yielded 425 (E16.5) and 412 (P2) genes having more than 4 (E16.5) or 10 CRE-
gene associations (P2) (Figure 2 C, D). These enriched domains of interactive chromatin
identified lineage- and fate-determining genes such as Wnt4, Hox, Hnf1, Six2, Emx2,
Foxc1, Pou3f3 and Uncx, among others (Figure 2 C, D). We next wished to determine
whether genes enriched in interactive domains are concordantly rich in the active
enhancer mark H3K27Ac. For this purpose, we leveraged our ChlP-seq data performed
on E13.5 and PO NPCs (9). Notably, 15-25% of genes have interactive chromatin
domains overlapping with the top-ranking H3K27Ac-marked enhancers (Fig. S$6). Of
interest, a similar analysis performed in the hair follicle revealed that 34% of genes
harboring domains of regulatory chromatin overlapping with H3K27Ac-superenhancers
(18), underscoring that active enhancer formation encompasses additional mechanisms.

We next wished to identify “positive” transcriptional regulators whose gene
expression scores are highly correlated to their ChromVAR TF motif deviation z-scores
in the top quartile (r>0.5, p<0.01). This analysis yielded key lineage-determining genes
concerned with NPC identity and fate decisions (Figure 2 E,F). Notably, we observed

that in differentiation genes, e.g., Hnf1b, chromatin accessibility at CREs preceded gene
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expression (Figure S7 A). Indeed, chromatin profiles show accessibility of the Hnf1b
locus in precursor cells (Figure S7 B) indicating the necessity for additional gain of

accessible chromatin at the gene’s regulatory elements for cell-type specific expression.

Defining trajectory of transcriptional regulators in NPCs

To identify TFs that may control the gene expression programs across pseudotime,
we linked TF motifs enriched in the different cell states with TF gene expression starting
from naive NPCs and ending in the proximo-distal cluster. At E16.5, Six2, Hoxa9, Hoxc8,
and Forkhead box (Foxn3, Foxp1, Foxo1, Foxc1, Foxd1) are the initial TFs to engage
chromatin (Figure 3 A). Additional factors that drive early differentiation (Tcf4/7, KIf10,
Rbpj, Pax2/8 and Uncx) and those that specify the proximo-distal lineage fates (e.g.,
Hoxb2/b4, Lhx1, Hnf1b, Pou3f3, and KIf6 and EIf1/5) are subsequently engaged. Nearing
the end of their lifespan, P2-NPCs are actively involved in differentiation, and this is
reflected by a TF signature mostly composed of key fate-determining factors of proximal
and distal fates, such as Hnf1b, Hnf4a, Hoxd8 and EIf family members (Figure 3 B).
Interestingly, Nfkb, recently identified by single cell analysis of human kidneys as a
potential regulator of proximal tubular integrity (20), is represented (along with its partners
Rel-a and Rel-b) in the trajectory (Figure 3 B).

The early engagement of Foxn3 and Foxp1 factors in the NPC lineage was
intriguing and reminiscent of FoxI1, recently identified in a similar analysis done at PO
(11). So, we explored where these factors might be expressed in the developing kidney.
High-sensitivity RNA in-situ hybridization (RNAScope) revealed that Foxn3 and Foxp1

are expressed in the podocytes (albeit not exclusively) (Figure 3 C), whereas Foxo1 was
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diffusely expressed in the nephrogenic zone (not shown). We also confirmed that FoxI1
is enriched in the podocyte, as recently reported (11) (Figure 3 C). These findings imply

a potential role for this subset of Fox factors in the specification of the podocyte fate.

Multiome Analysis of the NPC lineage

To validate the above inferences based on integrated singleomes, we generated
joint scATAC and scRNA datasets from E16.5 and P2 mouse kidneys using the
Chromium Single-Cell Multiome ATAC+GEX platform (10x Genomics). Filtering across
both data modalities yielded 7774 and 10,765 cells with high quality transcriptome and
epigenome profiles, respectively (Figure S8). We obtained 168,566 and 171,147
accessible peaks representing potential CREs at E16.5 and P2, respectively. We
clustered the scATAC-seq and scRNA-seq datasets and annotated these clusters using
gene expression and gene scores, then selected the cell clusters representing the
nephrogenic (NPC) lineage (npc-to-distal) for further analysis. We next integrated the
derived gene scores (chromatin accessibility) with gene expression scores (GEX) (Figure
4 A-D). Key nephrogenesis factors such as Six2 and Pax2 (NPC), Foxc2 (podocyte),
Hnf4a (proximal), Pou3f3 (LOH), and Gata3 (distal tubule) showed strong cluster specific
enrichment using gene and GEX scores (Figure 4 E). Marker-based cell clustering of
chromatin accessibility defined the cell types of the nephrogenic lineage (Figure 4 F,
Figure S9). Visualization of accessible peaks across all clusters (C1 to C17) in the Six2
and Hnf1b gene loci (+/-70 kb from the TSS) revealed enriched co-accessible CREs in
NPCs and proximo-distal clusters, respectively (Figure 4 G). By comparing gene scores

and GEX scores, we observed two prevalent patterns: type | genes were characterized
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by regulatory chromatin opening preceding gene activity. Examples in this group of genes
are transcriptional regulators, enzymes, and G-protein coupled receptors (Figure S10).
In group Il genes, regulatory chromatin opening coincides with gene activation. The latter
group is enriched in channels and transporters. The biological significance of these
differential chromatin behaviors is not clear but may be important in lineage priming and
terminal differentiation.
Motif enrichment analysis reveals maturational differences in TF activity

We next performed ChromVAR motif enrichment analysis on marker peaks and
differentially accessible peaks to determine if these groups of peaks are enriched for
binding sites of specific TFs (Cutoff = FDR<=0.1 and Log2FC>0.5) (Figure 5 A, B). We
found that bHLH motifs are enriched in podocyte and NPCs. In comparison, homeobox
motifs are most enriched in NPCs, while Forkhead box motifs are enriched in podocytes.
Distal clusters were enriched with accessible Pou motifs, whereas proximal clusters were
enriched in Hnf4/Hnf1/Rxr motifs. AP-1 motifs were enriched in intermediate clusters 2,
5 and 8 representing differentiating proximal and distal tubules. Ranking the top
differentially accessible motifs based on ChromVAR variability scores across all cells
revealed Hnf1 motifs are the most represented in the accessible peaks (Figure 5 C).
Other TF motifs that are also overrepresented include Six, Hnf4 and Hox motifs. Our
previous bulk ATAC-seq analysis revealed that older (P0-P2) NPCs have greater
chromatin accessibility to AP-1 factors. Here, we confirm through differential analysis of
ScATAC seq profiles that NPC maturation is associated with a remarkable shift in TF

accessibility from the “progenitor” type (Six2, Hox, Wt1, Fox) to AP-1 factors (Figure 5
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D). Other TFs that gain increased accessibility in P2 are terminal differentiation genes
including Hnf1, Tead, Nfkb and Hnf4.
Trajectory of TF motif activity

Integration of TF gene expression with CRE accessibility along the NPC
differentiation trajectory illustrated the dynamic accessibility to fate-determining TFs in the
progenitor state (Six2, Meis2/3, Tcf21, Hoxc8/a9/a11), committed (E2f6, Stat3, Sox12,
Pax2, Pax8), podocytes (Wt1, Fox factors), proximo-distal committed cells (Nfkb1, Essrb,
Elf3, KIf6, Hoxb2/b4, Lhx1), distal (Pou3f3), and proximal fate (Hnf4a/g, Hnf1b, Ppara,
Nr1h4) (Figure 6). To gain further insights into cell type-specific regulons (groups of co-
regulated genes), we examined TF regulon activity using Single-Cell rEgulatory Network
Inference and Clustering (SCENIC). SCENIC incorporates TF cell type specific
expression with motif-based filtration to infer potential direct targets of each TF (regulons).
Regulon activity was quantified and was binarized into “on” or “off’ based on activity
distribution across cells. As shown in Figure 7 A and B, SCENIC clustered the cells
based on the regulon states of each cell showing strong enrichment of Meis1, Zeb1,
Hoxa10, Hoxd11, Ezh2, Foxc1, and Tcf7I1 regulon activity in nephron progenitors, Mafb
and Lef1 in podocytes, Emx2, Hnf1b, Pax8, Lef1, Sox9, Nfkb1 in differentiating cells,
Tfdp1, Breca1, E2ffactors in cycling NPCs, Hnf1a, and Hnf4g in proximal tubules, Atf3 and
Paprgc1ain loop of Henle, and Hoxd8, Gata3 and Pou3f3 in distal nephron, respectively.
Examples of regulon activity and corresponding TF gene expression are shown in Figure
7C.
CRE-gene associations across the NPC lineage uncover specialized cellular

functions
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Like our analysis in Six2¢ cells (Figure 2), we applied a correlation-based
approach that links CREs to gene expression, identifying 24270 dynamic interactions
across all E16.5 and P2 NPC lineage cells and grouped these interactions into 10 k-
means clusters (Figure 8 A). GREAT analysis of linked genes clustered well into various
cell functional types such as metabolic processes, segmental nephron morphogenesis,
glomerular/podocyte differentiation and tubular transport (linked genes are listed in
Supplemental tables 1-10). Of significant interest, CRE-gene linkages identified genes
involved in highly specialized cell functions such as macula densa, mesangial and
podocyte morphogenesis.

Using a minimum of 10 CRE-gene links per gene, we defined a set of key
developmental TFs and genes that define NPC, podocyte, committed, proximal and distal
fates such as Wt1, Hox, Six2, Foxc2, Hnf1b, Lef1, Cdh6, Mecom, Tfap2b, and Pou3f3
(Figure 8 B), illustrating the value of CRE-gene associations in identifying lineage- and
fate-specific genes, and validating the results obtained in Six2¢" cells. Interestingly, the
top 2 ranked genes with the highest number of CRE-gene links are Neat1 and Malat1;
both genes encode long non-coding RNAs postulated to function in renal epithelial cell
protection and repair pathways (21).

Analysis of early NPCs recovers Fox gene activity

To further understand the chromatin landscape of NPCs, we sub-clustered the
Cited1-enriched cell population in E16.5 NPCs and obtained 4 cell clusters (Figure S11
A). UMAP plots of gene scores and gene expression revealed that C2 is enriched in
Cited1 and Six2 (Figure S11 B). Also, Six2 motif activity is high in C2. In comparison,

C4 is enriched in Fox family members (Foxc2, Foxl1, Foxp1 and Foxn3) when assessed
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by gene scores, gene expression and motif activity (Figure $11 B, arrows). Interestingly,
Wt1 motif activity is also high in C4. Examination of H3K27ac ChlP-seq and ATAC-seq
tracks (GSE124804) revealed that Six2 and WT1 bind the Fox/1 gene at accessible
chromatin regions (peaks) upstream of the TSS (Figure S11 C), suggesting that Six2 and
Wit1 may directly regulate the cell type-specific expression of Fox factors. Analysis of TF
motif enrichment in accessible peaks showed that C2 is enriched with accessible motifs
for Six2, and the AP-1 family, while C4 is enriched in Fox motifs (Figure S$11 B, D).
Furthermore, matching TF expression with motif activity across pseudotime revealed high
AP-1 and p53 activity (cell cycle/survival) in the beginning of the trajectory as compared
to high Fox, Wt1 and KIf15 (podocyte) activity at the end of the trajectory (Figure S11 E).

In summary, elucidation of the accessible chromatin landscape in nephron
progenitors informs the mechanisms of NPC choices to alternate fates and provides a

foundation for future studies in disease states characterized by abnormal nephrogenesis.
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Figure Legends

Figure 1. Integrated single-cell ATAC/RNA-seq reveals diversity of cell states in
E16.5 and P2 Six2%FP NPCs.
(A,E) UMAP plots of scATAC datasets with chromatin accessibility (gene scores)-
based cell-type assignments in E16.5 (A) and P2 (E) NPCs.
(B,F) UMAP plots of scRNA-based cell-type assignments.
(C,G) UMAP plots of integrated scATAC/scRNA-based cell clustering.
(D,H) Heatmaps of scATAC gene scores for the top 13684 (E16.5) and 13916 (P2)
accessible peaks. Representative genes of each cluster are shown.

NP: nephron progenitor; CC cell cycling; Pod: podocyte

Figure 2. Inferring regulatory chromatin from peak-gene links in Six2¢FP NPCs.
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(A,B) Correlations of 7039 and 21788 peak-gene associations ATAC and RNA Z-
scores across all cell states (k means=10). rGREAT annotation of cluster-related
biological processes.
(C,D) Ranking of genes harboring chromatin domains with a minimum of 4 (E16.5)
or 10 (P2) peak-gene links.
(E,F) Identification of top positive TF regulators whose correlation between motif and
integrated gene expression is greater than 0.5 and 0.2, respectively with an adjusted
p-value less than 0.01 and a maximum inter-cluster difference in deviation z-score
delta value that is in the top 0.75 quartile.
Figure 3. Six2¢FP cellular trajectory based on matched transcription factor
expression and motif activity.
(A,B) Side-by-side heatmaps of TF gene expression and ChromVar motif scores
across pseudotime and cell states.
(C) Confocal microscopy images (x60 magnification) of section RNA in situ
hybridization (RNAscope) showing expression of Foxc2, Fox/1, Foxn3 and Foxp1

in podocytes in E16.5 kidney (white arrows).

Figure 4. Multiome single-cell ATAC-seq/Gene expression (GEX) of E16.5/P2
kidneys.

(A)scATAC UMAP-based clustering.

(B) scRNA UMAP-based clustering.

(C,D) Matched ATAC/RNA UMAP-based clustering.

(E) Heatmap of gene scores and GEX of representative cell-type specific genes.
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(F) UMAP plot (top) and heatmap (bottom) representing E16.5/P2 chromatin
accessibility-based assignment of cell clusters.
(G) Representative chromatin accessibility tracks of all clusters for the Six2 and Hnf1b

genes. Boxed areas denote gene regulatory regions.

Figure 5. Multiome analysis of differential chromatin accessibility in E16.5/P2 NPC
lineage.

(A) scATAC-based UMAP plot with cell-type specific annotations.

(B) ChromVAR TF motif enrichment per cell cluster.

(C)ChromVAR deviation scores for the most represented TF motifs in NPCs.

(D)Age-based motif enrichment analysis in E16.5 and P2 NPCs.

Figure 6. Multiome NPC trajectory based on matched transcription factor
expression and motif activity.
Side-by-side heatmaps of TF gene expression and motif scores across

pseudotime.

Figure 7. Regulon activity of the NPC lineage.
(A) SCENIC-generated heatmap of cell type-specific regulons. Regulons are
binarized to “on” (black) or “off” (white). The genes are colored by the cell cluster.
(B)tSNE plot of regulon density representing regulon states as inferred by SCENIC

algorithm.
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(C)tSNE plots showing regulon activity of selected regulons for nephron progenitors
(Zeb1, Tcf711), differentiating (Hnf1b), podocyte (Mafb), proximal (Hnf4a), and

distal (Gata3, Hoxd8, Pou3f3) tubules.

Figure 8. Multiome analysis: inferring regulatory chromatin and TF trajectories.
(A) Correlations of 24270 CRE-gene associations ATAC and RNA Z-scores across all
cell states (k means=10). rGREAT annotation of cluster-related biological
processes.
(B) Inset, bar graph depicting ranking of genes based on the number of correlated
peak-gene associations (+/-250 kb from TSS). Line graph depicts ranking of genes

harboring chromatin domains with a minimum of 10 peak-gene links.

Supplemental Figure 1. Quality control for the scATAC-seq data.
(A) Insert size distribution of the scATAC-seq samples showing characteristic
nucleosomal periodic patterns.

(B) Transcription start sites (TSS) signal enrichment of the scATAC-seq samples.

Supplemental Figure 2. TSS and unique nuclear fragments enrichment in scATAC-
seq data.
(A) Violin plots showing TSS enrichment scores per sample at E16.5 and P2.

(B) Violin plot showing the log(base10) of unique nuclear fragments per sample.
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Supplemental Figure 3. Chromatin accessibility gene scores identify new markers
of proximal and distal tubules.

(A,C) UMAP plots of P2 Six2°FP scATAC depicting selective enrichment of chromatin
activity for McmdcZ2 and Nabp1 in proximal and distal progenitors, respectively.

(B) Confocal microscopy images (x40) of section in situ hybridization for Mcmdc2 RNA in
E16.5 and P2 kidneys showing predominant expression in proximal (LTL") tubules.

(D) Confocal microscopy images (x40) of section in situ hybridization for Nabp1 RNA

showing predominant expression in LTA-negative (distal) segments.

Supplemental Figure 4. Cicero cis co-accessibility networks.

(A,B) E16.5 and P2 Six2CF" NPCs. Promoter-promoter, Intron-intron, Intergenic-
intergenic connections are predominant in both age groups.

(C) Age-related comparison of Cicero cis co-accessibility networks (CCANs) showing

enhanced Cicero connections with age.

Supplemental Figure 5. Peak-gene links representing co-variation in regulatory
elements accessibility with gene expression and cell type-specific expression.
Boxed areas depict differential peaks with significant correlation to gene expression. The

strength of correlation is depicted by the color of the line.

Supplemental Figure 6. Ranking of ChiP-seq H3K27Ac-enriched peaks per gene in

E13.5 and PO NPCs. Datasets derived from (9)
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Supplemental Figure 7. Chromatin activity and gene expression at the Hnf1b locus
in P2 Six2¢FP NPCs.

(A) The peak counts of all Hnf1b correlated peaks (left) and Hnf1b gene expression
(right) colored in UMAP. The bracketed areas point to regions with differential
signals.

(B) Browser view of cell state specific peak-gene links at the Hnf1b locus. Putative
enhancer peak-gene links are active in differentiating progenitors and those fated
to become proximal/distal progenitors (box). Proximal-specific activity is

associated with a gain of two additional peak-gene links (arrowheads).

Supplemental Figure 8. Quality control of Multiome scATAC/GEX (10x Genomics).

Supplemental Figure 9. Differential gene-specific chromatin accessibility across
cell clusters. Representative genes of progenitors (Six2), early (Wnt4, Lef1) and late
(Lhx1, Hnf1b) differentiating, proximal (Hnf4a), LOH/distal (Pou3f3 and Tfap2b) segments

are shown.

Supplemental Figure 10. Multiome analysis of chromatin accessibility and gene
expression defines two types of genes. (A) Type I: regulatory chromatin opening
precedes gene activation. (B) Type Il: regulatory chromatin opening coincides with gene

activation.

Supplemental Figure 11. Chromatin landscape of the early progenitor cluster.
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(A) UMAP sub-clustering of E16.5 multiome Cited1-high cluster. Numbers in

parentheses represent the cell number per sub-cluster.

(B) UMAP plots highlighting chromatin accessibility (gene scores), gene expression

and TF motif activity. Fox factors and Six2/Cited1 have reciprocal cellular activity in

C4 and C2, respectively. WT1 motif activity overlaps with that of Fox factors.

(C)Browser tracks of ChlP-seq (Six2, Osr1, and WT1) and bulk ATAC-seq in NPC-PO
(GSEB804) highlighting the Fox/1 locus. Six2 and WT1 co-occupy accessible
chromatin regions upstream of the TSS (boxed area).

(D)Enrichment of accessible AP-1 motifs in cluster 2 and Fox factors motifs in cluster
4. Note that the TF identity represents consensus elements and thus do not
precisely reflect the exact member of the TF family.

(E) Trajectory heatmap of TF expression and motif activity. Start of trajectory is cluster

2 and end is cluster 4.
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Supplemental Figures

Single-cell chromatin and gene-regulatory

dynamics of mouse nephron progenitors
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Figure S4. Cicero cis co-accessibility networks.

Figure S5. Peak-gene links representing co-variation in regulatory elements accessibility
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SscATAC-seq: TSS and unique nuclear fragments enrichment
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Cis-coaccessibility Networks (CCANS)
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CRE-gene associations correlate with cell type-specific gene expression  Fig, S5
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E13.5 H3K27Ac ChlP-seq (unique peaks)
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