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Abstract.

We present a global optimization routine for the variational quantum algorithms,

which utilizes the dynamic tunneling flow. Originally designed to leverage information

gathered by a gradient-based optimizer around local minima, we adapt the conventional

dynamic tunneling flow to exploit the distance measure of quantum states, resolving

issues of extrinsic degeneracy arising from the parametrization of quantum states. Our

global optimization algorithm is applied to the variational quantum eigensolver for

the transverse-field Ising model to demonstrate the performance of our routine while

comparing it with the conventional dynamic tunneling method, which is based on the

Euclidean distance measure on the parameter space.
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1. Introduction

The variational quantum algorithm (VQA) is a hybrid quantum-classical algorithm that

has attracted significant attention in recent years owing to its potential to address

complex problems in quantum chemistry [1, 2], material science [3, 4], physics [5],

computational science [6, 7], and many other areas. By combining classical optimization

techniques with quantum computation, the VQA leverages the variational principle of

quantum mechanics to find the minimum of the cost function [8, 9].

In mathematical terms, the VQA can be framed as an optimization problem,

where the cost function is defined as the expectation value of an observable with

respect to a variational quantum state, referred to as an ansatz state, implemented

through a parametric quantum circuit. Classical optimization techniques are then

applied to iteratively update the parameters of the parametric quantum circuit until

the expectation value of the observable converges to the lowest value.

As an optimization problem, the choice of classical optimizer plays a critical

role in efficiently solving the VQA, along with the design of a suitable ansatz state.

While well-established classical optimizers are directly utilized, several optimizers have

been developed specifically to enhance VQA’s performance, focusing on gradient-based

optimization routines due to their proven convergence properties and the ability of

quantum circuits to implement the gradient of VQA in parallel. Among the optimizers

explored are the stochastic gradient descent [10, 11], the Riemannian gradient flow [12],

and the natural gradient method [13, 14].

However, gradient-based optimizers for VQA often encounter the challenge of local

minima, which is inherent both in gradient-based optimization and the variational

method of quantum mechanics. Various designs for ansatz have been proposed to

mitigate such local convergence, notably including [15, 16, 17, 18]. Among other

things, it has been suggested to over-parameterize quantum state [19], introducing

more quantum layers to transform local minima into saddle points, akin to strategies

used in classical neural networks [20, 21]. However, over-parameterization presents

practical challenges, including the limitations imposed by noise in NISQ devices and

their restricted coherence time. Moreover, increasing circuit depth can exacerbate local

minima issues, expanding the search space [22, 23] and potentially leading to barren

plateaus [14, 24].

Consequently, global optimization routines have been proposed to complement the

design of parametric quantum states, with most methods being gradient-free to avoid

the drawbacks of gradient-based optimization. Techniques like the Nelder-Mead method

[25, 26], bound optimization by quadratic approximation [27, 28], and the quantum

kernel surrogate model-based method [29] have been explored, though they may require

a significant number of function evaluations to converge, raising scalability concerns in

the VQA context.

In this work, we propose a global optimization strategy specialized for VQA that

incorporates a gradient-based optimizer called the dynamic tunneling method [30].
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Similar to the conventional dynamic tunneling method, the optimizer uses the local

minima detected by the optimizer to generate a dynamic flow towards a global minimum.

However, our modified dynamic tunneling method enhances efficiency by addressing the

limitations of the conventional method within the VQA framework.

This paper is organized as follows: In the next section, we first introduce the

conventional dynamic tunneling method and then propose its modification for VQA,

incorporating a distance measure between quantum states. In Section 3, we demonstrate

the global optimization of the transverse field Ising model using the modified dynamic

tunneling method, comparing its performance with the conventional dynamic tunneling

method applied to the same problem. Section 4 is devoted to the conclusion and outlook

of our work.

2. Dynamic tunneling method on VQA

2.1. Dynamic tunneling method

Dynamic tunneling method and its variants [30, 31] are global optimization algorithms

implementing a dynamic flow to escape from a valley around a stable point to a

valley around another stable point having the lower value of the cost function of an

optimization problem. In its primitive form, this is achieved by constructing a so-called

energy function from the cost function by exploiting the information of local minima of

the cost function.

Explicitly, given an cost function f(x), the dynamic tunneling flow is constructed

by promoting optimization parameters x to be a flow x(t) generated by

ẋ = −∂E
∂x

(1)

where E = E(x; x̄, λ, k) is an enegy function given by [30]

E(x; x̄, λ, k) =
f(x)− f(x̄)

|x− x̄|2λ
+ k

∫ f(x)−f(x̄)

0

FReLU(z)dz. (2)

In (2), λ and k are hyperparameters depending on the problem, and x̄ is a stable point

(or a local minimum) of the cost function. Also, FReLU(z) is the rectified linear unit

which is zero only when the z ≤ 0. Together with an appropriately chosen λ, the first

term in (2) amounts to induce a pole of the energy function at x̄ while violating the

Lipschitz condition at x̄, which enables the flow to converge to a point outside of the

valley around x̄ [30, 31]. On the other hand, the second term in (2) is a penalty term

with weight k imposing the tunneling to seek a point having a lower cost value than

f(x̄). Instead of constructing an energy function for a tunneling flow, one can introduce

a dynamic flow directly via [30]

ẋ = −
(

1

|x− x̄|2λ
+ k FReLU(f(x)− f(x̄))

)
∂f(x)

∂x
(3)
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(a) (b)

Figure 1: An illustration of the dynamic tunneling flow. (a) The landscape of a cost

function. (b) The change of the cost function as iteration proceeds. The blue dots in

(b) represent the corresponding points on the landscape in (a). The sharp peaks in (b)

indicate the occurrence of dynamic tunneling.

which is more convenient for a practical implementation. Clearly, the dynamic flow in

(3) has the same pole structure and penalty constraint as the energy function in (2).

Having a dynamic tunneling flow, the conventional dynamic tunneling method

corresponds to a gradient-based optimization algorithm followed by an implementation

of the dynamic tunneling flow in (3) for the stable point recognized by the optimization

process. In turn, the dynamic tunneling method is a successive application of the

optimization-tunneling pair until the tunneling flow can find no lower valley.

To illustrate the dynamic tunneling method and point out our method more clearly

below, let us consider an optimization problem defined by the cost function

f(x) = cos

(
π

2

(
x− 1

2

))
−1

2
cos

(
2π

(
x+

3

2

))
+sin

(
π

(
x+

1

2

))
−3

2
sin

(π
2
(x+ 1)

)
,

(4)

which is periodic in x ∈ [0, 4). The landscape of (4) is plotted in Figure 1(a). We

first employ the usual gradient-descent optimizer with step size 0.005 and the initial

parameter x0 = 2.2 indicated as the point x0 in Figure 1(a). The optimizer then ends

up with a stable point x̄1 in Figure 1(a). Given a local minimum x̄1, which now becomes

the initial point for the next optimization process, a dynamic tunneling flow (3) sets

in and the optimizer escapes from x̄1, leading to the next stable point x̄2 depicted

in Figure 1(a). By repeatedly alternating the relaxation to a local stable point by

gradient-descent and the subsequent escape from it by dynamic tunneling, the whole

dynamic tunneling routine traverses from the initial point x0 through local stable points

x̄1, x̄2, and x̄3, among which x̄3 is the global minimum of the problem, as illustrated

in Figure 1(b). For the hyperparameters, in this particular example, we have chosen
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k = 50 and set λ to be 1.5 times the lowest power of gradient of convergence to each

stable point. The lowest power is extracted from the last two iterations reaching each

local minimum.

2.2. Dynamic tunneling method with distance measure for quantum states

The VQA is a quantum algorithm that implements the variational principle of quantum

mechanics by combining a parametric quantum circuit and a classical optimization

algorithm [1, 32, 33]. In its simplest form, a VQA can be cast into the form of

f(x;O) = Tr (Oρ(x)) (5)

where O and ρ are a target observable and the density operator of a quantum state

depending on a parameter x, respectively. In practice, particularly for an N -qubit

system, the quantum state in (5) is prepared by applying the parametrized quantum

circuit implementing a unitary operator U(x) to a fixed initial state ρ0 so that the

parametric quantum state has the form of

ρ(x) = U(x)ρ0U(x)
†, (6)

often called an ansatz state.

The quantum function f(x;O) corresponds to a parametrized quantum expectation

on the observable O, so an implementation of the variational method can be obtained

by optimizing f(x;O) for x primarily by employing a classical optimizer. Consequently,

the VQA is an optimization problem whose cost function corresponds to the quantum

function of a parametric state,

By identifying a VQA as an optimization problem defined by a quantum function,

we can apply the dynamic tunneling method in Section 2.1 by introducing a tunneling

flow as in (1). However, apart from the intrinsic degeneracy of the target observable,

the quantum function is not extrinsically injective since multiple parameters can induce

the same quantum state due to the periodic feature of the unitary gates. In turn, the

dynamic flow starting from a local minimum, say x̄, may converge to another point x̄′

with ρ(x̄′) = ρ(x̄) which makes the algorithm computationally redundant.

Such extrinsic degeneracy thus not only makes the algorithm computationally

inefficient but also prevents the termination criterion of the algorithm from working

properly since we cannot exploit the divergence of the tunneling flow to ensure the

global minimum. Therefore, instead of using the parameter-space distance |x− x̄|, we
employ a distance measure on the space of quantum states in the first term of (1).

Explicitly, the tunneling flow for VQA is given by

ẋ = −
(

1

D(ρ(x), ρ(x̄))2λ
+ k FReLU(f(x)− f(x̄))

)
∂f

∂x
(7)

where D(ρ, ρ′) is a distance measure on states ρ and ρ′.
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By introducing the distance measure on quantum states, one can avoid all other

local minima corresponding to the same quantum state since the modified dynamic

tunneling flow completely excludes the quantum state itself due to the first term inside

the parenthesis in (7). It is emphasized that the exclusion globally occurs over the

whole parameter space, enabling the flow to circumvent a whole set of local minima

corresponding to each quantum state.

There are several distance measures for quantum states [34], and most of them have

a similar effect when they are cast into the dynamic tunneling method. Here, we utilize

the Hilbert-Schmidt (HS) distance as the distance measure for the dynamic tunneling

method. The Hilbert-Schmidt distance DHS between two density matrices ρ, σ is given

by

DHS(ρ, σ) =
√

Tr ((ρ− σ)†(ρ− σ)). (8)

If the two density matrices are of pure states, denoted by ρ ≡ |ψ⟩⟨ψ| and σ ≡ |ϕ⟩⟨ϕ|,
the Hilbert-Schmidt distance between them can be expressed as

DHS(|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|) =
√

2− 2|⟨ψ|ϕ⟩|2. (9)

Consequently, in most cases of the VQA, the distance can be readily obtained by

measuring the fidelity between the two states [35].

In addition to resolving the extrinsic degeneracy of the quantum function, the

Hilbert-Schmidt distance is practically appreciable since it is bounded by
√
2, regardless

of the size of the parameter space. In particular, due to the upper bound, the

denominator of the first term in (7) does not significantly affect the gradient of the

cost function, thereby ensuring the convergence of the tunneling process.

Moreover, local minima with different values of quantum function correspond to

nearly orthogonal quantum states, and hence one can expect that the distance at the

end of the tunneling process is close to the upper bound,
√
2. This facilitates the

estimation of appropriate values for the hyperparameters of the optimization, such as

the learning rate, in contrast to the tunneling algorithm using the parameter-space

distance in which the distance between any two local minima is unpredictable.

3. Case study: transverse-field Ising model

We test the performance of the method with numerical simulation on the variational

quantum eigensolver (VQE), one of the main applications of the VQA that seeks the

ground-state energy of the given Hamiltonian. In this test, we simulate the VQE on the

one-dimensional (1D) transverse-field Ising model.

The transverse-field Ising model, consisting of spins arranged in a lattice, is a

prototype model exhibiting various correlation effects in many-body physics and has

been extensively studied in condensed matter physics [36, 37, 38]. Furthermore, the

one-dimensional version allows for an exact solution [36]. This makes the model an

excellent benchmark for many quantum algorithms, including the VQE.
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|0⟩ Ry (ϕ1) Ry (ϕ6)

|0⟩ Ry (ϕ2) Ry (ϕ7)

|0⟩ Ry (ϕ3) Ry (ϕ8)

|0⟩ Ry (ϕ4) Ry (ϕ9)

|0⟩ Ry (ϕ5) Ry (ϕ10)

Figure 2: A parameterized quantum circuit corresponding to a variational ansatz for 5

qubits. Ry(ϕi) := e−iσyϕi/2 denotes the single-qubit rotation around the y-axis.

The transverse-field Ising model is described by the Hamiltonian

H = J
N−1∑
j=1

σz
jσ

z
j+1 +B

N∑
j=1

σx
j , (10)

where N is the number of spins (i.e. qubits), J > 0 is the coupling strength between

the nearest-neighbor spins and B is the strength of the external magnetic field in the

transverse direction. We set J = 1, therefore all the energy will be measured in units of

J . In the tests below, we naturally choose the Hamiltonian as a target observable.

Note that the model exhibits a quantum phase transition from the ordered (i.e.,

anti-ferromagnetic) to disordered (i.e., paramagnetic) states. This phase transition may

be understood in terms of spontaneous breaking of Z2 symmetry: To see this, note that

the Hamiltonian is invariant under the symmetry transformation X ≡
∏

j σ
x
j , that is,

[H,X] = 0. In the B → 0 limit (ordered phase), the ground states of the model are two-

fold degenerate and are related to each other by the symmetry transformationX. On the

other hand, in the B → ∞ limit (disordered phase), the ground state is non-degenerate;

the symmetry transformation X maps the ground state to itself. In this work, we focus

on the disordered (paramagnetic) phase to avoid unnecessary complications due to the

ground-state degeneracy.

Here, we consider the case of N = 10 and B = 5, in which the system is in the

nondegenerate, paramagnetic phase. The ground-state energy is about −50.45. Note

that the Hamiltonian is real-valued in the computational basis. This implies that the

wave function of any eigenstate of the Hamiltonian can be chosen to be real in the same

basis. We exploit this fact to reduce the variational ansatz subspace. Figure 2 shows

the parameterized quantum circuit to generate our variational ansatz for N = 5; for

larger systems, the quantum circuit can be extended in a similar pattern. Each Ry

involves the trainable parameter ϕi, while the structure of the CNOT gates mirrors the

nearest-neighbor connectivity of the system, thereby creating entanglement.



Global optimization in variational quantum algorithms 8

(a) (b)

Figure 3: A comparison of the overall convergence of the (a) conventional and (b)

modified dynamic tunneling methods. Each histogram shows the final converged values

of the cost function over 500 random samples. For a reference, we also show the

histogram with empty bars and orange boundaries from the simple gradient-descent

method. The global minimum is approximately -50.45 in this example.

Figure 3 summarizes our main results, comparing the performances of the simple

gradient-descent optimization algorithm (empty boxes with orange boundaries, in both

(a) and (b)), (a) the conventional dynamic tunneling algorithm based on the parameter-

space distance and (b) the modified dynamic tunneling algorithm based on the distance

measure on quantum states.

We have set the hyperparameters for our simulation as follows: λ for each tunneling

is chosen to be 1.5 times the lowest power of gradient of convergence to each stable

point. k = 1.125, and the learning rate is 0.01, fixed over the whole process. For

practical reasons, we limit the number of execution of the dynamic tunneling algorithm

to 6 times, with the iteration limit of 2000 for each run.

In Figure 3(b), we can see that the modified dynamic tunneling method successfully

escapes the local minima and reaches the global minimum, while the conventional one

fails to converge into the global minimum as shown in Figure 3(a). A few results that

remained in local minima in Figure 3(b) can also reach the global minimum by increasing

the iteration limit.

Figure 4 presents typical profiles of the cost function over the entire optimization

process. It is interesting to note that in Figure 4(a), each optimization procedure stops

even on a slope rather than at local minima on the landscape of the cost function in

the parameter space, indicating that the tunneling process does not converge within the

given iteration limit. This is the reason why the histograms in Figure 3(a) are smoothly

distributed over the global and local minima. On the other hand, the iterations for the

modified dynamic tunneling converge well first to local minima and eventually to the

global minimum, as shown in Figure 4(b).
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(a) (b)

Figure 4: Iteration profiles of the cost function (energy) over the entire optimization

process in the (a) conventional and (b) modified dynamic tunneling methods for 5

representative samples out of the whole in Figure 3. Each sharp peak indicates the

occurrence of dynamic tunneling.

Figure 5: A detailed comparison of the iteration profiles of the conventional (blue dashed

curves) and modified (red curves) dynamic tunneling methods for selected worst-case

samples. For the conventional method, we have put an ad-hoc bound 2λ on the λ term

to avoid the convergence problem. Even with such a recipe, the conventional method

converges much slower (almost twice as slow) than the modified method due to the

extrinsic degeneracy.
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(a) (b)

Figure 6: The iteration profiles around the global minimum of the (a) conventional and

(b) modified dynamic tunneling methods. The green dashed lines show the value of

the parameter-space distance at the corresponding iteration steps, and we have put an

ad-hoc bound 2λ on the λ term for the conventional method. The conventional dynamic

tunneling flow never converges to a single global minimum, and the iteration must be

terminated manually.

Further details of the dynamical aspects of the conventional and modified dynamical

tunneling algorithms are compared in Figure 5. As one can see from the blue curves in

Figure 5, the conventional dynamic tunneling method often encounters local minima of

the same quantum state. In our simulation, this happened 57 times per 431 samples

which start the tunneling process from local minima. Figure 5 shows the worst-case

scenario observed during the modified tunneling optimization over the 431 samples. One

can see that even when the flow converges into the local minimum of the same energy

level again, the two quantum states corresponding to the local minima are different.

Such instances are rare and occur only when there is intrinsic degeneracy of the local

minimum.

Figure 6 highlights the worst-case examples that are not featured in Figure 4 or 5.

Recall that there are multiple global minima corresponding to identical ground states

but located at different points in the parameter space. As shown in Figure 6(a), the

flow in the conventional tunneling method may jump between these alternative global

minima, never converging to a single minimum. In our simulation, this happened 23

times out of 300 samples starting from the global minimum. In these instances, the

termination criterion fails to determine the global minimum, even with an increase in

the iteration limit. On the other hand, when using the modified tunneling method, the

flow cannot converge into other global minima, as shown in Figure 6(b). This ensures

the termination criterion works well, allowing for the safe determination of the global

minimum.
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4. Conclusion and outlook

In this work, we have proposed a global optimization algorithm for VQA by employing

the dynamic tunneling flow generated by (7). In contrast to the conventional dynamic

flow, our dynamic flow by (7) exploits the distance measure of quantum states to resolve

the extrinsic degeneracy on the quantum function arising from the parametrization of

the ansatz state.

The modified dynamic tunneling method has been applied to the VQE for

the transverse-field Ising model. Our simulation results demonstrate the enhanced

performance of the modified dynamic tunneling method as a global optimization

algorithm, in terms of the convergence to the global solution, the analytic behavior

of the method during the process, and the number of iterations to reach the global

solution.

As indicated in (7), the dynamic tunneling flow for VQA heavily relies on a distance

measure on quantum states. Therefore, a further investigation of the distance measure

concerning a practical implementation of the flow is required in addition to the direct

adoption of known efficient measures computed by the quantum computation framework

[35, 39, 40].

Finally, the success of the algorithm is also sensitive to an appropriate choice of the

value of the hyperparameters. While the hyperparameter λ in (7) can be determined

from the history of gradients of the quantum function, the tunneling penalty k of the flow

remains to be suitably chosen to ensure that the flow converges to the lower valley. If the

target system is scalable, one can devise a strategy to estimate the appropriate value of

k based on the dimension of the space of variational parameters. During the simulation,

we extrapolate the value of k by gradually increasing the system size N , starting from

a sufficiently small size, N = 6. In general, the tunneling penalty term arises from the

constraint imposing the feasible space of the flow to be below the known local minima.

Thus, one can regard the flow as constrained dynamics, where optimization routines for

constrained problems, such as the interior-point method [41], can be applied to improve

the convergence of the flow instead of delicately choosing k.
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(a) (b)

Figure A1: A comparison of the overall convergence of the (a) conventional and (b)

modified dynamic tunneling method. Each histogram shows the final converged values

of the cost function over 500 random samples. The histogram with empty bars and

orange boundaries from the simple gradient-descent method is included as a reference.

The global minimum is approximately -9.76 in this example.

Appendix A. Anti-ferromagnetic phase

In the main text, we mainly focused on the paramagnetic phase of the transverse-

field Ising model to simplify the discussion and make the main points clearer. In this

appendix, for reference, we provide the simulation results in the anti-ferromagnetic

phase. Exhibiting an intrinsic ground-state degeneracy and long-range correlations, the

anti-ferromagnetic phase sets a further testing ground compared to the paramagnetic

phase.

We set N = 10 and B = 0.5 in the model (10), and use the same ansatz as in the

paramagnetic phase, as described in Figure 2. Due to the finite size, the ground states

are nearly degenerate with energies around -9.76, as explained in Section 3.

Figure A1 shows the overall convergence of different methods. As in the

paramagnetic phase (Figure 3), the modified dynamic tunneling method better escapes

local minima and reaches the subspace of the nearly degenerated ground states faster.

Note that the few distinct bins near the global minimum are different linear combinations

of the nearly degenerate ground states, which are difficult to distinguish within the

ansatz subspace.

Technically, during the optimization process, we used FISTA[42] (a variant of

gradient descent optimizer) to accelerate the update of the parameters for both the

conventional and modified dynamic tunneling methods. This is necessary because in the

anti-ferromagnetic phase, the gradient is significantly smaller than in the paramagnetic

case across the entire cost function landscape. On the other hand, we keep the same

hyperparameters except for the value of k, which is set to 16 in this case.

Figure A2 presents the profiles of the cost function of some representative samples
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(a) (b)

Figure A2: Iteration profiles of the cost function (energy) over the entire optimization

process in the (a) conventional and (b) modified dynamic tunneling methods for 5

representative samples out of the whole in Figure A1.

throughout the entire optimization process. As in the paramagnetic phase, the

optimization process of the conventional dynamic tunneling method in Figure A2(a)

stops on a slope, failing to converge into any minima. In contrast, as shown in

Figure A2(b), the modified dynamic tunneling method successfully finds the global

minimum within fewer iteration steps, despite the intrinsic degeneracy causing the

iterations to encounter local minima with the same energy level multiple times.

Appendix B. Higher-dimensional models

In the main text, we have discussed 1D transverse-field Ising model to compare the

performances of the conventional and modified dynamic tunneling methods. In this

appendix, for completeness, we provide some simulation results for the transverse-field

Ising model on a two-dimensional square lattice. From the results in the main text and

below, we expect the same conclusion in three dimensions.

We consider a 3× 4 square lattice (N = 12) and set B = 5. The ansatz is slightly

modified to the form depicted in Figure B1 [on a 2× 4 lattice (N = 8) for illustration]

in order to account for the connectivity between qubits on the lattice.

The hyperparameters for this simulation are set to be the same as those for the

1D cases, except for the value of k, which is set to 0.35 now. We again use the

accelerated gradient-descent method to enhance the overall convergence rate for both

the conventional and modified dynamic tunneling methods.

Figure B2 compares the performance of our method with the conventional dynamic

tunneling method. The modified dynamic tunneling method better escapes local minima

and converges faster to the global minimum than the conventional one. Through this

example, we expect that our method can be applied to higher-dimensional problems,

which have an even more complicated landscape of the cost function.
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|0⟩ Ry (ϕ1) Ry (ϕ9)

|0⟩ Ry (ϕ2) Ry (ϕ10)

|0⟩ Ry (ϕ3) Ry (ϕ11)

|0⟩ Ry (ϕ4) Ry (ϕ12)

|0⟩ Ry (ϕ5) Ry (ϕ13)

|0⟩ Ry (ϕ6) Ry (ϕ14)

|0⟩ Ry (ϕ7) Ry (ϕ15)

|0⟩ Ry (ϕ8) Ry (ϕ16)

Figure B1: A parameterized quantum circuit corresponding to a variational ansatz

for the transverse-field Ising model on a 2 × 4 (N = 8) lattice. The ansatz may be

constructed in a similar fashion for larger lattices. Ry(ϕi) := e−iσyϕi/2 denotes the

single-qubit rotation around the y-axis.

(a) (b)

Figure B2: Overall convergence of the (a) conventional and (b) modified dynamic

tunneling methods. Each histogram shows the final converged values of the cost function

over 300 random samples. For a reference, we also show the histogram with empty bars

and orange boundaries from the simple gradient-descent method. The global minimum

is approximately -60.87 in this example.
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