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ABSTRACT

Context. Ultra-high energy cosmic rays (UHECRs) are extremely energetic charged particles with energies surpassing 1018 eV. Their
sources remain elusive, obscured by deflections caused by the Galactic magnetic field (GMF). This challenge is further complicated by
our limited understanding of the three-dimensional structure of the GMF, as current GMF observations consist primarily of quantities
integrated along the line-of-sight (LOS). Nevertheless, data from upcoming stellar polarisation surveys along with Gaia’s stellar
parallax data are expected to yield local GMF measurements.
Aims. This study is the second entry in our exploration of a Bayesian inference approach to the local GMF that uses these forthcoming
local GMF measurements, by attempting to reconstruct its 3D structure. The ultimate aim is to backtrack observed UHECRs, thereby
updating our knowledge about their possible origin.
Methods. We employ methods of Bayesian statistical inference in order to sample the posterior distribution of the GMF within part
of the Galaxy. By assuming a known energy, charge, and arrival direction of an UHECR, we backtrack its trajectory through various
GMF configurations drawn from the posterior distribution. Our objective is to rigorously evaluate our algorithm’s performance in
scenarios that closely mirror the setting of expected future applications. In pursuit of this, we condition the posterior to synthetic
integrated LOS measurements of the GMF, in addition to synthetic local POS-component measurements. In this proof of concept
work, we assume the ground truth to be a magnetic field produced by a dynamo simulation of the Galactic ISM.
Results. Our results demonstrate that for all locations of the observed arrival direction on the POS, our algorithm is able to sub-
stantially update our knowledge on the original arrival direction of UHECRs with rigidity E/Z = 5 × 1019 eV, even in the case of
complete absence of LOS information. If integrated data is included in the inference, then the regions of the celestial sphere where
the maximum error occurs diminishes greatly. Even in those regions the maximum error is diminished by a factor of about 3 in the
specific setting studied. Additionally, we are able to identify the regions where the largest error is expected to occur.

Key words. Galactic magnetic field – Ultra high energy cosmic ray sources – Interstellar turbulence

1. Introduction

Determining the origins of ultra-high-energy cosmic rays (UHE-
CRs) is a crucial challenge in the field of high-energy astro-
physics. Successfully addressing this challenge could offer in-
sights with regard to astrophysical processes responsible for gen-
erating UHECRs, as well as their composition. Additionally,
knowledge of UHECR sources would be a crucial ingredient
in multi-messenger studies of high-energy systems (e.g. Fang &
Murase 2018; Murase 2019).

Although numerous theoretical models have been proposed
to explain the sources of UHECRs (e.g Bhattacharjee & Sigl
2000; Torres & Anchordoqui 2004; Kotera & Olinto 2011), pin-
pointing these sources has proven to be a complicated task. The
⋆ tsouros@physics.uoc.gr

main challenge arises from the fact that UHECRs are charged
particles, and are deflected by both the Galactic magnetic field
(GMF) and the intergalactic magnetic field. As a result, even if
multiple UHECRs were emitted from a single, intense, and prox-
imate cosmic ray source (di Matteo et al. 2023), their trajectories
would be dispersed across the plane of the sky (POS). Conse-
quently, any UHECR hotspot would not align with the source.
Rather, it would be displaced away from it due to systematic de-
flections by the ordered component of the GMF, in addition to
being spread out due to the random deflections due to the turbu-
lent component of the GMF. This situation contrasts with that of
photons or neutrinos, where establishing a connection between
observed events and their probable sources is more straightfor-
ward, even in the limit of low statistics and poor angular resolu-
tion of their detectors.

Article number, page 1 of 11

ar
X

iv
:2

40
3.

05
53

1v
1 

 [
as

tr
o-

ph
.H

E
] 

 8
 M

ar
 2

02
4



A&A proofs: manuscript no. aanda

The primary challenge in understanding the GMF lies in
the difficulty of obtaining three-dimensional tomographic recon-
struction of the intervening GMF, as the majority of the currently
accessible observations are integrated along the LOS. This lim-
itation has guided the predominant approach in GMF modelling
to rely on parametric models. This is typically achieved by fitting
parameters to distinct analytic components, e.g. a toroidal com-
ponent, a poloidal component, and a turbulent component. For
modelling the latter, a Gaussian random field is employed (Sun
et al. 2008; Sun & Reich 2010; Takami & Sato 2010; Jansson &
Farrar 2012a; Jansson & Farrar 2012b).

However, direct insights into the three-dimensional structure
of the interstellar medium of the Milky way are attainable. The
Gaia mission, by accurately measuring stellar parallaxes, has
mapped the positions of over a billion stars in the Galaxy (Gaia
Collaboration et al. 2016; Gaia Collaboration et al. 2021; Bailer-
Jones et al. 2021). This dataset, combined with other spectro-
scopic data, has enabled the construction of three-dimensional
tomographic maps showing the dust density distribution in cer-
tain regions of the Galaxy (Lallement et al. 2018; Green et al.
2019; Lallement et al. 2019; Leike & Enßlin 2019; Leike et al.
2020; Lallement et al. 2022; Leike et al. 2022; Edenhofer et al.
2023). Nevertheless, these maps primarily focus on dust density
and do not directly constrain the magnetic field.

Yet, observational methods available that probe the three-
dimensional structure of the GMF do exist. A notable example is
the linear polarization of starlight. Typically, starlight originates
from its source as unpolarized light, but can become linearly po-
larized due to the dichroic absorption by interstellar dust parti-
cles, which align themselves with the surrounding magnetic field
(Andersson et al. 2015).

Future optopolarimetric surveys, like PASIPHAE and South-
Pol, are poised to deliver high-quality stellar polarization mea-
surements for millions of stars (Magalhães 2012; Tassis et al.
2018; Maharana et al. 2021; Maharana et al. 2022). When com-
bined with the stellar distance data obtained from the Gaia sur-
vey, these measurements will enable direct tomographic mea-
surements of the GMF’s POS component in regions where dust
clouds are present (Davis 1951; Chandrasekhar & Fermi 1953;
Panopoulou et al. 2017; Skalidis et al. 2021; Skalidis & Tassis
2021; Pelgrims et al. 2022). Additionally, local information can
be obtained through the study of HI gas in different velocity bins,
which also provide local GMF information (Tritsis et al. 2018;
Tritsis et al. 2019; Clark & Hensley 2019). This information, in
conjunction with available LOS data (see, for example, Tahani
et al. 2022a; Tahani et al. 2022b), promises to provide localized
and sparse GMF data in the future. This will be instrumental in
creating three-dimensional tomographic maps of specific areas
of interest. With such maps it becomes feasible to backtrack the
paths of UHECRs through these regions, improving source lo-
calization on the sky1. Specifically, there is an intense interest in
mapping the GMF in the direction of UHECR ‘hotspots’, as well
as in parts of the Galaxy likely to have been traversed by parti-
cles comprising these hotspots (Abbasi et al. 2014; Pierre Auger
Collaboration et al. 2017; Kawata et al. 2019).

This study is the second entry in our effort to reconstruct
the GMF non-parametrically in 3D in a Bayesian setting. It di-
rectly follows Tsouros et al. 2024, hereafter Paper I. Essentially,
we address an inverse problem within a Bayesian framework,
where the goal is to sample the posterior distribution of GMF
configurations in a specific part of the Galaxy, using a combi-

1 However, the contribution of the intergalactic magnetic field is still
not accounted for.

nation of local and LOS-integrated information. In this work,
local measurements only provide information for the POS com-
ponent of the magnetic field. This corresponds to the information
content of tomographic measurements of interstellar magnetized
dust through optopolarimetry of starlight. On the other hand,
LOS-integrated measurements provide information for the LOS
component of the magnetic field as derived for instance from
Faraday rotation measurements (Pandhi et al. 2022; Hutschen-
reuter et al. 2023). We will tackle this problem within the context
of Information Field Theory, which was developed specifically
for Bayesian inference for fields and has been applied success-
fully in various contexts (Enßlin et al. 2009; Enßlin 2019; Enßlin
2022). By reconstructing the posterior distribution of GMF real-
izations, we aim to accurately recover the true arrival directions
of UHECRs given the observed arrival directions, accounting for
the influence of the GMF.

In section 2, we briefly describe the methodology, the for-
ward models used, and how the posterior is sampled. In section
3 we present the main results of the algorithm for the considered
scenarios, and in section 4 we discuss the results further.

2. Methodology

In general, we are interested in inferring the configuration of the
GMF, B(x) with x ∈ V over a domain V ⊂ R3, given some ob-
served data set d. In the context of Bayesian inference for con-
tinuous signals, the task is to determine the posterior probability
distribution of B(x) conditional to d:

P(B|d) =
1
Z

P(d|B)P(B). (1)

Here, P(d|B) is the likelihood, representing the probability of
observing magnetic field measurements d given a specific con-
figuration B(x). The prior, P(B), encapsulates pre-existing infor-
mation about B(x) while Z = P(d) is the normalisation factor.

In this work, the field that serves as a ground truth (the ‘true’
field) is generated from a dynamo MHD simulation discussed in
Appendix A. The original simulation domain extended to ∼ 1
kpc in the x − y direction, and ∼ 2 kpc above the Galactic plane.
The GMF is rescaled so that its root-mean-square (RMS) value
is 5µG.

2.1. Likelihood

Tomography of the magnetized ISM from stellar polarisation
measurements is a highly nontrivial problem and its full discus-
sion is beyond the scope of this work (Pelgrims et al. 2022).
However, the reader should be aware that through the combina-
tion of Gaia data as well as stellar polarization data for stars
of known distance from the Sun, it is possible to acquire in-
formation on the Stokes parameters that each intervening dust
cloud imposes on the observed starlight. This can then be trans-
lated into local information on the orientation of the POS com-
ponent of the GMF at that cloud, through the connection to grain
alignment, as referenced briefly in the previous section and thor-
oughly in Tassis et al. 2018. Information on the POS compo-
nent of GMF in clouds can also be acquired by the use of 21 cm
neutral hydrogen (HI) emission measurements (Clark & Hens-
ley 2019). In this work, we assume that the task of determining
the locations to which the measurements correspond to has been
carried out.
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Thus, for the i-th datapoint, we assume a forward model of
the form

d(i)
local =

∫
Rlocal(x, xi)B(x)d3x + n(i)

local, (2)

Rlocal(x, xi) ≡ δ(3)(x − xi)PPOS, (3)

where B(x) is the magnetic field, and n(i)
local are the observational

uncertainties that contaminate our measurements. The vector
xi is the location of the i-th cloud where the magnetic field
is measured, PPOS signifies a projection operator on the POS,
which reflects that (mainly) the POS component of the mag-
netic field is measured via dust polarization, PPOS,i j = δi j − x̂i x̂T

i
with x̂i = xi/||xi|| (assuming the observer to be at the origin).
The Dirac delta function localizes the measurements at specific
known locations xi.

The option to include the operator PPOS into the considered
scenario is central to this work, as it consists one of the main ad-
ditions compared to Paper I. A complete projection on the POS is
a pessimistic scenario, as LOS information can become available
by incorporating Zeeman or Faraday rotation data (Tahani et al.
2022a; Tahani et al. 2022b). A complete projection on the POS
should therefore be seen as an extreme benchmarking scenario.

We note that this forward model is quite simplistic, in that it
assumes that accurate 3D locations are measured. Formally, this
is captured by the Dirac delta function and that the locations xi
are to be assumed known. However, as we will see in section
2.4, the resolution of our reconstruction is of the order of tens of
parsecs, corresponding to the uncertainty of cloud localisation
(Pelgrims et al. 2022).

The vector n(i)
local is assumed to be a random variable drawn

from a Gaussian distribution with a known covariance Nlocal.
Note that once specific measurement techniques are identi-
fied, other more appropriate error distributions will be chosen.
Marginalizing over the noise, the likelihood becomes

P(d|B) = G(dlocal − RlocalB,Nlocal). (4)

The covariance Nlocal is chosen to be a multiple of the identity,
(Nlocal)i j = σ

2δi j, where we choose

σ =
|B|RMS

2
, (5)

where |B|RMS = 5µG is the RMS value of the magnitude of the
ground truth. It should be noted that this does not imply that the
noise is correlated with the GMF covariance, it is merely chosen
as such in order to ensure an SNR of about 2.

In addition to local data, in this work we explore the possibil-
ity of integrated LOS data, as inferred for instance from Faraday
measurements (Hutschenreuter et al. 2023). In this case, the for-
ward model takes the form

d(i)
int = (PLOSB)Li + n(i)

int, (6)

(PLOSB)Li ≡
1
|Li|

∫ |Li |

0
B||(x)dℓ, (7)

where PLOS projects a vector onto the LOS component (B||), and
Li the specific LOS under consideration. Further, |Li| denotes the
limit up to which we integrate - in this application |Li| coincides
with the distance between the Earth and the intersection of Li
with the boundary of V. Essentially, the above is equivalent to
assuming that the electron density is roughly constant and known

up to |Li| and then falls to zero. While this is not a valid assump-
tion for low Galactic latitudes, we will maintain it in this proof-
of-concept work. Finally, the vector n(i)

int corresponds to a random
vector on the POS, with covariance Nint.

The likelihood in this case is given by

P(d|B) = G(dlocal −RlocalB,Nlocal)G(dint − (PLOSPB)Li ,Nint). (8)

Similarly, we define the covariance for the noise of the inte-
grated measurements as (Nint)i j = σ

2
intδi j, where2

σint =
1
2
µG. (9)

Finally, the operator Rlocal, which sparsely samples the GMF, is
defined as follows. After discretising our domain to voxels (see
section 4.1), we apply a Bernoulli trial to each voxel to deter-
mine whether it is observed or not with probability p and 1 − p
respectively. The probability p is given by the expression

p =
{

3 × 10−3, if T ≥ 104 K
3 × 10−2, if T < 104 K

(10)

where T is that voxel’s corresponding gas temperature, acquired
from the same simulation that produced our ground truth. This
choice of p reflects the decay of the number of dust clouds as a
function of distance from the Galactic plane, which directly cor-
relates with the expected number of measurements with respect
to the position above the Galactic plane, as the local measure-
ments of the GMF will ultimately exist where dust clouds are lo-
cated, after polarized-starlight tomography has been carried out.
The specific values chosen are such that the resulting density of
points within the domain is roughly 100 measurements per kpc3

on average.

2.2. Prior

As in Paper I, the only hard constrain that needs to be imposed is
that whatever candidate magnetic field configuration B we con-
sider, it must satisfy ∇ · B = 0 in order to be a viable candidate.
To ensure that the magnetic field is divergence free, we assume
it is related to a non-divergence-free random field φ by a diver-
gence cleaning operator P. This transverse projection operator,
defined in Fourier space as

Pi j(k) = δi j − k̂ik̂T
j , (11)

projects out the degrees of freedom of the Gaussian random vec-
tor field that violate the divergence-free condition. Said differ-
ently, it connects a latent field φ(x) to the true magnetic field by
the harmonic space relation

B̂i(k) =
3
2
Pi j(k)φ̂ j(k), (12)

where k are Fourier modes. Eq. 12 ensures that ∇ · B = 0, while
the factor 3/2 accounts for power loss due to reduced degrees
of freedom, aligned with the original assumption of statistical
isotropy for φ (Jaffe et al. 2012). Our aim is reconstructing the

2 While Faraday data is significantly more accurate than this assump-
tion suggests, we will use this pessimistic noise covariance to compen-
sate for the unknown 3D electron density distribution.
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local GMF B by inferring the latent field φ which is related to
the latter by Eq. (12). For φ we will assume a Gaussian prior of
the form:

P(φ) =
1

|2πΦ|
1
2

exp

−1
2

∫
d3xd3x′

∑
i j

φi(x)Φ−1
i j (x, x′)φ j(x′)

 .
(13)

The quantity Φi j is the covariance matrix, defined as

Φi j(x, x′) = ⟨φi(x)φ∗j(x
′)⟩, (14)

where the symbol ⟨· · · ⟩ signifies an average over the distribution
P(φ). That is, if O(x) is some quantity of interest, then

⟨O(x)⟩ ≡
∫

dφP(φ)O(x).

Notice that the average is taken over field configurations.
In our analysis, we chose not to integrate any prior knowl-

edge about the GMF geometry and statistics, so we use a prior
distribution exhibiting statistical isotropy, homogeneity, and mir-
ror symmetry. This is formally encapsulated by writing the
Fourier space covariance in the form

⟨φ̂i(k)φ̂∗j(k
′)⟩ = (2π)3δi jδ

(3)(k − k′)P(k). (15)

A crucial point is that the 3D prior power spectrum P(k) is
not known, and is to be inferred as well. It is modeled as a sum
of a power law and an integrated Wiener component (Arras et al.
2022). The defining hyperparameters and their prior PDFs (typi-
cally called hyperpriors) are summarised in Table 1, and they are
also briefly discussed in Paper I.

2.3. Sampling the posterior

Equipped with the likelihood and prior, the posterior in terms of
the magnetic field B is given by Eq. 1. Due to the fact that the
power spectrum P(k) needs to be inferred along with the con-
figuration of the GMF, this inference problem is non-linear, and
cannot be solved by a generalised Wiener filter (Pratt 1972). For
this reason, a non-perturbative scheme, called geometrical varia-
tional inference (geoVI) developed by Frank et al. 2021 is used.
A brief exposition on geoVI can be found in Appendix A of Pa-
per I. For the purposes of this work it suffices to state that we
do not sample magnetic field configurations from the true pos-
terior directly, but rather from an approximate posterior, as is
usually the strategy in variational methods. For this task, we em-
ploy the Numerical Information Field Theory (NIFTy3) package
in Python (Selig et al. 2013; Steininger et al. 2017; Arras et al.
2019, Edenhofer et al. 2024). The input that is required is the
likelihood and the prior of the original physical model, as de-
scribed in sections 2.1 and 2.2 respectively.

2.4. Procedure

The following is a summary of the specific setting probed in this
work and how the synthetic data on which the method is verified
is generated.

3 The documentation can be found in
ift.pages.mpcdf.de/nifty/index.html.

– Spatial domain: The modeled space is assumed to be peri-
odic due to implementation details of the ground truth, and
also we pad our space by a factor of two, and so the x and y
directions reach an extent of ∼ 2 kpc. The resulting cube is
partitioned uniformly into Nx, Ny, and Nz segments per axis,
where Nx = Ny = 48, and Nz = 64, with padding. In that set-
ting, every voxel has a linear dimension of approximately 30
pc. This can accomodate the expected size of the dust clouds,
as well as the uncertainty of the measurement’s positions - at
least as an order of magnitude (Pelgrims et al. 2022).

– Data masking: We apply Rlocal (see section 2.1) to the
ground truth field, in order to acquire the noiseless data.

– Adding noise to local data: Gaussian noise with covariance
matrix Nlocal ( Eq. 5) is added to each observed data vector.

– Integrated data: Optionally (see section 3.3), the likelihood
is supplemented by an additional term for the integrated local
measurements, as in Eq. 8. In practice, the magnetic field is
transformed from a Cartesian coordinate system to a spher-
ical polar coordinate system with the Earth at the origin.
Then, the radial component of the GMF - which is equiv-
alent to the LOS component - is integrated along individual
LOSs, resulting in a set of 2D integrated measurements that
inform the model further.

– Adding noise to integrated data: Gaussian noise with co-
variance Nint (Eq. 9) is added to each pixel on the celestial
sphere, to contaminate the data acquired from the previous
step.

– Sampling the approximated posterior: Finally, the geoVI
method is applied to the true posterior distribution, result-
ing in samples from the approximate distribution. To all the
latent fields sampled, the projection operator (Eq. 11) is ap-
plied once more, in order to obtain posterior samples of the
divergence-free GMF.

– Application to UHECR backtracking: Through each of the
GMF samples drawn from (1) in the previous step, we back-
track a UHECR of known observed arrival direction θobs and
rigidity r∗ ≡ E/Z. Recording the final velocity of the parti-
cles, in particular their original directions θ when they leave
V, essentially provides samples from the distribution P(θ|D)
of the particles’ original arrival directions before entering the
GMF, conditional to the data

D ≡ {d, r∗, θobs}. (16)

To keep the discussion simple, in this work we only consider
UHECRs of fixed rigidity r∗ = 5 × 1019 eV (equivalently,
protons of energy E = 5 × 1019 eV). As a way to benchmark
the quality of our reconstructions in the context of UHECR
physics, we will compare the angular separation δθ between
the true arrival direction θtrue and that of the backpropagated
UHECR, ending up with a distribution over δθ. In this con-
text, the ‘true arrival direction’ always refers to the UHECR’s
direction right where it enteredV. In Fig. 1, we provide a vi-
sual representation of the quantities defined in this section.

3. Results

In this section, we use NIFTy in order to sample the posterior
distribution for three different scenarios: In scenario A, the ob-
served data consist of local measurements only, and at each loca-
tion only the components of the GMF that are parallel to the POS
are probed. In scenario B, all three components of the GMF (in-
cluding the LOS) are probed on equal footing, for comparison.
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Table 1: Hyperparameters of the prior used in this work

Parameter Distribution Mean Standard deviation
Total offset (B0) Not-applicable 0 Not-applicable

Total offset st. dev. Log-normal 3 µG 1 µG
Total spectral energy Log-normal 1 µG 1 µG

Spectral index Normal − 11
3 1

Int. Wiener process amplitude Log-normal 1.5 1

⟨δθ⟩θ|D

α

⟨δϕ⟩θ|D

θobs

θtrue

P(θ|D)

Fig. 1: Illustration of relevant angles on the sky. A UHECR of
known rigidity r∗ enters the Galaxy with an arrival direction θtrue
(red dot). Because of the GMF, it is deflected and is observed
on Earth as arriving from θobs (black dot). The angular distance
between θobs and θtrue is α, and it is the error that the GMF in-
duces on the observed arrival direction. We backtrack the parti-
cle through each GMF configuration sampled using NIFTy, thus
ending up with a distribution of arrival directions P(θ|D), with D
defined in Eq. 16. From the posterior samples drawn, we calcu-
late the mean angular distances ⟨δθ⟩θ|D and ⟨δϕ⟩θ|D to the true and
observed arrival directions, respectively, as well as the standard
deviations for the former. Note that the scales in this artificial ex-
ample are exaggerated for visual clarity, and do not correspond
to an application of the method.

Finally, in scenario C, we use the same dataset as in scenario A,
but additionally use integrated LOS information over the whole
sky.

For each of these scenarios, we will benchmark the success
of the reconstruction by using it in order to infer the true arrival
direction of a UHECR with fiducial rigidity of r∗ = 5 × 1019 eV
for all possible observed arrival directions on the northern sky,
as described in the previous section.

3.1. Scenario A: Local measurements with POS information
only

The local GMF information that one can acquire through
starlight polarization-based tomography alone is confined to the
celestial sphere (Panopoulou et al. 2019; Pelgrims et al. 2022).
For that reason, in this section, we will sample the posterior Eq. 1
conditional to local GMF data d that are completely blind to the
LOS dimension, as is the case for polarization measurements.

To that end, we will work on a spherical polar coordinate
system with the Sun at the origin. The magnetic field is expressed
as B(x) = (Br, Bθ, Bϕ) in that coordinate system. In Fig. 2 we
perform the reconstruction of the simulated GMF described in
Appendix A. In Fig. 2a the ground truth is shown. Fig. 2b depicts
the synthetic local GMF data obtained from the ground truth for
this scenario. The result of the reconstruction algorithm is a set
of 100 posterior samples of Eq. 1, given the data of Fig. 2b. In
Fig. 2c, the mean of the posterior samples is shown.

In Figs. 5a and 6a we show the mean and standard deviation
of the angular distance error (⟨δθ⟩θ|D and σθ|D respectively) ob-
tained through the use of the GMF reconstructions shown in Fig.
2. Observe that ⟨δθ⟩θ|D and σθ|D vary across the celestial sphere,
and the specific structure of these functions depends on the spe-
cific ground truth GMF chosen. That said, the greatest error of
the reconstruction for this setting is approximately 14◦. In or-
der to judge the performance, in Fig. 4a we depict the angular
error in the arrival direction assuming the observed ones were
true - that is, ignoring the correction using the recovered GMF.
Comparing Fig. 4a to Fig. 5a, we observe that reconstructing the
local GMF conditional to d yields a significant improvement in
our ability to recover UHECR arrival directions. This result sug-
gests that ⟨δθ⟩θ|D is greater for UHECRs observed to arrive from
directions where the influence of the GMF is greater (Fig. 4a),
in this case at small longitudes. This correlation will be explored
further in section 4.1.

3.2. Scenario B: Local measurements with full 3D
information at each measured location

In this section we examine the impact that a complete lack of
observation of the LOS (scenario A) has on the UHECR arrival
direction reconstruction. For that purpose, we perform the same
inference as in section 3.1 with the difference that now the LOS
component is also probed locally, just like the POS components.
In Figs. 5b and 6b we plot the mean angular error ⟨δθ⟩θ|D and
the respective standard deviation, for this scenario. Comparing
to the results of scenario A (see Figs. 5a and 6a), we observe
that the quality of the reconstruction greatly improves when lo-
cal LOS information is included. While the maximum-occurring
mean angular error drops by a few degrees, in general the im-
provement is dramatic in that the total area of the sky where the
maximum bias occurs is substantially reduced. This observation
also holds for the variance.

While we consider θobs over the whole northern hemisphere
for benchmarking purposes, in real applications only sufficiently
high Galactic latitudes are relevant. The reason for this is that
we aim to reconstruct the GMF at a scale of up to a couple of
kpcs, and therefore we must choose UHECRs that have traveled
through the part of the Galaxy whose GMF we reconstruct. That
said, especially at the physically relevant case of high Galactic
latitudes, the inclusion of local LOS information dramatically
improves the backtracking results.

We have shown that knowledge of local LOS information
would yield a substantial improvement over our ability to recon-
struct the GMF, at least as far as UHECR backtracking is con-
cerned. As stellar polarization data alone cannot probe the LOS
dimension, this information would have to be supplemented
by additional methods (e.g. Zeeman measurements). However,
measurement of the LOS GMF component locally is a noto-
riously difficult task, and so in what follows, we will attempt
to mitigate this by including integrated LOS information in our
likelihood.
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(a) The ground truth. (b) The local and sparse data, confined to the POS.

(c) Mean of the posterior distribution conditional to the data of
Fig. 2b.

(d) Mean of the posterior distribution conditional to the data of
Figs 2b and 3b.

Fig. 2: Reconstruction of the simulated 3D magnetic field with the use of local data that lack LOS field component information. The
blue sphere represents the celestial sphere. Top Left: The ground truth; the GMF obtained as described in Appendix A. The field
is rescaled so that it has a RMS norm of 5 µG. Top Right: Synthetic data based on the ground truth of Fig. 2a. Note that the radial
component of the magnetic field is not measured. Bottom Left: The mean of the approximating posterior distribution attained via
the geoVI algorithm based on the data provided in Fig. 2b.Bottom Right: The mean of the approximating posterior distribution
attained conditional to the local data of Fig. 2b as well as integrated measurements of the radial component (Fig. 3b).

3.3. Scenario C: Local measurements with POS information
supplemented by integrated LOS measurements for the
whole sky

In this section we consider the inclusion of integrated constraints
on the LOS component of the GMF as shown in Fig. 3b, while
the local measurements at the dust clouds, simulating those ob-
tained through polarised starlight tomography, are still projected
on the celestial sphere as in Fig. 2b. Therefore, the likelihood
used now has the full form of Eq. 8.

In Figs. 5c and 6c we show the mean and standard devia-
tion of the angular distance error of the inferred UHECR arrival
direction using the samples that were produced through the up-
dated posterior, conditional to both local POS data, as well as
integrated LOS data. We observe that in comparison to scenario
A, shown in Figs. 5a and 6a, the improvement in the ability to
reconstruct the UHECR arrival direction is substantial in that the
maximum mean angular error is reduced by a factor of about
1.5, the part of the POS where the maximum mean angular er-
ror occurs is greatly reduced, and the variance of the posterior
is diminished by a factor of about 1.2. Thus, for the setting con-
sidered, we have shown that inclusion of integrated LOS data of
the GMF - which is a much more realistic expectation compared
to full 3D local measurements of scenario B - does also lead to

significantly better results with regards to recovering the arrival
directions of UHECRs with rigidity r∗.

4. Discussion

4.1. Identification of a systematic bias

In Fig. 2a we observe that the ordered component of the field pri-
marily lies (anti)parallel to the ±ŷ direction, which corresponds
to l = ±90◦ longitude. In Fig. 4a this is reflected by the fact
that the observed arrival directions parallel to the ordered com-
ponent, (l, b) ≃ (±90◦, 0◦), are minimally deflected, while the
maximal deflection occurs at the arrival directions perpendicular
to the ordered component of the field. We call the map of Fig.
4a the ‘deflection map’ of the GMF, for a UHECR with rigidity
r∗. If the deflection map of the GMF for a given of rigidity was
available, then we would be able to identify the regions of the
celestial sphere where observed UHECRS with that rigidity are
deflected most.

A comparison with Fig. 4a with Fig. 5 yields a direct corre-
lation between the regions of the deflection map, and the mean
angular error of our inferred arrival directions as a function of
observed arrival direction, for the same rigidity. In qualitative
terms, this correlation suggests that for observed arrival direc-
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(a) The integrated LOS component of the ground
truth field, shown in Fig. 2a.

(b) As in Fig. 3a, with Gaussian noise contamina-
tion.

(c) The integrated LOS component of the posterior
mean, conditional to the data of Figs. 2b and Fig.
3b.

Fig. 3: Top: Averaged LOS component of the test magnetic field,
shown in Fig. 2a. Middle: Noisy integrated data that is used
along with the sparse and local data shown in Fig. 2b in order
to define the LOS-informed posterior distribution. The noise co-
variance is set to 0.5 µG2, while the density of integrated mea-
surements is 0.1 deg−2 Bottom: Averaged LOS component of
the mean 3D configuration of the approximating posterior distri-
bution conditional to the data of Figs. 2b and 3b.

tions perpendicular to the GMF zero mode, where the particles
must have deflected the most, our inference of their true arrival
direction is more prone to a systematic bias. This ‘bias’ is to be
understood as the angular distance of the mean of our posterior
distribution with respect to the true value.

Even though we might not be able to correct for this bias us-
ing our available data, knowledge of how severely the GMF al-
ters the UHECR trajectories can help characterise the regions of
the POS where our reconstructions are expected to suffer from it.
While the corresponding deflection of the true GMF for a value
of the UHECR rigidity will not be known a priori4, its structure
is largely dictated by the field’s dominating mean value which is
generally well captured by our algorithm as shown in Paper I. In-
deed, as shown in Figs. 4b through 4d, we are able to recover the
large-scale features of the deflection map accurately for all three
considered scenarios, thus providing a charting of the parts of
the POS where the GMF will most influence the UHECR trajec-
tories, and by extension the regions where our arrival direction
posterior might be shifted with respect to the true value.

4 Its derivation requires knowledge of the full 3D structure of the GMF,
which is unknown.

4.2. Caveats

While tomography using starlight polarisation and Gaia data can
provide the location of dust clouds in the local Galaxy as well
as the POS orientation of the GMF at each cloud’s location, the
POS direction of the GMF is generally not known, as this infer-
ence makes use of the properties of grain alignment which can-
not infer the POS directionality of the GMF (Tassis et al. 2018).

Further, the integrated measurements used here assume that
the integrated Galactic LOS component has been measured or
inferred. In practice, the observables that need to be measured
in order to estimate these integrals is the Faraday rotation mea-
sure and the dispersion measure. That means that even if the
Galactic component is separated, it will still provide an aver-
age weighted over the thermal electron density. Therefore, in
our study we practically made the simplifying assumption that
the thermal electron density is constant or known. In applica-
tions to the real GMF, the electron density will be treated as an
additional degree of freedom to be inferred (Hutschenreuter et al.
2023). However, it must be noted that recent research suggests
the possibility that local LOS data can be available, at least in
part of the dataset (Tahani et al. 2022a; Tahani et al. 2022b).

In this analysis we studied only the case of UHECRs with a
fixed rigidity of r∗ = 5 × 1019 eV. This is equivalent to assuming
that the UHECRs particles are protons of E = 5 × 1019 eV. In
general the composition of UHECRs is unknown, and is most
likely mixed - especially if some of the sources have Galactic
origin (Calvez et al. 2010; Kusenko 2011; Jiang et al. 2021).
The closer examination of different composition scenarios will
be the subject of future work.

4.3. Conclusions & Outlook

In this paper we extended the analysis of Paper I to the case of
more realistic LOS information and local data distribution. This
is motivated by the fact that in real applications, the local GMF
data obtained through stellar polarisation tomography will not
contain LOS information, and the distribution of these measure-
ments will follow the distribution of dust clouds which is not
homogeneous, as was assumed in Paper I.

Additionally, the ground-truth GMF that was used in order
to benchmark the performance of our inference algorithm was
taken from an MHD simulation, with the aim of studying the ef-
fect of our Gaussian approach to magnetic field configurations
whose statistical properties more closely resemble those of the
real GMF. Furthermore, we supplemented the existing frame-
work in order to include LOS- integrated information as well.

Our results show that while the complete absence of LOS
information in the local data diminishes the accuracy of our in-
ferred UHECR arrival directions, even in this case we are able
to significantly correct for the effect of the GMF on the observed
arrival directions, at least for the rigidity considered here. Yet,
the inclusion of integrated LOS data for the GMF - which can be
realistically expected to be part of our available information - is
enough to provide accurate enough results.

Even in directions where the angular distance between the
inferred arrival direction and the true are maximal, we are still
able to correct for the effect of the GMF by a factor of 3, in the
setting considered. Additionally, by our ability to reconstruct the
large scale features of the field which dominate UHECR deflec-
tion, we are able to identify the regions of the POS where our
reconstructions are most likely to have summer from maximal
error.
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(a) Deflection map for the ground truth. (b) Mean deflection for scenario A.

(c) Mean deflection for scenario B. (d) Mean deflection for scenario C.

Fig. 4: Amount by which a UHECR of rigidity r∗ = 5 × 1019 eV is deflected by different GMF configurations as a function of its
observed arrival direction on Earth (the deflection map - see Fig. 1 for the definition of the relevant angles). Top left: True deflection
map. Top right: The mean deflection over the posterior samples for scenario A. Bottom left: As in 4b, but the local measurements of
the GMF now contain information on the LOS component as well as the POS component (scenario B). The additional information
in this case causes a greater resemblance of the posterior mean to the true field, and so the deflection map is closer to Fig. 4a.
Bottom right: As in 4b, but the posterior is additionally constrained by the integrated data seen in Fig. 3b (scenario C). The colobar
scale is kept up to 30 degrees to aid visual comparison. The red line on the colorbar indicates the maximum deflection for each case.
Notice that the dominant central feature of Fig. 4a is recovered in Figs. 4b - 4d, since it is caused by the largest scale features of the
magnetic field, which we are able to infer in every case.
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(a) Scenario A (b) Scenario B

(c) Scenario C

Fig. 5: Mean angular error of the reconstruction (see Fig. 1) as a function of all possible arrival directions on the Northern hemi-
sphere, for the case of a UHECR of rigidity r∗ = 5 × 1019 eV. Top left: The magnetic field data consist of local information with
the LoS component is projected out (scenario A). Top right: The magnetic field data consist of local information with the LOS
component measured (scenario B) Bottom: As in top left, but the data is supplemented by integrated LOS data (scenario C)(see
Fig. 3). The colorbar scale is kept up to 30 degrees to aid visual comparison with Fig. 4a. The red and orange lines on the colorbar
indicate the maximum and mean values of the map, respectively.

(a) Scenario A (b) Scenario B

(c) Scenario C

Fig. 6: As in Fig. 5, but for the corresponding angular error standard deviations as a function of observed arrival direction.
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Appendix A: Simulated Magnetic Field

We briefly summarize the setup and results of the Galactic dy-
namo simulations that have been analyzed here. A detailed de-
scription of the numerical setup is presented in Bendre et al.
(2015).

These are Magnetohydrodynamic (MHD) simulations of the
Galactic interstellar medium (ISM). The simulation domain is
an elongated box, located roughly at the solar neighbourhood of
the Milky Way. It has dimensions of approximately 1 × 1 kpc in
the radial (x) and azimuth (y) direction and ranges from approxi-
mately −2 to +2 kpc in z direction, on either side of the Galactic
mid-plane. It is split in a uniform Cartesian grid with a resolu-
tion of approximately 8.3 pc, and a set of non-ideal MHD equa-
tions is solved in this domain using the NIRVANA code (Ziegler
2004) (see Eq. 1 from Bendre et al. (2015) for the set of equa-
tions we have solved). Periodic boundary conditions were used
in the y direction to incorporate the axisymmetry of the Galac-
tic disc. The flat rotation curve is incorporated by allowing the
angular velocity to scale inversely with the Galactic radius as
Ω ∝ 1/R, with Ω0 = 100 km s−1 kpc−1 at the centre of the
box. Shearing periodic boundary conditions are used in the ra-
dial x direction to accommodate the aforementioned radial de-
pendence of angular velocity. The initial density distribution of
the ISM is in hydrostatic balance with the vertical gravity point-
ing towards the mid-plane, such that the vertical scale-height of
the initial density was approximately 300 pc, with its value in the
mid-plane of approximately 10−24 g cm−3. A vertical profile of
gravitational acceleration is adapted from Gilmore et al. (1989).
The ISM in this box is stirred by supernovae (SN) explosions,
which inject the thermal energy at random locations, at a rate
of approximately 7.5 kpc−2 Myr−1. The vertical distribution of
the explosions scale with the mass density. A piece-wise power
law, similar to Sánchez-Salcedo et al. (2002), is used to model
the temperature-dependent rate of radiative heat transfer, which
along with SN explosions, roughly capture the observed multi-
phase morphology of the ISM. We started the simulations with
negligible initial magnetic fields of strength of the order of nG,
and it grew exponentially to the strengths of the order of µG,
with an e-folding time of about 200 Myr, such that the final en-
ergy density of the magnetic fields reached to the equipartition
with the kinetic energy density of the ISM turbulence (shown
in the right-hand panel of Fig. A.1). The exponential amplifi-
cation of the magnetic energy saturated after about a Gyr, and
coherent magnetic fields of scale-height close to 500pc were
sustained in the box, consistent with the typical scale-height of
GMFs (shown in the left-hand panel of Fig. A.1). The growth
and saturation of these large-scale fields are understood in terms
of a self-consistent large-scale dynamo mechanism, governed by
the SN-driven stratified helical turbulence and the Galactic dif-
ferential rotation (Bendre et al. 2015).
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Fig. A.1: Left: Time evolution of the vertical (z) profile of the azimuthal component of the magnetic field averaged over x − y
plane. The color code is normalized by an exponential factor to compensate for an exponential growth of magnetic fields. The mean
magnetic field eventually grows to a large-sale mode symmetric with respect to the Galactic mid-plane. Right: Time evolution of
various contributions to magnetic energy, normalized to the turbulent kinetic energy (which stays roughly constant in time). The
black solid line corresponds to the total magnetic energy contribution, the red dashed line corresponds to the magnetic energy of
mean magnetic fields (averaged over the horizontal x − y planes) and with the blue dot-dashed line to the magnetic energy in the
RMS magnetic fields. The magnetic energy is amplified exponentially for about a Gyr and eventually reaches an equipartition with
turbulent kinetic energy.
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