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Abstract

Detailed modeling of the evolution of neutral hydrogen in the intergalactic medium during the Epoch of Reionization, 5 < z < 20,
(C\J iscritical in interpreting the cosmological signals from current and upcoming 21-cm experiments such as the Low-Frequency Array
— (LOFAR) and the Square Kilometre Array (SKA). Numerical radiative transfer codes provide the most physically accurate models
of the reionization process. However, they are computationally expensive as they must encompass enormous cosmological volumes
while accurately capturing astrophysical processes occurring at small scales (< Mpc). Here, we present pyC>Ray, an updated
version of the massively parallel ray-tracing and chemistry code, C?>-Ray, which has been extensively employed in reionization
simulations. The most time-consuming part of the code is calculating the hydrogen column density along the path of the ionizing
——photons. Here, we present the Accelerated Short-characteristics Octahedral ray-tracing (ASORA) method, a ray-tracing algorithm
specifically designed to run on graphical processing units (GPUs). We include a modern Python interface, allowing easy and
customized use of the code without compromising computational efficiency. We test pyC>Ray on a series of standard ray-tracing
= tests and a complete cosmological simulation with volume size (349 Mpc)?®, mesh size of 250° and approximately 10° sources.
Compared to the original code, pyC’Ray achieves the same results with negligible fractional differences, ~ 107>, and a speedup

1 factor of two orders of magnitude. Benchmark analysis shows that ASORA takes a few nanoseconds per source per voxel and scales
et linearly for an increasing number of sources and voxels within the ray-tracing radii.

% Keywords: Radiative Transfer, Epoch of Reionization, ray-tracing, GPU methods, 21-cm, Cosmology, Intergalactic medium

—

QAN

01492v

1. Introduction

The Epoch of Reionization (EoR) is a period of significant
interest in the history of the Universe, as it marks the appear-
ance of the very first sources of radiation that drove the tran-
sition of the intergalactic medium (IGM) from its primordial

= cold and neutral state to the present-day hot and highly ionized
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one (see e.g. [Furlanetto et al.| |2006; |Gorbunov and Rubakov)
2011 |Dayal and Ferrara, 2018, for reviews about this era).
While indirect observational evidence, such as using high red-
shift quasar spectra (e.g. [Bosman et al., [2022) and the cosmic
microwave background (CMB) radiation (e.g. Planck Collabo-
ration et al., [2020), situates the EoR at redshifts between about
5 and 30, its main characteristics are still unknown (Pritchard
and Loeb, 2012} |[Barkana} [2016). Current and upcoming inter-
ferometric radio telescopes, such as the Low-Frequency Array
(LOFAR;|van Haarlem et al.,2013), Hydrogen Epoch of Reion-
ization Array (HERA; DeBoer et al., [2017), Murchison Wide-
field Array (MWA; Wayth et all 2018) and Square Kilometre
Array (SKA;|Mellema et al.,|2013)), are expected to uncover the
details of this key event in cosmic history by detecting the dis-
tribution of the redshifted 21-cm signal in the IGM, produced
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by the spin-flip transitions in neutral hydrogen (Pritchard and
Loeb, 2012; Zaroubi, 2013). Accurate modeling of the EoR,
which is needed to interpret the observational constraints pro-
vided by these experiments, will require performing detailed
numerical radiative transfer (RT) and radiation hydrodynam-
ics (RHD) studies on large cosmological scales (= 100 Mpc).
These simulations are challenging because the EoR is a non-
local process, and the underlying RT equation contains both
angular, spatial, and frequency dimensions. Various modeling
methods exist, a review of which may be found in, e.g.,|Gnedin
and Madaul (2022).

Today, most fully numerical RT codes can be divided into
two main classes: moment-based and ray-tracing methods. The
former works by considering the hierarchy of angular moments
of the RT equation, with some ‘closure relation’ to limit the
number of equations to be solved, and treat the radiation as a
fluid (e.g. |Aubert and Teyssier, |2008). This makes coupling
to hydrodynamics natural and, from a computational perspec-
tive, has the huge benefit of being independent of the number
of ionizing sources in the simulation. On the other hand, mo-
ment methods suffer from increased diffusion and unrealistic
shadows on optically thick objects. A few examples of codes
using moment-based methods are OTVET (Gnedin and Abel|
2001)), RAMSES-RT (Rosdahl et al., 2013)) and AREPO-RT (Kan-
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nan et all 2019). Although they combine N-body, hydrody-
namic and radiative feedback, they tend to be computationally
expensive and cannot simulate the required large volumes. [Iliev
et al.| (2014) show that we require simulations with a minimum
volume size of ~100 cMpc to model the 21-cm signal and cover
the large field of view expected by SKA and its precursors(e.g.
Mertens et al.l [2020; [Trott et al., 2020; HERA Collaboration,
2023)). Moreover, the small mass sources (~108M,), which are
expected to drive reionization (e.g. Nebrin et al.| 2023} |Gelli
et al., 2023} |Atek et al.l [2024)), are often not resolved by these
simulations.

Ray-tracing methods take a more physical approach by cast-
ing rays around each source and modeling how the radiation
propagates, i.e., is absorbed and scattered, along those rays.
The photo-ionization rate occurring at any point in space is then
determined by the number of absorptions between the source
and said point, normally expressed as the optical depth between
the source and that point. This approach can potentially be more
accurate and less diffusive than moment methods but is quite
expensive, as the cost of ray-tracing generally scales linearly
with the number of radiating sources. Thus, in practice, the
number of sources that can be considered has been, until recent
years, severely limited by the available computational power.
c2 -Ray (Mellema et al.,[2006), ZEUS-MP (Whalen and Norman,
2006), CRASH (Ciardi et al.l 2001, SPHRAY (Altay et al., 2008)),
LICORNE (Semelin et al., 2007), ART (Nakamoto et al., [2001)),
FLASH-HC (Rijkhorst et al., 2006) are a few notable examples
of ray-tracing-based codes. Moment and ray-tracing methods
have been compared extensively (Iliev et al., 2006, [2009). The
main differences are due to numerical diffusion for the different
treatments of the energy equation in moment-based methods
and how the multi-frequency radiation is implemented. The ad-
vantages of using one over the other have been shown to depend
greatly on the problem and context. That being said, by requir-
ing huge volumes and large numbers of ionizing sources (Kaur
et al.l 2020} |Giri et al.| [2023), developing more efficient RT
methods for EoR, especially ray-tracing-based ones, is highly
desirable.

In recent years, there has been a significant surge in the
use of general-purpose GPUs for numerical scientific research.
These devices have enabled remarkable performance improve-
ments when used to develop applications for problems that can
be divided into numerous simple and independent tasks suit-
able for parallel processing. Consequently, GPU acceleration
has been integrated in various astrophysics and cosmological-
related tools (e.g.|Ocvirk et al.| 2016} |Potter et al.| 2016} |[Racz
et al.,|2019; (Cavelan et al.l |2020; [Wang and Meng, [2021)). The
ATON (Aubert and Teyssier, 2010) and EMMA (Aubert et al.
2015) codes are the first applications of GPU-accelerated al-
gorithms for radiative transfer codes in the context of extra-
galactic astrophysics. To our knowledge, this technology has
not yet been imported to short-characteristic ray-tracing meth-
ods, thus making the current work a first.

Given the success of GPUs in accelerating ray-tracing tasks
in computer graphics (Owens et al., 2008} Nickolls and Dallyl,
2010; Navarro et al., [2014), it is reasonable to explore their
application to ray-tracing problems in astrophysics. This mo-

tivates our work, where we introduce an Accelerated Short-
characteristics Octhaedral ray-tracing (ASORA) method de-
signed specifically for C>-Ray. By incorporating GPU meth-
ods, we anticipate significant performance enhancements and
more efficient simulations, thus opening up new possibilities
for research and analysis. Our work aims to bridge the gap be-
tween the potential of GPU acceleration and the requirements
of ray-tracing tasks in astrophysics, providing a promising av-
enue for further advancements in this domain.

C2-Ray is a 3D ray-tracing radiative transfer code designed
for simulating the EoR and was initially developed by Mellema
et al.| (2006)) (hereafter: MO6). It conserves photons at a voxel-
by-voxel level, allowing for large, optically thick grid voxels
while maintaining accuracy. Furthermore, the method allows
for long time steps, even surpassing the voxel-crossing time of
ionization fronts. It has been extensively used in EoR simu-
lations and updated to include photoheating, X-ray radiation,
and helium chemistry (Friedrich et al.,|2012; Ross et al., 2017,
2019). C?-Ray is written in Fortran90 and designed for mas-
sively parallel systems, utilizing a hybrid MPI and OpenMP ap-
proach for efficient radiation propagation. The ionizing sources
are distributed over MPI processes, and each of these processes
further employs OpenMP threading to propagate radiation in a
domain-decomposed manner.

As a stand-alone code, C>-Ray is a post-processing code{ﬂ It
acts on the output snapshots of a previous (cosmological) hy-
drodynamical simulation and propagates radiation on the gas
fields of these snapshots. As is detailed in the following sec-
tions, it is also a grid code, meaning that the gas fields must
be projected onto this grid through some smoothing method.
Sources are identified in the initial simulation via a variety of
models. Currently, the typical approach is to run a halo finder
on each snapshot and use a physical model to translate a halo
into a radiating source. The update to C>-Ray in this work com-
prises two main aspects:

1. GPU-Accelerated ray-tracing Method: The original
ray-tracing method used by C?-Ray is not well-suited
for GPU parallelization. A new algorithm based on
the same short-characteristics scheme has been devel-
oped to address this limitation. This new method is
specifically designed for running on GPUs, enabling ef-
ficient computation of column densities, which is the most
computationally intensive task in the radiative transfer
(RT) method. The GPU implementation leverages mas-
sive multi-threading capabilities, resulting in significantly
faster performance than the CPU method. This new al-
gorithm is written as a C++/CUDA (e.g. |Garland et al.|
2008)) library with Python bindings for ease of use and
integration.

2. Python Wrapper and Interface: The highly-optimized
Fortran90 implementation of C>-Ray excels at compu-
tationally intensive and time-consuming tasks, such as
the solving of chemistry equations and, until now, ray-
tracing. However, due to its compiled and statically typed

!'The algorithm can, however, be used in conjunction with a hydrodynamics
code, as was, for example, done in|Arthur et al.|(2011) and|Medina et al.|(2014)



nature, Fortran is less suited for all the parts of the
code that require frequent tweaking, such as the radiation
source implementation, interfacing, I/O operations, cos-
mological model, and more generally the setup of each
particular simulation. These tasks contain most of the
conceptual baggage of future simulations but only rep-
resent a negligible fraction of the computational work-
load. Thus, to enhance usability and flexibility, we de-
cided to wrap the time-critical core Fortran subroutines
of C2-Ray and rewrite the non-time-consuming parts of
the code in Python, making frequent use of standard li-
braries.

As a result, users can now write an entire C>-Ray simulation as
a Python script, making it easier to tweak parameters and add
new features without frequently recompiling the core Fortran
subroutines. These updates enable more efficient GPU utiliza-
tion for critical computations and improve the overall accessi-
bility and versatility of the C>-Ray code through Python script-
ing and interface enhancements.

This paper is structured as follows. In § (2), we de-
scribe how reionization is modeled and summarize how the
C?-Ray method works. In § , we describe the ray-tracing
method used, present our newly developed ASORA algorithm,
and briefly discuss the new Python wrapping and interface to
the code. Then, in § @), the updated code is tested on stan-
dard idealized situations and benchmarked to determine how
much performance improvement is achieved. The source code
of pyC?Ray is publicly available at https://github.com/
cosmic-reionization/pyC2Ray,

2. Simulating Cosmic Reionization

To study the EoR, we need to model the time evolution of the
ionization state of the intergalactic medium (IGM) within a cos-
mological framework. This involves solving a system of chem-
istry equations that track the evolution of the ionization state of
primordial species, such as hydrogen and helium. These equa-
tions take into account various physical processes, including
photoionization, collisional excitation, recombination, heating,
and cooling (e.g. [Furlanetto et al.,[2006).

In this paper, we will focus on the simplest case, considering
only hydrogen. This choice is justified because hydrogen con-
stitutes the major part of the IGM. The original C*-Ray code in-
cludes extensions also to consider helium ionization and multi-
frequency photo-heating (Friedrich et al.l 2012), and we plan
to incorporate these extensions into pyC’Ray gradually. The
primary objective of this paper is to present an update to the
general ray-tracing method.

The ionization state of the hydrogen gas is described by
the following chemistry equation (e.g.\Choudhury and Ferrara,
20065 |Choudhury, [2009),

dxyn
dt

=1 = xpgn) T + n, Cu(T)) — xgn ne au(T), (1)

where xyy is the fraction of ionized hydrogen, n, is the elec-
tron number density, I is the photo-ionization rate per unit time,

and Cy(T) and ay(T) are the collisional ionization and recom-
bination coefficients for ionized hydrogen and free electrons,
at temperature 7. C?>-Ray uses the on-the-spot (OTS) approxi-
mation, which assumes that the diffused photons resulting from
recombination to the ground state are reabsorbed locally and,
thus, solely accounted for by using a different value for ay (e.g.,
Ritzerveld, [2005)).

The photo-ionization rate I quantifies the effect of ionizing
UV radiation on the gas and is determined by the distribution
of radiation sources. To illustrate this point, consider the sim-
ple situation of a single isotropic ionizing source in a homoge-
neous medium. As photons propagate away from the source in
all directions, they form a spherical "shell" of ionizing radia-
tion. The photons are absorbed by gas particles, which subse-
quently become ionized. These photo-ionizations also attenu-
ate the strength of the radiation further away from the source,
in addition to the attenuation occurring due to geometrical ef-
fects alone. Photo-ionization is also countered by recombina-
tions. Together, these phenomena result in the formation of a
spherical ionized bubble around the source, also known as a
Stromgren sphere.

In EoR simulations, more than one source is typically
present, and the medium is distinctly inhomogeneous, leading
to a much more complicated situation. The number of these
sources during the EoR depends critically on the size of the
volume and minimum mass of source haloes. We typically start
with less than a few hundred sources at high redshift (z = 20)
to a few tens of a million at low redshift (z ~ 6). Below, we first
summarize the method used in C>-Ray to solve and
then discuss in detail the computation of the photoionization
rates.

2.1. Summary of the C*Ray Method
To solve the chemistry equation (Equation I)), one could, in

principle, use a finite-differencing scheme and assume all rates
to be constant over a reasonably short timestep. This approach
is used by, e.g., Grackle (Smith et al., 2017) to solve very com-
plex chemistry networks. The problem here lies in the pho-
toionization rate I'. It is determined by the amount of ionizing
photons arriving at the target point where is con-
sidered. This amount depends directly on how radiation is ab-
sorbed along the path from its source to the target point, which
in turn depends on the density ny and ionization state xyy of
the medium along this path. This means that I is strongly de-
pendent on the solution variables of the problem and that this
dependence is also highly non-local. For the finite-differencing
scheme to be accurate, this implies very stringent constraints
on the timestep size, especially in the presence of fast-moving
ionization fronts (I-fronts).

C2-Ray overcomes this problem using an alternative ap-
proach, illustrated schematically in As is argued in
MO06, when recombinations and collisional ionizations are ne-
glected, the solution of over any timestep At de-
pends only on the time-averaged photoionization rate within
that timestep, denoted by (I'). Furthermore, only small devi-
ations arise when collisions and recombinations are included,
as is tested in [M06. The idea behind the C>-Ray algorithm
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is to converge to the correct (I') within a given At by iterat-
ing between a Ray-tracing Step, which computes (I') based on
the currently assumed solution for the time-averaged ionization
state (xgy) of the whole medium, and a Chemistry Step, which
computes an updated (xyy) based on the new (I'). This is illus-
trated in by the long vertical black arrow, which goes
through a convergence test to determine whether the iteration
needs to be repeated.

The chemistry step itself is not entirely trivial, as it still re-
lies on being able to solve the differential equation. The method
used in C*-Ray is based on Schmidt-Voigt and Koeppen!(1987),
who argue that when #n,, I', Cy and ay are assumed to be con-

stant, an analytical solution exists for Using this

solution, the time-averaged ionization state can be expressed as

I
(X) = Xeg + (X0 = Xeg)(1 = e*““f)A—t 2
_ I+ ne CH
Y S T 0, (C + am) 3)
t;=[T+n,(Cu+aw)l™". )

Here, xj is the ionization state at the beginning of the timestep,
and x,, is the equilibrium solution, i.e., for dxyn/dt = 0, while
t; is a constant time scale employed for the time-averaged inho-
mogeneous solution. Note also that I" has been used instead of
(I') to represent the time-averaged photoionization rate to ease
up notation. Since the non-time-averaged rate is never used in
the algorithm, this new notation shall be used from now on.
Cz-Ray uses this solution, and iterates for the electron density
n, (which depends on xpy through roughly n, ~ xgpny), until
(xm) converges. The thick horizontal arrow within the chem-
istry step illustrates this second iterative process in
Again, a convergence criterion is implicitly used to determine
when to end the iteration.

The ray-tracing step requires further consideration, as it is the
focus of the present work. It is discussed in detail in §2.2]and
The main takeaway from this section is that the C>-Ray
method makes it possible to use very long timesteps while still
remaining accurate even in the presence of fast-moving I-fronts.

2.2. Computing Rates

In the "ray-tracing step" introduced above, the properties of
ionizing sources are used together with the knowledge of the
ionization state of the medium inside a simulation volume to
compute the photo-ionization rate I' occurring at any point in
space. An ionizing source of specific luminosity L, located at a
point g, produces at a target point g a (time-averaged) photo-
ionization rate given by

1 *® L,0 =)
r= f I gy, (5)

4nr? hv
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where vy, is the threshold frequency for photoionization (hvy, =
13.6 eV), (1,) = 7,(r) is the time-averaged optical depth be-
tween source and target and r = |J, — p| is the distance be-
tween P, and p. The optical depth is proportional to the col-
umn density of neutral hydrogen Ny, and the proportionality

Raytracing Step

For all sources k :

For all voxels i :

Find <Nup from current <z»
and use it to compute 'y

Add T to the global rate array I’

A 4
Chemistry Step

For all voxels i :

Find <a»; using Update <n.>;

current I'i and <n.>; from <z;

Update z using
the current I'

Yes

] 2

Test for global
convergence

and <n.>and
proceed to next
timestep

Figure 1: Flowchart representation of the method used by C?>-Ray. The figure
shows the procedure for a single time-step in which the ionized fraction of
hydrogen xyj is evolved for the whole 3D grid. The method can be divided into
a "ray-tracing” and a "chemistry" step, and multiple iterations of either typically
occur in a single time step.

factor is its frequency-dependent photoionization cross-section,
7, = 0yNu. The frequency-dependence of o, approximately
follows a power law whose index depends on the frequency
band considered (see, e.g. [Friedrich et al.,[2012] for further de-
tails).

C2-Ray in its current form is a Cartesian grid code, which
discretizes space using N3 cubic voxels, where N is the number
of voxels in each dimension. Using directly on a
grid is problematic when the voxels are optically thick, i.e. the
optical depth of a single voxel is non-negligible. The photoion-
ization rate will then vary appreciably from one side of a voxel
to the other. Using computed at an arbitrary point
in the voxel as a representative rate for the whole voxel will,
therefore, lead to an error in photon conservation - the num-
ber of ionizations occurring in the voxel will not be equal to
the number of absorptions. To avoid this problem without be-
ing forced to use impractically small voxels, C*-Ray works by
imposing that the number of ionizations is equal to the number
of absorptions used to attenuate the radiation. As is detailed in
MO6!| using this condition leads to an alternative expression for
the photoionization rate,

® L, e (1 — e78™)
r= f Lve 70 e Dy, ©)
vo v nuIVen

where At, is the optical depth through the voxel, which is pro-
portional to the light travel path length ds through the voxel,



and (7,) is the optical depth up to the voxel. nyy is the number
density of neutral hydrogen inside the voxel, while the factor
Vinenn = 4mr*ds accounts for both geometrical diffusion of radi-
ation and the finite size of the cell. Note that, in the optically
thin limit (Ar, — 0), the above expression reduces to

By defining the function

00 Lve_o—VNHI
¥(Nuw) = f v, ™
Vih v

[Equation 6]can be written in a more suggestive way

I'= [¥(Nur) — y(Nux + ANmp)] (8

na1Vshell

This means that rather than numerically solving the integral in
each time it is required, the function y(Ngp) can be
pre-calculated and tabulated for a range of column densities and
a simple interpolation used to evaluate it for any given value
of Ny;. Note that the individual properties of the voxel where
I" is computed are not part of the tabulation and are explicitly
accounted for in

When more than one source is present, the situation becomes
slightly more complicated. The approach described in the orig-
inal C?>-Ray paper (see Figure 4 in M06) involves randomizing
the order of sources and performing the chemistry step for each
source individually before testing global convergence. How-
ever, this approach was modified in subsequent updates to the
code, and it is this updated algorithm that we use here. The
idea is simply to compute the 3D rate array (one rate per voxel)
for each source and sum these arrays to obtain a global rate ar-
ray. This global rate is then used for the chemistry step, and
the process is repeated until convergence. Note that this is the
process as illustrated in [Figure T} where we use the notation I';
to signify that this quantity applies to a given source indexed by
k and a given voxel, indexed by i.

3. Novel ray-tracing Method: ASORA

As shown by the problem of finding ionization

rates boils down to computing the column density Ny of neu-
tral hydrogen between a source and grid voxels. This is the
process we refer to as ray-tracing in this context. In princi-
ple, given a cubic grid with N voxels in each dimension, it
is possible to compute Ny directly for all voxels of the grid,
an approach known as “long characteristics” (LC). For a sin-
gle source, it scales as O(N*). This is because, for each of the
N3 voxels to treat, the number of other voxels that lie along the
ray coming from the source is on the order O(N). LC has the
advantage of being easy to parallelize as all rays are treated in-
dependently. However, given that radiation propagates causally
outward from the source and that column density is an addi-
tive quantity along a given line of sight, this algorithm also
contains a lot of redundancy. A variety of methods have been
proposed to make ray-tracing more efficient (see, e.g. Rosdahl
et al., 2013, for an overview). Cz—Ray uses a version of the
“short-characteristics” (SC) ray-tracing method (Raga et al.|
1999), which reduces the redundancy of the problem by using

interpolation from inner-lying voxels relative to the source to
compute the column density to outer-lying ones. This method
reduces the complexity to O(N?) but is harder to parallelize as
it introduces voxel dependency.

Since the effect of each source is independent, the total cost
of the ray-tracing step is the number of sources Ny times what-
ever the cost for a single source is, e.g., O(N*) for LC or O(N?)
for SC. On the other hand, the total cost of a chemistry step
only scales with the number of voxels in the grid, i.e., N3. This
clarifies why the ray-tracing step is the primary target for opti-
mization in an EoR code like C2-Ray, where typically Ny > 1.
In fact, at low redshift, it is common to have a source in almost
every voxel, so that Ny, ~ N 3 and that, in turn, the complexity
of the ray-tracing step is ~ O(N®) (using SC) versus O(N?) for
the chemistry step.

We should also mention that we never separately treat more
than one source per voxel and instead simply add the luminos-
ity of all sources whenever more than one is present, implying
Ng. < N°. The result is identical to treating them separately
and adding up the resulting rates because a source is always as-
sumed to be at the center of a voxel. Note, however, that this
approach is possible only because the spectra of all sources are
identical, and in the future, when different source types may be
considered by the code, this procedure will have to be adapted
by only summing up the sources that belong to the same type.

Below, we first discuss in detail the short-characteristics ray-
tracing method used in C>-Ray (§ . Then, we give an
overview of the CPU-parallelization strategy the code has used
so far (§ @]) Next, we introduce the adaptation of the method
for GPUs (§ 3.3), and finally, in § 3.4] we discuss the structure
of the new Python wrapper built around C>-Ray.

3.1. Ray-tracing in C*Ray

Here, we closely follow the discussion of Appendix A in
MO6, and in particular, refer the reader to Figure Al, which
provides a good visual description of the geometric arguments
detailed below. For a voxel located at mesh position p = (i, j, k)
and a source at s = (i, j, k), the full column density Ny =
Nt + AN along the ray from s to p can be decomposed into
a part up to the voxel Ny and a part within the voxel ANy.
The latter is proportional to the physical path length dI = a ds
through the voxel at p, where ds is the path length in mesh units
and a is the physical length of a grid voxel,

ANH[ = nmads. (9)

Defining Ai = i — i; (and similarly Aj and Ak), one can de-
termine through which plane the ray coming from s enters the
voxel at p. For example, if Ak > Ai and Ak > Aj, the ray enters
through one of the constant-z planes, with the Ak sign indicat-
ing which one. In this particular case, the path length through
the voxel is

L4 A2+ A jz,

AK?

and the analogous expressions apply if the ray enters through
the constant-x or y plane. The main assumption of the short-
characteristics method is that Ny can be computed by interpo-
lation with neighboring voxels of p that are closer to s. The

ds = (10)



Figure 2: Parallelization strategy used by the original C2-Ray code. In the first
step (A), 6 grid domains can be treated independently, corresponding to axes
around the source voxel. In (B), the 12 planes joining them form independent
domains, while in the third one (C), the 8 octants between the planes do.

particular scheme used by C>-Ray (Raga et al., [1999) uses 4
neighbours, whose positions are given by

e = (i’j’k_o—k), € = (i’j_o-j’k), (11)
es = -0y j k), es=({—0,j—0jk—0p)
where o7 jx = % The interpolated column density up to p
then reads
NHI = Wll\/gI + W2N32 + W3]Ve3 + W4N€A. (12)

The interpolation weights w,, are a simple geometric weighting
based on the xy-distance from the corner to the point of inter-
section between the ray and the surface of the cell. They are
chosen such that when the ray is parallel to an axis or lies on a
grid diagonal, in which case Ny is exactly equal to the column
density of only one of the neighbors, all but the weight of that
neighbor vanish. The interested reader is referred to Appendix
A in MO6|for the details of this weighting choice.

The above scheme describes how the column density up to
a given voxel can be approximated using the knowledge of
the equivalent quantity corresponding to 4 other voxels that lie
closer to the source. This inter-voxel dependency naturally im-
plies that for the scheme to be applied correctly, one must treat
the voxels in a particular order, starting at the source voxel and
moving outward from there. This ensures that the interpolation
step does not attempt to use information that doesn’t exist yet,
so we say that SC is a causal algorithm. In fact, the simplest
way to traverse the grid is to simply perform a triple loop over
the x — y — z indices of all voxels by starting the loop at
the source voxel indices. This is a fully sequential approach.
The next two sections deal with the problem of finding parallel
alternatives to the latter.

3.2. Existing CPU Parallelization and Optimizations

The current version of C?>-Ray uses various methods to op-
timize the cost of ray-tracing and make the procedure scalable
to massively parallel CPU systems. A key feature of the code
is that the treatment of each source is completely independent.
C?-Ray harnesses this independence by distributing the full list
of sources between MPI ranks. Each rank receives a copy of

Figure 3: Sequence of octahedral shells S, used in the ASORA ray-tracing
method. All voxels belonging to a shell S, with ¢ > 0, depend strictly on
voxels from previous shells {S, |r < g}. The shells g = 1,¢ = 2 and g = 9 are
shown, with the source voxel (¢ = 0) at the origin of the axes.

the full grid data and works on a subset of the sources. It per-
forms ray-tracing for each source in this subset and sums to-
gether their respective ionization rate arrays (see §2.2). Then,
an MPI reduction operation is used to sum the rate arrays of all
ranks and obtain a global I" that includes the contributions of
all sources. This allows the full ray-tracing workload to be dis-
tributed over many processors in shared and distributed mem-
ory setups. The main limitation of this setup is memory since
each rank carries a full copy of the 3D grid. As was explained
in §3.1] the ray-tracing work for a single source is more chal-
lenging to do in parallel due to the inter-voxel dependency of
the SC method. However, it is possible to find independent
subdomains of the grid and use an approach similar to domain
decomposition. This approach performs the following steps in

order, which are illustrated in

1. Do the 6 axes outward from the source voxel (A) in parallel
2. Do the 12 planes joining these axes (B) in parallel

3. Do the 8 octants between the planes (C) in x — y — z
order, in parallel,

where the labels A, B and C correspond to the three sketches
in C?-Ray uses OpenMP tasks to do the independent
domains following this approach, which can yield a speedup
of § < 8. Finally, the ray-tracing procedure itself is opti-
mized using the following technique: rather than ray-tracing
the whole grid, the program first treats only a cubic sub-region
around the source, namely a "sub-box", and then calculates the
total amount of radiation that leaves this sub-box (i.e. a pho-
ton loss). If this loss is above a given threshold, the program
increases the size of the sub-box, treats the additional voxels
and repeats this procedure until the photon loss is low enough.
This allows C2-Ray to avoid expensively ray-tracing all voxels
when, in fact, almost no radiation reaches the ones far away
from the source. The threshold value should be chosen based
on convergence studies of the type of problem being simulated.
The sub-box technique has been found to work well in EoR set-
tings, where the density field is almost Gaussian. In some more
specific situations, where narrow, optically thin tunnels exist in
otherwise optically thick regions, the technique might produce
inaccurate results. In these cases, using a very small threshold
value or, in the worst case, ray-tracing the whole grid may be
desirable. Additionally, the user can impose a hard limit on the
maximum distance any photon can reach relative to the source.
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3.3. GPU Implementation

GPUs are designed to execute numerous concurrent opera-
tions, organized into units referred to as blocks in CUDA and
workgroups in AMD terminology. Given that ASORA has been
implemented using CUDA, we will continue to use CUDA ter-
minology. We are also planning a future port of the library for
AMD platforms. Threads can be synchronized within a block,
while blocks run asynchronously (Nickolls et all 2008). It
is possible to perform a synchronization between blocks only
globally. To fully harness the resources of a GPU, one aims
to ensure that the number of threads active at any given time
is as close as possible to the theoretical maximum of the used
device. While no universal prescription exists to achieve this, it
is generally desirable that blocks have a similar workload and
their number is in the same order as the number of streaming
multiprocessors (SMs) available on the device. This suggests
a natural implementation for the ray-tracing problem: dispatch
one block for each source and use intra-block synchronization
to respect the causality of the short characteristics algorithm.

For this approach to be efficient, however, the work for a sin-
gle source cannot be simply parallelized following the domain
decomposition approach described in §[3.2] as this would allow
at most 8 threads to be active within a block. To parallelize
the work for a single source in a way more suited for the ca-
pabilities of a GPU, we recall that radiation would propagate
as a spherical wavefront around a point source in a continuous
medium. This translates to a series of shells around a source
voxel in the discretized setting. It turns out that there is a par-
ticular sequence of disjoint shells S, illustrated in
which are causally ordered with respect to the SC scheme used
by C?-Ray. g indexes the "distance" of the shell to the source;
the g = 0 shell is simply the source voxel itself, and ¢ = 1 con-
tains the 6 directly adjacent voxels to the source. The causal

ordering can be summarized by the following conditions:

1. The first shell g = O contains only the source voxel, which
can be treated directly without interpolation.

For any voxel p € §, with g > 0, all 4 interpolation neigh-
bors appearing in belong strictly to shells S,
with r < g, in other words, only to shells "below" the cur-
rent one.

In particular, all voxels p € S, are independent of one
another with respect to the interpolation scheme.

2.

This means that the full ray-tracing work for a single source
can be divided into the sequence of tasks {S q}quo, where Q is the
size of the largest shell. These Q tasks must be done sequen-
tially by definition, but each task comprises subtasks (one sub-
task for each voxel in the shell) that can be performed in paral-
lel. Note that the number of voxels inside a shell S, and hence
the number of independent subtasks per task, is n, = 4¢* + 2.
Going back to the discussion above, when, for instance, 100
threads are assigned per source for each task with ¢ > 5, it
is theoretically possible for all threads to be actively engaged
in performing work. This effectively resolves the challenge of
parallelizing the computation on a per-source basis.

Rather than giving a maximal shell size Q, it is more con-
venient to set a maximum physical radius R, any photon can
travel from the source. If the physical size of a grid voxel is, as
previously, denoted by «, the (dimensionless) size index of the
largest shell required to cover the chosen radius fully is given
by O = [QR\%'I. Any cell inside S ¢ whose distance to the source
exceeds R, can simply be excluded from the computation to
yield a spherical region in which I is nonzero.

The full implementation, illustrated in [Figure 4] goes as fol-
lows. We dispatch one CUDA thread block for each source
that works through the sequence of shells. The result, i.e. the




photo-ionization rate produced by that source in each voxel, is
atomically added to the global rate array I'. In practice, there
is a small additional caveat to consider, namely that by the na-
ture of the algorithm, each source requires a temporary mem-
ory space to store the values of the previously interpolated vox-
els needed for the next interpolation. The required space can
typically be a good fraction of the whole grid, so the number
of blocks that can be dispatched together is limited by GPU
memory. In fact, rather than directly dispatching one block for
each of the Ny sources in the simulation, we group the sources
into batches of size M, and work on these batches one after the
other. M is determined by available GPU memory and grid size
N. Aslong as M is large enough to saturate the GPU, this ap-
proach should not result in a significant performance loss com-
pared to the ideal scenario of immediately deploying one block
per source, without any batching, since the workload for each
source is the same.

Finally, ASORA is also MPI-enabled, using mpi4py (Dalcin
and Fang| [2021) in the same way as it was intended for the
original C*>-Ray. Namely, the sources are evenly distributed to
multiple MPI processes. Each MPI rank maps to one GPU,
which then uses the model laid out above to process its subset
of sources and broadcasts the result I to the root rank, using
MPI_REDUCE with a sum operation. This allows using ASORA
on a multi-GPU setup across multiple nodes to further speed up
ray-tracing on very heavy workloads.

To conclude this section, we note that the ASORA method, as
presented here, only applies to uniform grids, as the octahedral
shell approach builds on this assumption. We acknowledge that
this is a strong limitation of our method, and we plan to explore
its adaptability to non-uniform grids. Further technical details

on ASORA can be found in[Appendix A]

3.4. Python-wrapping of C*-Ray

Here, we provide a brief overview of the pyC’Ray interface
and architecture, summarized visually in The pack-
age amalgamates key components from the original Fortran90
code, the new ray-tracing library as discussed above, and ele-
ments of pure Python. This integration is facilitated through
£2py, a tool developed as part of the NumPy project (Harris
et al., 2020). This tool streamlines the creation of extension
modules from Fortran90 source files.

The incorporated Fortran90 subroutines primarily encom-
pass the chemistry solver and retain the original CPU-based
ray-tracing module as a contingency. The novel ASORA method
is written in C++/CUDA and compiled as a Python exten-
sion module natively compatible with NumPy. The princi-
pal time-evolution function within pyC?Ray is implemented in
Python, and it invokes the ray-tracing method, choosing be-
tween the CPU and GPU versions and the chemistry method
sourced from these extension modules. The prior process of
precalculating photoionization rate tables, as introduced ear-
lier, has transitioned to direct implementation in Python. This
is achieved using numerical integration techniques from the
SciPy library (Virtanen et al.l |2020), which relies on the un-
derlying QUADPACK library for lower-level computations. It
is worth noting that these integration methods differ from the
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Figure 5: Structure of the pyC?Ray code. The main python package, pyc2ray,
sets up the simulation and acts as the front end to the user. Internally, the
time-evolution method of this package executes functions from two compiled
extension modules. One is ASORA, the new GPU ray-tracing module written in
CUDA C++, while the other contains a set of wrapped Fortran subroutines
taken and adapted from the original C2-Ray code.

custom Romberg integration subroutines utilized by the orig-
inal C*>-Ray framework. The commonly needed cosmological
equations and physical quantities are now provided by Astropy
(Astropy Collaboration, [2022).

Beyond these technical aspects, the inherent method within
pyC*Ray —apart from the ray-tracing component— has under-
gone minimal alteration. Key features of C?>-Ray, including
photoionization and hydrogen chemistry, have been seamlessly
migrated to the Python version without compromising compu-
tational efficiency. Our strategy involves a gradual integration
of additional extensions over time.

4. Validation Testing & Benchmarking

In § 4.1} we validate our new code using a series of well-
established tests, comparing our results to analytical solutions
and to the results of our original C>-Ray code. In § we in-
vestigate how the updated ray-tracing method scales relative to
the main problem parameters. In all tests, the temperature con-
ditions of the gas are assumed to be isothermal, i.e., no heating
effects are modeled.

4.1. Accuracy Tests

We begin by conducting Tests 1 and 4 from MO6, labeled
as Test 1 and 2 here, to evaluate the precision of our code in



" 1.05 1
1.00 A
0.95 A

Tnum /Tana‘lyt

= Analytical

0.2 1 — = pyC?Ray Coarse
C?Ray Fine
0(1) 7 1 1 1 py 1 y 1
10+ 3
g 100 -
=
g
=101 4
=
1072 .
0 1 2 3 4
t/trcc

Figure 6: Result for Test 1 (Single-source H II region expansion in uniform
gas). The test is conducted with a "coarse" time step Af. = f,,,/10 and a
"fine" one, Aty = t.,/100. The time evolution of the ionization front radius
(middle) and velocity (bottom) are shown. The error between the numerical
and analytical results can be seen in the top panel.

monitoring I-fronts in single-source mode. This evaluation en-
compasses scenarios both with and without cosmological back-
ground expansion. Following this, we investigate the interplay
among multiple sources and the occurrence of shadow forma-
tion behind an opaque object, Test 3 and Test 4.

4.1.1. Test 1: Single-Source HIl Region Expansion

Consider the classical scenario of a single ionizing source
within an initially-neutral, uniformly dense field at a constant
temperature. In this case, any cosmological effects are disre-
garded. Assuming the photoionization cross section remains
frequency-independent, o, = o, known as grey opacity, this
system has a well-established analytical solution for the veloc-
ity and radius of the ensuing ionization front with respect to
time. The solution is given by

n(0) = rs [1 = exp(~t/trec)]'? (13)
rs exp(_t/trec)
3 Trec [1 — exp(—t/trec)]2/3 .

vi(t) = (14)

The above expressions depend on the Stromgren sphere radius
rs, recombination time f... and luminosity emitted by the source
(or the number of photons per unit time). These quantities are
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Figure 7: Result for Test 2 (Single-source HII region expansion in cosmological
expanding background). Notation is the same as in[Figure 6] The source turns
on at z; = 9, and the I-front radius is given in comoving kpc, with the scale
factor a(#;) = 1, normalized to the instantaneous Stromgren radius at z;, rs ;

. The green dotted line shows the analytical result without

cosmological expansion for reference.

defined as,
3N 1/3
-l =] . (15)
dray(T) nl%l
1

tee =——— 16
rec QH(T) nH ( )
. <L
N, = h—;dv. 17)

Vth

Here, L, is again the specific luminosity of the source (power
per unit frequency), which is related to the luminosity N, (num-
ber of ionizing photons per unit time) through
We conduct our first test using the following numerical pa-
rameters: the luminosity of the source is N, = 10" s7!, the
number density of hydrogen ny = 1073 cm™, its temperature
T = 10* K and the simulation box size is 10kpc. As stated
above, we use the case B recombination coefficient for Hydro-
gen, ay(T = 10*K) = 2.59 x 107 cm? s™!. Using these pa-
rameters, the recombination time is e =~ 122.35 Myr and the
Stromgren radius is rg = 3.15kpc. The simulation is run with
mesh size 256° for foyo = 500 Myr = 4t,., following the pre-
scription of Test 1 in [Iliev et al.[ (2006). As in |[MO6, the sim-
ulation is repeated once with a coarse time step A, = 50 Myr
and once with a fine one, At = 5 Myr. We track the position of
the I-front along the x-axis and define r(#;) as the radius where
xur = 0.5. The precise location within a voxel is found by lin-
ear interpolation. The numerical I-front velocity, vy, is found by
finite-differencing ry, using the same approach as in MO6L

The results are shown in where the three panels
contain the time evolution of the ratio between numerical to an-
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Figure 8: Result for Test 3 (Expansion of Overlapping H II regions around Multiple Black-Body Sources). The top and middle rows show slices through the
simulation domain at the z-coordinate of the 5 sources, for C>-Ray and pyC’Ray respectively. The leftmost column corresponds to the case with grey opacity, and
the remaining 3 columns to those where black body spectra with different temperatures 75, were used. Colors are normalized across each row. The bottom row
shows the distribution of relative per-voxel errors between the 2 codes for the whole 3D grid in all 4 cases.

alytical results (top), the I-front radius (middle) and its velocity
(bottom). At times ¢ < f., pyC’Ray is in excellent agreement
with the analytical prediction, both with a coarse and a fine time
step choice. At t 2 t.., the numerical I-front overestimates the
analytical prediction by as much as 6%. This is consistent with
the findings of, e.g., (2006), where all tested codes
predict such an overestimate. [Pawlik and Schaye| (2008) have
demonstrated that this is because, in reality, the ionized fraction
varies smoothly within the ionized bubble, whereas the Strom-
gren argument assumes a sharp transition from fully ionized to
fully neutral.

4.1.2. Test 2: Single-Source HII Region in expanding back-
ground

We next test if pyC*Ray correctly models the propagation
of I-fronts in an expanding universe. Test 2 uses the same
source parameters as Test 1, with the source turning on atz = 9
and then shining for 500 Myr, while the background density
starts with the same value as before and evolves with the ex-
pansion of the universe. [Shapiro and Giroux| (1987) showed
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that a generalized analytical solution exists in this case. The
comoving I-front radius is given by () = rs,;y(#)'/?, where
rs; = (3N, /47raH(T)n12{’i)1/ 3 is the instantaneous Stromgren ra-
dius at the ignition time, #;, of the source (with the scale factor
set to unity at ¢;, a; = 1), and

Y1) = A" %Ez(ﬂti/t) ~Ex(D)|, (18)

where E>(x) = flm 12~ dt is the second-order exponential in-
tegral. A = t;/tec; is the ratio of the age of the universe at
source ignition to the recombination time at that age. We set up
the test with ny; = 1.87 x 107*cm™ and L; = 7 x 10** cm and
using otherwise the same parameters as before. The result is
shown in [Figure 7, where r;(7) represents the comoving I-front
radius, keeping in mind that a(#;) = 1. For this test, we used the
same cosmology as in[MO6, namely 7 = 0.7, Qy = 0.27 and
Qp, = 0.043.

pyC’Ray again shows excellent agreement with the analyti-
cal result. While the effect of cosmic expansion is not evident at



first sight, the analytical prediction without cosmology,
is also plotted for reference in the figure (green dotted
line), and the difference is clearly visible. Again, results are
almost as accurate when using a coarse time step.

4.1.3. Test 3: Expansion of Overlapping HII regions around
Multiple Black-Body Sources

Now we turn to the more realistic case of non-grey opac-
ity and parameterize the cross section as o, = oo(v/vy)™%,
where v is the ionization threshold frequency. The parame-
ters of the power law are as in [M06, oy = 6.3 x 10'® cm™
and @ = 2.8. We test how the ionization front is affected by
the spectral characteristics of the sources. For harder spec-
tra, where the energy peak is well above the ionization thresh-
old, we expect wider ionization fronts, as the hard photons
can penetrate deeper into the medium (Spitzer, |1998). To test
this and at the same time visualize how different HII regions
overlap, we place 5 black-body sources, each with total ion-
izing flux N, = 5 x 10*® but with different temperatures 7},
in a dice-like pattern on the same z-plane. The box size is
L = 14 kpc, the mesh 128° and the constant hydrogen den-
sity is ny = 1073 cm™. We simulate for #,, = 10Myr,
with time step Az = 1 Myr. shows cuts through the
source plane of the final ionized hydrogen fraction xyy, for
pyC?Ray (top) and C>-Ray(middle), along with the distribu-

yC’Ray _ C?>-Ray C?-Ray
X511 X /X |

between the two coeval cubes (bottom panels). The leftmost
column is the grey-opacity case as in the two previous tests,
while the three remaining columns contain the results for 7j, =
{5x10%5x10% 1 x 10°} K.

Qualitatively, both C>-Ray and pyC?Ray reproduce the ex-
pected softness of ionization fronts for hot spectra, and the
overlap of individual H II regions is also correctly modeled.
The largest value for the relative error is on the order 10~
in all cases, while the mean increases for harder spectra. Al-
though relatively small, this error requires an explanation, as
both codes should, in principle, produce equal results in the ab-
sence of unit conversion or floating point errors. In fact, an im-
portant technical difference between the two is the choice of nu-
merical integration method used to pre-compute as
described in pyC’Ray uses the standard quad wrapper of
the SciPy package (Virtanen et al.,[2020), which uses the adap-
tive quadrature method from the QUADPACK Fortran library. On
the other hand, C>-Ray uses a custom-written Romberg integra-
tion scheme. Both methods are valid choices, but they will in-
evitably yield slightly different results depending on the chosen
resolution. We tested this by varying the frequency bins used
by the Romberg method in C?>-Ray and found that the relative
error between the two codes drops significantly as this number
increases. We thus conclude that this technical difference is the
most likely explanation for this result.

tion of the absolute relative error, ‘(

4.1.4. Test 4: I-Front Trapping in a Dense Clump and Forma-
tion of a Shadow
Finally, to probe more specifically the ray-tracing method,
we test for the formation of a shadow behind an overdense re-
gion. Correct modeling of shadows is one of the key advantages
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of ray-tracing over other techniques, making this an important
check. In this test, the box size is L = 14 kpc with mesh 1283
and a source with total ionizing flux N, = 10* s7! is placed at
its center. The hydrogen has a mean density 7ig = 107> cm™3,
and a spherical overdense region of radius r = 8.75 pc is placed
on the same z-plane as the source, at a distance d = 2.01 kpc
diagonally from it. Within this region the density is nj; = 67iy.
The source has a black body temperature T, = 5 x 10* K, and
fevo and A, are as in Test 3. The result is visualized in
where a cut through the source plane of the final ionized hydro-
gen fraction xgyr is shown on top and the photoionization rate
I" below, for both codes along with the relative error as before.
We want to point out that the fuzziness of the shadow is a fea-
ture of the short characteristic ray-tracing. The relative error is
small again, and we believe it to be due to the choice of integra-
tion method used in the previous test. Interestingly, this error is
larger by an order of magnitude at the edge of the overdense re-
gion. This is not so surprising, given that the overdensity is very
optically thick and thus contains a large density gradient at its
boundary. We noticed that the relative error is negative closer
to the source, then positive, and then close to 0, reflecting the
net photon flux conservation.

4.2. Performance Benchmark

We now examine the performance of the new ray-tracing li-
brary more closely. All benchmarks in this section are per-
formed on a size N = 250 grid and run on one node of the
Piz Daintﬂ computer at CSCS, containing in particular a sin-
gle NVIDIA® Tesla P100 GPU. First, we determine how the
ray-tracing performance scales as more sources are added or
the radius of ray-tracing per source increases. We expect the
code to scale linearly with the number of sources Ny and
as O(R?) with the ray-tracing radius, R = Npes; © Rmax/Ls,
where R,y is the maximum radius for ray-tracing and Lg the
box size, both in cMpc units. The benchmark is set up as
follows. For R = [10,30, 50, 100], the ray-tracing routine is
called (on its own, without solving the chemistry afterward) on
Nge = 104, a = 0,...,6 sources, and its run time is averaged
over 10 executions. The left panel of shows the com-
putation time per source per voxel,

t(NsrCa R)

At(Nge, R) = )
src %ﬂ'R3NSl-C

19)

where #(Ng, R) is the run time of the function running on N
sources and computing I in a spherical volume of radius R (in
voxel units) for each of them. With increasing Ny, Af(Ng, R)
approaches a constant value of about 3.156 ns on our system.
Furthermore, this convergence is faster when the radius R is
larger. This implies that when few sources are present, over-
heads represent a non-negligible fraction of the execution time,
even more so when the work per source (determined by R) is
low. However, we can see that above ~ 1000 sources, the exe-
cution time is very close to its minimum, even for a relatively

“https://www.cscs.ch/computers/piz-daint/


https://www.cscs.ch/computers/piz-daint/

C?Ray (Slice)

1071

(1)
T

y [kpc]

1072

0 5
z [kpc]

10 0 5

14
10—11
10 o
10-13 10
10-15 8
10717
10719
0
10

y [kpc]
T 571
[=2]

'

[

0 5
z [kpc]

pyC?Ray (Slice)

z [kpc]

10-1
10713 :
10-15 Ly
10717 =
10719
L
0 5 10 ' ’

z [kpc]

Residual (All Cells)

70

60

40

(2)
THIT

30

% of Cells

20

10

T T 0

T
1074 108 107°
(1)

(2) (1)
[(@ri = 2w/ #hn

10

70

I 60

50

40

@ [s1]

% of Cells

30 o

20

10

T T
10~1 108 107
Kr(?) _ F(l))/r(l)‘

Figure 9: Result for Test 4 (I-Front Trapping in a Dense Clump and Formation of a Shadow). Shown are slices through the z-plane containing one ionizing source
at the center and a dense clump of hydrogen diagonally offset from the source. The top row shows the ionized hydrogen fraction for C>-Ray (left) and pyC’Ray
(middle), as well as the relative error between the two (right). The bottom row shows the same comparison for the photoionization rate.

small RT radius. With few sources, the total amount of work
is low and is not an expensive calculation. But typically, EoR
simulations require Ny > 1000. Our code runs in a regime
where the work and not overheads dominate the performance
of the code.

Next, we test how the code scales as the source batch size
M increases, corresponding to increasing the number of CUDA
blocks dispatched to the device between global synchroniza-
tions. The right panel of presents the speedup t; /)
(where 1), is the execution time using M blocks) achieved in
3 cases; (R = 10,Ng. = 10%), (R = 10,Ng4. = 10°) and
(R = 30, Ny = 10%) to see the impact of both the radius and to-
tal number of sources. This test is an analog of the "strong scal-
ing" measurement typically performed on CPU cores. We ob-
serve that on our system, in all 3 cases, the code scales well up
to M ~ 32 and does not gain any performance above M ~ 50,
which seems to indicate that the sequential portion of the code
prevents further scaling (analogously to Amdahl’s law in CPU
computing). This test, however, only gives a picture of the
speedup achieved relative to the single-block case for the whole
program and hence does not indicate how good the occupancy
of the GPU itself is. Detailed profiling using standard NVIDIA
software has revealed that the number of registers per thread re-
quired by the ray-tracing kernel is likely a limiting factor that
prevents the code from ever reaching maximum occupancy in
its current state, even on GPUs with higher compute capability
than the P100. Overcoming this limitation should be one of the
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main targets for future performance updates.

Two conclusions arise from this section: (1) The library is
most optimized for use cases where many sources are present
in the simulation, as is the case in EoR modeling. However,
in cases where few sources are present, it will run optimally if
the number of raytraced voxels is large. This may be the case
when performing high-resolution radiative transfer simulations
of smaller volumes, thus expanding the possible usage scenar-
ios for pyC’Ray. (2) A good value for the batch size M will
depend strongly on the system on which the code is run while
simultaneously being limited by the available memory. This is
because each block needs a cache space for the ray-tracing, the
size of which scales with the grid, i.e., O(N?).

5. Running a Cosmological Reionization Simulation

The ultimate test for the updated code is to see whether it
can reproduce the results of a simulation performed with the
original C>-Ray while at the same time achieving a gain in per-
formance. Here, we post-process a (349Mpc)? volume N-body
simulation run with 4000° dark matter particles, which models
the formation of high-redshift structures. These N-body simu-
lations used the code CUBEP®M (Harnois-Déraps et al., [2013)f7]
which has an on-the-fly halo finder, providing halo catalogs at
each redshift snapshot using the spherical overdensity method

3https://github.com/jharno/cubep3m
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used in this benchmark.

(see |Watson et al) [2013] for more detail). The N-body dark
matter particles and the halo catalog are then gridded, with
an SPH-like smoothing technique, onto a regular grid of size
Npesh = 2503 that is later used as inputs for the RT simula-
tion. This simulation resolves dark matter haloes with mass
Mo > 10°Mg. This simulation contains approximately 107
sources toward the end of reionization. See |Dixon et al.| (2016)
and|Giri et al.| (2018)) for more detailed descriptions.

We follow the same source model presented in previous work
(e.g./lliev et al., 2014} Bianco et al., [202 1)) that assumes a linear
relation between the emissivity and the mass of the hosting dark
matter halo. In this model, the grand total of ionizing photons,
N,, produced by a source residing in dark matter halo mass
Mo s
Mhaio Qb

_—, 20
QMmp tg 20)

Ny = fy
where the efficiency factor f, = 30 and the source lifetime
ts 10Myr is taken to be the time difference between the
simulation snapshots. Two time steps are performed for each
redshift interval. Here, we choose an extreme value for the ef-
ficiency factor to speed up the reionization process so we could
run C?-Ray in a reasonable amount of time and computational
resources. We should note that reionization ends quite early
compared to more realistic models in [Dixon et al.| (2016) and
Giri et al.| (2019) produced using C>-Ray—however, the out-
comes of the comparison hold for any source model.

In we show slices of the simulated ionized frac-
tion, xp, comparing C-Ray (left column) and pyC*Ray (mid-
dle column) at redshift z = 11.090, 10.110, 9.457 and 8.636,
corresponding to a volume-averaged ionized fraction (xpy) =
0.045, 0.180, 0.420 and 0.837. We show the relative error in
the right column of the same figure for each redshift. At high
redshift, the error distribution is mostly centered at 107, simi-

~
~
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lar to what we show in § [#.1.3]and [d.1.4] While from z ~ 10, it
shows two peaks with the distribution transitioning from 10~+3
to 1079, The double-peaked feature of the error distribution is
visible from the moment the source contribution becomes sub-
stantial. This indicates that the error distribution is initially as-
sociated with the precision error in the vast neutral field while
later with the growing ionized regions. In the left panels of
we calculate the volume- and mass-averaged ionized
fraction, (xgy), and (xgm)m, against redshift. With solid lines,
we indicate the results obtained with C>-Ray, while in dashed
lines, the one with pyC?Ray. Similar to what we show in the
previous paragraph, on average, the relative error is at least five
orders of magnitude smaller, ~ 1073, compared to the dynamic
range of the ionized field, making the difference indiscernible.
Notice that we show the result to z = 8.575 when the IGM is
about 86% ionized. However, at this reionization epoch, the
simulation has approximately ~ 1.5 x 10° sources, and C?>-Ray
starts to become computationally demanding.

Radio experiments, such as HERA, LOFAR, and MWA, aim
to observe the spatial distribution r of the differential brightness
temperature 67}(r, z) corresponding to the 21-cm signal. This
quantity can be given as (e.g. |Pritchard and Loebl 2012),

0.15 1+7\? ( Q12

Qui? 10 ) (0.023)
X [1 = xun(r, 211 + 6p(r, 2)],

oT,(r,z) =~ 27 mK( @n

where xyp and 6y are ionization hydrogen fraction and baryon
overdensity, respectively. We should note that we have as-
sumed a spin temperature to be saturated and ignore the im-
pact of redshift-space distortion. We refer the interested read-
ers to |Ross et al.| (2021) for exploration of both these aspects
in simulations with C>-Ray. We compute 6T(r, z) and subse-
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between C2-Ray and pyC’Ray.

quently the power spectrum using reionization simulation snap-
shots with our data analysis software, Tools21cnﬂ (Giri et al.}
2020). In the top-right panel of we present the 21-
cm power spectrum at various redshifts. We observe a pre-
cise agreement between the results obtained from pyC>Ray and
C?-Ray, also evident from the relative error in the bottom-right
panel, demonstrating that these upgrades can accurately repli-
cate the spatial distribution of the 21-cm signal.

The simulation with pyC?Ray cost 2.5 GPU-hours on our
single-GPU system, while the comparison run, with the
Fortran90 CPU version of C>-Ray, computed on 128 cores
for a total of 13, 824 core-hours. While GPU hours are, in gen-
eral, more expensive than core hours, the observed speedup is
so large that pyC?Ray is significantly cheaper to run than the
original code by a factor of ~ 100, depending on the computing
center, which was part of the motivation behind this update. In

we illustrate further the computational advantage
of porting algorithms to GPU.

6. Summary and Conclusions

The main challenge in simulating the cosmic Epoch of
Reionization is that we must concurrently simulate a large vol-
ume of the order of the Gpc scale while resolving compact and
dense cosmic structures. These requirements make Radiative
Transfer (RT) simulations extremely computationally expen-
sive and demanding. For this reason, most RT codes are imple-
mented with programming languages suited for scientific com-
puting, such as Fortran90 or C/C++. However, this makes
any changes or regular updates to the code cumbersome for

4https://github.com/sambit-giri/tools21icm
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new users, as any slight modification requires frequent recom-
pilation and debugging. Moreover, relatively little effort has
been made to make ray-tracing algorithms for reionization sim-
ulations computationally efficient and functional on general-
purpose graphic process units (GPU).

Therefore, this paper introduces pyC’Ray, a Python
wrapped updated version of the extensively used C>-Ray RT
code for cosmic reionization simulations. In particular, we
present the newly developed Accelerated Short-characteristics
Octhaedral RAy-tracing algorithm, ASORA, that utilizes GPU
architectures to achieve drastic speedup in fully numerical RT
simulations.

In § 2] we recap the differential equation solved during a cos-
mological reionization simulation. In §@ we summarize the
well-established time-averaged method that solves the chem-
istry equation in C?>-Ray, allowing the solution to
be integrated on a larger time-step compared to the reioniza-
tion time scales, otherwise required by a more direct approach.
In §[2.2] we explain in detail the necessity for an efficient ray-
tracing method for our code. With and [8] we high-
light the core and most computationally expensive operation in
RT algorithms, which consists of computing the column den-
sity and, thus, the optical depth for each voxel, that ultimately
quantifies the number of ionizing photons that are absorbed by
a cell along the ray. The combination of the time-averaged and
short-characteristics methods are the distinguishing features of
the C?-Ray code. In we summarize the algorithm for
both the C?-Ray and pyC’Ray methods presented here.

In § B.1} we remind the reader of the short-characteristic
approach of C2-Ray inherited by pyC’Ray. In § we de-
scribe the existing CPU parallelization of the current version
of C?-Ray, which consists of splitting the source input list into
equal parts for each MPI processor. For each rank, 8 OpenMP


https://github.com/sambit-giri/tools21cm

threads, corresponding to the number of independent domains
around each source, compute the HI column density. This paral-
lelization strategy is not optimal for GPU architectures. There-
fore, in § [3.3] we propose a new interpolation approach for
the C2-Ray RT algorithm specifically designed for GPUs. The
ASORA interpolation scheme comes from the physical intuition
that the radiation propagates as an outward wavefront around a
source. This new approach changes the domain decomposition
to an interpolation between concentric surfaces of an octahe-
dron centered around the source as illustrated by[Figure 3] From
a technical perspective, in pyC’Ray, we keep the same MPI
source distribution, as presented in § [3.2] and instead replace
the OpenMP domain decomposition with the ASORA method.

The update also includes the conversion to Python of the
non-time-consuming subroutines of C?-Ray. In § we men-
tion how the use of commonly used libraries, such as Numpy,
Scipy and Astropy can be easily included according to the
user’s need. Moreover, the pyC’Ray user interface makes it
easier to employ other codes that have also been Python-
wrapped. For instance, we can easily incorporate in pyC’Ray
photo-ionization rates from other spectral energy distributions
calculated with a population synthesis code such as PEGASE-2
(Fioc et al.,|2011)) or a different chemistry solver such GRACKLE
(Smith et al., [2017).

In § we show pyC?Ray results on a series of standard RT
tests. In § and[4.1.2] we demonstrate that pyC’Ray agrees
with the analytical solutions of the ionization front size, ry, for
the single sources in a static and expanding lattice. To test that
the conversion to Pyhton of the non-time-critical subroutines
was successful and does not introduce substantial differences,
in § B.1.3] we test the results on overlapping HII regions for
sources with different black body spectra. In § #.1.4] we probe
the formation of a shadow behind an overdense region, a stan-
dard test for ray tracing methods.

In § 4.2] we examine the performance of the new ray-tracing
methods accomplished on the Piz Daint cluster at the Swiss
National Supercomputing Centre (CSCS) equipped with an
NVIDIA® Tesla P100 GPU. Our main finding is that the ASORA
RT computing time grows linearly with the increasing num-
ber of sources, Ny, and in cubic fashion with respect to the
maximum radius for ray tracing, so R3, i.e., distance is given
in a number of voxels. In the case of the Tesla P100 GPU,
the computing time per source per voxel within the ray-tracing
distance saturates with value 3.156ns when Ny > 10°. This
study allows the user to quantify the computing time and cost
of a future simulation run with pyC>Ray. If we consider a cos-
mological simulation with 68 redshift steps, each with 2-time
steps, ray-tracing radius R = 11 (grid units) and approximately
Nge = 4 x 10° sources. We can run the entire simulation from
z = 21 to 8.5 with a total of ~ 2.75 GPU-h, corresponding to
the cost obtained in the cosmological example presented in §3]
Secondly, the method scales strongly with the batch size up to
~ 32 on our system, suggesting that the GPU occupancy is not
yet optimal, an issue that may be addressed in future updates.
We estimate that running a reionization simulation on the same
volume down to z ~ 6, where Ny = 1.5 x 107, would cost
approximately 10.3 GPU-h.
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Finally, in § [Sl we compare pyC’Ray and C?>-Ray on an
actual cosmological simulation. We demonstrate that the dif-
ferences within the same simulation are negligible with an
absolute-relative error between 10~ and 10~'? on the HII field,
while both mass- and volume-averaged ionized fractions and
the power spectra accumulate an error that stays below the order
of < 107, As mentioned in the previous paragraph, the com-
putational cost for this simulation was 2.5 GPU-hours, while
the same simulation run on 128 cores with C?>-Ray took ~ 14k
core-hours. Another way to describe the gain in performance is
to consider the monetary cost of running these simulations. The
cost of running a code on a GPU or CPU cluster varies based
on the electricity consumption and other indirect expenses as-
sessed by the high-performance computer facility. Nowadays,
one GPU-hour can cost on average 0.8 Euros, while one core-
hour can be 0.01 Euros. Therefore, with these reference fees the
simulation presented § [5] would have cost 2 Euros if run with
pyC’Ray instead of 138.25 Euros with C?-Ray.

With this work, we demonstrate that pyC’Ray achieves the
same result as C>-Ray for a cosmological EoR simulation, but
with a computing cost and time two orders of magnitude lower
than the original code, confirming the motivation behind this
modernization of C2-Ray. In principle, pyC’Ray is not limited
by the volume size or the mass resolution but rather by the spa-
tial resolution, NV, and the number of sources, Ny,.. The ASORA
raytracing algorithm needs to store M copies of the entire dou-
ble precision grid data directly on the GPU, where M is the
source batch size. Therefore, the current limiting factor is the
available memory on the GPU, as it is generally desirable to
have M 2 20 to achieve optimal GPU occupancy. For instance,
the NVIDIA® P100 has 64 GB of memory; we can, in princi-
ple, simulate a 1024 mesh grid but are then limited to M < 8,
which is below the optimal regime. We plan to address this is-
sue by reducing the per-source memory requirement in those
cases where the ray-tracing radius is significantly smaller than
the whole box and the current implementation is needlessly
memory-hungry. In this update, we focused on the simplest
simulation setup, namely, no photo-heating and only photo-
ionization for hydrogen chemistry. As mentioned, C>-Ray has
been extended to also include helium (Friedrich et al.l [2012)
and X-ray heating (Ross et al.,[2017), and has also been used as
a module in a hydrodynamic simulation to follow the evolution
of an HII region in the interstellar medium (ISM), see |Arthur
et al.| (2011) and Medina et al|(2014). We aim to gradually
include these features and extensions in pyC>Ray now that the
groundwork has been laid.
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Appendix A. ASORA Implementation Details

Here, we briefly discuss how the ASORA method is imple-
mented in C++/CUDA. As detailed in the paper, each block is
assigned to a single source and owns a dedicated memory space
to store the values of the column densities of voxels to be used
as interpolants in upcoming tasks. Each task S, comprises the
ISyl = 4¢” + 2 grid voxels belonging to an octahedral shell as il-
lustrated in[Figure 3] Threads within a block are labeled by 1D
indices x = 0,..., N, where N is the block size. Labeling the
voxels in the shell by s = 0,...,15/, all voxels can be treated
if the threads iterate ~ |S,4|/N times. It then remains to map the
1D indices s to the actual 3D grid positions (i, j, k) of the vox-
els within the shell. We use the following mapping: separate
the octahedron into a "top" part containing all k > k, planes,
where k; is the source plane, and a "bottom" part containing the
rest. For the top part, which contains 2¢g(g + 1) + 1 voxels in
total, the k index of any voxel can be found from its i, j indices
through k = ks +q — (i —is| +|j — js|)- To find i, j, we follow the
procedure illustrated in [Figure A.13} map s = 1,...,2¢(q + 1)
to Cartesian 2D coordinates (a, b) as in (A) and apply a shear
matrix (a,b) — (a’,b’) to obtain (B). Apply a translation on
the subset of those with a + 2b > 2g (C) and finally map the
remaining voxel s = 0 to (i, j) = (is + g, j;) to obtain the full
squashed top part of the octahedron (D). The same procedure is
applied to the lower part, with some slight modifications, as this
does not include the source plane and so contains fewer voxels
in total (2q2 — 1). For further details, we refer the reader to the
source code.

A last key point to address is that since C?-Ray uses peri-
odic boundary conditions, it is important to impose a further
constraint on the indices (i, j, k) of the voxels that are allowed
to avoid race conditions on coordinates that map to the same
voxel under periodicity. The simulation domain is cubic, so
this constraint is satisfied if we impose that no voxel can be far-
ther away from the source than the edges of the grid, translated
under periodicity. On an odd mesh (N odd), this means only
considering voxels at most a grid distance N/2 away from the
source on either side. On an even mesh, a convention must be
chosen, and in line with the original C>-Ray code, we impose
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q+l
“ % >
C D
Figure A.13: Schematic representation of the mapping of 1D indices

0,..., 2g(q + 1) to the 3D grid positions (i, j, k) of voxels in the top part of
the ¢ = 3 shell. The (i, j) mapping is a combination of a shear (B) and a trans-
lation (C), and the k coordinate is determined directly from (i, j) as described
in the text.

that the maximum distance in each dimension is N/2 on the
negative and N/2 — 1 on the positive side of the source.

Appendix B. Carbon footprint of cosmological simulations

Numerical simulations for cosmological and astrophysics ap-
plications often require immense computational power and ex-
tensive data processing, and therefore, their energy demands
can be substantial. The environmental impact is often under-
appreciated and sometimes disregarded. Given the escalating
concern over climate change, we want to present the ecological
advantage of moving to GPU-based algorithms.

We employed Green AlgoritthE] to estimate the carbon
consumption of the cosmological simulations presented in §3
and compare the run with pyC’Ray and C?-Ray. As we men-
tioned in §4.2] the cosmological EoR simulation presented in
this paper run with pyC’Ray was performed in 2 hours and
30min on 1 GPU NVIDIA® Tesla P100, drawing 1.07 kWh.
Based in Switzerland, this has a carbon emission (CO5e) of
12.31 g. This corresponds to the CO, consumption of driving
a car for 70 meters or 0.02% of the consumption of the Paris-
London flight. Based in Sweden, the same simulation runs with
C?-Ray on 128 AMD EPYC Zen 2 CPUs. The cluster draws
105.88 kWh and has a 600.33 g CO,e, corresponding to the
consumption of a car drive for 3.43 Km or the 1% consumption
of the Paris-London travel by plane. A mature tree sequesters
on average 0.92 g of CO, per month (Lannelongue et al., 2021)).
Based on this estimation, the cosmological run performed, with
C?-Ray, would have consumed what one single tree sequester
from the atmosphere in approximately 54 years. Meanwhile,
the same simulation run with pyC*Ray would take about one

Swww.green-algorithms.org
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Table A.1: Summary of the carbon footprint consumption of the cosmological simulation presented in this paper if both runs were performed in Switzerland.

Model CO, emission [kg] | Energy consumption [kWh] | Car drive [km] | CO, absorption [yr]
NVIDIA Tesla P100 0.02 1.07 0.07 1.12
AMD EPYC Zen 2 1.22 105.88 6.97 110.5

year. In[Table A.T] we compare the simulations CO, consump-
tion if both runs were performed in Switzerland.

While this analysis highlights the environmental footprint of
cosmological simulations, its purpose is not to evoke shame or
guilt. Rather, it serves as a reminder of the tangible costs of
these essential scientific endeavors. Moreover, we did not con-
sider using renewable energy sources and the potential impact
reduction of HPC clusters using renewable energy. We aim to
highlight the differences in energy consumption between simu-
lation approaches.
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