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Reducing noise in quantum systems is a major challenge towards the application of quantum technologies.
Here, we propose and demonstrate a scheme to reduce noise using a quantum autoencoder with rigorous perfor-
mance guarantees. The quantum autoencoder learns to compresses noisy quantum states into a latent subspace
and removes noise via projective measurements. We find various noise models where we can perfectly recon-
struct the original state even for high noise levels. We apply the autoencoder to cool thermal states to the ground
state and reduce the cost of magic state distillation by several orders of magnitude. Our autoencoder can be
implemented using only unitary transformations without ancillas, making it immediately compatible with the
state of the art. We experimentally demonstrate our methods to reduce noise in a photonic integrated circuit.

Our results can be directly applied to make quantum technologies more robust to noise.

INTRODUCTION

Quantum technologies offer potential advantages in quan-
tum computing [1], quantum communication [2] and metrol-
ogy [3]. However, quantum systems are brittle by nature, and
noise due to the environment and imperfect control over the
quantum system negatively impacts the capabilities of quan-
tum devices. Thus, techniques to remove or reduce noise is
the key challenge that needs to be addressed for quantum tech-
nologies to be successful [4, 5]. To this end, a wide range of
noise reduction techniques have been developed.

In the context of fault-tolerant quantum computers [6],
magic state distillation (MSD) requires multiple copies of a
noisy state to create one state with reduced noise. MSD is the
most expensive process required to run fault-tolerant quantum
computers [7] and it is imperative to substantially reduce the
cost of MSD to make early fault-tolerant quantum computers
practically viable [8—14].

An alternative path to reduce noise are quantum autoen-
coders. Quantum autoencoders transform quantum states into
a smaller subspace that contains the essential features of the
state, while discarding redundant features [15-22]. Quan-
tum autoencoders are amenable to noisy quantum devices [5]
which makes quantum autoencoders particularly useful for en-
hancing quantum technologies in experiments [21, 23-26].
Experiments have demonstrated loss compression of quan-
tum data in bulky optics systems [23, 24] and the use of
autoencoders for compression-assisted teleportation of high-
dimensional quantum states in integrated photonic chips [21].

Recently, quantum autoencoders have been proposed to re-
duce noise [27-33]. One variant reduces noise by transferring
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the noisy part of the state into ancillas and tracing out the an-
cilla. This approach allows for deterministic noise removal,
however it commonly requires deep circuits and many ancilla
qubits [27]. Alternatively, projective measurements and post-
selection can reduce noise with low resource requirements
and without ancillas [28]. However, existing proposals pro-
vide mainly numerical evidence for the performance in practi-
cal applications. A quantum autoencoder to denoise quantum
states is yet to be experimentally demonstrated.

Here, we experimentally implement a photonic chip inte-
grated autoencoder to reduce the noise of quantum states with
rigorous performance guarantees. Our scheme compresses
quantum states into a latent subspace and removes noise by
projective measurements and post-selection on successful out-
comes. We train the autoencoder either in an unsupervised
manner by minimizing measurement probabilities of noisy in-
put states (population training), or maximizing the fidelity in
respect to a reference state (fidelity training). We analytically
study the performance of the protocol and provide rigorous
bounds on the denoising fidelity. For various noise models
such as perturbation by a fixed state, depolarizing noise or
thermal states, we find that our protocol can perfectly recover
the noise-free state. We also apply it to cool a thermal state
to the ground state. Further, we show that our protocol can
decrease the cost of magic state distillation by several orders
of magnitudes. Remarkably, this allows for successful distil-
lation at high levels of noise where the conventional proto-
col fails. The protocol is experimentally realized on an inte-
grated photonic chip, which is scalable and energy-efficient.
Our work demonstrates a practical method to reduce noise for
immediate applications in quantum technologies.
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FIG. 1. Overview of denoising protocol and experimental implementation. Schematic illustration of the autoencoder implemented on an
integrated photonic chip for denoising quantum states. (a) Setup of the denoiser quantum autoencoder (DQA). An N-dimensional quantum
state |1)) is subject to noise channel £. We denoise the state by encoding into the latent K -dimensional subspace with encoder U, and projecting
out the remaining N — K modes. The denoised state is constructed by decoder Uy. (b) The architecture of the autoencoder, which consists of
the state generation unitary 7', encoder U,, decoder Uy, and T for measuring fidelity. Noise channels can be implemented by probabilistically
choosing the state generation unitary 7". (c) Design of the integrated photonic chip with N = 5, which comprises two 6-by-6 linear optical
circuits, one for the encoder and the other for the decoder. A column of Mach-Zehnder interferometers (MZIs) connects the encoder and
decoder so that each path can be chosen to enter the decoder or go directly for measurement purposes.

THEORY AND DESIGN

Theory of Autoencoder denoiser. A set of pure N-
dimensional quantum states S = {|v;)}; are affected by a
noise quantum channel £. Our goal is to reduce the effect
of the noise with an autoencoder A such that A(E(|y))) =~
[) V) € S. A sketch of the denoising protocol is shown
in Fig. 1(a). A noisy input state pj, = E([))) is transformed
with the unitary encoder U, (0) with trainable parameters 6.
The core idea of our approach is to transform the noise into
a N — K dimensional redundant subspace, which is removed
with the projective measurement operator Px = I &0y _x,
while encoding the pure quantum information into the K-
dimensional latent subspace. We post-select instances of suc-
cessful projections onto Pk which occur with probability

G(pin) = tr(PxUepinUJ) . (1)

Then, we apply the decoder unitary Uy to generate the de-
noised state. The decoder unitary can be chosen either as the
inverse of the encoder Uy = U or trained as Uy () with vari-
ational parameters ¢. The final denoised state is given by

1
= ————UsPrUepinUl Pk U} . (2)

Pdenoise = A(pin) G(p )

We quantify the denoiser performance via the average fidelity
in respect to the ideal state |¢)) via

o LMY 3)

F:

A summary of the notations used can be found in Appendix
A [34]. In the following, we assume that the states in .S’ span
a K-dimensional subspace within the N-dimensional space
of states where N > K. This condition ensures that, in the
absence of noise, the autoencoder can achieve unit fidelity.
We further assume that the autoencoder receives noisy states
uniformly random from set .S where the density matrix aver-
aged over random inputs is given by ps = Ejy)es[E(]1))].
We investigate two possible choices of decoders, which re-
quire different ways of training. First, we assume that the
decoder Uy = Ud is simply the inverse of the encoder. This
method, which we call population training, uses the measure-
ment probability for the cost function

Cr(0) =1 —tr(PgU.(8)psUl(0)). 4)

This cost function is maximized when incoming states have
minimal probability of occupying the redundant (N — K)-
dimensional subspace, and equivalently maximal probability
in the K -dimensional latent space. This can be trained in an
unsupervised manner, i.e., we only require access to the noisy



ensemble pg for training and measurements on the redundant
subspace. Minimizing the cost function to the global minima
yields the optimal encoder parameters 6, = argmingCr(6).
The optimal encoder U, (0,) rotates the K dominant eigen-
vectors of pg (with eigenvalues A\; > ... > Ag) onto the
latent subspace. Thus, the cost function is upper bounded by
Cr < 25{21 A; [15, 30]. It can be shown that the optimal

decoder is Uy = UeJr (6,). This protocol has a success proba-
bility of 1 — C arising from postselection. One can think of
the trained autoencoder as a projector D g onto the eigenspace
spanned by the K largest eigenvectors of pg [35].

Alternatively, we choose the decoder as Uy(¢p) to be trained
separately from the encoder with its own decoder parameters
. In this case we perform fidelity training to maximize the
fidelity between denoised state A(E(|+))) and the ideal state
|t)) where the cost function is given by

Cr(8,¢) =1-F(0,9) (5)

which can be measured with the SWAP test. Fidelity training
requires a priori knowledge of the ideal states used for train-
ing.

Experimental architecture and chip design. We now
describe the experimental implementation of our quantum
autoencoder on a photonic chip, which is illustrated in
Fig 1(b,c). Our chip models a N = 5 dimensional qudit via
spatial modes. The chip consists of 5 stages realized by a net-
work of parameterized Mach-Zehnder interferometers (MZIs)
and detectors. First, N = 5 dimensional input states states
are generated by the state generation stage. During this stage,
we can also implement noise channels by probabilistic choos-
ing the state generation unitary. Then, the encoder stage re-
alizes arbitrary unitaries with controllable circuit parameters
6. Next, up to K < 4 detectors realize the projective mea-
surement to remove noise. The following decoder stage real-
izes arbitrary unitaries with controllable parameter ¢. To val-
idate the denoised state, fidelity of the denoised state pgenoise
is measured by the compute-uncompute method. Given the
noise-free state 1)) = T'|0) with state generation unitary 7,
the fidelity is measured by applying the inverse 7 on pgenoise
and measuring population of the |0) mode [36].

RESULTS

Subspace denoising. In the most general setting, the noise
channel can be written as an arbitrary Kraus map E(p) =
>om M, pM} for a set of Kraus operators M, satisfying
>on MM, = I. In general, obtaining an analytical expres-
sion for F is difficult. To this end, we now assume that the
ideal states S’ are uniformly sampled from a K-dimensional
subspace via the Haar measure on the unitary group U(K).

This allows us to introduce a ‘quenched’ analytical approx-
imation [34, 37]

F@ — Zn(‘tr(HKBMn)P + ”HKBMnHK”%)
(K +1) 3, [IBM,Ik| %

(6)

where IIx is the projector onto the ideal subspace, B =
UdaPxU., and || - ||% denotes the Frobenius norm. For pop-
ulation training, B = Dk, and Uy = UJ . We find that the
formula agrees well with the numerical results.

A large class of realistic noise models can be obtained by
setting My = +/1 —pl, where p is the noise probability.
Thus, pi = (1= p) [) (6] + im0 M [0) (4] M. We
prove that | Dg — Tk |2 < 2v2Kp/(1 — p), from which
we can show that the denoised state has a worst-case fidelity
F > Ejyyes[(¥]pdencise|)] + O(p?) [34]. This implies that
for p < 1 the denoiser is never detrimental.

We now analyze the performance of the denoiser for a more
restrictive type of noise channel given by

E(p) = (1 = p)p + PPnoise (7

where the state p is replaced with some fixed /N-dimensional
state pnoise With probability p. Without the denoiser, the aver-
age fidelity of the noisy state is Fyye = 1 —p(1 —c/K) where
¢ = tr(pnoisell ) is the overlap between the noise state and
the ideal subspace. After population training, we calculate the
average denoising fidelity F'x = Eg[F] where we find exact
results for different choices of pneise [34]. For depolarizing
noise with pyoise = In /N, population training can achieve
Fx = (1 —p+p/N)/(1 —p+ pK/N) with post-selection
probability G = 1 — p + pK/N. Remarkably, for K = 1 we
find perfect denoising F; = 1Vp € [0,1).

Next, we assume a pure noise state ppoise = |Unoise) {Pnoise|-
To quadratic order in p we find [34]

_ K-1

Fuetr) = 1- 5 KBK-1)—1

K

c(1=e)p”+0(p?).

(®)
The denoiser always improves the fidelity if p < (3K¢)™!
for large K c [34]. We now focus on the case K = 1. Here,
the denoiser suppresses noise completely to first order in p.
By applying Theorem 1 of Ref. [38], we obtain analytically
a sharp lower-bound for the fidelity of the denoised state for
arbitrary pure or mixed ppoise

1 1
Rz (14 VT=pPA=p)?) =1- 2 +06") O

which holds for p < 1/2, whereas we get trivially F; > 0 for
p > 1/2. This is shown in Fig. 2a. Notice that F} tends to
a Heaviside step function with a sharp transition at p = 1/2
as ¢ — 0, with the gradient diverging as 9,F; ~ ¢~ '/2. In-
tuitively, when ¢ = 0, any p > 1/2 will cause the dominant
eigenstate of p to be orthogonal to |¢) resulting in F; = 0.
The experimental data in Fig. 2b shows good agreement with
the theoretical predictions. In particular, we plot the case of
¢ = 0.2 in Fig. 2c. The denoiser suppresses the noise up to
linear order in p. Similar results are observed when using ran-
dom pure states |1poise) drawn from the Haar measure [34].
For a fixed overlap c, the worst-case denoising fidelity corre-
sponds to a pure ppoise [34].

Next, we experimentally demonstrate the ability of the de-
noiser to reduce thermal noise commonly encountered in ex-
periments. The effects of thermal noise is modeled by adding

cp—
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FIG. 2. Single state denoising, KX = 1, with population training. (a-c) Pure state noise, with noise probability p and overlap with the ideal
state c. (a) Theoretical denoising fidelity F'. (b) Experimental denoising fidelity for a N = 5 qudit. (c) Denoising fidelity against p for ¢ = 0.2
(corresponding to the boxed values in (b)). (d) Experimental denoising fidelity for thermal noise. (e) Experimental denoising fidelity against
p for depolarizing noise. The theoretical value corresponds to F' = 1 for all p € [0,1). The autoencoder has the following two training
configurations: In the first configuration, a batch of five noisy states is used to train the autoencoder, ensuring the depolarizing property of
the noise. In the second configuration, training is conducted without batches, and training instances are extracted individually from the set
of noisy states. In cases where the sample size is not sufficiently large, this configuration might affect the depolarizing property of the noise.

Population training is used for the denoiser in all cases.

a Gaussian random phase shift to the modes with zero mean
and variance o2, depicted in Fig. 2d. As shown in Fig. 2e,
the fidelity against |¢)) without any denoising decreases at
higher variance of the noise. The denoiser improves the fi-
delity, demonstrating a protection against thermal noise. For
the depolarizing noise we can perfectly remove the noise and
achieve F; = 1 for all p € [0,1) with success probability
1 —p(1 — 1/N). Next, we consider dit-flip, phase-flip and
amplitude damping channels [39] in Fig. 3. For sufficiently
low noise probability p < 0.5, the denoiser substantially im-
proves fidelity. The denoiser performs best for dit-flip and
phase flip channels. We find only minor improvement for
amplitude damping channel as it is a non-unital noise model
where the steady state is pure and has a large coherent noise
contribution which is hard to denoise with population training.

Fidelity training. Now, we train encoder U(0) and de-
coder Uy(p) with separate parameters 6, o by maximizing the
fidelity between ideal input state and denoised state. In con-
trast to population training, fidelity training has access to the
ideal state and thus can correct for coherent errors. Comparing
Fig. 3(b) and 3(c), we see that fidelity training performs better
than population training, particularly for amplitude damping
noise. We prove that, for N > 2K and noise channel

5(p) = (1 - p)VpVT +p W)noise> <¢noise| (10)

with pure ideal states p, arbitrary V' and |tneise), We can al-
ways find a perfect denoiser with Fr = 1 (see Appendix
C [34]). Fig. 4 shows the performance of the denoiser with
both training methods, for NV = 3 and K = 2. The output fi-
delity is averaged over 100 Haar random samples of the ideal
subspace. Results for fidelity training are obtained from nu-
merical simulations. When the noise state |¢nise) has little
overlap with the ideal subspace (¢ = 0.1), population training
can improve the fidelity significantly for sufficiently small p
from Eq. (8), but has a detrimental effect at large p. On the
other hand, the fidelity-trained denoiser improves the output
fidelity to near unity for all p € [0, 1). Intuitively, the fidelity-
trained denoiser is able to correct for coherent error within the
ideal subspace, whereas population training can at best only
project the noisy states onto the ideal subspace (or close to
it) agnostic of coherent errors. This accounts for the large dis-
crepancy in performance. To further cement this argument, we
also consider a noise state which has significant overlap with
the ideal subspace (¢ = 0.8). In this case, population training
is essentially ineffective, whereas fidelity training can achieve
a denoising fidelity of > 0.9 even for p close to 1.

Magic state distillation. Magic state distillation (MSD) is
an algorithm to obtain a low-noise magic state from multiple
copies of noisy states. The extension of MSD to qutrits was
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FIG. 3. Denoising of qudit noise channels. Fidelity of noisy quantum states before and after denoiser. The fidelity is averaged over N = 4-
dimensional states subject to dit-flip, phase flip and amplitude damping noise channels. In (a) — (c), we sample 5 x 10* Haar random states
chosen from 1000 different K -dimensional subspaces. Points which lie above the red dotted line indicate an improvement in fidelity by using
the denoiser. We have a K = 1 in (a), while K = 3 in (b) and (c). population training is used for (a) and (b), while fidelity training is used in
(c). The solid lines are obtained using the analytical approximation Eq. (6).
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FIG. 4. Subspace denoising with population and fidelity training.
Denoising fidelity, averaged over 200 Haar random samples of the
ideal subspace (N = 3, K = 2). Solid and dashed lines represent
data for ¢ = 0.1 and 0.8 respectively. The labels ‘population’ and
“fidelity’ refer to the denoiser obtained from population and fidelity
training respectively. Data for bare fidelity and population training
with ¢ = 0.1 is obtained from experiment, while the rest are obtained
from numerical simulation.

first proposed by Anwar et al. [40]. However, this scheme is
extremely costly due to the low success probability for each
iteration of the protocol. We propose our denoiser as a pre-
processing step to drastically reduce the cost of MSD. We
consider the magic state |H) which is the +1 eigenstate of
the qutrit Hadamard operator [40]. The magic state is distilled
iteratively using the five-qutrit code [[5, 1, 3]]3, with a success
probability of around 4% per iteration. The input magic states
are subject to depolarizing noise with probability p;,. Further,
we assume that the autoencoder operations itself are affected
by depolarizing noise with probability pag for each encoder
and decoder unitary. From our experimental data, we estimate
pag = 0.02. We compare the average number of copies of
noisy magic states Ncqpies Needed to obtain a target fidelity of
1 —2pag/3, which is the fidelity attainable from our denoiser.
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FIG. 5. Denoising for magic state distillation of qutrits. Average
number of noisy magic states required to obtain a target fidelity of at
least 1 — 2pag / 3 ~ 0.987 using MSD and the autoencoder denoiser.
Pin 1s the depolarizing noise probability of the input magic states. The
training cost on the order of 10? samples serves as a constant over-
head and is omitted. In the grey region pi, 2 0.233 MSD does not
work. The encoder and decoder are assumed to be noisy with each
subject to depolarizing probability pag = 0.02. (Inset) We magnify
the average number of noisy magic states required for denoiser.

We assume that the autoencoder has been already trained us-
ing population training with (N, K) = (3,1). For our de-
noiser, Neopies Can be analytically calculated [34] and is upper
bounded by Neopies < N = 3. On the other hand, the sam-
ple cost for MSD is many orders of magnitude greater, as il-
lustrated in Fig. 5. The sample cost grows exponentially for
small py,, and diverges at the threshold p;, ~ 0.233 [40]. Be-
yond the threshold noise, the magic state is undistillable while
the denoiser still works efficiently. Thus, we envision that the
denoiser can serve as pre-processing step to clean up noisy
magic states, followed by a few iterations of MSD to reach
the desired target fidelity.



Quantum state cooling. Another application of the de-
noiser is to cool an N-dimensional thermal state to the ground
state [41]. We choose the noisy input state to be a Gibbs state
p = exp(—(H)/Z with Hamiltonian H, partition function
Z = Tr(exp(—BH)) and inverse temperature 5 = 1/(kgT).
We can write the state as p = 271 3" exp(—BE,) |¢n) (¢n]
with eigenenergies £ < --- < Ey and eigenstates |¢,,) of
H. The ground state has the smallest eigenenergy F; and thus
largest eigenvalue of p. Thus, population training with K =1
extracts the ground state |p4) for any 8 with F' = 1 fidelity
and post-selection probability exp(—SE1)/Z.

DISCUSSION

We demonstrate quantum autoencoders to denoise quantum
states with rigorous performance guarantees. Our experimen-
tal demonstration on a photonic chip delivers a substantial im-
provement in output fidelity across a diverse range of noise
channels. We propose two different variants of denoisers: Fi-
delity training requires noise-free reference states for training
and shows exceptional performance for all considered noise
models. In contrast, population training is only trained on
the noisy input states by optimizing the probability of mea-
suring redundant modes. Population training shows excep-
tional performance in reducing incoherent errors with rigor-
ous guarantees on the fidelity of the denoised states. For ex-
ample, we reach unit fidelity for depolarizing noise and a one-
dimensional subspace. The simple training protocol does not
consume the denoised state such that the autoencoder can be
trained online, i.e. while the autoencoder is actively denoising
states. This feature could be used for adaptive online learning
of the denoiser in dynamic noise environments.

Our denoiser can drastically reduce the cost of magic state
distillation, a key bottleneck of fault-tolerant quantum com-
puting, by several orders of magnitudes. We can also cool
thermal quantum states to the ground state by projecting out
thermal excitations. Furthermore, our protocol could be inte-
grated with error mitigation techniques [42, 43] and classical
shadow tomography [44, 45] to enhance capabilities and re-
duce resource requirements, opening up new avenues for de-
veloping quantum technologies.

METHODS

Chip fabrication. The entire autoencoder network is manu-
factured on the silicon-on-insulator (SOI) platform, featuring
a 220-nm-thick silicon top layer and a 2-pm-thick buried ox-
ide layer. A thin layer of titanium nitride (TiN) is deposited as
the resistive layer for heating elements. A thin aluminum film
is patterned to realize the electrical connection for the heaters.
Isolation trenches are etched in the SiO; top cladding and Si
substrate.

Training on-chip. During on-chip training, we utilize coher-
ent states as inputs to the autoencoder, leveraging their ability
to achieve effects similar to those of single photons. This al-
lows us to rapidly obtain the chip’s configuration parameters.
The trained autoencoder is able to denoise single photon states
subject to the same noise channel. Our autoencoder is benefi-
cial for single photon states as input, as here we can perform
post-selection to denoise the state.

Noise channel implementation. In the experiment, we real-
ize noise channel £ acting on an ideal input state |)) = T'|0)
in the state generation stage. Here, the noisy input state
Proisy = E(T'10)) =", kakakT is implemented via a prob-
abilistic mixture of unitaries, where unitaries V} are chosen
with probability py.

Numerical simulation of the denoiser. The optimal en-
coder U, for population training is equivalent to any unitary
which rotates the K -dimensional ideal subspace onto the K-
dominant eigenspace of the noisy input state, which we can
compute numerically. For fidelity training, the cost function is
minimized by numerical optimization of the autoencoder pa-
rameters. We note that the choice of optimization algorithm
has no significant impact on the denoising fidelity.
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Appendix

We provide additional technical details and data supporting the claims in the main text.

Appendix A: Notation and symbols

Symbol Name

N Dimension of Hilbert space

K Dimension of projected subspace of autoencoder

lp) € S Set of ideal states

pin = E(|1)) | Noisy input state

Pin Noisy input state to autoencoder

|tVnoise ) Noise perturbation

Pdenoise Denoised state after autoencoder

ps Ensemble of noisy input states

U. Encoder unitary

U Decoder unitary

(7] Encoder parameters

) Decoder parameters

C Cost function

Pk Projector onto K latent modes of autoencoder

Ik Projector onto K-dimensional ideal subspace

Dk Projector onto K -dominant eigenspace of ps

loj) Eigenvectors of ps with eigenvalue \;, in the order Ay > ... > An
|5) Basis vectors of ideal subspace, 1 < j < K

\qu) Basis vectors of orthogonal complement to ideal subspace, 1 < j < N — K
17) Computational basis vectors, 0 < j < N — 1

M., Kraus operators

F Fidelity of a denoised state

F Ensemble average of F'

F@ Quenched approximation of F'

c Overlap between noise state and ideal subspace, ¢ = Tr(Il k proise)

TABLE S1. Definitions of symbols.

Appendix B: Population training

The cost function for population training is the population of the N — K redundant modes which is to be minimized. This
is equivalent to maximizing the population in the K latent modes. Diagonalizing the noisy ensemble density matrix pg, it
is easy to see that the optimal encoder U, performs a rotation from the K -dominant eigenspace of pg to the K -dimensional
latent subspace. The population of the latent modes is therefore the sum of the K-dominant eigenvalues, which is the success
probability of the protocol. After projecting out the redundant modes and re-initializing them in the vacuum state, the optimal
decoder Uy is simply the inverse of the encoder, i.e., a rotation from the latent subspace back to the K-dominant eigenspace.
Viewed together, the trained autoencoder essentially projects the noisy state onto its K -dominant eigenspace. Note that the
choice of decoder Uy = U{ is unique, since the U, can contain any arbitrary rotation within the latent space, which must be
corrected for in the decoding step.

1. Single-state denoising

First, let us consider a noise channel of the form

5(/)) = (1 - p)p =+ DPnoise (S1)

where ppoise 1S an arbitrary noise state that perturbs the ideal state p with probability p.



Lower bound on fidelity

Intuitively, when the noise probability p is small, the noise state acts as a perturbation to the ideal state |1)). The dominant
eigenstate remains close to |¢), giving a denoising fidelity near unity. More concretely, by applying Theorem 1 of Ref. [38], we
can bound the denoising fidelity as

F> %(1+\/1—52), (S2)

where the lower bound is saturated by noise states of the form

N
Proise = 1 |X) (X[ + de |dk) (d| (S3)
j=3
/1-4 1406
X) =1\ —5— 1)+ ——ld2) (54)
2 2
with {|¢) ,|dz2),...,|dn)} forming an orthonormal basis, and 6 = pp/(1 — p). To get the worst-case fidelity, we choose p = 1

such that § = p/(1 — p). Physically, this means that the noise state is a pure state with support only on the ideal state |1)) and an
orthogonal state |ds). The worst-case fidelity is thus

2
1 1
Fuo =5 [ 144/1- (1 p) =1-9"+00") (S5)

forp <1/2.

Pure state noise

As shown in Eq. (S4) the worst-case noise state lies in the two-dimensional subspace spanned by [¢)) and |1)). Let us now
consider the noise state to be an arbitrary density matrix in the subspace

Poo  pPo1
ise = S6
pnmse (p01 pOO) ( )

where poo = (1| pnoise |1) s the overlap between ppoise and the target state [t)), and po; is the coherence of pyoise between |9)
and [)). In this basis, the noisy input state can be represented by the density matrix

L—p+ppoo  Ppo1
= S7
p < PPo1 p(1 = poo)- 57)

We note that pg; is upper bounded by the pure-state limit |po1|? < poo(1 — poo). The largest eigenvalue can be found exactly:

1
=g (1 + /(1= 2p(1 — poo))? + 4p2|p01\2) (S8)
with the corresponding eigenstate
L (A= p(1 = poo)
=— S9
Ien) = % ( PPo1 (59)

where N = \/ (A1 = p(1 = poo))? + p?|po1|? is the normalization factor. The reconstruction probability is given by A1, and the
fidelity of the reconstructed state is

F = | @len) P = 150 = p(1 = poo))? ($10)

In the simple case where ppjse is a pure state within the subspace spanned by {|4) , [1)*)}, we have |po1|> = poo(1 — poo), and
the maximal eigenvalue of p simplifies to A\; = (1 + /1 — 4p(1 — p)(1 — poo)) and the fidelity is

-1
P2poo(1 — poo)

(A1 —p(1 = poo))? 1D
=1—poo(1 = poo)p® + O(p*)

F=|1+
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In the limit where poo — 0, the fidelity is either 1 (when p < 1/2) or 0 (when p > 1/2). This is intuitive because it corresponds
to the case where ppoise = |[t1) (1] is orthogonal to [1/), so [¢)1) becomes the dominant eigenstate for p > 1/2 thus causing a
sharp transition in the fidelity. More precisely, we find that

oF 1
_ S12
dpoo p=1 4,/poo ( )

which diverges as pgg — 0.

2. Haar-random noise state

Suppose the noise state is now a pure state |t/yoise) sampled from the Haar ensemble with dimension N. An optimal denoiser
can be found for each |neise ), With the denoising fidelity from Eq. (S11). We want to know what is the average-case performance
of the denoiser. This can be done by integrating the fidelity over the Haar measure,

1 2
7 p”poo(1 — poo)
F = d 1
w(p) /o poo [ " (p1 = p(1 = poo))? (S13)

X (N = 1)(1 = poo)™

For a fixed dimension [V, the integral can be analytically computed. As an example, for N = 2,

6+p(5p—12) < 1/2
By(p) =14, Sv-D7 » P= S14
2(p) {26+pp, P> 1/2 ( )

which decreases monotonically from F(0) = 0 to F(1/2) = 5/6 to F,(1) = 1/2. In the other extreme limit of N — oo, we
get the step function

Fso(p) = O(p) — O(p —1/2). (S15)
For all N, Fy(1) = 1/N, as expected from a random reconstructed state. For p < 1, we get
_ N -1
F =1-———p* - 0@p* S16
N(p) NN P (°) (S16)

from which it can be shown that Oy Fy(p) > 0 for all N > 3, and Fy(p) = F3(p) to order p?>. This means that for a
sufficiently small noise probability, the denoising fidelity will increase monotonically as the dimension N increases (except
from N = 2 — N = 3). The denoiser performs better on average in higher dimensions.

To determine the regime of validity, we include the p* contribution to Fi (p) which is —4(N — 1)p?/(N + 1)(N + 2), and
demanding that this is much smaller than the p? term. This gives us the regime

N+2 1
~ =, S17
PN 1 (817)
Qudit noise channels
Here, we consider various common qudit noise channels. Let us write the unitary Weyl operators as
N-1
Winn = > W' [5) G @ nl, (S18)
j=0

where wy = exp(27i/N), and @ denotes addition modulo N. The dit-flip, phase-flip, and dit-phase flip channels can be
expressed using the Weyl operators [39]. The Kraus operators for these noise channels are

(Dit flip) Eoo =

1—pl
s . (S19)
on: mWOJ,jZI,,N—l
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FIG. S1. Denoising fidelity for Haar-random noise state, with 200 instances. The solid lines represent the average fidelity Fi (p) for N = 3

(blue) and N = 50 (orange), while the error bars represent the standard deviation in the fidelity. The dashed line is the worst-case fidelity
which provides a lower bound.

(Phase flip) Ego = +/1—pl,
T . (S20)
Ejoz mwj()’]:l,,]v—l

(Dit-phase flip) FEpo = /1 — pI,

P (S21)
E = :1 PP N_l
mn N_1Wmn7 m,n ) )

The amplitude-damping channel, on the other hand, cannot be expressed in terms of the Weyl operators. Its Kraus operators are

N-1

(Amplitude-damping) Eo = [0) (0] + /T —p >_ |5} (j] (S22)
Jj=1

E,=pl0){l,j=1,...,N—-1

The denoiser performance against such noise are plotted in Fig. S2 for N = 5, for Haar-random ideal states. The denoiser
performs well for dit flips, phase flips, and dit-phase flips, but not as well as for amplitude damping.

3. Lower bound on population training performance

We assume an /N -dimensional noise channel
E(p) = MnpM} (S23)

with Kraus map M, = +/1 — pl and arbitrary additional Kraus maps M,, n > 0, where p is the noise probability and

>, MiM, = Iy. Thus, pin = (1 —p) [¥) (]| + >, 51 My, |) (| M;i. We now have ideal states randomly sampled from a
K -dimensional subspace. By standard integration over the ensemble, one can see that the ensemble of noisy input states in the
K -dimensional ideal space is given by the density matrix

Iy
ps = EpeslE(1¥))] = (1 =p) = + Dpuoise (S24)
where pnoise = % Zn>1 M, 11 KM,TL. The ensemble pg has N eigenvalues \; > ... > Ay whereas pyise has eigenvalues
vy > ... > vy. Applying Weyl’s inequality, we have

1-— 1—

Tp—i—pl/g\[g)\ing—i—pul, i=1,....K (S25)
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1.00+ 3
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2> 0.001, i i | Pewss |0.00 i i = :
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FIG. S2. Fidelity for 2000 Haar-random ideal states with dimension N = 5 subject to dit flip, phase flip, dit-phase flip and amplitude damping
channels. The red dashed line shows the worst-case fidelity for the denoised state.

and
pvy <\ <pry, t=K+1,...,N. (826)

Using the Davis-Kahan sin 6 theorem [46] with § = % — pv1, we can upper-bound the distance between the projector onto the

subspace of ideal states I1x and the projector D onto the K eigenvectors with largest eigenvalues of noisy states pg (measured
via the Frobenius norm):

NG
Tk — Dxllp < Tpupnoisenp. (S27)

Let us now write pnoise = Ejyyes[>,—1 Mn [10) (| M]. The average fidelity after denoising is

(1 p) WD)’ + 3, | (¥ Dx M |¥) |2] | (S28)

F=E
es l (1= p) (GDx ) + Xy ([ M] DM, )

From Eq. (S27), we can write
Dy =Tk + pA (S529)

for some traceless Hermitian operator A. Substituting this into the expression for F, and using the fact that I |¢p) =
[1) V) € S, we have (to order p),

(L= p)(1+2p (W AW)) + Xy [(WIM]) + p ($|AM ) | ] oW, (30
L= p) (L4 p (LA + 3oy (WIMATL Mo ) + p ([ MLAM, [10))

F= Ejypyes [(

We now assume that || M, || ~ O(,/p), giving

ﬂ—@ﬂ+%WMWﬂ+ZmHWWMWP]+@@a (S31)

FZEwwl :
(I =p)A+p@[A[Y)) + >, (P M M, [9)))
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Since >°, _; (Y| ML M,[¢) < p,

= (1 —p) (L +2p WlA[Y) + 3, | (V[ Ma]¥) |? 2
2 Bes [ T+ p (1Al } +oF) (S32)
= Fbare +pE|¢>es[<¢\A|¢>} + O(p2)
where
Fbare = EW})GS |jl —-p+ Z | <¢|anj> 2‘| (S33)
n=1

is the average fidelity without denoising. Since A is traceless, (¢)|A|¢)) vanishes when averaging over the Haar-random ideal
states. Hence, we have the result

F > Fbare + O(PQ)- (S34)

Up to O(p?), the lower bound is exactly the average fidelity of the noisy state without any denoising.

4. Subspace denoising

Pure state noise

Suppose we have an ensemble of A noisy states

p(k) = (]_ — p) |’l/1(k)> <1/}(k)| +p |7pnoise> <'(/)noise| (535)

where k =1,..., M. |1/J(k)> lies in the K -dimensional ideal space, while |1)ise) is a fixed noise state in the full N-dimensional
Hilbert space. We assume that |1/(*)) is sampled from the Haar distribution. A uniform mixture of p(¥) gives the density matrix

M
1 I
pPs = M ’; p(k) ~ (1 - p)fK +p |1/}n0ise> <'¢)noise‘ (536)

with the approximation becoming exact as the sample size M — oo. Note that while we have added [¢)y0ise) incoherently
to W(k)), the same density matrix can also be obtained if we treat |1yise) as a coherent noise. To see this, we now write

P = [y (7], where
[in) = V1= P[0 ™) + Vb [thnoie) - (S37)
Taking a uniform mixture, the density matrix is now
ps~ (1— p)IfK + P [¥noise) (¥noise

K (838)
+ mﬂz [|1/)(k)> <'l/)noise| + |¢n0ise> <w(k)|:|

where E[-] denotes an average over the ensemble of states. Assuming a Haar ensemble, the extra term vanishes on average, so
the resulting density matrix is the same as that with incoherent noise.
Let us write the noise state as

|wnoise> = \/E|£> +v1l-c |€J—> (S39)

where |€) is a basis state in the ideal subspace, and |£) is a basis state in the orthogonal complement of the ideal subspace. In
an orthonormal basis containing |¢) and |¢1), the density matrix has a block diagonal form

1-p _
+pc pye(l—c) 1-p
= K — I 1 P0N_K_1. S40
Ps ( c1—0) (1—¢) &) K K-190Nn_Kk-1 (540)
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FIG. S3. Denoising fidelity for Haar-random states drawn from a K -dimensional (K = 2) ideal subspace, with 1000 instances. The noise
state is orthogonal to the ideal subspace. The solid line represents the average fidelity Fi (p) for the denoised state (blue) and initial noisy
state (red), while the error bars represent the standard deviation. The exact average fidelity is given by the green square markers while the
approximate average fidelity is given by the black dotted line. The grey dashed line marks p = 1/(K + 1).

The non-trivial eigenvalues and eigenvectors of pg are

1

Ay = —
* T oK

{1 +p(K 1)+ V1+p(~2+p+ K(=2—4c(—1+p)+ (2 + K)p))} (S41)

hsh =z [PVl + (h = 22 =) i) 54

with the normalization factors

1 N 2
2 = p2c(1—c) + ()\i - Tp —pc> . (S43)

The other eigenvalues are (1 — p)/K (with degeneracy K — 1) and 0 (with degeneracy N — K — 1). It can be shown that for
0<e< 1, . < (1-p)/K < Ay, sothe optimally trained denoiser projects the state onto the subspace spanned by |\ ) and
the remaining K — 1 orthonormal basis vectors |£;) ... |€x_1) in the ideal space. Denoting o = | (£]9) |2, B = | (¢|A+) |? and
v = | (A [¥noise) |?, the denoising fidelity is obtained as

(1-p)(af+1—a) +pafy

S44
(I=p)(af+1—a)+py (4

Fg(p) =

This is dependent on the choice of the ideal state |i). We can remove this dependence by averaging over the Haar-random states
|1}, which gives

Fip) = (K =1) | do(1 = )2 Fic(p). (345)

In the degenerate case where ¢ = 0 (noise state is orthogonal to the ideal subspace), the integral can be solved exactly to give

B 1 p< _1
lim Fg(p) = B ’ K (S46)
Aoy Fire o) {%(1—1?)2?1(1,1;1(—2;1—17) P> R

where 5.7 is the hypergeometric function. The denoiser performance transitions sharply from perfect recovery (p < 1/(K +1))
to becoming detrimental (p > 1/(K + 1)), as depicted in the numerical simulations in Fig. S3.
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FIG. S4. Denoising fidelity for Haar-random states drawn from a K -dimensional (K = 2) ideal subspace, with 1000 instances. The noise
state has an overlap of ¢ = 0.1 with the ideal subspace. The solid line represents the average fidelity F'x (p) for the denoised state (blue) and
initial noisy state (red), while the error bars represent the standard deviation. The exact average fidelity is given by the green square markers
while the approximate average fidelity is given by the black dotted line. The grey dashed line marks p = 1/(K + 1).

For a non-zero ¢, by performing a partial fraction expansion of Fx(p) and integrating term-by-term, the integral can be done
exactly, to yield

= 1-p Py
At =+ (1= i)
Py (B —pB —py (S47)
(1-p)A=B8)1-p+py)
x o F1(L LK (1—p)(1—B)/(1 —p+py))-

To order p2, we have

K—1 K(BK -1)-1
op —
K 7P K
As a consistency check, we set K = 1, which recovers Eq. (S11) (¢ = pgo). This means that if we want to denoise a subspace
beyond just a single state, the leading-order correction to the denoising fidelity is proportional to p instead of p?, hence the

denoiser becomes less effective. Nevertheless, we can show that for a sufficiently small p, using the denoiser is still advantageous.
Without the denoiser, the average fidelity is

Fr(p)=1- e(l - c)p2 + O(p3). (S48)

Py =1 (12
Fr(p)=1 (1 K(KJrl))p' (S49)

The denoising fidelity is higher than F; if

K(K+1)—c(K?+1) 1
PS i oK+ )(KBK —1)-1) " 3Ke (550)

for large Kc. We can see that range of p for which the denoiser is useful shrinks like 1/K, so high-dimensional subspace
denoising only works for very small noise probabilities. A more compact approximate expression can be obtained by exploiting
properties of the Haar distribution, giving

K+1
+ Kptr(Dgo)],

F}({approx.) (p) = 1 - p (tr(HKDK)2 + tr((HKDK)Q)) +ptI'(HKDKO'DK):| /[(1 —p)tr(HKDK) (551)

where Il is the projector onto the ideal subspace, and D is the projector on the K -dominant eigenspace of the noisy ensemble
p. An example of K = 2,¢ = 0.1 is plotted in Fig. S4. We can see that the approximate formula agrees well with the exact
expression for average fidelity.
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Quenched approximation for general channels

We now derive the quenched approximation for the fidelity F@ for general quantum channels. We assume that the pure input
states are subject to general Kraus operators M/, with the condition MM, = I. The pure input states |¢;) transform
to pj = >, My [¥b;) (¥;| M. Averaging over Haar-random (or at least a 2-design) input states |t;) in the K-dimensional
ideal subspace, the ensemble is described by the density matrix pg = % > M1l M. Denoting the (unnormalized) optimal
autoencoder operation as B = Uy Px U., for each input the output state can be written as

S, te(BM,,p; M Bt

(S52)

Pout,j =
and the fidelity with the ideal state [¢;) is Fj = (4;|pou,j|¢j). By Haar integrating over the numerator and denominator

separately we get an approximate expression for the average fidelity F@ ~ F' = E;[F;],

o _ Salnc BM)P + [T BM, T |3)
(K + 1%, [BMIk]G

(S53)

where | - || denotes the Frobenius norm. For population training, B = D, and Uy = U .

5. Noisy autoencoder

We have largely assumed that the denoiser itself is noiseless when analyzing its performance. However, any realistic imple-
mentation of the autoencoder will invariably contain some noise. For simplicity, we model the noise of the encoder and decoder
as independent depolarizing channels with the same probability pag. From the experimental data, we get a crude estimate of
paE ~ 0.02. Let us analyze the denoising of a single state (X = 1) with this noise. Denoting the input noise channel as £, the
denoising probability (which is the post-selection probability) is the dominant eigenvalue of p, where

In

p=(1—pag)é(|¥)) + DA (S54)

The corresponding dominant eigenstate is denoted | o). The output state is

I
pout = (1 = pag) [x0) (xo| + pap— (S55)

W?
and the denoising fidelity is

F = (1= pae)] (xol) [* + 57 (356)
In the limit pag = 0, we recover |xo) — |¢) and F' — 1.
If we further assume that the input noise is also an independent depolarizing noise with probability pj,, the denoising proba-
bility becomes

Pin + Pae(1 — Pin)
N

Pdenoise = (]- - pAE)(l - pin) + (857)

with denoising fidelity

N -1
F=1- . S58
N PAE ( )

In the worst-case of p;, = 1, we need to repeat this protocol on average IV times to successfully denoise the state.

Appendix C: Fidelity training

For fidelity training, we assume to have access to noiseless ideal states during the training stage (this is not required for
population training). The cost function is the average fidelity between the output states and the ideal states, which can be
implemented using a SWAP test. The advantage is that it can correct for coherent noise within the ideal subspace, while
population training is more suited for incoherent noise. A denoiser obtained from fidelity training always outperforms that from
population training, with the trade off being the increased training cost.
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1. Sufficient condition for perfect denoising

We claim that for the fixed noise channel and any fixed pure noise state pnoise = |Pnoise) (¥noise|, We can achieve perfect
denoising where the average fidelity is 1 Vp, c. This is possible if N > 2K. To prove this, notice that a necessary condition for
perfect denoising is to losslessly compress the ideal subspace while simultaneously removing the noise, i.e. PxU.Ilx Ul Px =
Py and Pr Uk [t)qoise) = 0, where Py is the projector onto the K latent modes and I is the projector onto the ideal subspace.

Without loss of generality, for ¢ > 0, we can write [¢noise) = v/ |¢1) + V1 — o), [¥ti.) = VI —c|p1) — Ve léi), and
the ideal state [¢)) = >, bj [¢;) with 3~ |bj|> = 1. We use two sets of basis states: {| j>};V:+1K which spans the latent space,

and {|¢;) §V:1 U {|¢j>J‘ ]K:l which spans the ideal subspace. We can construct

K-1

U= |N - 1> <1/’n0ise| + |O> <w$ise| + Z |J> <¢j+1|
= (S1)
N—-K

+ ) i+ K —2)(e7 ]

j=2
which rotates |¢yoise) to one of the redundant modes, and for N > 2K we define

K-1

U= X |(VIT=clih + vEli+ K - 1)

j=1
+(Velj) =V1—clj+ K —1)) (j+ K —1[ | +]0) (0] (S2)
N—1
+ D 1l
j=2K—1
which is required to losslessly compress the ideal subspace. The encoder unitary is thus given by U, = UsU;, with

PKUe W)nnise> = Oa

K
PrUe|y) =vVI—cY bilj—1).

Jj=1

(S3)

Normalizing the latent state Pk U, |¢)) and applying the decoder unitary

K N—-K
Us=>_l¢)) G =1+ > lé7) G+ K —1] (S4)
j=1 j=1

results in perfect denoising with success probability 1 — c.

A dimension of N > 2K is necessary to perfectly reconstruct the input state. This can be seen from the fact that the
space of possible input states spans a K -dimensional subspace. Due to unitary constraints, preparing the states that can be
deterministically denoised for all possible inputs requires at least a K -dimensional auxiliary space, thus requiring in total 2K -
dimensional U, and Uy [.

Appendix D: Coherent states and single photon Fock states

For a large class of noise models, one can train our quantum autoencoder with coherent states as input. After training this
way, the trained autoencoder can successfully denoise single photon input states subject to the same noise model.
To see this, first note that transformations with linear optics over N modes can be described by a NV x N unitary U. This

unitary transforms the creation operator of the kth mode &L via &L - >, ngdz. We now discuss the effect of U on single
photon Fock states and coherent state as input to the quantum autoencoder.

For a single photon input on the first mode, after application of U we get |¢p) = U dJ{ |vac) = >, Uy Z&Z |vac), where |vac) is
the vacuum state without photons. Measurement of the average photon number in mode & gives us (k| &L&k [Yg) = |Upk|?.
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For a coherent state input on the first mode we have [)c) = UD;(«a)|vac) = [][, D¢(Uisc)|vac) where Dy(a) =

exp (—ady — a*&}) is the displacement operator acting on mode ¢ and « the amplitude of the coherent state. The average

photon number of mode k is given by Z;, = (¢¢]| &L&k |¢)c) = |a|?|U1x|?. Thus, training on the population on the trash mode
for coherent states and single photon Fock states is equivalent up to a constant scaling factor. As the fidelity is measured using
the photon population after the inverse of the state generation unitary, the equivalence also applies to fidelity training,

By extending above arguments to mixtures, we note that single photons and coherent state inputs also show equivalent pop-
ulations under a large class of noise channels affecting the state. In particular, the equivalence holds for any noise channel
Ep) =21 Vi kaT where the Kraus operators V}, can be expressed in terms of linear optical elements.
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