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Software Toolbox

1.  INTRODUCTION

Image registration is an essential component of medical 
image processing and analysis that estimates a mapping 
from the space of the anatomy in one image to the space 

of another image (Cox, 1996; Fischl et al., 2002, 2004; 

Jenkinson et al., 2012; Tustison et al., 2013). Such trans-

forms generally include an affine component accounting 

for global orientation such as different head positions, 
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ABSTRACT
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https://w3id​.org​/synthmorph, as a single complete end-to-end solution for registration of brain magnetic resonance 
imaging (MRI) data.
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which are typically not of clinical interest. Transforms 
often include a deformable component that may repre-
sent anatomically meaningful differences in geometry 
(Hajnal & Hill, 2001). Many techniques analyze these fur-
ther, for example voxel-based morphometry (Ashburner 
& Friston, 2000; Whitwell, 2009).

Iterative registration has been extensively studied, 
and the available methods can achieve excellent acc
uracy both within and across magnetic resonance  
imaging (MRI) contrasts (Ashburner, 2007; Cox & 
Jesmanowicz, 1999; Friston et  al., 1995; Jiang et  al., 
1995; Lorenzi et  al., 2013; Rohr et  al., 2001; Rueckert 
et  al., 1999). Approaches differ in how they measure 
image similarity and the strategy chosen to optimize it, 
but the fundamental algorithm is the same: fit a set of 
parameters modeling the spatial transformation between 
an image pair by iteratively minimizing a dissimilarity 
metric. While classical deformable registration can take 
tens of minutes to several hours, affine registration opti-
mizes only a handful of parameters and is generally 
faster (Hoffmann et al., 2015; Jenkinson & Smith, 2001; 
Modat et al., 2014; Reuter et al., 2010). However, these 
approaches solve an optimization problem for every new 
image pair, which is inefficient: depending on the algo-
rithm, affine registration of higher-resolution structural 
MRI, for example, can easily take 5–10 minutes (Table 2). 
Further, iterative pipelines can be laborious to use. The 
user typically has to tailor the optimization strategy and 
choose a similarity metric appropriate for the image 
appearance (Pustina & Cook, 2017). Often, images 
require preprocessing, including intensity normalization 
or removal of structures that the registration should 
exclude. These shortcomings have motivated work on 
deep-learning (DL) based registration.

Recent advances in DL have enabled registration with 
unprecedented efficiency and accuracy (Balakrishnan 
et al., 2019; Dalca et al., 2018; Eppenhof & Pluim, 2018; 
Krebs et  al., 2017; Li & Fan, 2017; Rohé et  al., 2017; 
Sokooti et al., 2017; Yang et al., 2016, 2017). In contrast 
to classical approaches, DL models learn a function that 
maps an input registration pair to an output transform. 
While evaluating this function on a new pair of images is 
fast, most existing DL methods focus on the deformable 
component. Affine registration of the input images is 
often assumed (Balakrishnan et al., 2019; De Vos et al., 
2017) or incorporated ad hoc, and thus given less atten-
tion than deformable registration (De Vos et al., 2019; Hu 
et al., 2018; Mok & Chung, 2022; S. Zhao, Dong, et al., 
2019; S. Zhao, Lau, et al., 2019). Although state-of-the-
art deformable algorithms can compensate for sub-
optimal affine alignment to some extent, they cannot 
always fully recover the lost accuracy, as the experiment 
of Section 4.5 will show.

The learning-based models encompassing both 
affine and deformable components usually do not con-
sider network generalization to modality variation (De 
Vos et al., 2019; Shen et al., 2019; S. Zhao, Dong, et al., 
2019; S. Zhao, Lau, et al., 2019; Zhu et al., 2021). That 
is, networks trained on one type of data, such as T1-
weighted (T1w) MRI, tend to inaccurately register other 
types of data, such as T2-weighted (T2w) scans. Even 
for similar MRI contrast, the domain shift caused by dif-
ferent noise or smoothness levels alone has the poten-
tial to reduce accuracy at test time. In contrast, learning 
frameworks capitalizing on generalization techniques 
and domain adaptation often do not incorporate the 
fundamental affine transform (M. Chen et  al., 2017; 
Hoffmann et al., 2022; Iglesias et al., 2013; Qin et al., 
2019; Tanner et al., 2018).

A separate challenge for affine registration consists of 
accurately aligning specific anatomy of interest in the 
image while ignoring irrelevant content. Any undesired 
structure that moves independently or deforms non-
linearly will reduce the accuracy of the anatomy-specific 
transform unless an algorithm has the ability to ignore it. 
For example, neck and tongue tissue can confuse rigid 
brain registration when it deforms non-rigidly (Andrade 
et al., 2018; Fein et al., 2006; Fischmeister et al., 2013; 
Hoffmann et al., 2020).

1.1.  Contribution

In this work, we present a single, easy-to-use DL tool for 
fast, symmetric, diffeomorphic—and thus invertible—
end-to-end affine and deformable brain registration with-
out preprocessing (Fig.  1). The tool performs robustly 
across MRI contrasts, intensity scales, and resolutions. 
We address the domain dependency and anatomical 
non-specificity of affine registration: while invariance to 
acquisition specifics will enable networks to generalize to 
new image types without retraining, our anatomy-specific 
training strategy alleviates the need for pre-processing 
segmentation steps that remove image content that 
would distract most registration methods—as Sec-
tion  4.4 will show for the example of skull-stripping 
(Eskildsen et  al., 2012; Hoopes, Mora, et  al., 2022; 
Iglesias et al., 2011; Smith, 2002).

Our work builds on ideas from DL-based registration, 
affine registration, and a recent synthesis-based training 
strategy that promotes data independence by exposing 
networks to arbitrary image contrasts (Billot, Greve, et al., 
2023; Billot et  al., 2020; Hoffmann et  al., 2022, 2023; 
Hoopes, Mora, et al., 2022; Kelley et al., 2024). First, we 
analyze three fundamental network architectures, to pro-
vide insight into how DL models learn and best represent 
the affine component (Appendix A). Second, we select an 
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optimized affine architecture and train it with synthetic 
data only, making it robust across a landscape of acquired 
image types without exposing it to any real images during 
training. Third, we combine the affine model with a 
deformable hypernetwork to create an end-to-end regis-
tration tool, enabling users to choose a regularization 
strength that is optimal for their own data without retrain-
ing and in a fraction of the time required by classical 
methods. Fourth, we test our models across an extremely 
diverse set of images, aiming to truly capture the variabil-
ity of real-world data. We compare their performance 
against popular affine and deformable toolboxes in Sec-
tions  4.4 and 4.5, respectively, to assess the accuracy 
users can achieve with off-the-shelf implementations for 
image types unseen at training.

We freely distribute our source code and tool, Synth-
Morph, at https://w3id​.org​/synthmorph. SynthMorph will 
ship with the upcoming FreeSurfer release (Fischl, 2012). 
For users who wish to use SynthMorph without down-
loading FreeSurfer, we maintain a standalone container 
with a wrapper script for easy setup and use supporting 
any of the following container tools: Docker, Podman, 
Apptainer, or Singularity.

2.  RELATED WORK

While this section provides an overview of widely adopted 
strategies for medical image registration, in-depth review 
articles are available (Fu et al., 2020; Oliveira & Tavares, 
2014; Wyawahare et al., 2009).

2.1.  Classical registration

Classical registration is driven by an objective function, 
which measures similarity in appearance between the 
moving and the fixed image. A simple and effective 
choice for images of the same contrast is the mean 
squared error (MSE). Normalized cross-correlation (NCC) 
is also widely used, because it provides excellent accu-

racy independent of the intensity scale (Avants et  al., 
2008). Registration of images across contrasts or modal-
ities generally employs objective functions such as nor-
malized mutual information (NMI) (Maes et  al., 1997; 
Wells et al., 1996) or correlation ratio (Roche et al., 1998), 
as these do not assume similar appearance of the input 
images. Another class of classical methods uses metrics 
based on patch similarity (Glocker et al., 2008, 2011; Ou 
et  al., 2011), which can outperform simpler metrics 
across modalities (Hoffmann et al., 2022).

To improve computational efficiency and avoid local 
minima, many classical techniques perform multi-resolution 
searches (Hellier et  al., 2001; Nestares & Heeger, 2000). 
First, this strategy coarsely aligns smoothed downsampled 
versions of the input images. This initial solution is subse-
quently refined at higher resolutions until the original images 
align precisely (Avants et  al., 2011; Modat et  al., 2014; 
Reuter et al., 2010). Additionally, an initial grid search over 
a set of rotation parameters can help constrain this scale-
space approach to a neighborhood around the global opti-
mum (Jenkinson & Smith, 2001; Jenkinson et al., 2012).

Instead of optimizing image similarity, another regis-
tration paradigm detects landmarks and matches these 
across the images (Myronenko & Song, 2010). Early 
work relied on user assistance to identify fiducials  
(Besl & McKay, 1992; Meyer et al., 1995). More recent 
computer-vision approaches automatically extract fea-
tures (Machado et al., 2018; Toews & Wells, 2013), for 
example from entropy (Wachinger & Navab, 2010, 2012) 
or difference-of-Gaussians images (Lowe, 2004; Rister 
et al., 2017; Wachinger et al., 2018). The performance of 
this strategy depends on the invariance of landmarks 
across viewpoints and intensity scales (Matas et  al., 
2004).

2.2.  Deep-learning registration

Analogous to classical registration, unsupervised deform-
able DL methods fit the parameters of a deep neural  

Fig. 1.  Examples of anatomy-aware SynthMorph affine 3D registration showing the moving brain transformed onto the 
fixed brain (red overlay). Trained with highly variable synthetic data, SynthMorph generalizes across a diverse array of real-
world contrasts, resolutions, and subject populations without any preprocessing.

https://w3id.org/synthmorph
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network by optimizing a loss function that measures 
image similarity—but across many image pairs 
(Balakrishnan et  al., 2019; Dalca et  al., 2019; De Vos 
et  al., 2019; Guo, 2019; Hoffmann et  al., 2022; Krebs 
et  al., 2019). In contrast, supervised DL strategies 
(Eppenhof & Pluim, 2018; Gopinath et  al., 2024; Krebs 
et al., 2017; Rohé et al., 2017; Sokooti et al., 2017; Yang 
et al., 2016, 2017) train a network to reproduce ground-
truth transforms, for example obtained with classical 
tools, and tend to underperform relative to their unsuper-
vised counterparts (Hoffmann et al., 2022; Young et al., 
2022), although warping features at the end of each 
U-Net (Ronneberger et al., 2015) level can close the per-
formance gap (Young et al., 2022).

2.2.1.  Affine deep-learning registration

A straightforward option for an affine-registration net-
work architecture is combining a convolutional encoder 
with a fully connected (FC) layer to predict the parame-
ters of an affine transform in one shot (Shen et al., 2019; 
S. Zhao, Dong, et al., 2019; S. Zhao, Lau, et al., 2019; 
Zhu et al., 2021). A series of convolutional blocks succes-
sively halve the image dimension, such that the output of 
the final convolution has substantially fewer voxels than 
the input images. This facilitates the use of the FC layer 
with the desired number of output units, preventing the 
number of network parameters from becoming intracta-
bly large. Networks typically concatenate the input 
images before passing them through the encoder. To 
benefit from weight sharing, twin networks pass the fixed 
and moving images separately and connect their outputs 
at the end (X. Chen et al., 2021; De Vos et al., 2019).

As affine transforms have a global effect on the image, 
some architectures replace the locally operating convolu-
tional layers with vision transformers (Dosovitskiy et al., 
2020; Mok & Chung, 2022). These models subdivide their 
inputs into patch embeddings and pass them through the 
transformer, before a multi-layer perceptron (MLP) out-
puts a transformation matrix. Multiple such modules in 
series can successively refine the affine transform if each 
module applies its output transform to the moving image 
before passing it onto the next stage (Mok & Chung, 
2022). Composition of the transforms from each step 
produces the final output matrix.

Another affine DL strategy (Moyer et  al., 2021; Yu 
et al., 2021) derives an affine transform without requiring 
MLP or FC layers, similar to the classical feature 
extraction and matching approach (Section  2.1). This 
method separately passes the moving and the fixed 
image through a convolutional encoder to detect two 
corresponding sets of feature maps. Computing the 
barycenter of each feature map yields moving and fixed 

point clouds, and a least-squares (LS) fit provides a 
transform aligning them. The approach is robust across 
large transforms (Yu et al., 2021), while removing the FC 
layer alleviates the dependency of the architecture on a 
specific image size.

In this work, we will test these fundamental DL archi-
tectures and extend them to build an end-to-end solution 
for joint affine and deformable registration that is aware 
of the anatomy of interest.

2.3.  Robustness and anatomical specificity

Indiscriminate registration of images as a whole can limit 
the accurate alignment of specific substructures, such as 
the brain in whole-head MRI. One group of classical 
methods avoids this problem by down-weighting image 
regions that cannot be mapped accurately with the cho-
sen transformation model, for example using an itera-
tively re-weighted LS algorithm (Billings et  al., 2015; 
Gelfand et  al., 2005; Modat et  al., 2014; Nestares & 
Heeger, 2000; Puglisi & Battiato, 2011; Reuter et  al., 
2010). Few approaches focus on specific anatomical fea-
tures, for example by restricting the registration to regions 
of an atlas with high prior probability for belonging to a 
particular tissue class (Fischl et al., 2002). The affine reg-
istration tools commonly used in neuroimage analysis 
(Cox, 1996; Friston et al., 1995; Jenkinson & Smith, 2001; 
Modat et  al., 2014) instead expect—and require—that 
distracting image content be removed from the input 
data as a preprocessing step for optimal performance 
(Eskildsen et al., 2012; Iglesias et al., 2011; Klein et al., 
2009; Smith, 2002). Similarly, many DL algorithms 
assume intensity-normalized and skull-stripped input 
images (Balakrishnan et  al., 2019; Yu et  al., 2021; S. 
Zhao, Lau, et al., 2019), preventing their applicability to 
diverse unprocessed data.

2.4.  Domain generalizability

The adaptability of neural networks to out-of-distribution 
data generally presents a challenge to their deployment 
(Sun et  al., 2016; M. Wang & Deng, 2018). Mitigation 
strategies include augmenting the variability of the train-
ing distribution, for example by adding random noise or 
applying geometric transforms (Chaitanya et al., 2019; 
Perez & Wang, 2017; Shorten & Khoshgoftaar, 2019; A. 
Zhao, Balakrishnan, et  al., 2019). Transfer learning 
adapts a trained network to a new domain by fine-tuning 
deeper layers on the target distribution (Kamnitsas 
et al., 2017; Zhuang et al., 2020). These methods require 
training data from the target domain. By contrast, within 
medical imaging, a recent strategy synthesizes widely 
variable training images to promote data independence. 
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The resulting networks generalize beyond dataset spe-
cifics and perform with high accuracy on tasks including 
segmentation (Billot, Greve, et  al., 2023; Billot et  al., 
2020), deformable registration (Hoffmann et al., 2022), 
and skull-stripping (Hoopes, Mora, et al., 2022; Kelley 
et  al., 2024). We build on this technology to achieve 
end-to-end registration.

3.  METHOD

3.1.  Background

3.1.1.  Affine registration

Let m be a moving and f  a fixed image in N-dimensional 
(ND) space. We train a deep neural network hθ with learn-
able weights θ to predict a global transform Tθ  : Ω→ RN 
that maps the spatial domain Ω of f  onto m, given images 
m,f{ }. The transform Tθ = hθ (m,f ) is a matrix

	

T =

A v

0 0 1

=

t

0 0 1
�  

(1)

where matrix Aθ ∈R
N×N represents rotation, scaling, and 

shear, and vθ ∈R
N×1 is a vector of translational shifts, 

such that tθ ∈R
N× N+1( ). We fit the network weights θ to 

training set D  subject to

	
θ! = arg min

θ
E

m, f( ) ∈ D2
Ls m! hθ m,f( ),f( )⎡⎣ ⎤⎦, 	

(2)

where the loss Ls measures the similarity of two input 
images, and m!Tθ means m transformed by Tθ = hθ m,f( ).

3.1.2.  Synthesis-based training

A recent strategy (Billot, Greve, et al., 2023; Billot et al., 
2020; Hoffmann et al., 2022, 2023; Hoopes, Mora, et al., 
2022) achieves robustness to preprocessing and acquisi-
tion specifics by training networks exclusively with syn-
thetic images generated from label maps. From a set of 
label maps sm,sf{ }, a generative model synthesizes cor-
responding widely variable images m,f{ } as network 
inputs. Instead of image similarity, the strategy optimizes 
spatial label overlap with a (soft) Dice-based loss Lo 
(Milletari et  al., 2016), strictly independent of image 
appearance:

	

Lo θ,sm,sf( ) = − 2
J

j∈J
x∈Ω

∑
sm | j !Tθ( ) x( ) × sf | j x( )
sm | j !Tθ( ) x( ) + sf | j x( )

,

	

(3)

where s | j  represents the one-hot encoded label j ∈J of 
label map s defined at the voxel locations x ∈Ω in the 
discrete spatial domain Ω of f . The generative model 
requires only a few label maps to produce a stream of 
diverse training images that help the network acc
urately generalize to real medical images of any con-
trast at test time, which it can register without needing 
label maps.

3.2.  Anatomy-aware registration

As we build on our recent work on deformable registra-
tion, SynthMorph (Hoffmann et al., 2022), here we only 
provide a high-level overview and focus on what is new 
for affine and joint affine-deformable registration. Fig-
ure 2 illustrates our setup for affine registration.

3.2.1.  Label maps

Every training iteration, we draw a pair of moving and 
fixed brain segmentations. We apply random spatial 
transformations to each of them to augment the range of 
head orientations and anatomical variability in the train-
ing set. Specifically, we construct an affine matrix from 
random translation, rotation, scaling, and shear as 
detailed in Appendix B.

We compose the affine transform with a randomly 
sampled and randomly smoothed deformation field 
(Hoffmann et al., 2022) and apply the composite trans-
form in a single interpolation step. Finally, we simulate 
acquisitions with a partial field of view (FOV) by randomly 
cropping the label map, yielding sm,sf{ }.

3.2.2.  Anatomical specificity

Let K be the complete set of labels in sm,sf{ }. To 
encourage networks to register specific anatomy while 
ignoring irrelevant image content, we propose to recode 
sm,sf{ } such that the label maps include only a subset 

of labels J ⊂ K. For brain-specific registration, J  con-
sists of individual brain structures in the deformable 
case or larger tissue classes in the affine case. At train-
ing, the loss L optimizes only the overlap of J , whereas 
we synthesize images from the complete set of labels  
K , providing rich image content outside the brain as 
illustrated in Figure 2.

3.2.3.  Image synthesis

Given label map sm, we generate image m with random 
contrast, noise, and artifact corruption (and similarly f  
from sf ). Following SynthMorph, we first sample a mean 
intensity for each label j ∈K in sm and assign this value to 
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all voxels associated with label j. Second, we corrupt m 
by randomly applying additive Gaussian noise, anisotro-
pic Gaussian blurring, a multiplicative spatial intensity 
bias field, intensity exponentiation with a global parame-
ter, and downsampling along randomized axes. In aggre-
gate, these steps produce widely varying intensity 
distributions within each anatomical label (Fig. 3).

3.2.4.  Generation hyperparameters

We choose the affine augmentation range such that it 
encompasses real-world transforms. Appendix Figure A4 
(Appendix D) shows the distribution of affine transforma-
tion parameters measured across public datasets. We 
adapt all other values from prior work, which thoroughly 
analyzed their impact on accuracy (Hoffmann et  al., 
2022): Appendix Table A2 (Appendix C) lists hyperparam-
eters for label-map augmentation and image synthesis.

3.3.  Learning

3.3.1.  Symmetric affine network

Estimating an affine transform T  from a pair of medical 
images in ND requires reducing a large input space of the 
order of 100  k–10  M voxels to only N N +1( ) output 
parameters. We extend a recent architecture (Hoffmann 
et al., 2023; Moyer et al., 2021; A. Q. Wang et al., 2023; 
Yu et al., 2021), “Detector” in Appendix Figure A1 (Appen-
dix A), that takes a single image as input and predicts  
a set of k non-negative spatial feature maps Fi  with 
i ∈ 1, 2, …,k{ }, to support full affine transforms (Yu et al., 
2021) and weighted least-squares (WLS) (Moyer et  al., 
2021). Following a series of convolutions, we obtain the 
center of mass ai  and channel power pi |m for each fea-
ture map Fi |m of the moving image,

Fig. 2.  Training strategy for affine registration. At each iteration, we augment a pair of moving and fixed label maps 
sm,sf{ } and synthesize images m,f{ } from them. The network hθ predicts an affine transform T  from which we compute 

the moved label map sm !T  from. Loss Lo recodes the labels in sm,sf{ } to optimize the overlap of select anatomy of interest 
only, such as WM, GM, and CSF.

	
ai = pi

−1

x∈Ω
∑xFi |m x( ) and pi |m=

x∈Ω
∑Fi |m x( ),

	
(4)

and separately center of mass bi with channel power 
pi | f  for each Fi | f  of the fixed image. We interpret the sets 
ai{ } and bi{ } as corresponding moving and fixed point 

clouds. Detector refers to a network hθ  that predicts the 
affine transform tθ = hθ (m,f ) aligning these point clouds 
subject to

	
t!θ = arg min

t
εi || ai

⊤− (bi
⊤ 1)t⊤ ||2,

i=1

k

∑
	

(5)

where we use the definition of t from Equation (1) as the 
submatrix of T  that excludes the last row, and we define 
the normalized scalar weight εi  as

	
εi = pi |m (

j=1

k

∑pj |m )−1 pi | f (
j=1

k

∑pj | f )
−1.

	
(6)

Let X and y be matrices whose i th rows are (ai
⊤ 1) and 

bi
⊤, respectively. Denoting W = diag εi{ }( ), the closed-form 

WLS solution t!θ  of Equation (5) is such that

	 t!θ
⊤
= (X⊤WX )−1X⊤Wy. 	 (7)

3.3.2.  Symmetric joint registration

For joint registration, we combine the affine model hθ with 
a deformable SynthMorph architecture (Hoffmann et al., 
2022). Let gη be a convolutional neural network with 
parameters η that predicts a stationary velocity field 
(SVF) from concatenated images m,f{ }. While hθ predicts 
symmetric affine transforms by construction, we explic-
itly symmetrize the SVF:
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	 νη = 0.5 gη m,f( ) − gη f,m( )⎡⎣ ⎤⎦, 	 (8)

from which we obtain the diffeomorphic warp field φη via 
vector-field integration (Ashburner, 2007; Dalca et  al., 
2018), and integrating νη

−1 = −νη yields the inverse warp 
φη
−1, up to the numerical precision of the algorithm used. 

Usually, approaches to learning deformable registration 
directly fit weights η by optimizing a loss of the form

	 L(η,sm,sf ) = (1− λ)Lo(φη,sm,sf ) + λLr (φη ), 	 (9)

where Lo quantifies label overlap as before, Lr is a regu-
larization term that encourages smooth warps, and the 
parameter λ ∈ 0, 1[ ] controls the weighting of both terms.

Because directly fitting η subject to Equation (9) yields 
an inflexible network predicting warps of fixed regularity, 
we parameterize η using a hypernetwork. Let Γξ  be a 
neural network with trainable parameters ξ. Following 
our prior work (Hoopes, Hoffmann, et al., 2022; Hoopes 

Fig. 3.  Synthetic 3D training data with arbitrary contrasts, resolutions, and artifact levels, generated from brain label 
maps. The image characteristics exceed the realistic range to promote network generalization across acquisition protocols. 
All examples are based on the same label map. In practice, we use several different subjects.

et  al., 2021), hypernetwork Γξ  takes the regularization 
weight λ as input and outputs the weights η = Γξ λ( ) of 
the deformable task network gη. Consequently, gη has 
no learnable parameters in our setup—its convolutional 
kernels η can flexibly adapt in response to the value λ  
takes at test time.

As shown in Figure 4, for symmetric joint registration, 
we move images m,f{ } into an affine mid-space using the 
matrix square roots of Tθ = hθ (m,f ) and have gη  predict 
νη between images m!Tθ

1/2 and f !Tθ
−1/2 using kernels 

η = Γξ λ( ) specific to input λ.
While users of SynthMorph can choose between run-

ning the deformable step in the affine mid-space or after 
applying the full transform Tθ to m, only the former yields 
symmetric joint transforms. At training, the total forward 
transform is ψθξ = Tθ

1/2
! φξ ! Tθ

1/2, and the loss of Equation 
(9) becomes

	 L(λ,θ,ξ, …) = (1− λ)Lo(ψθξ,sm,sf ) + λLr (φξ ), 	 (10)
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with LeakyReLU (parameter α = 0.2) and downsample 
encoder blocks by a factor of 2 using max pooling.

As in our prior work, the deformable model gη imple-
ments a U-Net (Ronneberger et al., 2015) architecture of 
width w = 256, and we integrate the SVF νη via scaling 
and squaring (Ashburner, 2007; Dalca et al., 2018). Hyper-
model Γξ  is a simple feed-forward network with 4 ReLU-
activated hidden FC layers of 32 output units each.

All kernels are of size 3N . For computational efficiency, 
our 3D models linearly downsample the network inputs 
m,f{ } and loss inputs sm,sf{ } by a factor of 2. We min-

max normalize input images such that their intensities fall 
in the interval 0, 1[ ]. Affine coordinate transforms operate 
in a zero-centered index space. Appendix B includes fur-
ther details.

3.3.5.  Optimization

We fit model parameters with stochastic gradient descent 
using Adam (Kingma & Ba, 2014) over consecutive train-
ing strips Si  ( i ∈ 1, 2, …{ }) of 106 batches each. At the 
beginning of each strip or in the event of divergence, we 
choose successively smaller learning rates from l ∈{10−4,
10−5,10−6}. For fast convergence, the first strip of affine 
training optimizes the overlap of larger label groups than 
indicated in Section  4.1.3: left hemisphere, right hemi-
sphere, and cerebellum.

Because SynthMorph training is generally not prone to 
overfitting, it uses a simple stopping criterion measuring 
progress Pi  over batches t ∈Si in terms of validation Dice 
overlap D (Section 4.3). The 3D models train with a batch 
size of 1 until the mean overlap across Si exceeds 
Pi = 99.9% of the maximum, that is,

We choose Lr (φ) = !∇u !2 , where u is the displace-
ment of the deformation φ = id + u, and id is the identity 
field.

3.3.3.  Overlap loss

In this work, we replace the Dice-based overlap loss term 
of Equation (3) with a simpler term (Heinrich, 2019; Y. 
Wang et al., 2021) that measures MSE between one-hot 
encoded labels s | j ,

Lo θ, …( ) = 1
Ω J

j∈J
x∈Ω

∑ sm | j !Tθ( ) x( ) − sf | j x( )⎡
⎣

⎤
⎦
2

�

(11)

where we replace weights θ with θ,ξ{ } and transform Tθ 
with ψθξ for joint registration. MSE is sensitive to the pro-
portionate contribution of each label j ∈J  to overall 
alignment, whereas Equation (3) normalizes the contribu-
tion of each label by its respective size.

As a result, the MSE loss term discourages the optimi-
zation to disproportionately focus on aligning smaller 
structures, which we find favorable for warp regularity at 
structure boundaries. In Appendix E, we analyze how 
optimizing Lo on label maps compares to an image-
similarity loss term.

3.3.4.  Implementation

Affine SynthMorph implements Detector (Appendix Fig. 
A1) with w = 256 convolutional filters and k = 64  output 
feature maps. The network width w does not vary within 
the model. We activate the output of each internal block 

Fig. 4.  Training strategy for joint registration. As in Figure 2, network hθ predicts an affine transform T  between moving 
and fixed images m,f{ } synthesized from label maps sm,sf{ }. Hypernetwork Γξ  takes the regularization weight λ as 
input and outputs the parameters η = Γξ λ( ) of network gη. The moved images m!T1/2  and f !T −1/2 are inputs to gη , 
which predicts a diffeomorphic warp field φ. We form the symmetric joint transform ψ = T1/2

! φ !T1/2 by composition and 
compute the moved label map sm ! ψ. Loss Lo recodes the labels of sm,sf{ }  to optimize the overlap of select anatomy of 
interest—in this case brain labels only.
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Pi = { |Si | max

t∈Si
D t( )}−1

t∈Si
∑D t( ).

	
(12)

For joint registration, we uniformly sample hyperpa-
rameter values λ ∈ 0, 1[ ]. For efficiency, we freeze par
ameters θ of the trained affine submodel hθ to fit only  
the weights ξ  of hypernetwork Γξ, optimizing the loss of 
Equation (10).

However, unfreezing the affine weights within the setup 
of Figure 4 has no substantial impact on accuracy. Specif-
ically, after one additional strip of joint training, deformable 
large-21 Dice scores change by ΔD∈ −0.5, 0.5[ ] depend-
ing on the dataset, while affine accuracy decreases by 
only ΔD < 0.1 points relative to affine-only training.

4.  EXPERIMENTS

In a first experiment, we train the Detector architecture 
with synthetic data only. This experiment focuses on 
building a readily usable tool, and we assess its accuracy 
in various affine registration tasks. In contrast, Appendix 
A analyzes the performance of the different architectures 
across a broad range of variants and transformations, to 
understand how networks learn and best represent the 
affine component. In a second experiment, we complete 
the affine model with a deformable hypernetwork to pro-
duce a joint registration solution and compare its perfor-
mance to readily usable baseline tools.

4.1.  Data

The training-data synthesis and analyses use 3D brain 
MRI scans from a broad collection of public data, aiming 
to truly capture the behavior of the methods facing the 
diversity of real-world images. While users of Synth-
Morph do not need to preprocess their data, our experi-
ments use images conformed to the same isotropic 
256 × 256 × 256 1-mm voxel space using trilinear interpo-
lation, and by cropping and zero-padding symmetrically. 
We rearrange the voxel data to produce gross left-inferior-
anterior (LIA) orientation with respect to the volume axes.

4.1.1.  Generation label maps

For training-data synthesis, we compose a set of 100 
whole-head tissue segmentations, each derived from 
T1w acquisitions with isotropic ~1-mm resolution. We do 
not use these T1w images in our experiments. The train-
ing segmentations include 30 locally scanned adult FSM 
subjects (Greve et al., 2021), 30 participants of the cross-
sectional Open Access Series of Imaging Studies (OASIS, 
Marcus et  al. 2007), 30 teenagers from the Adolescent 
Brain Cognitive Development (ABCD) study (Casey et al., 

2018), and 10 infants scanned at Boston Children’s Hos-
pital at age 0–18 months (de Macedo Rodrigues et al., 
2015; Hoopes, Mora, et al., 2022).

We derive brain label maps from the conformed T1w 
scans using SynthSeg (Billot, Greve, et  al., 2023; Billot 
et al., 2020). We emphasize that inaccuracies in the seg-
mentations have little impact on our strategy, as the images 
synthesized from the segmentations will be in perfect 
voxel-wise registration with the labels by construction.

To facilitate the synthesis of spatially complex image 
signals outside the brain, we use a simple thresholding 
procedure to add non-brain labels to each label map. The 
procedure sorts non-zero image voxels outside the brain 
into one of six intensity bins, equalizing bin sizes on a 
per-image basis.

4.1.2.  Evaluation images

For baseline comparisons, we pool adult and pediatric 
T1w images from the Brain Genomics Superstruct Proj-
ect (GSP, Holmes et al., 2015), the Lifespan Human Con-
nectome Project Development (HCP-D, Harms et  al., 
2018; Somerville et al., 2018), MASiVar (MASi, Cai et al., 
2021), and IXI (Imperial College London, 2015).

The evaluation set also includes IXI scans with T2w 
and PDw contrast. As all these images are near-isotropic 
~1-mm acquisitions, we complement the dataset with 
contrast-enhanced clinical T1w stacks of axial 6-mm 
slices from subjects with newly diagnosed glioblastoma 
(QIN, Clark et al., 2013; Mamonov and Kalpathy-Cramer 
2016; Prah et al., 2015).

Our experiments use the held-out test images listed in 
Table 1. For monitoring and model validation, we use a 
handful of images pooled from the same datasets, which 
do not overlap with the test subjects. We do not consider 
QIN at validation and validate performance in pediatric 
data with held-out ABCD subjects. To measure registra-
tion accuracy, we compute anatomical brain label maps 
individually for each conformed image volume using 
SynthSeg (Billot, Greve, et al., 2023; Billot et al., 2020). 
Although SynthMorph does not require skull-stripping, 
we skull-strip all images with SynthStrip (Hoopes, Mora, 
et  al., 2022) for a fair comparison across images that 
have undergone the preprocessing steps expected by 
the baseline methods—unless explicitly noted.

4.1.3.  Labels

The training segmentations encompass a set K of 38 differ-
ent labels, 32 of which are standard (lateralized) FreeSurfer 
labels (Fischl et al., 2002). Parenthesizing their average size 
over FSM subjects relative to the total brain volume and 
combining the left and right hemispheres, these structures 
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are: cerebral cortex (43.4%) and white matter (36.8%), cer-
ebellar cortex (9.2%) and white matter (2.2%), brainstem 
(1.8%), lateral ventricle (1.7%), thalamus (1.2%), putamen 
(0.8%), ventral DC (0.6%), hippocampus (0.6%), caudate 
(0.6%), amygdala (0.3%), pallidum (0.3%), 4th ventricle 
(0.1%), accumbens (0.1%), inferior lateral ventricle (0.1%), 
3rd ventricle (0.1%), and background.

The remaining labels map to variable image features 
outside the brain (Section 4.1.1). These added labels do 
not necessarily represent distinct or meaningful anatomi-
cal structures but expose the networks to non-brain 
image content at training. We use all labels K to synthe-
size training images but optimize the overlap of brain-
specific labels J ⊂ K based on Equation (3).

For affine training and evaluation, we merge brain 
structures such that J consists of larger tissue classes: 
left and right cerebral cortex, left and right subcortex, and 
cerebellum. These classes ensure that small labels like 
the caudate do not have a disproportionate influence on 
global brain alignment—different groupings may work 
equally well. In contrast, deformable registration rede-
fines J  to include the 21 largest brain structures up to 
and including caudate. We use these labels for deform-
able training and evaluation, as prior analyses report that 
“only overlap scores of localized anatomical regions reli-
ably distinguish reasonable from inaccurate registrations” 
(Rohlfing, 2011).

For a less circular assessment of deformable registra-
tion accuracy, we separately consider the set of the 10 
finest-grained structures above whose overlap we do not 
optimize at training, including the labels from amygdala 
through 3rd ventricle.

4.2.  Baselines

We test 3D affine and deformable classical registration 
with ANTs (Avants et al., 2011) version 2.3.5 using rec-
ommended parameters (Pustina & Cook, 2017) for the 

NCC metric within and MI across MRI contrasts. We 
test NiftyReg (Modat et  al., 2014) version 1.5.58 with 
the NMI metric and enable SVF integration for joint reg-
istration, as in our approach. We also run the patch-
similarity method Deeds (Heinrich et  al., 2012), 
2022-04-12 version. For a rigorous baseline assess-
ment, we reduce the default grid spacing from 
8 ×7× 6 × 5× 4 to 6 × 5× 4 × 3× 2. This setting effectively 
trades a shorter runtime for increased accuracy as rec-
ommended by the author, since it optimizes the para-
metric B-spline model on a finer control point grid 
(Heinrich et  al., 2013). The modification results in a 
1–2% accuracy boost for most datasets as in prior 
work (Hoffmann et al., 2022). We test affine-only regis-
tration with mri_robust_register (“Robust”) from Free-
Surfer 7.3 (Fischl, 2012) using its robust cost functions 
(Reuter et al., 2010), as only the robust cost functions 
can down-weight the contribution of regions that 
deform non-linearly. However, we highlight that the 
robust-entropy metric for cross-modal registration is 
experimental. We use Robust with up to 100 iterations 
and initialize the affine registration with a rigid run. 
Finally, we also test affine and deformable registration 
with the FSL (Jenkinson et  al., 2012) tools FLIRT 
(Jenkinson & Smith, 2001) version 6.0 and FNIRT 
(Andersson et  al., 2007) build 507. While the recom-
mended cost function of FLIRT, correlation ratio, is suit-
able within and across modalities, we emphasize that 
users cannot change FNIRT’s MSE objective, which 
specifically targets within-contrast registration.

We compare DL model variants covering popular 
registration architectures in Section A.3. This analysis 
uses the same capacity and training set for each model. 
For our final synthesis-based tool in Sections 4.4 and 
4.5, we consider readily available machine-learning 
baselines trained by their respective authors, to assess 
their generalization capabilities to the diverse data we 
have gathered. This strategy evaluates what level of 
accuracy a user can expect from off-the-shelf methods 
without retraining, as retraining is generally challenging 
for users (see Section  5.3). We test: KeyMorph (Yu 
et al., 2021) and C2FViT (Mok & Chung, 2022) models 
trained for pair-wise affine, and the 10-cascade Volume 
Tweening Network (VTN) (S. Zhao, Dong, et al., 2019; S. 
Zhao, Lau, et  al., 2019) trained for joint affine-
deformable registration. Each network receives inputs 
with the expected image orientation, resolution, and 
intensity normalization.

In contrast to the baselines, SynthMorph is the only 
method optimizing spatial label overlap. While this likely 
provides an advantage when measuring accuracy with a 
label-based metric, optimizing an image-based objective 
may be advantageous when measuring image similarity at 

Table 1.  Acquired test data for baseline comparisons 
spanning a range of MRI contrasts, resolutions (res.), and 
subject populations.

Dataset Type Res. (mm3) Subjects

GSP T1w, age 18–35 a 1.2×1.2×1.2 100
IXI T1w 0.9× 0.9×1.2 100

T2w 0.9× 0.9×1.2 100
PDw 0.9× 0.9×1.2 100

HCP-D T1w, age 5–21 a 0.8 × 0.8 × 0.8 80
MASi T1w, age 5–8 a 1.0 ×1.0 ×1.0 80
QIN post-contrast T1w 0.4 × 0.4 × 6.0 50

QIN includes contrast-enhanced clinical stacks of thick slices from 
patients with glioblastoma, whereas the other acquisitions use 3D 
sequences. While HCP-D and MASi include pediatric data, the 
remaining datasets consist of adult populations.
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test. For a balanced comparison, we assess registration 
accuracy in terms of label overlap and image similarity.

4.3.  Evaluation metrics

To measure registration accuracy, we propagate the 
moving label map sm using the predicted transform T  to 
obtain the moved label map sm !T  and compute its (hard) 
Dice overlap D (Dice, 1945) with the fixed label map sf . In 
addition, we evaluate MSE of the modality-independent 
neighborhood descriptor (MIND, Heinrich et  al., 2012) 
between the moved image m!T  and the fixed image f  as 
well as NCC for same-contrast registration. As we seek 
to measure brain-specific registration accuracy, we 
remove any image content external to the brain labels 
prior to evaluating the image-based metrics. We use 
paired two-sided t-tests to determine whether differ-
ences in mean scores between methods are significant.

We analyze the regularity of deformation field φ in 
terms of the mean absolute value of the logarithm of the 
Jacobian determinant Jφ over brain voxels ΩB. This quan-
tity is sensitive to the deviation of Jφ from the ideal value 
1 and thus measures the width of the distribution of log-
Jacobian determinants, the “log-Jacobian spread” δ:

	
δ(φ) = 1

|Ω* | x∈ΩB
*

∑ | ln( |Jφ(x )| ) |,
	

(13)

where ΩB
* = {x ∈ΩB | Jφ x( ) ≠ 0}. We also determine the 

proportion of folding voxels, that is, locations x ∈ΩB 
where Jφ x( ) < 0. We compare the inverse consistency of 
registration methods by means of the average displace-
ment E  that voxels undergo upon subsequent applica-
tion of transforms T1,T2{ },

	
E(T1,T2 ) =

1
|ΩB | x∈ΩB

∑ || (T2 !T1)(x ) − x ||2.
	

(14)

Specifically, we evaluate the mean symmetric inverse 
consistency I  of method h with T1 = h(m,f ) and T2 = h(f,m) 
for any pair of input images m,f{ }:

I h,m,f( ) = 0.5 E T1,T2( ) + E T2,T1( )⎡⎣ ⎤⎦. � (15)

4.4.  Experiment 1: affine registration

In this experiment, we focus on “affine SynthMorph,” an 
anatomy-aware affine registration tool that generalizes 
across acquisition protocols while enabling brain regis-
tration without preprocessing. In contrast, Appendix A 
compares competing network architectures and analyzes 
how they learn and best represent affine transforms.

4.4.1.  Setup

First, to give the reader an idea of the accuracy achiev-
able with off-the-shelf algorithms for data unseen at 
training, we compare affine SynthMorph to classical and 
DL baselines trained by the respective authors. We test 
affine registration of skull-stripped images across MRI 
contrasts, for a variety of different imaging resolutions 
and populations, including adults, children, and patients 
with glioblastoma. We also compare the symmetry of 
each method with regard to reversing the order of input 
images. Each test involves held-out image pairs from 
separate subjects, summarized in Table 1.

Second, we analyze the effect of thick-slice acquisi-
tions on affine SynthMorph accuracy compared to classi-
cal baselines. This experiment retrospectively reduces 
the through-plane resolution of the moving image of each 
GSP→ IXIT1 pair to produce stacks of axial slices of thick-
ness Δz ∈ 1, 2, …, 10{ } mm. At each Δz, we simulate par-
tial voluming (Kneeland et  al., 1986; Simmons et  al., 
1994) by smoothing all moving images in slice-normal 
direction with a 1D Gaussian kernel of full-width at half-
maximum (FWHM) Δz  and by extracting slices Δz apart 
using linear interpolation. Finally, we restore the initial vol-
ume size by linearly upsampling through-plane.

Third, we evaluate the importance of skull-stripping 
the input images for accurate registration. With the 
exception of skull-stripping, we preprocess full-head 
GSP→ IXIT1 pairs as expected by each method and 
assess brain-specific registration accuracy by evaluating 
image-based metrics within the brain only.

4.4.2.  Results

Figure 6 shows representative registration examples for 
the tested dataset combinations, while Figure 5 quantita-
tively compares affine registration accuracy across skull-
stripped image pairings. Although affine SynthMorph has 

Table 2.  Single-threaded runtimes on a 2.2-GHz Intel 
Xeon Silver 4114 CPU, averaged over n = 10 runs.

Method Affine (seconds) Deformable (seconds)

ANTs 777.8 ± 36.0 17189.5 ± 52.7
NiftyReg 293.7 ± 0.5 7021.0 ± 21.3
Deeds 142.8 ± 0.3 383.1 ± 0.6
Robust 1598.9 ± 0.8 –
FSL 151.7 ± 0.4 8141.5 ± 195.7

C2FViTa 43.7 ± 0.3 –
KeyMorph 36.2 ± 2.6 –
VTNb – 63.5 ± 0.3
SynthMorph 72.4 ± 0.8 887.4 ± 2.5

Errors indicate standard deviations. On an NVIDIA V100 GPU, 
all affine and deformable DL runtimes (bottom) are ~1 minute, 
including setup.
aTimed on the GPU as the device is hard-coded.
bImplementation performs joint registration only.
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Fig. 5.  Affine 3D registration accuracy as mean Dice scores and in terms of image similarity. Each violin shows the 
distribution across the skull-stripped cross-subject pairs from Table 1. For comparison, the asterisk indicates SynthMorph 
performance without skull-stripping. Downward arrows indicate median scores outside the plotted range. Higher Dice and 
lower MSE-MIND are better.

not seen any real MRI data at training, it achieves the 
highest Dice score for every dataset tested.

For the GSP→ IXIT1 and MASi→ HCP-D pairs that 
most baselines are optimized for, SynthMorph exceeds 
the best-performing baseline NiftyReg by ΔD = 0.1 points 
(p < 10−4 and p < 0.03 for paired two-sided t -tests). 
Across all other pairings, SynthMorph matches the Dice 
score achieved by the most accurate affine baseline, 
which is NiftyReg in every case. Method Deeds performs 
least accurately, lagging behind the second last classical 
baselines by ΔD = 10.1 or more. The other classical meth-
ods perform robustly across all testsets, generally within 
1–2 Dice points of each other.

On the MASi→ HCP-D testset, FLIRT’s performance 
exceeds Robust by ΔD = 3 (p = 10−23) and matches it 
across GSP→ IXIT1 pairs (p = 0.8). Across the remaining 
testsets, FLIRT ranks fourth among classical baselines.

In contrast, the DL baselines do not reach the same 
accuracy. Even for the T1w pairs they were trained with, 
SynthMorph leads by ΔD = 3.7 or more, likely due to 
domain shift between the test and baseline training data. 
As expected, DL-baseline performance continues to 
decrease as the test-image characteristics deviate fur-
ther from those at training. Interestingly, VTN consistently 

ranks among the least accurate baselines, although its 
preprocessing effectively initializes the translation and 
scaling parameters by separately adjusting the moving 
and fixed images such that the brain fills the whole FOV.

Even though affine SynthMorph does not directly opti-
mize image similarity at training, it surpasses NiftyReg for 
GSP→ IXIT1 (p < 2×10−11) and MASi→HCP-D (p < 0.02) 
pairs in terms of the image-based MSE-MIND metric. 
Generally, MSE-MIND ranks the methods similarly to Dice 
overlap, as does NCC across the T1w registration pairs 
(Fig. 8a).

Figure  9 shows that SynthMorph’s affine transforms 
across GSP→ IXIT1 are more symmetric than all baselines 
tested. When we reverse the order of the input images, 
the mean inconsistency between forward and backward 
transforms is I = 5×10−5  mm per brain voxel, closely fol-
lowed by NiftyReg. Robust also uses an inverse-
consistent algorithm, leading to I = 8 ×10−3  mm. The 
remaining baselines are substantially less symmetric, 
with inconsistencies of I = 2 mm for KeyMorph or more.

Figure  7a shows how registration accuracy evolves 
with increasing moving-image slice thickness Δz. Synth-
Morph and ANTs remain the most robust for Δz ≤ 6 mm, 
reducing only to 99% at Δz = 10 mm. For Δz ∈ 2, 5[ ] mm, 
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ANTs accuracy even improves slightly, likely benefiting 
from the smoothing effect on the images. The classical 
baselines FLIRT and Robust are only mildly affected by 
thicker slices. While their Dice scores decrease more rap-
idly for Δz ≤ 8, their accuracy reduces to 99% and about 
98.5% at Δz = 10 mm. Deeds is noticeably more suscep-
tible to resolution changes, decreasing to less than 95% 
at Δz > 6.5 mm.

Figure 10 compares the drop in median Dice overlap 
the affine methods undergo when presented with full-
head as opposed to skull-stripped GSP→ IXIT1 images. 
Except for Deeds, brain-specific accuracy reduces sub-
stantially, by 3% in the case of NiftyReg and up to 8% for 
ANTs. Affine SynthMorph remains most robust: its Dice 
overlap changes by less than 0.05%. Deeds’ accuracy 
increases but it still yields the lowest score for the testset.

Table  2 lists the registration time required by each 
affine method on a 2.2-GHz Intel Xeon Silver 4114 CPU 
using a single computational thread. The values shown 
reflect averages over n = 10 uni-modal runs. Classical 
runtimes range between 2 and 27 minutes, with Deeds 
being the fastest and Robust being the slowest, although 
we highlight that we substantially increased the number 
of Robust iterations. Complete single-threaded DL run-
times are about 1 minute, including model setup. How-
ever, inference only takes a few seconds and reduces to 
well under a second on an NVIDIA V100 GPU.

4.5.  Experiment 2: joint registration

Motivated by the affine performance of SynthMorph, we 
complete the model with a hypernetwork-powered 
deformable module to achieve 3D joint affine-deformable 
registration (Fig. 4). Our focus is on building a complete 
and readily usable tool that generalizes across scan pro-
tocols without requiring preprocessing.

4.5.1.  Setup

First, we compare deformable registration using the held-
out image pairs from separate subjects for each of the 
datasets of Table  1. The comparison employs skull-
stripped images initialized with affine transforms esti-
mated from skull-stripped data by NiftyReg, the most 
accurate baseline in Figure 5. We compare deformable 
SynthMorph performance to classical baselines and VTN, 
a joint DL baseline trained by the original authors—we 
seek to gauge the accuracy achievable with off-the-shelf 
algorithms for data unseen at training.

Second, we analyze the robustness of each tool to 
sub-optimal affine initialization. In order to cover realistic 
affine inaccuracies and assess the most likely and 
intended use case, we repeat the previous experiment, 
this time initializing each method with the affine transform 
obtained with the same method—that is, we test end-to-
end joint registration with each tool. Similarly, we evalu-
ate the importance of removing non-brain voxels from the 
input images. In this experiment, we initialize each 
method with affine transforms estimated by NiftyReg 
from skull-stripped data, and test deformable registration 
on a full-head version of the images.

Fig. 6.  Representative affine 3D registration examples 
showing the image moved by each method overlaid with 
the fixed brain mask (red). Each row is an example from a 
different dataset. Subscripts indicate MRI contrast.
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Fig. 7.  Dependency of 3D (a) affine and (b) deformable registration accuracy on slice thickness. For comparability, we 
initialize all deformable tools with affine transforms estimated by NiftyReg. Each value indicates the mean over 100 skull-
stripped pairs. Higher is better. Shaded areas indicate the standard error of the mean.

Fig. 8.  Within-contrast 3D (a) affine and (b) deformable registration accuracy across skull-stripped cross-subject pairs 
in terms of brain-only NCC. We initialize all deformable tools with affine transforms estimated by NiftyReg. The asterisk 
indicates SynthMorph without skull-stripping. Higher is better.

Fig. 9.  Forward-backward inconsistency between 
transforms when reversing the order of input images. We 
compare the mean displacement per brain voxel upon 
subsequent application of both transforms. Lower values 
are better.

Fig. 10.  Relative reduction in brain-specific accuracy 
when registering full-head as opposed to skull-stripped 
images. Lower values are better. Although affine Deeds is 
the only method whose Dice overlap increases, it ranks 
as the least accurate on the GSP→ IXIT1 testset. Error bars 
show the standard error of the mean.
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Third, we analyze the effect of reducing the through-
plane resolution Δz on SynthMorph performance com-
pared to classical baselines, following the steps outlined 
in Section  4.4. In this experiment, we initialize each 
method with affine transforms estimated by NiftyReg 
from skull-stripped images, such that the comparison 
solely reflects deformable registration accuracy.

Fourth, we analyze warp-field regularity and registra-
tion accuracy over dataset GSP→ IXIT1 as a function of 
the regularization weight λ. We also compare the sym-
metry of each method with regard to reversing the order 
of the input images.

4.5.2.  Results

Figure 11 shows typical deformable registration exam-
ples for each method, and Figure 12 compares registra-
tion accuracy across testsets in terms of mean Dice 
overlap D over the 21 largest anatomical structures 
(large-21), 10 fine-grained structures (small-10) not opti-
mized at training, and image similarity measured with 
MSE-MIND. Supplementary Figures  S1–S5 show 
deformable registration accuracy across individual brain 
structures.

Although SynthMorph trains with synthetic images 
only, it achieves the highest large-21 score for every 
skull-stripped testset. For all cross-contrast pairings 
and the pediatric testset, SynthMorph leads by at least 
2 Dice points compared to the highest baseline score 
(MASi→HCP-D, p < 10−23 for paired two-sided t-test) 
and often much more. Across these testsets, Synth-
Morph performance remains largely invariant, whereas 
the other methods except Deeds struggle. Crucially, 
the distribution of SynthMorph scores for isotropic data 
is substantially narrower than the baseline scores, indi-
cating the absence of gross inaccuracies such as pairs 
with D < 65 that several baselines yield across all iso-
tropic contrast pairings. On the clinical testset QIN  
→IXIT1, SynthMorph surpasses the baselines by at least 
ΔD = 4. For GSP→ IXIT1, it outperforms the best classi-
cal baseline ANTs by 1 Dice point ( p < 10−21).

Across the T1w testsets, FNIRT outperforms NiftyReg 
by several Dice points and also ANTs for MASi → HCP-D 
pairs. Surprisingly, FNIRT beats NiftyReg’s NMI imple-
mentation for GSP→IXIT2, even though FNIRT’s cost 
function targets within-contrast registration. The most 
robust baseline is Deeds, which ranks third at adult T1w 
registration. Its performance reduces the least for the 
cross-contrast and clinical testsets, where it achieves the 
highest Dice overlap after SynthMorph.

The joint DL baseline VTN yields relatively low accu-
racy across all testsets. This was expected for the cross-
contrast pairings, since the model was trained with T1w 

Fig. 11.  Deformable 3D registration examples comparing 
the moved image m!φ and the deformation field φ across 
methods. Each row is an example from a different dataset. 
For comparability, we initialize all methods with NiftyReg’s 
affine registration.
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data, confirming the data dependency introduced with 
standard training. However, VTN lags behind the worst-
performing classical baseline for GSP→IXIT1 data, Nif-
tyReg, too (ΔD = 2.1, p < 3×10−7 ), likely due to domain 
shift as in the affine case.

Considering the fine-grained small-10 brain structures 
held out at training, SynthMorph consistently matches or 
exceeds the best performing method, except for MASi  
→HCP-D, where Deeds leads by ΔD = 0.6 (p = 10−4). On 
the clinical testset, SynthMorph leads by at least ΔD > 4.5 
(p < 10−8 ). Interestingly, SynthMorph outperforms all base-
lines across testsets in terms of MSE-MIND (p < 10−4) and 

Fig. 12.  Deformable 3D registration accuracy as mean Dice scores over the 21 largest brain regions (large-21), 10 fine-
grained structures not optimized at SynthMorph training (small-10), and image similarity. Each violin shows the distribution 
across the skull-stripped cross-subject pairs from Table 1. For comparability, we initialize all deformable tools with affine 
transforms estimated by NiftyReg. The asterisk indicates SynthMorph performance without skull-stripping. Downward 
arrows show median scores outside the plotted range. Higher Dice and lower MSE-MIND are better.

NCC for same-contrast registration (Fig.  8b, p < 10−3), 
although it is the only method not optimizing or trained 
with an image-based loss.

Figure 13 shows the relative change in large-21 Dice 
for each tool when run end-to-end compared to affine 
initialization with NiftyReg. SynthMorph’s drop in per
formance is 0.05% or less across all datasets. For GSP 
→ IXIT1, classical-baseline accuracy decreases by no 
more than 0.3%. Across the other datasets, the classical 
methods generally cannot make up for the discrepancy 
between their own and NiftyReg’s affine transform: accu-
racy drops by up to 5.2%, whereas SynthMorph remains 
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robust. The performance of VTN reduces by at least  
8.3% across testsets and often much more, highlighting 
the detrimental effect an inaccurate affine transform can 
have on the subsequent deformable step.

Figure 10 shows the importance of skull-stripping for 
deformable registration accuracy. Generally, deformable 
accuracy suffers less than affine registration when 
switching to full-head images, as the algorithms deform 
image regions independently. SynthMorph remains most 
robust to the change in preprocessing; its large-21 Dice 
overlap increases by 0.1%. With a drop of 0.08%, Deeds 
is similarly robust. In contrast, FNIRT’s performance is 
most affected, reducing by 5%—a decline of the same 
order as for most affine methods.

Figure 14 analyzes SynthMorph warp smoothness. As 
expected, image-based NCC and large-21 Dice accuracy 
peak for weak regularization of λ < 0.2. In contrast, over-
lap of the small-10 regions not optimized at training ben-
efits from smoother warps, with an optimum at λ = 0.45. 
The fields predicted by SynthMorph achieve the lowest 

Fig. 13.  Mean decrease in Dice scores for end-to-end joint registration relative to affine initialization with NiftyReg. 
Except for adult T1w registration pairs, the classical tools in blue generally cannot compensate for the discrepancy 
between their own and NiftyReg’s affine transform, indicating that inaccurate affine initialization can have a detrimental 
effect on subsequent deformable registration.

Fig. 14.  Regularization analysis of SynthMorph registration accuracy, the proportion of folding voxels with a negative 
Jacobian determinant, and the spread of the distribution of absolute log-Jacobian determinants as a function of the 
regularization weight λ. The dots indicate maximum accuracy. For the other metrics, lower is better.

log-Jacobian spread across all baselines for λ > 0.45. 
Similarly, the proportion of folding brain voxels decreases 
with higher λ and drops to 0% for λ > 0.33 (10 integration 
steps). Deeds yields 6 ×10−4% folding brain voxels, 
whereas the other baselines achieve 0%. For realistic 
warp fields with characteristics that match or exceed the 
tested baselines, we conduct all comparisons in this 
study with a default weight λ = 0.5. We highlight that λ  is 
an input to SynthMorph, enabling users to choose the 
optimal regularization strength for their specific data 
without retraining.

Deformable registration with SynthMorph is highly 
symmetric (Fig. 9), with a mean forward-backward incon-
sistency of only I = 0.09 mm per brain voxel that closely 
follows ANTs (0.01 mm) and NiftyReg (0.05 mm). In con-
trast, the remaining methods are substantially more 
inconsistent, with I = 0.34 mm for Deeds or more.

Figure  7b assesses the dependency of registration 
performance on slice thickness Δ z. Similar to the affine 
case, deformable accuracy decreases for thicker slices, 
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albeit faster. SynthMorph performs most robustly. Its 
accuracy remains unchanged up to Δz ≤ 3  mm and 
reduces only to 95% at Δz = 8.5 mm. ANTs is the most 
robust classical method, but its accuracy drops consid-
erably faster than SynthMorph. FLIRT and NiftyReg are 
most affected at reduced resolution, performing at less 
than 95% accuracy for Δz ≥ 4   mm and Δz ≥ 4.5   mm, 
respectively.

Deformable registration often requires substantially 
more time than affine registration (Table 2). On the GPU, 
SynthMorph takes less than 8 seconds per image pair for 
registration, IO, and resampling. One-time model setup 
requires about 1 minute, after which the user could regis-
ter any number of image pairs without reinitializing the 
model. SynthMorph requires about 16 GB of GPU mem-
ory for affine and 24 GB for deformable registration. On 
the CPU, the fastest classical method Deeds requires 
only about 6 minutes in single-threaded mode, whereas 
ANTs takes almost 5 hours. While VTN’s joint runtime is 
1  minute, SynthMorph needs about 15  minutes for 
deformable registration on a single thread.

5.  DISCUSSION

We present an easy-to-use DL tool for end-to-end affine 
and deformable brain registration. SynthMorph achieves 
robust performance across acquisition characteristics 
such as imaging contrast, resolution, and pathology, 
enabling accurate registration for brain scans without 
preprocessing. The SynthMorph strategy alleviates the 
dependency on acquired training data by generating 
widely variable images from anatomical label maps—and 
there is no need for label maps at registration time.

5.1.  Anatomy-specific registration

Accurate registration of the specific anatomy of interest 
requires ignoring or down-weighting the contribution of 
irrelevant image content to the optimization metric. Syn-
thMorph learns what anatomy is pertinent to the task, as 
we optimize the overlap of select labels of interest only. It 
is likely that the model learns an implicit segmentation of 
the image, in the sense that it focuses on deforming the 
anatomy of interest, warping the remainder of the image 
only to satisfy regularization constraints. In contrast, 
many existing classical and DL methods cannot distin-
guish between relevant and irrelevant image features, 
and thus have to rely on explicit segmentation to remove 
distracting content prior to registration, such as skull-
stripping (Eskildsen et  al., 2012; Hoopes, Mora, et  al., 
2022; Iglesias et al., 2011; Smith, 2002).

Pathology missing from the training labels does not 
necessarily hamper overall registration accuracy, as the 

experiments with scans from patients with glioblastoma 
show. In fact, SynthMorph outperforms all deformable 
baselines tested on these data. However, we do not 
expect these missing structures to be mapped with high 
accuracy, in particular if the structure is absent in one of 
the test images—this is no different from the behavior of 
methods optimizing image similarity.

5.2.  Baseline performance

Networks trained with the SynthMorph strategy do not 
have access to the MRI contrasts of the testsets nor, in 
fact, to any MRI data at all. Yet SynthMorph matches or 
outperforms classical and DL-baseline performance 
across the real-world datasets tested, while being sub-
stantially faster than the classical methods. For deform-
able registration, the fastest classical method Deeds 
requires 6  minutes, while SynthMorph takes about 
1  minute for one-time model setup and just under 
8  seconds for each subsequent registration. This 
speed-up may be particularly useful for processing 
large datasets like ABCD, enabling end-to-end registra-
tion of hundreds of image pairs per hour—the time that 
some established tools like ANTs require for a single 
registration.

The DL baselines tested have runtimes comparable to 
SynthMorph. Combining them with skull-stripping would 
generally be a viable option for fast brain-specific registra-
tion: brain extraction with a tool like SynthStrip only takes 
about 30  seconds. However, we are not aware of any 
existing DL tool that would enable deformable registration 
of unseen data with adjustable regularization strength 
without retraining. While the DL baselines break down for 
contrast pairings unobserved at training, they also cannot 
match the accuracy of classical tools for the T1w contrast 
they were trained with, likely due to domain shift.

In contrast, SynthMorph performance is relatively 
unaffected by changes in imaging contrast, resolution, or 
subject population. These results demonstrate that the 
SynthMorph strategy produces powerful networks that 
can register new image types unseen at training. We 
emphasize that our focus is on leveraging the training 
strategy to build a robust and accurate registration tool. 
It is possible that other architectures, such as the trained 
DL baselines tested in this work, perform equally well 
when trained using our strategy. Specifically, novel 
Bayesian similarity learning methods (Grzech et al., 2022; 
Su & Yang, 2023) and frameworks that jointly optimize 
the affine and deformable components emerged since 
the initial submission of this work (Chang et  al., 2023; 
Meng et al., 2023; Qiu et al., 2023; L. Zhao et al., 2023).

Although Robust down-weights the contribution of 
image regions that cannot be mapped with the linear 
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transformation model of choice, its accuracy dropped by 
several points for data without skull-stripping. The poor 
performance in cross-contrast registration may be due to 
the experimental nature of its robust-entropy cost func-
tion. We initially experimented with the recommended 
NMI metric, but registration failed for a number of cases 
as Robust produced non-invertible matrix transforms, 
and we hoped that the robust metrics would deliver 
accurate results in the presence of non-brain image 
content—which the NMI metric cannot ignore during 
optimization.

5.3.  Challenges with retraining baselines

Retraining DL baselines to improve performance for spe-
cific user data involves substantial practical challenges. 
For example, users have to reimplement the architecture 
and training setup from scratch if code is not available. If 
code is available, the user may be unfamiliar with the 
specific programming language or machine-learning 
library, and building on the original authors’ implementa-
tion typically requires setting up an often complex devel-
opment environment with matching package versions. In 
our experience, not all authors make this version informa-
tion readily available, such that users may have to resort 
to trial and error. Additionally, the user’s hardware might 
not be on par with the authors’. If a network exhausts the 
memory of the user’s GPU, avoiding prohibitively long 
training times on the CPU necessitates reducing model 
capacity, which can affect performance. We emphasize 
that because SynthMorph registers new images without 
retraining, it does not require a GPU. On the CPU, Synth-
Morph runtimes still compare favorably to classical meth-
ods (Table 2).

In principle, users could retrain DL methods despite 
the above-mentioned challenges. However, in practice 
the burden is usually sufficiently large that users of these 
technologies will turn to methods that distribute pre-
trained models. For this reason, we specifically compare 
DL baselines trained by the respective authors, to gauge 
the performance attainable without retraining. While our 
previous work (Hoffmann, Billot, et  al., 2021) demon-
strated the feasibility of training registration networks 
within the synthesis strategy and, in fact, without any 
acquired data at all, the original model predicted 
implausibly under-regularized warps, and changing the 
regularization strength required retraining. In contrast, the 
toolbox version provides fast, domain-robust, symmetric, 
invertible, general-purpose DL registration, enabling 
users to choose the optimal regularization strength for 
their specific data—without retraining. We hope that the 
broad applicability of SynthMorph may help alleviate the 
historically limited reusability of DL methods.

EasyReg (Iglesias, 2023) is a recent DL registration 
method developed concurrently with SynthMorph. Both 
methods leverage the same synthesis strategy (Hoffmann 
et al., 2022) and thus do not require retraining. They differ 
in that EasyReg fits an affine transform to hard segmenta-
tion maps and estimates transforms to MNI space inter-
nally (Fonov et al., 2009), whereas SynthMorph includes 
an affine registration network and estimates pair-wise 
transforms directly. In addition, SynthMorph enables the 
user to control the warp smoothness at test time.

5.4.  Joint registration

The joint baseline comparison highlights that deformable 
algorithms cannot always fully compensate for real-world 
inaccuracies in affine initialization. Generally, the median 
Dice overlap drops by a few percent when we initialize 
each tool with affine transforms estimated by the same 
package instead of NiftyReg, the most accurate affine 
baseline we tested. This experiment demonstrates the 
importance of affine registration for joint accuracy—
choosing affine and deformable algorithms from the 
same package is likely the most common use case.

In Section 4.4, the affine subnetwork of the 10-cascade 
VTN model consistently ranks among the least accurate 
methods even for the T1w image type it trained with. We 
highlight that the authors of VTN do not independently 
tune or compare the affine component to baselines and 
instead focus on joint affine-deformable accuracy (S. 
Zhao, Dong, et al., 2019; S. Zhao, Lau, et al., 2019). While 
the VTN publication presents the affine cascade as an 
Encoder architecture (C = 1 , Section A.1) terminating 
with an FC layer (S. Zhao, Lau, et al., 2019), the public 
implementation omits the FC layer. Some of our experi-
ments with this architecture indicated that the FC layer is 
critical to competitive performance.

5.5.  Limitations

While SynthMorph often achieves state-of-the-art perfor-
mance, we also discuss several limitations. First, the 
large-21 evaluation of registration accuracy uses the 
same anatomical labels whose overlap SynthMorph 
training optimizes. Although the analyses also compare 
the small-10 labels not optimized at training, MSE-MIND, 
and NCC, we consider only one label for the left and 
another for the right cortex, limiting the evaluation pre-
dominantly to subcortical alignment.

Second, some applications require fewer DOF than 
the full affine matrix that SynthMorph estimates. For 
example, the bulk motion in brain MRI and its mitigation 
through pulse-sequence adjustments are constrained to 
6 DOF accounting for translation and rotation (Gallichan 
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et al., 2016; Singh et al., 2024; Tisdall et al., 2012; White 
et al., 2010). Although the SynthMorph utility includes a 
model for rigid alignment trained with scaling and shear 
(Appendix B) removed from matrix t!  of Equation (7), the 
evaluation focuses on affine registration.

Third, considering voxel data alone, the SynthMorph 
rotational range is limited as the model only sees regis-
tration pairs rotated by angles below | ri | = 180

!  about 
any axis i, resulting from the rotational offset between 
any two input label maps combined with spatial aug-
mentation (Appendix Table A2), because the affine 
model did not converge with augmentation across the 
full range ri ∈[−180

!, 180! ]. However, the registration 
problem reduces to an effective 90º range when consid-
ering the orientation information stored in medical image 
headers. Ignoring headers, the rotational ranges mea-
sured across OASIS and ABCD do not exceed | ri | ≤ 43.1! 
(Appendix Fig. A4).

Fourth, we train SynthMorph as a general tool for 
cross-subject registration, and the evaluation on clinical 
data is limited to 50 glioblastoma patients.

In addition, accuracy for specialized applications such 
as tumor tracking will likely trail behind dedicated mod-
els. However, for tumor-specific training, our learning 
framework could add synthesized pathology to label 
maps from healthy subjects. For example, an extended 
synthesis may simulate the mass effect by applying 
deformations measured in healthy-pathologic image 
pairs (Hogea et al., 2007) and overlaying the deformed 
label map with a synthetic tumor label (Zhou et al., 2023) 
to subsequently generate a distinct image intensity.

5.6.  Future work

We plan to expand our work in several ways. First, we will 
provide a trained 6-DOF model for rigid registration, as 
many applications require translations and rotations only, 
and the most accurate rigid transform does not neces-
sarily correspond to the translation and rotation encoded 
in the most accurate affine transform.

Second, we will employ the proposed strategy and 
affine architecture to train specialized models for within-
subject registration for navigator-based motion correc-
tion of neuroimaging with MRI (Gallichan et  al., 2016; 
Hoffmann et al., 2016; Tisdall et al., 2012; White et al., 
2010). These models need to be efficient for real-time use 
but do not have to be invariant to MRI contrast or resolu-
tion when employed to track head-pose changes 
between navigators acquired with a fixed protocol. How-
ever, the brain-specific registration made possible by 
SynthMorph will improve motion-tracking and thus cor-
rection accuracy in the presence of jaw movement 
(Hoffmann et al., 2020).

Third, another application that can dramatically bene-
fit from anatomy-specific registration is fetal neuroimag-
ing, where the fetal brain is surrounded by amniotic fluid 
and maternal tissue. We plan to tackle registration of the 
fetal brain, which is challenging, partly due to its small 
size, and which currently relies on brain extraction prior 
to registration to remove confounding image content 
(Billot, Moyer, et al., 2023; Gaudfernau et al., 2021; Hoff-
mann, Abaci Turk, et al., 2021; Puonti et al., 2016).

6.  CONCLUSION

We present an easy-to-use DL tool for fast, symmetric, 
diffeomorphic—and thus invertible—end-to-end registra-
tion of images without preprocessing. Our study demon-
strates the feasibility of training accurate affine and joint 
registration networks that generalize to image types 
unseen at training, outperforming established baselines 
across a landscape of image contrasts and resolutions. 
In a rigorous analysis approximating the diversity of real-
world data, we find that our networks achieve invariance 
to protocol-specific image characteristics by leveraging a 
strategy that synthesizes widely variable training images 
from label maps.

Optimizing the spatial overlap of select anatomical 
labels enables anatomy-specific registration without the 
need for segmentation that removes distracting content 
from the input images. We believe this independence 
from complex preprocessing has great promise for time-
critical applications, such as real-time motion correction 
of MRI. Importantly, SynthMorph is a widely applicable 
learning strategy for anatomy-aware and acquisition-
agnostic registration of any anatomy with any network 
architecture, as long as label maps are available for 
training—there is no need for these at registration time.

DATA AND CODE AVAILABILITY

A stand-alone SynthMorph utility and the source code 
are available at https://w3id​.org​/synthmorph. We also 
distribute SynthMorph as part of the open-source Free-
Surfer package at https://freesurfer​.net. The experi-
ments presented in this study retrospectively analyze 
public datasets whose original sources we indicate in 
Section 4.1.
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A. AFFINE NETWORK ANALYSIS

A.1. Affine architectures

We analyze and compare three competing network archi-
tectures (Appendix Fig. A1) that represent state-of-the art 
methods (Balakrishnan et al., 2019; De Vos et al., 2019; 
Moyer et al., 2021; Shen et al., 2019; Yu et al., 2021; Zhu 
et al., 2021): Decoder from Section 3.3.1 and the follow-
ing Encoder and Decomposer architectures.

A.1.1. Parameter encoder

We build on networks combining a convolutional encoder 
with an FC layer (Shen et  al., 2019; Zhu et  al., 2021) 
whose N N +1( ) output units we interpret as parameters 
for translation, rotation, scale, and shear. We refer to a 
cascade of C  such subnetworks hi , with i ∈ 1, 2, …,C{ }, 
as “Encoder”. Each hi outputs a matrix constructed 
from the affine parameters as shown in Appendix B, to 
incrementally update the total transform. We obtain 
transform Ti  by matrix multiplication after invoking sub-
network hi,

	 Ti = h1(m0,f ) h2(m1,f ) ! hi (mi−1,f ) 	 (A1)

Appendix Fig. A1.  Affine architectures. Detector outputs ReLU-activated feature maps for a single image. We compute 
their centers of mass (COM) and weights separately for m and f , to fit a transform T  that aligns these point sets. A 
recurrent Encoder estimates refinements to the current transform Ti  from moved image mi = m!Ti and fixed image f .  
Decomposer predicts a one-shot displacement field (no activation) with corresponding voxel weights (ReLU), that we 
decompose in a weighted least-squares (WLS) sense to estimate affine transform T . Parentheses specify filter numbers. 
We LeakyReLU-activate the output of unnamed convolutional blocks (param. α = 0.2). Stacked convolutional blocks of 
decreasing size indicate subsampling by a factor of 2 via max pooling following each activation.

where mi = m!Ti  is the moving image transformed by Ti , 
and T0 = IN  is the identity matrix. As the subnetworks hi 
are architecturally identical, weight sharing is possible, 
and we evaluate versions of the model with and without 
weights shared across cascades.

For balanced gradient steps, we complete each sub-
network with a layer applying a learnable rescaling weight 
to each affine parameter before matrix construction.

A.1.2. Warp decomposer

We propose another architecture building on deformable 
registration models (Balakrishnan et  al., 2019; De Vos 
et al., 2019). “Decomposer” estimates a dense deforma-
tion field φθ with corresponding non-negative voxel 
weights κθ that we decompose into the affine output 
transform Tθ = hθ (m,f ) and a (discarded) residual compo-
nent δθ, that is, φθ = δθ !Tθ . The voxel weights κθ enable 
the network hθ to focus the decomposition on the anat-
omy of interest. Both (φθ,κθ ) are outputs of a single fully 
convolutional network and thus benefit from weight shar-
ing. We decompose φθ in a WLS sense over the spatial 
domain Ω of f , using the definition of t  from Equation (1) 
as the submatrix of T  that excludes the last row:
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t!θ = argmin

t x∈Ω
∑κθ (x ) || φθ (x )

⊤− ( x⊤ 1)t⊤ ||2,
	

(A2)

where t⊤ is the matrix transpose of t. Denoting W =  
diag(κθ ), and by X and y the matrices whose corre-
sponding rows are ( x⊤ 1) and φθ (x )

⊤ for each x ∈Ω, 
respectively, Equation (5) yields the closed-form WLS 
solution as in Section 3.3.1.

A.1.3. Implementation and training

Encoder predicts rotation parameters in degrees. This 
parameterization ensures varying rotation angles has an 
effect of similar magnitude as translations in millimeters, 
at the scale of the brain, which helps networks converge 
faster in our experiments. We initialize the rescaling 
weights of Encoder to 1 for translations and rotations, 
and to 0.05 for scaling and shear, which we find favorable 
to faster convergence. Appendix B includes details.

Training optimizes an unsupervised NCC loss between 
the moved image m! hθ m,f( ) and the fixed image f . All 
models train for a single strip with a batch size of 2 (Sec-
tion 3.3.5). To avoid non-invertible matrices M = X⊤WX  at 
the start of training, we pretrain Decomposer for 500 iter-
ations, temporarily replacing the output transform with 
the field Tθ = φθ ⊙κθ, where κθ are the voxel weights pre-
dicted by the network (Section A.1.2), and ⊙ denotes 
voxel-wise multiplication.

A.2. Data

For architecture analysis, we use T1w images with isotro-
pic 1-mm resolution from adult participants aged 40–
75 years from the UK Biobank (UKBB) study (Alfaro-Almagro 
et al., 2018; Miller et al., 2016; Sudlow et al., 2015). We 
conform images and derive label maps as in Section 4.1, 
extracting mid-sagittal slices from corresponding 3D 
images and label maps.

A.3. Experiment

Assuming a network capacity of ~250 k learnable param-
eters, we explore the relative strengths and weaknesses 
of each affine architecture. We conduct the experiment in 
a 2D-registration context, which reduces the computa-
tional burden to consider numerous model configurations.

A.3.1. Setup

We train networks drawing m,f{ } from a set of 5000 
images, and test registration on a validation set of 100 
distinct cross-subject pairs that does not overlap with the 
training set. To keep network capacities comparable, 

each model uses a different width w, held constant across 
its convolutional layers (Appendix Table A1). Training 
uses only the affine augmentation indicated in Appendix 
Table A2.

First, we test if Encoder benefits from weight sharing. 
We train separate models with C ∈ 1, 2, 4, 8, 16{ } subnet-
works that either share or use separate weights.

Second, we compare Decomposer variants that fit T  in 
an OLS sense, using weights ∀x ∈Ω, κθ (x ) = 1, or in a 
WLS sense. For both, we assess the impact of the reso-
lution !  of the field φθ relative to f  on performance, by 
upsampling by a factor of 2 after each of the first 
n∈ 0, 1, 2, 3{ } convolutional decoder blocks, using skip 
connections where possible, such that ! n( ) = 1/ 24−n. A 
resolution of ! = 1/ 4 corresponds to 25% of the resolu-
tion of f , that is, 25% of the original image dimensions.

Third, we analyze OLS and WLS variants of Detector 
predicting k ∈ 8, 16, 32, 64{ } feature maps to compute 
the corresponding (ai,pi ) and (bi,qi ) for i ∈ 1, 2, …,k{ }.

Finally, we select one configuration per architecture and 
analyze its performance across a range of transformation 
magnitudes. We investigate how models adapt to larger 
transforms, by fine-tuning trained weights to twice the 
affine augmentation amplitudes of Appendix Table A2 until 
convergence, and we repeat the experiment with doubled 
capacity. The test considers copies of the test set, apply-
ing random affine transforms of maximum strength 
γ ∈ 0, 2[ ] relative to the augmentation range of Appendix 
Table A2. For example, at a given γ , we uniformly sample 
a rotation angle r ∼ U (−γα,γα) for each of the 200 moving 
and fixed images, where α = 45!, and similarly for the other 
6 degrees of freedom (DOF, Appendix B).

Appendix Table A1.  Network capacity for model 
comparison.

Architecture Config. w Capacity Dev. (%)

Encoder C = 20 72 252 k +0.8
Encoder C = 21 45 250 k 0.0
Encoder C = 22 27 247 k +1.2
Encoder C = 23 16 255 k +2.0
Encoder C = 24 9 260 k +4.0
Decomposer n = 0 63 253 k +1.2
Decomposer n = 1 59 254 k +1.6
Decomposer n = 2 55 248 k −0.8
Decomposer n = 3 52 246 k −1.6
Detector k  = 23 62 248 k −0.8
Detector k  = 24 62 252 k +0.8
Detector k = 25 61 253 k +1.2
Detector k  = 26 58 246 k −1.6
Encoder C = 20 110 498 k −0.4
Decomposer n = 0 89 504 k +0.8
Detector k = 25 87 503 k +0.6

Each model configuration uses a different network width w held 
constant across its convolutional layers to reach a target capacity 
of 250 k or 500 k parameters, up to a small deviation.
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Appendix Fig. A3.  Network robustness across affine transform strengths γ  relative to the range of Appendix Table A2. At 
a given γ , we resample each image, drawing affine parameters from uniform distributions modulated by γ , such as angle 
r ∼ U −γα,γα( ) with α = 45!. We test models trained with doubled augmentation (aug) and capacity (cap), comparing C = 4 
Encoders sharing weights, the WLS Decomposer without upsampling, and a k = 32 Detector. Dice scores are averages 
over 100 UKBB cross-subject 2D pairs. Shaded areas indicate the standard error of the mean.

A.3.2. Results

Appendix Figure A2 compares registration accuracy for 
the NCC-trained models in terms of Dice overlap. Encoder 
achieves the highest accuracy, surpassing the best Detec-
tor configuration by up to 0.4 and the best Decomposer by 
up to 1 Dice point. Using more subnetworks improves 
Encoder performance, albeit with diminishing returns after 
C = 4 and at the cost of substantially longer training times 
that roughly scale with C. The local rescaling weights of 
subnetwork h1 converge to values around 1 for transla-
tions and rotations and around 0.01 for scaling and shear. 
The values tend to decrease for subsequent hi  ( i > 1), most 
noticeably the translational weights. For hC, the transla-
tional weights converge to roughly 50% of those of h1, 
suggesting that the first subnetworks perform the bulk of 
the alignment, whereas the subsequent hi refine it by 
smaller amounts. Although keeping subnetwork weights 
separate might also enable each hi  to specialize in 
increasingly fine adjustments to the final transform, in 
practice we observe no benefit in distributing capacity 
over the subnetworks compared to weight sharing.

Decomposer shows a clear trend toward lower output 
resolutions !  improving accuracy. Although decompos-
ing the field φθ in a WLS sense boosts performance by 
0.6–1.3 points over OLS, the model still lags behind the 

Appendix Fig. A2.  Network analysis. We assess Encoder with different numbers of subnetworks C. We also analyze 
Decomposer and Detector variants using ordinary (OLS) or weighted least squares (WLS), varying the warp resolution !  
and number of output feature maps k, respectively. A value of ! −1 = 4, for example, means the warp φθ has resolution and 
dimensions of only 25% compared to the input images. Dice scores are averages over 100 UKBB cross-subject 2D pairs. 
Shaded areas indicate the standard error of the mean.

other architectures while requiring 2–3 times more train-
ing iterations to converge. There is little difference across 
numbers k  of output feature maps, and choosing WLS 
over OLS results in a minor increase in accuracy.

Appendix Figure A3 shows network robustness across 
a range of maximum transform strengths γ , where we 
compare Encoder with C = 4  subnetworks sharing 
weights to the WLS variants of Decomposer without 
upsampling and Detector with k = 32 output channels, to 
balance performance and efficiency. Detector proves 
most robust to large transforms, remaining unaffected 
up to γ ≈ 1.2, that is, shifts and rotations up to 36 mm 
and 54º for each axis, respectively, and scale and shear 
up to 0.12. In contrast, accuracy declines substantially 
for Encoder and Decomposer after γ ≈ 0.8, correspond-
ing to maximum transforms of 24  mm and 36! (blue). 
Doubling the affine augmentation extends Encoder and 
Decomposer robustness to γ ≈ 1.2 but comes at the cost 
of a drop of 1 and 2 Dice points for all γ < 1.2, respec-
tively (orange). Decomposer performance is capacity-
bound, as doubling the number of parameters restores 
~50% of the drop in accuracy, whereas increasing 
capacity does not improve Encoder accuracy for γ < 1.2  
(green). Detector optimally benefits from the doubled 
affine augmentation, which helps the network perform 
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robustly across the test range (orange). Doubling capacity 
has no effect (green).

In conclusion, the marginal lead of Encoder only man-
ifests for small transforms and at C = 16 cascades. The 
16 interpolation steps of this variant render it intractably 
inefficient for 3D applications.

In contrast, Detector performs with high accuracy 
across transformation strengths, making it a more suit-
able architecture for a general registration tool.

A.4. Discussion

The network analysis shows that Encoder is an excellent 
architecture if the expected transforms are small, espe-
cially at a number of cascades C ≥ 4. For medium to large 
transforms, Encoder accuracy suffers. While the experi-
ments indicate that the reduction in accuracy can be miti-
gated by simultaneously optimizing a separate loss for 
each cascade, doing so substantially increases training 
times compared to the other architectures. Another draw-
back of Encoder is the image-size dependence introduced 
by the FC layer. Detector is a more flexible alternative that 
remains robust for medium to large transforms. While the 
results of a 2D analysis may not generalize fully to 3D reg-
istration, prior work confirms the robustness of Detector 
across large transforms in 3D (Yu et al., 2021).

Vision transformers (Dosovitskiy et al., 2020) are another 
popular approach to overcoming the local receptive field 
of convolutions with small kernel sizes, querying informa-
tion across distributed image patches. However, in prac-
tice, the sophisticated architecture is often unnecessary 
for many computer-vision tasks (Pinto et al., 2022): while 
simple small-kernel U-Nets generally perform well as their 
multi-resolution convolutions effectively widen the recep-
tive field (Z. Liu et al., 2022), increasing the kernel size can 
boost the performance of convolutional networks beyond 
that achieved by vision transformers across multiple tasks 
(Ding et al., 2022; S. Liu et al., 2022).

B. AFFINE PARAMETERIZATION

Let f  be a fixed ND image of side lengths di , where 
i ∈ 1, …,N{ } indexes the right-handed axes of the spatial 
image domain Ω. This work uses zero-centered index 
voxel coordinates x ∈Ω. That is,

	
Ω = {−Δdi, 1− Δdi,  …,di −1− Δdi }

i=1

N

∏
	

(A3)

with Δdi = (di −1) / 2, placing the center of rotations at the 
center of f . Let T : Ω→ RN be the affine coordinate trans-
form of Equation (1), which maps a moving image m onto 
the domain of f . We parameterize T  as

	 T = VRZE, 	 (A4)

where V , R, Z, E are matrices describing translation, 
rotation, scaling, and shear, respectively. Denoting by vi  
the translation and by zi the scaling parameter along axis 
i , we define
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and
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For rotations and shear, we distinguish between the 
2D and 3D case. Let ri be the angle of rotation about axis 
i , where the direction of rotation follows the right-hand 
rule. We abbreviate ci = cos( ri ) and si = sin(ri ).

B.1. Two-dimensional case

In 2D, we apply the rotation angle r = r3 and shear e using 
matrices
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B.2. Three-dimensional case

We consider intrinsic 3D rotations represented as the 
matrix product R = R1 R2 R3, where
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and we apply the shears ei{ } using the parameterization:
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B.3. Transforming coordinates

With the notation introduced in Equation (1), we trans-
form the coordinates of an ND point

	 x = (x1 x2 … xN)
⊤ ∈Ω 	 (A12)

as ′x = Ax + v, or, using a single matrix product,

	

′x

⎯
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ = T

x

⎯
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .

	

(A13)

C. GENERATION HYPERPARAMETERS

Appendix Table A2 lists the generation hyperparameter 
ranges that SynthMorph training uses for label-map aug-
mentation and image synthesis.

D. TRANSFORM ANALYSIS

In this supplementary experiment, we analyze the range 
of typical transforms a registration tool may have to cope 

Appendix Fig. A4.  Absolute affine transformation range across n = 1000 registration pairs randomly selected from either 
OASIS or ABCD. Each panel pools parameters relative to all axes i ∈ 1, 2,  3{ } of 3D space. Black bars indicate median 
values. Circles represent parameters farther than 1.5 inter-quartile ranges from the median.

with. We register 1000 distinct and randomly pooled sub-
ject pairs from OASIS and another 1000 pairs from ABCD. 
The estimated transformation matrix T  decomposes into 
the translation, rotation, scaling, and shearing parame-
ters defined in Appendix B.

Appendix Figure A4 presents the range of absolute 
transformation parameters measured within OASIS and 
ABCD, along any axis i ∈ 1, 2, 3{ } of the common space 
introduced in Section 4.1. Within OASIS, the mean tra
nslations and rotations are vi = 8.5 ± 9.9( )  mm and 
| ri | = 5.6 ± 6.0( )!, respectively (± standard deviation, SD). 
The average scaling and shearing parameters are 
| zi −1| = (5.0 ± 3.8)% and ei = 3.3 ± 3.0( )%, respectively. 
While the bulk of the transforms is small, a subset of the 
OASIS subjects are far apart, leading to large total ranges 
of translation |vi | ≤ 61.1 mm, rotation | ri | ≤ 43.1!, scaling 
| zi −1| ≤ 22.6%, and shear |ei | ≤ 22.1%. Transforms 
within ABCD follow a similar distribution.

Appendix Table A2.  Uniform hyperparameter sampling 
ranges a,b[ ] for synthesizing training images from source 
segmentation maps.

Hyperparameter Unit a b

Translation mm −30 30
Rotation ° −45 45
Scaling % 90 110
Shear % 90 110
Warp sampling SD mm 0 2
Warp blurring FWHM mm 8 32
Label intensity mean a.u. 0 1
Noise intensity SD % 10 20
Image blurring FWHM mm 0 8
Bias field sampling SD % 0 10
Bias field blurring FWHM mm 48 64
FOV cropping % 0 20
Downsampling factor % 1 8
Gamma exponent – 0.5 1.5

We abbreviate standard deviation (SD), full width at half maximum 
(FWHM), and field of view (FOV).
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Therefore, we choose to augment input label maps at 
training with affine transforms drawn from the ranges of 
Appendix Table A2, ensuring that SynthMorph covers 
the transformation parameters measured across public 
datasets.

E. LOSS COMPARISON

In another supplementary experiment, we explore the 
benefit of optimizing a loss on one-hot encoded label 
maps compared to optimizing a multi-modal image-
similarity loss. We train two identical deformable hyper-
models on synthetic images: one model optimizing MSE 
on brain labels (Section 3.3.3), the other optimizing the 
modality-independent image-similarity loss MIND-MSE 
over the brain (Section 4.3). For both models, we com-
plete the similarity term with the regularization term  
of Equation (10), and we align all training label maps 

and evaluation images to a common affine space using  
NiftyReg.

Assessing brain-registration accuracy across 100 
cross-subject pairs from the UKBB (Section A.2), we find 
that training with the label-based loss leads to better Dice 
scores at test, while the image-based loss leads to better 
MIND-MSE scores at test (Appendix Fig. A5). However, 
label-based training substantially outperforms training 
with MIND-MSE in terms of the image-similarity metric 
NCC—which, unfortunately, we cannot straightforwardly 
optimize within the synthesis-based training strategy as it 
does not perform well for image pairs with different con-
trasts (Hoffmann et al., 2022).

The image-based loss term may still be sensitive to 
some of the contrast and artifact differences between the 
fixed and moving training images that do not represent 
differences in anatomy, whereas the label-based loss is 
independent of these intensity differences by construction.

Appendix Fig. A5.  Deformable registration accuracy at test across 100 T1-weighted cross-subject UKBB pairs after 
training with label-based versus image-based loss terms. Apart from the optimized similarity loss term, the trained models 
are identical. The dots indicate optimum accuracy: higher is better, except for MIND-MSE. Shaded areas indicate the 
standard error of the mean.


