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ABSTRACT

Affine image registration is a cornerstone of medical-image analysis. While classical algorithms can achieve excellent
accuracy, they solve a time-consuming optimization for every image pair. Deep-learning (DL) methods learn a function
that maps an image pair to an output transform. Evaluating the function is fast, but capturing large transforms can be
challenging, and networks tend to struggle if a test-image characteristic shifts from the training domain, such as the
resolution. Most affine methods are agnostic to the anatomy the user wishes to align, meaning the registration will be
inaccurate if algorithms consider all structures in the image. We address these shortcomings with SynthMorph, a fast,
symmetric, diffeomorphic, and easy-to-use DL tool for joint affine-deformable registration of any brain image without
preprocessing. First, we leverage a strategy that trains networks with widely varying images synthesized from label
maps, yielding robust performance across acquisition specifics unseen at training. Second, we optimize the spatial
overlap of select anatomical labels. This enables networks to distinguish anatomy of interest from irrelevant structures,
removing the need for preprocessing that excludes content which would impinge on anatomy-specific registration.
Third, we combine the affine model with a deformable hypernetwork that lets users choose the optimal deformation-
field regularity for their specific data, at registration time, in a fraction of the time required by classical methods. This
framework is applicable to learning anatomy-aware, acquisition-agnostic registration of any anatomy with any archi-
tecture, as long as label maps are available for training. We analyze how competing architectures learn affine transforms
and compare state-of-the-art registration tools across an extremely diverse set of neuroimaging data, aiming to truly
capture the behavior of methods in the real world. SynthMorph demonstrates high accuracy and is available at
https://w3id.org/synthmorph, as a single complete end-to-end solution for registration of brain magnetic resonance
imaging (MRI) data.

Keywords: affine registration, deformable registration, deep learning, hypernetwork, domain shift, neuroimaging

1. INTRODUCTION of another image (Cox, 1996; Fischl et al., 2002, 2004;

Image registration is an essential component of medical Jenkinson et al., 2012; Tustison et al., 2013). Such trans-
image processing and analysis that estimates a mapping forms generally include an affine component accounting
from the space of the anatomy in one image to the space for global orientation such as different head positions,

Received: 25 January 2023 (originally at Neuroimage); 8 December 2023 (transfer to Imaging Neuroscience) Revision: 27 April 2024 Accepted: 21 May 2024

Available Online: 7 June 2024

© 2024 Massachusetts Institute of Technology.

”" | Published under a Creative Commons Attribution 4.0 Imaging Neuroscience, Volume 2, 2024
The MIT Press  International (CC BY 4.0) license. https://doi.org/10.1162/imag_a_00197



https://doi.org/10.1162/imag_a_00197
https://crossmark.crossref.org/dialog/?doi=10.1162/imag_a_00197&domain=pdf&date_stamp=2024-06-25
mailto:mhoffmann@mgh.harvard.edu
https://w3id.org/synthmorph

M. Hoffmann, A. Hoopes, D.N. Greve, et al.

Imaging Neuroscience, Volume 2, 2024

which are typically not of clinical interest. Transforms
often include a deformable component that may repre-
sent anatomically meaningful differences in geometry
(Hajnal & Hill, 2001). Many techniques analyze these fur-
ther, for example voxel-based morphometry (Ashburner
& Friston, 2000; Whitwell, 2009).

lterative registration has been extensively studied,
and the available methods can achieve excellent acc-
uracy both within and across magnetic resonance
imaging (MRI) contrasts (Ashburner, 2007; Cox &
Jesmanowicz, 1999; Friston et al., 1995; Jiang et al.,
1995; Lorenzi et al., 2013; Rohr et al., 2001; Rueckert
et al.,, 1999). Approaches differ in how they measure
image similarity and the strategy chosen to optimize it,
but the fundamental algorithm is the same: fit a set of
parameters modeling the spatial transformation between
an image pair by iteratively minimizing a dissimilarity
metric. While classical deformable registration can take
tens of minutes to several hours, affine registration opti-
mizes only a handful of parameters and is generally
faster (Hoffmann et al., 2015; Jenkinson & Smith, 2001;
Modat et al., 2014; Reuter et al., 2010). However, these
approaches solve an optimization problem for every new
image pair, which is inefficient: depending on the algo-
rithm, affine registration of higher-resolution structural
MRI, for example, can easily take 5-10 minutes (Table 2).
Further, iterative pipelines can be laborious to use. The
user typically has to tailor the optimization strategy and
choose a similarity metric appropriate for the image
appearance (Pustina & Cook, 2017). Often, images
require preprocessing, including intensity normalization
or removal of structures that the registration should
exclude. These shortcomings have motivated work on
deep-learning (DL) based registration.

Recent advances in DL have enabled registration with
unprecedented efficiency and accuracy (Balakrishnan
et al., 2019; Dalca et al., 2018; Eppenhof & Pluim, 2018;
Krebs et al., 2017; Li & Fan, 2017; Rohé et al., 2017;
Sokooti et al., 2017; Yang et al., 2016, 2017). In contrast
to classical approaches, DL models learn a function that
maps an input registration pair to an output transform.
While evaluating this function on a new pair of images is
fast, most existing DL methods focus on the deformable
component. Affine registration of the input images is
often assumed (Balakrishnan et al., 2019; De Vos et al.,
2017) or incorporated ad hoc, and thus given less atten-
tion than deformable registration (De Vos et al., 2019; Hu
et al., 2018; Mok & Chung, 2022; S. Zhao, Dong, et al.,
2019; S. Zhao, Lau, et al., 2019). Although state-of-the-
art deformable algorithms can compensate for sub-
optimal affine alignment to some extent, they cannot
always fully recover the lost accuracy, as the experiment
of Section 4.5 will show.

The learning-based models encompassing both
affine and deformable components usually do not con-
sider network generalization to modality variation (De
Vos et al., 2019; Shen et al., 2019; S. Zhao, Dong, et al.,
2019; S. Zhao, Lau, et al., 2019; Zhu et al., 2021). That
is, networks trained on one type of data, such as T1-
weighted (T1w) MRI, tend to inaccurately register other
types of data, such as T2-weighted (T2w) scans. Even
for similar MRI contrast, the domain shift caused by dif-
ferent noise or smoothness levels alone has the poten-
tial to reduce accuracy at test time. In contrast, learning
frameworks capitalizing on generalization techniques
and domain adaptation often do not incorporate the
fundamental affine transform (M. Chen et al., 2017;
Hoffmann et al., 2022; Iglesias et al., 2013; Qin et al.,
2019; Tanner et al., 2018).

A separate challenge for affine registration consists of
accurately aligning specific anatomy of interest in the
image while ignoring irrelevant content. Any undesired
structure that moves independently or deforms non-
linearly will reduce the accuracy of the anatomy-specific
transform unless an algorithm has the ability to ignore it.
For example, neck and tongue tissue can confuse rigid
brain registration when it deforms non-rigidly (Andrade
et al., 2018; Fein et al., 2006; Fischmeister et al., 2013;
Hoffmann et al., 2020).

1.1. Contribution

In this work, we present a single, easy-to-use DL tool for
fast, symmetric, diffeomorphic—and thus invertible—
end-to-end affine and deformable brain registration with-
out preprocessing (Fig. 1). The tool performs robustly
across MRI contrasts, intensity scales, and resolutions.
We address the domain dependency and anatomical
non-specificity of affine registration: while invariance to
acquisition specifics will enable networks to generalize to
new image types without retraining, our anatomy-specific
training strategy alleviates the need for pre-processing
segmentation steps that remove image content that
would distract most registration methods—as Sec-
tion 4.4 will show for the example of skull-stripping
(Eskildsen et al., 2012; Hoopes, Mora, et al., 2022;
Iglesias et al., 2011; Smith, 2002).

Our work builds on ideas from DL-based registration,
affine registration, and a recent synthesis-based training
strategy that promotes data independence by exposing
networks to arbitrary image contrasts (Billot, Greve, et al.,
2023; Billot et al., 2020; Hoffmann et al., 2022, 2023;
Hoopes, Mora, et al., 2022; Kelley et al., 2024). First, we
analyze three fundamental network architectures, to pro-
vide insight into how DL models learn and best represent
the affine component (Appendix A). Second, we select an
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Fig. 1.

Skull-stripped T1-weighted T2-weighted PD-weighted

Pediatric Clinical

Examples of anatomy-aware SynthMorph affine 3D registration showing the moving brain transformed onto the

fixed brain (red overlay). Trained with highly variable synthetic data, SynthMorph generalizes across a diverse array of real-
world contrasts, resolutions, and subject populations without any preprocessing.

optimized affine architecture and train it with synthetic
data only, making it robust across a landscape of acquired
image types without exposing it to any real images during
training. Third, we combine the affine model with a
deformable hypernetwork to create an end-to-end regis-
tration tool, enabling users to choose a regularization
strength that is optimal for their own data without retrain-
ing and in a fraction of the time required by classical
methods. Fourth, we test our models across an extremely
diverse set of images, aiming to truly capture the variabil-
ity of real-world data. We compare their performance
against popular affine and deformable toolboxes in Sec-
tions 4.4 and 4.5, respectively, to assess the accuracy
users can achieve with off-the-shelf implementations for
image types unseen at training.

We freely distribute our source code and tool, Synth-
Morph, at https://w3id.org/synthmorph. SynthMorph will
ship with the upcoming FreeSurfer release (Fischl, 2012).
For users who wish to use SynthMorph without down-
loading FreeSurfer, we maintain a standalone container
with a wrapper script for easy setup and use supporting
any of the following container tools: Docker, Podman,
Apptainer, or Singularity.

2. RELATED WORK

While this section provides an overview of widely adopted
strategies for medical image registration, in-depth review
articles are available (Fu et al., 2020; Oliveira & Tavares,
2014; Wyawahare et al., 2009).

2.1. Classical registration

Classical registration is driven by an objective function,
which measures similarity in appearance between the
moving and the fixed image. A simple and effective
choice for images of the same contrast is the mean
squared error (MSE). Normalized cross-correlation (NCC)
is also widely used, because it provides excellent accu-

racy independent of the intensity scale (Avants et al.,
2008). Registration of images across contrasts or modal-
ities generally employs objective functions such as nor-
malized mutual information (NMI) (Maes et al., 1997;
Wells et al., 1996) or correlation ratio (Roche et al., 1998),
as these do not assume similar appearance of the input
images. Another class of classical methods uses metrics
based on patch similarity (Glocker et al., 2008, 2011; Ou
et al.,, 2011), which can outperform simpler metrics
across modalities (Hoffmann et al., 2022).

To improve computational efficiency and avoid local
minima, many classical techniques perform multi-resolution
searches (Hellier et al., 2001; Nestares & Heeger, 2000).
First, this strategy coarsely aligns smoothed downsampled
versions of the input images. This initial solution is subse-
quently refined at higher resolutions until the original images
align precisely (Avants et al., 2011; Modat et al., 2014;
Reuter et al., 2010). Additionally, an initial grid search over
a set of rotation parameters can help constrain this scale-
space approach to a neighborhood around the global opti-
mum (Jenkinson & Smith, 2001; Jenkinson et al., 2012).

Instead of optimizing image similarity, another regis-
tration paradigm detects landmarks and matches these
across the images (Myronenko & Song, 2010). Early
work relied on user assistance to identify fiducials
(Besl & McKay, 1992; Meyer et al., 1995). More recent
computer-vision approaches automatically extract fea-
tures (Machado et al., 2018; Toews & Wells, 2013), for
example from entropy (Wachinger & Navab, 2010, 2012)
or difference-of-Gaussians images (Lowe, 2004; Rister
et al., 2017; Wachinger et al., 2018). The performance of
this strategy depends on the invariance of landmarks
across viewpoints and intensity scales (Matas et al.,
2004).

2.2. Deep-learning registration

Analogous to classical registration, unsupervised deform-
able DL methods fit the parameters of a deep neural
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network by optimizing a loss function that measures
image similarity—but across many image pairs
(Balakrishnan et al., 2019; Dalca et al., 2019; De Vos
et al.,, 2019; Guo, 2019; Hoffmann et al., 2022; Krebs
et al.,, 2019). In contrast, supervised DL strategies
(Eppenhof & Pluim, 2018; Gopinath et al., 2024; Krebs
et al., 2017; Rohé et al., 2017; Sokooti et al., 2017; Yang
et al., 2016, 2017) train a network to reproduce ground-
truth transforms, for example obtained with classical
tools, and tend to underperform relative to their unsuper-
vised counterparts (Hoffmann et al., 2022; Young et al.,
2022), although warping features at the end of each
U-Net (Ronneberger et al., 2015) level can close the per-
formance gap (Young et al., 2022).

2.2.1. Affine deep-learning registration

A straightforward option for an affine-registration net-
work architecture is combining a convolutional encoder
with a fully connected (FC) layer to predict the parame-
ters of an affine transform in one shot (Shen et al., 2019;
S. Zhao, Dong, et al., 2019; S. Zhao, Lau, et al., 2019;
Zhu et al., 2021). A series of convolutional blocks succes-
sively halve the image dimension, such that the output of
the final convolution has substantially fewer voxels than
the input images. This facilitates the use of the FC layer
with the desired number of output units, preventing the
number of network parameters from becoming intracta-
bly large. Networks typically concatenate the input
images before passing them through the encoder. To
benefit from weight sharing, twin networks pass the fixed
and moving images separately and connect their outputs
at the end (X. Chen et al., 2021; De Vos et al., 2019).

As affine transforms have a global effect on the image,
some architectures replace the locally operating convolu-
tional layers with vision transformers (Dosovitskiy et al.,
2020; Mok & Chung, 2022). These models subdivide their
inputs into patch embeddings and pass them through the
transformer, before a multi-layer perceptron (MLP) out-
puts a transformation matrix. Multiple such modules in
series can successively refine the affine transform if each
module applies its output transform to the moving image
before passing it onto the next stage (Mok & Chung,
2022). Composition of the transforms from each step
produces the final output matrix.

Another affine DL strategy (Moyer et al., 2021; Yu
et al., 2021) derives an affine transform without requiring
MLP or FC layers, similar to the classical feature
extraction and matching approach (Section 2.1). This
method separately passes the moving and the fixed
image through a convolutional encoder to detect two
corresponding sets of feature maps. Computing the
barycenter of each feature map yields moving and fixed

point clouds, and a least-squares (LS) fit provides a
transform aligning them. The approach is robust across
large transforms (Yu et al., 2021), while removing the FC
layer alleviates the dependency of the architecture on a
specific image size.

In this work, we will test these fundamental DL archi-
tectures and extend them to build an end-to-end solution
for joint affine and deformable registration that is aware
of the anatomy of interest.

2.3. Robustness and anatomical specificity

Indiscriminate registration of images as a whole can limit
the accurate alignment of specific substructures, such as
the brain in whole-head MRI. One group of classical
methods avoids this problem by down-weighting image
regions that cannot be mapped accurately with the cho-
sen transformation model, for example using an itera-
tively re-weighted LS algorithm (Billings et al., 2015;
Gelfand et al., 2005; Modat et al., 2014; Nestares &
Heeger, 2000; Puglisi & Battiato, 2011; Reuter et al.,
2010). Few approaches focus on specific anatomical fea-
tures, for example by restricting the registration to regions
of an atlas with high prior probability for belonging to a
particular tissue class (Fischl et al., 2002). The affine reg-
istration tools commonly used in neuroimage analysis
(Cox, 1996; Friston et al., 1995; Jenkinson & Smith, 2001;
Modat et al., 2014) instead expect—and require—that
distracting image content be removed from the input
data as a preprocessing step for optimal performance
(Eskildsen et al., 2012; Iglesias et al., 2011; Klein et al.,
2009; Smith, 2002). Similarly, many DL algorithms
assume intensity-normalized and skull-stripped input
images (Balakrishnan et al., 2019; Yu et al., 2021; S.
Zhao, Lau, et al., 2019), preventing their applicability to
diverse unprocessed data.

2.4. Domain generalizability

The adaptability of neural networks to out-of-distribution
data generally presents a challenge to their deployment
(Sun et al., 2016; M. Wang & Deng, 2018). Mitigation
strategies include augmenting the variability of the train-
ing distribution, for example by adding random noise or
applying geometric transforms (Chaitanya et al., 2019;
Perez & Wang, 2017; Shorten & Khoshgoftaar, 2019; A.
Zhao, Balakrishnan, et al., 2019). Transfer learning
adapts a trained network to a new domain by fine-tuning
deeper layers on the target distribution (Kamnitsas
et al., 2017; Zhuang et al., 2020). These methods require
training data from the target domain. By contrast, within
medical imaging, a recent strategy synthesizes widely
variable training images to promote data independence.
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The resulting networks generalize beyond dataset spe-
cifics and perform with high accuracy on tasks including
segmentation (Billot, Greve, et al., 2023; Billot et al.,
2020), deformable registration (Hoffmann et al., 2022),
and skull-stripping (Hoopes, Mora, et al., 2022; Kelley
et al.,, 2024). We build on this technology to achieve
end-to-end registration.

3. METHOD

3.1. Background

3.1.1. Affine registration

Let m be a moving and f a fixed image in N-dimensional
(ND) space. We train a deep neural network hy with learn-
able weights 6 to predict a global transform Ty : Q — RN
that maps the spatial domain Q of f onto m, given images
{m,f}. The transform Ty = hy(m,f) is a matrix

where matrix Ag € RVN represents rotation, scaling, and

shear, and vy e RV is a vector of translational shifts,
such that t; e RN+ we fit the network weights 6 to
training set D subject to

f=argmin E

B0 0] e

where the loss £, measures the similarity of two input
images, and mo Ty means m transformed by Ty = hy (m,f).

3.1.2. Synthesis-based training

A recent strategy (Billot, Greve, et al., 2023; Billot et al.,
2020; Hoffmann et al., 2022, 2023; Hoopes, Mora, et al.,
2022) achieves robustness to preprocessing and acquisi-
tion specifics by training networks exclusively with syn-
thetic images generated from label maps. From a set of
label maps {s,,s; }, a generative model synthesizes cor-
responding widely variable images {m,f} as network
inputs. Instead of image similarity, the strategy optimizes
spatial label overlap with a (soft) Dice-based loss £,

(Milletari et al., 2016), strictly independent of image
appearance:
lioTe)(X)x 57 1; (%)
Lo(60,5m,5¢) = ; z( ) )
M ( OTe)(X)+Sf 1 (x)

er

where s|/- represents the one-hot encoded label j e J of
label map s defined at the voxel locations x € Q in the
discrete spatial domain Q of f. The generative model
requires only a few label maps to produce a stream of
diverse training images that help the network acc-
urately generalize to real medical images of any con-
trast at test time, which it can register without needing
label maps.

3.2. Anatomy-aware registration

As we build on our recent work on deformable registra-
tion, SynthMorph (Hoffmann et al., 2022), here we only
provide a high-level overview and focus on what is new
for affine and joint affine-deformable registration. Fig-
ure 2 illustrates our setup for affine registration.

3.2.1. Label maps

Every training iteration, we draw a pair of moving and
fixed brain segmentations. We apply random spatial
transformations to each of them to augment the range of
head orientations and anatomical variability in the train-
ing set. Specifically, we construct an affine matrix from
random translation, rotation, scaling, and shear as
detailed in Appendix B.

We compose the affine transform with a randomly
sampled and randomly smoothed deformation field
(Hoffmann et al., 2022) and apply the composite trans-
form in a single interpolation step. Finally, we simulate
acquisitions with a partial field of view (FOV) by randomly
cropping the label map, yielding {s,,,s; }.

3.2.2. Anatomical specificity

Let K be the complete set of labels in {s;,s;}. To
encourage networks to register specific anatomy while
ignoring irrelevant image content, we propose to recode
{s,s¢} such that the label maps include only a subset
of labels J c K. For brain-specific registration, J con-
sists of individual brain structures in the deformable
case or larger tissue classes in the affine case. At train-
ing, the loss L optimizes only the overlap of J, whereas
we synthesize images from the complete set of labels
K, providing rich image content outside the brain as
illustrated in Figure 2.

3.2.3. Image synthesis

Given label map s,,, we generate image m with random
contrast, noise, and artifact corruption (and similarly f
from s;). Following SynthMorph, we first sample a mean
intensity for each label j € K in s,,, and assign this value to
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Moving s,,

Moving labels Image m

Synthesize

Affine
CNN hg

-

Recode labels of interest

Affine

Moved s, o T Fixed s¢

i

Overlap loss £,

Fig. 2. Training strategy for affine registration. At each iteration, we augment a pair of moving and fixed label maps
{sm,sf} and synthesize images {m,f} from them. The network hg predicts an affine transform T from which we compute
the moved label map Sp, o T from. Loss £, recodes the labels in {sm,sf} to optimize the overlap of select anatomy of interest

only, such as WM, GM, and CSF.

all voxels associated with label j. Second, we corrupt m
by randomly applying additive Gaussian noise, anisotro-
pic Gaussian blurring, a multiplicative spatial intensity
bias field, intensity exponentiation with a global parame-
ter, and downsampling along randomized axes. In aggre-
gate, these steps produce widely varying intensity
distributions within each anatomical label (Fig. 3).

3.2.4. Generation hyperparameters

We choose the affine augmentation range such that it
encompasses real-world transforms. Appendix Figure A4
(Appendix D) shows the distribution of affine transforma-
tion parameters measured across public datasets. We
adapt all other values from prior work, which thoroughly
analyzed their impact on accuracy (Hoffmann et al.,
2022): Appendix Table A2 (Appendix C) lists hyperparam-
eters for label-map augmentation and image synthesis.

3.3. Learning

3.3.1. Symmetric affine network

Estimating an affine transform T from a pair of medical
images in ND requires reducing a large input space of the
order of 100 k-10 M voxels to only N(N+1) output
parameters. We extend a recent architecture (Hoffmann
et al., 2023; Moyer et al., 2021; A. Q. Wang et al., 2023;
Yu et al., 2021), “Detector” in Appendix Figure A1 (Appen-
dix A), that takes a single image as input and predicts
a set of k non-negative spatial feature maps F; with
ie{1 2,...,k}, to support full affine transforms (Yu et al.,
2021) and weighted least-squares (WLS) (Moyer et al.,
2021). Following a series of convolutions, we obtain the
center of mass a; and channel power p;|,, for each fea-
ture map F; |, of the moving image,

xeQ xeQ

Q)

and separately center of mass b; with channel power
p;ils for each F;|; of the fixed image. We interpret the sets
{a;} and {b;} as corresponding moving and fixed point
clouds. Detector refers to a network hgy that predicts the
affine transform fy = hy(m,f) aligning these point clouds
subject to

K
to =arg minZe,- la'- (b Dt"|7
t =

)

where we use the definition of t from Equation (1) as the
submatrix of T that excludes the last row, and we define
the normalized scalar weight ¢; as

k k
& =Pilm Q. pilm) " pile Qo)™ ©)
j=1 j=1

Let X and y be matrices whose " rows are (a,-T 1) and

b;", respectively. Denoting W = diag({e,- }) the closed-form
WLS solution f¢ of Equation (5) is such that

fo = (X TWX) X TWy. @)

3.3.2. Symmetric joint registration

For joint registration, we combine the affine model hy with
a deformable SynthMorph architecture (Hoffmann et al.,
2022). Let gy be a convolutional neural network with
parameters n that predicts a stationary velocity field
(SVF) from concatenated images {m,f}. While hy predicts
symmetric affine transforms by construction, we explic-
itly symmetrize the SVF:
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Fig. 3. Synthetic 3D training data with arbitrary contrasts, resolutions, and artifact levels, generated from brain label
maps. The image characteristics exceed the realistic range to promote network generalization across acquisition protocols.
All examples are based on the same label map. In practice, we use several different subjects.

Vi =O.5[gn(m,f)—gn(f, m)] (8)

from which we obtain the diffeomorphic warp field ¢,, via
vector-field integration (Ashburner, 2007; Dalca et al.,
2018), and integrating v# =—v,, yields the inverse warp
q);‘, up to the numerical precision of the algorithm used.
Usually, approaches to learning deformable registration
directly fit weights n by optimizing a loss of the form

ﬁ(ﬂ,sm,sf)= (1_)\')‘Co(q)nasmisf)"')"‘cr(q)n): (9)

where £, quantifies label overlap as before, L, is a regu-
larization term that encourages smooth warps, and the
parameter A €0, 1] controls the weighting of both terms.

Because directly fitting n subject to Equation (9) yields
an inflexible network predicting warps of fixed regularity,
we parameterize n using a hypernetwork. Let I'; be a
neural network with trainable parameters &. Following
our prior work (Hoopes, Hoffmann, et al., 2022; Hoopes

et al., 2021), hypernetwork 1";; takes the regularization
weight A as input and outputs the weights n=T; () of
the deformable task network 9n. Consequently, 9y has
no learnable parameters in our setup—its convolutional
kernels m can flexibly adapt in response to the value A
takes at test time.

As shown in Figure 4, for symmetric joint registration,
we move images {m,f} into an affine mid-space using the
matrix square roots of Ty = hy(m,f) and have g, predict
v, between images moTQV2 and foTe‘V2 using kernels
n =T (1) specific to input A.

While users of SynthMorph can choose between run-
ning the deformable step in the affine mid-space or after
applying the full transform Ty to m, only the former yields
symmetric joint transforms. At training, the total forward
transform is yge = 7—91/20 Ogo T91/2, and the loss of Equation
(9) becomes

L6, ..)=(1-MLo(Wee, Sm.Sr) + AL (o), (10)
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Fig. 4. Training strategy for joint registration. As in Figure 2, network hy predicts an affine transform T between moving
and fixed images {m,f} synthesized from label maps {sm,sf}. Hypernetwork I'e takes the regularization weight A as

input and outputs the parameters n= I'e (x) of network 9y. The moved images moT"? and foT™

V2 are inputs to In>

which predicts a diffeomorphic warp field ¢. We form the symmetric joint transform y = TV2, [0} oTV2 by composition and
compute the moved label map s, ° . Loss £, recodes the labels of {sm,sf} to optimize the overlap of select anatomy of

interest—in this case brain labels only.

We choose £,(¢)=||Vull,, where u is the displace-
ment of the deformation ¢ = id +u, and id is the identity
field.

3.3.3. Overlap loss

In this work, we replace the Dice-based overlap loss term
of Equation (3) with a simpler term (Heinrich, 2019; Y.
Wang et al., 2021) that measures MSE between one-hot
encoded labels s},

1
Al

XeQ

£,(,..) [(sm 5 oTo ) ()= ¢, (X)]2 (11)

where we replace weights 6 with {6,&} and transform Ty
with g for joint registration. MSE is sensitive to the pro-
portionate contribution of each label jedJ to overall
alignment, whereas Equation (3) normalizes the contribu-
tion of each label by its respective size.

As a result, the MSE loss term discourages the optimi-
zation to disproportionately focus on aligning smaller
structures, which we find favorable for warp regularity at
structure boundaries. In Appendix E, we analyze how
optimizing £, on label maps compares to an image-
similarity loss term.

3.3.4. Implementation

Affine SynthMorph implements Detector (Appendix Fig.
A1) with w =256 convolutional filters and k =64 output
feature maps. The network width w does not vary within
the model. We activate the output of each internal block

with LeakyRelLU (parameter o.=0.2) and downsample
encoder blocks by a factor of 2 using max pooling.

As in our prior work, the deformable model gy imple-
ments a U-Net (Ronneberger et al., 2015) architecture of
width w =256, and we integrate the SVF v, via scaling
and squaring (Ashburner, 2007; Dalca et al., 2018). Hyper-
model I% is a simple feed-forward network with 4 ReLU-
activated hidden FC layers of 32 output units each.

All kernels are of size 3" . For computational efficiency,
our 3D models linearly downsample the network inputs
{m,f} and loss inputs {s,,s;} by a factor of 2. We min-
max normalize input images such that their intensities fall
in the interval [0, 1]. Affine coordinate transforms operate
in a zero-centered index space. Appendix B includes fur-
ther details.

3.3.5. Optimization

We fit model parameters with stochastic gradient descent
using Adam (Kingma & Ba, 2014) over consecutive train-
ing strips S; (ie{1,2,...}) of 10° batches each. At the
beginning of each strip or in the event of divergence, we
choose successively smaller learning rates from / € {1 0
1072107°}. For fast convergence, the first strip of affine
training optimizes the overlap of larger label groups than
indicated in Section 4.1.3: left hemisphere, right hemi-
sphere, and cerebellum.

Because SynthMorph training is generally not prone to
overfitting, it uses a simple stopping criterion measuring
progress P, over batches t € S; in terms of validation Dice
overlap D (Section 4.3). The 3D models train with a batch
size of 1 until the mean overlap across S; exceeds
P, =99.9% of the maximum, that is,
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—{|S, -1
P ={ISi maxD(t)}" 2.D(¢). (12)

teS;

For joint registration, we uniformly sample hyperpa-
rameter values A €0, 1. For efficiency, we freeze par-
ameters 0 of the trained affine submodel hy to fit only
the weights & of hypernetwork I, optimizing the loss of
Equation (10).

However, unfreezing the affine weights within the setup
of Figure 4 has no substantial impact on accuracy. Specif-
ically, after one additional strip of joint training, deformable
large-21 Dice scores change by AD e[-0.5, 0.5] depend-
ing on the dataset, while affine accuracy decreases by
only AD < 0.1 points relative to affine-only training.

4. EXPERIMENTS

In a first experiment, we train the Detector architecture
with synthetic data only. This experiment focuses on
building a readily usable tool, and we assess its accuracy
in various affine registration tasks. In contrast, Appendix
A analyzes the performance of the different architectures
across a broad range of variants and transformations, to
understand how networks learn and best represent the
affine component. In a second experiment, we complete
the affine model with a deformable hypernetwork to pro-
duce a joint registration solution and compare its perfor-
mance to readily usable baseline tools.

4.1. Data

The training-data synthesis and analyses use 3D brain
MRI scans from a broad collection of public data, aiming
to truly capture the behavior of the methods facing the
diversity of real-world images. While users of Synth-
Morph do not need to preprocess their data, our experi-
ments use images conformed to the same isotropic
256 x 256 x 256 1-mm voxel space using trilinear interpo-
lation, and by cropping and zero-padding symmetrically.
We rearrange the voxel data to produce gross left-inferior-
anterior (LIA) orientation with respect to the volume axes.

4.1.1. Generation label maps

For training-data synthesis, we compose a set of 100
whole-head tissue segmentations, each derived from
T1w acquisitions with isotropic ~1-mm resolution. We do
not use these T1w images in our experiments. The train-
ing segmentations include 30 locally scanned adult FSM
subjects (Greve et al., 2021), 30 participants of the cross-
sectional Open Access Series of Imaging Studies (OASIS,
Marcus et al. 2007), 30 teenagers from the Adolescent
Brain Cognitive Development (ABCD) study (Casey et al.,

2018), and 10 infants scanned at Boston Children’s Hos-
pital at age 0-18 months (de Macedo Rodrigues et al.,
2015; Hoopes, Mora, et al., 2022).

We derive brain label maps from the conformed T1w
scans using SynthSeg (Billot, Greve, et al., 2023; Billot
et al,, 2020). We emphasize that inaccuracies in the seg-
mentations have little impact on our strategy, as the images
synthesized from the segmentations will be in perfect
voxel-wise registration with the labels by construction.

To facilitate the synthesis of spatially complex image
signals outside the brain, we use a simple thresholding
procedure to add non-brain labels to each label map. The
procedure sorts non-zero image voxels outside the brain
into one of six intensity bins, equalizing bin sizes on a
per-image basis.

4.1.2. Evaluation images

For baseline comparisons, we pool adult and pediatric
T1w images from the Brain Genomics Superstruct Proj-
ect (GSP, Holmes et al., 2015), the Lifespan Human Con-
nectome Project Development (HCP-D, Harms et al.,
2018; Somerville et al., 2018), MASiVar (MASI, Cai et al.,
2021), and IXI (Imperial College London, 2015).

The evaluation set also includes IXI scans with T2w
and PDw contrast. As all these images are near-isotropic
~1-mm acquisitions, we complement the dataset with
contrast-enhanced clinical T1w stacks of axial 6-mm
slices from subjects with newly diagnosed glioblastoma
(QIN, Clark et al., 2013; Mamonov and Kalpathy-Cramer
2016; Prah et al., 2015).

Our experiments use the held-out test images listed in
Table 1. For monitoring and model validation, we use a
handful of images pooled from the same datasets, which
do not overlap with the test subjects. We do not consider
QIN at validation and validate performance in pediatric
data with held-out ABCD subjects. To measure registra-
tion accuracy, we compute anatomical brain label maps
individually for each conformed image volume using
SynthSeg (Billot, Greve, et al., 2023; Billot et al., 2020).
Although SynthMorph does not require skull-stripping,
we skull-strip all images with SynthStrip (Hoopes, Mora,
et al.,, 2022) for a fair comparison across images that
have undergone the preprocessing steps expected by
the baseline methods—unless explicitly noted.

4.1.3. Labels

The training segmentations encompass a set K of 38 differ-
ent labels, 32 of which are standard (lateralized) FreeSurfer
labels (Fischl et al., 2002). Parenthesizing their average size
over FSM subjects relative to the total brain volume and
combining the left and right hemispheres, these structures
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Table 1. Acquired test data for baseline comparisons
spanning a range of MRI contrasts, resolutions (res.), and
subject populations.

Dataset Type Res. (mm?3) Subjects
GSP T1w, age 18-35a 1.2x1.2x1.2 100
IXI Tiw 0.9x0.9x1.2 100
T2w 0.9x0.9x1.2 100
PDw 0.9%x0.9%x1.2 100
HCP-D T1w, age 5-21 a 0.8x0.8x0.8 80
MASiI T1w, age 5-8 a 1.0x1.0x1.0 80
QIN post-contrast T1w  0.4x0.4x6.0 50

QIN includes contrast-enhanced clinical stacks of thick slices from
patients with glioblastoma, whereas the other acquisitions use 3D
sequences. While HCP-D and MASI include pediatric data, the
remaining datasets consist of adult populations.

are: cerebral cortex (43.4%) and white matter (36.8%), cer-
ebellar cortex (9.2%) and white matter (2.2%), brainstem
(1.8%), lateral ventricle (1.7%), thalamus (1.2%), putamen
(0.8%), ventral DC (0.6%), hippocampus (0.6%), caudate
(0.6%), amygdala (0.3%), pallidum (0.3%), 4" ventricle
(0.1%), accumbens (0.1%), inferior lateral ventricle (0.1%),
3 ventricle (0.1%), and background.

The remaining labels map to variable image features
outside the brain (Section 4.1.1). These added labels do
not necessarily represent distinct or meaningful anatomi-
cal structures but expose the networks to non-brain
image content at training. We use all labels K to synthe-
size training images but optimize the overlap of brain-
specific labels J c K based on Equation (3).

For affine training and evaluation, we merge brain
structures such that J consists of larger tissue classes:
left and right cerebral cortex, left and right subcortex, and
cerebellum. These classes ensure that small labels like
the caudate do not have a disproportionate influence on
global brain alignment—different groupings may work
equally well. In contrast, deformable registration rede-
fines J to include the 21 largest brain structures up to
and including caudate. We use these labels for deform-
able training and evaluation, as prior analyses report that
“only overlap scores of localized anatomical regions reli-
ably distinguish reasonable from inaccurate registrations”
(Rohlfing, 2011).

For a less circular assessment of deformable registra-
tion accuracy, we separately consider the set of the 10
finest-grained structures above whose overlap we do not
optimize at training, including the labels from amygdala
through 3 ventricle.

4.2. Baselines

We test 3D affine and deformable classical registration
with ANTs (Avants et al., 2011) version 2.3.5 using rec-
ommended parameters (Pustina & Cook, 2017) for the
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NCC metric within and MI across MRI contrasts. We
test NiftyReg (Modat et al., 2014) version 1.5.58 with
the NMI metric and enable SVF integration for joint reg-
istration, as in our approach. We also run the patch-
similarity method Deeds (Heinrich et al.,, 2012),
2022-04-12 version. For a rigorous baseline assess-
ment, we reduce the default grid spacing from
8x7x6x5x%x4 to 6x5x4x3x%x2. This setting effectively
trades a shorter runtime for increased accuracy as rec-
ommended by the author, since it optimizes the para-
metric B-spline model on a finer control point grid
(Heinrich et al., 2013). The modification results in a
1-2% accuracy boost for most datasets as in prior
work (Hoffmann et al., 2022). We test affine-only regis-
tration with mri_robust_register (“Robust”) from Free-
Surfer 7.3 (Fischl, 2012) using its robust cost functions
(Reuter et al., 2010), as only the robust cost functions
can down-weight the contribution of regions that
deform non-linearly. However, we highlight that the
robust-entropy metric for cross-modal registration is
experimental. We use Robust with up to 100 iterations
and initialize the affine registration with a rigid run.
Finally, we also test affine and deformable registration
with the FSL (Jenkinson et al., 2012) tools FLIRT
(Jenkinson & Smith, 2001) version 6.0 and FNIRT
(Andersson et al., 2007) build 507. While the recom-
mended cost function of FLIRT, correlation ratio, is suit-
able within and across modalities, we emphasize that
users cannot change FNIRT’s MSE objective, which
specifically targets within-contrast registration.

We compare DL model variants covering popular
registration architectures in Section A.3. This analysis
uses the same capacity and training set for each model.
For our final synthesis-based tool in Sections 4.4 and
4.5, we consider readily available machine-learning
baselines trained by their respective authors, to assess
their generalization capabilities to the diverse data we
have gathered. This strategy evaluates what level of
accuracy a user can expect from off-the-shelf methods
without retraining, as retraining is generally challenging
for users (see Section 5.3). We test: KeyMorph (Yu
et al., 2021) and C2FViT (Mok & Chung, 2022) models
trained for pair-wise affine, and the 10-cascade Volume
Tweening Network (VTN) (S. Zhao, Dong, et al., 2019; S.
Zhao, Lau, et al.,, 2019) trained for joint affine-
deformable registration. Each network receives inputs
with the expected image orientation, resolution, and
intensity normalization.

In contrast to the baselines, SynthMorph is the only
method optimizing spatial label overlap. While this likely
provides an advantage when measuring accuracy with a
label-based metric, optimizing an image-based objective
may be advantageous when measuring image similarity at
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Table 2. Single-threaded runtimes on a 2.2-GHz Intel
Xeon Silver 4114 CPU, averaged over n=10 runs.

Method

Affine (seconds) Deformable (seconds)

ANTs 777.8£36.0 17189.5 + 52.7
NiftyReg 293.7+£0.5 7021.0+£21.3
Deeds 142.8 £ 0.3 383.1 £ 0.6
Robust 1598.9+£ 0.8 -

FSL 151.7 £ 0.4 81415+ 195.7
C2FViT 43.7£0.3 -
KeyMorph 36.2+2.6 -

VTNP - 63.5+0.3
SynthMorph 72.4+£0.8 887.4+25

Errors indicate standard deviations. On an NVIDIA V100 GPU,
all affine and deformable DL runtimes (bottom) are ~1 minute,
including setup.

aTimed on the GPU as the device is hard-coded.
®Implementation performs joint registration only.

test. For a balanced comparison, we assess registration
accuracy in terms of label overlap and image similarity.

4.3. Evaluation metrics

To measure registration accuracy, we propagate the
moving label map s,,, using the predicted transform T to
obtain the moved label map s,,, o T and compute its (hard)
Dice overlap D (Dice, 1945) with the fixed label map s;. In
addition, we evaluate MSE of the modality-independent
neighborhood descriptor (MIND, Heinrich et al., 2012)
between the moved image moT and the fixed image f as
well as NCC for same-contrast registration. As we seek
to measure brain-specific registration accuracy, we
remove any image content external to the brain labels
prior to evaluating the image-based metrics. We use
paired two-sided t-tests to determine whether differ-
ences in mean scores between methods are significant.
We analyze the regularity of deformation field ¢ in
terms of the mean absolute value of the logarithm of the
Jacobian determinant J, over brain voxels Qg. This quan-
tity is sensitive to the deviation of J, from the ideal value
1 and thus measures the width of the distribution of log-
Jacobian determinants, the “log-Jacobian spread” o:

1

5(9) = o

D 1)) .

xeQp

(13)

where Qg ={xeQg|J,(x)#0}. We also determine the
proportion of folding voxels, that is, locations x € Qg
where J, (x) < 0. We compare the inverse consistency of
registration methods by means of the average displace-
ment E that voxels undergo upon subsequent applica-
tion of transforms {T;,T,},

E(MT)=—— > Il(TpoT(x)= Xl

xeQpg

1
IQ—Eil (14)
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Specifically, we evaluate the mean symmetric inverse
consistency | of method h with Ty = h(m,f) and T, = h(f, m)
for any pair of input images {m,f}:

I(h,m,f)=05[ E(T,T,)+E(T,,T) |- (15)

4.4. Experiment 1: affine registration

In this experiment, we focus on “affine SynthMorph,” an
anatomy-aware affine registration tool that generalizes
across acquisition protocols while enabling brain regis-
tration without preprocessing. In contrast, Appendix A
compares competing network architectures and analyzes
how they learn and best represent affine transforms.

4.4.1. Setup

First, to give the reader an idea of the accuracy achiev-
able with off-the-shelf algorithms for data unseen at
training, we compare affine SynthMorph to classical and
DL baselines trained by the respective authors. We test
affine registration of skull-stripped images across MRI
contrasts, for a variety of different imaging resolutions
and populations, including adults, children, and patients
with glioblastoma. We also compare the symmetry of
each method with regard to reversing the order of input
images. Each test involves held-out image pairs from
separate subjects, summarized in Table 1.

Second, we analyze the effect of thick-slice acquisi-
tions on affine SynthMorph accuracy compared to classi-
cal baselines. This experiment retrospectively reduces
the through-plane resolution of the moving image of each
GSP — IXI, pair to produce stacks of axial slices of thick-
ness Az €{1, 2, ..., 10} mm. At each Az, we simulate par-
tial voluming (Kneeland et al., 1986; Simmons et al.,
1994) by smoothing all moving images in slice-normal
direction with a 1D Gaussian kernel of full-width at half-
maximum (FWHM) Az and by extracting slices Az apart
using linear interpolation. Finally, we restore the initial vol-
ume size by linearly upsampling through-plane.

Third, we evaluate the importance of skull-stripping
the input images for accurate registration. With the
exception of skull-stripping, we preprocess full-head
GSP — IXI,, pairs as expected by each method and
assess brain-specific registration accuracy by evaluating
image-based metrics within the brain only.

4.4.2. Results

Figure 6 shows representative registration examples for
the tested dataset combinations, while Figure 5 quantita-
tively compares affine registration accuracy across skull-
stripped image pairings. Although affine SynthMorph has
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Fig. 5. Affine 3D registration accuracy as mean Dice scores and in terms of image similarity. Each violin shows the
distribution across the skull-stripped cross-subject pairs from Table 1. For comparison, the asterisk indicates SynthMorph
performance without skull-stripping. Downward arrows indicate median scores outside the plotted range. Higher Dice and

lower MSE-MIND are better.

not seen any real MRI data at training, it achieves the
highest Dice score for every dataset tested.

For the GSP— IXl,, and MASi— HCP-D pairs that
most baselines are optimized for, SynthMorph exceeds
the best-performing baseline NiftyReg by AD = 0.1 points
(p<10™ and p<0.03 for paired two-sided t-tests).
Across all other pairings, SynthMorph matches the Dice
score achieved by the most accurate affine baseline,
which is NiftyReg in every case. Method Deeds performs
least accurately, lagging behind the second last classical
baselines by AD =10.1 or more. The other classical meth-
ods perform robustly across all testsets, generally within
1-2 Dice points of each other.

On the MASIi— HCP-D testset, FLIRT’s performance
exceeds Robust by AD=3 (p:10‘23) and matches it
across GSP — IXI., pairs (p=0.8). Across the remaining
testsets, FLIRT ranks fourth among classical baselines.

In contrast, the DL baselines do not reach the same
accuracy. Even for the T1w pairs they were trained with,
SynthMorph leads by AD=3.7 or more, likely due to
domain shift between the test and baseline training data.
As expected, DL-baseline performance continues to
decrease as the test-image characteristics deviate fur-
ther from those at training. Interestingly, VTN consistently
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ranks among the least accurate baselines, although its
preprocessing effectively initializes the translation and
scaling parameters by separately adjusting the moving
and fixed images such that the brain fills the whole FOV.

Even though affine SynthMorph does not directly opti-
mize image similarity at training, it surpasses NiftyReg for
GSP—IXL, (p<2x107"") and MASi—HCP-D (p <0.02)
pairs in terms of the image-based MSE-MIND metric.
Generally, MSE-MIND ranks the methods similarly to Dice
overlap, as does NCC across the T1w registration pairs
(Fig. 8a).

Figure 9 shows that SynthMorph’s affine transforms
across GSP — IXI,, are more symmetric than all baselines
tested. When we reverse the order of the input images,
the mean inconsistency between forward and backward
transforms is /=5x10"° mm per brain voxel, closely fol-
lowed by NiftyReg. Robust also uses an inverse-
consistent algorithm, leading to /= 8x10° mm. The
remaining baselines are substantially less symmetric,
with inconsistencies of / = 2 mm for KeyMorph or more.

Figure 7a shows how registration accuracy evolves
with increasing moving-image slice thickness Az. Synth-
Morph and ANTs remain the most robust for Az<6 mm,
reducing only to 99% at Az =10 mm. For Az €[2, 5] mm,
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Fig. 6. Representative affine 3D registration examples
showing the image moved by each method overlaid with
the fixed brain mask (red). Each row is an example from a
different dataset. Subscripts indicate MRI contrast.

ANTs accuracy even improves slightly, likely benefiting
from the smoothing effect on the images. The classical
baselines FLIRT and Robust are only mildly affected by
thicker slices. While their Dice scores decrease more rap-
idly for Az <8, their accuracy reduces to 99% and about
98.5% at Az =10 mm. Deeds is noticeably more suscep-
tible to resolution changes, decreasing to less than 95%
at Az >6.5 mm.

Figure 10 compares the drop in median Dice overlap
the affine methods undergo when presented with full-
head as opposed to skull-stripped GSP— IXI, images.
Except for Deeds, brain-specific accuracy reduces sub-
stantially, by 3% in the case of NiftyReg and up to 8% for
ANTs. Affine SynthMorph remains most robust: its Dice
overlap changes by less than 0.05%. Deeds’ accuracy
increases but it still yields the lowest score for the testset.

Table 2 lists the registration time required by each
affine method on a 2.2-GHz Intel Xeon Silver 4114 CPU
using a single computational thread. The values shown
reflect averages over n=10 uni-modal runs. Classical
runtimes range between 2 and 27 minutes, with Deeds
being the fastest and Robust being the slowest, although
we highlight that we substantially increased the number
of Robust iterations. Complete single-threaded DL run-
times are about 1 minute, including model setup. How-
ever, inference only takes a few seconds and reduces to
well under a second on an NVIDIA V100 GPU.

4.5. Experiment 2: joint registration

Motivated by the affine performance of SynthMorph, we
complete the model with a hypernetwork-powered
deformable module to achieve 3D joint affine-deformable
registration (Fig. 4). Our focus is on building a complete
and readily usable tool that generalizes across scan pro-
tocols without requiring preprocessing.

4.5.1. Setup

First, we compare deformable registration using the held-
out image pairs from separate subjects for each of the
datasets of Table 1. The comparison employs skull-
stripped images initialized with affine transforms esti-
mated from skull-stripped data by NiftyReg, the most
accurate baseline in Figure 5. We compare deformable
SynthMorph performance to classical baselines and VTN,
a joint DL baseline trained by the original authors—we
seek to gauge the accuracy achievable with off-the-shelf
algorithms for data unseen at training.

Second, we analyze the robustness of each tool to
sub-optimal affine initialization. In order to cover realistic
affine inaccuracies and assess the most likely and
intended use case, we repeat the previous experiment,
this time initializing each method with the affine transform
obtained with the same method —that is, we test end-to-
end joint registration with each tool. Similarly, we evalu-
ate the importance of removing non-brain voxels from the
input images. In this experiment, we initialize each
method with affine transforms estimated by NiftyReg
from skull-stripped data, and test deformable registration
on a full-head version of the images.

13
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Third, we analyze the effect of reducing the through-
plane resolution Az on SynthMorph performance com-
pared to classical baselines, following the steps outlined
in Section 4.4. In this experiment, we initialize each
method with affine transforms estimated by NiftyReg
from skull-stripped images, such that the comparison
solely reflects deformable registration accuracy.

Fourth, we analyze warp-field regularity and registra-
tion accuracy over dataset GSP—IXI,, as a function of
the regularization weight L. We also compare the sym-
metry of each method with regard to reversing the order
of the input images.

4.5.2. Results

Figure 11 shows typical deformable registration exam-
ples for each method, and Figure 12 compares registra-
tion accuracy across testsets in terms of mean Dice
overlap D over the 21 largest anatomical structures
(large-21), 10 fine-grained structures (small-10) not opti-
mized at training, and image similarity measured with
MSE-MIND. Supplementary Figures S1-S5 show
deformable registration accuracy across individual brain
structures.

Although SynthMorph trains with synthetic images
only, it achieves the highest large-21 score for every
skull-stripped testset. For all cross-contrast pairings
and the pediatric testset, SynthMorph leads by at least
2 Dice points compared to the highest baseline score
(MASi—HCP-D, p <1072 for paired two-sided t-test)
and often much more. Across these testsets, Synth-
Morph performance remains largely invariant, whereas
the other methods except Deeds struggle. Crucially,
the distribution of SynthMorph scores for isotropic data
is substantially narrower than the baseline scores, indi-
cating the absence of gross inaccuracies such as pairs
with D <65 that several baselines yield across all iso-
tropic contrast pairings. On the clinical testset QIN
—IXI,, SynthMorph surpasses the baselines by at least
AD = 4. For GSP—IXI,,, it outperforms the best classi-
cal baseline ANTs by 1 Dice point (p < 10‘21).

Across the T1w testsets, FNIRT outperforms NiftyReg
by several Dice points and also ANTs for MASi — HCP-D
pairs. Surprisingly, FNIRT beats NiftyReg’s NMI imple-
mentation for GSP—IXI,,, even though FNIRT’s cost
function targets within-contrast registration. The most
robust baseline is Deeds, which ranks third at adult T1w
registration. Its performance reduces the least for the
cross-contrast and clinical testsets, where it achieves the
highest Dice overlap after SynthMorph.

The joint DL baseline VTN vyields relatively low accu-
racy across all testsets. This was expected for the cross-
contrast pairings, since the model was trained with T1w
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GSP—-IXIt; GSP—IXIr

GSP-IXIpp MASi—HCP-D QIN - IXI;

NiftyReg

SynthMorph

Fig. 11. Deformable 3D registration examples comparing
the moved image mo¢ and the deformation field ¢ across
methods. Each row is an example from a different dataset.
For comparability, we initialize all methods with NiftyReg’s
affine registration.
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Fig. 12. Deformable 3D registration accuracy as mean Dice scores over the 21 largest brain regions (large-21), 10 fine-
grained structures not optimized at SynthMorph training (small-10), and image similarity. Each violin shows the distribution
across the skull-stripped cross-subject pairs from Table 1. For comparability, we initialize all deformable tools with affine
transforms estimated by NiftyReg. The asterisk indicates SynthMorph performance without skull-stripping. Downward
arrows show median scores outside the plotted range. Higher Dice and lower MSE-MIND are better.

data, confirming the data dependency introduced with
standard training. However, VTN lags behind the worst-
performing classical baseline for GSP—IXI,, data, Nif-
tyReg, too (AD=2.1, p< 3><10‘7), likely due to domain
shift as in the affine case.

Considering the fine-grained small-10 brain structures
held out at training, SynthMorph consistently matches or
exceeds the best performing method, except for MASI
—HCP-D, where Deeds leads by AD=0.6 (p=107%). On
the clinical testset, SynthMorph leads by at least AD > 4.5
(p <1078). Interestingly, SynthMorph outperforms all base-
lines across testsets in terms of MSE-MIND (p < 10‘4) and
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NCC for same-contrast registration (Fig. 8b, p<107),
although it is the only method not optimizing or trained
with an image-based loss.

Figure 13 shows the relative change in large-21 Dice
for each tool when run end-to-end compared to affine
initialization with NiftyReg. SynthMorph’s drop in per-
formance is 0.05% or less across all datasets. For GSP
—IXI,, classical-baseline accuracy decreases by no
more than 0.3%. Across the other datasets, the classical
methods generally cannot make up for the discrepancy
between their own and NiftyReg’s affine transform: accu-
racy drops by up to 5.2%, whereas SynthMorph remains
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robust. The performance of VTN reduces by at least
8.3% across testsets and often much more, highlighting
the detrimental effect an inaccurate affine transform can
have on the subsequent deformable step.

Figure 10 shows the importance of skull-stripping for
deformable registration accuracy. Generally, deformable
accuracy suffers less than affine registration when
switching to full-head images, as the algorithms deform
image regions independently. SynthMorph remains most
robust to the change in preprocessing; its large-21 Dice
overlap increases by 0.1%. With a drop of 0.08%, Deeds
is similarly robust. In contrast, FNIRT’s performance is
most affected, reducing by 5% —a decline of the same
order as for most affine methods.

Figure 14 analyzes SynthMorph warp smoothness. As
expected, image-based NCC and large-21 Dice accuracy
peak for weak regularization of A <0.2. In contrast, over-
lap of the small-10 regions not optimized at training ben-
efits from smoother warps, with an optimum at A = 0.45.
The fields predicted by SynthMorph achieve the lowest
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log-Jacobian spread across all baselines for A >0.45.
Similarly, the proportion of folding brain voxels decreases
with higher A and drops to 0% for A > 0.33 (10 integration
steps). Deeds yields 6x107% folding brain voxels,
whereas the other baselines achieve 0%. For realistic
warp fields with characteristics that match or exceed the
tested baselines, we conduct all comparisons in this
study with a default weight A = 0.5. We highlight that A is
an input to SynthMorph, enabling users to choose the
optimal regularization strength for their specific data
without retraining.

Deformable registration with SynthMorph is highly
symmetric (Fig. 9), with a mean forward-backward incon-
sistency of only / =0.09 mm per brain voxel that closely
follows ANTs (0.01 mm) and NiftyReg (0.05 mm). In con-
trast, the remaining methods are substantially more
inconsistent, with / = 0.34 mm for Deeds or more.

Figure 7b assesses the dependency of registration
performance on slice thickness Az. Similar to the affine
case, deformable accuracy decreases for thicker slices,
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albeit faster. SynthMorph performs most robustly. Its
accuracy remains unchanged up to Az<3 mm and
reduces only to 95% at Az =8.5 mm. ANTs is the most
robust classical method, but its accuracy drops consid-
erably faster than SynthMorph. FLIRT and NiftyReg are
most affected at reduced resolution, performing at less
than 95% accuracy for Az>4 mm and Az>4.5 mm,
respectively.

Deformable registration often requires substantially
more time than affine registration (Table 2). On the GPU,
SynthMorph takes less than 8 seconds per image pair for
registration, 10, and resampling. One-time model setup
requires about 1 minute, after which the user could regis-
ter any number of image pairs without reinitializing the
model. SynthMorph requires about 16 GB of GPU mem-
ory for affine and 24 GB for deformable registration. On
the CPU, the fastest classical method Deeds requires
only about 6 minutes in single-threaded mode, whereas
ANTs takes almost 5 hours. While VTN’s joint runtime is
1 minute, SynthMorph needs about 15 minutes for
deformable registration on a single thread.

5. DISCUSSION

We present an easy-to-use DL tool for end-to-end affine
and deformable brain registration. SynthMorph achieves
robust performance across acquisition characteristics
such as imaging contrast, resolution, and pathology,
enabling accurate registration for brain scans without
preprocessing. The SynthMorph strategy alleviates the
dependency on acquired training data by generating
widely variable images from anatomical label maps—and
there is no need for label maps at registration time.

5.1. Anatomy-specific registration

Accurate registration of the specific anatomy of interest
requires ignoring or down-weighting the contribution of
irrelevant image content to the optimization metric. Syn-
thMorph learns what anatomy is pertinent to the task, as
we optimize the overlap of select labels of interest only. It
is likely that the model learns an implicit segmentation of
the image, in the sense that it focuses on deforming the
anatomy of interest, warping the remainder of the image
only to satisfy regularization constraints. In contrast,
many existing classical and DL methods cannot distin-
guish between relevant and irrelevant image features,
and thus have to rely on explicit segmentation to remove
distracting content prior to registration, such as skull-
stripping (Eskildsen et al., 2012; Hoopes, Mora, et al.,
2022; Iglesias et al., 2011; Smith, 2002).

Pathology missing from the training labels does not
necessarily hamper overall registration accuracy, as the
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experiments with scans from patients with glioblastoma
show. In fact, SynthMorph outperforms all deformable
baselines tested on these data. However, we do not
expect these missing structures to be mapped with high
accuracy, in particular if the structure is absent in one of
the test images—this is no different from the behavior of
methods optimizing image similarity.

5.2. Baseline performance

Networks trained with the SynthMorph strategy do not
have access to the MRI contrasts of the testsets nor, in
fact, to any MRI data at all. Yet SynthMorph matches or
outperforms classical and DL-baseline performance
across the real-world datasets tested, while being sub-
stantially faster than the classical methods. For deform-
able registration, the fastest classical method Deeds
requires 6 minutes, while SynthMorph takes about
1 minute for one-time model setup and just under
8 seconds for each subsequent registration. This
speed-up may be particularly useful for processing
large datasets like ABCD, enabling end-to-end registra-
tion of hundreds of image pairs per hour—the time that
some established tools like ANTs require for a single
registration.

The DL baselines tested have runtimes comparable to
SynthMorph. Combining them with skull-stripping would
generally be a viable option for fast brain-specific registra-
tion: brain extraction with a tool like SynthStrip only takes
about 30 seconds. However, we are not aware of any
existing DL tool that would enable deformable registration
of unseen data with adjustable regularization strength
without retraining. While the DL baselines break down for
contrast pairings unobserved at training, they also cannot
match the accuracy of classical tools for the T1w contrast
they were trained with, likely due to domain shift.

In contrast, SynthMorph performance is relatively
unaffected by changes in imaging contrast, resolution, or
subject population. These results demonstrate that the
SynthMorph strategy produces powerful networks that
can register new image types unseen at training. We
emphasize that our focus is on leveraging the training
strategy to build a robust and accurate registration tool.
It is possible that other architectures, such as the trained
DL baselines tested in this work, perform equally well
when trained using our strategy. Specifically, novel
Bayesian similarity learning methods (Grzech et al., 2022;
Su & Yang, 2023) and frameworks that jointly optimize
the affine and deformable components emerged since
the initial submission of this work (Chang et al., 2023;
Meng et al., 2023; Qiu et al., 2023; L. Zhao et al., 2023).

Although Robust down-weights the contribution of
image regions that cannot be mapped with the linear
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transformation model of choice, its accuracy dropped by
several points for data without skull-stripping. The poor
performance in cross-contrast registration may be due to
the experimental nature of its robust-entropy cost func-
tion. We initially experimented with the recommended
NMI metric, but registration failed for a number of cases
as Robust produced non-invertible matrix transforms,
and we hoped that the robust metrics would deliver
accurate results in the presence of non-brain image
content—which the NMI metric cannot ignore during
optimization.

5.3. Challenges with retraining baselines

Retraining DL baselines to improve performance for spe-
cific user data involves substantial practical challenges.
For example, users have to reimplement the architecture
and training setup from scratch if code is not available. If
code is available, the user may be unfamiliar with the
specific programming language or machine-learning
library, and building on the original authors’ implementa-
tion typically requires setting up an often complex devel-
opment environment with matching package versions. In
our experience, not all authors make this version informa-
tion readily available, such that users may have to resort
to trial and error. Additionally, the user’s hardware might
not be on par with the authors’. If a network exhausts the
memory of the user’s GPU, avoiding prohibitively long
training times on the CPU necessitates reducing model
capacity, which can affect performance. We emphasize
that because SynthMorph registers new images without
retraining, it does not require a GPU. On the CPU, Synth-
Morph runtimes still compare favorably to classical meth-
ods (Table 2).

In principle, users could retrain DL methods despite
the above-mentioned challenges. However, in practice
the burden is usually sufficiently large that users of these
technologies will turn to methods that distribute pre-
trained models. For this reason, we specifically compare
DL baselines trained by the respective authors, to gauge
the performance attainable without retraining. While our
previous work (Hoffmann, Billot, et al., 2021) demon-
strated the feasibility of training registration networks
within the synthesis strategy and, in fact, without any
acquired data at all, the original model predicted
implausibly under-regularized warps, and changing the
regularization strength required retraining. In contrast, the
toolbox version provides fast, domain-robust, symmetric,
invertible, general-purpose DL registration, enabling
users to choose the optimal regularization strength for
their specific data—without retraining. We hope that the
broad applicability of SynthMorph may help alleviate the
historically limited reusability of DL methods.
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EasyReg (Iglesias, 2023) is a recent DL registration
method developed concurrently with SynthMorph. Both
methods leverage the same synthesis strategy (Hoffmann
et al., 2022) and thus do not require retraining. They differ
in that EasyReg fits an affine transform to hard segmenta-
tion maps and estimates transforms to MNI space inter-
nally (Fonov et al., 2009), whereas SynthMorph includes
an affine registration network and estimates pair-wise
transforms directly. In addition, SynthMorph enables the
user to control the warp smoothness at test time.

5.4. Joint registration

The joint baseline comparison highlights that deformable
algorithms cannot always fully compensate for real-world
inaccuracies in affine initialization. Generally, the median
Dice overlap drops by a few percent when we initialize
each tool with affine transforms estimated by the same
package instead of NiftyReg, the most accurate affine
baseline we tested. This experiment demonstrates the
importance of affine registration for joint accuracy—
choosing affine and deformable algorithms from the
same package is likely the most common use case.

In Section 4.4, the affine subnetwork of the 10-cascade
VTN model consistently ranks among the least accurate
methods even for the T1w image type it trained with. We
highlight that the authors of VTN do not independently
tune or compare the affine component to baselines and
instead focus on joint affine-deformable accuracy (S.
Zhao, Dong, et al., 2019; S. Zhao, Lau, et al., 2019). While
the VTN publication presents the affine cascade as an
Encoder architecture (C=1, Section A.1) terminating
with an FC layer (S. Zhao, Lau, et al., 2019), the public
implementation omits the FC layer. Some of our experi-
ments with this architecture indicated that the FC layer is
critical to competitive performance.

5.5. Limitations

While SynthMorph often achieves state-of-the-art perfor-
mance, we also discuss several limitations. First, the
large-21 evaluation of registration accuracy uses the
same anatomical labels whose overlap SynthMorph
training optimizes. Although the analyses also compare
the small-10 labels not optimized at training, MSE-MIND,
and NCC, we consider only one label for the left and
another for the right cortex, limiting the evaluation pre-
dominantly to subcortical alignment.

Second, some applications require fewer DOF than
the full affine matrix that SynthMorph estimates. For
example, the bulk motion in brain MRI and its mitigation
through pulse-sequence adjustments are constrained to
6 DOF accounting for translation and rotation (Gallichan
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et al.,, 2016; Singh et al., 2024; Tisdall et al., 2012; White
et al., 2010). Although the SynthMorph utility includes a
model for rigid alignment trained with scaling and shear
(Appendix B) removed from matrix t of Equation (7), the
evaluation focuses on affine registration.

Third, considering voxel data alone, the SynthMorph
rotational range is limited as the model only sees regis-
tration pairs rotated by angles below |r;|=180° about
any axis i, resulting from the rotational offset between
any two input label maps combined with spatial aug-
mentation (Appendix Table A2), because the affine
model did not converge with augmentation across the
full range r, €[-180°, 180°]. However, the registration
problem reduces to an effective 90° range when consid-
ering the orientation information stored in medical image
headers. Ignoring headers, the rotational ranges mea-
sured across OASIS and ABCD do not exceed |r;| < 43.1
(Appendix Fig. A4).

Fourth, we train SynthMorph as a general tool for
cross-subject registration, and the evaluation on clinical
data is limited to 50 glioblastoma patients.

In addition, accuracy for specialized applications such
as tumor tracking will likely trail behind dedicated mod-
els. However, for tumor-specific training, our learning
framework could add synthesized pathology to label
maps from healthy subjects. For example, an extended
synthesis may simulate the mass effect by applying
deformations measured in healthy-pathologic image
pairs (Hogea et al., 2007) and overlaying the deformed
label map with a synthetic tumor label (Zhou et al., 2023)
to subsequently generate a distinct image intensity.

5.6. Future work

We plan to expand our work in several ways. First, we will
provide a trained 6-DOF model for rigid registration, as
many applications require translations and rotations only,
and the most accurate rigid transform does not neces-
sarily correspond to the translation and rotation encoded
in the most accurate affine transform.

Second, we will employ the proposed strategy and
affine architecture to train specialized models for within-
subject registration for navigator-based motion correc-
tion of neuroimaging with MRI (Gallichan et al., 2016;
Hoffmann et al., 2016; Tisdall et al., 2012; White et al.,
2010). These models need to be efficient for real-time use
but do not have to be invariant to MRI contrast or resolu-
tion when employed to track head-pose changes
between navigators acquired with a fixed protocol. How-
ever, the brain-specific registration made possible by
SynthMorph will improve motion-tracking and thus cor-
rection accuracy in the presence of jaw movement
(Hoffmann et al., 2020).
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Third, another application that can dramatically bene-
fit from anatomy-specific registration is fetal neuroimag-
ing, where the fetal brain is surrounded by amniotic fluid
and maternal tissue. We plan to tackle registration of the
fetal brain, which is challenging, partly due to its small
size, and which currently relies on brain extraction prior
to registration to remove confounding image content
(Billot, Moyer, et al., 2023; Gaudfernau et al., 2021; Hoff-
mann, Abaci Turk, et al., 2021; Puonti et al., 2016).

6. CONCLUSION

We present an easy-to-use DL tool for fast, symmetric,
diffeomorphic —and thus invertible —end-to-end registra-
tion of images without preprocessing. Our study demon-
strates the feasibility of training accurate affine and joint
registration networks that generalize to image types
unseen at training, outperforming established baselines
across a landscape of image contrasts and resolutions.
In a rigorous analysis approximating the diversity of real-
world data, we find that our networks achieve invariance
to protocol-specific image characteristics by leveraging a
strategy that synthesizes widely variable training images
from label maps.

Optimizing the spatial overlap of select anatomical
labels enables anatomy-specific registration without the
need for segmentation that removes distracting content
from the input images. We believe this independence
from complex preprocessing has great promise for time-
critical applications, such as real-time motion correction
of MRI. Importantly, SynthMorph is a widely applicable
learning strategy for anatomy-aware and acquisition-
agnostic registration of any anatomy with any network
architecture, as long as label maps are available for
training—there is no need for these at registration time.

DATA AND CODE AVAILABILITY

A stand-alone SynthMorph utility and the source code
are available at https://w3id.org/synthmorph. We also
distribute SynthMorph as part of the open-source Free-
Surfer package at https://freesurfer.net. The experi-
ments presented in this study retrospectively analyze
public datasets whose original sources we indicate in
Section 4.1.
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A. AFFINE NETWORK ANALYSIS
A.1. Affine architectures

We analyze and compare three competing network archi-
tectures (Appendix Fig. A1) that represent state-of-the art
methods (Balakrishnan et al., 2019; De Vos et al., 2019;
Moyer et al., 2021; Shen et al., 2019; Yu et al., 2021; Zhu
et al., 2021): Decoder from Section 3.3.1 and the follow-
ing Encoder and Decomposer architectures.

A.1.1. Parameter encoder

We build on networks combining a convolutional encoder
with an FC layer (Shen et al., 2019; Zhu et al., 2021)
whose N(N +1) output units we interpret as parameters
for translation, rotation, scale, and shear. We refer to a
cascade of C such subnetworks h;, with i€ {1, 2,...,C},
as “Encoder”. Each h; outputs a matrix constructed
from the affine parameters as shown in Appendix B, to
incrementally update the total transform. We obtain
transform T; by matrix multiplication after invoking sub-
network h;,

where m; = m-T, is the moving image transformed by T;,
and T, =/, is the identity matrix. As the subnetworks h;
are architecturally identical, weight sharing is possible,
and we evaluate versions of the model with and without
weights shared across cascades.

For balanced gradient steps, we complete each sub-
network with a layer applying a learnable rescaling weight
to each affine parameter before matrix construction.

A.1.2. Warp decomposer

We propose another architecture building on deformable
registration models (Balakrishnan et al., 2019; De Vos
et al., 2019). “Decomposer” estimates a dense deforma-
tion field ¢y with corresponding non-negative voxel
weights kg that we decompose into the affine output
transform Ty = hy(m,f) and a (discarded) residual compo-
nent §,, that is, ¢g =34 o Ty. The voxel weights kg enable
the network hy to focus the decomposition on the anat-
omy of interest. Both (¢g,kg) are outputs of a single fully
convolutional network and thus benefit from weight shar-
ing. We decompose ¢q in @ WLS sense over the spatial
domain Q of f, using the definition of t from Equation (1)

T; = hy(mg,f) hy(my,f) --- hi(m;_4,f) (A1) as the submatrix of T that excludes the last row:
Feature detector Parameter encoder Warp decomposer
Fixed f — Initialize my = m, Ty = Iy | Moving m I | Fixed f |
A 4 A 4
—>[ Moving m; I | Fixed f | | Concatenate |
A 4 A 4
| (M'/) | I Concatenate | 1
| ) | | | ) |
A 4 A 4
) | | () | | () |
3 | W) | I |
o A 4
2 l ) |
E (w)

N(N + 1) parameters
A 4

Multiplicative weights
A 4

Parameterize matrix M

\4

COM, weights |«

Transform T; 1 = T; o M
A 4

| Reinvoke

COM, weights
A 4

Moved mj,q = mo T;yq

| Warp (N) || Weights (1) |
v v

I WLS fit transform T I

[] Model input [] Non-trainable [ | Convolutional

Appendix Fig. A1.
their centers of mass (COM) and weights separately for m and

| WLS fit transform T |

[ Fully connected [ Local parameter

Affine architectures. Detector outputs ReLU-activated feature maps for a single image. We compute

f, to fit a transform T that aligns these point sets. A

recurrent Encoder estimates refinements to the current transform T; from moved image m; = moT; and fixed image f.
Decomposer predicts a one-shot displacement field (no activation) with corresponding voxel weights (ReLU), that we
decompose in a weighted least-squares (WLS) sense to estimate affine transform T. Parentheses specify filter numbers.
We LeakyRelLU-activate the output of unnamed convolutional blocks (param. o = 0.2). Stacked convolutional blocks of
decreasing size indicate subsampling by a factor of 2 via max pooling following each activation.

28



M. Hoffmann, A. Hoopes, D.N. Greve, et al.

Imaging Neuroscience, Volume 2, 2024

to =argmin D kq(x) [|0p(x) = (x" t" [P
t xeQ)

(A2)

where t' is the matrix transpose of t. Denoting W =
diag(xg), and by X and y the matrices whose corre-
sponding rows are (x" 1) and ¢g(x)" for each xeQ,
respectively, Equation (5) yields the closed-form WLS
solution as in Section 3.3.1.

A.1.3. Implementation and training

Encoder predicts rotation parameters in degrees. This
parameterization ensures varying rotation angles has an
effect of similar magnitude as translations in millimeters,
at the scale of the brain, which helps networks converge
faster in our experiments. We initialize the rescaling
weights of Encoder to 1 for translations and rotations,
and to 0.05 for scaling and shear, which we find favorable
to faster convergence. Appendix B includes details.

Training optimizes an unsupervised NCC loss between
the moved image mohy(m,f) and the fixed image f. All
models train for a single strip with a batch size of 2 (Sec-
tion 3.3.5). To avoid non-invertible matrices M = X "WX at
the start of training, we pretrain Decomposer for 500 iter-
ations, temporarily replacing the output transform with
the field Ty = ¢ O kg, Where Kq are the voxel weights pre-
dicted by the network (Section A.1.2), and © denotes
voxel-wise multiplication.

A.2. Data

For architecture analysis, we use T1w images with isotro-
pic 1-mm resolution from adult participants aged 40-
75years fromthe UK Biobank (UKBB) study (Alfaro-Almagro
et al., 2018; Miller et al., 2016; Sudlow et al., 2015). We
conform images and derive label maps as in Section 4.1,
extracting mid-sagittal slices from corresponding 3D
images and label maps.

A.3. Experiment

Assuming a network capacity of ~250 k learnable param-
eters, we explore the relative strengths and weaknesses
of each affine architecture. We conduct the experiment in
a 2D-registration context, which reduces the computa-
tional burden to consider numerous model configurations.

A.3.1. Setup

We train networks drawing {m,f} from a set of 5000
images, and test registration on a validation set of 100
distinct cross-subject pairs that does not overlap with the
training set. To keep network capacities comparable,
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Appendix Table A1. Network capacity for model
comparison.

Architecture Config. w Capacity Dev. (%)
Encoder c=2° 72 252 k +0.8
Encoder c=2 45 250 k 0.0
Encoder c=2° 27 247 k +1.2
Encoder c=2° 16 255 k +2.0
Encoder c=2% 9 260 k +4.0
Decomposer n=0 63 253 k +1.2
Decomposer n=1 59 254 k +1.6
Decomposer n=2 55 248 k -0.8
Decomposer n=3 52 246 k -1.6
Detector k=23 62 248 k -0.8
Detector k=24 62 252 k +0.8
Detector k=2° 61 253 k +1.2
Detector k =2° 58 246 k -1.6
Encoder c=2° 110 498 k -0.4
Decomposer n=0 89 504 k +0.8
Detector k=2° 87 503 k +0.6

Each model configuration uses a different network width w held
constant across its convolutional layers to reach a target capacity
of 250 k or 500 k parameters, up to a small deviation.

each model uses a different width w, held constant across
its convolutional layers (Appendix Table A1). Training
uses only the affine augmentation indicated in Appendix
Table A2.

First, we test if Encoder benefits from weight sharing.
We train separate models with C € {1, 2, 4, 8, 16} subnet-
works that either share or use separate weights.

Second, we compare Decomposer variants that fit T in
an OLS sense, using weights Vx e€Q, xg(x)=1, or in a
WLS sense. For both, we assess the impact of the reso-
lution ¢ of the field ¢q relative to f on performance, by
upsampling by a factor of 2 after each of the first
ne{0, 1, 2, 3} convolutional decoder blocks, using skip
connections where possible, such that o(n)=1/2". A
resolution of ¢ =1/4 corresponds to 25% of the resolu-
tion of f, that is, 25% of the original image dimensions.

Third, we analyze OLS and WLS variants of Detector
predicting k €{8, 16, 32, 64} feature maps to compute
the corresponding (a;,p;) and (b;,q;) for i €{1, 2, ...,k}.

Finally, we select one configuration per architecture and
analyze its performance across a range of transformation
magnitudes. We investigate how models adapt to larger
transforms, by fine-tuning trained weights to twice the
affine augmentation amplitudes of Appendix Table A2 until
convergence, and we repeat the experiment with doubled
capacity. The test considers copies of the test set, apply-
ing random affine transforms of maximum strength
v €[0, 2] relative to the augmentation range of Appendix
Table A2. For example, at a given ¥, we uniformly sample
a rotation angle r ~ U(—yo,yar) for each of the 200 moving
and fixed images, where o = 45°, and similarly for the other
6 degrees of freedom (DOF, Appendix B).
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A.3.2. Results

Appendix Figure A2 compares registration accuracy for
the NCC-trained models in terms of Dice overlap. Encoder
achieves the highest accuracy, surpassing the best Detec-
tor configuration by up to 0.4 and the best Decomposer by
up to 1 Dice point. Using more subnetworks improves
Encoder performance, albeit with diminishing returns after
C =4 and at the cost of substantially longer training times
that roughly scale with C. The local rescaling weights of
subnetwork h; converge to values around 1 for transla-
tions and rotations and around 0.01 for scaling and shear.
The values tend to decrease for subsequent h; (i > 1), most
noticeably the translational weights. For A, the transla-
tional weights converge to roughly 50% of those of h,
suggesting that the first subnetworks perform the bulk of
the alignment, whereas the subsequent h; refine it by
smaller amounts. Although keeping subnetwork weights
separate might also enable each h; to specialize in
increasingly fine adjustments to the final transform, in
practice we observe no benefit in distributing capacity
over the subnetworks compared to weight sharing.
Decomposer shows a clear trend toward lower output
resolutions ¢ improving accuracy. Although decompos-
ing the field ¢g in @ WLS sense boosts performance by
0.6-1.3 points over OLS, the model still lags behind the

other architectures while requiring 2-3 times more train-
ing iterations to converge. There is little difference across
numbers k of output feature maps, and choosing WLS
over OLS results in a minor increase in accuracy.
Appendix Figure A3 shows network robustness across
a range of maximum transform strengths Y, where we
compare Encoder with C=4 subnetworks sharing
weights to the WLS variants of Decomposer without
upsampling and Detector with k = 32 output channels, to
balance performance and efficiency. Detector proves
most robust to large transforms, remaining unaffected
up to y=1.2, that is, shifts and rotations up to 36 mm
and 54° for each axis, respectively, and scale and shear
up to 0.12. In contrast, accuracy declines substantially
for Encoder and Decomposer after y = 0.8, correspond-
ing to maximum transforms of 24 mm and 36° (blue).
Doubling the affine augmentation extends Encoder and
Decomposer robustness to y = 1.2 but comes at the cost
of a drop of 1 and 2 Dice points for all y<1.2, respec-
tively (orange). Decomposer performance is capacity-
bound, as doubling the number of parameters restores
~50% of the drop in accuracy, whereas increasing
capacity does not improve Encoder accuracy for y <1.2
(green). Detector optimally benefits from the doubled
affine augmentation, which helps the network perform

60 Encoder Decomposer Detector
E‘ 59 —F ——
—
g e
5 58
8 57 —e— Separate weights A‘ —— OLS
A ——_Shared weights —e— WLS —e— _WLS

(e
()}

2 4 6 8 10 12 14 16
Cascades C

2 4 6 8 10 12 14 16
Warp resolution p~!

8 16 24 32 40 48 56 64
Feature maps k

Appendix Fig. A2. Network analysis. We assess Encoder with different numbers of subnetworks C. We also analyze
Decomposer and Detector variants using ordinary (OLS) or weighted least squares (WLS), varying the warp resolution ¢
and number of output feature maps k, respectively. A value of g_1 =4, for example, means the warp ¢q4 has resolution and
dimensions of only 25% compared to the input images. Dice scores are averages over 100 UKBB cross-subject 2D pairs.

Shaded areas indicate the standard error of the mean.
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Appendix Fig. A3. Network robustness across affine transform strengths 7 relative to the range of Appendix Table A2. At
a given Y, we resample each image, drawing affine parameters from uniform distributions modulated by 7, such as angle
r~ u(—yoc, yoc) with o = 45°, We test models trained with doubled augmentation (aug) and capacity (cap), comparing C = 4
Encoders sharing weights, the WLS Decomposer without upsampling, and a k = 32 Detector. Dice scores are averages
over 100 UKBB cross-subject 2D pairs. Shaded areas indicate the standard error of the mean.
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robustly across the test range (orange). Doubling capacity
has no effect (green).

In conclusion, the marginal lead of Encoder only man-
ifests for small transforms and at C =16 cascades. The
16 interpolation steps of this variant render it intractably
inefficient for 3D applications.

In contrast, Detector performs with high accuracy
across transformation strengths, making it a more suit-
able architecture for a general registration tool.

A.4. Discussion

The network analysis shows that Encoder is an excellent
architecture if the expected transforms are small, espe-
cially at a number of cascades C > 4. For medium to large
transforms, Encoder accuracy suffers. While the experi-
ments indicate that the reduction in accuracy can be miti-
gated by simultaneously optimizing a separate loss for
each cascade, doing so substantially increases training
times compared to the other architectures. Another draw-
back of Encoder is the image-size dependence introduced
by the FC layer. Detector is a more flexible alternative that
remains robust for medium to large transforms. While the
results of a 2D analysis may not generalize fully to 3D reg-
istration, prior work confirms the robustness of Detector
across large transforms in 3D (Yu et al., 2021).

Vision transformers (Dosovitskiy et al., 2020) are another
popular approach to overcoming the local receptive field
of convolutions with small kernel sizes, querying informa-
tion across distributed image patches. However, in prac-
tice, the sophisticated architecture is often unnecessary
for many computer-vision tasks (Pinto et al., 2022): while
simple small-kernel U-Nets generally perform well as their
multi-resolution convolutions effectively widen the recep-
tive field (Z. Liu et al., 2022), increasing the kernel size can
boost the performance of convolutional networks beyond
that achieved by vision transformers across multiple tasks
(Ding et al., 2022; S. Liu et al., 2022).

B. AFFINE PARAMETERIZATION

Let f be a fixed ND image of side lengths d;, where
ie{1, ...,N} indexes the right-handed axes of the spatial
image domain Q. This work uses zero-centered index
voxel coordinates x € Q. That is,

N
a=]]{-ad;, 1-Adj, ....d;-1-Ad}}

i=1 (A3)

with Ad; =(d; —1)/ 2, placing the center of rotations at the
center of . Let T : Q — RV be the affine coordinate trans-
form of Equation (1), which maps a moving image m onto
the domain of f. We parameterize T as
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T =VRZE, (Ad)

where V, R, Z, E are matrices describing translation,
rotation, scaling, and shear, respectively. Denoting by v;
the translation and by z; the scaling parameter along axis
i, we define

(AS)

and

Z4

(A6)
ZN

For rotations and shear, we distinguish between the
2D and 3D case. Let r; be the angle of rotation about axis
i, where the direction of rotation follows the right-hand
rule. We abbreviate c; = cos(r;) and s; = sin(r;).

B.1. Two-dimensional case

In 2D, we apply the rotation angle r = r; and shear e using
matrices

cs —s3 0 1 e 0
R= 33 C3 0 and E = 010 (A7)
o o0 1 00 1

B.2. Three-dimensional case

We consider intrinsic 3D rotations represented as the
matrix product R = R; R, R3, where

10 0 O
R, = 0 ¢gf =54 0 ’ (A8)
0 sy ¢ O
0 0 0 1
c, 0 s, O
0 1 0O
R, = , (A9)
2 -s, 0 ¢, O
0O 0 0 1
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c3 -s3 0 0

Ry=| S % 00 (A10)
0 0 10
0 0 0 1

and we apply the shears {e,-} using the parameterization:

(A11)

OO O
OO 4
oo @
4 O O O

B.3. Transforming coordinates

With the notation introduced in Equation (1), we trans-
form the coordinates of an ND point

X=Xy X xy)' e (A12)
as x’ = Ax +v, or, using a single matrix product,
p . (A13)
— = T —
1 1

C. GENERATION HYPERPARAMETERS

Appendix Table A2 lists the generation hyperparameter
ranges that SynthMorph training uses for label-map aug-
mentation and image synthesis.

D. TRANSFORM ANALYSIS

In this supplementary experiment, we analyze the range
of typical transforms a registration tool may have to cope

with. We register 1000 distinct and randomly pooled sub-
ject pairs from OASIS and another 1000 pairs from ABCD.
The estimated transformation matrix T decomposes into
the translation, rotation, scaling, and shearing parame-
ters defined in Appendix B.

Appendix Figure A4 presents the range of absolute
transformation parameters measured within OASIS and
ABCD, along any axis i € {1, 2, 3} of the common space
introduced in Section 4.1. Within OASIS, the mean tra-
nslations and rotations are |v}=(8.5+9.9) mm and
[ri|=(5.6+6.0), respectively (+ standard deviation, SD).
The average scaling and shearing parameters are
|z;—1]=(5.043.8)% and |e;| =(3.3+3.0)%, respectively.
While the bulk of the transforms is small, a subset of the
OASIS subjects are far apart, leading to large total ranges
of translation |v;|<61.1 mm, rotation |r;|<43.1, scaling
|z;-1|<22.6%, and shear |e;|<22.1%. Transforms

within ABCD follow a similar distribution.

Appendix Table A2. Uniform hyperparameter sampling
ranges [a,b] for synthesizing training images from source

segmentation maps.

Hyperparameter Unit a b
Translation mm -30 30
Rotation ° —45 45
Scaling % 90 110
Shear % 90 110
Warp sampling SD mm 0 2
Warp blurring FWHM mm 8 32
Label intensity mean a.u. 0 1
Noise intensity SD % 10 20
Image blurring FWHM mm 0 8
Bias field sampling SD % 0 10
Bias field blurring FWHM mm 48 64
FOV cropping % 0 20
Downsampling factor % 1 8
Gamma exponent - 0.5 15

We abbreviate standard deviation (SD), full width at half maximum
(FWHM), and field of view (FOV).
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Appendix Fig. A4. Absolute affine transformation range across n=1000 registration pairs randomly selected from either

OASIS or ABCD. Each panel pools parameters relative to all

axes i e {1, 2, 3} of 3D space. Black bars indicate median

values. Circles represent parameters farther than 1.5 inter-quartile ranges from the median.

32



Imaging Neuroscience, Volume 2, 2024

75
70
5

. Hoffmann, A. Hoopes, D.N. Greve, et al.
0
55

54
0
W 46
=42

-3

S5

@

S

6
6

Dice (%)

D-.

——~ M (image-based)
===_M; (label-based)
I
J i

86
~ 84

&

[©]
080

Z 38
34

MI

—

Z 78
76

0.0 02 04 06

Regularization A

0.8 1.0 0.0 0.2

0.4
Regularization A

06 0.8 1.0 0.0 02 04 06

Regularization A

0.8 1.0

Appendix Fig. A5. Deformable registration accuracy at test across 100 T1-weighted cross-subject UKBB pairs after
training with label-based versus image-based loss terms. Apart from the optimized similarity loss term, the trained models
are identical. The dots indicate optimum accuracy: higher is better, except for MIND-MSE. Shaded areas indicate the

standard error of the mean.

Therefore, we choose to augment input label maps at
training with affine transforms drawn from the ranges of
Appendix Table A2, ensuring that SynthMorph covers
the transformation parameters measured across public
datasets.

E. LOSS COMPARISON

In another supplementary experiment, we explore the
benefit of optimizing a loss on one-hot encoded label
maps compared to optimizing a multi-modal image-
similarity loss. We train two identical deformable hyper-
models on synthetic images: one model optimizing MSE
on brain labels (Section 3.3.3), the other optimizing the
modality-independent image-similarity loss MIND-MSE
over the brain (Section 4.3). For both models, we com-
plete the similarity term with the regularization term
of Equation (10), and we align all training label maps
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and evaluation images to a common affine space using
NiftyReg.

Assessing brain-registration accuracy across 100
cross-subject pairs from the UKBB (Section A.2), we find
that training with the label-based loss leads to better Dice
scores at test, while the image-based loss leads to better
MIND-MSE scores at test (Appendix Fig. A5). However,
label-based training substantially outperforms training
with MIND-MSE in terms of the image-similarity metric
NCC —which, unfortunately, we cannot straightforwardly
optimize within the synthesis-based training strategy as it
does not perform well for image pairs with different con-
trasts (Hoffmann et al., 2022).

The image-based loss term may still be sensitive to
some of the contrast and artifact differences between the
fixed and moving training images that do not represent
differences in anatomy, whereas the label-based loss is
independent of these intensity differences by construction.



