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Multidimensional transcriptome analysis at single-nucleus resolution recovers nuclei of cell
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Abstract

Adipose tissue has been classified based on its morphology and function as white, brown, or
beige / brite. It plays an essential role as a regulator of systemic metabolism through paracrine
and endocrine signals. Recently, multiple adipocyte subtypes have been revealed using RNA
sequencing technology, going beyond simply defined morphology but by their cellular origin,
adaptation to metabolic stress, and plasticity. Here, we performed an in-depth analysis of
publicly available single-nuclei RNAseq from adipose tissue and utilized a workflow template
to characterize adipocyte plasticity, heterogeneity, and secretome profiles. The reanalyzed
dataset led to the identification of different subtypes of adipocytes including three
subpopulations of thermogenic adipocytes and provided a characterization of distinct
transcriptional profiles along the adipocyte trajectory under thermogenic challenges. This
study provides a useful resource for further investigations regarding mechanisms related to

adipocyte plasticity and trans-differentiation.
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Introduction

The perceived functional complexity of adipose tissue (AT) has changed significantly
over the last 30 years since the leptin discovery (Friedman et al., 1991). The AT is a significant
endocrine tissue organized into different depots, which are classified as brown (BAT) or white
adipose tissue (WAT) (Scherer, 2006). Mature adipocytes constitute 90% of the AT volume
but comprise only 17-33% of total cells. In contrast, the remaining vast majority of cells
include a heterogeneous cell population of the stromal vascular fraction (SVF) (Lee et al.,
2013a; Rosenwald and Wolfrum, 2014). Mature adipocytes are classified into three distinct
types: white, brown, and beige/brite (Wang et al., 2016). White adipocytes are responsible for
storing triacylglycerides (TGs). The brown adipocytes use lipids to produce heat in part through
a UCP1 associated uncoupling of electron transport from ATP production (Pollard and Carling,
2020). Beige adipocytes (“brown-like”) can also support UCP1-independent thermogenesis
(Pollard and Carling, 2020). These beige cells arise within white fat pads in response to
activators such as cold exposure (Jiang et al., 2017), b3-adrenergic receptor (Adrb3) agonists
(Lee et al., 2013b), PPARg ligands (Wang et al., 2016), cancer cachexia (Kir et al., 2014), and
exercise training (Chouchani et al., 2019).

Beige adipocytes have been studied over the last three decades (Pollard and Carling,
2020). However, the interest in their physiological function and therapeutic potential to combat
obesity has only recently been revisited after discovering the thermogenic response of white
adipocytes in adult humans (de Jong et al., 2019; Wang et al., 2016). Formation of beige cells
in WAT by cold or other stimuli occurs through de novo differentiation of progenitor cells from
the perivascular compartment (Jiang et al., 2017) or interconversion of pre-existing white
adipocytes (Jiang et al., 2017; Rosenwald et al., 2013).

Single-cell RNA sequencing (scRNA-Seq) has allowed for the identification of cell-to-

cell heterogeneity and plasticity for many different tissues (Zheng et al., 2017; Ziegenhain et



al., 2017). Analysis of adipose tissues at single-cell resolution is challenging. It has several
limitations, especially considering technical limitations of reproducibly isolating the complete
adipocyte compartment of the tissue due to the large size and high buoyancy of the adipocytes
(Deutsch et al., 2020). Most WAT scRNA-Seq studies to date derive the transcriptomes of the
cell types within SVF without providing critical information about the status of the adipocytes
in animal models (Burl et al., 2018; Cho et al., 2019; Gu et al., 2019; Henriques et al., 2020;
Hepler et al., 2018; Jaitin et al., 2019; Merrick et al., 2019; Schwalie et al., 2018; Spallanzani
et al., 2019; The Tabula Muris Consortium et al., 2018; Weinstock et al., 2019; Zhang et al.,
2019) and humans (Acosta et al., 2017; Jaitin et al., 2019; Merrick et al., 2019; Raajendiran et
al., 2019; Vijay et al., 2020). Few studies investigated brown adipocytes (Song et al., 2019) or
isolated adipocytes from mouse inguinal WAT undergoing browning (Rajbhandari et al.,
2019). Most recently, Sarvari et al., investigated the complete repertoire of adipose tissue cell
types at a single-cell resolution (Sarvari et al., 2021). However, multidimensional studies
investigating the mechanisms involved in mature adipocyte plasticity under thermogenic
stimuli are still lacking.

Intact cell nuclei have been used to perform single-nuclei RNA-seq (snRNA-seq),
overcoming the limitations of isolating the complete adipocyte compartment (Nguyen et al.,
2018). The snRNA-seq data of digested adipocytes from inguinal WAT reveals a complex
subpopulation of mature adipocytes with distinct genetic signatures (Rajbhandari et al., 2019).
Recently, snRNA-seq analysis of the WAT identified a rare subpopulation of adipocytes in
mice that increase in abundance at higher temperatures. This subpopulation regulates the
activity of neighboring adipocytes through acetate-mediated modulation of their thermogenic
capacity (Sun et al., 2020).

Here, we reconstructed the mature adipocyte heterogeneity of the thermogenic response

at the single-nuclei resolution. Our analyses generated a comprehensive and expansive cellular



atlas presenting three thermogenic adipocyte subpopulations, followed by additional
information on the metabolic pathways, the plasticity of individual subpopulations, and
transcription factors possibly involved in beige remodeling of WAT. Also, we characterized
specific cell surface markers and the secretome for each adipocyte subpopulation. The detailed
snRNA-Seq analysis presented herein of the transcriptional changes in WAT adipocytes under
thermogenic challenge provides insight into the molecular mechanisms driving adipocyte
plasticity.

Results

Multidimensional snRNA-Seq reconstruction reveals distinct adipocyte subpopulations
derived from mouse iWAT.

We sought to characterize the transcriptional profiles of adipocytes by reanalyzing
single-nuclei RNA sequencing data of isolated primary adipocytes responding to different
thermogenic stimuli: 4°C challenge for four days (Cold) and CL-treatment, 1mg/kg/day for
four days (CL). We selected the experimental challenges to increase the chance of detecting
nuclei of mature primary adipocyte populations. For cells obtained from iWAT samples (from
now, referred to as fat-cake), the t-SNE plots revealed 17 distinct nuclei clusters at different
experimental conditions (Figure S1A). Those distinct clusters were subjected to a workflow
template, depicted in Figure 1A. The first step of our pipeline was to subject raw data to over-
clusterization (SCCAF), followed by the identification and classification of the cellular
heterogeneity (MetaCell) (Figure S1B). We annotated the clusters of nuclei using marker
genes (described in detail in the STAR Methods), which resulted in the identification of four
groups of cell clusters: progenitor cells (PG), immune cells (IM), endothelial cells (EN), and
adipocytes (AD1) (Fig. 1B). The proportion of cell types (average) per individual was 22% for
progenitors, 10% for immune cells, 55% for endothelial cells, and 13% for adipocytes (Figure
S1B). An accuracy threshold of 80% was used for cluster optimization (Figure S1C), and

round 3 was chosen as the best round based on the accuracy and cross-validation test (Figure



S1D). The distribution was similar after SCCAF over-clusterization: 22% for adipocyte
progenitors and stem cells (PG1-PGS5), 4% for immune cells (IM1-IM3) and 62% for
endothelial cells (ENI-EN2), and 12% for adipocytes (AD1-AD4) (Figure 1B). Thus,
unsupervised clustering of the single-nuclei transcriptional profiles identified four adipocyte
subsets in the iWAT fat-cake. The following canonical cell type markers were upregulated in
these clusters: Pdgfra, Itghl, and Cd34 (for adipocyte progenitors and stem cells), Ptprc (for
immune cells), Pecam 1 (for endothelial cells), and Adrb3 (for adipocytes) (Figure 1C).

After MetaCell analysis, a list of genes used to define each of the different clusters is
presented in Figure S1E and Table S1. The expression profile of the top 20 cell-type-specific
DEGs is shown in Figure 1D and Table S2. Unsupervised analysis of DEGs identified four
significant adipocyte populations (i.e., expressing Acsli, Plin4, Mlixipl, Pckl, and Adrb3), a
population of endothelial cells (Btnl9, Ushdpl, Egfl7, Ncf2l, and Ptprb), adipocyte progenitors
and stem cells (Dcn, Celf2, Meg3, Colla2, and Col3al), and immune cells (7rpsi, Runxl,
Ptprc, and Adap?) (Figure 1E). Adipocyte clusters enriched genes associated with
subcutaneous adipose tissue and PPAR signaling. Endothelial cells enriched genes are related
to focal adhesion and vasculature, immune cells are significantly enriched with cell adhesion
molecules genes, and adipocyte progenitors and stem cells are enriched for mesenchyme cells
and myofibroblasts genes (Figure 1F, Table S3, Figure S1F, and Table S4). These
transcriptional differences may underlie distinct functional characteristics of the different cell

types identified in the single-nuclei RNA-Seq reanalysis pipeline.

Reclustering of adipocyte clusters reveals two distinct mature adipocyte populations at
room temperature.
To gain insight into the molecular differences between adipocyte subpopulations, we

first verified the accuracy threshold of 80% that was used to cluster optimization (Figure S2A),



and round 3 was chosen as the best round based on the accuracy and cross-validation test
(Figure S2B). Next, we applied unsupervised over-clustering (SCCAF) to partition all 3,568
adipocytes nuclei that were identified using ~-SNE. Interestingly, it identified five distinct
adipocyte subpopulations (Ad1-AdS5, Figure 2A), each having a particular DEG pattern, with
a slight exception for the Ad3 and Ad4 subpopulations (Figure 2B and Table S5). Canonical
adipocyte markers Dgatl, Plinl, Lipe, Cidec, were expressed in all adipocyte subpopulations
(Figure 2C and Figure S2C), albeit at varying levels. We found 571 DEGs in Adl (362 up
and 209 down-regulated); 281 DEGs in Ad2 (118 up- and 163 down-regulated); 294 DEGs in
Ad3 (70 up- and 224 down-regulated); 412 DEGs in Ad4 (353 up- and 59 down-regulated);
and 160 DEGs in Ad5 (156 up- and 4 down-regulated) (Figure S2D and Table S6). We applied
functional enrichment analysis of the five adipocyte subpopulations (Ad) (Figure 2D, Table
S7, Figure S2E, and Table S8). The DEGs capture significant aspects of heterogeneity in
distinct adipocyte subpopulations. Such differences were reflected in mitochondria gene
expression and fatty acid degradation for Ad1, triglycerides biosynthetic process for Ad2, and
ATP biosynthetic process for Adl and 2, TCA cycle and acetyl-CoA metabolic process, and
regulation of cell differentiation for Ad3, regulation of sequestering triglycerides, and long-
chain fatty acid transport, and adipocytokine signaling pathway for Ad4 and cholesterol
metabolism for AdS. Interestingly, fatty acid biosynthetic processes and long-chain fatty acid
transport, and white adipose tissue (mouse-genes-atlas) were predominantly enriched in the
Ad3 and Ad4 subpopulations. Interestingly, using the database Jensen tissues, we observed that
the Ad3 subpopulation was the only one significantly enriched for the “Preadipocyte cell line”
term (Figure S2E), suggesting a “preadipocyte-like” expression profile specifically found in
the Ad3 (Cfd, Fabp4, Gpdl, and Lpl). Ad3 and Ad4 adipocyte subpopulations appeared to
represent classical adipocytes, and they expressed genes associated with WAT, Cidec, Pnpla,

and Adipoq (Figure S2E).



Ad3 and Ad4 subpopulations correspond to adipocytes present in fat cake of iIWAT of
non-treated mice (Control, RT) (Figure 2A). A comparison of adipocyte canonic markers
revealed that Ad4 expresses higher levels of Adipoq, Plpna2, Fasn, Pparg, Cidec, Car3, and
Gadd45g than Ad3 at room temperature (Figure 2E) suggesting that Ad4 more so than Ad3
consists of “classic" adipocytes. Interestingly, leptin is more highly expressed in Ad3 than in
Ad4 subpopulation (Figure 2E).

To gain additional insight into Ad3 and Ad4 subsets, we performed an analysis of the
secretome and membranome using gene expression profiles (DEGs). 29 genes predicted to
encode membrane proteins were upregulated exclusively in Ad4, while only 2 genes were
upregulated in Ad3 (Ntrk2 and Atpla2), and 9 other membrane genes were differentially
expressed in both subpopulations (Figure 2F). Figure 2G shows the top 5 highly expressed
genes, Irs2, Abcal, Mrap, Irsl, and Adrb3, which could potentially be used as Ad4
subpopulation markers. Regarding the secreted proteins, we found that Ad3 overexpresses
17.4% of genes that encode secretory proteins, while Ad4 overexpresses only 8.2% (Figure
S2F). The top 5 exclusively expressed in Ad3 (Gpx3, Colla2, and Sponl) and Ad4 (Vegfa,
Serpinel, Angptl4, Hspa8, and Cesdl) subpopulation are detailed in Figure 2G. The complete
list of predicted secretome and membranome upregulated genes from the Ad3 and Ad4
subpopulations is presented in Figures S2G and Table S9.

Characterization of the secretory proteins and components of the cell membrane
permitted a prediction of cell-cell interactions via ligands and possible receptors (i.e.,
interactome) (Figure S2H). Ad3 and Ad4 showed increased interaction through collagens
(produced by Ad3) and integrin (Ad4) and decreased interaction through NOTCHI (Ad3) with
JAG1 (Ad4) and COL5A1 (Ad3) and integrin complex (Ad4). Ad4 interacts with Ad3 by

producing the ADIPOQ ligand interacting with the CLEC2D receptor in Ad3.



Identification of a unique adipocyte thermogenic subpopulation corresponding to both
Cold and CL-treatment

To further identify the adipocyte subpopulation with thermogenic transcriptome
signature, we performed unbiased aggregated clustering of the processed data for each of the
experimental conditions, i.e., Cold, CL and RT, as a -SNE-plot (Figure 3A). The aggregated
cluster represents 3,027 adipocyte nuclei. Figure 3B shows the gene expression of the selected
(supervised) adipocyte and thermogenic markers. For these data, it is interesting to note that
the profile of gene distribution of Adipog, Retn, Cidec, and Fasn, (canonical adipocyte
markers), has almost no overlap with thermogenic genes, such as Ppara, Ucpl, Dio2, Prdml6,
Elovi3. Figure S3A and Table S10 highlight the DEGs related to cold-challenge (Cold) and
CL treatment. The top 5 DEGs for cold-challenge were Acach, Acss2, mt-Co2, Macf1, and
Gm26917, while for CL were Acsl1, mt-Co3, mt-Co2, mt-Atp6, Fasn. Once we determined that
the 2 treatments (Cold and CL) have different gene expression profiles, we performed
functional enrichment analysis (Figure 3C, Table S11, Table S12, Figure S3B, and Table
S13), using enriched genes in each cluster based on different experimental conditions. This
analysis revealed that different adipocyte subclusters express distinct genes corresponding to
the experimental conditions. For example, cold-induced subclusters demonstrated critical
organophosphate biosynthetic processes and fatty acid transport. At the same time, CL showed
significant aspects of organophosphate metabolic processes, oxidative phosphorylation, and
ATP metabolic processes. The down-regulated genes reveal negative regulation for
biosynthetic processes and response to mechanical stimuli for both experimental conditions.

Since we have observed that RT, CL, and cold presents distinct frequencies in the
adipocyte subpopulations, we analyzed the distribution of all adipocytes highlighted according
to each different experimental condition (Figure 3D). Integrated analysis for adipocyte nuclei

of CL, RT, and cold treatments revealed five subclusters, with Adl (83%) and Ad5 (12%)



mainly from CL, Ad3 (60%) and Ad4 (36%) derived primarily from RT, and Ad2 (73%) and
Ad1 (25%) mainly from cold. Interestingly, Ad1 contained adipocyte nuclei from both CL and
Cold conditions and was more prevalent in Cl than other subpopulations. Whereas CL and Cold
both exhibited unique expression patterns that reflected their functional commitments, CL
showed significant functional enrichments mainly related to fatty acid degradation and
transportation (Figure S3B). Unsurprisingly, the Adl subpopulation was most heavily
involved in fatty acid oxidation, TAC, and fatty acid transport (Figure 3E and Figure S3C).
The latter seems to be very specific to Adl. The expression profiles of genes corresponding to
glycolytic process and triglycerides / fatty acid cycle, however, were not so distinguished
between Adl versus AdS5 subpopulation (Figure 3E), despite the fact the Ad5 showed
relatively higher expression of most of the metabolism-related genes, in particular, triglycerides
/ fatty acid processes and de novo lipogenesis; this is indicative of a high energy demand for
Ad5 subpopulation.

Identification of three distinct thermogenic adipocyte subpopulations led us to predict
corresponding secretome and membranome (Figure 3F and Figures S3D-S3G, and Table
S14). In Adl and Ad5, 7.2 % and 9%, respectively, of upregulated genes represent membrane
encoding proteins (Figure S3E). Two genes were exclusive to both Adl and AdS clusters
(Figure S3D), while 23 plasma membrane genes were upregulated exclusively in Ad1 and 12
genes in Ad5; the top 5 expressed genes in each subpopulation are Sic36a2, Cistn3, Slc4a4,
Kcnk3, Adrala for Adl, and Sic27al, Cdldl, Adrb3, Hcar2, Aplp2 for Ad5 (Figure 3F). The
Adl subcluster was found to overexpress 3.3% of potential secreted proteins and AdS
overexpressed 5.8%. The secretory genes exclusively expressed in Adl and AdS
subpopulations were: Adl: Psap, Vidir, Nrg4, Col27al, Dcn; AdS5: Hpsa5, Cdldl, Hsp90bl,
Angptl4, Calr (Figure 3F). The complete list of the predicted secreted and membrane proteins

in Adl and AdS subpopulations are presented in Figure S3F and G. Ad2 shows 12.7 % of



upregulated genes are membrane encoding proteins (4Asph, Btnl9, Cd36, Adgrf5, and FitI) and
9.3% are secreted proteins (Fl¢1, Lpl, Egfl7, Kdr, and Sparc). VEGFA was the main interacting
molecule between Adl and AdS5 subclusters (Figure S3H).

The gene expression profile (normalized) of the adipocyte subpopulations shows that
the classic thermogenic markers, Ucpl, Cidea, Dio2, Elovl3, Cptlb, and Plin5, are
differentially expressed in all clusters, but particularly in Ad1 (Figure 3G). Other genes, such
as Acadm, Cox8b, and Gk seem to be closely related to CL subclusters (Ad1l and AdS5). Fasn
and Acaca showed a higher level of gene expression in Ad5 than all other subpopulations,
which may indicate a specific profile in this adipocyte phenotype.

Since reanalysis of the snRNA-seq dataset simultaneously profiles adipocytes under
both cold and CL-treatment, we hypothesized that their plasticity could be traced in vivo by
mapping a developmental trajectory between distinct adipocyte subpopulations. As two
significant subpopulations were resolved in the RT nuclei dataset (Ad3, Ad4) from iWAT
(Figure 3D), we established this condition as the starting point for the analysis through the
Monocle. Pseudotime study mapped a distinct trajectory of RT adipocytes responding to
thermogenic challenge into different cellular states, ranging over modifications to late
thermogenic trans-differentiation (Figures 3H and 3I). This identified a branched trajectory
connecting the adipocyte subpopulations with two branches representing the adipocytes'
specification into distinct subpopulations. We focused on the thermogenic branch 1 to separate
the nuclei into late trans-differentiation (mostly Adl), and in branch 2, related to early trans-
differentiation (mostly Ad3) (Figure S3I and S3J).

In the CL subpopulations (Adl, AdS), adipocytes lost expression of transcription
factors (TF) Egr2, Dpb, and Xbp1, as well as of genes Nnat, Plppr3, and Chstl (Figure S3I).
A progressive gain of expression is shown for TFs, Clock, Zbtb43, and Zbtb7a, whereas

“classic” thermogenic TFs Ppara, Prdml6, and Ppargcla are expressed along the entire



trajectory analysis. Ucpl was expressed in late trans-differentiation thermogenic adipocytes,
followed by Ppara and Dio2 (Figure S3I and Table S15). The cold-challenged adipocytes
(Adl1 and Ad2) lost expression of Egrl, Cebpa, and SrebfI and progressively gained expression
of TFs Foxn3, Essra, and Gtf2irdl (Figure 3I). Brown adipocyte markers were also expressed

in late trans-differentiation thermogenic adipocytes (Figure S3J and Table S16).

Ad1-UcpI'ieh subpopulation shows a “classical” thermogenic profile

Once the Adl subpopulation was shown to express a clear thermogenic signature in
response to both Cold- and CL-challenge, the next step was to evaluate Ad1 nuclei that express
high levels of UCP1 and compare them with those expressing low levels of UCP1 (details in
STAR Method). Figure 4A presents the --SNE representation of adipocyte subpopulations
Adl, Ad2, and Ad5 highlighting nuclei with high expression of Ucp! (from hereafter, Ad1 will
be named Ad1-UcpIMieh and UcpI™°¥). The thermogenic genes Ppara, Dio2, Prdml6, Elovi3,
Cox8b are more prevalent in the Adl subpopulation (Figure S4A). The top-5 DEGs in Adl1-
Ucp1tieh nuclei are Macfl, Gk, Grk3, Pdk4, and Acacbh (Figure 4B, Table S17, Figure S4B,
and Table S18). Interestingly, it should be noted that a few adipocyte nuclei belonging to Ad1-
UcpI™" have a gene signature similar to Ad1-Ucp1'ieh,

To gain mechanistic insight into gene lists, we applied enrichment analysis to evaluate
the pathways enriched in a gene list of Ad1 (UcpI™ie" and UcpI**¥). As expected, for Adl-
UcpItieh,  pathways related to positive regulation of cold-induced thermogenesis,
mitochondrion , lipid oxidation , and response to extracellular stimulus are activated (Figure
4C). For Ad1-UcpI*®¥, pathways related to adipogenesis, response to troglitazone, and
regulation of kinase activity showed more activation.

To gain additional information about the central metabolic pathways activated in the

Ad1-UcpIfieh and Ad1-UcpI™, we analyzed the DEGs of the primary genes involved in



distinct energy metabolism pathways (Figure 4D and Figure S4C). The group of genes related
to TCA is preferentially activated in Ad1-Ucpl™e" over Ad1-UcpI*°¥. This profile was
followed by the upregulation of genes involved in the following pathways: fatty acid oxidation,
fatty acid transport, and glycolytic processes. Interestingly, Adl1-UcpI™®" has a higher
enrichment of triglycerides / fatty acid cycle genes than in Ad1-Ucpl™ie". This fact suggests
that other metabolic pathways, particularly those involved in a futile cycle, could be affected
(Figure 4D and Table S19). Aware of this fact, we also evaluated non-canonical or UCP1
independent pathways involved in the thermogenic program, such as glycolytic pathway,
creatine metabolism genes, such as Gamt, Gatm, and Ckmtl, and SERCA2-pathway, such as
Arpc2, Adrala, Atp2a2, and Tmlc4 (Figure S4C). Overall, there were no categorical
differences in these programs when comparing Ad1-UcpItieh and Ad1-UcpI™". However,
concerning the glycolytic pathway, Ppara, Pkm, and Ogdh, particularly the former, are
differentially expressed in Ad1-UcpI™igh while Atp2a? is equally represented in Ad1-Ucp1ieh
and Ad1-UcpI™¥ adipocytes. For Ad1-UcpI*°¥, triglycerides / fatty acid processes and de
novo lipogenesis are more enriched, with highlights for the genes; Fasn, SrebfI and Insigl.

Thirty-seven membrane genes were upregulated exclusively in Ad1-UcpI'ie" and 14
genes upregulated in Ad1-UcpI™®" (Figure S4D and Table S20). The top 5 highly expressed
genes are Slc4ad, Slc36a2, Kenk3, Atpla2, and Vidlr for Ad1-UcpI™ie" and Slc27al, Slclas,
Slc7al0, Ghr, and Adrb3 for Ad1-UcpI™¥ (Figure 4E). The top 5 genes predicted to encode
secreted proteins for Ad1-Ucp1tie" were Col27al, Vidlr, 111 5ra, Psap, and Ctsz, while for Ad1-
UcpI**¥ were Ghr, Acvrilc, Lama4, Coll5al, and Retn (Figure 4E).

Given that TFs are crucial for defining cell identity, we analyzed TF expression levels
in the Ad1 subpopulation. For this analysis, we initially evaluated the TFs that are most likely
involved in regulating DEGs for Ad1-UcpI™ie" and Ad1-UcpI™" (Figures S4E and S4F). The

former exhibited specific expression of the main canonical adipocyte TFs (such as Parpd,



Hnf4a, Ersl, Pparg, Sall4, Cebpd, Egrl, Nanog, Stat3, and Bhlhe40). Protein-protein
interactions (PPI) analysis demonstrated that Arpd, Hnf4a, Ersl, Pparg, Sall4, Egrl, Nanog,
and Bhlhe40 could interact with the targeted genes differentially expressed in Ad2-Ucp1tih,
For Ad1-UcpI™¥, Parpg, Sall4, Ersl, Tp63, Ar, and Gata2, the most enriched TFs and PPI
analysis demonstrated that Parpg, Ersi, Tp63, and Gata2 could interact with the targeted
DEGs. The next step was to analyze the most highly expressed TF genes (Figure 4F), in
addition to exploring the genes that are targets of these TFs (Figure S4G). As expected, the
canonical adipocyte TFs, such as Pparg, are expressed at higher levels than the other TFs in
both Ad1-UcpI™igh and Ad1-UcpI**¥, being more intense in the former. On the other hand,
Egrl and Ar are more pronounced in Ad1-UcpI*°¥ adipocytes. The target genes related to TFs,
Sic4ad, Slc25a42, and Pdk4, were more pronounced in Ad1-UcpIHi#h adipocytes while Sicla5
and Fasn were upregulated in Ad1-Ucp1°¥ compared to Ad1-UcpI'ig". Figure 4G shows the
intracellular and membrane markers for Ad1-UcpIieh are Sic36a2 and Acadm), while Slc27al

and Fasn correspond to Ad1-UcpI™o¥.

Discussion

This report analyzed existing single-nuclei transcriptome data to gain a greater
understanding of the cellular composition of WAT. Here, we generate a comprehensive cellular
atlas and classification of the adipocytes into five distinct subpopulations. This allowed us to
delineate in vivo trajectories and determine the plasticity of individual adipocyte
subpopulations from the inguinal fat pad of mice in the setting of thermogenic challenges. Cold
and CL both induce UCP1+ cell populations (Ad1-Ucpitieh) in addition to two other adipocyte
subpopulations that show gene expression signatures distinct from each other. We also identify
a new adipocyte population (Ad5) specific to CL treatment, which demonstrates enrichment
for lipid turnover and de novo lipogenesis pathways, suggesting this subpopulation provides a

higher energy output in a UCPI-independent fashion. We further show that the different



adipocyte subpopulations present specific secretome profiles, mainly composed of proteins
secreted via classical and non-classical pathways (such as exosomes).

In WAT, beige remodeling can be triggered through two stimuli: Cold and CL (Jiang
etal., 2017; Rosenwald et al., 2013). Recent studies suggest that these two stimuli might induce
beiging through distinct pathways and our data support those observations (Jiang et al., 2017;
Rabhi et al., 2020). The CL-induced subpopulation showed significant oxidative
phosphorylation and ATP metabolic processes, whereas cold-induced thermogenic adipocytes
are more specialized for fatty acid transport. As expected, a unique mature adipocyte
subpopulation (Ad1) showing a thermogenic “classic” signature, such as Ucpl, Cidea, Dio2,
Elovi3, Cptlb, and Plin5, was detected in both treatments. The thermogenic population showed
to be specialized in the following pathways: fat acid oxidation, TAC, and fatty acid transport.

Interestingly, CL treatment also resulted in an additional subpopulation, Ad5. Despite
not having a classic thermogenic signature, this adipocyte subpopulation showed a profile for
activating genes related to glycolytic, fatty acid turnover, and, in particular, de novo lipogenesis
pathways, also present at some level in thermogenic Ad1l. Ad5 also showed specialization in
lipid turnover pathways, suggesting this subpopulation provides a higher energy output.
Acadm, Cox8b, and Gk are associated with both Adl and Ad5 subpopulations, while Fasn,
Acly, and Insigl is more highly associated with the AdS5 subpopulation. This set of results,
predominantly generated in silico, meets the ex-vivo analysis presented by Lee et al., 2017. In
this paper, Granneman and colleagues showed that CL upregulated FASN and MCAD in
distinct adipocyte populations: high MCAD expression in multilocular adipocytes that co-
expressed high UCP1 levels, while FASN expression occurred in paucilocular adipocytes with
low UCP1 levels. These results corroborate the concept of metabolic heterogeneity as a distinct
property of activated thermogenic adipocytes. However, the function of each population and

the control mechanisms involved need further analysis.



Regarding the secretome of thermogenic subpopulations, Ad1 adipocytes differentially
overexpressed Nrg4, Col27al, Psap and Dcn, whereas the Ad5 subcluster over-expressed
mainly Hpsa5, Hsp90b1 and Cdldl. Neuregulin 4 (NRG4) was previously shown as an AT-
enriched secreted factor, markedly increased during brown adipocyte differentiation. Nrg4 is
downregulated in AT during rodent and human obesity. In contrast, gain-and-loss-of-function
studies in mice showed it protects against diet-induced insulin resistance and hepatic steatosis
(Wang et al., 2014). Interestingly, NRG4 promotes neurite outgrowth during cold-challenge
(Rosell et al., 2014). CD1d is a lipid antigen-presenting molecule for iNKT cells (invariant
Natural Killer T), highly expressed in adipocytes than any other cell types of adipose tissue
(Hotamisligil et al., 1993). Adipocytes positively express CD1d molecules in lean adipose
tissue, which play a crucial role in maintaining the adipose iNKT cell population. Upon HFD
feeding, adipocytes present obesity-related lipid antigens via CDId molecules, which leads to
iNKT cell activation and stimulates anti-inflammatory cytokine secretion from adipose iNKT
cells (Huh et al., 2018). In this sense, the adipocyte secretome prediction has shown that both
NRG4 (Adl) and CD1d (AdS) are specific thermogenic adipocyte products since sufficient
mRNA levels molecules were not detected in other cell populations from WAT.

To fully understand the potential therapeutic relevance of beige remodeling, it is crucial
to characterize the overall metabolic properties of beige adipocytes in addition to their
thermogenic potential. In this regard, the Adl subpopulation was subdivided into two
subpopulations, according to the presence or absence of Ucp/ mRNA. Interestingly, although
Ad1-UcpItieh showed a "canonical" thermogenesis genetic signature, by expressing higher
DEGs corresponding to energy metabolism, particularly those related to TCA, Ad1-Ucplto¥
adipocytes showed higher triglycerides/fat acid cycle and de novo lipogenesis pathways. Also,
specialization of fatty acid metabolism (oxidation and transport) and glycolytic processes are

more pronounced in Ad1-UcpI™igh despite a small portion of Ad1-Ucp ™" adipocytes having



a similar profile to that found in Ad1-Ucpltieh, Ad1-Ucplfieh showed, in addition to the
positive regulation of thermogenesis, specialization related to response to extracellular stimulus
and cellular carbohydrate metabolic process. Our analyses also showed that the UCP1
independent pathways involved in the thermogenic program, such as glycolytic, and SERCA2-
pathway are equally expressed in Adl-Ucpl'ie" and Adl1-UcpI™®¥ adipocytes. This fact
suggests that other metabolic pathways, particularly those involved in a futile cycle (lipid
turnover and SERCA2), could also be involved in the thermogenic metabolism in Adl
adipocytes in a way that does not depend on the presence or absence of UCP1. Furthermore, it
should be highlighted that Ad1-UcpI™*" adipocytes make up about 75% of the adipocyte
subpopulation under CL treatment, suggesting its relevance for the detailed understanding of
beige remodeling.

In recent years, beige remodeling has been demonstrated through the existence of other
thermogenic pathways in a UCPI-independent manner (Kajimura et al., 2015; Szabo and
Zoratti, 2017). Even more recently, Kajimura and colleagues showed ‘glycolytic beige’ (g-
beige), with significant enrichment of genes involved in glycolysis, glucose, and carbohydrate
metabolism distinct from both the classical beige and brown adipose signatures (Chen et al.,
2019). However, at present, further analysis is necessary to gain insights into whether these
new cell types are expressed in wild-type mice or if their expression requires specific genetic
backgrounds.

These findings motivated us to identify new markers for thermogenic adipocyte types
using snRNA-seq data from digested AT samples. Although some consistent studies have
presented the transcriptome profile of beige cells, either of bulk (Lee et al., 2013b) or cells
isolated by a reporter system (UCP1+) (Roh et al., 2018), as far as we know, this is the first
analysis of the snRNA-Seq data to predict the profile of proteins associated with their

respective functions. The membranome prediction analysis showed Slc4a4 and Adrala and



Slc36a2 as specific for Ad1-UcpIMieh surface markers, whereas Slc27al and Slcla5 were more
typical for Ad1-UcpI™". Our analyses show a very particular profile of surface proteins
(plasmatic membrane), making possible additional functional analyses of those adipocyte
populations. However, experimentally using ex vivo and in vivo or approaches such as sorting
cells (Roh et al., 2018) and fluorescent imaging techniques must be determined.

Brown/beige adipocyte differentiation and activation of the thermogenic program are
controlled by sequential actions of transcription factors (TFs), including EBF2, PRDM16,
C/EBPB, PGC-1a, and PPARYy (Kajimura et al., 2010; Puigserver et al., 1998; Rajakumari et
al., 2013; Seale et al., 2009). However, there is a lack of information on the transcription
regulators possibly involved in the “plasticity” and/or “trans-differentiation” of white to beige
adipocytes. To address this issue, we identified the most expressed set of genes, which encode
TFs. Interestingly, in addition to the generic adipogenesis regulators also known to be involved
in beige differentiation, such as Prdm16, Pparg, Pgcla, and Ppara, we also showed Clock and
Ppara (both up), for CL and Cold, respectively, and Egr/ (downregulated) for both treatments.
Zinc finger transcription factor EGR1 is a negative regulator of the fat beige program. Loss of
Egrl in mice promotes browning in the absence of external stimulation and leads to increased
Ucpl expression, which encodes the critical thermogenic mitochondrial uncoupling protein-1
(Milet et al., 2017). Besides, during the trans-differentiation processes, the two treatments seem
to activate a different set of genes along their trajectory. This may suggest that, although the
endpoint is similar, the possible pathways activated may be different.

Limitations should be addressed;, our paper show descriptive evidence generated
through in silico analysis from several angles, but the scope of this study lacks the
appropriate in vivo models to show a mechanistic link to certain physiological functions. Future
studies are needed to validate the metabolic impact of our findings concerning adipose tissue

heterogeneity, plasticity, and remodeling. Moreover, secretome and membranome prediction



using transcriptomic data as input also needs to be carefully evaluated considering the several
mechanisms of transcriptional regulation in mammals. Our workflow template proposes a
global analysis of an adipocyte atlas; thus, there is no proper filter from contaminated droplets.
The choice of a cutoff may be arbitrary. Finally, the adipocyte trajectory herein described may
differ between depots and thermogenic challenges, and further studies are needed to outline
and validate the trajectories in different adipocytes subpopulations.

Conclusion

In summary, we present a multidimensional reanalysis at a single-nucleus resolution,
which allows the recovery of nuclei of cell types in adipose tissue. Using this tool, it was
possible to show the plasticity of adipocytes, which corroborates with recent data from AT
snRNAseq (Rajbhandari et al., 2019; Sun et al., 2020). In addition to the presence of
thermogenic adipocytes subpopulation positive for UCP1 (Adl1-Ucpitieh), additional
transcriptome analyses allowed us to infer the presence of different secretory functions under
thermogenic challenges activated metabolic pathways, especially those related to the futile
cycle. On the other hand, Adl1-UcpI™®™ seems to have a relevant role, both in energy
production, through the pathways independent of UCP1, and in its secretory function. This, in
turn, proved to be very specific among the heterogeneous adipocyte populations. Regarding
the profile of secretory molecules, most are related to proteins that make up EMC, and the
highlighted candidates are potentially secreted via classical pathways and exosomes.
Understanding this functional plasticity plays an essential role in understanding mature

adipocytes' role as a “central" cell type modulating tissue remodeling.
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Figure Captions

Fig. 1. Adipose Single-Nuclei Workflow Template identifies different cell populations in
adipose tissue.

(A) Workflow overview showing the main 3 steps to process the template. The first step
corresponds to obtaining the dataset (in this paper public data was used with accession number
GSE133486). The next step is to cluster the data that includes the over clustering, finding the
optimal number of clusters, cell type identification, and marker expression. The last step is
related to the principal analysis that includes differential expression, functional enrichment,
trans-differentiation, and cell component prediction. (Created with BioRender.com)

(B) t-SNE plot of 28,820 single nuclei cells distributed by 14 clusters in 4 cell types: adipocyte
(AD), endothelial (EN), immune (IM), and progenitors (PG). Pie charts show the
corresponding percentage.

(C) Nebulosa representing the unsupervised clustering of six canonical cell type markers for
each cluster. Pdgfra, Itgbl, and Cd34 (for adipocyte progenitors and stem cells), Ptprc (for
immune cells), Pecam 1 (for endothelial cells), and Adrb3 (for mature primary adipocytes). (D)
Gene-expression heatmap of the top 20 DEGs in each defined cell type compared to all others.
Genes are represented in rows and cell clusters in columns.

(E) Gene-expression dot plot of select top 5 DEGs for each defined cell type. Rows depict
clusters, while columns depict genes. The intensity of any given point indicates average
expression, while its size represents the proportion of cells expressing a particular gene.

(F) Selected top categories from ORA analysis of DEGs from the four cell types identified.
The intensity of the color in the dotplot indicates the enrichment significance by the combined
score. Circle sizes correspond to the -log10 adjusted P-value (padj). Gene set names are colored
according to the GO biological process (purple), Jensen tissues (red), and Kyoto Encyclopedia
of Genes and Genomes (KEGG, blue).

Fig. 2. Multidimensional workflow template identifies two distinct mature adipocyte
subclusters at RT.

(A) Reclustering of adipocytes nuclei using SCCAF identified 5 putative adipocyte subclusters
from ““fat cake” iWAT nuclei data (Ad1 = 1,539 nuclei; Ad2 = 1,106 nuclei; Ad3 =477 nuclei;
Ad4 = 265 nuclei and Ad5 = 181 nuclei).

(B) Gene-expression heatmap of the top 10 most DEGs in each adipocyte subcluster compared
to all others. Genes are represented in rows and cell clusters in columns.

(C) Gene-expression dot plot of the canonical adipocyte markers for each adipocyte subcluster.
Rows depict clusters, while columns depict genes. The intensity of any given point indicates
average expression, while its size represents the proportion of cells expressing a particular
gene.

(D) Selected top categories from ORA analysis of DEGs from the five adipocyte clusters. The
intensity of the color in the dotplot indicates the enrichment significance by the combined
score. Circle sizes correspond to the -log10 adjusted P-value (padj). Gene set names are colored
according to the GO biological process (purple), Jensen tissues (red), Kyoto Encyclopedia of
Genes and Genomes (KEGG, blue), Mouse Gene atlas (green), and WikiPathways (orange) .
(E) Scatter-box plot representing normalized gene expression of 12 marker genes in the two
adipocyte clusters from RT (Ad3 and Ad4 subclusters). At the top of each box is the
significance of the comparison between Ad3 and Ad4 subclusters. The more stars, the more
significant, while ns represents no significance.



(F) Venn diagram demonstrating the intersection of upregulated genes encoding membrane
proteins from Ad3 and Ad4 subclusters.

(G) Heat-scatter plot representing two upregulated membranome components specifically
identified in Ad3 adipocyte and the top five exclusive membranome of Ad4 subcluster (upper
plot). Heat-scatter plot representing three upregulated secretome components specifically
identified in Ad3 subcluster and the top five exclusive secretome of Ad4 subcluster (bottom
plot). The color of the circles corresponds to the average logFC.

Fig. 3. CL treatment and cold-challenge reveals a single thermogenic subpopulation.

(A) t-SNE representation showing a subset of mature adipocyte nuclei subclusters classified
according to each treatment (Cold = 892 cells: CL = 1,433 cells and RT = 702 cells).

(B) Nebulosa expression plots of canonical mature adipocyte and thermogenic genes.

(C) Gene Set Enrichment Analysis (GSEA) comparing Cold vs. RT and CL vs. RT. Rows
depict enriched pathways, while in the y-axis, the Normalized Enrichment Score (NES).
Positive NES represents an upregulated pathway, and negative NES represents down-regulated
pathways.

(D) CL, RT, and Cold shown subset of adipocyte nuclei subclusters classified according to
each treatment integrated in t-SNE plot (CL = 1,443 cells; RT =702 cells and Cold = 892 cells).
Pie charts show the corresponding percentage.

(E) Heat map showing the expression of main genes related to fatty acid oxidation,
tricarboxylic acid cycle, fatty acid transport, glycolytic process, triglyceride/fatty acid cycle,
and de novo lipogenesis in the five adipocytes subclusters.

(F) Heat-scatter plot representing top five upregulated membranome components specifically
identified in Ad1 subcluster and the top five exclusive membranome of Ad5 subcluster from
CL subset comparison. The top five membrane genes from subcluster Ad2 (Cold) are
demonstrated separately (left). Heat-scatter plot representing top five upregulated secretome
components specifically identified in Ad1 subcluster and the top five exclusive secretome of
Ad5 subcluster. The top five secretome genes from subcluster Ad2 (Cold) are demonstrated
separately (right). The color of the circles corresponds to the average logFC. FC: fold change
(G) Scatter-box plot representing normalized gene expression of 20 markers of canonical
adipocyte and thermogenic genes in the five adipocyte subclusters. At the top of each box is
the significance. The more stars, the more significant, while ns represents no significance.

(H) Monocle-generated plots presenting pseudotime ordering and differentiation trajectory of
CL and RT conditions. The trajectory suggests a transition between Ad3-Ad4-Ad5-Adl. Green
background represents the three main thermogenic TFs (classic). The yellow background
represents the earlier expressed TFs in the trajectory, and the blue background represents the
later expressed TFs in the trajectory. The characterized genes are DEGs throughout the
trajectory.

(I) Monocle-generated plots presenting pseudotime ordering and differentiation trajectory of
Cold and RT conditions. The trajectory suggests a transition between Ad4-Ad3-Ad2-Adl.
Green background represents the three main thermogenic TFs (classic). The yellow
background represents the earlier expressed TFs in the trajectory, and the blue background
represents the later expressed TFs in the trajectory. The characterized genes are DEGs
throughout the trajectory.



Fig. 4. Ad1-UcpI'ieh subpopulation shows a “classical” thermogenic profile whereas Ad1-
UcpI®" subpopulation suggest a potential UCP1- independent pathways activation.

(A) -SNE representation showing Ad1, Ad2 and Ad5 mature adipocyte nuclei subclusters. The
red dots represent the cells that have higher expression levels of Ucpl. Pie charts show the
corresponding percentage of high Ucp! in each of Adl, Ad2 and Ad5 subclusters.

(B) Gene-expression heatmap of the top 10 most DEGs in Ad1-Ucpitieh vs. Ad1-Ucpl™¥
comparison. Genes are represented in rows and cell clusters in columns.

(C) Gene Set Enrichment Analysis (GSEA) comparing Ad1-UcpIfiehvs. Ad1-UcpI™°¥. Rows
depict enriched pathways, while in y-axis the Normalized Enrichment Score (NES). Positive
NES represents an upregulated pathway and negative NES represents down-regulated
pathways.

(D) Heat map showing the expression of main genes related to fatty acid oxidation,
tricarboxylic acid cycle, fatty acid transport, glycolytic process, triglyceride/fatty acid cycle,
and de novo lipogenesis in the Ad1-UcpIieh and Ad1-Ucpi™©Y.

(E) Heat-scatter plot representing the top five upregulated secretome components identified in
Ad1-Ucpitieh and Ad1-UcpI™™ (upper plot). Heat-scatter plot representing the top five
upregulated membranome components identified in Ad1-UcpI™ie" and Ad1-UcpI™¥ (bottom
plot). The color of the circles corresponds to the average logFC.

(F) Heatmap showing the average expression for seven main TFs in Ad1-UcpItieh cells (green
background) and five main TFs in Ad1-UcpI™ cells (yellow background). These TFs are
related to the DEGs from each comparison through the Transcription Factor Enrichment
Analysis (TFEA) using the X2K database.

(G) Nebulosa expression plots representing four positive/negative markers for Ucp! (Slc36a2,
Acadm, Slc27al and Fasn).

Supplementary Figure Captions

Fig. S1. Overview of markers and transcriptional profile of adipose tissue cells identified
by the new snRNA-Seq template.

(A) -SNE plot of a dataset from Rajbhandari, P et al. (2019) distributed by 17 clusters.

(B) Metacell analysis classification of the “fat cake™ 17 clusters in 4 cell types: adipocyte (AD),
endothelial (EN), immune (IM), and progenitors (PG). Pie charts show the corresponding
percentage.

(C) SCCAF plot showing the over clustering optimization.

(D) SCCAF plot showing the Cross-Validation (CV) and test for the different rounds of over
clustering.

(E) Unsupervised markers for each classified cell type generated by the analysis of metacell.
(F) ORA analysis of DEGs from the four cell types identified. The intensity of the color in the
dotplot indicates the enrichment significance by the combined score. Circle sizes correspond
to the -log10 adjusted P-value (padj). Each dot plot represents an individual gene set related to
the KEGG, WikiPathways, Jensen tissues, and GO biological process

Fig. S2. Transcriptome-based interactome analysis reveals Ad3-Ad4 cellular interactions.
(A) SCCAF plot showing the over clustering optimization.

(B) SCCAF plot showing the Cross-Validation (CV) and test for the different rounds of over
clustering.



(C) Violin plot of the canonical mature adipocyte markers.

(D) Volcano plot representation showing the up and down-regulated DEGs for each mature
adipocyte subcluster, with the top 5 up and down-regulated DEGs labeled.

(E) ORA analysis of DEGs from the four cell types identified. The intensity of the color in the
dotplot indicates the enrichment significance by the combined score. Circle sizes correspond
to the -log10 adjusted P-value (padj). Each dot plot represents an individual gene set related to
the Jensen tissues and Mouse Gene Atlas.

(F) Pie charts showing the percentage of genes belonging to the secretome, membranome, and
other cellular compartments from Ad3 and Ad4 subclusters.

(G) Heat-scatter plot representing upregulated membranome (upper) and secretome (bottom)
components identified in Ad3 and Ad4 subclusters. The color of the circles corresponds to the
average logFC.

(H) Interactome representing cell-cell communication between Ad3 and Ad4 subclusters. P-
values are indicated by circle size. The average expression level of interacting molecule 1 in
subcluster Ad3/Ad4 and interacting molecule 2 in subcluster Ad4/Ad3 are indicated by color.

Fig. S3. General analysis of thermogenic treatment in matures adipocyte subpopulation.
(A) Gene-expression heatmap of the DEGs of mature adipocyte nuclei subclusters according
to each treatment (Cold, CL, and RT) compared to all others. Genes are represented in rows
and cell clusters in columns.

(B) Selected top categories from ORA analysis of DEGs from mature adipocyte nuclei
subclusters according to each treatment (Cold vs. RT and CL vs. RT). The intensity of the color
in the dotplot indicates the enrichment significance by the combined score. Circle sizes
correspond to the -log10 adjusted P-value (padj). Gene set names are colored according to the
GO biological process (purple), Jensen tissues (red), Kyoto Encyclopedia of Genes and
Genomes (KEGG, blue), and WikiPathways (orange).

(C) Heat maps showing the expression of genes related to fatty acid oxidation, tricarboxylic
acid cycle, fat acid transport, glycolytic process, triglyceride/fatty acid cycle, and de novo
lipogenesis in the five mature adipocytes subclusters.

(D) Venn diagram representing the overlapping between Ad1 and Ad5 subclusters identified
in the secretome, membranome, and other cellular locations.

(E) Pie charts showing the percentage of genes belonging to the secretome, membranome, and
other cellular compartments from Adl and Ad5 (CL) and Ad2 (Cold).

(F) Heat-scatter plot representing upregulated membranome (left) and secretome (right)
components identified in Ad1 and AdS5 subclusters. The color of the circles corresponds to the
average logFC.

(G) Heat-scatter plot representing upregulated membranome (left) and secretome (right)
components identified in Ad2 subcluster. The color of the circles corresponds to the average
logFC.

(H) Interactome representing cell-cell communication between Adl and AdS5 subclusters. P-
values are indicated by circle size. The average expression level of interacting molecule 1 in
subcluster Ad1/AdS and interacting molecule 2 in subcluster Ad5/Ad1 is indicated by color.
(I) Monocle-generated plots presenting pseudotime ordering and differentiation trajectory of
CL and RT conditions. The five monocle assigned states are shown. Green background
represents the three main thermogenic genes (classic). The yellow background represents the



earlier expressed genes in the trajectory. The blue background represents the later expressed
genes in the trajectory. The characterized genes are DEGs throughout the trajectory.

(J) Monocle-generated plots presenting pseudotime ordering and differentiation trajectory of
Cold and RT conditions. The seven monocle assigned states are shown. Green background
represents the three main thermogenic genes (classic), the yellow background represents the
earlier expressed genes in the trajectory, and the blue background represents the later expressed
genes in the trajectory. The represented genes are DEGs throughout the trajectory.

Fig. S4. General characterization of thermogenic main metabolic pathways, secretome
prediction, and TF in Ad1-UcpI'igh and Ad1-UcpIt°v.

(A) Pie charts show the corresponding percentage of Ad1, Ad2 and Ad5 subclusters expressing
the thermogenic genes Ppara, Dio2, Prdml6, Elovi3, and Cox8b.

(B) Gene-expression heatmap of all DEGs in Ad1-UcpIfigh vs. Ad1-UcpI™®¥ comparison.
Genes are represented in rows and cell clusters in columns.

(C) Heat maps showing the expression of genes related to glycolytic process, arginine/creatine
and proline metabolism V, and SERCA?2 pathways in the Ad1-Ucpltieh and Ad1-UcpI™©>.
(D) Heat-scatter plot representing upregulated membranome (left) and secretome (right)
components identified in Ad1-UCP " and Ad1-UCPI*¥. The color of the circles correspond
to the average logFC

(E) Bar plot demonstrating the -log(p-values) of the enriched transcription factors (TFs) in
Ad1-UCPI"igh predicted using X2K database. Protein-Protein interactions (PPI) of TFs (green
nodes) and targeted genes (grey nodes). The larger the circles, the higher the betweenness
centrality value of the node. Gray lines highlight the interactions. Interactions were visualized
using Cytoscape v3.7.2:

(F) Bar plot demonstrating the -log(p-values) of the enriched transcription factors (TFs) in
Ad1-UCPI™¥ predicted using the X2K database. Protein-Protein interactions (PPI) of TFs
(green nodes) and targeted genes (grey nodes). The larger the circles, the higher the
betweenness centrality value of the node. Gray lines highlight the interactions. Interactions
were visualized using Cytoscape v3.7.2.

(G) Heatmap showing the average expression for 42 gene targets from 7 main TFs in Adl-
UCP[1ieh cells (green background) and 13 gene targets from 5 main TFs in Ad1-UCPI™Y cells
(yellow background). These targets and TFs are related to the DEGs from each comparison
through the Transcription Factor Enrichment Analysis (TFEA) using the X2K database.
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Experimental Models: Organisms/Strains
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Software and Algorithms

Seurat v3.2.2 R package (Stuart et al., 2019) | https://github.com/
satijalab/seurat
SeuratWrappers v0.2.0 R package https://github.com/
satijalab/seurat-
wrappers
ComplexHeatmap v2.4.3 R package (Guetal., 2016) https://github.com/
jokergoo/Complex
Heatmap
DropletUtils v1.8.0 R package (Griffiths et al., https://github.com/
2018; Lun et al., MarioniLab/Dropl
2019) etUtils
fgsea v1.14.0 R package (Korotkevich and https://github.com/
Sukhov, 2019) ctlab/fgsea/
monocle 2.16.0 R package (Qiu et al., 2017a, https://github.com/
2017b; Trapnell et cole-trapnell-
al., 2014) lab/monocle-
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metacell v0.3.41 R package (Baran et al., 2019) | https://github.com/
tanaylab/metacell
scanpy v1.4.6 Python library (Wolfetal., 2018) https://github.com/
theislab/scanpy
sccaf 0.0.10 Python library https://github.com/
SCCAF/sccaf
Enrichr (access: july 2020) (Chen et al., 2013; | https://maayanlab.
cloud/Enrichr/

Kuleshov et al.,

2016)




UniProtKB (access: July 2020)

(Davis and Meltzer,
2007)

https://www.unipr
ot.org/uniprot/

Gene Ontology (GO) (access: July 2020)

(The Gene Ontology
Consortium, 2015)

http://geneontolog
y.org/

SignalP v5.0

(Armenteros, 2019)

http://www.cbs.dtu

.dk/services/Signal
P/
SecretomeP v2.0 (Bendtsen et al., | http://www.cbs.dtu
2004) .dk/services/Secret
omeP/
TMHMM v2.0 (Krogh et al., 2001) | http://www.cbs.dtu
.dk/services/TMH
MM/
cellphonedb v2.1.4 Python library (Efremova et al., https://github.com/
2020; Vento-Tormo | Teichlab/cellphone
et al., 2018) db
eXpression2Kinases (X2K, access: September 2020) | (Chen et al., 2011; | https://amp.pharm.
Clarke et al,, 2018) | ™ssm-edwX2K/
STRING v.11.0 (Szklarczyk et al., https://string-
2019) db.org/

Cytoscape v3.7.2

(Shannon, 2003)

https://cytoscape.o
rg/

CytoNCA plugin v2.1.6 (Tang, 2015) http://apps.cytosca
pe.org/apps/cytonc
a

Morpheus (Starruf3 et al., 2014) | https://software.br
oadinstitute.org/m
orpheus/

jvenn (Bardou et al., 2014) | http://jvenn.toulou
se.inra.fr/app/index
html
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Single cell sequencing of the stromal vascular (Rajbhandari et al., | GSE133486

fraction (SVF) under B3-adrenergic agonist 2019)
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Scripts This paper https://github.com/
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Methods Details

Single-cell RNA-seq data

The scRNA-seq data from mature adipocytes under cold-challenge and B3-adrenergic agonist
stimulation were acquired from the Gene Expression Omnibus (GEO) database under the series
number GSE133486 (Rajbhandari et al., 2019), which contains 6 data of mouse SVF and 10
data of mouse adipose nuclei generated using Drop-Seq and 3' V3 chemistry kit on Chromium

Single-cell controller (10x Genomics), respectively.

Data pre-processing

The filtered feature-barcode matrix was used in the following analysis. All additional analysis
were performed using Seurat v3 (Butler et al., 2018; Stuart et al., 2019). First, to reproduce the
results obtained by Rajbhandari et al., the same procedures described in the paper were used.
For the single nuclei data reanalysis, only data of mouse adipose nuclei wild-type mice
underwent cold-challenge and B3-adrenergic agonist stimulation were used. Nuclei with less
than 200 and more significant than 3000 genes detected, more than 10% of mitochondrial
percentage genes, and P condition were excluded from the analysis. We assigned scores for S
and G2/M cell cycle phases based on previously defined gene sets (Tirosh et al., 2016) using
the CellCycleScoring function for clustering of all cells. The regularized negative binomial
regression was used to normalize UMI count data using the sctransform workflow (Hafemeister
and Satija, 2019), regressing out against the number of UMIs per cell, S phase score, and G2/M
phase score. Scaled data was used as an input into PCA based on variable genes. Clusters were
identified using Shared Nearest Neighbor (SNN) based clustering based on the first 26 PCs
(corresponds to a PCA cumulative proportion greater than 80%) and resolution = 1. The same
principal components were used to generate the t-SNE projection, which was developed with

a maximum of 2000 iterations.

Optimal number of clusters

To find the optimal number of clusters, the SCCAF was used with an accuracy threshold of
80%. The clustering calculated previously was used as initial clusters, and the h5ad file used
as input was generated using the SeuratToHS5ad function. The optimize, skip-assessment,

produce-rounds-summary, and optimisation-plots-output parameters were used in this first step



to use the sccaf command to round optimization. Then the sccaf-assess command was used to
determine the round to be used as a final result by through the observation of accuracies for
each round on multiple iterations. For this step the default parameters were used using 20
iterations. Finally, the last step is to generate a plot used to compare the accuracy between
different rounds. For this purpose, the sccaf-assess-merger command was employed using the

results from step one and two.

Cell-type classification

To classify the cell types Metacell (Baran et al., 2019) was used with the default parameters.
Firstly, we used some initial markers as Adrb3 for Adipocyte, Pecam for Endothelial, Ptprc,
and Cd19 for Immune and Cd34, and Pdgfra for Progenitor cell type. Based on these markers
and cell types, the tool returned a list of new markers that can separate these cell types. To
select these new markers, we performed isolation of each cell type group to check each marker's
expression. The markers that had an expression in the given group, greater than 90% of the
quantile, were considered markers for the respective group. These are the markers: Acsli,
Plin4, Mixipl, Pckl, and Adrb3 for Adipocyte, Btnl9, Ushbpl, Egfl7, Mcf2] and Ptprb for
Endothelial, Zeb2, Trpsl, Runxl, Ptprc, and Adap2 for Immune, Dcn, Celf2, Meg3, Colla?2
and Col3al for Progenitor cell types. So, based on these markers, the tool was able to classify

the cell types.

Optimal mature adipocyte subclusters

The mature adipocyte cluster was subsetted using an optimal number of clusters the SCCAF
(described above) was used with an accuracy threshold of 80%. RT (Ad3 e Ad4), Cold (Adl e
Ad2), CL (Adl e Ad5); adipocyte clusters of cells (Adl, Ad2, Ad3, Ad4 and Ad5)

Differential Expression and Enrichment analysis

Differentially expressed genes between the different conditions each cluster/cell type were
identified using FDR < 0.05 and/or |avg_logFC| > 0.25. Functional enrichment analysis was
performed using the Enrichr tool (Chen et al., 2013; Kuleshov et al., 2016). For better
visualization of the data, the Adaptively-thresholded Low Rank Approximation (ALRA)
(Linderman et al., 2018) imputation method and Nebulosa (Kernel Gene-Weighted Density

Estimation) (Jose Alquicira-Hernandez, 2020) was used.

Transcriptome-based secretome analysis



The differentially expressed genes in the mature adipocyte subclusters (Ad1, Ad2, Ad3, Ad4,
and Ad5) were filtered for genes encoding secreted proteins based on a pipeline of four
databases and tools. UniProtKB (The UniProt Consortium, 2019) annotation of subcellular
localization was accessed to select proteins classified as “Secreted” and Gene Ontology (GO)
(The Gene Ontology Consortium, 2015) annotation of the cellular component was used for
selection of “Extracellular” proteins. To confirm those results, the combined lists of proteins
generated by UniprotKB and GO were analyzed using the algorithms SignalP 5.0 (Roh et al.,
2018), SecretomeP 2.0 (Bendtsen et al., 2004). SignalP server (Armenteros, 2019) was used to
identify classical secretory proteins (presenting signal peptide considering the D-value >0.45).
Proteins without signal peptide were evaluated in the SecretomeP 2.0 server to determine non-
classical secreted proteins, using the cutoff for a neural network (NN) score >0.6. The same
strategy was used for clusters of adipocytes highly expressing Ucpl compared to adipocytes
with lower levels of Ucp!. Each condition's predicted secretome was visualized using heat-dot
plot using Morpheus software (Starrul et al., 2014). We also verified the secretion via
exosomes by accessing the Exocarta database (http://www.exocarta.org/) (Simpson et al.,

2012).

Membranome prediction

The differentially expressed genes in the mature adipocyte subclusters (Adl, Ad3, Ad4, and
Ad5) were filtered for genes encoding cell membrane proteins. UniprotKB and GO were also
used for the membranome annotation filtering in the proteins classified at “cell membrane” and
“plasma membrane”, respectively. The list generated was confirmed using TMHMM 2.0
(Krogh et al., 2001) algorithm selecting only proteins with predicted number of transmembrane
helices (PredHel) greater than 1. This prediction analysis classifies transmembrane proteins
without discriminating if the protein is located on plasma or vesicles or organelles membranes.
Thus, we manually reviewed the literature of our selected top 5 genes of interest to confirm
which membrane they belong to. The same strategy was used for subclusters of adipocytes

highly expressing Ucp! compared to adipocytes with lower levels of Ucp 1.
Cell-cell interaction

We used the computational framework CellPhoneDB to predict cell-cell communication using
its repository of curated ligand-receptor interactions for single-cell transcriptomic data

(Efremova et al., 2020; Vento-Tormo et al., 2018). We used the default setting to select the



statistically relevant interaction (p-value < 0.05) between the mature adipocyte subclusters

belonging to RT group (Ad3 vs. Ad4) and the CL group (Ad1 vs. AdS).

Pseudotime analysis

To analyze the trajectory development of adipocyte clusters, an unsupervised pseudo temporal
analysis was performed using Monocle2 (Qiu et al., 2017a, 2017b; Trapnell et al., 2014). The
Seurat object with cluster information was extracted and converted to a Monocle2 CellDataSet.
Monocle2 uses DDRTree, a reversed graph embedding algorithm to predict biological
trajectories, to reduce the high-dimensional scRNA-seq data space and predict how cells
progress through a given biological process based on global gene expression levels. Monocle2
offers ideal unsupervised pseudotime analysis for this study as it indicates branch points and
trajectory states without cell fate input information. Following size factor, dispersion estimates,
trajectory ordering genes were called by testing the differential expression of genes expressed
with min_expr = 0.1 in >= 10 cells against the 5 clusters of adipocytes, selecting the genes that
have qval < 0.01. Data dimensionality was reduced using the reduceDimension function with
max_components set to 2 and reduction_method set to DDRTree. The cells were ordered
according to the state that represents the initial condition (state 1). DEGs across pseudotime
were determined using the differentialGeneTest function filtering by qval < 0.01. Resultant
genes were ordered by q value, and the top-500 genes changing in pseudotime were visualized

using the plot pseudotime heatmap function.

Transcription factors (TFs) enrichment analysis and Protein-protein interaction (PPI)

We used the eXpression2Kinases (X2K) (Chen et al., 2011; Clarke et al., 2018) workflow to
identify the upstream TFs of the DEGs within subclusters with high and low gene expression
of Ucpl. We selected the enriched TFs (p-value <0.05) to construct the PPI network with their
targeted genes found as DEGs in the adipose single-cells expressing or not Ucp! in cluster

Adl. PPI networks were conducted using STRING v.11.0 (https://string-db.org/). Only

medium confidence interactions were included (interaction score of at least 0.4), and the
disconnected nodes were omitted in the network. Visualization and data annotation of PPI
networks were constructed using Cytoscape v3.7.2(Shannon, 2003). The CytoNCA plugin

(Tang, 2015) was used to calculate the betweenness centrality values of each node.

Data representation



Heat-scatter plot was generated wusing Morpheus (StarruB et al., 2014)
(https://software.broadinstitute.org/morpheus). Venn diagrams were plotted using the web

server jvenn (Bardou et al., 2014).

Data and code availability

The accession number for the single-nuclei sequencing data from Rajbhandari et al. (2019)
reported in this paper is GEO: GSE133486. All analysis code is available on GitHub at

https://github.com/cbiagii/snRNAseq_adipocyte.
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