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Highlights 
 
 
Multidimensional transcriptome analysis at single-nucleus resolution recovers nuclei of cell 
types in adipose tissue 
 
Adaptative thermogenic response results in 3 distinct mature adipose cell types 
 
Single-nuclei transcriptomic-based secretome analysis reveals adipose cell-type-specific 
genes 
 
The in vivo trajectory of adipocyte plasticity for thermogenic response reveals sets of trans-
differentiation genes 
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Abstract 

 

Adipose tissue has been classified based on its morphology and function as white, brown, or 

beige / brite. It plays an essential role as a regulator of systemic metabolism through paracrine 

and endocrine signals. Recently, multiple adipocyte subtypes have been revealed using RNA 

sequencing technology, going beyond simply defined morphology but by their cellular origin, 

adaptation to metabolic stress, and plasticity. Here, we performed an in-depth analysis of 

publicly available single-nuclei RNAseq from adipose tissue and utilized a workflow template 

to characterize adipocyte plasticity, heterogeneity, and secretome profiles. The reanalyzed 

dataset led to the identification of different subtypes of adipocytes including three 

subpopulations of thermogenic adipocytes and provided a characterization of distinct 

transcriptional profiles along the adipocyte trajectory under thermogenic challenges.  This 

study provides a useful resource for further investigations regarding mechanisms related to 

adipocyte plasticity and trans-differentiation.  
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Introduction 

The perceived functional complexity of adipose tissue (AT) has changed significantly 

over the last 30 years since the leptin discovery (Friedman et al., 1991). The AT is a significant 

endocrine tissue organized into different depots, which are classified as brown (BAT) or white 

adipose tissue (WAT) (Scherer, 2006). Mature adipocytes constitute 90% of the AT volume 

but comprise only 17–33% of total cells. In contrast, the remaining vast majority of cells 

include a heterogeneous cell population of the stromal vascular fraction (SVF) (Lee et al., 

2013a; Rosenwald and Wolfrum, 2014). Mature adipocytes are classified into three distinct 

types: white, brown, and beige/brite (Wang et al., 2016). White adipocytes are responsible for 

storing triacylglycerides (TGs). The brown adipocytes use lipids to produce heat in part through 

a UCP1 associated uncoupling of electron transport from ATP production (Pollard and Carling, 

2020). Beige adipocytes (“brown-like”) can also support UCP1-independent thermogenesis 

(Pollard and Carling, 2020). These beige cells arise within white fat pads in response to 

activators such as cold exposure (Jiang et al., 2017), b3-adrenergic receptor (Adrb3) agonists 

(Lee et al., 2013b), PPARg ligands (Wang et al., 2016), cancer cachexia (Kir et al., 2014), and 

exercise training (Chouchani et al., 2019). 

Beige adipocytes have been studied over the last three decades (Pollard and Carling, 

2020). However, the interest in their physiological function and therapeutic potential to combat 

obesity has only recently been revisited after discovering the thermogenic response of white 

adipocytes in adult humans (de Jong et al., 2019; Wang et al., 2016). Formation of beige cells 

in WAT by cold or other stimuli occurs through de novo differentiation of progenitor cells from 

the perivascular compartment (Jiang et al., 2017) or interconversion of pre-existing white 

adipocytes (Jiang et al., 2017; Rosenwald et al., 2013).  

Single-cell RNA sequencing (scRNA-Seq) has allowed for the identification of cell-to-

cell heterogeneity and plasticity for many different tissues (Zheng et al., 2017; Ziegenhain et 



al., 2017). Analysis of adipose tissues at single-cell resolution is challenging. It has several 

limitations, especially considering technical limitations of reproducibly isolating the complete 

adipocyte compartment of the tissue due to the large size and high buoyancy of the adipocytes 

(Deutsch et al., 2020). Most WAT scRNA-Seq studies to date derive the transcriptomes of the 

cell types within SVF without providing critical information about the status of the adipocytes 

in animal models (Burl et al., 2018; Cho et al., 2019; Gu et al., 2019; Henriques et al., 2020; 

Hepler et al., 2018; Jaitin et al., 2019; Merrick et al., 2019; Schwalie et al., 2018; Spallanzani 

et al., 2019; The Tabula Muris Consortium et al., 2018; Weinstock et al., 2019; Zhang et al., 

2019) and humans (Acosta et al., 2017; Jaitin et al., 2019; Merrick et al., 2019; Raajendiran et 

al., 2019; Vijay et al., 2020). Few studies investigated brown adipocytes (Song et al., 2019) or 

isolated adipocytes from mouse inguinal WAT undergoing browning (Rajbhandari et al., 

2019). Most recently, Sárvári et al., investigated the complete repertoire of adipose tissue cell 

types at a single-cell resolution (Sárvári et al., 2021). However, multidimensional studies 

investigating the mechanisms involved in mature adipocyte plasticity under thermogenic 

stimuli are still lacking. 

Intact cell nuclei have been used to perform single-nuclei RNA-seq (snRNA-seq), 

overcoming the limitations of isolating the complete adipocyte compartment (Nguyen et al., 

2018). The snRNA-seq data of digested adipocytes from inguinal WAT reveals a complex 

subpopulation of mature adipocytes with distinct genetic signatures (Rajbhandari et al., 2019). 

Recently, snRNA-seq analysis of the WAT identified a rare subpopulation of adipocytes in 

mice that increase in abundance at higher temperatures. This subpopulation regulates the 

activity of neighboring adipocytes through acetate-mediated modulation of their thermogenic 

capacity (Sun et al., 2020).  

 Here, we reconstructed the mature adipocyte heterogeneity of the thermogenic response 

at the single-nuclei resolution. Our analyses generated a comprehensive and expansive cellular 



atlas presenting three thermogenic adipocyte subpopulations, followed by additional 

information on the metabolic pathways, the plasticity of individual subpopulations, and 

transcription factors possibly involved in beige remodeling of WAT. Also, we characterized 

specific cell surface markers and the secretome for each adipocyte subpopulation. The detailed 

snRNA-Seq analysis presented herein of the transcriptional changes in WAT adipocytes under 

thermogenic challenge provides insight into the molecular mechanisms driving adipocyte 

plasticity. 

Results 

Multidimensional snRNA-Seq reconstruction reveals distinct adipocyte subpopulations 

derived from mouse iWAT.  

We sought to characterize the transcriptional profiles of adipocytes by reanalyzing 

single-nuclei RNA sequencing data of isolated primary adipocytes responding to different 

thermogenic stimuli: 4oC challenge for four days (Cold) and CL-treatment, 1mg/kg/day for 

four days (CL). We selected the experimental challenges to increase the chance of detecting 

nuclei of mature primary adipocyte populations. For cells obtained from iWAT samples (from 

now, referred to as fat-cake), the t-SNE plots revealed 17 distinct nuclei clusters at different 

experimental conditions (Figure S1A). Those distinct clusters were subjected to a workflow 

template, depicted in Figure 1A. The first step of our pipeline was to subject raw data to over-

clusterization (SCCAF), followed by the identification and classification of the cellular 

heterogeneity (MetaCell) (Figure S1B). We annotated the clusters of nuclei using marker 

genes (described in detail in the STAR Methods), which resulted in the identification of four 

groups of cell clusters: progenitor cells (PG), immune cells (IM), endothelial cells (EN), and 

adipocytes (AD1) (Fig. 1B). The proportion of cell types (average) per individual was 22% for 

progenitors, 10% for immune cells, 55% for endothelial cells, and 13% for adipocytes (Figure 

S1B). An accuracy threshold of 80% was used for cluster optimization (Figure S1C), and 

round 3 was chosen as the best round based on the accuracy and cross-validation test (Figure 



S1D). The distribution was similar after SCCAF over-clusterization: 22% for adipocyte 

progenitors and stem cells (PG1–PG5), 4% for immune cells (IM1–IM3) and 62% for 

endothelial cells (EN1–EN2), and 12% for adipocytes (AD1–AD4) (Figure 1B). Thus, 

unsupervised clustering of the single-nuclei transcriptional profiles identified four adipocyte 

subsets in the iWAT fat-cake. The following canonical cell type markers were upregulated in 

these clusters: Pdgfra, Itgb1, and Cd34 (for adipocyte progenitors and stem cells), Ptprc (for 

immune cells), Pecam1 (for endothelial cells), and Adrb3 (for adipocytes) (Figure 1C).  

After MetaCell analysis, a list of genes used to define each of the different clusters is 

presented in Figure S1E and Table S1.  The expression profile of the top 20 cell-type-specific 

DEGs is shown in Figure 1D and Table S2. Unsupervised analysis of DEGs identified four 

significant adipocyte populations (i.e., expressing Acsl1, Plin4, Mlxipl, Pck1, and Adrb3), a 

population of endothelial cells (Btnl9, Ushdp1, Egfl7, Ncf2l, and Ptprb), adipocyte progenitors 

and stem cells (Dcn, Celf2, Meg3, Col1a2, and Col3a1), and immune cells (Trps1, Runx1, 

Ptprc, and Adap2) (Figure 1E). Adipocyte clusters enriched genes associated with 

subcutaneous adipose tissue and PPAR signaling. Endothelial cells enriched genes are related 

to focal adhesion and vasculature, immune cells are significantly enriched with cell adhesion 

molecules genes, and adipocyte progenitors and stem cells are enriched for mesenchyme cells 

and myofibroblasts genes (Figure 1F, Table S3, Figure S1F, and Table S4). These 

transcriptional differences may underlie distinct functional characteristics of the different cell 

types identified in the single-nuclei RNA-Seq reanalysis pipeline. 

 

Reclustering of adipocyte clusters reveals two distinct mature adipocyte populations at 

room temperature. 

To gain insight into the molecular differences between adipocyte subpopulations, we 

first verified the accuracy threshold of 80% that was used to cluster optimization (Figure S2A), 



and round 3 was chosen as the best round based on the accuracy and cross-validation test 

(Figure S2B). Next, we applied unsupervised over-clustering (SCCAF) to partition all 3,568 

adipocytes nuclei that were identified using t-SNE. Interestingly, it identified five distinct 

adipocyte subpopulations (Ad1-Ad5, Figure 2A), each having a particular DEG pattern, with 

a slight exception for the Ad3 and Ad4 subpopulations (Figure 2B and Table S5). Canonical 

adipocyte markers Dgat1, Plin1, Lipe, Cidec, were expressed in all adipocyte subpopulations 

(Figure 2C and Figure S2C), albeit at varying levels. We found 571 DEGs in Ad1 (362 up 

and 209 down-regulated); 281 DEGs in Ad2 (118 up- and 163 down-regulated); 294 DEGs in 

Ad3 (70 up- and 224 down-regulated); 412 DEGs in Ad4 (353 up- and 59 down-regulated); 

and 160 DEGs in Ad5 (156 up- and 4 down-regulated) (Figure S2D and Table S6). We applied 

functional enrichment analysis of the five adipocyte subpopulations (Ad) (Figure 2D, Table 

S7, Figure S2E, and Table S8). The DEGs capture significant aspects of heterogeneity in 

distinct adipocyte subpopulations. Such differences were reflected in mitochondria gene 

expression and fatty acid degradation for Ad1, triglycerides biosynthetic process for Ad2, and 

ATP biosynthetic process for Ad1 and 2, TCA cycle and acetyl-CoA metabolic process, and 

regulation of cell differentiation for Ad3, regulation of sequestering triglycerides, and long-

chain fatty acid transport, and adipocytokine signaling pathway for Ad4 and cholesterol 

metabolism for Ad5. Interestingly, fatty acid biosynthetic processes and long-chain fatty acid 

transport, and white adipose tissue (mouse-genes-atlas) were predominantly enriched in the 

Ad3 and Ad4 subpopulations. Interestingly, using the database Jensen tissues, we observed that 

the Ad3 subpopulation was the only one significantly enriched for the “Preadipocyte cell line” 

term (Figure S2E), suggesting a “preadipocyte-like” expression profile specifically found in 

the Ad3 (Cfd, Fabp4, Gpd1, and Lpl). Ad3 and Ad4 adipocyte subpopulations appeared to 

represent classical adipocytes, and they expressed genes associated with WAT, Cidec, Pnpla, 

and Adipoq (Figure S2E). 



 Ad3 and Ad4 subpopulations correspond to adipocytes present in fat cake of iWAT of 

non-treated mice (Control, RT) (Figure 2A). A comparison of adipocyte canonic markers 

revealed that Ad4 expresses higher levels of Adipoq, Plpna2, Fasn, Pparg, Cidec, Car3, and 

Gadd45g than Ad3 at room temperature (Figure 2E) suggesting that Ad4 more so than Ad3 

consists of “classic'' adipocytes. Interestingly, leptin is more highly expressed in Ad3 than in 

Ad4 subpopulation (Figure 2E). 

To gain additional insight into Ad3 and Ad4 subsets, we performed an analysis of the 

secretome and membranome using gene expression profiles (DEGs). 29 genes predicted to 

encode membrane proteins were upregulated exclusively in Ad4, while only 2 genes were 

upregulated in Ad3 (Ntrk2 and Atp1a2), and 9 other membrane genes were differentially 

expressed in both subpopulations (Figure 2F). Figure 2G shows the top 5 highly expressed 

genes, Irs2, Abca1, Mrap, Irs1, and Adrb3, which could potentially be used as Ad4 

subpopulation markers. Regarding the secreted proteins, we found that Ad3 overexpresses 

17.4% of genes that encode secretory proteins, while Ad4 overexpresses only 8.2% (Figure 

S2F). The top 5 exclusively expressed in Ad3 (Gpx3, Col1a2, and Spon1) and Ad4 (Vegfa, 

Serpine1, Angptl4, Hspa8, and Cesd1) subpopulation are detailed in Figure 2G. The complete 

list of predicted secretome and membranome upregulated genes from the Ad3 and Ad4 

subpopulations is presented in Figures S2G and Table S9. 

Characterization of the secretory proteins and components of the cell membrane 

permitted a prediction of cell-cell interactions via ligands and possible receptors (i.e., 

interactome) (Figure S2H).  Ad3 and Ad4 showed increased interaction through collagens 

(produced by Ad3) and integrin (Ad4) and decreased interaction through NOTCH1 (Ad3) with 

JAG1 (Ad4) and COL5A1 (Ad3) and integrin complex (Ad4). Ad4 interacts with Ad3 by 

producing the ADIPOQ ligand interacting with the CLEC2D receptor in Ad3.   

 



Identification of a unique adipocyte thermogenic subpopulation corresponding to both 

Cold and CL-treatment  

To further identify the adipocyte subpopulation with thermogenic transcriptome 

signature, we performed unbiased aggregated clustering of the processed data for each of the 

experimental conditions, i.e., Cold, CL and RT, as a t-SNE-plot (Figure 3A). The aggregated 

cluster represents 3,027 adipocyte nuclei. Figure 3B shows the gene expression of the selected 

(supervised) adipocyte and thermogenic markers. For these data, it is interesting to note that 

the profile of gene distribution of Adipoq, Retn, Cidec, and Fasn, (canonical adipocyte 

markers), has almost no overlap with thermogenic genes, such as Ppara, Ucp1, Dio2, Prdm16, 

Elovl3. Figure S3A and Table S10 highlight the DEGs related to cold-challenge (Cold) and 

CL treatment. The top 5 DEGs for cold-challenge were Acacb, Acss2, mt-Co2, Macf1, and 

Gm26917, while for CL were Acsl1, mt-Co3, mt-Co2, mt-Atp6, Fasn. Once we determined that 

the 2 treatments (Cold and CL) have different gene expression profiles, we performed 

functional enrichment analysis (Figure 3C, Table S11, Table S12, Figure S3B, and Table 

S13), using enriched genes in each cluster based on different experimental conditions. This 

analysis revealed that different adipocyte subclusters express distinct genes corresponding to 

the experimental conditions. For example, cold-induced subclusters demonstrated critical 

organophosphate biosynthetic processes and fatty acid transport. At the same time, CL showed 

significant aspects of organophosphate metabolic processes, oxidative phosphorylation, and 

ATP metabolic processes. The down-regulated genes reveal negative regulation for 

biosynthetic processes and response to mechanical stimuli for both experimental conditions. 

Since we have observed that RT, CL, and cold presents distinct frequencies in the 

adipocyte subpopulations, we analyzed the distribution of all adipocytes highlighted according 

to each different experimental condition (Figure 3D). Integrated analysis for adipocyte nuclei 

of CL, RT, and cold treatments revealed five subclusters, with Ad1 (83%) and Ad5 (12%) 



mainly from CL, Ad3 (60%) and Ad4 (36%) derived primarily from RT, and Ad2 (73%) and 

Ad1 (25%) mainly from cold. Interestingly, Ad1 contained adipocyte nuclei from both CL and 

Cold conditions and was more prevalent in Cl than other subpopulations. Whereas CL and Cold 

both exhibited unique expression patterns that reflected their functional commitments, CL 

showed significant functional enrichments mainly related to fatty acid degradation and 

transportation (Figure S3B). Unsurprisingly, the Ad1 subpopulation was most heavily 

involved in fatty acid oxidation, TAC, and fatty acid transport (Figure 3E and Figure S3C). 

The latter seems to be very specific to Ad1. The expression profiles of genes corresponding to 

glycolytic process and triglycerides / fatty acid cycle, however, were not so distinguished 

between Ad1 versus Ad5 subpopulation (Figure 3E), despite the fact the Ad5 showed 

relatively higher expression of most of the metabolism-related genes, in particular, triglycerides 

/ fatty acid processes and de novo lipogenesis; this is indicative of a high energy demand for 

Ad5 subpopulation. 

Identification of three distinct thermogenic adipocyte subpopulations led us to predict 

corresponding secretome and membranome (Figure 3F and Figures S3D-S3G, and Table 

S14). In Ad1 and Ad5, 7.2 % and 9%, respectively, of upregulated genes represent membrane 

encoding proteins (Figure S3E). Two genes were exclusive to both Ad1 and Ad5 clusters 

(Figure S3D), while 23 plasma membrane genes were upregulated exclusively in Ad1 and 12 

genes in Ad5; the top 5 expressed genes in each subpopulation are Slc36a2, Clstn3, Slc4a4, 

Kcnk3, Adra1a for Ad1, and Slc27a1, Cd1d1, Adrb3, Hcar2, Aplp2 for Ad5 (Figure 3F). The 

Ad1 subcluster was found to overexpress 3.3% of potential secreted proteins and Ad5 

overexpressed 5.8%. The secretory genes exclusively expressed in Ad1 and Ad5 

subpopulations were: Ad1: Psap, Vldlr, Nrg4, Col27a1, Dcn; Ad5: Hpsa5, Cd1d1, Hsp90b1, 

Angptl4, Calr (Figure 3F). The complete list of the predicted secreted and membrane proteins 

in Ad1 and Ad5 subpopulations are presented in Figure S3F and G. Ad2 shows 12.7 % of 



upregulated genes are membrane encoding proteins (Asph, Btnl9, Cd36, Adgrf5, and Flt1) and 

9.3% are secreted proteins (Flt1, Lpl, Egfl7, Kdr, and Sparc). VEGFA was the main interacting 

molecule between Ad1 and Ad5 subclusters (Figure S3H). 

The gene expression profile (normalized) of the adipocyte subpopulations shows that 

the classic thermogenic markers, Ucp1, Cidea, Dio2, Elovl3, Cpt1b, and Plin5, are 

differentially expressed in all clusters, but particularly in Ad1 (Figure 3G). Other genes, such 

as Acadm, Cox8b, and Gk seem to be closely related to CL subclusters (Ad1 and Ad5). Fasn 

and Acaca showed a higher level of gene expression in Ad5 than all other subpopulations, 

which may indicate a specific profile in this adipocyte phenotype. 

Since reanalysis of the snRNA-seq dataset simultaneously profiles adipocytes under 

both cold and CL-treatment, we hypothesized that their plasticity could be traced in vivo by 

mapping a developmental trajectory between distinct adipocyte subpopulations. As two 

significant subpopulations were resolved in the RT nuclei dataset (Ad3, Ad4) from iWAT 

(Figure 3D), we established this condition as the starting point for the analysis through the 

Monocle. Pseudotime study mapped a distinct trajectory of RT adipocytes responding to 

thermogenic challenge into different cellular states, ranging over modifications to late 

thermogenic trans-differentiation (Figures 3H and 3I). This identified a branched trajectory 

connecting the adipocyte subpopulations with two branches representing the adipocytes' 

specification into distinct subpopulations. We focused on the thermogenic branch 1 to separate 

the nuclei into late trans-differentiation (mostly Ad1), and in branch 2, related to early trans-

differentiation (mostly Ad3) (Figure S3I and S3J).  

In the CL subpopulations (Ad1, Ad5), adipocytes lost expression of transcription 

factors (TF) Egr2, Dpb, and Xbp1, as well as of genes Nnat, Plppr3, and Chst1 (Figure S3I).  

A progressive gain of expression is shown for TFs, Clock, Zbtb43, and Zbtb7a, whereas 

“classic” thermogenic TFs Ppara, Prdm16, and Ppargc1a are expressed along the entire 



trajectory analysis. Ucp1 was expressed in late trans-differentiation thermogenic adipocytes, 

followed by Ppara and Dio2 (Figure S3I and Table S15). The cold-challenged adipocytes 

(Ad1 and Ad2) lost expression of Egr1, Cebpa, and Srebf1 and progressively gained expression 

of TFs Foxn3, Essra, and Gtf2ird1 (Figure 3I). Brown adipocyte markers were also expressed 

in late trans-differentiation thermogenic adipocytes (Figure S3J and Table S16).  

 

 Ad1-Ucp1High subpopulation shows a “classical” thermogenic profile 

 Once the Ad1 subpopulation was shown to express a clear thermogenic signature in 

response to both Cold- and CL-challenge, the next step was to evaluate Ad1 nuclei that express 

high levels of UCP1 and compare them with those expressing low levels of UCP1 (details in 

STAR Method). Figure 4A presents the t-SNE representation of adipocyte subpopulations 

Ad1, Ad2, and Ad5 highlighting nuclei with high expression of Ucp1 (from hereafter, Ad1 will 

be named Ad1-Ucp1High and Ucp1Low). The thermogenic genes Ppara, Dio2, Prdm16, Elovl3, 

Cox8b are more prevalent in the Ad1 subpopulation (Figure S4A). The top-5 DEGs in Ad1-

Ucp1High nuclei are Macf1, Gk, Grk3, Pdk4, and Acacb (Figure 4B, Table S17, Figure S4B, 

and Table S18). Interestingly, it should be noted that a few adipocyte nuclei belonging to Ad1-

Ucp1Low have a gene signature similar to Ad1-Ucp1High. 

To gain mechanistic insight into gene lists, we applied enrichment analysis to evaluate 

the pathways enriched in a gene list of Ad1 (Ucp1High and Ucp1Low). As expected, for Ad1-

Ucp1High, pathways related to positive regulation of cold-induced thermogenesis, 

mitochondrion , lipid oxidation , and response to extracellular stimulus are activated (Figure 

4C). For Ad1-Ucp1Low, pathways related to adipogenesis, response to troglitazone, and 

regulation of kinase activity showed more activation.  

To gain additional information about the central metabolic pathways activated in the 

Ad1-Ucp1High and Ad1-Ucp1Low, we analyzed the DEGs of the primary genes involved in 



distinct energy metabolism pathways (Figure 4D and Figure S4C). The group of genes related 

to TCA is preferentially activated in Ad1-Ucp1High over Ad1-Ucp1Low. This profile was 

followed by the upregulation of genes involved in the following pathways: fatty acid oxidation, 

fatty acid transport, and glycolytic processes. Interestingly, Ad1-Ucp1Low has a higher 

enrichment of triglycerides / fatty acid cycle genes than in Ad1-Ucp1High. This fact suggests 

that other metabolic pathways, particularly those involved in a futile cycle, could be affected 

(Figure 4D and Table S19). Aware of this fact, we also evaluated non-canonical or UCP1 

independent pathways involved in the thermogenic program, such as glycolytic pathway, 

creatine metabolism genes, such as Gamt, Gatm, and Ckmt1, and SERCA2-pathway, such as 

Arpc2, Adra1a, Atp2a2, and Tmlc4 (Figure S4C). Overall, there were no categorical 

differences in these programs when comparing Ad1-Ucp1High and Ad1-Ucp1Low.  However, 

concerning the glycolytic pathway, Ppara, Pkm, and Ogdh, particularly the former, are 

differentially expressed in Ad1-Ucp1High, while Atp2a2 is equally represented in Ad1-Ucp1High 

and Ad1-Ucp1Low adipocytes. For Ad1-Ucp1Low, triglycerides / fatty acid processes and de 

novo lipogenesis are more enriched, with highlights for the genes; Fasn, Srebf1 and Insig1.  

Thirty-seven membrane genes were upregulated exclusively in Ad1-Ucp1High and 14 

genes upregulated in Ad1-Ucp1Low (Figure S4D and Table S20). The top 5 highly expressed 

genes are Slc4a4, Slc36a2, Kcnk3, Atp1a2, and Vldlr for Ad1-Ucp1High, and Slc27a1, Slc1a5, 

Slc7a10, Ghr, and Adrb3 for Ad1-Ucp1Low (Figure 4E). The top 5 genes predicted to encode 

secreted proteins for Ad1-Ucp1High were Col27a1, Vldlr, Il15ra, Psap, and Ctsz, while for Ad1-

Ucp1Low were Ghr, Acvr1c, Lama4, Col15a1, and Retn (Figure 4E).  

Given that TFs are crucial for defining cell identity, we analyzed TF expression levels 

in the Ad1 subpopulation. For this analysis, we initially evaluated the TFs that are most likely 

involved in regulating DEGs for Ad1-Ucp1High and Ad1-Ucp1Low (Figures S4E and S4F). The 

former exhibited specific expression of the main canonical adipocyte TFs (such as Parpd, 



Hnf4a, Ers1, Pparg, Sall4, Cebpd, Egr1, Nanog, Stat3, and Bhlhe40). Protein-protein 

interactions (PPI) analysis demonstrated that Arpd, Hnf4a, Ers1, Pparg, Sall4, Egr1, Nanog, 

and Bhlhe40 could interact with the targeted genes differentially expressed in Ad2-Ucp1High. 

For Ad1-Ucp1Low, Parpg, Sall4, Ers1, Tp63, Ar, and Gata2, the most enriched TFs and PPI 

analysis demonstrated that Parpg, Ers1, Tp63, and Gata2 could interact with the targeted 

DEGs. The next step was to analyze the most highly expressed TF genes (Figure 4F), in 

addition to exploring the genes that are targets of these TFs (Figure S4G). As expected, the 

canonical adipocyte TFs, such as Pparg, are expressed at higher levels than the other TFs in 

both Ad1-Ucp1High and Ad1-Ucp1Low, being more intense in the former. On the other hand, 

Egr1 and Ar are more pronounced in Ad1-Ucp1Low adipocytes. The target genes related to TFs, 

Slc4a4, Slc25a42, and Pdk4, were more pronounced in Ad1-Ucp1High adipocytes while Slc1a5 

and Fasn were upregulated in Ad1-Ucp1Low compared to Ad1-Ucp1High. Figure 4G shows the 

intracellular and membrane markers for Ad1-Ucp1High are Slc36a2 and Acadm), while Slc27a1 

and Fasn correspond to Ad1-Ucp1Low. 

 

Discussion 
 

This report analyzed existing single-nuclei transcriptome data to gain a greater 

understanding of the cellular composition of WAT. Here, we generate a comprehensive cellular 

atlas and classification of the adipocytes into five distinct subpopulations. This allowed us to 

delineate in vivo trajectories and determine the plasticity of individual adipocyte 

subpopulations from the inguinal fat pad of mice in the setting of thermogenic challenges. Cold 

and CL both induce UCP1+ cell populations (Ad1-Ucp1High) in addition to two other adipocyte 

subpopulations that show gene expression signatures distinct from each other. We also identify 

a new adipocyte population (Ad5) specific to CL treatment, which demonstrates enrichment 

for lipid turnover and de novo lipogenesis pathways, suggesting this subpopulation provides a 

higher energy output in a UCP1-independent fashion. We further show that the different 



adipocyte subpopulations present specific secretome profiles, mainly composed of proteins 

secreted via classical and non-classical pathways (such as exosomes). 

In WAT, beige remodeling can be triggered through two stimuli: Cold and CL (Jiang 

et al., 2017; Rosenwald et al., 2013). Recent studies suggest that these two stimuli might induce 

beiging through distinct pathways and our data support those observations (Jiang et al., 2017; 

Rabhi et al., 2020). The CL-induced subpopulation showed significant oxidative 

phosphorylation and ATP metabolic processes, whereas cold-induced thermogenic adipocytes 

are more specialized for fatty acid transport. As expected, a unique mature adipocyte 

subpopulation (Ad1) showing a thermogenic “classic” signature, such as Ucp1, Cidea, Dio2, 

Elovl3, Cpt1b, and Plin5, was detected in both treatments. The thermogenic population showed 

to be specialized in the following pathways: fat acid oxidation, TAC, and fatty acid transport. 

Interestingly, CL treatment also resulted in an additional subpopulation, Ad5. Despite 

not having a classic thermogenic signature, this adipocyte subpopulation showed a profile for 

activating genes related to glycolytic, fatty acid turnover, and, in particular, de novo lipogenesis 

pathways, also present at some level in thermogenic Ad1. Ad5 also showed specialization in 

lipid turnover pathways, suggesting this subpopulation provides a higher energy output. 

Acadm, Cox8b, and Gk are associated with both Ad1 and Ad5 subpopulations, while Fasn, 

Acly, and Insig1 is more highly associated with the Ad5 subpopulation. This set of results, 

predominantly generated in silico, meets the ex-vivo analysis presented by Lee et al., 2017. In 

this paper, Granneman and colleagues showed that CL upregulated FASN and MCAD in 

distinct adipocyte populations: high MCAD expression in multilocular adipocytes that co-

expressed high UCP1 levels, while FASN expression occurred in paucilocular adipocytes with 

low UCP1 levels. These results corroborate the concept of metabolic heterogeneity as a distinct 

property of activated thermogenic adipocytes. However, the function of each population and 

the control mechanisms involved need further analysis.  



 Regarding the secretome of thermogenic subpopulations, Ad1 adipocytes differentially 

overexpressed Nrg4, Col27a1, Psap and Dcn, whereas the Ad5 subcluster over-expressed 

mainly Hpsa5, Hsp90b1 and Cd1d1. Neuregulin 4 (NRG4) was previously shown as an AT-

enriched secreted factor, markedly increased during brown adipocyte differentiation. Nrg4 is 

downregulated in AT during rodent and human obesity. In contrast, gain-and-loss-of-function 

studies in mice showed it protects against diet-induced insulin resistance and hepatic steatosis 

(Wang et al., 2014). Interestingly, NRG4 promotes neurite outgrowth during cold-challenge 

(Rosell et al., 2014). CD1d is a lipid antigen-presenting molecule for iNKT cells (invariant 

Natural Killer T), highly expressed in adipocytes than any other cell types of adipose tissue 

(Hotamisligil et al., 1993). Adipocytes positively express CD1d molecules in lean adipose 

tissue, which play a crucial role in maintaining the adipose iNKT cell population. Upon HFD 

feeding, adipocytes present obesity-related lipid antigens via CDld molecules, which leads to 

iNKT cell activation and stimulates anti-inflammatory cytokine secretion from adipose iNKT 

cells (Huh et al., 2018). In this sense, the adipocyte secretome prediction has shown that both 

NRG4 (Ad1) and CD1d (Ad5) are specific thermogenic adipocyte products since sufficient 

mRNA levels molecules were not detected in other cell populations from WAT.  

To fully understand the potential therapeutic relevance of beige remodeling, it is crucial 

to characterize the overall metabolic properties of beige adipocytes in addition to their 

thermogenic potential. In this regard, the Ad1 subpopulation was subdivided into two 

subpopulations, according to the presence or absence of Ucp1 mRNA. Interestingly, although 

Ad1-Ucp1High showed a "canonical" thermogenesis genetic signature, by expressing higher 

DEGs corresponding to energy metabolism, particularly those related to TCA, Ad1-Ucp1Low 

adipocytes showed higher triglycerides/fat acid cycle and de novo lipogenesis pathways. Also, 

specialization of fatty acid metabolism (oxidation and transport) and glycolytic processes are 

more pronounced in Ad1-Ucp1High despite a small portion of Ad1-Ucp1Low adipocytes having 



a similar profile to that found in Ad1-Ucp1High. Ad1-Ucp1High showed, in addition to the 

positive regulation of thermogenesis, specialization related to response to extracellular stimulus 

and cellular carbohydrate metabolic process. Our analyses also showed that the UCP1 

independent pathways involved in the thermogenic program, such as glycolytic, and SERCA2-

pathway are equally expressed in Ad1-Ucp1High and Ad1-Ucp1Low adipocytes. This fact 

suggests that other metabolic pathways, particularly those involved in a futile cycle (lipid 

turnover and SERCA2), could also be involved in the thermogenic metabolism in Ad1 

adipocytes in a way that does not depend on the presence or absence of UCP1. Furthermore, it 

should be highlighted that Ad1-Ucp1Low adipocytes make up about 75% of the adipocyte 

subpopulation under CL treatment, suggesting its relevance for the detailed understanding of 

beige remodeling.  

In recent years, beige remodeling has been demonstrated through the existence of other 

thermogenic pathways in a UCP1-independent manner (Kajimura et al., 2015; Szabo and 

Zoratti, 2017). Even more recently, Kajimura and colleagues showed ‘glycolytic beige’ (g-

beige), with significant enrichment of genes involved in glycolysis, glucose, and carbohydrate 

metabolism distinct from both the classical beige and brown adipose signatures (Chen et al., 

2019). However, at present, further analysis is necessary to gain insights into whether these 

new cell types are expressed in wild-type mice or if their expression requires specific genetic 

backgrounds. 

These findings motivated us to identify new markers for thermogenic adipocyte types 

using snRNA-seq data from digested AT samples. Although some consistent studies have 

presented the transcriptome profile of beige cells, either of bulk (Lee et al., 2013b) or cells 

isolated by a reporter system (UCP1+) (Roh et al., 2018), as far as we know, this is the first 

analysis of the snRNA-Seq data to predict the profile of proteins associated with their 

respective functions. The membranome prediction analysis showed Slc4a4 and Adra1a and 



Slc36a2 as specific for Ad1-Ucp1High surface markers, whereas Slc27a1 and Slc1a5 were more 

typical for Ad1-Ucp1Low. Our analyses show a very particular profile of surface proteins 

(plasmatic membrane), making possible additional functional analyses of those adipocyte 

populations. However, experimentally using ex vivo and in vivo or approaches such as sorting 

cells (Roh et al., 2018) and fluorescent imaging techniques must be determined. 

Brown/beige adipocyte differentiation and activation of the thermogenic program are 

controlled by sequential actions of transcription factors (TFs), including EBF2, PRDM16, 

C/EBPΒ, PGC-1α, and PPARγ (Kajimura et al., 2010; Puigserver et al., 1998; Rajakumari et 

al., 2013; Seale et al., 2009). However, there is a lack of information on the transcription 

regulators possibly involved in the “plasticity” and/or “trans-differentiation” of white to beige 

adipocytes. To address this issue, we identified the most expressed set of genes, which encode 

TFs. Interestingly, in addition to the generic adipogenesis regulators also known to be involved 

in beige differentiation, such as Prdm16, Pparg, Pgc1a, and Ppara, we also showed Clock and 

Ppara (both up), for CL and Cold, respectively, and Egr1 (downregulated) for both treatments. 

Zinc finger transcription factor EGR1 is a negative regulator of the fat beige program. Loss of 

Egr1 in mice promotes browning in the absence of external stimulation and leads to increased 

Ucp1 expression, which encodes the critical thermogenic mitochondrial uncoupling protein-1 

(Milet et al., 2017). Besides, during the trans-differentiation processes, the two treatments seem 

to activate a different set of genes along their trajectory. This may suggest that, although the 

endpoint is similar, the possible pathways activated may be different. 

Limitations should be addressed; our paper show descriptive evidence generated 

through in silico analysis from several angles, but the scope of this study lacks the 

appropriate in vivo models to show a mechanistic link to certain physiological functions. Future 

studies are needed to validate the metabolic impact of our findings concerning adipose tissue 

heterogeneity, plasticity, and remodeling. Moreover, secretome and membranome prediction 



using transcriptomic data as input also needs to be carefully evaluated considering the several 

mechanisms of transcriptional regulation in mammals. Our workflow template proposes a 

global analysis of an adipocyte atlas; thus, there is no proper filter from contaminated droplets. 

The choice of a cutoff may be arbitrary. Finally, the adipocyte trajectory herein described may 

differ between depots and thermogenic challenges, and further studies are needed to outline 

and validate the trajectories in different adipocytes subpopulations.  

Conclusion 

In summary, we present a multidimensional reanalysis at a single-nucleus resolution, 

which allows the recovery of nuclei of cell types in adipose tissue. Using this tool, it was 

possible to show the plasticity of adipocytes, which corroborates with recent data from AT 

snRNAseq (Rajbhandari et al., 2019; Sun et al., 2020). In addition to the presence of 

thermogenic adipocytes subpopulation positive for UCP1 (Ad1-Ucp1High), additional 

transcriptome analyses allowed us to infer the presence of different secretory functions under 

thermogenic challenges activated metabolic pathways, especially those related to the futile 

cycle. On the other hand, Ad1-Ucp1Low seems to have a relevant role, both in energy 

production, through the pathways independent of UCP1, and in its secretory function. This, in 

turn, proved to be very specific among the heterogeneous adipocyte populations. Regarding 

the profile of secretory molecules, most are related to proteins that make up EMC, and the 

highlighted candidates are potentially secreted via classical pathways and exosomes. 

Understanding this functional plasticity plays an essential role in understanding mature 

adipocytes' role as a “central'' cell type modulating tissue remodeling. 
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Figure Captions 
 
Fig. 1. Adipose Single-Nuclei Workflow Template identifies different cell populations in 
adipose tissue. 
(A) Workflow overview showing the main 3 steps to process the template. The first step 
corresponds to obtaining the dataset (in this paper public data was used with accession number 
GSE133486). The next step is to cluster the data that includes the over clustering, finding the 
optimal number of clusters, cell type identification, and marker expression. The last step is 
related to the principal analysis that includes differential expression, functional enrichment, 
trans-differentiation, and cell component prediction. (Created with BioRender.com) 
(B) t-SNE plot of 28,820 single nuclei cells distributed by 14 clusters in 4 cell types: adipocyte 
(AD), endothelial (EN), immune (IM), and progenitors (PG). Pie charts show the 
corresponding percentage. 
(C) Nebulosa representing the unsupervised clustering of six canonical cell type markers for 
each cluster. Pdgfra, Itgb1, and Cd34 (for adipocyte progenitors and stem cells), Ptprc (for 
immune cells), Pecam1 (for endothelial cells), and Adrb3 (for mature primary adipocytes).  (D) 
Gene-expression heatmap of the top 20 DEGs in each defined cell type compared to all others. 
Genes are represented in rows and cell clusters in columns. 
(E) Gene-expression dot plot of select top 5 DEGs for each defined cell type. Rows depict 
clusters, while columns depict genes. The intensity of any given point indicates average 
expression, while its size represents the proportion of cells expressing a particular gene. 
(F) Selected top categories from ORA analysis of DEGs from the four cell types identified. 
The intensity of the color in the dotplot indicates the enrichment significance by the combined 
score. Circle sizes correspond to the -log10 adjusted P-value (padj). Gene set names are colored 
according to the GO biological process (purple), Jensen tissues (red), and Kyoto Encyclopedia 
of Genes and Genomes (KEGG, blue).  
 
Fig. 2. Multidimensional workflow template identifies two distinct mature adipocyte 
subclusters at RT. 
(A) Reclustering of adipocytes nuclei using SCCAF identified 5 putative adipocyte subclusters 
from “fat cake” iWAT nuclei data (Ad1 = 1,539 nuclei; Ad2 = 1,106 nuclei; Ad3 = 477 nuclei; 
Ad4 = 265 nuclei and Ad5 = 181 nuclei).  
(B) Gene-expression heatmap of the top 10 most DEGs in each adipocyte subcluster compared 
to all others. Genes are represented in rows and cell clusters in columns. 
(C) Gene-expression dot plot of the canonical adipocyte markers for each adipocyte subcluster. 
Rows depict clusters, while columns depict genes. The intensity of any given point indicates 
average expression, while its size represents the proportion of cells expressing a particular 
gene. 
(D) Selected top categories from ORA analysis of DEGs from the five adipocyte clusters. The 
intensity of the color in the dotplot indicates the enrichment significance by the combined 
score. Circle sizes correspond to the -log10 adjusted P-value (padj). Gene set names are colored 
according to the GO biological process (purple), Jensen tissues (red), Kyoto Encyclopedia of 
Genes and Genomes (KEGG, blue), Mouse Gene atlas (green), and WikiPathways (orange) .   
(E) Scatter-box plot representing normalized gene expression of 12 marker genes in the two 
adipocyte clusters from RT (Ad3 and Ad4 subclusters). At the top of each box is the 
significance of the comparison between Ad3 and Ad4 subclusters. The more stars, the more 
significant, while ns represents no significance.  



(F) Venn diagram demonstrating the intersection of upregulated genes encoding membrane 
proteins from Ad3 and Ad4 subclusters. 
(G) Heat-scatter plot representing two upregulated membranome components specifically 
identified in Ad3 adipocyte and the top five exclusive membranome of Ad4 subcluster (upper 
plot). Heat-scatter plot representing three upregulated secretome components specifically 
identified in Ad3 subcluster and the top five exclusive secretome of Ad4 subcluster (bottom 
plot). The color of the circles corresponds to the average logFC. 
 
Fig. 3. CL treatment and cold-challenge reveals a single thermogenic subpopulation. 
(A) t-SNE representation showing a subset of mature adipocyte nuclei subclusters classified 
according to each treatment (Cold = 892 cells: CL = 1,433 cells and RT = 702 cells). 
(B) Nebulosa expression plots of canonical mature adipocyte and thermogenic genes. 
(C) Gene Set Enrichment Analysis (GSEA) comparing Cold vs. RT and CL vs. RT. Rows 
depict enriched pathways, while in the y-axis, the Normalized Enrichment Score (NES). 
Positive NES represents an upregulated pathway, and negative NES represents down-regulated 
pathways. 
(D) CL, RT, and Cold shown subset of adipocyte nuclei subclusters classified according to 
each treatment integrated in t-SNE plot (CL = 1,443 cells; RT = 702 cells and Cold = 892 cells). 
Pie charts show the corresponding percentage. 
(E) Heat map showing the expression of main genes related to fatty acid oxidation, 
tricarboxylic acid cycle, fatty acid transport, glycolytic process, triglyceride/fatty acid cycle, 
and de novo lipogenesis in the five adipocytes subclusters. 
(F) Heat-scatter plot representing top five upregulated membranome components specifically 
identified in Ad1 subcluster and the top five exclusive membranome of Ad5 subcluster from 
CL subset comparison. The top five membrane genes from subcluster Ad2 (Cold) are 
demonstrated separately (left). Heat-scatter plot representing top five upregulated secretome 
components specifically identified in Ad1 subcluster and the top five exclusive secretome of 
Ad5 subcluster. The top five secretome genes from subcluster Ad2 (Cold) are demonstrated 
separately (right). The color of the circles corresponds to the average logFC. FC: fold change 
(G) Scatter-box plot representing normalized gene expression of 20 markers of canonical 
adipocyte and thermogenic genes in the five adipocyte subclusters. At the top of each box is 
the significance. The more stars, the more significant, while ns represents no significance. 
(H) Monocle-generated plots presenting pseudotime ordering and differentiation trajectory of 
CL and RT conditions. The trajectory suggests a transition between Ad3-Ad4-Ad5-Ad1. Green 
background represents the three main thermogenic TFs (classic). The yellow background 
represents the earlier expressed TFs in the trajectory, and the blue background represents the 
later expressed TFs in the trajectory. The characterized genes are DEGs throughout the 
trajectory. 
(I) Monocle-generated plots presenting pseudotime ordering and differentiation trajectory of 
Cold and RT conditions. The trajectory suggests a transition between Ad4-Ad3-Ad2-Ad1. 
Green background represents the three main thermogenic TFs (classic). The yellow 
background represents the earlier expressed TFs in the trajectory, and the blue background 
represents the later expressed TFs in the trajectory. The characterized genes are DEGs 
throughout the trajectory. 
 



Fig. 4.  Ad1-Ucp1High subpopulation shows a “classical” thermogenic profile whereas Ad1-
Ucp1Low subpopulation suggest a potential UCP1- independent pathways activation. 
(A) t-SNE representation showing Ad1, Ad2 and Ad5 mature adipocyte nuclei subclusters. The 
red dots represent the cells that have higher expression levels of Ucp1. Pie charts show the 
corresponding percentage of high Ucp1 in each of Ad1, Ad2 and Ad5 subclusters. 
(B) Gene-expression heatmap of the top 10 most DEGs in Ad1-Ucp1High vs. Ad1-Ucp1Low 
comparison. Genes are represented in rows and cell clusters in columns. 
(C) Gene Set Enrichment Analysis (GSEA) comparing Ad1-Ucp1High vs. Ad1-Ucp1Low. Rows 
depict enriched pathways, while in y-axis the Normalized Enrichment Score (NES). Positive 
NES represents an upregulated pathway and negative NES represents down-regulated 
pathways. 
(D) Heat map showing the expression of main genes related to fatty acid oxidation, 
tricarboxylic acid cycle, fatty acid transport, glycolytic process, triglyceride/fatty acid cycle, 
and de novo lipogenesis in the Ad1-Ucp1High and Ad1-Ucp1Low. 
(E) Heat-scatter plot representing the top five upregulated secretome components identified in 
Ad1-Ucp1High and Ad1-Ucp1Low (upper plot). Heat-scatter plot representing the top five 
upregulated membranome components identified in Ad1-Ucp1High and Ad1-Ucp1Low (bottom 
plot). The color of the circles corresponds to the average logFC. 
(F) Heatmap showing the average expression for seven main TFs in Ad1-Ucp1High cells (green 
background) and five main TFs in Ad1-Ucp1Low cells (yellow background). These TFs are 
related to the DEGs from each comparison through the Transcription Factor Enrichment 
Analysis (TFEA) using the X2K database. 
(G) Nebulosa expression plots representing four positive/negative markers for Ucp1 (Slc36a2, 
Acadm, Slc27a1 and Fasn). 
 
Supplementary Figure Captions 
 
Fig. S1. Overview of markers and transcriptional profile of adipose tissue cells identified 
by the new snRNA-Seq template. 
(A) t-SNE plot of a dataset from Rajbhandari, P et al. (2019) distributed by 17 clusters. 
(B) Metacell analysis classification of the “fat cake” 17 clusters in 4 cell types: adipocyte (AD), 
endothelial (EN), immune (IM), and progenitors (PG). Pie charts show the corresponding 
percentage. 
(C) SCCAF plot showing the over clustering optimization. 
(D) SCCAF plot showing the Cross-Validation (CV) and test for the different rounds of over 
clustering. 
(E) Unsupervised markers for each classified cell type generated by the analysis of metacell. 
(F) ORA analysis of DEGs from the four cell types identified. The intensity of the color in the 
dotplot indicates the enrichment significance by the combined score. Circle sizes correspond 
to the -log10 adjusted P-value (padj). Each dot plot represents an individual gene set related to 
the KEGG, WikiPathways, Jensen tissues, and GO biological process 
 
Fig. S2. Transcriptome-based interactome analysis reveals Ad3-Ad4 cellular interactions. 
(A) SCCAF plot showing the over clustering optimization. 
(B) SCCAF plot showing the Cross-Validation (CV) and test for the different rounds of over 
clustering. 



(C) Violin plot of the canonical mature adipocyte markers. 
(D) Volcano plot representation showing the up and down-regulated DEGs for each mature 
adipocyte subcluster, with the top 5 up and down-regulated DEGs labeled. 
(E) ORA analysis of DEGs from the four cell types identified. The intensity of the color in the 
dotplot indicates the enrichment significance by the combined score. Circle sizes correspond 
to the -log10 adjusted P-value (padj). Each dot plot represents an individual gene set related to 
the Jensen tissues and Mouse Gene Atlas. 
(F) Pie charts showing the percentage of genes belonging to the secretome, membranome, and 
other cellular compartments from Ad3 and Ad4 subclusters. 
(G) Heat-scatter plot representing upregulated membranome (upper) and secretome (bottom) 
components identified in Ad3 and Ad4 subclusters. The color of the circles corresponds to the 
average logFC.  
(H) Interactome representing cell-cell communication between Ad3 and Ad4 subclusters. P-
values are indicated by circle size. The average expression level of interacting molecule 1 in 
subcluster Ad3/Ad4 and interacting molecule 2 in subcluster Ad4/Ad3 are indicated by color. 
 
Fig. S3. General analysis of thermogenic treatment in matures adipocyte subpopulation. 
(A) Gene-expression heatmap of the DEGs of mature adipocyte nuclei subclusters according 
to each treatment (Cold, CL, and RT) compared to all others. Genes are represented in rows 
and cell clusters in columns. 
(B) Selected top categories from ORA analysis of DEGs from mature adipocyte nuclei 
subclusters according to each treatment (Cold vs. RT and CL vs. RT). The intensity of the color 
in the dotplot indicates the enrichment significance by the combined score. Circle sizes 
correspond to the -log10 adjusted P-value (padj). Gene set names are colored according to the 
GO biological process (purple), Jensen tissues (red), Kyoto Encyclopedia of Genes and 
Genomes (KEGG, blue), and WikiPathways (orange).  
(C) Heat maps showing the expression of genes related to fatty acid oxidation, tricarboxylic 
acid cycle, fat acid transport, glycolytic process, triglyceride/fatty acid cycle, and de novo 
lipogenesis in the five mature adipocytes subclusters. 
(D) Venn diagram representing the overlapping between Ad1 and Ad5 subclusters identified 
in the secretome, membranome, and other cellular locations. 
(E) Pie charts showing the percentage of genes belonging to the secretome, membranome, and 
other cellular compartments from Ad1 and Ad5 (CL) and Ad2 (Cold). 
(F) Heat-scatter plot representing upregulated membranome (left) and secretome (right) 
components identified in Ad1 and Ad5 subclusters. The color of the circles corresponds to the 
average logFC. 
(G) Heat-scatter plot representing upregulated membranome (left) and secretome (right) 
components identified in Ad2 subcluster. The color of the circles corresponds to the average 
logFC. 
(H) Interactome representing cell-cell communication between Ad1 and Ad5 subclusters. P-
values are indicated by circle size. The average expression level of interacting molecule 1 in 
subcluster Ad1/Ad5 and interacting molecule 2 in subcluster Ad5/Ad1 is indicated by color. 
(I) Monocle-generated plots presenting pseudotime ordering and differentiation trajectory of 
CL and RT conditions. The five monocle assigned states are shown. Green background 
represents the three main thermogenic genes (classic). The yellow background represents the 



earlier expressed genes in the trajectory. The blue background represents the later expressed 
genes in the trajectory. The characterized genes are DEGs throughout the trajectory. 
(J) Monocle-generated plots presenting pseudotime ordering and differentiation trajectory of 
Cold and RT conditions. The seven monocle assigned states are shown. Green background 
represents the three main thermogenic genes (classic), the yellow background represents the 
earlier expressed genes in the trajectory, and the blue background represents the later expressed 
genes in the trajectory. The represented genes are DEGs throughout the trajectory. 
 
Fig. S4. General characterization of thermogenic main metabolic pathways, secretome 
prediction, and TF in Ad1-Ucp1High and Ad1-Ucp1Low. 
(A) Pie charts show the corresponding percentage of Ad1, Ad2 and Ad5 subclusters expressing 
the thermogenic genes Ppara, Dio2, Prdm16, Elovl3, and Cox8b. 
(B) Gene-expression heatmap of all DEGs in Ad1-Ucp1High vs. Ad1-Ucp1Low comparison. 
Genes are represented in rows and cell clusters in columns. 
(C) Heat maps showing the expression of genes related to glycolytic process, arginine/creatine 
and proline metabolism V, and SERCA2 pathways in the Ad1-Ucp1High and Ad1-Ucp1Low. 
(D) Heat-scatter plot representing upregulated membranome (left) and secretome (right) 
components identified in Ad1-UCP1High and Ad1-UCP1Low. The color of the circles correspond 
to the average logFC 
(E) Bar plot demonstrating the -log(p-values) of the enriched transcription factors (TFs) in 
Ad1-UCP1High predicted using X2K database. Protein-Protein interactions (PPI) of TFs (green 
nodes) and targeted genes (grey nodes). The larger the circles, the higher the betweenness 
centrality value of the node. Gray lines highlight the interactions. Interactions were visualized 
using Cytoscape v3.7.2. 
(F) Bar plot demonstrating the -log(p-values) of the enriched transcription factors (TFs) in 
Ad1-UCP1Low predicted using the X2K database. Protein-Protein interactions (PPI) of TFs 
(green nodes) and targeted genes (grey nodes). The larger the circles, the higher the 
betweenness centrality value of the node. Gray lines highlight the interactions. Interactions 
were visualized using Cytoscape v3.7.2. 
(G) Heatmap showing the average expression for 42 gene targets from 7 main TFs in Ad1-
UCP1High cells (green background) and 13 gene targets from 5 main TFs in Ad1-UCP1Low cells 
(yellow background). These targets and TFs are related to the DEGs from each comparison 
through the Transcription Factor Enrichment Analysis (TFEA) using the X2K database. 
 
  



STAR Methods 
 
Key resources table 
 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
   
   
   
   
   
Bacterial and Virus Strains  
   
   
   
   
   
Biological Samples   
   
   
   
   
   
Chemicals, Peptides, and Recombinant Proteins 
   
   
   
   
   
Critical Commercial Assays 
   
   
   
   
   
Deposited Data 
   
   
   
   
   
Experimental Models: Cell Lines 
   
   
   
   
   



Experimental Models: Organisms/Strains 
   
   
   
   
   
   
Oligonucleotides 
   
   
   
   
   
Recombinant DNA 
   
   
   
   
   
Software and Algorithms 
Seurat v3.2.2 R package (Stuart et al., 2019) https://github.com/

satijalab/seurat 
SeuratWrappers v0.2.0 R package  https://github.com/

satijalab/seurat-
wrappers 

ComplexHeatmap v2.4.3 R package (Gu et al., 2016) https://github.com/
jokergoo/Complex
Heatmap 

DropletUtils v1.8.0 R package (Griffiths et al., 
2018; Lun et al., 
2019) 

https://github.com/
MarioniLab/Dropl
etUtils 

fgsea v1.14.0 R package (Korotkevich and 
Sukhov, 2019) 

https://github.com/
ctlab/fgsea/ 

monocle 2.16.0 R package (Qiu et al., 2017a, 
2017b; Trapnell et 
al., 2014) 

https://github.com/
cole-trapnell-
lab/monocle-
release 

metacell v0.3.41 R package (Baran et al., 2019) https://github.com/
tanaylab/metacell 

scanpy v1.4.6 Python library (Wolf et al., 2018) https://github.com/
theislab/scanpy 

sccaf 0.0.10 Python library  https://github.com/
SCCAF/sccaf 

Enrichr (access: july 2020) (Chen et al., 2013; 

Kuleshov et al., 

2016) 

https://maayanlab.
cloud/Enrichr/ 



UniProtKB (access: July 2020) (Davis and Meltzer, 

2007) 

https://www.unipr
ot.org/uniprot/ 

Gene Ontology (GO) (access: July 2020) (The Gene Ontology 

Consortium, 2015) 

http://geneontolog

y.org/ 

SignalP v5.0 (Armenteros, 2019) http://www.cbs.dtu

.dk/services/Signal

P/ 

SecretomeP v2.0 (Bendtsen et al., 

2004) 

http://www.cbs.dtu
.dk/services/Secret
omeP/ 

TMHMM v2.0 (Krogh et al., 2001) http://www.cbs.dtu
.dk/services/TMH
MM/ 

cellphonedb v2.1.4 Python library (Efremova et al., 
2020; Vento-Tormo 
et al., 2018) 

https://github.com/
Teichlab/cellphone
db 

eXpression2Kinases (X2K, access: September 2020)  (Chen et al., 2011; 

Clarke et al., 2018) 

https://amp.pharm.
mssm.edu/X2K/ 

STRING v.11.0 (Szklarczyk et al., 

2019) 

https://string-

db.org/ 

Cytoscape v3.7.2 (Shannon, 2003) https://cytoscape.o
rg/ 

CytoNCA plugin v2.1.6 (Tang, 2015) http://apps.cytosca
pe.org/apps/cytonc
a 

Morpheus (Starruß et al., 2014) https://software.br
oadinstitute.org/m
orpheus/ 

jvenn  (Bardou et al., 2014) http://jvenn.toulou
se.inra.fr/app/index
.html 

Other 
Single cell sequencing of the stromal vascular 
fraction (SVF) under B3-adrenergic agonist 
stimulation and mature adipocytes under cold 
exposure and B3-adrenergic agonist stimulation 

(Rajbhandari et al., 
2019) 

GSE133486 

Scripts This paper https://github.com/
cbiagii/snRNAseq
_adipocyte 

   



 

 
Methods Details 
 
Single-cell RNA-seq data 

The scRNA-seq data from mature adipocytes under cold-challenge and B3-adrenergic agonist 

stimulation were acquired from the Gene Expression Omnibus (GEO) database under the series 

number GSE133486 (Rajbhandari et al., 2019), which contains 6 data of mouse SVF and 10 

data of mouse adipose nuclei generated using Drop-Seq and 3' V3 chemistry kit on Chromium 

Single-cell controller (10x Genomics), respectively.   

 

Data pre-processing 

The filtered feature-barcode matrix was used in the following analysis. All additional analysis 

were performed using Seurat v3 (Butler et al., 2018; Stuart et al., 2019). First, to reproduce the 

results obtained by Rajbhandari et al., the same procedures described in the paper were used. 

For the single nuclei data reanalysis, only data of mouse adipose nuclei wild-type mice 

underwent cold-challenge and B3-adrenergic agonist stimulation were used. Nuclei with less 

than 200 and more significant than 3000 genes detected, more than 10% of mitochondrial 

percentage genes, and P condition were excluded from the analysis. We assigned scores for S 

and G2/M cell cycle phases based on previously defined gene sets (Tirosh et al., 2016) using 

the CellCycleScoring function for clustering of all cells. The regularized negative binomial 

regression was used to normalize UMI count data using the sctransform workflow (Hafemeister 

and Satija, 2019), regressing out against the number of UMIs per cell, S phase score, and G2/M 

phase score. Scaled data was used as an input into PCA based on variable genes. Clusters were 

identified using Shared Nearest Neighbor (SNN) based clustering based on the first 26 PCs 

(corresponds to a PCA cumulative proportion greater than 80%) and resolution = 1. The same 

principal components were used to generate the t-SNE projection, which was developed with 

a maximum of 2000 iterations.  

 

Optimal number of clusters 

To find the optimal number of clusters, the SCCAF was used with an accuracy threshold of 

80%. The clustering calculated previously was used as initial clusters, and the h5ad file used 

as input was generated using the SeuratToH5ad function. The optimize, skip-assessment, 

produce-rounds-summary, and optimisation-plots-output parameters were used in this first step 



to use the sccaf command to round optimization. Then the sccaf-assess command was used to 

determine the round to be used as a final result by through the observation of accuracies for 

each round on multiple iterations. For this step the default parameters were used using 20 

iterations. Finally, the last step is to generate a plot used to compare the accuracy between 

different rounds. For this purpose, the sccaf-assess-merger command was employed using the 

results from step one and two. 

 

Cell-type classification 

To classify the cell types Metacell (Baran et al., 2019) was used with the default parameters. 

Firstly, we used some initial markers as Adrb3 for Adipocyte, Pecam for Endothelial, Ptprc, 

and Cd19 for Immune and Cd34, and Pdgfra for Progenitor cell type. Based on these markers 

and cell types, the tool returned a list of new markers that can separate these cell types. To 

select these new markers, we performed isolation of each cell type group to check each marker's 

expression. The markers that had an expression in the given group, greater than 90% of the 

quantile, were considered markers for the respective group. These are the markers: Acsl1, 

Plin4, Mlxipl, Pck1, and Adrb3 for Adipocyte, Btnl9, Ushbp1, Egfl7, Mcf2l and Ptprb for 

Endothelial, Zeb2, Trps1, Runx1, Ptprc, and Adap2 for Immune, Dcn, Celf2, Meg3, Col1a2 

and Col3a1 for Progenitor cell types. So, based on these markers, the tool was able to classify 

the cell types. 

 

Optimal mature adipocyte subclusters 

The mature adipocyte cluster was subsetted using an optimal number of clusters the SCCAF 

(described above) was used with an accuracy threshold of 80%. RT (Ad3 e Ad4), Cold (Ad1 e 

Ad2), CL (Ad1 e Ad5); adipocyte clusters of cells (Ad1, Ad2, Ad3, Ad4 and Ad5)  

 

Differential Expression and Enrichment analysis 

Differentially expressed genes between the different conditions each cluster/cell type were 

identified using FDR < 0.05 and/or |avg_logFC| > 0.25. Functional enrichment analysis was 

performed using the Enrichr tool (Chen et al., 2013; Kuleshov et al., 2016). For better 

visualization of the data, the Adaptively-thresholded Low Rank Approximation (ALRA) 

(Linderman et al., 2018) imputation method and Nebulosa (Kernel Gene-Weighted Density 

Estimation) (Jose Alquicira-Hernandez, 2020) was used. 

 

Transcriptome-based secretome analysis 



The differentially expressed genes in the mature adipocyte subclusters (Ad1, Ad2, Ad3, Ad4, 

and Ad5) were filtered for genes encoding secreted proteins based on a pipeline of four 

databases and tools. UniProtKB (The UniProt Consortium, 2019) annotation of subcellular 

localization was accessed to select proteins classified as “Secreted” and Gene Ontology (GO) 

(The Gene Ontology Consortium, 2015) annotation of the cellular component was used for 

selection of “Extracellular” proteins. To confirm those results, the combined lists of proteins 

generated by UniprotKB and GO were analyzed using the algorithms SignalP 5.0 (Roh et al., 

2018), SecretomeP 2.0 (Bendtsen et al., 2004). SignalP server (Armenteros, 2019) was used to 

identify classical secretory proteins (presenting signal peptide considering the D-value >0.45). 

Proteins without signal peptide were evaluated in the SecretomeP 2.0 server to determine non-

classical secreted proteins, using the cutoff for a neural network (NN) score >0.6. The same 

strategy was used for clusters of adipocytes highly expressing Ucp1 compared to adipocytes 

with lower levels of Ucp1. Each condition's predicted secretome was visualized using heat-dot 

plot using Morpheus software (Starruß et al., 2014). We also verified the secretion via 

exosomes by accessing the Exocarta database (http://www.exocarta.org/) (Simpson et al., 

2012). 

Membranome prediction 

The differentially expressed genes in the mature adipocyte subclusters (Ad1, Ad3, Ad4, and 

Ad5) were filtered for genes encoding cell membrane proteins. UniprotKB and GO were also 

used for the membranome annotation filtering in the proteins classified at “cell membrane” and 

“plasma membrane”, respectively. The list generated was confirmed using TMHMM 2.0 

(Krogh et al., 2001) algorithm selecting only proteins with predicted number of transmembrane 

helices (PredHel) greater than 1. This prediction analysis classifies transmembrane proteins 

without discriminating if the protein is located on plasma or vesicles or organelles membranes. 

Thus, we manually reviewed the literature of our selected top 5 genes of interest to confirm 

which membrane they belong to. The same strategy was used for subclusters of adipocytes 

highly expressing Ucp1 compared to adipocytes with lower levels of Ucp1.  

Cell-cell interaction 

We used the computational framework CellPhoneDB to predict cell-cell communication using 

its repository of curated ligand-receptor interactions for single-cell transcriptomic data 

(Efremova et al., 2020; Vento-Tormo et al., 2018). We used the default setting to select the 



statistically relevant interaction (p-value < 0.05) between the mature adipocyte subclusters 

belonging to RT group (Ad3 vs. Ad4) and the CL group (Ad1 vs. Ad5).  

Pseudotime analysis 

To analyze the trajectory development of adipocyte clusters, an unsupervised pseudo temporal 

analysis was performed using Monocle2 (Qiu et al., 2017a, 2017b; Trapnell et al., 2014). The 

Seurat object with cluster information was extracted and converted to a Monocle2 CellDataSet. 

Monocle2 uses DDRTree, a reversed graph embedding algorithm to predict biological 

trajectories, to reduce the high-dimensional scRNA-seq data space and predict how cells 

progress through a given biological process based on global gene expression levels. Monocle2 

offers ideal unsupervised pseudotime analysis for this study as it indicates branch points and 

trajectory states without cell fate input information. Following size factor, dispersion estimates, 

trajectory ordering genes were called by testing the differential expression of genes expressed 

with min_expr = 0.1 in >= 10 cells against the 5 clusters of adipocytes, selecting the genes that 

have qval < 0.01. Data dimensionality was reduced using the reduceDimension function with 

max_components set to 2 and reduction_method set to DDRTree. The cells were ordered 

according to the state that represents the initial condition (state 1). DEGs across pseudotime 

were determined using the differentialGeneTest function filtering by qval < 0.01. Resultant 

genes were ordered by q value, and the top-500 genes changing in pseudotime were visualized 

using the plot_pseudotime_heatmap function.  

 
Transcription factors (TFs) enrichment analysis and Protein-protein interaction (PPI)  

We used the eXpression2Kinases (X2K) (Chen et al., 2011; Clarke et al., 2018) workflow to 

identify the upstream TFs of the DEGs within subclusters with high and low gene expression 

of Ucp1.  We selected the enriched TFs (p-value < 0.05) to construct the PPI network with their 

targeted genes found as DEGs in the adipose single-cells expressing or not Ucp1 in cluster 

Ad1.  PPI networks were conducted using STRING v.11.0 (https://string-db.org/). Only 

medium confidence interactions were included (interaction score of at least 0.4), and the 

disconnected nodes were omitted in the network. Visualization and data annotation of PPI 

networks were constructed using Cytoscape v3.7.2(Shannon, 2003). The CytoNCA plugin 

(Tang, 2015) was used to calculate the betweenness centrality values of each node.  

Data representation 



Heat-scatter plot was generated using Morpheus (Starruß et al., 2014) 

(https://software.broadinstitute.org/morpheus). Venn diagrams were plotted using the web 

server jvenn (Bardou et al., 2014). 

Data and code availability 

The accession number for the single-nuclei sequencing data from Rajbhandari et al. (2019) 

reported in this paper is GEO: GSE133486. All analysis code is available on GitHub at 

https://github.com/cbiagii/snRNAseq_adipocyte. 
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