

1 Title: Gene co-expression reveals the modularity and integration of C₄ and CAM in *Portulaca*

2

3 Ian S. Gilman¹, Jose J. Moreno-Villena¹, Zachary R. Lewis^{1,2}, Eric W. Goolsby³, and Erika J.

4 Edwards^{*,1}

5

6 ¹ Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; ²

7 Present address: Nanostring Technologies, Seattle, WA, USA; ³ Department of Biology,

8 University of Central Florida, Orlando, FL, USA

9

10 Corresponding authors: Ian S. Gilman (ian.gilman@yale.edu)

11 Abstract

12 C₄ photosynthesis and Crassulacean acid metabolism (CAM) have been considered as largely independent
13 adaptations in spite of sharing key biochemical modules. *Portulaca* is a geographically widespread clade
14 of over 100 annual and perennial angiosperm species that primarily use C₄, but facultatively exhibit CAM
15 when drought stressed, a photosynthetic system known as C₄+CAM. It has been hypothesized that
16 C₄+CAM is rare because of pleiotropic constraints, but these have not been deeply explored. We
17 generated a chromosome-level genome assembly of *P. amilis* and sampled mRNA from *P. amilis* and *P.*
18 *oleracea* during CAM induction. Gene co-expression network analyses identified C₄ and CAM gene
19 modules shared and unique to both *Portulaca* species. A conserved CAM module linked
20 phosphoenolpyruvate carboxylase (PEPC) to starch turnover during the day-night transition and was
21 enriched in circadian clock regulatory motifs in the *P. amilis* genome. Preservation of this co-expression
22 module regardless of water status suggests that *Portulaca* constitutively operate a weak CAM cycle that is
23 transcriptionally and post-transcriptionally upregulated during drought. C₄ and CAM mostly used
24 mutually exclusive genes for primary carbon fixation and it is likely that nocturnal CAM malate stores are
25 shuttled into diurnal C₄ decarboxylation pathways, but we find evidence that metabolite cycling may
26 occur at low levels. C₄ likely evolved in *Portulaca* through co-option of redundant genes and integration
27 of the diurnal portion of CAM. Thus, the ancestral CAM system did not strongly constrain C₄ evolution
28 because photosynthetic gene networks are not co-regulated for both daytime and nighttime functions.

29 **Main**

30 Modularity and evolvability have become central research areas in biology over the past three
31 decades^{1,2}. Modularization generates simple building blocks that facilitate rapid and complex
32 adaptations through the combination of more discrete functions and the ability of simpler units to
33 explore mutational space with minimal pleiotropic effects¹⁻⁵. Modern “-omics” strategies have
34 enabled detailed resolution of gene regulation in diverse study systems, and modeling results
35 have shown that carbon metabolic networks have high potential for exaptation into evolutionary
36 innovations in bacteria⁶. Empirical research has identified deeply conserved carbon metabolic
37 modules from anaplerotic pathways that have been repeatedly recruited into plant photosynthetic
38 adaptations known as carbon concentrating mechanisms (CCMs)⁷. CCMs provide classic
39 examples of rapid, adaptive evolution through the exaptation of existing metabolic modules that
40 are subsequently refined for new functions.

41 Since the early Oligocene, CCMs—typically taking the form of C₄ photosynthesis or
42 Crassulacean acid metabolism (CAM)—have evolved many dozens, if not hundreds, of times
43 independently⁸⁻¹². Certain facets of CCMs, such as the main biochemical pathways, are
44 evolutionarily accessible to all green plant lineages because they belong to deeply conserved
45 photosynthetic and respiratory gene networks^{7,13}. It is thought that by coupling these gene
46 networks to light responses (C₄)¹⁴ and circadian oscillators (CAM)¹⁵, CCMs create two-stage
47 carbon fixation pathways that address the most fundamental ecophysiological tradeoff in land
48 plants: balancing CO₂ influx with water loss to transpiration.

49 Most plants assimilate carbon using C₃ photosynthesis, in which CO₂ is directly fixed by
50 RuBisCO during the day in mesophyll cells. However, RuBisCO can also bind to O₂, triggering a
51 set of costly reactions called photorespiration, which is exacerbated by hot, dry conditions¹⁶.

52 CCMs increase the efficiency of photosynthesis by increasing the concentration of CO₂ around
53 RuBisCO. This is achieved by first fixing carbon with phosphoenolpyruvate (PEP) carboxylase
54 (PEPC), which is either spatially (C₄) or temporally (CAM) decoupled from final fixation of CO₂
55 by RuBisCO (Fig. 1a, b). In both CCMs, CO₂ is first captured by beta carbonic anhydrase (BCA)
56 and PEPC, forming oxaloacetate (OAA) (Fig. 1a, b) in the mesophyll, but exclusively during the
57 night in CAM (Fig. 1b). OAA is then reduced to malate by malate dehydrogenase (MDH) and
58 stored in the vacuole overnight as malic acid. During the day, CAM plants limit gas exchange
59 with the external environment, and instead decarboxylate stored malate with malic enzymes
60 (MEs) to release CO₂. Most C₄ species also convert OAA to malate (NADP-type biochemistry),
61 but others first transform it to aspartate (NAD-type biochemistry) via aspartate aminotransferase
62 (ASP). These 4-carbon acids are transported to the bundle sheath cells and decarboxylated. In
63 NAD-type C₄ species, ASP reversibly transforms aspartate back into OAA in bundle sheath
64 mitochondria, where it is reduced to form malate by NAD-MDH and finally decarboxylated by
65 NAD-ME. By separating initial CO₂ capture in the mesophyll from assimilation in the bundle
66 sheath, C₄ increases photosynthetic rates and water use efficiency while minimizing energy and
67 carbon lost to photorespiration¹⁷⁻¹⁹. CAM does not always reduce photorespiration^{20,21}, but
68 greatly increases water use efficiency^{22,23} and reduces the harmful effects of high heat and
69 radiation caused by oxidative stress²⁰.

70 C₄ and CAM boost the efficiency of photosynthesis in different ways and are therefore
71 hypothesized to have evolved in response to different stressors. C₄ has been primarily considered
72 as an adaptation to high rates of photorespiration^{24,25}, and CAM to water limitation^{8,26}, though
73 photorespiratory stress and drought stress are often experienced simultaneously²⁷. Given the
74 overlapping environmental contexts of CAM and C₄ evolution, their repeated assembly of a

75 similar set of biochemical modules²⁸ (Fig. 1a, b), and their apparent ease of evolution, it is
76 perhaps surprising that use of both C₄ and CAM (hereafter C₄+CAM) has only been reported in
77 three lineages: *Portulaca* (Portulacaceae)²⁹, *Spinifex* (Poaceae)³⁰, and *Trianthema* (Aizoaceae)³¹.
78 On the other hand, it may be precisely the large overlap in CCM gene networks and metabolites
79 that may make C₄ and CAM mutually exclusive in most lineages³². Plants that use both C₄ and
80 CAM seemingly must regulate the same gene networks in contrasting patterns that may result in
81 futile metabolite cycling and inefficient transport. For example, daytime decarboxylation activity
82 in the mesophyll during CAM would directly oppose C₄carboxylation activity.

83 *Portulaca*, a geographically widespread clade of over 100 annual and perennial herbs and
84 small shrubs, predominantly use C₄, but facultatively exhibit CAM in response to drought^{28,29,33–}
85 ⁴¹. It has been hypothesized that their CAM cycle must be either spatially separated from the C₄
86 cycle, that is, relegated to a subpopulation of leaf cells such as water storage or bundle
87 sheath^{32,35}; or alternatively, that *Portulaca* operate a novel two cell CAM system, whereby CAM
88 malate is decarboxylated in the bundle sheath^{36,37}. Facultative CAM, the reversible induction of
89 CAM in response to drought stress, is assumed to be ancestral in *Portulaca* because it has been
90 observed in every major sub-clade assayed^{38,39} as well as in *Portulaca*'s closest relatives^{42–47}
91 (Fig. 1c). Transcriptomic studies of *Portulaca* and its close relatives suggest that the ancestral
92 CAM pathway used both NAD- and NADP-enzymes for CAM^{40,41,44}. The biochemical diversity
93 of C₄ pathways in major *Portulaca* clades and the observation of intermediate photosynthetic
94 phenotypes (C₃-C₄) in the Cryptopetala clade^{39,48,49} imply multiple origins of C₄ within a
95 facultative CAM context (Fig. 1c). Multiple C₄ origins are further evidenced by differences in
96 leaf ultrastructure among lineages^{48–50}, as Kranz anatomy is typically established early in C₄
97 evolution^{25,51}.

98 Photosynthetic gene activity has only been studied in detail in *P. oleracea*^{40,41}, an NAD-
99 type species. Similar experiments on other *Portulaca* are needed to answer fundamental
100 questions about the function and evolution of C₄+CAM, and the integration of new metabolic
101 modules more generally. Facultative CAM is hypothesized to be ancestral to *Portulaca*, but
102 expression of CAM-specific orthologs in multiple species has not yet been documented. And
103 although multiple carboxylation and decarboxylation pathways can co-exist in some C₄ plants⁵²,
104 it is not obvious why or how different C₄ biochemistries would evolve in lineages that shared an
105 ancestral, mixed CAM biochemistry type, nor do we know the extent to which these CCMs have
106 been integrated in various lineages.

107 Here, we present a chromosome-level genome assembly of *Portulaca amilis* (NADP-type
108 C₄), the first of any C₄+CAM plant. We analyzed transcriptomic data during a CAM-induction
109 experiment to understand the synergistic evolution of multiple metabolic modules. Concurrent
110 transcriptomic data for *P. oleracea* allowed us to compare C₄+CAM systems across a deep split
111 in the *Portulaca* phylogeny and discriminate between ancestral, inherited and lineage specific
112 gene networks. We confirm previous hypotheses that *Portulaca* species share one CAM-specific
113 PEPC ortholog (*PPC-1E1c*) and another C₄-specific ortholog (*PPC-1E1a'*)²⁸, and that CAM
114 evolved by linking PEPC to starch catabolism via the circadian clock¹³. We found some evidence
115 for CAM-specific decarboxylation pathways, but the diurnal portion of CAM appears to have
116 been largely integrated into C₄ metabolism, and we predict that nocturnal acids produced by
117 CAM are likely shuttled into the diurnal pool of bundle sheath C₄-acids. Finally, although *P.*
118 *amilis* and *P. oleracea* share some central C₄ orthologs, exclusive use of orthologs from most
119 core gene families highlights the diversity of C₄+CAM systems and provides further evidence
120 that C₄ evolved largely independently in multiple *Portulaca* lineages.

121

122 **Results**

123 *CAM induction experiment*

124 Significant diel fluctuations in titratable leaf acidity indicative of CAM activity were observed
125 after seven and eight days without water in *P. amilis* and *P. oleracea*, respectively (Fig. 1d). Diel
126 fluctuations in titratable acidity were not significantly different from zero when well-watered
127 (one sample *t*-test; $t_{amilis}(6) = -0.522$, $p_{amilis} = 0.624$; $t_{oleracea}(6) = -0.573$, $p_{amilis} = 0.591$), but were
128 significantly different under drought (one sample *t*-test; $t_{amilis}(6) = 7.437$, $p_{amilis} = 0.00069$;
129 $t_{oleracea}(6) = 10.136$, $p_{amilis} = 0.00053$), and significantly greater than when well-watered (Fig. 1d).
130 There was no significant difference between the magnitude of diel fluctuations between species
131 (independent *t*-test, $t(12) = -1.713$, $p = 0.121$).

132

133 *Genome and transcriptome assembly and annotation*

134 The *Portulaca amilis* v1 genome assembly was 403.89 Mb in length and extremely contiguous
135 (L50/N50 = 5 scaffolds/42.598 Mb; L90/N90 = 9 scaffolds/39.183 Mb), with nine primary
136 scaffolds representing the nine expected chromosomes of the haploid *P. amilis* genome (Fig. 2a)
137 based on the karyotype of a close relative (*P. grandiflora*⁵³). The scaffolds were 92.9% complete
138 and single copy as measured by the BUSCO v5 embryophyta database (C:96.9% [S:92.9%,
139 D:4.0%], F:1.5%, M:1.6%, n:1,614), and eukaryotic BUSCOs were similarly complete (C:98.0%
140 [S:82.7%, D:15.3%], F:1.2%, M:0.8%, n:255). Slightly less than half of the assembly was
141 masked as repetitive elements (46.96%), which primarily consisted of LTRs (41.96%), DNA
142 elements (29.36%), and LINEs (13.85%) (Fig. 2b). A repeat landscape of these elements did not
143 show any sudden bursts of element activity or multiple peaks (Fig. 2b), which can signify

144 genomic upheaval from hybridization or polyploidy events^{54,55}. The final annotation contained
145 53,094 gene models with 58,732 unique coding sequences (Fig. 2c).

146 The *P. oleracea de novo* transcriptome assembly contained 413,658 transcripts
147 corresponding to 230,086 “unigenes” (hereafter, “genes”) that were highly complete but
148 infrequently single copy: BUSCO v5 embryophyta (C:94.7% [S:16.4%, D:78.3%], F:3.2%,
149 M:2.1%, n:1,614), eukaryota (C:98.9% [S:16.9%, D:82.0%], F:0.0%, M:1.1%, n:255). The high
150 number of duplicate BUSCOs was expected, as most members of the *P. oleracea* species
151 complex are polyploid⁵⁶. Less than half of the transcripts (198,026) were predicted to be coding
152 sequences, which corresponded to 45,285 genes.

153 A total of 21,621 *P. amilis* and 44,532 *P. oleracea* genes passed filtering for differential
154 abundance analysis⁵⁷, and over half of these genes (*P. amilis*, 62%; *P. oleracea*, 51.0%) were
155 found to be significantly differentially abundant between well-watered and drought conditions
156 following Benjamini Hochberg corrections⁵⁷ for false discovery ($q < 0.01$; see Methods for
157 details).

158

159 *Co-expression network analysis*

160 The well-watered and drought *P. amilis* photosynthetic gene networks (PGNs) were similar in
161 size and density, but had different distributions of node degree due to a small number of
162 extremely highly connected genes belonging to modules paWW1 and paWW3 (Fig. 3a,
163 Supplementary Fig. 1c, and Supplementary Table 1). The 104 genes of paWW1 represented all
164 functional groups except starch synthesis, and paWW1 was characterized by C₄-like expression:
165 very high morning abundance that rapidly tapered off by late afternoon. Indeed, paWW1
166 contained at least one homolog of all core elements of the C₄ pathway; including *paPPC-1E1a'*,
167 the C₄-specific *PPC* ortholog used by *P. oleracea*^{28,40,41} (Fig. 3c). The most similar drought

168 module to paWW1 in terms of constituent genes, paD6, was 31% smaller (72 genes), while the
169 largest drought module (paD1) was characterized by dark period peak expression and consisted
170 primarily of light response and circadian transcription factors, and starch catabolism-related
171 genes (Fig. 3b). Similar to *P. amilis*, the largest well-watered *P. oleracea* module (poWW2)
172 contained *poPPC-1E1a'*; however, the *P. oleracea* transcriptome contained five *poPPC-1E1a'*
173 transcripts distributed between two modules with C₄-like expression (poWW2 and poWW1)
174 (Fig. 3e). There was a greater size discrepancy between the *P. oleracea* PGNs, and the drought
175 PGN was much larger and denser than the well-watered PGN (Fig. 3e, f, and Supplementary
176 Table 1).

177 We expected the CAM cycle to be broken into two co-expression networks: one that
178 builds PEP from transitory starches and carboxylates CO₂ into malate via BCA, PEPC, and
179 MDH from dusk until dawn, and a second that decarboxylates malate into CO₂ for fixation by
180 RuBisCO during the day (Fig. 1b). As reported in *P. oleracea*^{28,40,41}, *P. amilis* used the *PPC*
181 paralog *paPPC-1E1c* for CAM (Fig. 3d), and this gene belonged to smaller modules with
182 abundance profiles that peaked across the light-dark transition, and were dominated by starch
183 degradation and circadian clock genes (paWW5 and paD4; Fig. 3a, b, d). Extracting the genes
184 that remained co-expressed (preserved) across well-watered and drought conditions resulted in
185 28 genes of the *paPPC-1E1c* modules (42%) (Fig. 4a). With the exception of one
186 photorespiratory gene (*paCAT1-2*, FUN_025647), all had functions related to carboxylation
187 (*paPPC-1E1c* and *paBCA1-2*), starch metabolism and catabolism, or circadian rhythm and light
188 response. At least one paralog of all members of the starch degradation pathway were preserved,
189 except amylase (*AMY*) and beta-amylase (*BAM*), but one *BAM* homolog (*paBAM3-2*,
190 FUN_041354) was recovered exclusively in the drought module, along with one paralog of

191 aluminum activated malate transporter 4 (*paALMT4-2*, FUN_033599), which imports malate into
192 the vacuole. However, no *MDH* homologs were recovered in this nocturnal CAM network, and
193 most were recovered in drought modules *paD6*, *paD2*, and *paD5* with C₄-like expression.

194 The *P. oleracea* transcriptome contained multiple transcripts of *poPPC-1E1c* that were
195 recovered in two well-watered modules (poWW4 and poWW8) and three drought modules
196 (poD2, poD5, and poD9) that were consistent with use in CAM (Fig. 3e, f). The preserved genes
197 were functionally similar to those preserved in the *P. amilis* nocturnal CAM network, and were
198 involved with starch metabolism and catabolism, and the circadian clock (Fig. 4b). Among the
199 genes preserved with *poPPC-1E1c* was cytoplasmic *poNAD-MDH1*
200 (TRINITY_DN7462_c3_g1), which was the most highly expressed *NAD-MDH* under drought.
201 Furthermore, many of the genes that link phosphorylative starch degradation to PEP generation
202 were preserved in the nocturnal CAM network, including *AMY*, fructose-bisphosphate aldolase
203 (*FBA*), glyceraldehyde-3-phosphate dehydrogenase (*GAP*), and phosphofructokinase (*PFK*).
204 Although not preserved, the *poPPC-1E1c* drought modules included copies of
205 phosphoglucomutase (*PGM*) and enolase (*ENO*), the final two steps in PEP generation from
206 starch or soluble sugars.

207 We used the *paPPC-1E1c* and *poPPC-1E1c* drought modules to identify the set of genes
208 common to both nocturnal CAM networks (Fig. 4c, d). By taking the intersection of the two sets
209 of *PPC-1E1c* drought module genes (i.e., preserved and drought exclusive genes), we uncovered
210 21 *P. amilis* and 24 *P. oleracea* orthologs (some genes had multiple paralogs in the *P. oleracea*
211 network). These orthologous nocturnal CAM networks contained one gene involved in starch
212 synthesis (starch branching enzyme 3, *SBE3*), five phosphorylative starch degradation genes, and
213 alpha-glucan phosphorylase 2 (*PHS2*), which is also part of phosphorylative starch metabolism

214 and catabolism (Fig. 4e). These orthologous nocturnal CAM networks covered much of the
215 phosphorylative starch degradation pathway that forms the basis of PEP generation in most
216 CAM plants^{58,59}, but the interactions among many genes were different between species (Fig. 4c,
217 d). The largest group of shared genes were core circadian clock elements: *Adagio (ADO)*, also
218 known as *ZEITLUPE (ZTL)*, 1 and 3, two *Arabidopsis pseudo-response regulator 5 (APRR5)*
219 paralogs, *EARLY FLOWERING (ELF)* 1 and 4, *GIGANTEA (GI)*, one *LUX ARRHYTHMO*
220 (*LUX*) paralog, and one *REVEILLE 6 (RVE6)* paralog (Fig 4c, d, e). Although the two species'
221 nocturnal CAM networks shared many key orthologs, there were notable differences. The *P.*
222 *oleracea* network did not contain an *ALMT* homolog, but did contain three paralogs of *PEPC*
223 *kinase 1 (PPCK1)* that were all highly abundant and significantly upregulated under drought ($q <$
224 1.0×10^{-7}) (Supplementary Fig. 4). PPCK increases the activity of PEPC, which is inhibited by
225 malate, forming a negative feedback loop⁶⁰. While all three *poPPCK* transcripts were
226 upregulated under drought with peak nighttime expression indicative of use in CAM, all had
227 higher daytime levels of abundance under drought as well—which points towards a dual role in
228 both C₄ and CAM. The single *PPCK* ortholog in *P. amilis* (FUN_002684) was also significantly
229 more abundant under drought ($q = 0.0011$) and had peak nocturnal expression (Supplementary
230 Fig. 3), but it was recovered in drought module paD1, which increased in abundance throughout
231 the night (Fig. 3b). PPCK activity is typically essential for highly active CCMs, and a CAM-like
232 expression pattern in *paPPCK1* would suggest low PEPC activity during C₄. However, we found
233 a derived amino acid residue, glutamic acid (E), in *paPPC-1E1a'* at the same location where an
234 aspartic acid (D) residue (D509) was demonstrated to reduce malate inhibition in *Kalanchoë* and
235 *Phalaenopsis* orchids⁶¹. In *Kalanchoë* and *Phalaenopsis*, the D509 residue was shown to be
236 derived from either arginine (R), lysine (K), or histidine (H), the latter of which is present at

237 position 509 in *poPPC-1E1a'*. Glutamic acid is functionally similar to aspartic acid, and may
238 similarly reduce malate inhibition; thus, allowing for high PEPC activity during C₄ without the
239 need for PPCK.

240 We considered two modules each in *P. amilis* (paWW1 + paWW3 and paD5 + paD6) and
241 *P. oleracea* (poWW2 + poWW1 and poD3 + poD4) when calculating the preservation of the C₄
242 pathway because these pairs of modules had C₄-like expression patterns and were strongly
243 connected (Fig. 3a, e). In the *P. amilis* C₄ PGNs, 86 genes (38%) were preserved (Supplementary
244 Fig. 4), which represented of all core C₄ (*ALAAT*, *ASP*, *BCA*, *ME*, *MDH*, *PPC-1E1a'*) and PEP
245 regeneration gene families (adenylate kinase (*ADK*), sodium/pyruvate cotransporter (*BASS*),
246 sodium-hydrogen antiporter (*NDH*), soluble inorganic pyrophosphatase (*PPA*), pyruvate,
247 phosphate dikinase (*PPDK*), and PEP/phosphate translocator (*PPT*)). It also contained members
248 of the entire transitory starch pathway that builds and transports various sugars and
249 carbohydrates (e.g., *ENO*, *GAP*, phosphoglycerate kinase (*PGK*), *PGM*, and triose
250 phosphate/phosphate translocator (*TPT*)). In addition to *paBASS2-1* (FUN_026309), which
251 imports pyruvate into the chloroplast as a substrate for PEP generation, we recovered two
252 paralogs of methyl erythritol phosphate (*MEP*), also known as *RETICULATA-RELATED (RER)*,
253 4 (*A. thaliana* ortholog AT5G12470). MEP transporters have been implicated as mesophyll
254 pyruvate importers and bundle sheath pyruvate exporters in maize^{62,63}, and thus may serve a
255 similar function to BASS. The preserved modules also contained key enzymatic regulators (e.g.,
256 serine/threonine-protein phosphatase (*PP2A*) subunits and RuBisCO activase (*RCA*)) and
257 transcription factors and clock elements (e.g., *CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)*).

258 *Portulaca amilis* and *P. oleracea* span a fairly deep node in the *Portulaca* phylogeny
259 (Fig. 1c) and it was unclear which facets of C₄ they might share. A similar fraction of C₄ module

260 genes were preserved between well-watered and drought C₄ PGNs in *P. oleracea* (117; 41.2%),
261 and these largely consisted of the same gene families (58.3% overlap with preserved *P. amilis* C₄
262 gene families). To identify the orthologous components of the *P. amilis* and *P. oleracea* C₄ gene
263 networks, we took the intersection of their well-watered C₄ PGNs, which contained 186 and 165
264 homologs, respectively, that represented 258 unique ortholog groups. Roughly one quarter
265 (69/258; 26.7%) of these ortholog groups were recovered in the common C₄ networks, while 117
266 (45.3%) and 72 (27.9%) were exclusive to *P. amilis* and *P. oleracea*, respectively. The common
267 networks included many of the most highly expressed copies of key C₄ genes, including the PEP
268 generation pathway, and most of the photorespiratory pathway (Supplementary Fig. 5).

269 Indicative of the unique evolutionary histories of *P. amilis* and *P. oleracea*, each species'
270 C₄ PGN contained exclusive orthologs of most C₄ gene families, some of which represent
271 species-specific duplication events. Both species exhibited exclusive use of orthologs of *ADK*,
272 *ALAAT*, *ASP*, *BCA*, *MDH*, *ME*, *NDH*, *PP2A*, *PPA*, mitochondrial uncoupling protein (*PUMP*),
273 RuBisCO, and *RCA*, among others. Some exclusive homologs fit biochemical expectations.
274 Exclusive to *P. amilis* (NADP-type C₄) were three chloroplastic *NADP-ME4* paralogs
275 (FUN_006401, FUN_006404, and FUN_006411) which did not have orthologs in the *P.*
276 *oleracea* transcriptome. These three copies were on the same strand and physically close in the
277 genome (within ~85kb); they possibly represent tandem duplication events of *paNADP-ME4-4*
278 (FUN_006423), which is ~50kb downstream of FUN_006411 (Fig. 2a). In *P. oleracea*, two *ASP*
279 (TRINITY_DN71325_c0_g1 and TRINITY_DN346_c1_g3) and three *ALAAT*
280 (TRINITY_DN43865_c0_g1, TRINITY_DN43865_c0_g2, and TRINITY_DN81553_c0_g1)
281 homologs were found in orthogroups that had no *P. amilis* members. Many of the genes that
282 were exclusive to either C₄ PGN were circadian clock and light response transcription factors, or

283 regulatory enzymes. For example, unique orthologs of the *FAR-RED IMPAIRED RESPONSE*
284 family were part of each C₄ PGN, while only the *P. amilis* C₄ PGN contained an *APRR* homolog,
285 and only the *P. oleracea* C₄ PGN contained a *LATE ELONGATED HYPOCOTYL (LHY)*
286 transcription factor.

287 We used the drought C₄ PGNs to identify orthologous ancestral elements of the daytime
288 portion of the CAM cycle. We expected this portion of the CAM cycle to be nearly
289 indistinguishable from the C₄ cycle (Fig. 1a, b), but to only exhibit C₄-like expression under
290 drought stress. To be considered part of the ancestral CAM cycle, elements needed to both be
291 shared between the two drought C₄ PGNs and be significantly upregulated under drought ($q <$
292 0.05). Eleven orthologs met these potentially CAM-induced criteria, but only one had a function
293 directly related to daytime CO₂ release from nocturnal malate stores: chloroplastic *NADP-ME4-5*
294 (FUN_015913; TRINITY_DN81025_c0_g1). *PUMP5-1*—also known as dicarboxylate
295 transporter 1 (*DIC1*)—of both species also appeared CAM-induced, but was not significantly
296 differentially abundant when considering the entire time series in *P. oleracea* ($q = 0.24$). The *P.*
297 *amilis* C₄ PGNs contained a drought exclusive mitochondrial *NAD-ME2-1* (FUN_037145) that
298 was significantly upregulated ($q < 0.01$), and a second, preserved ortholog (*NAD-ME1-1*;
299 FUN_021996) that was significantly upregulated under drought ($q < 0.05$). Coupled with
300 upregulated *PUMP5-1* expression, this suggests that the NAD decarboxylation pathway, which
301 occurs mainly in the mitochondria, may still be elicited by CAM in *P. amilis* despite NADP-type
302 C₄. In contrast, constitutive expression of the same mitochondrial orthologs in *P. oleracea*
303 (*poNAD-ME1-1* and *poNAD-ME2-1*) is consistent with use in C₄, suggesting that *P. oleracea*
304 may have recruited its ancestral CAM NAD-decarboxylating pathway into its C₄ system. Finally,
305 and unexpectedly, one *P. amilis* paralog of the RuBisCO small subunit B (*paRBCS-B-1*;

306 FUN_016561) fit a CAM induced abundance pattern ($q < 0.001$) and was expressed on the same
307 order of magnitude as other *RBCS* homologs.

308

309 *Motif identification and enrichment*

310 Enriched motifs were detected in at least one region (i.e., 3'UTR, 5'UTR, introns, or upstream
311 promoter) for gene models in many *P. amilis* modules. However, no enriched motifs were
312 identified for paWW1 or paWW3—which contained the bulk of C₄ genes when well-watered. In
313 contrast, the 5'UTRs and upstream promoter regions of the preserved *paPPC-1E1c* module were
314 enriched in 10 unique motifs ($p < 0.01$), all of which had circadian or light response functions
315 (Table 1). These motifs were all annotated to Myb-related families, except bHLH74, which
316 contains a G-box motif (CACGTG), and governs flowering time in response to blue light⁶⁴. All
317 enriched motifs contained either an Evening Element (EE; AAATATCT) or GATA (HGATAR)
318 motif. EE and GATA motifs often serve as binding sites for core circadian oscillator
319 transcription factors such as RVEs, CCA1, LHY, and APRR1, also known as TIMING OF CAB
320 1 (TOC1)⁶⁵⁻⁶⁷.

321 There were no enriched motifs in or near genes preserved with *paPPC-1E1a'*, and the *P.*
322 *amilis* C₄ PGN genes were only enriched in four motifs: one Myb (MA1028.1), two bZIP
323 (MA0968.1, MA1033.1), and one AP2/ERF (MA1261.1) factor (Supplementary Table 2). While
324 these motifs were significantly enriched ($p < 0.01$), they were much less widespread than the
325 enriched motifs found in the preserved CAM genes. At the low end, the KAN4 motif
326 (MA1033.1) was present in just five 5'UTRs (8.5% of sequences), and the most widespread
327 (bZIP68, MA0968.1) was present in 12 sequences (20.3%). Motifs found in the preserved
328 *paPPC-1E1c* genes were present in 20.7-58.6% of the sequences, and all 10 enriched motifs
329 were found at least once in the 5'UTR and promoter region of *paPPC-1E1c*.

330

331 **Discussion**

332 Plant photosynthetic adaptations can serve as models for exploring central themes of biology,
333 such as the evolution of modularity and evolvability, gene and genome duplication, convergent
334 evolution, and the evolution of novel phenotypes. Network analyses provide powerful tools for
335 identifying and comparing modules of genes related to functions of interest against a background
336 of tens of thousands of genes with complicated temporal expression patterns. C₄+CAM
337 photosynthesis has only been reported in three plant lineages, *Portulaca*²⁹, *Spinifex*³⁰, and
338 *Trianthema*³¹, but CCMs have evolved many dozens of times⁸⁻¹² and the use of multiple CCMs
339 has been documented in aquatic plant lineages^{68,69}. CCM evolution is a classic example of the
340 repeated assembly of a new function via the integration of multiple, existing gene networks⁷.
341 When coupled with patterns of transcript abundance and placed in an evolutionary context, our
342 network results provide an initial interpretation of how these metabolic pathways interact in
343 *Portulaca*, and how they were evolutionarily assembled.

344

345 *The evolution of C₄+CAM in Portulaca*

346 Facultative CAM is ancestral in *Portulaca*, and likely evolved by coupling elements of the TCA
347 cycle (i.e., PEPC and BCA) to the phosphorylative starch degradation pathway via the circadian
348 clock. CAM in both species was restricted to a minimal set of tightly regulated nocturnal
349 pathways that linked *PPC-1E1c* to the transitory starch pathway, with only parts of the
350 decarboxylation pathways distinguishable from C₄. This aligns with previous hypotheses that the
351 initial steps in CAM evolution do not require “rewiring” of gene networks, but rather occur by
352 upregulating nocturnal organic acid production that occurs in all plants¹³. Subsequent
353 canalization of these fluxes occurs by bringing these networks under circadian control. If C₄

354 evolution began in *Portulaca* while the nighttime portion of CAM included derived gene
355 networks, but the daytime portion did not, CAM would have likely imposed few pleiotropic
356 constraints given redundant paralogs, because recruitment of genes into C₄ would not have
357 required modification of existing CAM decarboxylation pathways in the mesophyll. Sufficient
358 paralogs of NAD- and NADP-type enzymes were present in the most recent common ancestor of
359 *P. amilis* and *P. oleracea* to allow C₄ and CAM to use separate genes, and for differential
360 enzyme co-option during their independent C₄ origins. However, transcriptomic data presented
361 here and elsewhere^{40,44} imply that CAM-specific decarboxylation pathways did exist in the
362 common ancestor to *Portulaca*. It therefore seems likely that the initial steps towards C₄ evolved
363 within a particular window of CAM evolution before other aspects of CAM were fixed, such as
364 diurnal stomatal closure or changes to leaf ultrastructure that greatly reduced intercellular
365 diffusion of metabolites.

366 Shared use of some enzymes and pathways suggests that the most recent common
367 ancestor of *Portulaca* may have had some C₄ characters. Shared use of photorespiratory
368 modules, found here, and proto-C₄ anatomy in C₃-C₄ intermediate taxa^{49,50} suggest that C₂
369 metabolism—the enhanced refixation of photorespired CO₂ by preferential expression of various
370 photorespiratory enzymes^{25,70}—may also be ancestral to *Portulaca*. Like other CCMs, C₂
371 requires the recruitment of existing gene networks, and our comparison of well-watered C₄ gene
372 networks revealed many shared photorespiratory orthologs that may point to a single origin.
373 However, it is difficult to distinguish between a scenario in which these orthologs were co-opted
374 into C₂ metabolism once near the stem of extant *Portulaca*, or more recently along multiple
375 branches in parallel. Shared use of PEPC-1E1a' in C₄ has been hypothesized to have occurred
376 through parallel recruitment²⁸, stemming from “preconditioning”, such as increased expression⁷¹

377 or adaptive amino acid substitutions²⁹. C₂ metabolism is hypothesized to typically be followed by
378 rapid evolution of a C₄ system^{25,70}, and therefore represents a limit of what we expect to be
379 shared among *Portulaca* lineages with distinct morphologies and biochemistries. Broader
380 sampling across the *Portulaca* phylogeny is needed to precisely delimit the shared initial steps
381 towards C₄ and subsequent parallel refinement of C₄+CAM.

382

383 *Integration of C₄ and CAM in Portulaca*

384 *Portulaca amilis* and *P. oleracea* have canonical C₄ pathways, but constitutively operate very
385 weak CAM cycles (at least at the transcriptional level) that are upregulated under drought. The
386 core elements of C₄ and CAM were moderately preserved in both species, and where parts of the
387 C₄ and CAM pathways could theoretically overlap, we often found alternative homologs.
388 Increased CAM activity was associated with a reduction in size of C₄ PGNs, but there was no
389 evidence that this was due to dual roles of genes in nocturnal CAM physiology under drought. If
390 transcript abundances of C₄ and CAM related genes can serve as a proxy for enzymatic and
391 metabolic activity, conflicting intracellular physiological cues from CAM likely played a minor
392 role in altering C₄ activity. Given the strong diffusion gradients between mesophyll and bundle
393 sheath of C₄ species⁷², we suspect that the evolution of C₄ in *Portulaca* has resulted in two-cell
394 CAM, as has been previously hypothesized³⁷, where malate produced by CAM in the mesophyll
395 is largely decarboxylated in the bundle sheath, but it is unclear if overnight storage occurs in the
396 mesophyll, bundle sheath, or both (Fig. 5). Drought-induced upregulation of decarboxylating
397 enzymes was consistent with expectations given C₄ biochemistries. Upregulation of *paNAD-*
398 *ME1-1* and *paNAD-ME2-1* during CAM induction in *P. amilis* indicated that C₄ did not co-opt
399 the entirety of the diurnal portion of the CAM cycle (Fig. 5). In contrast, constitutive use of
400 *poNAD-ME1-1* and *poNAD-ME2-1* in *P. oleracea* was consistent with recruitment and

401 integration of the ancestral CAM NAD-decarboxylating pathway into C₄, while the NADP-
402 pathway maintained its role in CAM (Supplementary Fig. 6).

403 Our network results confirmed that the nocturnal portion of CAM is a fixed gene
404 network—rather than the result of drought-induced rewiring—that is both transcriptionally and
405 post-transcriptionally regulated under drought to increase CAM activity. Gas exchange
406 measurements in *Portulaca* species show substantial net CO₂ loss during the night when well-
407 watered^{39–42}. Therefore, well-watered expression levels of the preserved CAM-related genes are
408 either not high enough to re-fix all nocturnally respired CO₂ or must have their products
409 regulated at a post-transcriptional level. Evidence for the latter is given by expression patterns of
410 PPCK, which increases the activity of PEPC⁶⁰. *PPCK* was upregulated in both species under
411 drought, and during the dark period in particular, which implies a role in increasing nocturnal
412 PEPC activity for CAM under drought. In *P. oleracea*, the maintenance of high daytime
413 *poPPCK* expression with a nocturnal peak in abundance suggests that PPCK may play a dual
414 role in both C₄ and CAM. In contrast, we were surprised to find that *paPPCK* had expression
415 only consistent with use in CAM, as we are not aware of other C₄ species without high morning
416 expression of *PPCK*; but a derived amino acid residue in PEPC-1E1a' has the potential to
417 increase its activity by reducing malate inhibition, as has been shown in *Kalanchoë* and
418 *Phalaenopsis*⁶¹. Therefore, the avoidance of pleiotropic effects has occurred through redundant
419 homologs (e.g., decarboxylating enzymes) and adaptive mutations, but *P. oleracea* provides
420 evidence that pleiotropy may not constrain some genes.

421
422 *Portulaca as a model for metabolic evolution*

423 The natural history of *Portulaca* provides a compelling model system for studying many
424 evolutionary and ecophysiological questions, and its unique metabolism and experimental

425 practicality make it a powerful tool for genetic engineering. Forward engineering of both C₄⁷³
426 and CAM⁷⁴ have become priorities for agriculture as arid lands expand and populations grow.
427 *Portulaca* comprises over 100 species that are found in nearly every country and have invaded
428 some continents multiple times⁵⁶. Despite the small genome size of *P. amilis*, duplication events
429 deeper in the history of the Portulacineae⁷⁵ have played large roles in the evolution of C₄+CAM,
430 with implications for neofunctionalization and the evolution of modularity. With the generation
431 of the first *Portulaca* genome, we provide a resource for studying these past events and for the
432 functional genetic work to understand and engineer CCMs.

433 CAM is found in every major clade of the Portulacineae to varying degrees^{34,43,45,46,76,77}
434 (Fig. 1c), and stronger and constitutive CAM have evolved in *Portulaca*'s closest relatives,
435 Anacampserotaceae and Cactaceae^{43,78,79}. These three clades overlap in climate space⁷⁷ and in
436 many parts of their geographic ranges⁸⁰, exhibit succulent morphologies capable of
437 photosynthesis in their stems^{43,81}, and likely share the same ancestral CAM cycle. It remains an
438 open question why only *Portulaca* evolved C₄+CAM, while stronger CAM evolved in close
439 relatives. C₄ and CAM consume more energy than C₃ photosynthesis, and we lack models to
440 predict environmental conditions that would select for C₄ in a CAM plant (or vice versa).
441 Selective pressures to evolve C₂ in the facultative CAM ancestor of *Portulaca* may have been no
442 different than in C₃ plants, as CAM does not necessarily reduce photorespiration, and in some
443 cases can exacerbate it²⁰. Future progress on these topics will be made through continued study
444 of the C₃-C₄ Cryptopetala clade that uses C₂ metabolism.

445 Despite an increased general interest in CCMs over recent years, and *Portulaca*'s
446 C₄+CAM system in particular, we have only a limited understanding of the benefits of
447 combining C₄ and CAM. The advantages of facultative CAM vary between lineages, as does

448 carbon gain, which is typically <10% of the daytime photosynthetic activity^{82,83}. Facultative
449 CAM increases water use efficiency and can prevent reduced growth and reproductive output
450 under drought while also reducing photoinhibition (radiation induced damage to
451 photosystems)^{82,83}. Measures of chlorophyll *a* in *P. oleracea* over a water limitation experiment
452 provide evidence that facultative CAM reduces photoinhibition⁴⁰. A photoprotective role of
453 CAM is further corroborated by rapid recovery of photosynthetic rate upon rewetting^{38,39},
454 indicating little or no damage is done to photosystems. Gas exchange measurements also
455 demonstrate that *Portulaca* continue to grow despite several days of drought stress^{38,39}.
456 Furthermore, drought stress may increase CO₂ leakiness of bundle sheath in C₄ plants, a problem
457 augmented when carboxylation activity decreases relative to decarboxylation⁸⁴. Facultative CAM
458 may provide some carbon and photoprotection during drought that accelerates the transition to
459 full photosynthetic capacity upon rewetting and allows for growth and reproduction despite
460 large water deficits.

461 The annotated *P. amilis* genome and metabolic modules identified here, combined with
462 recent resources for transgenic research in *Portulaca*⁸⁵ signal a significant shift toward the
463 development of an experimental, functional genomics-based research program in C₄+CAM. On
464 one level, we suggest that *P. amilis* is a better candidate than *P. oleracea* for further model
465 system development, in part because *P. oleracea* exists within the context of a larger species
466 complex of over a dozen described species and subspecies with uncertain relationships and
467 multiple whole genome duplication events⁵⁶. *P. amilis* has an indistinguishable life history from
468 *P. oleracea* (i.e., 3-5 week life cycle, thousands of seeds produced, self-fertilization), but does
469 not suffer from the same taxonomic challenges and variations in ploidy. On the other hand, we
470 view the *Portulaca* clade as providing not one, but at least three, evolutionary origins of

471 C₄+CAM systems, and there is much to be learned in understanding their similarities and
472 differences.

473

474 **Conclusions**

475 The evolution of modularity is a common theme in studies of evolutionary development and the
476 origination of novel phenotypes. Network-based analyses can distinguish complex and highly
477 overlapping metabolic modules, and establish their orthology between species. C₄+CAM
478 provides a unique opportunity to understand how a single module that is typically recruited into
479 two distinct functions is regulated when both of the new functions operate in a single organism.
480 Remarkably, their integration appears possible in part via additional modularization, with little
481 overlap in C₄ and CAM gene networks. Assignment of homologs to functions and generation of
482 a high-quality genome for *P. amilis* were necessary first steps for future functional genetic work
483 on C₄+CAM. Perhaps the most pertinent questions surround the utility of C₄+CAM, which could
484 be addressed in part by knock-down or knock-out *PPC-1E1c* lines to study the fitness of a purely
485 C₄ *Portulaca*. In addition to functional genetic experiments, similar CAM-induction experiments
486 are needed throughout *Portulaca* to establish homology between metabolic pathways across the
487 multiple origins; especially in the C₃-C₄ Cryptopetala clade, which will provide greater clarity on
488 which elements of C₄+CAM are ancestrally shared across multiple origins in *Portulaca*.

489

490 **Materials and Methods**

491 *Plant materials and CAM-induction experiment*

492 Specimens of *Portulaca amilis* and *P. oleracea* were collected in Casselberry, Florida, U.S.A.
493 and propagated in the Plant Environmental Center at Brown University. All studied *Portulaca*
494 are selfing, and many are primarily cleistogamous^{86,87}; cleistogamous flowers self-pollinate in

495 the developing flower bud without the need of a vector, and most buds progress directly to fruit
496 set without opening. S2 seeds were germinated at Yale's Marsh Botanical Garden. One S2 *P.*
497 *amilis* was removed from soil, gently washed to remove soil, flash frozen whole in liquid N₂, and
498 shipped overnight to Dovetail Genomics (Scotts Valley, CA, U.S.A.) for whole genome
499 sequencing and assembly. An S4 individual was collected and vouchered at the Yale University
500 Herbarium in the Peabody Museum of Natural History.

501 S3 *P. amilis* and S2 *P. oleracea* were germinated in a growth chamber with the following
502 environmental conditions: 00:00-06:00, dark, 22°C; 06:00-20:00, lights on, 25°C; 20:00-23:59,
503 dark, 22°C. Plants were regularly bottom watered and the mean photosynthetically active
504 radiation (PAR) at plant level was ~385 mol · m⁻² · s⁻¹ during the 14 hour photoperiod. After
505 plants had reached maturity and branched sufficiently (~4 weeks), eight plants of each species
506 were selected for CAM-induction: six biological replicates and two indicator plants. Indicator
507 plants were monitored daily for fluctuations in titratable acidity to determine CAM induction,
508 and were not included in any further analyses. To induce CAM, water was withheld from plants,
509 and significant (one sample *t*-test, *p* < 0.01) increases in nocturnal titratable acidity were
510 observed in *P. amilis* and *P. oleracea* indicator plants after seven and eight days, respectively.
511 Leaf tissue was collected from all six biological replicates for titratable acidity assays at 16:00
512 and 04:00 (the following day) and bulk RNA at 10:00, 16:00, 22:00, and 04:00 (the following
513 day) on day 0 (referred to as “well-watered”) and days 8 and 9 (referred to “drought”).

514 Titratable acidity was assessed by boiling 0.2-0.3g fresh leaf tissue in 60mL 20% EtOH
515 until the volume was reduced by half (~30mL). Distilled water was then added to return the
516 volume to 60mL. This process was repeated, and the supernatant was then covered and allowed
517 to cool to room temperature. Samples were then titrated to a pH of 7.0 using 0.002M NaOH, and

518 recorded in units of μ Eq H⁺ per gram fresh mass—calculated as volume titrant (μ L) \times titrant
519 molarity (M) / tissue mass (g).

520 Total leaf RNA was extracted using Option 2 (CTAB/TRIzol/sarkosyl) from Jordon-
521 Thaden et al.⁸⁸. Sample purity was measured using a NanoDrop (Invitrogen by Thermo Fisher
522 Scientific, Carlsbad, CA), and a representative set of 12 samples were further assayed on using a
523 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) for fragment length distribution and
524 RNA integrity (RIN); RIN scores ≥ 7 were considered high quality. Library preparation included
525 poly(A) tailing to pull down mRNA, and sequencing was done on an Illumina HiSeq (2x100bp
526 paired-end reads), with an expected 25 million reads per sample. Four of the 96 total libraries
527 failed during sequencing; all were *P. oleracea* samples (one 10:00 drought, one 16:00 drought,
528 and two 04:00 drought).

529

530 *Genome and transcriptome assembly and annotation*

531 The *Portulaca amilis* v1 genome was assembled *de novo* by Dovetail Genomics, using one
532 Chicago⁸⁹ and two Dovetail Hi-C⁹⁰ libraries. The Chicago library was sequenced on an Illumina
533 HiSeqX, resulting in 178 million 2x150bp paired-end reads that yielded 169.1x physical
534 coverage of the genome (1-100kb pairs). The two Dovetail Hi-C libraries were also sequenced
535 on an Illumina HiSeqX; libraries one and two contained 202 million and 342 million 2x150bp
536 paired-end reads, respectively, which together provided 52,626.57x physical coverage of the
537 genome (10-10000kb pairs). Meraculous 2⁹¹ was used to generate an assembly from 791 million
538 paired-end shotgun read pairs (mean insert size \sim 550bp and \sim 350bp) with kmer size 91. The
539 Meraculous assembly and shotgun, Chicago, and Hi-C reads were then used for iterative

540 scaffolding using HiRise v2.1.6-072ca03871cc^{89,90} to create the final assembly consisting of
541 4,053 scaffolds.

542 The *P. amilis* v1 genome was annotated using funannotate v1.6.0
543 (<http://doi.org/10.5281/zenodo.3354704>), a modular software package for genomic scaffold
544 cleaning, genomic element prediction (i.e., genes, UTRs, tRNAs, etc.), functional annotation,
545 and comparative genomics. All annotation steps after genome assembly were run within
546 funannotate unless otherwise noted, and a step-by-step walkthrough of the entire annotation
547 process can be found on GitHub (<https://github.com/sgilman/Portulaca-amilis-genome>).

548 Using funannotate's 'clean' function, scaffolds were checked for duplicates with a "leave
549 one out" strategy where, starting with the shortest scaffold, one scaffold was left out and mapped
550 back to the remaining scaffolds with minimap2⁹². Scaffolds were sorted by size from largest to
551 smallest using funannotate's 'sort' function. Outside of funannotate, repetitive element analysis
552 was conducted with RepeatModeler v1.0.11 and RepeatMasker v4.0.9-p2
553 (<http://www.repeatmasker.org>). RepeatModeler was used to create a custom repeat database for
554 *P. amilis* and further classification of unknown repeats was done with TEclass v2.1.3⁹³. The
555 custom repeats were then passed to RepeatMasker, where complex repeats were soft masked. An
556 additional round of masking was done using the Viridiplantae repeat database from RepBase
557 (RepBaseRepeatMaskerEdition - 26 October 2018)⁹⁴ and transposable element data from Dfam
558 v3.0⁹⁵. All repetitive elements were then cleaned using the RepeatMasker utility script
559 'ProcessRepeats'.

560 Prior to *ab initio* gene prediction, we used funannotate's 'train' function to create a
561 preliminary set of high-quality gene models for training prediction software using the soft
562 masked scaffolds and RNAseq reads from the CAM-induction experiment. Paired-end raw

563 RNAseq reads were filtered by quality (phred < 25) and trimmed to remove adapters, poly-A/T
564 tails longer than 12 bp, and low-quality tails (phred < 20) using PRINSEQ v0.20.4⁹⁶. To capture
565 the greatest diversity of transcripts and provide sufficient depth to call rare isoforms, we pooled
566 all RNAseq reads from the six biological replicates across four time points and two conditions
567 (well-watered and drought), totaling ~1.58 billion reads from mature leaf tissue. RNAseq reads
568 were then normalized using the 'insilico_read_normalization.pl' utility script within Trinity
569 v2.8.5⁹⁷. Funannotate's 'train' function first builds a coordinate-sorted BAM file and associated
570 index file using HISAT2 v2.1.0⁹⁸ for an initial genome-guided transcriptome assembly with
571 Trinity. The resulting initial transcripts then were fed through the PASA pipeline v2.3.3⁹⁹ to
572 generate gene models and predicted coding sequences using TransDecoder v5.5.0
573 (<https://transdecoder.github.io>). Kallisto v0.45.1¹⁰⁰ was then used to quantify abundance data,
574 and PASA gene models with abundance at least 10% of the most abundant gene model at each
575 respective locus were retained for training the *ab initio* predictors Augustus v3.2.3¹⁰¹, SNAP
576 v2013_11_29¹⁰², glimmerHMM v3.0.4¹⁰³, and GeneMark-ET¹⁰⁴.

577 Funannotate's 'predict' function was then used to produce an initial set of gene models
578 from the scaffolds using high abundance PASA models, *ab initio* prediction software, and
579 evidence from transcripts and predicted proteins. First, transcript alignment information from the
580 coordinate-sorted BAM file and protein alignments from Diamond v0.9.24¹⁰⁵ and Exonerate
581 v2.4.0¹⁰⁶ were used to generate a 'hints' file for Augustus and GeneMark-ET. Augustus models
582 with at least 90% exon overlap with protein alignments were selected as high-quality models
583 (HiQ). Gene models from the above predictors, HiQ models, transcripts, and predicted proteins
584 were then used as sources of evidence to create consensus models in EVidenceModeler v1.1.1¹⁰⁷
585 with weights Augustus:1, HiQ:1, GeneMark-ET:1, PASA:10, SNAP:1, glimmerHMM:1,

586 proteins:1, transcripts:1. The resulting consensus gene models were filtered to remove any
587 proteins less than 50 amino acids, models that began or ended in assembly gaps, and
588 transposable elements. Next, tRNA gene models were identified with tRNAscan-SE v2.0¹⁰⁸.
589 Final consensus gene models were constructed by funannotate's 'update' function which added
590 and updated UTRs and refined exon boundaries of alternatively spliced models.

591 To assemble the *de novo* transcriptome for *P. oleracea*, we again filtered all paired-end
592 raw RNAseq reads by quality (phred < 25) and trimmed to remove adapters, poly-A/T tails
593 longer than 12 bp, and low-quality tails (phred < 20) using PRINSEQ v0.20.4. As with *P. amilis*,
594 we pooled all *P. oleracea* RNAseq reads across time points, conditions, and replicates. Pooled
595 reads were input into Trinity v2.11.0 and assembled *de novo*. We reduced the redundancy of the
596 resulting contigs using CD-HIT v4.8.1¹⁰⁹ by collapsing contigs with at least 98% similarity (-c
597 98) and open reading frames were identified with TransDecoder. Orthology between *P. amilis*
598 and *P. oleracea* peptide sequences was established using OrthoFinder¹¹⁰ v2.5.2 and the primary
599 peptide sequences from genomes of *Ananas comosus*, *Amaranthus hypochondriacus*,
600 *Arabidopsis thaliana*, *Brachypodium distachyon*, *Helianthus annuus*, *Kalanchoë fedtschenkoi*,
601 *Phalaenopsis equistris*, *Sedum album*, *Sorghum bicolor*, *Vitis vinifera*, and *Zea mays*.

602

603 RNAseq differential abundance analysis

604 We used sleuth¹¹¹ v0.30.0 in R v3.6.1 to assess differential abundance of RNAseq reads
605 quantified by Kallisto for each species independently. For *P. amilis*, we mapped reads to the
606 predicted mRNA transcripts from the genome annotation, and for *P. oleracea* we used the
607 redundancy reduced *de novo* transcriptome. All analyses were conducted at the gene level by
608 providing a transcript-to-gene map to sleuth generated from the final set of gene models and
609 setting 'gene_mode' = TRUE. Abundance data were quantified in transcripts per million (TPM)

610 and differential abundance was assessed using a likelihood ratio test between the reduced design
611 matrix, where abundance was purely a function of sampling time ('y ~ time_point'), and the full
612 design matrix that included time and water treatment ('y ~ time_point + treatment'). *P*-values for
613 unique transcripts were aggregated for each gene model and transformed into *q*-values by
614 adjusting for false discovery rate (Benjamini Hochberg correction).

615

616 *Co-expression network analysis*

617 We used Weighted Gene Correlation Network Analysis (WGCNA)¹¹² v1.69 in R v3.6.1 to
618 construct co-expression networks and identify modules, and NetworkX¹¹³ v2.5 in Python v3.7.3
619 to visualize and measure network features. WGCNA was run separately for each species and
620 condition, resulting in four networks. Using the normalized abundance data for all biological
621 replicates from sleuth, we first divided samples into well-watered and drought conditions for
622 separate network construction (hereafter referred to as the well-watered and drought datasets,
623 networks, modules, etc). We then removed genes from each dataset with maximum expression
624 less than 5 TPM. Remaining genes with excessive missing data or too low variance were
625 removed with the WGCNA function 'goodSampleGenes'. Outlier samples were detected using
626 hierarchical clustering with 'hclust' (stats v3.6.2; R-core team), and removed from each dataset.
627 We determined the soft threshold powers for each network separately using 'pickSoftThreshold';
628 the soft threshold power was 8 for both well-watered and drought *P. amilis* networks, and 14 and
629 7 for *P. oleracea* well-watered and drought networks, respectively. We constructed networks and
630 identified modules using 'blockwiseModules' with corType="bicor", maxPOutliers=0.05,
631 TOMType="signed", deepSplit=2, and mergeCutHeight=0.25 for all networks. With
632 corType="bicor", we allowed modules to contain both correlated and anti-correlated expression

633 time profiles. We set minModuleSize=30 for *P. amilis* networks and minModuleSize=100 for *P.*
634 *oleracea* networks.

635 After filtering and outlier detection within WGCNA, the final *P. amilis* and *P. oleracea*
636 co-expression datasets contained 26,760 genes for 24 samples and 26,337 genes for 22 samples,
637 respectively. Simultaneous network construction and module detection partitioned genes into 41
638 well-watered and 21 drought *P. amilis* modules and 29 well-watered and 20 drought *P. oleracea*
639 modules (Supplementary Fig. 1a, b), where modules are mutually exclusive clusters of highly
640 correlated genes. In order to extract photosynthetic gene networks (PGNs), we subsetted the
641 resulting adjacency matrices from WGCNA using over 500 (*P. amilis*) and over 600 (*P.*
642 *oleracea*) manually curated genes with functions broadly related to photosynthesis and removed
643 edges with adjacency < 0.25. This resulted in networks containing 368-466 genes
644 (Supplementary Table 1). We binned these genes into functional categories reflecting major
645 metabolic pathways (e.g., Calvin-Benson cycle, photorespiration, and starch degradation) and
646 enzymatic reactions or functions (e.g., aminotransferase and PEPC regulation). As many
647 enzymes catalyze reversible reactions or function in multiple pathways, these categorizations are
648 intended to reflect the primary role each protein plays and we recognize that alternative
649 categorizations are possible. For example, RuBisCO is the central protein in both the Calvin-
650 Benson cycle and photorespiration, and MDH functions in both the initial carboxylation pathway
651 that generates malate from CO₂ and in the decarboxylation pathway that liberates CO₂ from
652 malate in NAD-type C₄ biochemistry, albeit to a lesser extent.

653

654 *Motif identification and enrichment*

655 Putative *cis*-regulatory motif identification and enrichment was done using the MEME Suite¹¹⁴
656 v5.0.2. First, 5'- and 3'UTRs, introns, and 2kb upstream regions were extracted from all *P.*

657 *amilis* gene models. The MEME tool¹¹⁵ was used to identify *de novo* motifs for each co-
658 expression module and region using an e-value threshold of 0.05 and a minimum motif size of
659 6bp. We downloaded the JASPAR CORE 2018 motif database¹¹⁶, supplemented it with the *de*
660 *novo* motifs identified in Wai et al.¹¹⁷ related to CAM, and finally added *de novo* *P. amilis* motifs
661 after checking for redundancy with Tomtom¹¹⁸. We then used AME (--scoring avg --method
662 fisher --hit-lo-fraction 0.25 --evaluate-report-threshold 10.0)¹¹⁹ with random sets of control
663 sequences to measure motif enrichment in every module-region combination, as well as the
664 preserved genes of the *PPC-1E1c* and *C4* modules.

665

666 **Acknowledgements**

667 We thank C. M. Mason (University of Central Florida) for identification and collection of *P.*
668 *amilis*, Karolina Heyduk (University of Hawaii) for insightful comments on early drafts of this
669 work, and Christopher Bolick at Yale's Marsh Botanic Gardens, who's support made this work
670 possible. This research was funded by the National Science Foundation (IOS-1754662 to EJE
671 and IOS-1708941 to EWG).

672

673 **Data availability**

674 Genomic scaffolds, peptide and coding sequences, assembled transcriptome, and annotations
675 (including repeats) for *Portulaca amilis* are available through the Phytozome web portal
676 (<https://phytozome-next.jgi.doe.gov>). Raw RNAseq data for *P. amilis* and *P. oleracea* are
677 available through the NCBI's SRA within BioProject PRJNA732408.

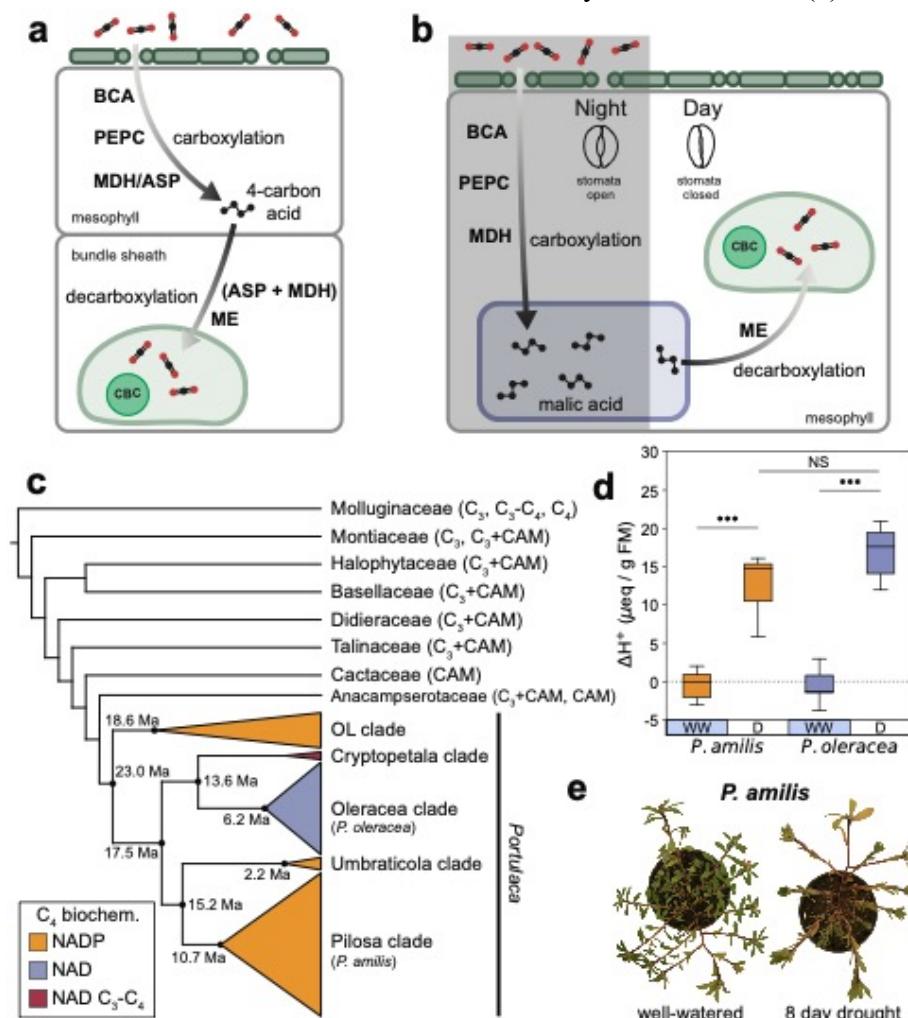
678

679 **Code availability**

680 Walkthroughs of genome annotation and RNAseq analyses (including differential abundance and
681 co-expression network analyses) and all custom code are available on GitHub at
682 <https://github.com/isgilman/Portulaca-amilis-genome> and <https://github.com/isgilman/Portulaca->
683 coexpression, respectively.

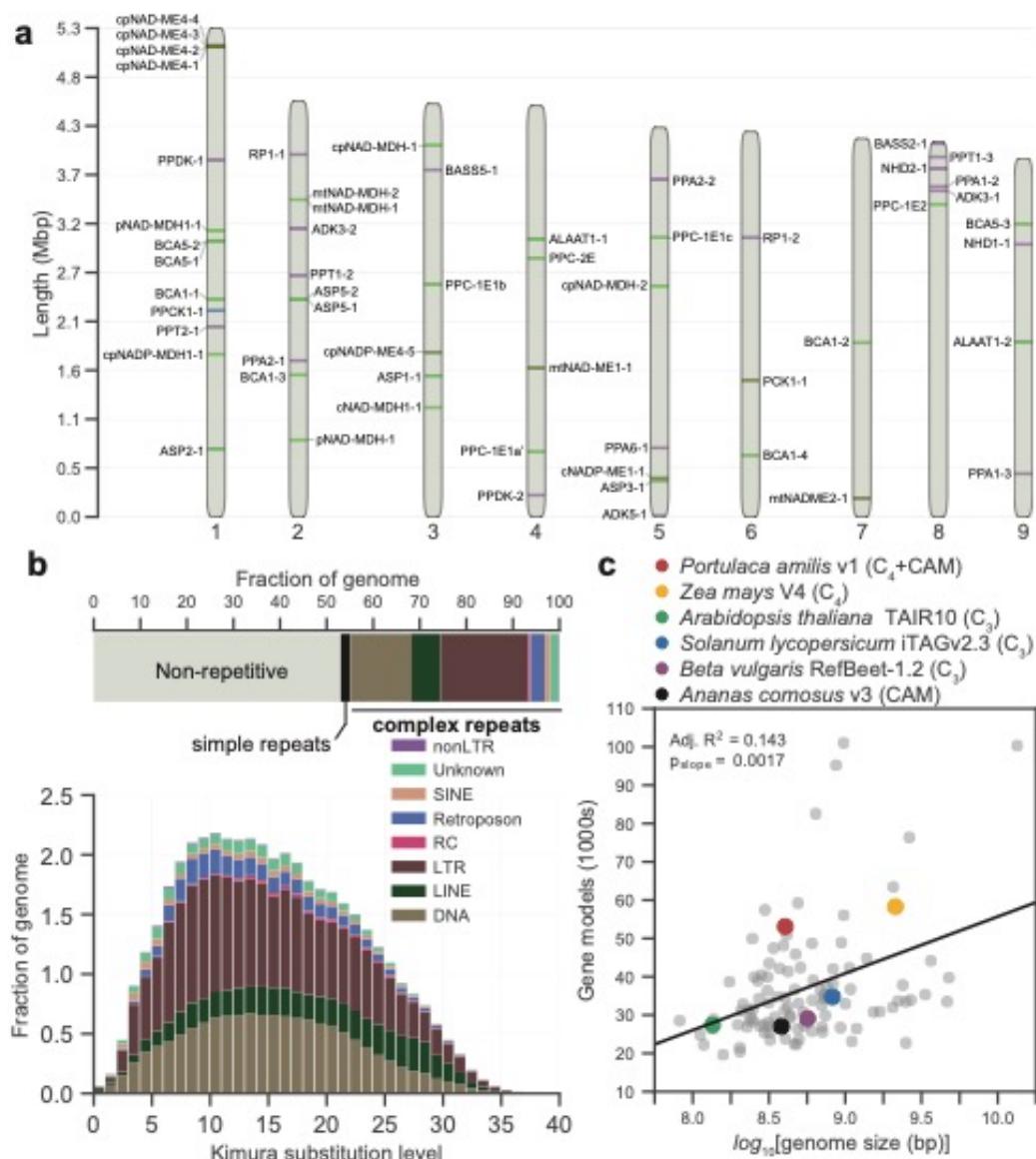
684

685 **Tables**

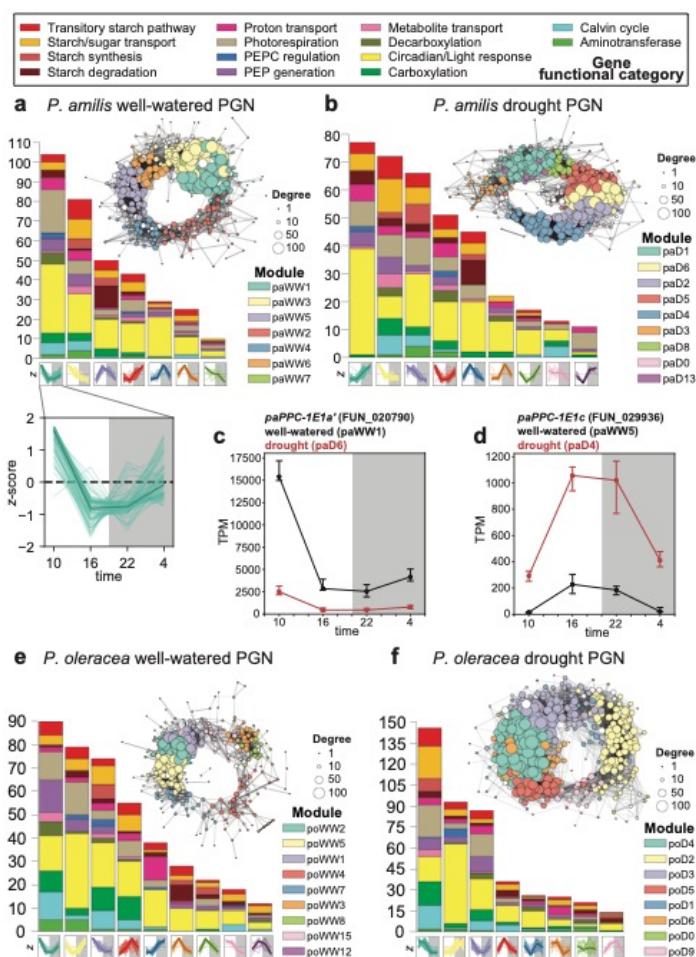

686 Table 1. Motifs enriched in the 5'UTR of genes preserved in the *paPPC-1E1c* module

Motif name	JASPAR matrix ID	Consensus sequence*	Associated TF	<i>Arabidopsis</i> ortholog
RVE7L	MA1191.1	HHHVAAAATATCTWA	REVEILLE 7-like (RVE7L)	AT3G10113
RVE1	MA1184.1	HHVWAAATATCTWH	REVEILLE 1 (RVE1)	AT5G17300
RVE8	MA1182.1	AGATATTTWDD	LHY-CCA1-like 5 (LCL5)/REVEILLE 8 (RVE8)	AT3G09600
RVE4	MA1187.1	AGATATTTT	LHY-CCA-like 1 (LCL1)/REVEILLE 4 (RVE4)	AT5G02840
RVE6	MA1183.1	AGATATTTTD	REVEILLE 6 (RVE6)	AT5G52660
RVE5	MA1190.1	AGATATTTTD	REVEILLE 5 (RVE5)	AT4G01280
LHY1	MA1185.1	AGATATTTTN	LATE ELONGATED HYPOCOTYL 1 (LHY1)	AT1G01060
EPR1	MA1401.1	RAAAATATCTWA	Early-phytochrome-responsive (EPR1)/REVEILLE 7 (RVE7)	AT1G18330

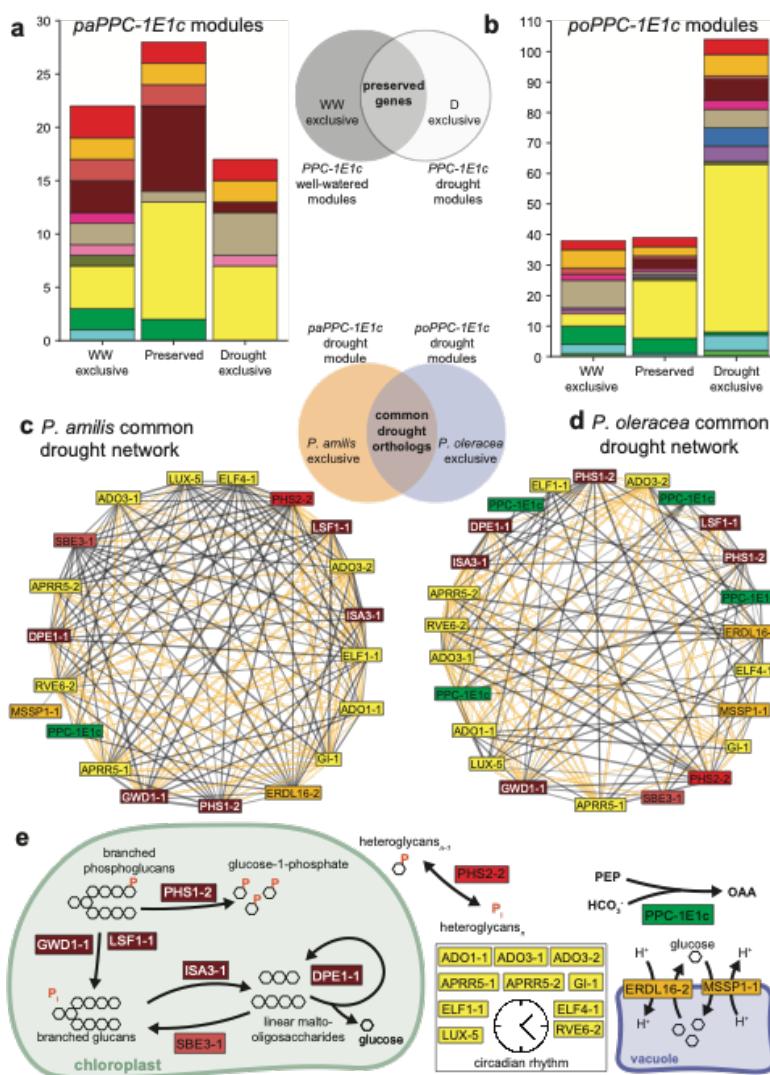
CCA1	MA0972.1	AAATATCT	CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)	AT2G46830
bHLH74	MA1360.1	AGATAT	ACTIVATOR FOR CELL ELONGATION 2 (ACE2)/Basic helix-loop-helix protein 74 (bHLH74)	AT1G10120

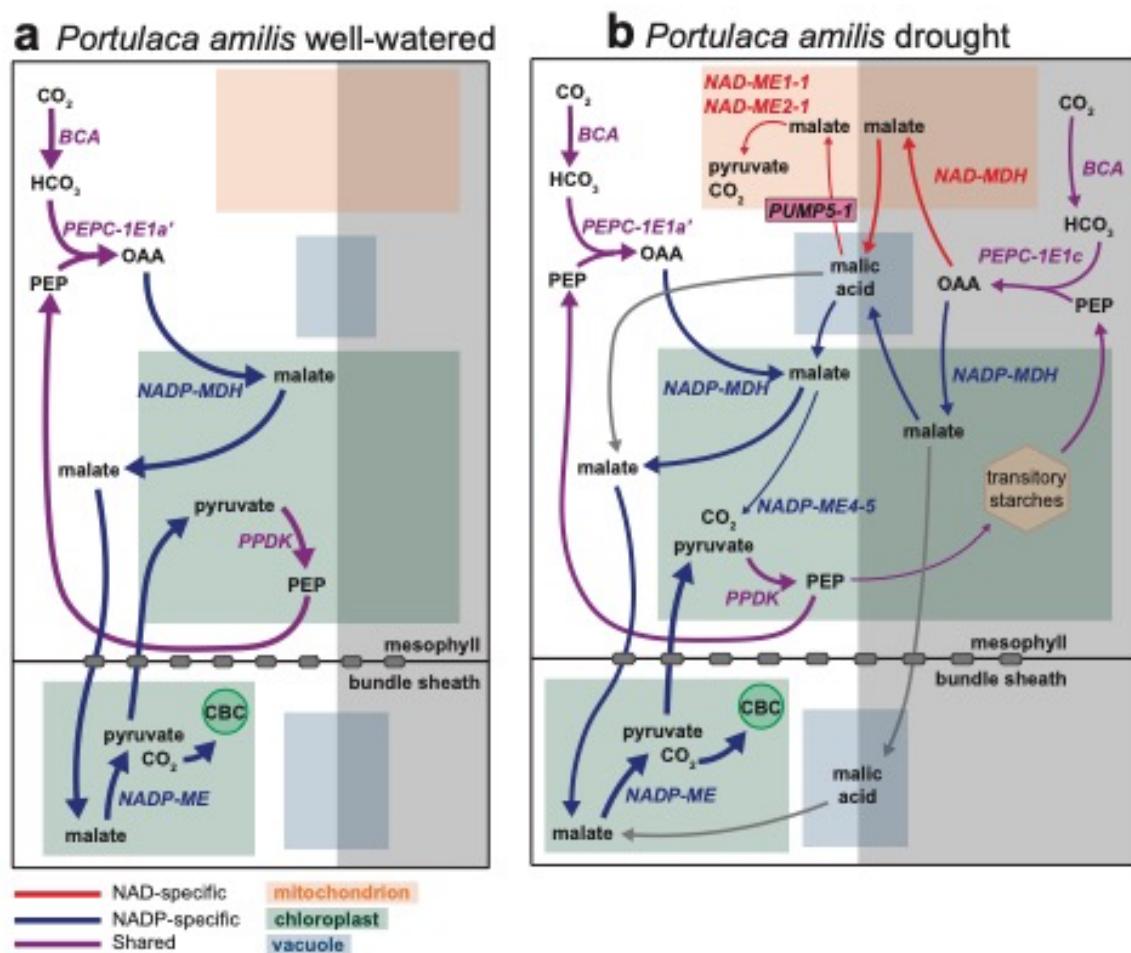

687 *Bold text indicates EE (AAATATCT) or GATA (HGATAR) motifs

688 Figure 1. Simplified C₄ (a) and CAM (b) pathways showing shared carboxylation and
 689 decarboxylation pathways. ASP, aspartate aminotransferase; BCA, beta carbonic anhydrase;
 690 CBC, Calvin-Benson cycle; MDH, malate dehydrogenase; ME, malic enzyme; PEPC, PEP
 691 carboxylase. Cartoon dendrogram of the Portullugo (Portulacineae + Molluginaceae),
 692 highlighting major *Portulaca* clades (c), which are colored by primary C₄ biochemical pathway.
 693 Mean age estimates for focal *Portulaca* clades are from Ocampo and Columbus⁵⁶. Night-day
 694 differences in titratable acidity of experimental *P. amilis* (orange) and *P. oleracea* plants (purple)
 695 (d). WW, well-watered; D, drought. Asterisks connecting lines indicate significant differences
 696 between well-watered and drought treatments (independent *t*-test; “***”, *p* < 0.001; “NS”, *p* =
 697 0.121). Images of *P. amilis* when well-watered and after 8 days without water (e).



698


699 Figure 2. Idiogram of the nine primary scaffolds of the *P. amilis* genome with key C₄ and CAM
700 genes highlighted (a). Breakdown of repetitive elements of the *P. amilis* genome (b); the
701 horizontal bar chart shows the fractions of major classes of repetitive elements and the repeat
702 landscape (histogram) shows the relative abundances of repetitive elements versus the Kimura
703 substitution level from the consensus. Scatterplot of number of gene models versus the log₁₀-
704 transformed genome size for 107 angiosperm genomes (c) with notable benchmarking and CCM
705 genomes highlighted; data is from Zhao and Schranz¹²⁰. Line in (c) shows results of ordinary
706 least squares regression; one sample $t_{slope}(106) > 0$, $p_{slope} = 0.0017$.


707 Figure 3. Photosynthetic gene networks (PGNs). Well-watered and drought PGNs of *P. amilis*
 708 (a-b), and *P. oleracea* (e-f) colored by WGCNA co-expression module identity. Each node in the
 709 graph represents one gene and node sizes represent their degrees. Each module's size and
 710 functional composition is shown in the histogram, and the *z*-score normalized expression of each
 711 module's constituent genes is shown along the horizontal axis. An example of the *z*-score
 712 normalized expression for module paWW1 is enlarged in (a) to show individual gene expression
 713 with the median highlighted in bold. Transcripts per million (TPM) normalized expression
 714 profiles of two focal *PPC* transcripts (*paPPC-1E1a'* and *paPPC-1E1c*) are shown in (c) and (d),
 715 respectively; points show median of size biological replicates and whiskers show interquartile
 716 range; black and red lines represent well-watered and drought samples, respectively.

717 Figure 4. *PPC-1E1c* PGN preservation and subnetworks of common genes. Stacked bar charts
 718 showing the number and functional composition of genes that were exclusive to the well-watered
 719 or drought *PPC-1E1c* PGNs, or preserved across treatments in *P. amilis* (a) and *P. oleracea* (b).
 720 Subnetworks induced by genes common to both *P. amilis* (c) and *P. oleracea* (d) drought *PPC-1E1c* PGNs; drought PGNs include preserved and drought exclusive genes. Orange edges
 721 represent correlations among genes shared between species, while black edges are unique to each
 722 respective species. Metabolic pathways of the shared *PPC-1E1c* subnetworks (e), showing
 723 PEPC, sugar transport, and starch metabolism. Colors of bar plot units (a and b) and gene boxes
 724 (c-e) indicate functional categories as in Fig. 3.
 725

726 Figure 5. Hypothesized biochemical cycles of C₄+CAM in *P. amilis* when well-watered (a) and
727 droughted (b). Red, blue, and purple lines indicate NAD-specific, NADP-specific, and shared
728 reactions, respectively, and grey lines show novel, possible pathways for malate that are unique
729 to C₄+CAM photosynthesis. Line thicknesses are indicative of relative fluxes through pathways.
730 ALAAT, alanine aminotransferase; ASP, aspartate aminotransferase; BCA, beta carbonic
731 anhydrase; CBC, Calvin-Benson cycle; NAD-MDH, NAD-dependent malate dehydrogenase;
732 NADP-MDH, NADP-dependent malate dehydrogenase; NAD-ME, NAD-dependent malic
733 enzyme; NADP-ME, NADP-dependent malic enzyme; PEP, phosphoenolpyruvate; PEPC, PEP
734 carboxylase; PPDK, pyruvate, phosphate dikinase; OAA, oxaloacetate.
735

736 1. Wagner, G. P. & Altenberg, L. Perspective: Complex adaptations and the evolution of
737 evolvability. *Evolution* **50**, 967–976 (1996).

738 2. Clune, J., Mouret, J.-B. & Lipson, H. The evolutionary origins of modularity. *Proc. R. Soc. B
739 Biol. Sci.* **280**, 20122863 (2013).

740 3. Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. *Proc. Nat.
741 Acad. Sci. USA* **102**, 13773–13778 (2005).

742 4. Kashtan, N., Noor, E. & Alon, U. Varying environments can speed up evolution. *Proc. Nat.
743 Acad. Sci. USA* **104**, 13711–13716 (2007).

744 5. Lenski, R. E., Ofria, C., Pennock, R. T. & Adami, C. The evolutionary origin of complex
745 features. *Nature* **423**, 139–144 (2003).

746 6. Barve, A. & Wagner, A. A latent capacity for evolutionary innovation through exaptation in
747 metabolic systems. *Nature* **500**, 203–206 (2013).

748 7. Heyduk, K., Moreno-Villena, J. J., Gilman, I. S., Christin, P.-A. & Edwards, E. J. The genetics
749 of convergent evolution: insights from plant photosynthesis. *Nat. Rev. Gen.* **313**, 1–9 (2019).

750 8. Keeley, J. E. & Rundel, P. W. Evolution of CAM and C₄ Carbon-Concentrating Mechanisms.
751 *Int. J. Plant Sci.* **164**, S55–S77 (2003).

752 9. Edwards, E. J. *et al.* The origins of C₄ grasslands: integrating evolutionary and ecosystem
753 science. *Science* **328**, 587–591 (2010).

754 10. Christin, P.-A., Osborne, C. P., Sage, R. F., Arakaki, M. & Edwards, E. J. C₄ eudicots are not
755 younger than C₄ monocots. *J. Exp. Bot.* **62**, 3171–3181 (2011).

756 11. Sage, R. F. A portrait of the C₄ photosynthetic family on the 50th anniversary of its
757 discovery: species number, evolutionary lineages, and Hall of Fame. *J. Exp. Bot.* **67**, 4039–4056
758 (2016).

759 12. Edwards, E. J. Evolutionary trajectories, accessibility and other metaphors: the case of C₄
760 and CAM photosynthesis. *New Phyt.* **223**, 1742–1755 (2019).

761 13. Bräutigam, A., Schlüter, U., Eisenhut, M. & Gowik, U. On the Evolutionary Origin of CAM
762 Photosynthesis. *Plant Physiol.* **174**, 473–477 (2017).

763 14. Hibberd, J. M. & Covshoff, S. The regulation of gene expression required for C₄
764 photosynthesis. *Ann. Rev. Plant Biol.* **61**, 181–207 (2010).

765 15. Hartwell, J. Annual Plant Reviews: Endogenous Plant Rhythms. in (eds. Hall, A. J. W. &
766 McWatters, H.) vol. 21 211–236 (Blackwell Publishing Ltd, 2006).

767 16. Peterhansel, C. *et al.* Photorespiration. *The Arabidopsis Book* **8**, e0130 (2010).

768 17. Ogren, W. L. Photorespiration: Pathways, Regulation, and Modification. *Ann. Rev. Plant
769 Physiol.* **35**, 415–442 (1984).

770 18. Sage, R. F. The evolution of C₄ photosynthesis. *New Phyt.* **161**, 341–370 (2004).

771 19. Taylor, S. H. *et al.* Physiological advantages of C₄ grasses in the field: a comparative
772 experiment demonstrating the importance of drought. *Global Change Biol.* **20**, 1992–2003
773 (2014).

774 20. Niewiadomska, E. & Borland, A. M. Crassulacean acid metabolism: A cause or consequence
775 of oxidative stress in planta? in *Progress in Botany* (eds. Lüttge, U., Beyschlag, W. B. & Murata,
776 J.) vol. 69 247–266 (Springer-Verlag Berlin Heidelberg, 2008).

777 21. Lüttge, U. Photorespiration in Phase III of Crassulacean Acid Metabolism: Evolutionary and
778 Ecophysiological Implications. in *Progress in Botany* (eds. Lüttge, U., Beyschlag, W., Büdel, B.
779 & Francis, D.) vol. 72 371–384 (Springer-Verlag Berlin Heidelberg, 2011).

780 22. Szarek, S. R. & Ting, I. P. Photosynthetic efficiency of CAM plants in relation to C₃ and C₄
781 plants. in *Environmental and Biological Control of Photosynthesis* (ed. Marcelle, R.) 289–299
782 (Dr. W. Junk b.v., 1975).

783 23. Winter, K., Aranda, J. & Holtum, J. A. M. Carbon isotope composition and water-use
784 efficiency in plants with Crassulacean acid metabolism. *Funct. Plant Biol.* **32**, 381–388 (2005).

785 24. Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C₄ photosynthesis, atmospheric CO₂, and
786 climate. *Oecologia* **112**, 285–299 (1997).

787 25. Sage, R. F., Sage, T. L. & Kocacinar, F. Photorespiration and the evolution of C₄
788 photosynthesis. *Ann. Rev. Plant Biol.* **63**, 19–47 (2012).

789 26. Raven, J. A. & Spicer, R. A. The evolution of Crassulacean acid metabolism. in
790 *Crassulacean Acid Metabolism Biochemistry, Ecophysiology and Evolution* (eds. Winter, K. &
791 Smith, J. A. C.) 360–388 (Springer, 1996).

792 27. Arakaki, M. *et al.* Contemporaneous and recent radiations of the world's major succulent
793 plant lineages. *Proc. Nat. Acad. Sci. USA* **108**, 8379–8384 (2011).

794 28. Christin, P.-A. *et al.* Shared origins of a key enzyme during the evolution of C₄ and CAM
795 metabolism. *J. Exp. Bot.* **65**, 3609–3621 (2014).

796 29. Koch, K. & Kennedy, R. A. Characteristics of Crassulacean acid metabolism in the succulent
797 C₄ dicot, *Portulaca oleracea* L. *Plant Physiol.* **65**, 193–197 (1980).

798 30. Ho, C.-L., Chiang, J.-M., Lin, T.-C. & Martin, C. E. First report of C₄ /CAM-cycling
799 photosynthetic pathway in a succulent grass, *Spinifex littoreus* (Brum. f.) Merr., in coastal
800 regions of Taiwan. *Flora* **254**, 194–202 (2019).

801 31. Winter, K., Garcia, M., Virgo, A., Ceballos, J. & Holtum, J. A. M. Does the C₄ plant
802 *Trianthema portulacastrum* (Aizoaceae) exhibit weakly expressed crassulacean acid metabolism
803 (CAM)? *Funct. Plant Biol.* **48**, 655–665 (2020).

804 32. Sage, R. F. Are Crassulacean acid metabolism and C₄ photosynthesis incompatible? *Funct.*
805 *Plant Biol.* **29**, 775–785 (2002).

806 33. Koch, K. E. & Kennedy, R. A. Crassulacean acid metabolism in the succulent C₄ dicot,
807 *Portulaca oleracea* L. under natural environmental conditions. *Plant Physiol.* **69**, 757–761
808 (1982).

809 34. Guralnick, L. J. & Jackson, M. D. The occurrence and phylogenetics of Crassulacean acid
810 metabolism in the Portulacaceae. *Int. J. Plant Sci.* **162**, 257–262 (2001).

811 35. Guralnick, L. J., Edwards, G., Ku, M. S. B., Hockema, B. & Franceschi, V. R. Photosynthetic
812 and anatomical characteristics in the C₄-crassulacean acid metabolism-cycling plant, *Portulaca*
813 *grandiflora*. *Funct. Plant Biol.* **29**, 763–773 (2002).

814 36. Lara, M. V., Disante, K. B., Podestá, F. E., Andreo, C. S. & Drincovich, M. F. Induction of a
815 Crassulacean acid like metabolism in the C₄ succulent plant, *Portulaca oleracea* L.:
816 Physiological and morphological changes are accompanied by specific modifications in
817 phosphoenolpyruvate carboxylase. *Photosynth. Res.* **77**, 241 (2003).

818 37. Lara, M. V., Drincovich, M. F. & Andreo, C. S. Induction of a Crassulacean acid-like
819 metabolism in the C₄ Succulent Plant, *Portulaca oleracea* L.: Study of enzymes involved in
820 carbon fixation and carbohydrate metabolism. *Plant Cell Physiol.* **45**, 618–626 (2004).

821 38. Holtum, J. A. M., Hancock, L. P., Edwards, E. J. & Winter, K. Optional use of CAM
822 photosynthesis in two C₄ species, *Portulaca cyclophylla* and *Portulaca digyna*. *J. Plant. Physiol.*
823 **214**, 91–96 (2017).

824 39. Winter, K., Sage, R. F., Edwards, E. J., Virgo, A. & Holtum, J. A. M. Facultative
825 Crassulacean acid metabolism in a C₃–C₄ intermediate. *J. Exp. Bot.* **108**, 8379–9 (2019).

826 40. Ferrari, R. C. *et al.* C₄ and Crassulacean acid metabolism within a single leaf: Deciphering
827 key components behind a rare photosynthetic adaptation. *New Phyt.* **225**, 1699–1714 (2020).

828 41. Ferrari, R. C. *et al.* Exploring C₄ -CAM plasticity within the *Portulaca oleracea* complex.
829 *Scientific Reports* **10**, 14237–14 (2020).

830 42. Edwards, E. J. & Diaz, M. Ecological physiology of *Pereskia guamacho*, a cactus with
831 leaves. *Plant Cell Environ.* **29**, 247–256 (2006).

832 43. Guralnick, L. J., Cline, A., Smith, M. & Sage, R. F. Evolutionary physiology: The extent of
833 C₄ and CAM photosynthesis in the genera *Anacampseros* and *Grahamia* of the Portulacaceae. *J.*
834 *Exp. Bot.* **59**, 1735–1742 (2007).

835 44. Brilhaus, D., Bräutigam, A., Mettler-Altmann, T., Winter, K. & Weber, A. P. M. Reversible
836 burst of transcriptional changes during induction of Crassulacean acid metabolism in *Talinum*
837 *triangulare*. *Plant Physiol.* **170**, 102–122 (2016).

838 45. Holtum, J. A. M., Hancock, L. P., Edwards, E. J. & Winter, K. Crassulacean acid metabolism
839 in the Basellaceae (Caryophyllales). *Plant Biol.* **20**, 409–414 (2018).

840 46. Hancock, L. P., Holtum, J. A. M. & Edwards, E. J. The evolution of CAM photosynthesis in
841 Australian *Calandrinia* reveals lability in C₃+CAM phenotypes and a possible constraint to the
842 evolution of strong CAM. *Integr. Comp. Biol.* **59**, 517–534 (2019).

843 47. Holtum, J. A. M., Hancock, L. P., Edwards, E. J. & Winter, K. CAM photosynthesis in desert
844 blooming *Cistanthe* of the Atacama, Chile. *Funct. Plant Biol.* **48**, 691–702 (2021).

845 48. Ocampo, G. *et al.* Evolution of leaf anatomy and photosynthetic pathways in Portulacaceae.
846 *Am. J. Bot.* **100**, 2388–2402 (2013).

847 49. Voznesenskaya, E. V., Koteyeva, N. K., Edwards, G. E. & Ocampo, G. Unique
848 photosynthetic phenotypes in *Portulaca* (Portulacaceae): C₃-C₄ intermediates and NAD-ME C₄
849 species with Pilosoid-type Kranz anatomy. *J. Exp. Bot.* **68**, 225–239 (2017).

850 50. Voznesenskaya, E. V., Koteyeva, N. K., Edwards, G. E. & Ocampo, G. Revealing diversity
851 in structural and biochemical forms of C₄ photosynthesis and a C₃-C₄ intermediate in genus
852 *Portulaca* L. (Portulacaceae). *J. Exp. Bot.* **61**, 3647–3662 (2010).

853 51. Williams, B. P., Johnston, I. G., Covshoff, S. & Hibberd, J. M. Phenotypic landscape
854 inference reveals multiple evolutionary paths to C₄ photosynthesis. *eLife* **2**, e00961 (2013).

855 52. Furbank, R. T. Evolution of the C₄ photosynthetic mechanism: Are there really three C₄ acid
856 decarboxylation types? *J. Exp. Bot.* **62**, 3103–3108 (2011).

857 53. Sharma, A. K. & Bhattacharyya, N. K. Cytogenetics of some members of Portulacaceae and
858 related families. *Caryologia* **8**, 257–274 (1956).

859 54. McClintock, B. The significance of responses of the genome to challenge. *Science* **226**, 792–
860 801 (1984).

861 55. Dion-Côté, A.-M., Renaut, S., Normandeau, E. & Bernatchez, L. RNA-seq reveals
862 transcriptomic shock involving transposable elements reactivation in hybrids of young lake
863 whitefish species. *Mol. Biol. Evol.* **31**, 1188–1199 (2014).

864 56. Ocampo, G. & Columbus, J. T. Molecular phylogenetics, historical biogeography, and
865 chromosome number evolution of *Portulaca* (Portulacaceae). *Mol. Phy. Evol.* **63**, 97–112 (2012).

866 57. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful
867 approach to multiple testing. *J. Royal Stat. Soc. Ser. B Methodology* **57**, 289–300 (1995).

868 58. Weise, S. E., Wijk, K. J. van & Sharkey, T. D. The role of transitory starch in C₃, CAM, and
869 C₄ metabolism and opportunities for engineering leaf starch accumulation. *J. Exp. Bot.* **62**, 3109–
870 3118 (2011).

871 59. Borland, A. M., Guo, H.-B., Yang, X. & Cushman, J. C. Orchestration of carbohydrate
872 processing for Crassulacean acid metabolism. *Curr. Opin. Plant Biol.* **31**, 118–124 (2016).

873 60. Nimmo, H. G. The regulation of phosphoenolpyruvate carboxylase in CAM plants. *Trends
874 Plant Sci.* **5**, 75–80 (2000).

875 61. Yang, X. *et al.* The *Kalanchoë* genome provides insights into convergent evolution and
876 building blocks of Crassulacean acid metabolism. *Nat. Comm.* **8**, 1–15 (2017).

877 62. Friso, G., Majeran, W., Huang, M., Sun, Q. & Wijk, K. J. van. Reconstruction of metabolic
878 pathways, protein expression, and homeostasis machineries across maize bundle sheath and
879 mesophyll chloroplasts: Large-scale quantitative proteomics using the first maize genome
880 assembly. *Plant Physiol.* **152**, 1219–1250 (2010).

881 63. Chang, Y.-M. *et al.* Characterizing regulatory and functional differentiation between maize
882 mesophyll and bundle sheath cells by transcriptomic analysis. *Plant Physiol.* **160**, 165–177
883 (2012).

884 64. Liu, Y., Li, X., Li, K., Liu, H. & Lin, C. Multiple bHLH proteins form heterodimers to
885 mediate CRY2-dependent regulation of flowering-time in *Arabidopsis*. *PLoS Genetics* **9**,
886 e1003861 (2013).

887 65. Reyes, J. C., Muro-Pastor, M. I. & Florencio, F. J. The GATA family of transcription factors
888 in *Arabidopsis* and rice. *Plant Physiol.* **134**, 1718–1732 (2004).

889 66. Gendron, J. M. *et al.* *Arabidopsis* circadian clock protein, TOC1, is a DNA-binding
890 transcription factor. *Proc. Nat. Acad. Sci. USA* **109**, 3167–3172 (2012).

891 67. McClung, C. The plant circadian oscillator. *Biology* **8**, 14–17 (2019).

892 68. Zhang, Y. *et al.* Biochemical and biophysical CO₂ concentrating mechanisms in two species

893 of freshwater macrophyte within the genus *Ottelia* (Hydrocharitaceae). *Photosynth. Res.* **121**,

894 285–297 (2013).

895 69. Huang, W. M. *et al.* Different CO₂ acclimation strategies in juvenile and mature leaves of

896 *Ottelia alismoides*. *Photosynth. Res.* **138**, 219–232 (2018).

897 70. Mallmann, J. *et al.* The role of photorespiration during the evolution of C₄ photosynthesis in

898 the genus Flaveria. *eLife* **3**, e02478 (2014).

899 71. Moreno-Villena, J. J., Dunning, L. T., Osborne, C. P. & Christin, P.-A. Highly expressed

900 genes are preferentially co-opted for C₄ photosynthesis. *Mol. Biol. Evol.* **35**, 94–106 (2018).

901 72. Leegood, R. C. The intercellular compartmentation of metabolites in leaves of *Zea mays* L.

902 *Planta* **164**, 163–171 (1985).

903 73. Schuler, M. L., Mantegazza, O. & Weber, A. P. M. Engineering C₄ photosynthesis into C₃

904 chassis in the synthetic biology age. *Plant Cell* **87**, 51–65 (2016).

905 74. Borland, A. M. *et al.* Engineering Crassulacean acid metabolism to improve water-use

906 efficiency. *Trends Plant Sci.* **19**, 327–338 (2014).

907 75. Wang, N. *et al.* Evolution of Portulacineae marked by gene tree conflict and gene family

908 expansion associated with adaptation to harsh environments. *Mol. Biol. Evol.* **36**, 112–126

909 (2019).

910 76. Ting, I. P. & Hanscom, Z. Induction of acid metabolism in *Portulacaria afra*. *Plant Physiol.*

911 **59**, 511–514 (1977).

912 77. Edwards, E. J. & Ogburn, R. M. Angiosperm responses to a low- CO₂ world: CAM and C₄

913 photosynthesis as parallel evolutionary trajectories. *Int. J. Plant Sci.* **173**, 724–733 (2012).

914 78. Nobel, P. S. *Environmental Biology of Agaves and Cacti*. (Cambridge University Press,
915 2003).

916 79. Edwards, E. J. & Donoghue, M. J. *Pereskia* and the origin of the cactus life-form. *Am. Nat.*
917 **167**, 777–793 (2006).

918 80. Eggli, U. *Illustrated Handbook of Succulent Plants: Dicotyledons*. (Springer, 2004).

919 81. Ogburn, R. M. & Edwards, E. J. Anatomical variation in Cactaceae and relatives: Trait
920 lability and evolutionary innovation. *Am. J. Bot.* **96**, 391–408 (2009).

921 82. Herrera, A. Crassulacean acid metabolism and fitness under water deficit stress: If not for
922 carbon gain, what is facultative CAM good for? *Annals of Bot.* **103**, 645–653 (2008).

923 83. Winter, K. Ecophysiology of constitutive and facultative CAM photosynthesis. *J. Exp. Bot.*
924 **2**, 16178–14 (2019).

925 84. Ghannoum, O. C₄ photosynthesis and water stress. *Annals of Bot.* **103**, 635–644 (2009).

926 85. Ferrari, R. C. *et al.* Developing *Portulaca oleracea* as a model system for functional
927 genomics analysis of C₄/CAM photosynthesis. *Funct. Plant Biol.* **7**, 666–682 (2020).

928 86. Geesink, R. An account of the genus *Portulaca* in Indo-Australia and the Pacific
929 (Portulacaceae). *Blumea* **17**, (1969).

930 87. Kim, I. & Carr, G. D. Reproductive biology and uniform culture of *Portulaca* in Hawaii.
931 *Pacific Sci.* **44**, 123–129 (1990).

932 88. Jordon-Thaden, I. E., Chanderbali, A. S., Gitzendanner, M. A. & Soltis, D. E. Modified
933 CTAB and TRIzol protocols improve RNA extraction from chemically complex embryophyta.
934 *App. Plant Sci.* **3**, 1400105–22 (2015).

935 89. Putnam, N. H. *et al.* Chromosome-scale shotgun assembly using an in vitro method for long-
936 range linkage. *Genome Res.* **26**, 342–350 (2016).

937 90. Lieberman-Aiden, E. *et al.* Comprehensive mapping of long-range interactions reveals
938 folding principles of the human genome. *Science* **326**, 289–293 (2009).

939 91. Chapman, J. A. *et al.* Meraculous: De novo genome assembly with short paired-end reads.
940 *PLoS One* **6**, e23501 (2011).

941 92. Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094–
942 3100 (2018).

943 93. Abrusán, G., Grundmann, N., DeMester, L. & Makalowski, W. TEclass—a tool for
944 automated classification of unknown eukaryotic transposable elements. *Bioinformatics* **25**, 1329–
945 1330 (2009).

946 94. Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in
947 eukaryotic genomes. *Mobile DNA* **6**, 11 (2015).

948 95. Hubley, R. *et al.* The Dfam database of repetitive DNA families. *Nucleic Acids Res.* **44**, D81–
949 9 (2016).

950 96. Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets.
951 *Bioinformatics* **27**, 863–864 (2011).

952 97. Grabherr, M. G. *et al.* Full-length transcriptome assembly from RNA-Seq data without a
953 reference genome. *Nat. Biotech.* **29**, 644–652 (2011).

954 98. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome
955 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat. Biotech.* **37**, 907–915
956 (2019).

957 99. Haas, B. J. *et al.* Improving the *Arabidopsis* genome annotation using maximal transcript
958 alignment assemblies. *Nucleic Acids Res.* **31**, 5654–5666 (2003).

959 100. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq
960 quantification. *Nat. Biotech.* **34**, 525–527 (2016).

961 101. Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically
962 mapped cDNA alignments to improve de novo gene finding. *Bioinformatics* **24**, 637–644 (2008).

963 102. Korf, I. Gene finding in novel genomes. *BMC Bioinformatics* **5**, 59 (2004).

964 103. Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open
965 source ab initio eukaryotic gene-finders. *Bioinformatics* **20**, 2878–2879 (2004).

966 104. Besemer, J. & Borodovsky, M. GeneMark: web software for gene finding in prokaryotes,
967 eukaryotes and viruses. *Nucleic Acids Res.* **33**, W451-4 (2005).

968 105. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using
969 DIAMOND. *Nat. Methods* **12**, 59–60 (2015).

970 106. Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence
971 comparison. *BMC Bioinformatics* **6**, 31 (2005).

972 107. Haas, B. J. *et al.* Automated eukaryotic gene structure annotation using EVidenceModeler
973 and the Program to Assemble Spliced Alignments. *Genome Biol.* **9**, R7 (2008).

974 108. Chan, P. P. & Lowe, T. M. tRNAscan-SE: Searching for tRNA genes in genomic
975 sequences. *Methods Mol. Biol.* **1962**, 1–14 (2019).

976 109. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-
977 generation sequencing data. *Bioinformatics* **28**, 3150–3152 (2012).

978 110. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome
979 comparisons dramatically improves orthogroup inference accuracy. *Genome Biol.* **16**, 157
980 (2015).

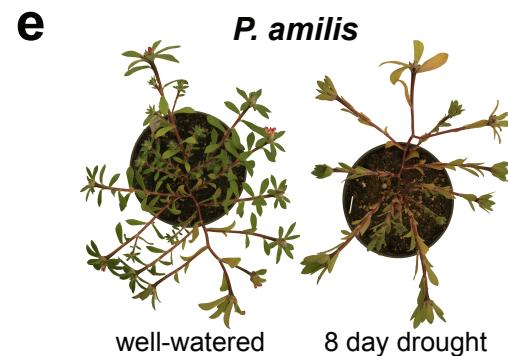
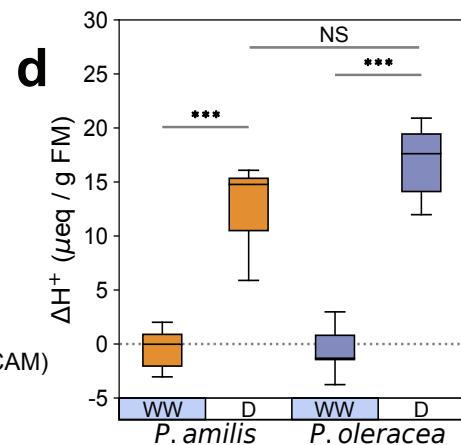
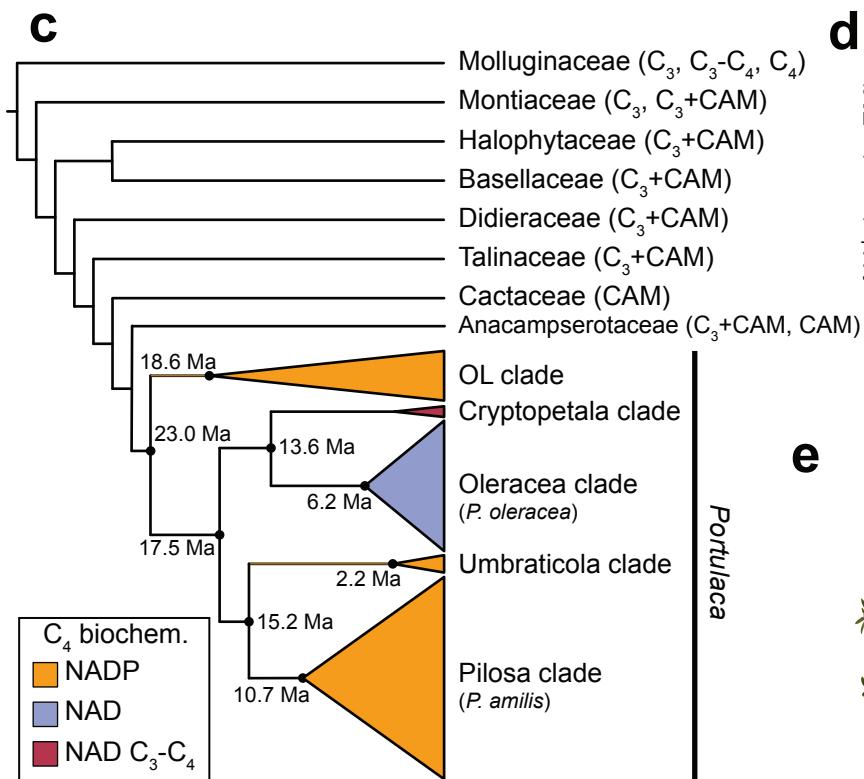
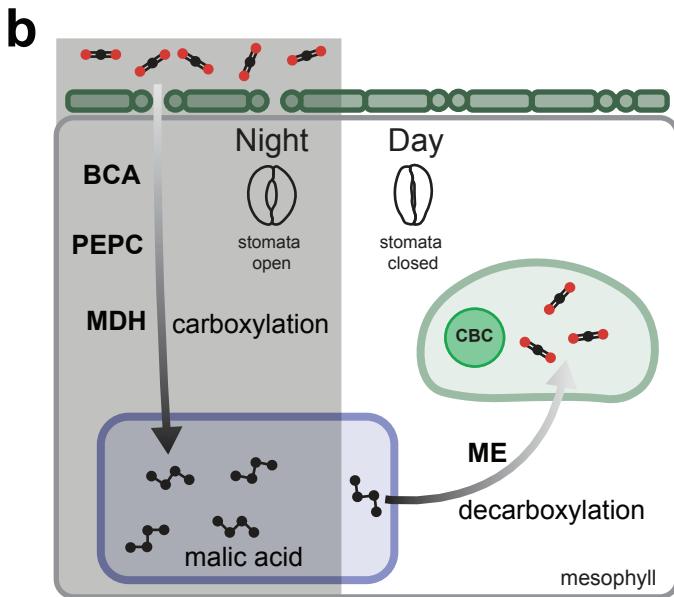
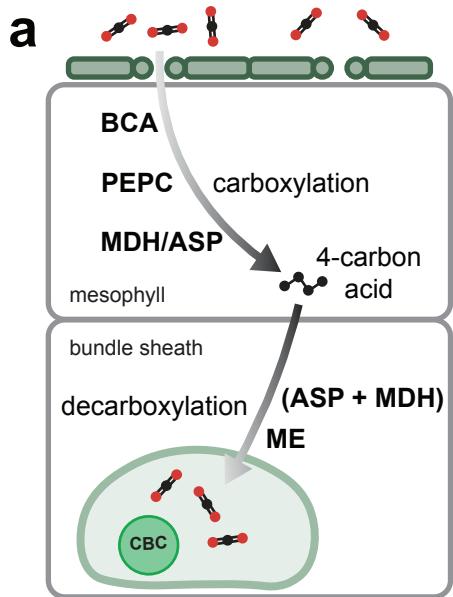
981 111. Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of
982 RNA-seq incorporating quantification uncertainty. *Nat. Methods* **14**, 687–690 (2017).

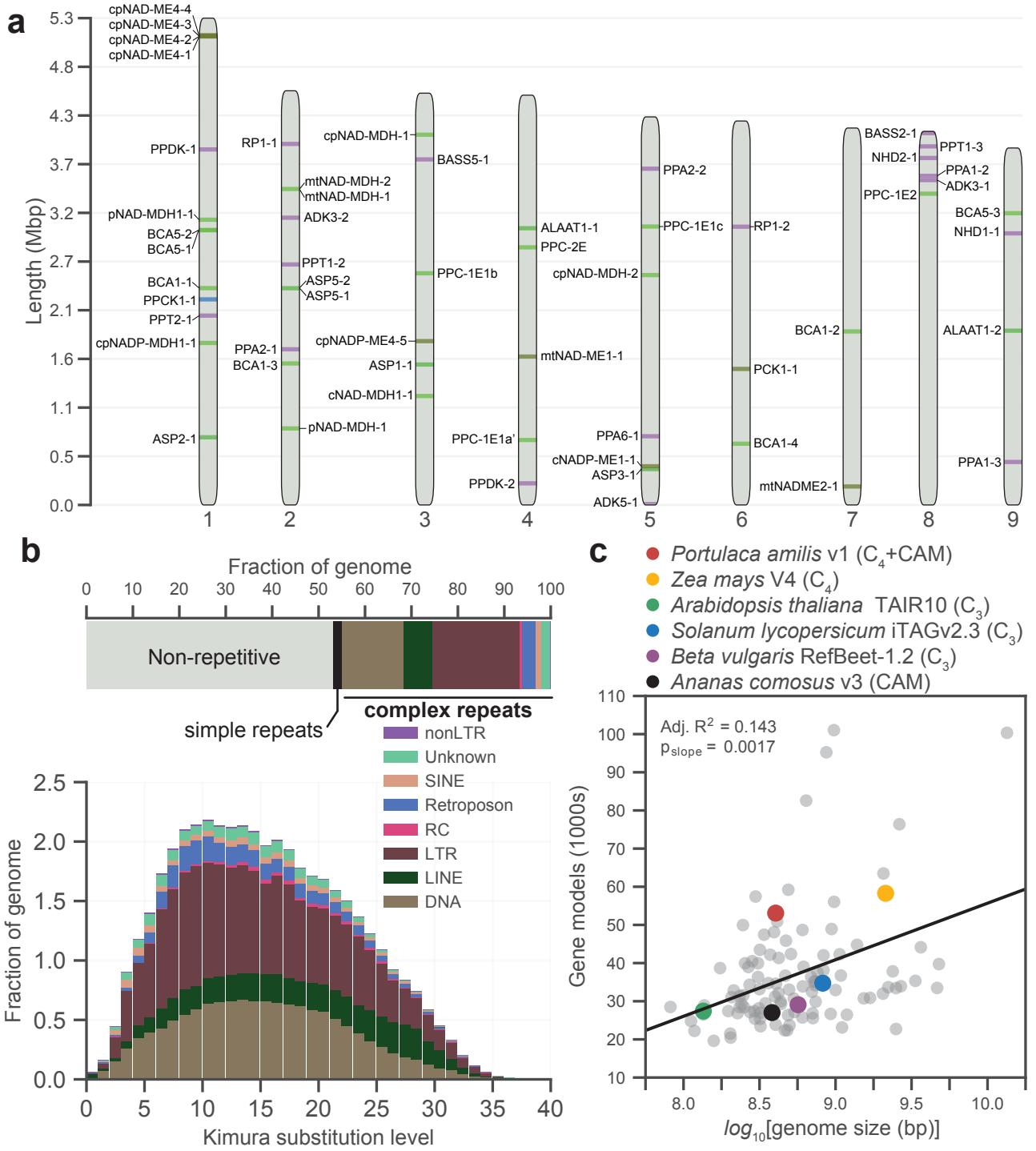
983 112. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network
984 analysis. *BMC Bioinformatics* **9**, 559 (2008).

985 113. Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and
986 function using NetworkX. in *Proceedings of the 7th Python in Science Conference (SciPy 2008)*
987 (eds. Varopuax, G., Vaught, T. & Millman, J.) 11–16 (2008).

988 114. Bailey, T. L. *et al.* MEME Suite: Tools for motif discovery and searching. *Nucleic Acids*
989 *Res.* **37**, W202–W208 (2009).

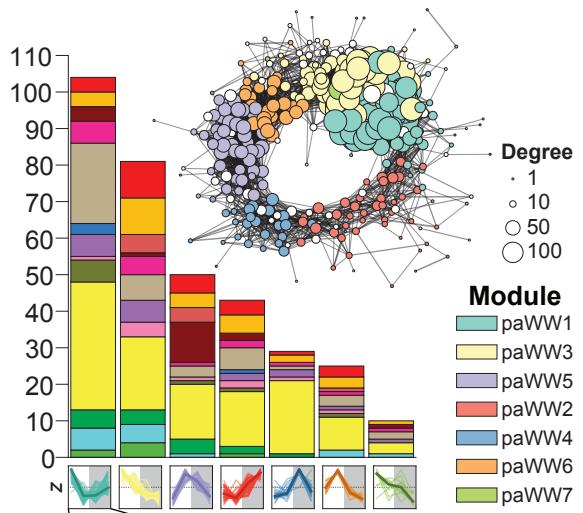
990 115. Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover
991 motifs in biopolymers. in *Proceedings of the Second International Conference on Intelligent*
992 *Systems for Molecular Biology* 28–36 (AAAI Press, 1994).

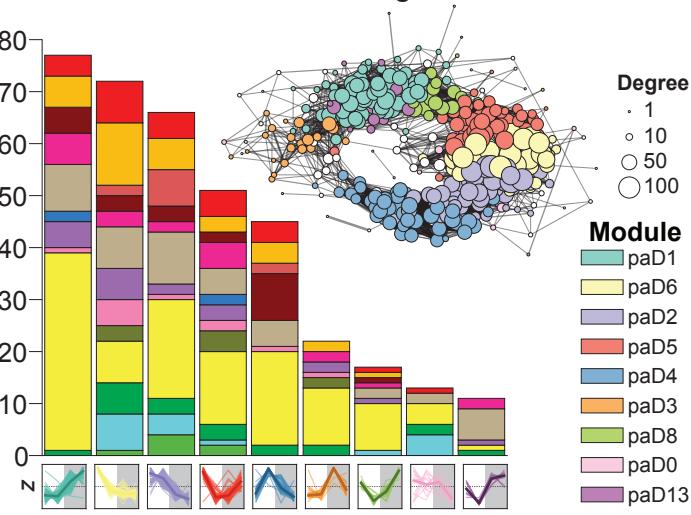





993 116. Khan, A. *et al.* JASPAR 2018: Update of the open-access database of transcription factor
994 binding profiles and its web framework. *Nucleic Acids Res.* **46**, D260-266 (2018).

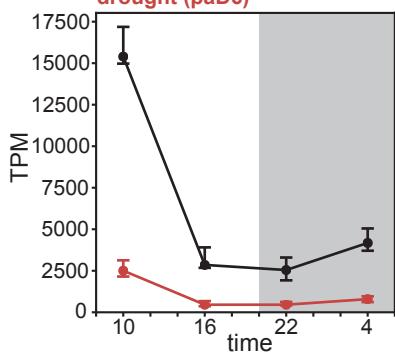

995 117. Wai, C. M. *et al.* Time of day and network reprogramming during drought induced CAM
996 photosynthesis in *Sedum album*. *PLoS Genetics* **15**, e1008209 (2019).

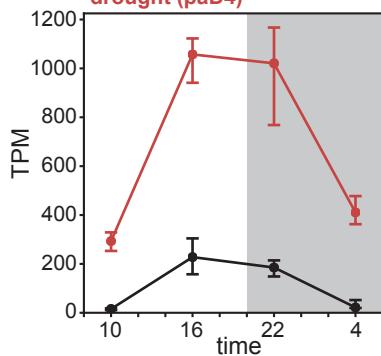
997 118. Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L. & Noble, W. S. Quantifying similarity
998 between motifs. *Genome Biol.* **8**, R24 (2007).

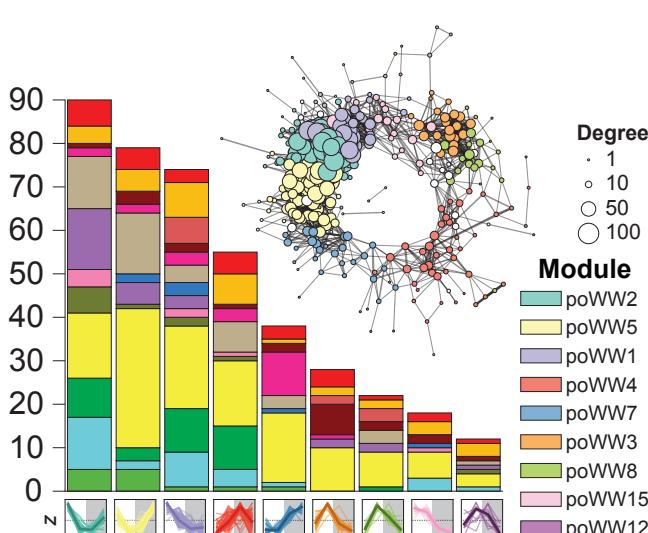
999 119. McLeay, R. C. & Bailey, T. L. Motif enrichment analysis: a unified framework and an
1000 evaluation on ChIP data. *Bmc Bioinformatics* **11**, 165 (2010).

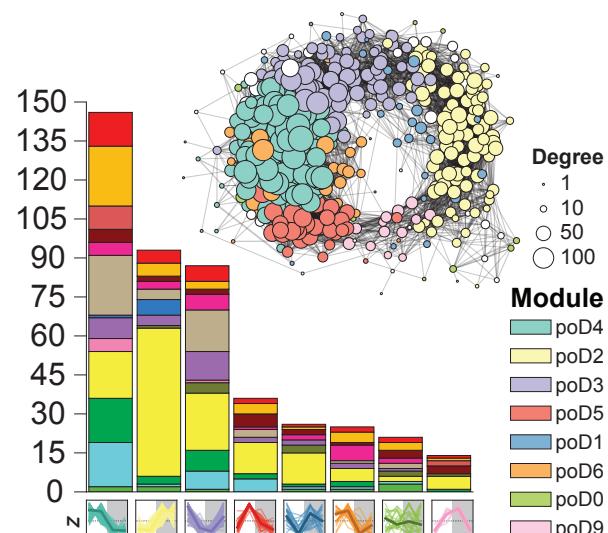

1001 120. Zhao, T. & Schranz, M. E. Network-based microsynteny analysis identifies major
1002 differences and genomic outliers in mammalian and angiosperm genomes. *Proc. Nat. Acad. Sci.*
1003 *USA* **116**, 2165–2174 (2019).

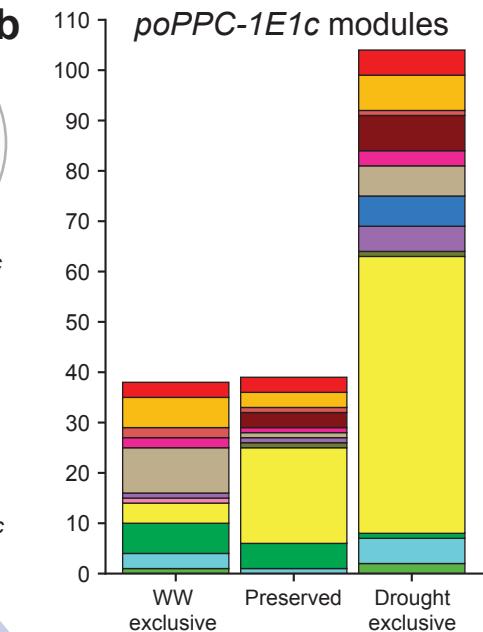
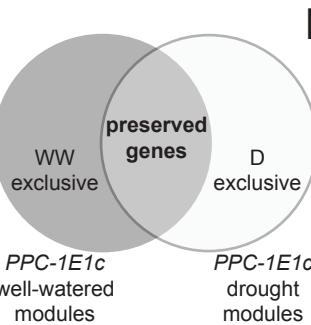
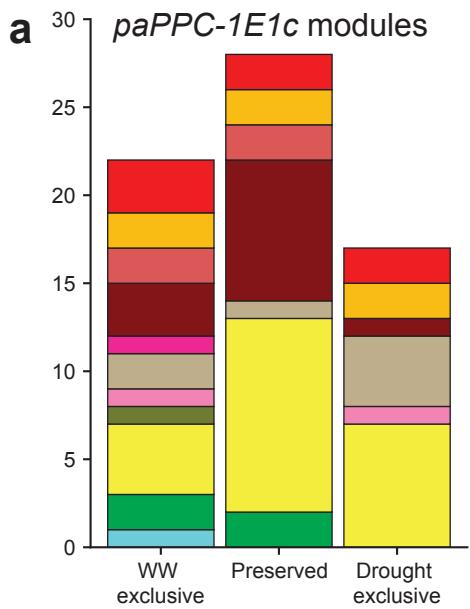



a *P. amilis* well-watered PGN

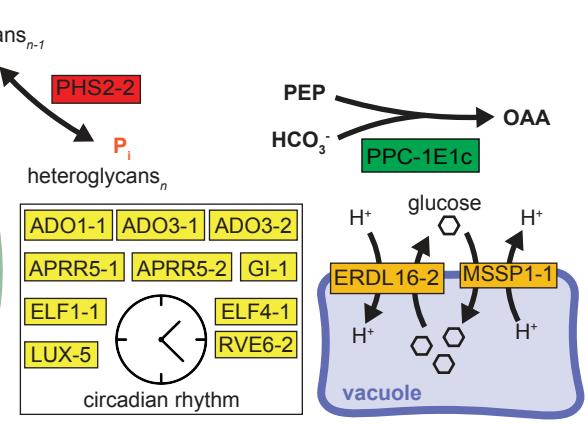
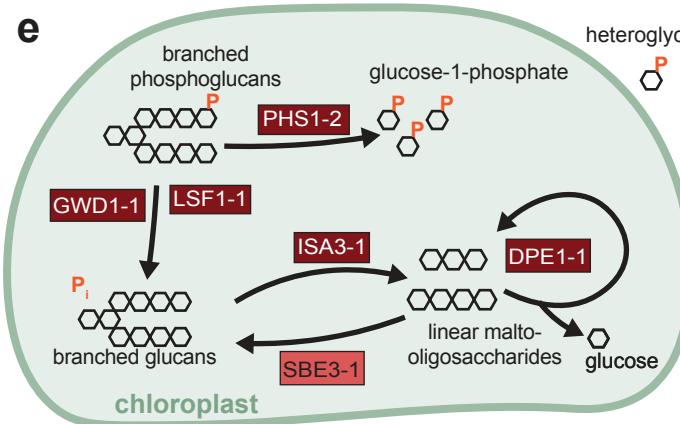
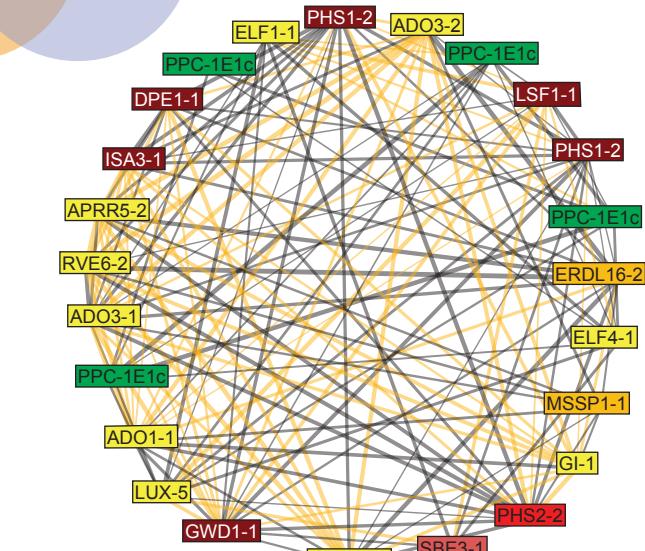
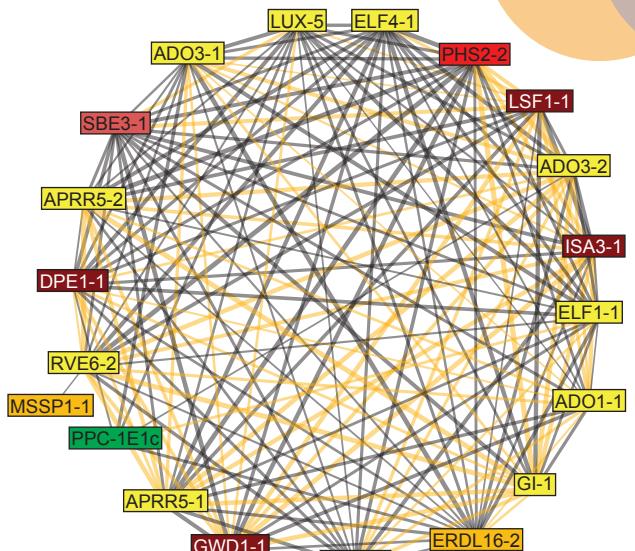

b *P. amilis* drought PGN

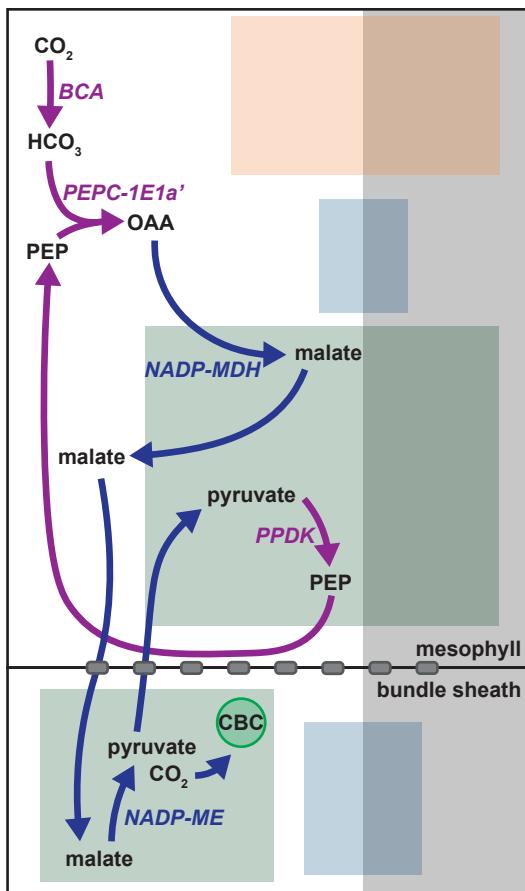
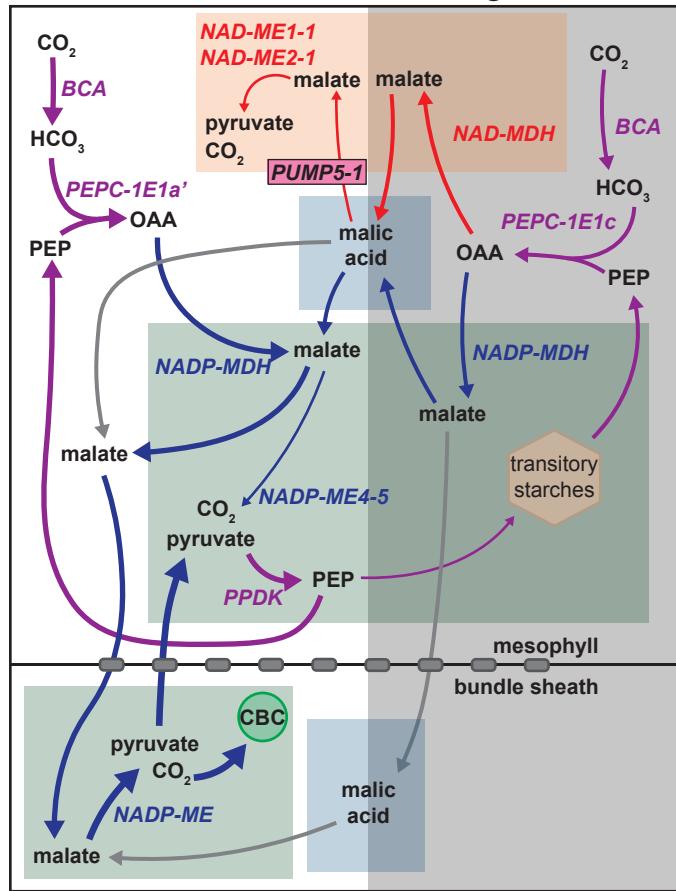

paPPC-1E1a' (FUN_020790)
well-watered (paWW1)
drought (paD6)

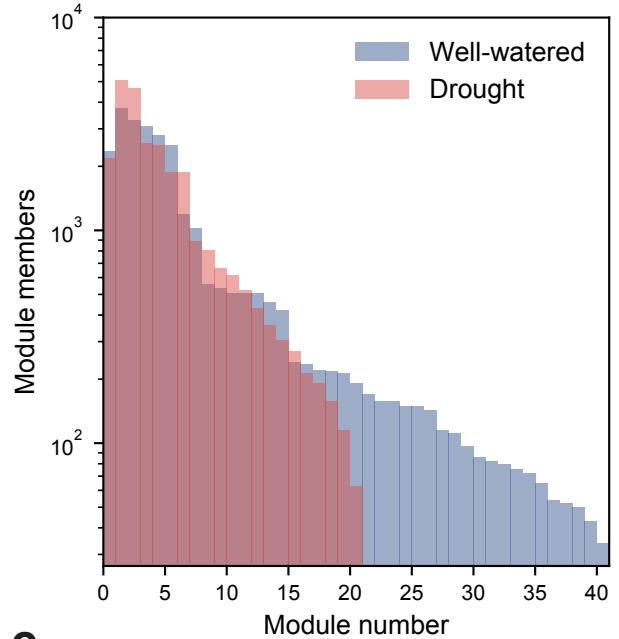
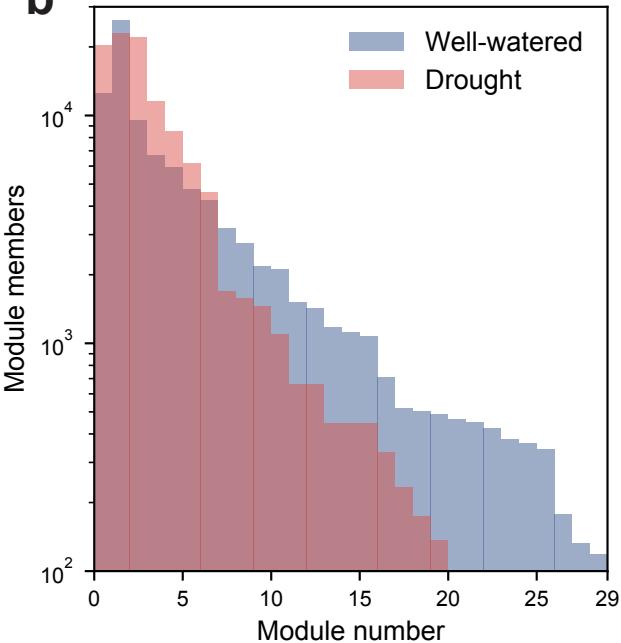
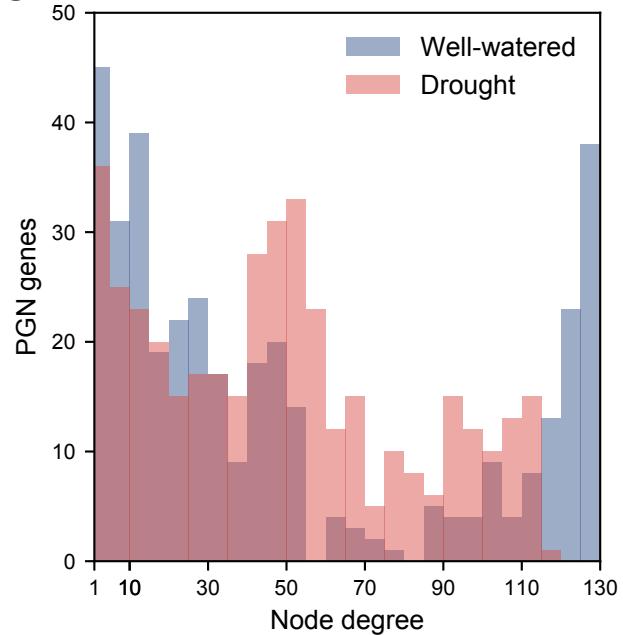
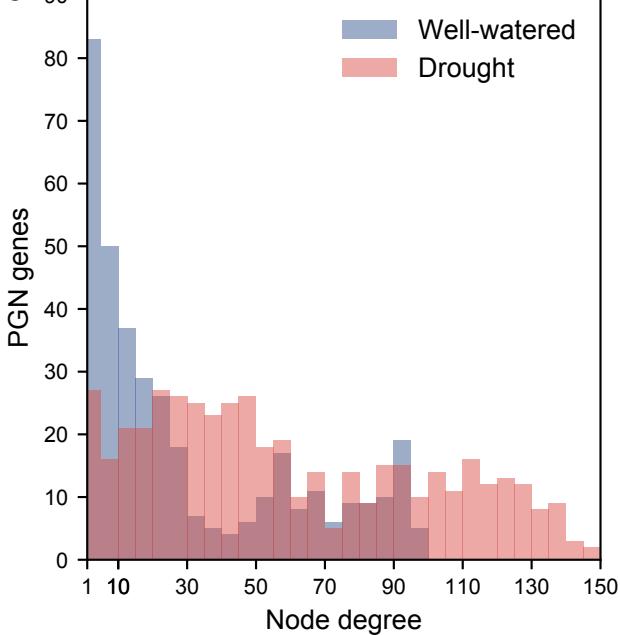

paPPC-1E1c (FUN_029936)
well-watered (paWW5)
drought (paD4)

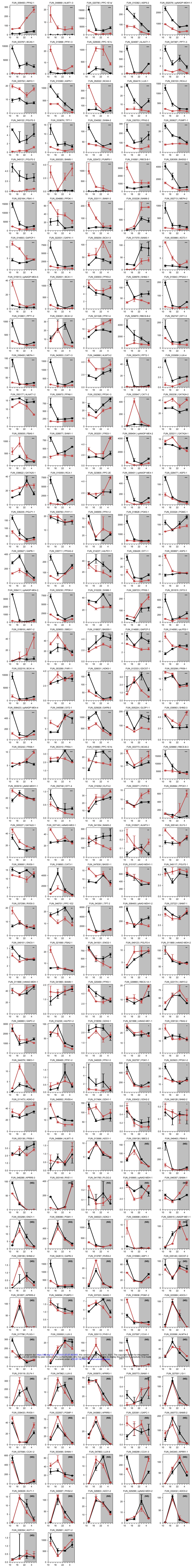




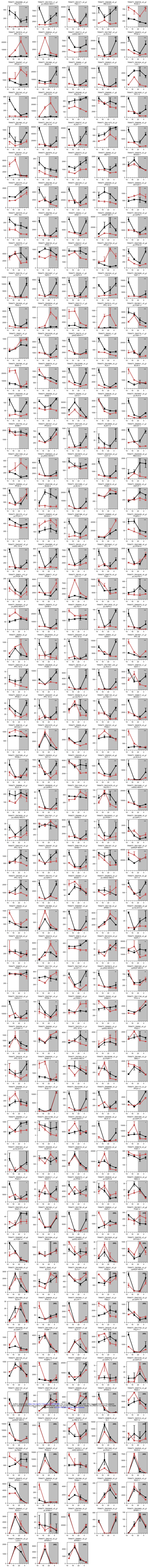
e *P. oleracea* well-watered PGN

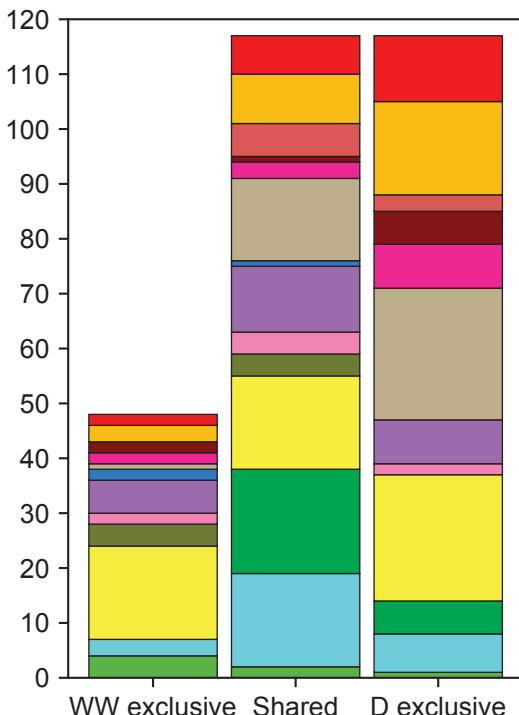
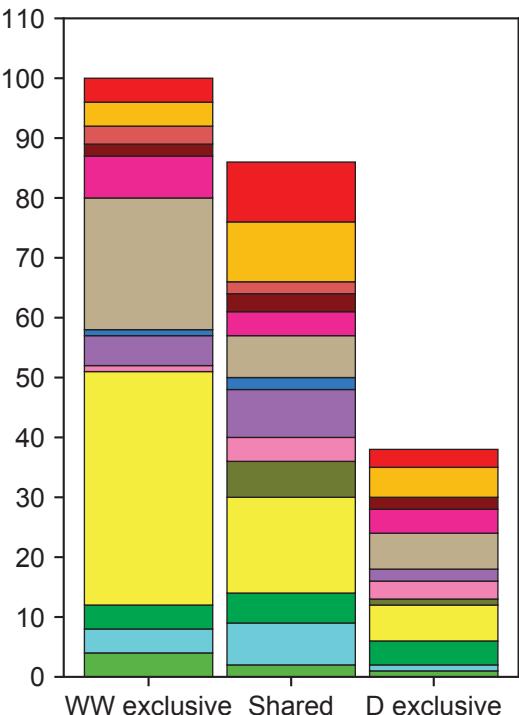







f *P. oleracea* drought PGN





C *P. amilis* common drought network

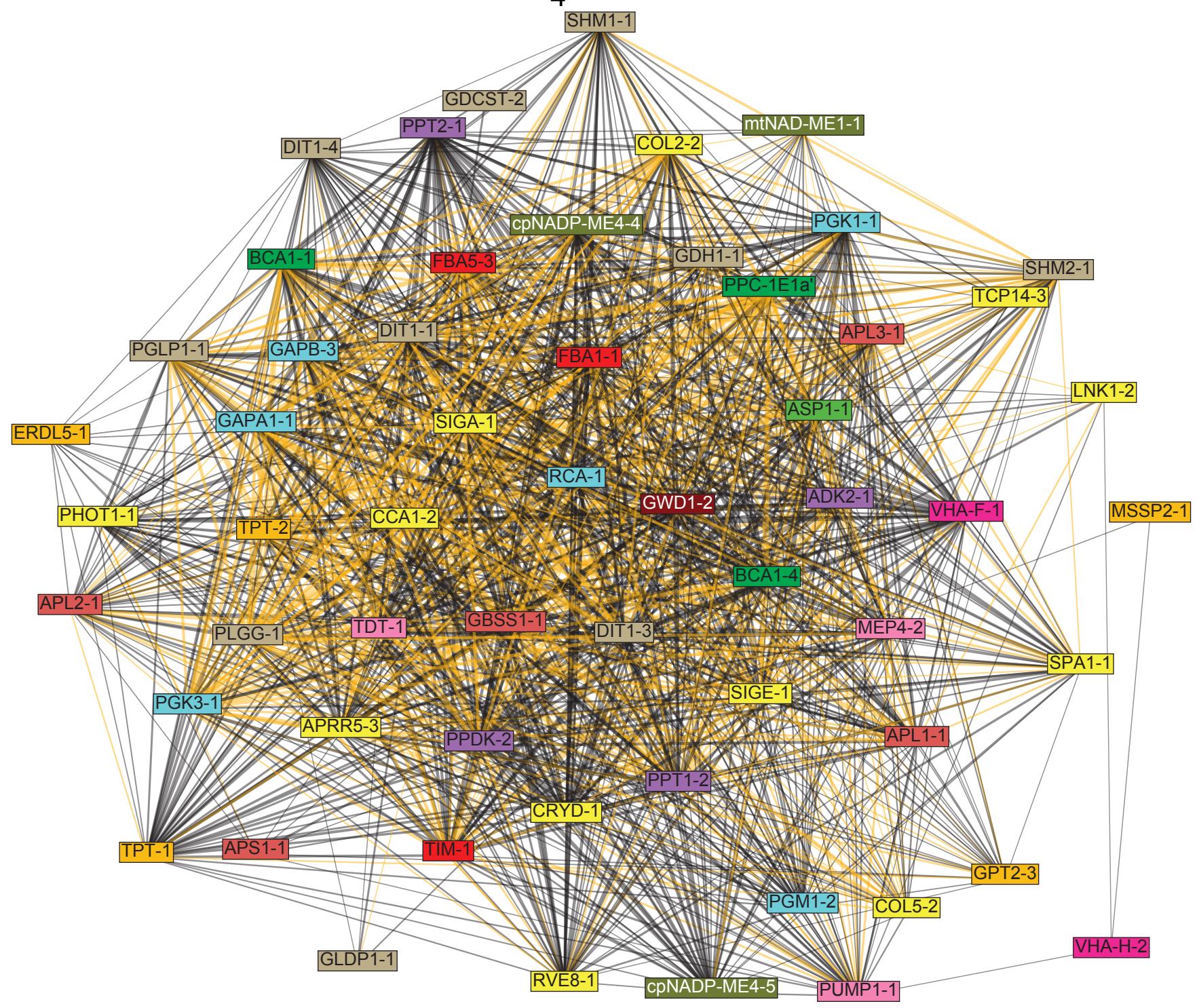



a *Portulaca amilis* well-watered**b** *Portulaca amilis* drought



— NAD-specific
 — NADP-specific
 — Shared

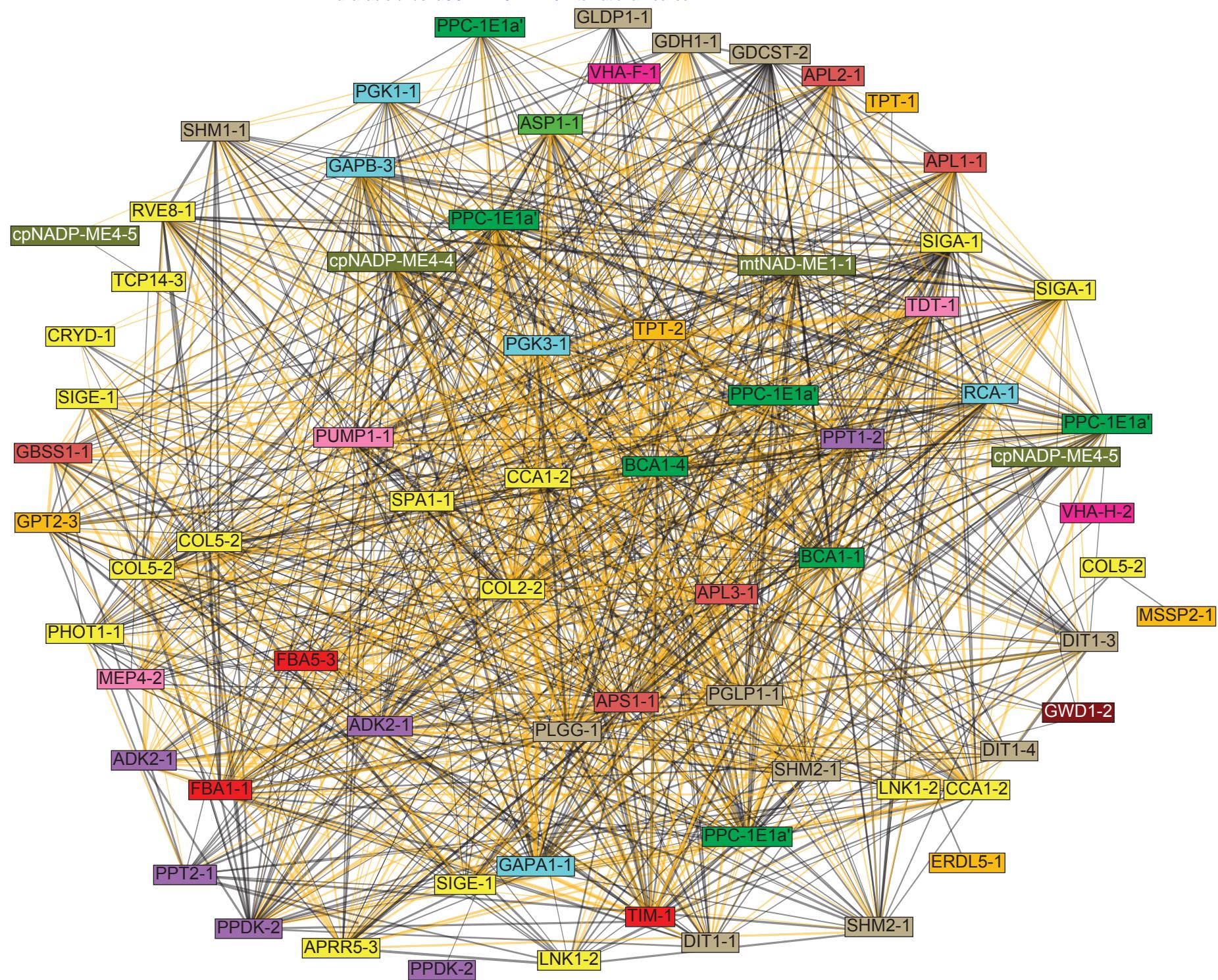
mitochondrion
 chloroplast
 vacuole

a*Portulaca amilis***b***Portulaca oleracea***c****d**

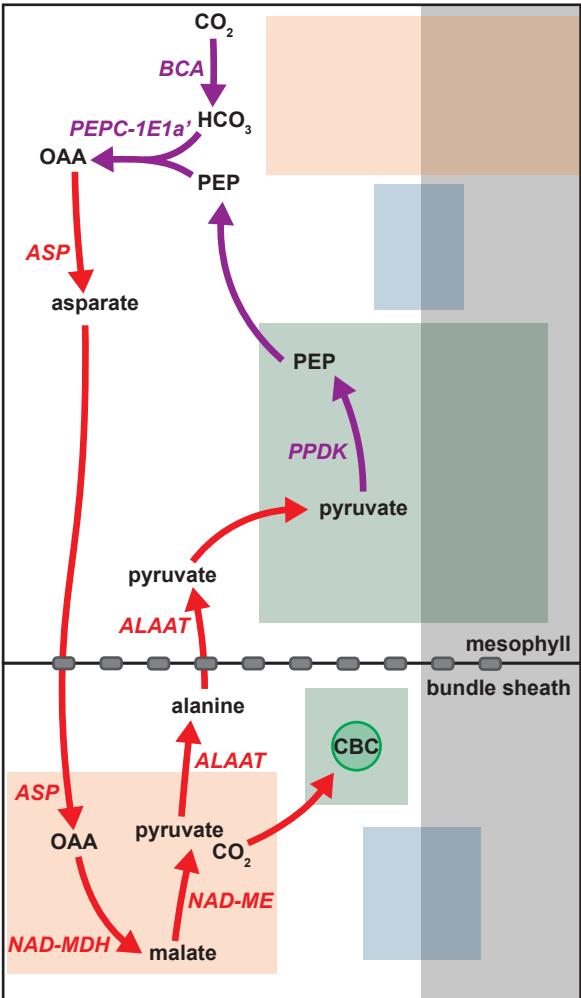


a*P. amilis***b***P. oleracea*

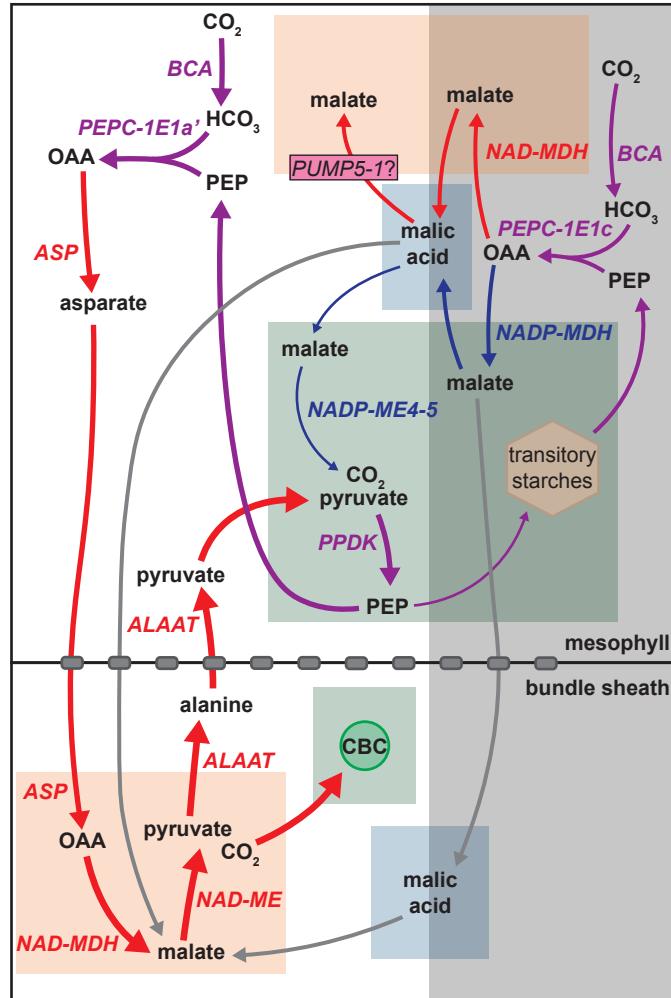
- Transitory starch pathway
- Starch/sugar transport
- Starch synthesis
- Starch degradation
- Proton transport
- Photorespiration
- PEPC regulation


- PEP generation
- Metabolite transport
- Decarboxylation
- Circadian/Light response
- Carboxylation
- Calvin cycle
- Aminotransferase

a *P. amilis* well-watered C₄ PGN


b *P. oleracea* well-watered C₄ PGN

bioRxiv preprint doi: <https://doi.org/10.1101/2021.07.07.451466>; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



■ Transitory starch pathway	■ PEP generation
■ Starch/sugar transport	■ Metabolite transport
■ Starch synthesis	■ Decarboxylation
■ Starch degradation	■ Circadian/Light response
■ Proton transport	■ Carboxylation
■ Photorespiration	■ Calvin cycle
■ PEPC regulation	■ Aminotransferase

a *P. oleracea* well-watered

b *P. oleracea* drought

