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Abstract

TractoInferno is the world’s largest open-source multi-site tractography
database, including both research- and clinical-like human acquisitions, aimed
specifically at machine learning tractography approaches and related ML al-
gorithms. It provides 284 datasets acquired from 3T scanners across 6 differ-
ent sites. Available data includes T1-weighted images, single-shell diffusion
MRI (dMRI) acquisitions, spherical harmonics fitted to the dMRI signal,
fiber ODFs, and reference streamlines for 30 delineated bundles generated
using 4 tractography algorithms, as well as masks needed to run tractog-
raphy algorithms. Manual quality control was additionally performed at
multiple steps of the pipeline. We showcase TractoInferno by benchmark-
ing the learn2track algorithm and 5 variations of the same recurrent neural
network architecture. Creating the TractoInferno database required approx-
imately 20,000 CPU-hours of processing power, 200 man-hours of manual
QC, 3,000 GPU-hours of training baseline models, and 4 Tb of storage, to
produce a final database of 350 Gb. By providing a standardized training
dataset and evaluation protocol, TractoInferno is an excellent tool to address
common issues in machine learning tractography.
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1. Introduction1

Tractography is the computerized process of reconstructing brain white2

matter fibers from diffusion MRI (dMRI) data. It usually consists of three3

steps : i) estimating local fiber directions from carefully pre-processed diffusion-4

weighted images (DWI) (e.g. denoising, eddy, motion, susceptibility correc-5

tions), ii) reconstructing white matter pathways (i.e. tractography), and iii)6

delineating bundles (a group of similar streamlines connecting the same brain7

regions) [1, 2].8

Current “traditional” tractography approaches (deterministic and prob-9

abilistic) mostly rely on making local point-wise decisions in the fiber ODF10

field, iterating until termination [3, 4]. Global methods have also been pro-11

posed [5, 6, 7, 8], but Rheault et al. mentions that “[...] global tractography12

methods ultimately rely on local information patched together” and “even13

global tractography algorithms struggle to correctly assemble a streamline”14

[9]. Tractogram filtering [10, 11, 12, 13] is also a popular post-processing15

method used to remove streamlines that do not fit anatomical constraints16

(such as explaining the underlying signal), but requires an over-complete17

tractogram as it does not create new streamlines, thus effectively “wast-18

ing” computing power. Finally, streamline clustering [14, 15] can be used19

to group streamlines based on similarity and remove possible outliers, but20

it suffers from the same drawback as tractogram filtering, as it requires an21

over-complete tractogram.22

These approaches mostly rely on mathematical models or anatomical pri-23

ors, and do not require histological ground truth to work. However, this is24

an issue for machine learning algorithms, where the training dataset is an25

integral part of the resulting model [16]. Machine learning methods need ref-26

erence streamlines to train on. Unfortunately, on real datasets, streamlines27

can only be generated by traditional [and yet non-machine learning] trac-28

tography methods, which are imperfect by their very nature [2]. This is an29

issue for testing if the predictions made by these methods are reliable or not.30

Luckily, by combining streamlines (both true positives and false positives)31

generated by several tractography algorithms and using filtering and cluster-32

ing to remove as much false positives as possible, it is possible to establish33

a gold standard reference dataset. Even without a histologically accurate34

ground truth, it would be desirable to have algorithms that can reproduce35
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a gold standard reference while generating as little false positive streamlines36

as possible.37

In the recent years, machine learning algorithms have been proposed to38

improve the second step of the process by some combination of 1) taking39

advantage of the full diffusion information or other modalities, 2) generating40

more reliable streamlines using a reference teacher dataset, or 3) integrating41

more spatial context to guide the tracking process (either neighbourhood or42

path information) [16, 17, 18, 19, 20]. For example, TractSeg [19] is a method43

that first identifies the volume of reference of a specific white matter bundle,44

and then generates a bundle-specific tractogram by running a traditional45

tractography algorithm inside the bundle mask only. To do so, convolutional46

neural networks [21] learn to map the diffusion volume to multiple binary47

bundle segmentation maps. LearnToTrack [18] and DeepTract [22] propose48

to use information along a streamline path to guide its generation process49

(instead of making point-wise decisions) using Recurrent Neural Networks50

[23, 24]. Entrack [20] proposes a Neural Network with a fixed context of 451

streamline steps, and models a probabilistic streamline direction using a von52

Mises-Fisher distribution trained with entropy regularization.53

Unfortunately, these machine learning methods train and evaluate their54

models on different dataset which makes it difficult to compare their true55

generalization capabilities [16]. It is often a combination of the ISMRM201556

Tractography Challenge [2] and some subjects from the HCP Young Adults57

database [25]. Additionally, data pre-processing might vary between pro-58

posed methods, and different algorithms and protocols are used to generate59

the reference tracts. Finally, evaluating the generalizability of a model is60

almost impossible without diverse (aka multi-site) training and test sets. As61

a result, all those discrepancies in methodology make it very challenging to62

assess the reliability of a single approach, and make it almost impossible to63

fairly compare approaches.64

We propose to address this problem by building TractoInferno: the largest65

publicly available, multi-site, dMRI and tractography database, which pro-66

vides a new baseline for training and evaluating machine learning tractogra-67

phy methods. It provides 284 datasets acquired from 3T scanners across 668

different sites. TractoInferno includes T1-weighted images, single-shell diffu-69

sion MRI (dMRI) acquisitions, spherical harmonics fitted to the dMRI signal,70

fiber ODFs, and reference streamlines for 30 delineated bundles generated by71

combining 4 different tractography algorithms, as well as masks needed to72

run tractography algorithms.73
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We use TractoInferno to benchmark the 4 tractography algorithms used74

to create the reference tractograms, along with the learn2track [18] algo-75

rithm and 5 variations of the same recurrent neural network architecture,76

inspired in part by the models of (Benou and Riklin Raviv) and (Wegmayr77

and Buhmann) [22, 20].78

Creating the TractoInferno database required approximately 20,000 CPU-79

hours of processing power, 200 man-hours of manual QC, 3,000 GPU-hours80

of training baseline models, and 4 Tb of storage, to produce a final database81

of 350 Gb.82

TractoInferno is a dataset intended to promote the development of ma-83

chine learning tractography algorithms, which generally suffer from multiple84

issues, such as limited datasets or inconsistent training data. Its large-scale85

and multi-site aspect is an undeniable benefit to best evaluate the general-86

ization capabilities of new ML algorithms. We consider TractoInferno to be87

by far the best available tool for training, evaluating, and comparing future88

machine learning tractography algorithms.89

2. Datasets90

The proposed dataset is made of a combination of six dMRI databases,91

either publicly available and free to redistribute or acquired through open-92

access data sharing agreements. Databases were chosen with the explicit93

goal of having a diversity of scanner manufacturers, models, and protocols.94

We chose to fix certain parameters for uniformity, such as having only 3T95

scanners, and b-values of around 1000 s/mm2, as we don’t know how they96

could affect machine learning models. The focus is effectively on assessing97

the reliability of algorithms under different scanner manufacturers and acqui-98

sition protocols. We obtained an initial number of data from 354 subjects,99

with the original metadata described in Table 1.100

2.1. Mazoyer et. al - BIL & GIN101

We retained 39 subjects from the BIL&GIN database [26], acquired on a102

3T Philips Achieva, with the following dMRI protocol: TR = 8500 ms, TE =103

81 ms, angle = 90°, SENSE reduction factor = 2.5, FOV 224 mm, acquisition104

matrix 112 × 112, 2 mm3 isotropic voxel.105

The dMRI acquisition consisted of 21 gradient directions at b = 1000106

s/mm2, acquired twice by reversing the polarity, and then repeated twice107

for a total of 84 DWI images, averaged down to a single volume with 21108
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Name
Mazoyer

et. al
[26]

Tsushida
et. al
[27]

DeLuca
et. al
[28]

Poldrack
et. al
[29]

Tamm
et. al
[30]

Tremblay
et. al
[31]

Scanner
3T
Philips
Achieva

3T
Siemens
Prisma

3T
Siemens
Prisma

3T
Siemens
Trio

3T GE

Discovery

MR750

3T

Siemens

Magnetom

TIM Trio

# subjects 39 20 64 130 86 15
Age avg 28.1 21.4 31.9 31.3 N/A 58.1
Age std 7.3 1.7 7.6 8.7 N/A 5.3
F/M 0/39 10/10 49/15 62/68 44/42 0/15
L/R 8/31 N/A 0/64 N/A N/A 3/12
Resolution 2 1.75 2 2 2.3 2
b-value 1000 1000 1000 1000 1000 700
TR 8500 3540 1800 9000 7000 9200
TE 81 75 70 93 81 84
Nb dirs 21* 32 128** 64 45 30

Table 1: Original datasets metadata. Not all metadata information was available from the
original datasets. Missing metadata is reported as {N/A}. Resolution is in mm3 isotropic.
b-value is in s/mm2. TR and TE are in ms.
*: 21 directions acquired twice by reversing the gradient polarity, then averaged over
another identical acquisition (total of 84 DWI volumes).
**: 64 directions acquired twice, not averaged.

directions. A single b = 0 s/mm2 was also acquired alongside the DWI109

images. Subjects were all males, with age mean/std of 28.1 +- 7.3 (Min: 20,110

Max: 57). 8 subjects were left-handed and 31 right-handed.111

2.2. Tsushida et. al - MRi-Share112

We obtained 20 subjects from the MRi-Share database [27], acquired113

on a 3T Siemens Prisma, with a dMRI protocol designed to emulate the114

UKBioBank project [32], specifically: TR = 3540 ms, TE = 75 ms, 1.75115

mm3 isotropic voxel.116

We selected the b = 1000 s/mm2 DWI images only, consisting of 32117

gradient directions, and 3 provided b = 0 s/mm2 images. Subjects were118

composed of 10 females, 10 males, with age mean/std of 21.4 +- 1.7. Mini-119

mum/maximum age and handed-ness metadata were not available.120

2.3. DeLuca et. al - Bilingualism and the brain121

We have 64 subjects from the Bilingualism and the Brain database [28,122

33], acquired on a 3T Siemens Prisma, with the following dMRI protocol:123
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Echo planar imaging, TR = 1800 ms, TE = 70 ms, acquisition matrix 256 x124

256, 2 mm3 isotropic voxel.125

The dMRI acquisition consisted of 64 gradient directions at b = 1000126

s/mm2, acquired twice, and 4 b = 0 s/mm2 images. Subjects were composed127

of 49 females and 15 males, with age mean/std of 31.9 +- 7.6 (Min: 18, Max:128

52). All subjects were right-handed.129

2.4. Poldrack et. al - UCLA CNP130

We got 130 healthy subjects from the UCLA Consortium for Neuropsy-131

chiatric Phenomics LA5c Study [29], acquired on a 3T Siemens Trio, with132

the following dMRI protocol: echo planar imaging, TR = 9000 ms, TE = 93133

ms, acquisition matrix 93 x 93, 90 degree flip angle, 2 mm3 isotropic voxel.134

DWI were corrected for eddy currents and head motion using the b0 images135

as reference.136

The dMRI acquisition consisted of 64 gradient directions at b = 1000137

s/mm2, and 1 b = 0 s/mm2 image. Subjects consisted of 62 females and 68138

males, with age mean/std of 31.3 +- 8.7 (Min: 21, Max: 50). Handed-ness139

metadata was not available.140

2.5. Tamm et. al - The Stockholm Sleepy Brain Study141

We retained 86 subjects from the Stockholm Sleepy Brain Study database142

[30, 34], acquired on a 3T GE Discovery MR750, with the following dMRI143

protocol: Echo planar imaging, TR = 7000 ms, TE = 81 ms, 2.3 mm3
144

isotropic voxel.145

The dMRI acquisition consisted of 45 gradient directions at b = 1000146

s/mm2, along with 5 b = 0 s/mm2 images. Subjects were composed of 44147

females and 42 males, with 47 subjects in the [20-30] years old bracket and148

39 subjects in the [65-75] years old bracket. Handedness was not available.149

2.6. Tremblay et. al - mTBI and Aging study (controls)150

We obtained 15 subjects from the mTBI and Aging Study [31], all controls151

from the “remote” group. they were acquired on a 3T Siemens Magnetom152

TIM Trio, with the following dMRI protocol: TR = 9200 ms, TE = 84 ms,153

2 mm3 isotropic voxel.154

The dMRI acquisition consisted of 30 gradient directions at b = 700155

s/mm2. along with 1 b = 0 s/mm2 image. Subjects were all males, with age156

mean/std of 58.1 +- 5.3 (Min: 52, Max: 67). 3 subjects were left-handed157

and 12 were right-handed.158
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3. Methodology159

We processed the original acquisition volumes of the 354 aforementioned160

subjects with the same pipeline to offer a uniform database of dMRI images,161

derivatives, and bundle tractograms. First, all original DWI went through162

a manual quality control (QC) step to remove any obvious errors prior to163

the processing pipeline. Then, the TractoFlow pipeline was run to process164

the data and compute necessary derivatives [35, 36, 37]. Another QC step165

was executed afterwards, to remove images with artifacts that could not be166

corrected automatically. Next, ensemble tractography was performed using167

four different algorithms to extract a diverse set of streamlines: deterministic168

tractography [38], probabilistic tractography [39], Particle-Filtered Tractog-169

raphy [40] and Surface-Enhanced Tractography [41]. RecoBundlesX (RBX)170

was used subsequently to perform bundle extraction on the whole-brain trac-171

tograms, using the default suggested bundle models [42, 43]. A final man-172

ual QC step was performed to examine the extracted bundles, and remove173

anything that contained obvious mistakes, or did not meet our criteria for174

bundle extraction. All manual quality control steps were done using dm-175

riqcpy (https://github.com/scilus/dmriqc_flow). Figure 1 shows the176

processing steps of TractoInferno.177

From the initial 354 volumes, after all the processing steps and quality178

control, we were left with 284 volumes and associated bundles. The final vol-179

umes were split into training, validation and test sets with a 70%/20%/10%180

split for reproducibility across future experiments. The specific commands181

for the whole pipeline are available in Appendix A. For a final dataset size182

of 350Gb, we needed approximately 20,000 CPU-hours of processing time,183

200 man-hours of manual QC, and 4 Tb of storage. The models bench-184

marked in section 5 also required an additional 3,000 GPU-hours for training185

and generating candidate tractograms. In the next sub-sections, we detail186

the TractoInferno processing steps.187

3.1. Raw data QC188

We used dmriqcpy to generate QC reports. These reports are in HTML189

format so it is easily assessed and annotated by multiple people. The raw data190

reports contain multiple tabs with complementary information, as shown in191

Figure 2. Three different raters went through the QC reports and individ-192

ually rated every acquisition with a “score” (either pass, fail, or warning)193

and comment if necessary. Specifically, failure cases included the presence194
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Ensemble tractography

Det

Prob

PFT

DWI QC

RecoBundlesXTractoFlow QC

TractoFlow

Bundle QC

SET

Final bundles

Original DWI

Site 1

...

Site 6

Figure 1: TractoInferno processing pipeline, from original DWI images to final bundles.

of visual artifacts (e.g. missing slices, low signal-to-noise ratio, corrupted195

data, high spatial distortion) and other artifacts harder to identify (such as196

a “broken” gradient acquisition scheme). Afterwards, all subjects tagged as197

“fail” were removed, and considered as impossible to repair with our avail-198

able tools. All subjects tagged as “pass” or “warning” were passed on for199

TractoFlow, the next step in the pipeline. Subjects tagged as “warning”200

were re-examined after the TractoFlow processing to examine if any issues201

remained, or if they were compensated for by the pipeline.202

3.2. TractoFlow pipeline203

We used TractoFlow 2.1.1 [35] to process the raw DWI. To make sure204

that every processing step was traceable and reproducible, a Singularity [36]205

image was used along with the Nextflow pipeline [37]. Note however that206

some results may not be 100% reproducible due to the uncertain nature of207
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(a) QC page for T1 images. (b) QC page for DWI.

(c) QC page for acquisition scheme.

Figure 2: Examples of HTML pages generated by dmriqcpy for data QC. (a) 3 slices of
the T1 image (one for each axis), plus a mosaic of multiple axial slices. (b) 3 GIFs of
the dMRI (one slice in each axis), plus a mosaic of multiple axial slices; (c) The gradient
directions represented on a sphere.

registration, parallel processing, and floating point precision. We ran the208

full pipeline except for the Topup process, as not all reverse b0 images were209

available [44]. Specifically, the pipeline executed the following steps:210

• DWI brain extraction [45], denoising [46], eddy current correction [47],211

N4 bias field correction [48], cropping, normalization [49, 50], and re-212

sampling [51];213

• T1 denoising [52], N4 bias field correction [48], registration [53] and214

tissue segmentation [54] maps for Particle-Filtered Tractography [40,215

55];216

• DTI fitting and metrics extraction [56];217
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• fODF fitting using constrained spherical deconvolution [57, 58, 59], with218

a fiber response function fixed manually to [0.0015, 0.0004, 0.0004].219

3.3. TractoFlow results QC220

Outputs from TractoFlow went through a manual QC pass to identify221

failure cases. Using dmriqcpy, we were able to easily and quickly look at222

all maps derived from DTI and fODF metrics, along with T1 registration223

overlay. For example, RGB maps extracted from DTI metrics allowed us to224

quickly identify if tensor peaks were well-aligned or if a flip was needed, and225

T1 registration overlays showed whether too much deformation was present.226

3.4. Ensemble tractography227

Using a single tractography method as reference for a machine learn-228

ing algorithm might induce unwanted biases. To avoid this, we chose to229

use ensemble tractography by combining 4 different algorithms to generate230

reference streamlines, namely deterministic [38], probabilistic [39], particle-231

filtered [40], and surface-enhanced [41] tractography. We fixed the tracking232

parameters to the standard default values:233

• WM + WM/GM interface seeding234

• 10 seeds per voxel (Det, Prob, PFT) or 10,000,000 surface seeds (SET)235

• Step size 0.2mm (Det, Prob, SET) or 0.5mm (PFT)236

• WM tracking mask (Det, Prob) or WM/GM/CSF probability maps237

(PFT, SET)238

We detail each algorithm in the following three subsections.239

3.4.1. Deterministic tracking240

Deterministic tracking [38] chooses the fODF peak most aligned with241

the previous direction as the next streamline step. It seems better suited242

to connectomics studies [3], mainly on account of the low number of false243

positives it produces. While it may be inadequate for spatial exploration and244

bundle reconstruction, deterministic tracking essentially produces smooth245

streamlines that follow the easiest path through the fODF field. Smooth246

streamlines are likely more desirable for machine learning algorithms rather247

than chaotic streamlines that often change directions locally.248
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3.4.2. Probabilistic tracking and Particle-Filtered Tractography249

Probabilistic tracking [39] samples a new streamline direction inside a250

cone of evaluation aligned with the previous direction, with a probability251

distribution proportional to the shape of the fiber ODF within the cone.252

Particle-Filtered Tractography [40] is an improvement over probabilis-253

tic tracking. It takes as input probability maps for streamline continua-254

tion/stopping criteria, and allows to “go back” a few steps when a streamline255

terminates in a region not included in the “termination-allowed” map.256

Both algorithms are better suited for spatial exploration, at the cost of257

producing much more false positives. They are especially effective for bundle258

reconstruction, in which case there are anatomical priors about both the259

endpoints that should be connected and the pathway that should be followed260

by the bundle.261

3.4.3. Surface-Enhanced Tracking262

Finally, Surface-Enhanced Tracking [41] is a state-of-the-art tractography263

algorithm that relies on initializing streamlines in an anatomically plausible264

way at the cortex, then running a PFT tracking algorithm. Indeed, gyri have265

been shown to be problematic regions for tractography, where low dMRI266

resolution can lead to a gyral bias in streamline terminations [60].267

To this end, we computed the WM-GM boundary surface from the T1w268

image using the CIVET [61] tool and the CBRAIN [62] platform. Then, SET269

uses a geometric flow method, based on surface orthogonality, to reconstruct270

the fanning structure of the superficial white matter streamlines. The output271

of this flow is used to initialize and terminate a PFT tractography algorithm.272

The result is a tractogram with improved cortex coverage, improved fanning273

structure in gyri, and reduced gyral bias.274

3.5. Bundle segmentation with RBX275

We used RBX [42, 43] to automatically extract WM bundles. The algo-276

rithm works by matching streamlines to an atlas of reference bundles. First,277

a quick registration step brings the atlas into native space using the atlas278

FA image. Then, a whole-brain tractogram is compared against the bundles279

atlas using multiple sets of parameters to extract a fixed set of bundles, listed280

in Table 2. Finally, a majority voting step extracts the final streamlines for281

each bundle.282

The whole pipeline was run using a Singularity container [36] and Nextflow283

[37] for reproducibility. It is freely available online (https://github.com/284
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AC Anterior commisure
AF Arcuate fasciculus

CC Fr 1 Corpus callosum, Frontal lobe (most anterior part)
CC Fr 2 Corpus callosum, Frontal lobe (most posterior part)

CC Oc Corpus callosum, Occipital lobe
CC Pa Corpus callosum, Parietal lobe

CC Pr Po Corpus callosum, Pre/Post central gyri
CC Te Corpus callosum, Temporal lobe

CG Cingulum
FAT Frontal aslant tract
FPT Fronto-pontine tract

FX Fornix
ICP Inferior cerebellar peduncle

IFOF Inferior fronto-occipital fasciculus
ILF Inferior longitudinal fasciculus

MCP Middle cerebellar peduncle
MdLF Middle longitudinal fascicle

OR ML Optic radiation and Meyer’s loop
PC Posterior commisure

POPT parieto-occipito pontine tract
PYT Pyramidal tract
SCP Superior cerebellar peduncle
SLF Superior longitudinal fasciculus
UF Uncinate fasciculus

Table 2: List of bundles in the default RBX atlas.

scilus/rbx_flow/), along with a suggested bundles atlas (https://zenodo.285

org/record/4630660#.YJvmwXVKhdU).286

3.6. Bundle segmentation QC287

3.6.1. Automated pre-QC288

To facilitate the QC procedure, we ran a pre-QC analysis to automati-289

cally rate bundles according to pre-defined criteria before manual inspection.290

These criteria are detailed in Table 3. Afterwards, all bundles were looked at291

manually through an easier procedure that consists in confirming an already292

assigned rating rather than rating from scratch.293
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Rating Criteria

Fail
x < 50
x == 0 in either hemisphere (if symmetric bundle).

Warning x /∈ [µ− 1.5σ, µ+ 3.5σ]

Pass x ∈ [µ− 1.5σ, µ+ 3.5σ]

Table 3: Automatic rating criteria, in order of priority.
x is the number of streamlines of the bundle of interest;
µ and σ are the average and the standard deviation, respectively, of the number of stream-
lines for the bundle of interest, across all subjects;

3.6.2. Manual quality control using dmriqcpy294

A bundle was removed if it looked visually incomplete or if it deviated295

from the expected pathway. A poor bundle reconstruction might have an296

algorithmic cause, such as sub-optimal tracking parameters or improper reg-297

istration in RBX. It might also have an anatomical cause, such as unknown298

or undisclosed neurological conditions. Furthermore, visually evaluating a299

bundle reconstruction is very subjective, and a rater’s evaluation can be af-300

fected by the time of day, duration of QC, or even the angle of visualization301

in the QC tool [63]. For all those reasons, and with the goal of establishing302

a gold standard for machine learning tractography methods, we chose to be303

somewhat severe in the rating of bundles, in order to minimize the number304

of false positives, even if that meant missing out some true positive data.305

After QC, we chose to ignore the following bundles from the atlas due to306

generalized reconstruction errors : AC, CC Te, Fx, ICP, PC, SCP.307

4. Evaluation pipeline for candidate tractograms308

When evaluating machine learning tractography algorithms, we focus on309

the volume covered by the recognized bundles (compared to the gold standard310

bundles). We make no assumptions about the ability to “explore” the brain311

outside the scope of the TractoInferno dataset. Consequently, we ignore312

anything that is not recognized as a candidate bundle, and do not try to313

categorize streamlines as valid or invalid connections.314

Candidate bundles are extracted in the same way that we defined the gold315

standard bundles. First, we run RBX to extract candidate bundles from the316

candidate whole-brain tractogram. Candidate bundles are then converted to317
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binary volume coverage masks. Finally, each candidate mask is compared318

against its corresponding gold standard bundle mask to compute evaluation319

metrics.320

For each subject in the testset, and for each available bundle of the given321

subject, we extract the following evaluation metrics: Dice score, overlap322

and overreach. The scores are averaged over all subjects of the testset to323

provide final scores. Altogether, these metrics help better understand the324

performance of a candidate tractography algorithm.325

The evaluation pipeline is available online (https://github.com/scil-vital/326

TractoInferno/) and should be used with the provided TractoInferno test-327

set, along with the default RBX-flow models.328

5. RNN-based tractography329

To gauge the performances of ML models trained on the TractoInferno330

dataset, we implemented an RNN model and the necessary framework to331

train it on a large-scale tractography database, which was used multiple332

times in published papers in the last few years, such as Learn2Track [18],333

DeepTract [22], and Entrack [20]. Using the base implementation, we can334

easily modify the last layer of the model and its loss function to mimic the335

mentioned RNN models, and a few more.336

We choose the stacked Long Short-Term Memory (LSTM) network as the337

recurrent building block for conditional streamline prediction. The LSTM is338

a type of RNN designed specifically to handle long-term dependencies, with339

the ability to deal with exploding and vanishing gradient problems [24].340

5.1. Learn2track341

Learn2track [18] proposed an RNN model for tractography, where the out-342

put of the model at each timestep is a 3D vector, used as the next direction343

of the streamline. The predicted vector is then scaled to the chosen step size,344

in order to match the lengths of the target and prediction.345

From the same idea, we implemented an LSTM for deterministic tractog-
raphy. As in the original learn2track paper, we used the squared error loss
function between the target and prediction. The loss for a single streamline
S composed of T steps is the following squared error:

L(S) = −
T∑
t=1

(dt − d̂t)2
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where dt and d̂t are the target and predicted directions. This model is noted346

as Det-SE.347

However, to accurately reflect that only the direction of the predicted
vector is important (not the magnitude), we also performed an experiment
where we minimized the negative cosine similarity between the target and
predicted directions:

L(S) = −
T∑
t=1

cos(θt) = −
T∑
t=1

dt · d̂t
‖dt‖‖d̂t‖

where θt is the angle between dt and d̂t. This model is noted as Det-Cosine.348

5.2. DeepTract349

In the same spirit as learn2track, DeepTract [22] is a recurrent model for350

probabilistic tractography. In this case, the model output is a distribution351

over classes, where each class corresponds to a direction on the unit sphere,352

i.e. a discrete conditional fiber ODF.353

As in the original paper, we implemented a cross-entropy loss function:

L(S) = −
T∑
t=1

M∑
m=1

ytm log(ŷtm)

where M is the number of classes, and yt and ŷt are vectors of target and354

predicted class probabilities. Note that we did not use label smoothing as355

in the original paper, nor entropy-based tracking termination. This model is356

noted as Prob-Sphere.357

5.3. Entrack358

Entrack [20] is a non-recurrent artificial neural network for probabilistic359

tractography. The model is instead a feed-forward neural network, but in-360

cludes the previous streamline direction as prior information to guide the361

tracking process. The model outputs the parameters for a von Mises-Fisher362

distribution, i.e. a 3D unit-length vector for the mean, and a scalar concen-363

tration parameter. The distribution is analogous to a Gaussian distribution,364

but defined on the unit sphere instead of euclidean space.365

We chose to apply the same general idea, using a recurrent network that
predicts the parameters for a von Mises-Fisher distribution on a 3D sphere.
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We used the negative log-likelihood of the von Mises-Fisher distribution as
the loss function:

L(S) = −
T∑
t=1

log[C(κ̂t) exp(κ̂t µ̂t
ᵀdt)]

where the predicted parameters of the distribution are µ̂t (a unit-length
vector) and κ̂t (a scalar concentration parameter), and dt is the target unit-
length vector at step t. C(κ̂t) abbreviates the normalization constant asso-
ciated with the distribution, defined as following in the 3-dimensional case:

C3(κ) =
κ

2π(eκ − e−κ)

Note that unlike the original method, we didn’t use an entropy maximiza-366

tion scheme to regularize the predicted distribution. This implementation is367

noted as Prob-vMF.368

5.4. Gaussian distribution output369

Following Entrack and the idea of predicting the parameters of a contin-370

uous probability distribution, we implemented another model, using a mul-371

tivariate Gaussian distribution instead of a von Mises-Fisher distribution.372

This model outputs a 3D vector for the mean, and 3 scalars for the variance,373

(one in each dimension). We choose to use a diagonal covariance matrix, for374

stability, and do not output any values for covariance.375

In the 3-dimensional case, the negative log-likelihood loss function is:

L(S) = −
T∑
t=1

log[
1√

(2π)3|Σ̂t|
exp(−1

2
(dt − µ̂t)ᵀΣ̂

−1

t (dt − µ̂t))]

where Σt =

 σ2
xt 0 0
0 σ2

yt 0
0 0 σ2

zt

 is the predicted diagonal covariance matrix at

376

streamline step t. This model is noted as Prob-Gaussian.377

5.5. Gaussian mixture distribution output378

The previous Gaussian model outputs a single average direction which is379

appropriated in most cases. However, there may be cases of bundle fanning or380
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forking where the single-mode assumption may be an issue. This is because381

the Gaussian probability density can only be spread over a large area.382

As such, some regions may be better modelled with more than one lo-383

cation of higher density. To this end, we implemented a mixture density384

network[64] using a mixture of 3 Gaussian distributions. For each Gaussian,385

the model outputs 1 mixture weight, a 3D vector for the mean, and 3 scalars386

for the variances (again, we fix the covariances to zero).387

In the 3-dimensional case, using a mixture of 3 Gaussians, the negative
log-likelihood loss function is:

L(S) = −
T∑
t=1

log

[
3∑

k=1

φkt N (dt|µ̂kt, Σ̂kt)

]

= −
T∑
t=1

log

 3∑
k=1

φkt
1√

(2π)3|Σ̂kt|
exp(−1

2
(dt − µ̂kt)ᵀΣ̂

−1

kt (dt − µ̂kt))


where k denotes the number of Gaussians in the mixture, and φkt is the388

mixture parameter for the Gaussian k at streamline step t. This model is389

noted as Prob-Mixture.390

5.6. Implementation details391

All models were composed of 5 hidden layers of 500 units, used dropout392

with a rate of 0.1, and a batch size of 50 000 streamline steps. We added skip393

connections from the input layer to all hidden layers, and from all hidden394

layers to the output layer, inspired by [65]. We applied layer normalization395

[66] between all hidden layers, in order to stabilize the hidden state dynamics396

in recurrent neural networks. We used the Adam optimizer with the default397

parameters.398

For all experiments, we used the maximal spherical harmonics (SH) coeffi-399

cients of order 6 fitted to the TractoFlow-processed DWI signal as the input400

signal. In all cases, the models were trained using the exact same train-401

ing/validation/test datasets, with a streamline step size fixed to 1.0 mm for402

training and tracking. To help guide the model, we also included as input403

the diffusion signal in a neighbourhood of 6 directions (two for each axis,404

positive and negative) at a distance of 1.2 mm.405

All models were trained for a maximum of 30 epochs (corresponding to406

around 2 weeks of training time on a 16Gb NVidia V100SXM2), but early407
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stopping was used to stop training when the loss has not improved after 5408

epochs. Each epoch was capped to 10 000 updates, as the sheer size of the409

dataset would otherwise require multiple days of training for a single epoch.410

6. Results & Discussion411

We report in Table 4 the results of the TractoInferno evaluation pipeline412

for each individual tractography algorithm used to build the reference bun-413

dles, and for every model detailed in Section 5 after the training procedure.414

Of all the base algorithms used to build the reference tractograms, PFT415

performed the best in terms of Dice score and overlap. This is consistent with416

the fact that it is a state-of-the-art algorithm, and works best when trying417

to fill the space with streamlines. However, we show that no algorithm can418

single-handedly account for the gold standard, and using the union of all419

methods provides a more complete reconstruction.420

In both traditional and RNN-based variants, models with the best Dice/421

overlap results also had the worst overreach score. However, in the case422

of bundle reconstruction, it is less of a concern, because there is always a423

possibility of applying post-processing techniques to filter streamlines. Also,424

Dice Overlap Overreach
Reference methods
Deterministic 0.397 0.267 0.029
Probabilistic 0.553 0.433 0.068
PFT 0.680 0.688 0.266
SET 0.624 0.570 0.184
Ensemble (Det+Prob+PFT+SET) 1.000 1.000 0.000

RNN-based methods
Det-SE (Learn2track) 0.580 0.495 0.172
Det-Cosine 0.606 0.535 0.204
Prob-Sphere (DeepTract) 0.601 0.534 0.202
Prob-vMF (Entrack) N/A N/A N/A
Prob-Gaussian 0.624 0.585 0.264
Prob-Mixture 0.407 0.284 0.053

Table 4: Tractography evaluation results on the TractoInferno dataset. The Prob-vMF
model did not produce any results, and is noted as {N/A}.
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Figure 3: Reconstruction of the Corpus Callosum (medium difficulty) by all algorithms,
for test subject sub-1006.

since our gold standard is not perfect, it might not cover the whole possible425

space as delineated by the RBX algorithm. Furthermore, because the scores426

are evaluated using binary bundle masks, a small number of streamlines can427

easily cross a high number of overreaching voxels. Ultimately, the goal is428

to find a model that can cover as much space as possible, so the overreach429

score is an interesting information to have, but is not the best indicator of430

performance in our case.431

Of all the RNN-based methods, the Gaussian output model obtained the432

best Dice score and overlap, hinting that a probabilistic model works best.433

This is in line with traditional probabilistic algorithms being more suited to434

bundle reconstruction than deterministic approaches.435

Given the worse performance of other probabilistic models, it seems that436

adding complexity is not beneficial. Training an RNN with a more complex437

distribution like the mixture of Gaussians might require a different archi-438

tecture, or more model capacity, to achieve better results. Unfortunately,439

the RNN with a von Mises-Fisher output had a hard time training, and pro-440

duced erratic streamlines that mostly did not survive the evaluation pipeline.441

It would seem that training the vMF distribution is too unstable when using442

a likelihood loss function, and performing an entropy maximization proce-443

dure like the original authors might be required to have a stable training444
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Figure 4: Reconstruction of the Optic Radiation (hard difficulty) by all algorithms, for
test subject sub-1006.

procedure.445

Across all results (both reference algorithms and RNN-based methods),446

the general trend holds that with a better Dice score and overlap, there is447

also more overreach. This indicates that there is still work to be done to448

limit the production of false positive streamlines.449

To illustrate the differences between algorithms, we showcase the recon-450

structions of three bundles taken from a random test subject. We chose451

bundles of both medium and hard difficulty for tractography, as reported in452

[2]. Figure 3 shows a part of the Corpus Callosum (medium difficulty), while453

Figures 4 and 5 show the Optic Radiation and the Pyramidal Tract (hard dif-454

ficulty). Note that in all cases, as mentioned before, the Prob-vMF method455

did not produce any meaningful results, which explains why no results are456

shown.457

Also of note, RNN-based models seem to get results on par with tra-458

ditional algorithms, but not quite as good as the state-of-the-art Particle-459

Filtered Tractography. However, Poulin et al. produced results far beyond460

even PFT using an RNN approach trained on a single-database, using a461

single-bundle per model [67]. While we did not train any model with the462

single-bundle approach on TractoInferno, both results hint that there is a463

need for more data, more model capacity, or for specialization of algorithms,464
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Figure 5: Reconstruction of the Pyramidal Tract (hard difficulty) by all algorithms, for
test subject sub-1006.

in order to outperform currently-used methods. We advocate that TractoIn-465

ferno is one way to investigate this problem further.466

7. Conclusion467

We provide an open-access, multi-site dMRI and tractography database468

aimed at training and evaluating machine learning tractography models. It469

combines data from multiple datasets, and applies the same processing and470

QC steps for a uniform database. We also produce results using the avail-471

able evaluation pipeline for both traditional algorithms and machine learning472

models based on a recurrent architecture.473

We offer TractoInferno as a solution to the multiple issues already re-474

ported in the literature for machine learning tractography. Indeed, while475

such algorithms have been proposed in the last few years with promising476

results, none has been shown to be the fundamental solution to classical477

tractography. They commonly suffer from variable training data, dissimilar478

evaluation method, and limited dataset size, among others. To this end, a479

uniform, large-scale, and multi-site database such as TractoInferno is an es-480

sential tool, paving the way for reproducible and comparable research among481

machine learning tractography researchers.482
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8. Data access483

The TractoInferno database is freely available online on the OpenNeuro484

platform: https://openneuro.org/datasets/ds003900. The evaluation485

pipeline is avalaible on GitHub: https://github.com/scil-vital/TractoInferno/.486
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Appendix A. TractoInferno pipeline execution commands493

All commands used to process the TractoInferno dataset are reported494

here. The input files and directories for each command might need to be495

reorganized between steps; refer to the specific package documentation for496

more details.497

Appendix A.1. QC DWI498

URLs:499

• https://github.com/scilus/dmriqcpy500

• https://github.com/scilus/dmriqc_flow501

Command:502

nextflow run dmriqc-flow-0.1.2/main.nf -profile input_qc503

--root input/504

-with-singularity singularity_dmriqc_0.1.2.img -resume505

--raw_dwi_nb_threads 10506
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Appendix A.2. TractoFlow507

URL: https://github.com/scilus/tractoflow/508

Command:509

nextflow run tractoflow-2.1.1/main.nf --root input/510

--dti_shells "0 700 1000 1200"511

--fodf_shells "0 700 1000 1200"512

-with-singularity tractoflow_2.1.1_650f776_2020-07-15.img513

-resume -profile fully_reproducible --mean_frf false514

--set_frf true --nbr_seeds 1515

Appendix A.3. QC TractoFlow516

URLs:517

• https://github.com/scilus/dmriqcpy518

• https://github.com/scilus/dmriqc_flow519

Command:520

nextflow run dmriqc-flow-0.1.2/main.nf521

-profile tractoflow_qc_light522

--root/ ../TractoFlow/results523

-with-singularity singularity_dmriqc_0.1.2.img -resume524

Appendix A.4. SH signal fitting525

URL: https://github.com/ppoulin91/tractoinferno_compute_sh_flow526

Command:527

nextflow run code/tractoinferno_compute_sh_flow/main.nf528

--input input/ --use_attenuation --sh_order 6529

-with-singularity scilus-1.2.1.img -resume530

Appendix A.5. Tractography (Det, Prob, PFT)531

URL: https://github.com/ppoulin91/tractoinferno_tracking_flow532

Command:533

nextflow run code/tractoinferno_tracking_flow/main.nf534

--input ../TractoFlow/results535

-with-singularity tractoflow_2.1.1_650f776_2020-07-15.img536

-resume537
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Appendix A.6. Tractography (SET)538

URLs:539

• https://github.com/StongeEtienne/set-nf540

• https://github.com/scilus/convert_set_flow541

Commands:542

nextflow run code/set-nf/main.nf543

--tractoflow ../TractoFlow/results544

--surfaces ../civet/results -profile civet2_dkt545

-with-singularity set_1v1.img -resume546

nextflow run code/convert_set_flow/main.nf547

--root_set ../SET/results548

--root_tractoflow ../TractoFlow/results549

-with-singularity scilus-1.2.1.img550

-resume551

Appendix A.7. RecoBundlesX (RBX)552

URL: https://github.com/scilus/rbx_flow/553

Command:554

nextflow run code/rbx_flow/main.nf -resume555

-with-singularity scilus-1.2.0_rbxflow-1.1.0.img556

-profile large_dataset --input input/557

--atlas_config code/rbx-atlas/config.json558

--atlas_anat code/rbx-atlas/mni_masked.nii.gz559

--atlas_directory code/rbx-atlas/atlas/560

--run_average_bundles false561

Appendix A.8. QC RBX562

URLs:563

• https://github.com/scilus/dmriqcpy564

• https://github.com/scilus/dmriqc_flow565

Command:566

nextflow run code/dmriqc_flow/main.nf -resume567

-with-singularity568

singularity_dmriqcflow_hotfix_scilpy_1.2.0.img569

-profile rbx_qc --input ../RBX/results/570
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