

TractoInferno: A large-scale, open-source, multi-site database for machine learning dMRI tractography

Philippe Poulin^{a,b}, Guillaume Theaud^a, Francois Rheault^a, Etienne St-Onge^a, Arnaud Bore^a, Emmanuelle Renauld^a, Louis de Beaumont^{c,d}, Samuel Guay^{c,d}, Pierre-Marc Jodoin^b, Maxime Descoteaux^a

^a*Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Quebec, Canada*

^b*Videos and Images Theory and Analytics Laboratory (VITAL), Université de Sherbrooke, Sherbrooke, Canada*

^c*Montreal Sacred-Heart Hospital Research Centre, Montréal, QC, Canada*

^d*Department of Surgery, Université de Montréal, Montréal, QC, Canada*

Abstract

TractoInferno is the world's largest open-source multi-site tractography database, including both research- and clinical-like human acquisitions, aimed specifically at machine learning tractography approaches and related ML algorithms. It provides 284 datasets acquired from 3T scanners across 6 different sites. Available data includes T1-weighted images, single-shell diffusion MRI (dMRI) acquisitions, spherical harmonics fitted to the dMRI signal, fiber ODFs, and reference streamlines for 30 delineated bundles generated using 4 tractography algorithms, as well as masks needed to run tractography algorithms. Manual quality control was additionally performed at multiple steps of the pipeline. We showcase *TractoInferno* by benchmarking the learn2track algorithm and 5 variations of the same recurrent neural network architecture. Creating the *TractoInferno* database required approximately 20,000 CPU-hours of processing power, 200 man-hours of manual QC, 3,000 GPU-hours of training baseline models, and 4 Tb of storage, to produce a final database of 350 Gb. By providing a standardized training dataset and evaluation protocol, *TractoInferno* is an excellent tool to address common issues in machine learning tractography.

Keywords: Neuroimaging, Database, Tractography, Machine Learning

Email address: philippe.poulin2@usherbrooke.ca (Philippe Poulin)

1 1. Introduction

2 Tractography is the computerized process of reconstructing brain white
3 matter fibers from diffusion MRI (dMRI) data. It usually consists of three
4 steps : i) estimating local fiber directions from carefully pre-processed diffusion-
5 weighted images (DWI) (e.g. denoising, eddy, motion, susceptibility correc-
6 tions), ii) reconstructing white matter pathways (i.e. tractography), and iii)
7 delineating bundles (a group of similar streamlines connecting the same brain
8 regions) [1, 2].

9 Current “traditional” tractography approaches (deterministic and prob-
10 abilistic) mostly rely on making local point-wise decisions in the fiber ODF
11 field, iterating until termination [3, 4]. Global methods have also been pro-
12 posed [5, 6, 7, 8], but Rheault et al. mentions that “[...] global tractography
13 methods ultimately rely on local information patched together” and “even
14 global tractography algorithms struggle to correctly assemble a streamline”
15 [9]. Tractogram filtering [10, 11, 12, 13] is also a popular post-processing
16 method used to remove streamlines that do not fit anatomical constraints
17 (such as explaining the underlying signal), but requires an over-complete
18 tractogram as it does not create new streamlines, thus effectively “wast-
19 ing” computing power. Finally, streamline clustering [14, 15] can be used
20 to group streamlines based on similarity and remove possible outliers, but
21 it suffers from the same drawback as tractogram filtering, as it requires an
22 over-complete tractogram.

23 These approaches mostly rely on mathematical models or anatomical pri-
24 ors, and do not require histological ground truth to work. However, this is
25 an issue for machine learning algorithms, where the training dataset is an
26 integral part of the resulting model [16]. Machine learning methods need ref-
27 erence streamlines to train on. Unfortunately, on real datasets, streamlines
28 can only be generated by traditional [and yet non-machine learning] trac-
29 tography methods, which are imperfect by their very nature [2]. This is an
30 issue for testing if the predictions made by these methods are reliable or not.
31 Luckily, by combining streamlines (both true positives and false positives)
32 generated by several tractography algorithms and using filtering and cluster-
33 ing to remove as much false positives as possible, it is possible to establish
34 a *gold standard* reference dataset. Even without a histologically accurate
35 ground truth, it would be desirable to have algorithms that can reproduce

36 a gold standard reference while generating as little false positive streamlines
37 as possible.

38 In the recent years, machine learning algorithms have been proposed to
39 improve the second step of the process by some combination of 1) taking
40 advantage of the full diffusion information or other modalities, 2) generating
41 more reliable streamlines using a reference teacher dataset, or 3) integrating
42 more spatial context to guide the tracking process (either neighbourhood or
43 path information) [16, 17, 18, 19, 20]. For example, *TractSeg* [19] is a method
44 that first identifies the volume of reference of a specific white matter bundle,
45 and then generates a bundle-specific tractogram by running a traditional
46 tractography algorithm inside the bundle mask only. To do so, convolutional
47 neural networks [21] learn to map the diffusion volume to multiple binary
48 bundle segmentation maps. *LearnToTrack* [18] and *DeepTract* [22] propose
49 to use information along a streamline path to guide its generation process
50 (instead of making point-wise decisions) using Recurrent Neural Networks
51 [23, 24]. *Entrack* [20] proposes a Neural Network with a fixed context of 4
52 streamline steps, and models a probabilistic streamline direction using a von
53 Mises-Fisher distribution trained with entropy regularization.

54 Unfortunately, these machine learning methods train and evaluate their
55 models on different dataset which makes it difficult to compare their true
56 generalization capabilities [16]. It is often a combination of the ISMRM2015
57 Tractography Challenge [2] and some subjects from the HCP Young Adults
58 database [25]. Additionally, data pre-processing might vary between pro-
59 posed methods, and different algorithms and protocols are used to generate
60 the reference tracts. Finally, evaluating the generalizability of a model is
61 almost impossible without diverse (aka multi-site) training and test sets. As
62 a result, all those discrepancies in methodology make it very challenging to
63 assess the reliability of a single approach, and make it almost impossible to
64 fairly compare approaches.

65 We propose to address this problem by building *TractoInferno*: the largest
66 publicly available, multi-site, dMRI and tractography database, which pro-
67 vides a new baseline for training and evaluating machine learning tractogra-
68 phy methods. It provides 284 datasets acquired from 3T scanners across 6
69 different sites. *TractoInferno* includes T1-weighted images, single-shell diffu-
70 sion MRI (dMRI) acquisitions, spherical harmonics fitted to the dMRI signal,
71 fiber ODFs, and reference streamlines for 30 delineated bundles generated by
72 combining 4 different tractography algorithms, as well as masks needed to
73 run tractography algorithms.

74 We use *TractoInferno* to benchmark the 4 tractography algorithms used
75 to create the reference tractograms, along with the learn2track [18] algo-
76 rithm and 5 variations of the same recurrent neural network architecture,
77 inspired in part by the models of (Benou and Riklin Raviv) and (Wegmayr
78 and Buhmann) [22, 20].

79 Creating the *TractoInferno* database required approximately 20,000 CPU-
80 hours of processing power, 200 man-hours of manual QC, 3,000 GPU-hours
81 of training baseline models, and 4 Tb of storage, to produce a final database
82 of 350 Gb.

83 *TractoInferno* is a dataset intended to promote the development of ma-
84 chine learning tractography algorithms, which generally suffer from multiple
85 issues, such as limited datasets or inconsistent training data. Its large-scale
86 and multi-site aspect is an undeniable benefit to best evaluate the general-
87 ization capabilities of new ML algorithms. We consider *TractoInferno* to be
88 by far the best available tool for training, evaluating, and comparing future
89 machine learning tractography algorithms.

90 2. Datasets

91 The proposed dataset is made of a combination of six dMRI databases,
92 either publicly available and free to redistribute or acquired through open-
93 access data sharing agreements. Databases were chosen with the explicit
94 goal of having a diversity of scanner manufacturers, models, and protocols.
95 We chose to fix certain parameters for uniformity, such as having only 3T
96 scanners, and b-values of around 1000 s/mm², as we don't know how they
97 could affect machine learning models. The focus is effectively on assessing
98 the reliability of algorithms under different scanner manufacturers and acqui-
99 sition protocols. We obtained an initial number of data from 354 subjects,
100 with the original metadata described in Table 1.

101 2.1. Mazoyer et. al - BIL & GIN

102 We retained 39 subjects from the BIL&GIN database [26], acquired on a
103 3T Philips Achieva, with the following dMRI protocol: TR = 8500 ms, TE =
104 81 ms, angle = 90°, SENSE reduction factor = 2.5, FOV 224 mm, acquisition
105 matrix 112 × 112, 2 mm³ isotropic voxel.

106 The dMRI acquisition consisted of 21 gradient directions at b = 1000
107 s/mm², acquired twice by reversing the polarity, and then repeated twice
108 for a total of 84 DWI images, averaged down to a single volume with 21

Name	<i>Mazoyer et. al</i> [26]	<i>Tsushida et. al</i> [27]	<i>DeLuca et. al</i> [28]	<i>Poldrack et. al</i> [29]	<i>Tamm et. al</i> [30]	<i>Tremblay et. al</i> [31]
Scanner	3T Philips Achieva	3T Siemens Prisma	3T Siemens Prisma	3T Siemens Trio	3T GE Discovery MR750	3T Siemens Magnetom TIM Trio
# subjects	39	20	64	130	86	15
Age avg	28.1	21.4	31.9	31.3	N/A	58.1
Age std	7.3	1.7	7.6	8.7	N/A	5.3
F/M	0/39	10/10	49/15	62/68	44/42	0/15
L/R	8/31	N/A	0/64	N/A	N/A	3/12
Resolution	2	1.75	2	2	2.3	2
b-value	1000	1000	1000	1000	1000	700
TR	8500	3540	1800	9000	7000	9200
TE	81	75	70	93	81	84
Nb dirs	21*	32	128**	64	45	30

Table 1: Original datasets metadata. Not all metadata information was available from the original datasets. Missing metadata is reported as {N/A}. Resolution is in mm³ isotropic. b-value is in s/mm². TR and TE are in ms.

*: 21 directions acquired twice by reversing the gradient polarity, then averaged over another identical acquisition (total of 84 DWI volumes).

**: 64 directions acquired twice, not averaged.

109 directions. A single $b = 0$ s/mm² was also acquired alongside the DWI
 110 images. Subjects were all males, with age mean/std of 28.1 +- 7.3 (Min: 20,
 111 Max: 57). 8 subjects were left-handed and 31 right-handed.

112 2.2. *Tsushida et. al - MRi-Share*

113 We obtained 20 subjects from the MRi-Share database [27], acquired
 114 on a 3T Siemens Prisma, with a dMRI protocol designed to emulate the
 115 UKBioBank project [32], specifically: TR = 3540 ms, TE = 75 ms, 1.75
 116 mm³ isotropic voxel.

117 We selected the $b = 1000$ s/mm² DWI images only, consisting of 32
 118 gradient directions, and 3 provided $b = 0$ s/mm² images. Subjects were
 119 composed of 10 females, 10 males, with age mean/std of 21.4 +- 1.7. Mini-
 120 mum/maximum age and handed-ness metadata were not available.

121 2.3. *DeLuca et. al - Bilingualism and the brain*

122 We have 64 subjects from the *Bilingualism and the Brain* database [28,
 123 33], acquired on a 3T Siemens Prisma, with the following dMRI protocol:

124 Echo planar imaging, TR = 1800 ms, TE = 70 ms, acquisition matrix 256 x
125 256, 2 mm³ isotropic voxel.

126 The dMRI acquisition consisted of 64 gradient directions at b = 1000
127 s/mm², acquired twice, and 4 b = 0 s/mm² images. Subjects were composed
128 of 49 females and 15 males, with age mean/std of 31.9 +- 7.6 (Min: 18, Max:
129 52). All subjects were right-handed.

130 *2.4. Poldrack et. al - UCLA CNP*

131 We got 130 healthy subjects from the *UCLA Consortium for Neuropsy-
132 chiatric Phenomics LA5c Study* [29], acquired on a 3T Siemens Trio, with
133 the following dMRI protocol: echo planar imaging, TR = 9000 ms, TE = 93
134 ms, acquisition matrix 93 x 93, 90 degree flip angle, 2 mm³ isotropic voxel.
135 DWI were corrected for eddy currents and head motion using the b0 images
136 as reference.

137 The dMRI acquisition consisted of 64 gradient directions at b = 1000
138 s/mm², and 1 b = 0 s/mm² image. Subjects consisted of 62 females and 68
139 males, with age mean/std of 31.3 +- 8.7 (Min: 21, Max: 50). Handedness
140 metadata was not available.

141 *2.5. Tamm et. al - The Stockholm Sleepy Brain Study*

142 We retained 86 subjects from the Stockholm Sleepy Brain Study database
143 [30, 34], acquired on a 3T GE Discovery MR750, with the following dMRI
144 protocol: Echo planar imaging, TR = 7000 ms, TE = 81 ms, 2.3 mm³
145 isotropic voxel.

146 The dMRI acquisition consisted of 45 gradient directions at b = 1000
147 s/mm², along with 5 b = 0 s/mm² images. Subjects were composed of 44
148 females and 42 males, with 47 subjects in the [20-30] years old bracket and
149 39 subjects in the [65-75] years old bracket. Handedness was not available.

150 *2.6. Tremblay et. al - mTBI and Aging study (controls)*

151 We obtained 15 subjects from the mTBI and Aging Study [31], all controls
152 from the “remote” group. they were acquired on a 3T Siemens Magnetom
153 TIM Trio, with the following dMRI protocol: TR = 9200 ms, TE = 84 ms,
154 2 mm³ isotropic voxel.

155 The dMRI acquisition consisted of 30 gradient directions at b = 700
156 s/mm². along with 1 b = 0 s/mm² image. Subjects were all males, with age
157 mean/std of 58.1 +- 5.3 (Min: 52, Max: 67). 3 subjects were left-handed
158 and 12 were right-handed.

159 **3. Methodology**

160 We processed the original acquisition volumes of the 354 aforementioned
161 subjects with the same pipeline to offer a uniform database of dMRI images,
162 derivatives, and bundle tractograms. First, all original DWI went through
163 a manual quality control (QC) step to remove any obvious errors prior to
164 the processing pipeline. Then, the *TractoFlow* pipeline was run to process
165 the data and compute necessary derivatives [35, 36, 37]. Another QC step
166 was executed afterwards, to remove images with artifacts that could not be
167 corrected automatically. Next, ensemble tractography was performed using
168 four different algorithms to extract a diverse set of streamlines: deterministic
169 tractography [38], probabilistic tractography [39], Particle-Filtered Tractog-
170 raphy [40] and Surface-Enhanced Tractography [41]. RecoBundlesX (RBX)
171 was used subsequently to perform bundle extraction on the whole-brain trac-
172 tograms, using the default suggested bundle models [42, 43]. A final man-
173 ual QC step was performed to examine the extracted bundles, and remove
174 anything that contained obvious mistakes, or did not meet our criteria for
175 bundle extraction. All manual quality control steps were done using dm-
176 riqc (https://github.com/scilus/dmriqc_flow). Figure 1 shows the
177 processing steps of *TractoInferno*.

178 From the initial 354 volumes, after all the processing steps and quality
179 control, we were left with 284 volumes and associated bundles. The final vol-
180 umes were split into training, validation and test sets with a 70%/20%/10%
181 split for reproducibility across future experiments. The specific commands
182 for the whole pipeline are available in Appendix A. For a final dataset size
183 of 350Gb, we needed approximately 20,000 CPU-hours of processing time,
184 200 man-hours of manual QC, and 4 Tb of storage. The models bench-
185 marked in section 5 also required an additional 3,000 GPU-hours for training
186 and generating candidate tractograms. In the next sub-sections, we detail
187 the *TractoInferno* processing steps.

188 *3.1. Raw data QC*

189 We used *dmriqc* to generate QC reports. These reports are in HTML
190 format so it is easily assessed and annotated by multiple people. The raw data
191 reports contain multiple tabs with complementary information, as shown in
192 Figure 2. Three different raters went through the QC reports and individ-
193 ually rated every acquisition with a “score” (either *pass*, *fail*, or *warning*)
194 and comment if necessary. Specifically, failure cases included the presence

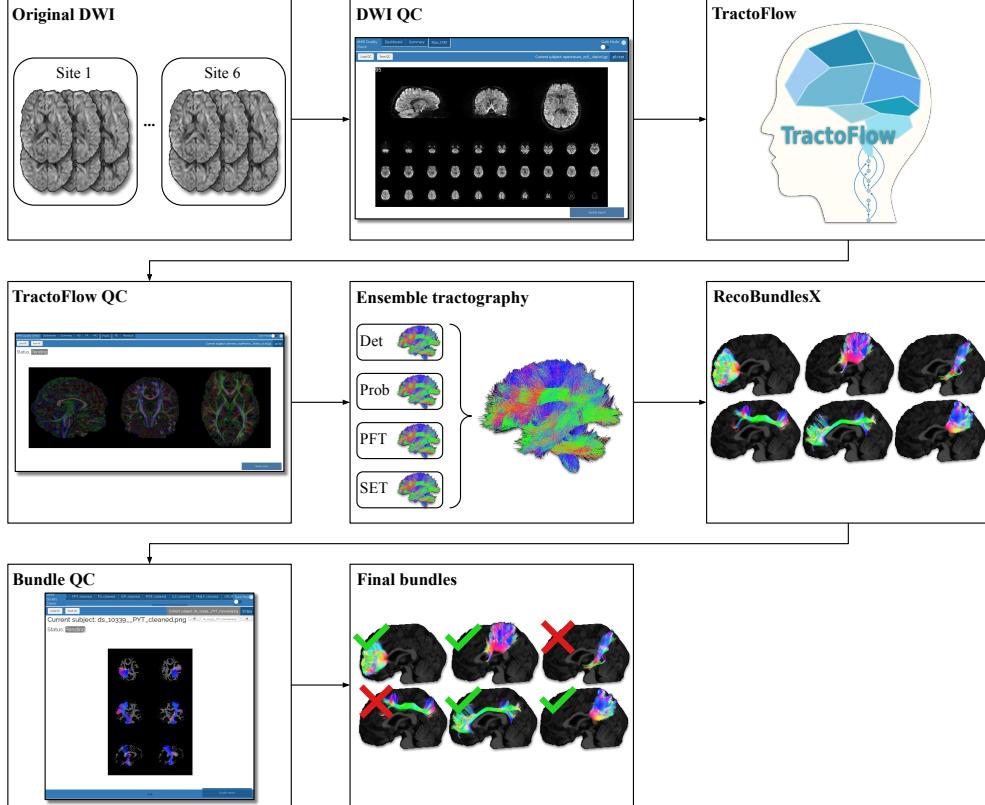


Figure 1: *TractoInferno* processing pipeline, from original DWI images to final bundles.

195 of visual artifacts (e.g. missing slices, low signal-to-noise ratio, corrupted
196 data, high spatial distortion) and other artifacts harder to identify (such as
197 a “broken” gradient acquisition scheme). Afterwards, all subjects tagged as
198 “fail” were removed, and considered as impossible to repair with our avail-
199 able tools. All subjects tagged as “pass” or “warning” were passed on for
200 TractoFlow, the next step in the pipeline. Subjects tagged as “warning”
201 were re-examined after the TractoFlow processing to examine if any issues
202 remained, or if they were compensated for by the pipeline.

203 *3.2. TractoFlow pipeline*

204 We used TractoFlow 2.1.1 [35] to process the raw DWI. To make sure
205 that every processing step was traceable and reproducible, a Singularity [36]
206 image was used along with the Nextflow pipeline [37]. Note however that
207 some results may not be 100% reproducible due to the uncertain nature of

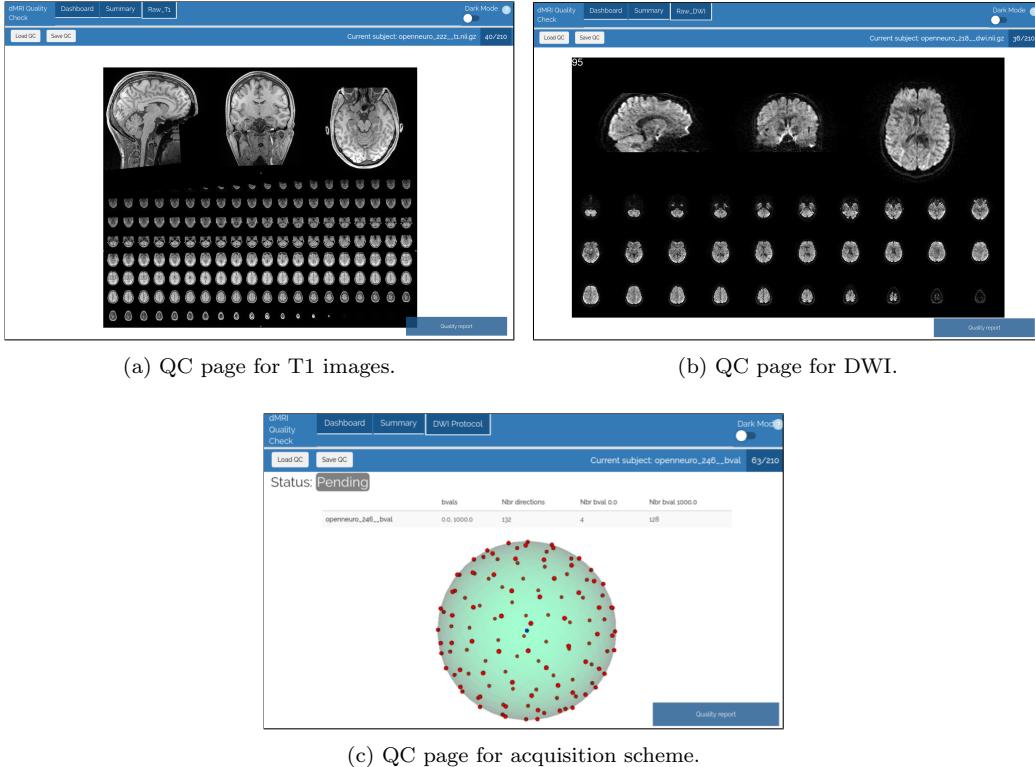


Figure 2: Examples of HTML pages generated by dmriqcipy for data QC. (a) 3 slices of the T1 image (one for each axis), plus a mosaic of multiple axial slices. (b) 3 GIFs of the dMRI (one slice in each axis), plus a mosaic of multiple axial slices; (c) The gradient directions represented on a sphere.

208 registration, parallel processing, and floating point precision. We ran the
 209 full pipeline except for the *Topup* process, as not all reverse b0 images were
 210 available [44]. Specifically, the pipeline executed the following steps:

- 211 • DWI brain extraction [45], denoising [46], eddy current correction [47],
 212 N4 bias field correction [48], cropping, normalization [49, 50], and re-
 213 sampling [51];
- 214 • T1 denoising [52], N4 bias field correction [48], registration [53] and
 215 tissue segmentation [54] maps for Particle-Filtered Tractography [40,
 216 55];
- 217 • DTI fitting and metrics extraction [56];

218 ● fODF fitting using constrained spherical deconvolution [57, 58, 59], with
219 a fiber response function fixed manually to [0.0015, 0.0004, 0.0004].

220 3.3. *TractoFlow results QC*

221 Outputs from TractoFlow went through a manual QC pass to identify
222 failure cases. Using *dmriqcipy*, we were able to easily and quickly look at
223 all maps derived from DTI and fODF metrics, along with T1 registration
224 overlay. For example, RGB maps extracted from DTI metrics allowed us to
225 quickly identify if tensor peaks were well-aligned or if a flip was needed, and
226 T1 registration overlays showed whether too much deformation was present.

227 3.4. *Ensemble tractography*

228 Using a single tractography method as reference for a machine learning
229 algorithm might induce unwanted biases. To avoid this, we chose to
230 use ensemble tractography by combining 4 different algorithms to generate
231 reference streamlines, namely deterministic [38], probabilistic [39], particle-
232 filtered [40], and surface-enhanced [41] tractography. We fixed the tracking
233 parameters to the standard default values:

234 ● WM + WM/GM interface seeding
235 ● 10 seeds per voxel (Det, Prob, PFT) or 10,000,000 surface seeds (SET)
236 ● Step size 0.2mm (Det, Prob, SET) or 0.5mm (PFT)
237 ● WM tracking mask (Det, Prob) or WM/GM/CSF probability maps
238 (PFT, SET)

239 We detail each algorithm in the following three subsections.

240 3.4.1. *Deterministic tracking*

241 Deterministic tracking [38] chooses the fODF peak most aligned with
242 the previous direction as the next streamline step. It seems better suited
243 to connectomics studies [3], mainly on account of the low number of false
244 positives it produces. While it may be inadequate for spatial exploration and
245 bundle reconstruction, deterministic tracking essentially produces smooth
246 streamlines that follow the easiest path through the fODF field. Smooth
247 streamlines are likely more desirable for machine learning algorithms rather
248 than chaotic streamlines that often change directions locally.

249 *3.4.2. Probabilistic tracking and Particle-Filtered Tractography*

250 Probabilistic tracking [39] samples a new streamline direction inside a
251 cone of evaluation aligned with the previous direction, with a probability
252 distribution proportional to the shape of the fiber ODF within the cone.

253 Particle-Filtered Tractography [40] is an improvement over probabilistic
254 tracking. It takes as input probability maps for streamline continuation/
255 stopping criteria, and allows to “go back” a few steps when a streamline
256 terminates in a region not included in the “termination-allowed” map.

257 Both algorithms are better suited for spatial exploration, at the cost of
258 producing much more false positives. They are especially effective for bundle
259 reconstruction, in which case there are anatomical priors about both the
260 endpoints that should be connected and the pathway that should be followed
261 by the bundle.

262 *3.4.3. Surface-Enhanced Tracking*

263 Finally, Surface-Enhanced Tracking [41] is a state-of-the-art tractography
264 algorithm that relies on initializing streamlines in an anatomically plausible
265 way at the cortex, then running a PFT tracking algorithm. Indeed, gyri have
266 been shown to be problematic regions for tractography, where low dMRI
267 resolution can lead to a gyral bias in streamline terminations [60].

268 To this end, we computed the WM-GM boundary surface from the T1w
269 image using the *CIVET* [61] tool and the CBRAIN [62] platform. Then, SET
270 uses a geometric flow method, based on surface orthogonality, to reconstruct
271 the fanning structure of the superficial white matter streamlines. The output
272 of this flow is used to initialize and terminate a PFT tractography algorithm.
273 The result is a tractogram with improved cortex coverage, improved fanning
274 structure in gyri, and reduced gyral bias.

275 *3.5. Bundle segmentation with RBX*

276 We used RBX [42, 43] to automatically extract WM bundles. The algo-
277 rithm works by matching streamlines to an atlas of reference bundles. First,
278 a quick registration step brings the atlas into native space using the atlas
279 FA image. Then, a whole-brain tractogram is compared against the bundles
280 atlas using multiple sets of parameters to extract a fixed set of bundles, listed
281 in Table 2. Finally, a majority voting step extracts the final streamlines for
282 each bundle.

283 The whole pipeline was run using a Singularity container [36] and Nextflow
284 [37] for reproducibility. It is freely available online (<https://github.com/>

AC	Anterior commisure
AF	Arcuate fasciculus
CC_Fr_1	Corpus callosum, Frontal lobe (most anterior part)
CC_Fr_2	Corpus callosum, Frontal lobe (most posterior part)
CC_Oc	Corpus callosum, Occipital lobe
CC_Pa	Corpus callosum, Parietal lobe
CC_Pr_Po	Corpus callosum, Pre/Post central gyri
CC_Te	Corpus callosum, Temporal lobe
CG	Cingulum
FAT	Frontal aslant tract
FPT	Fronto-pontine tract
FX	Fornix
ICP	Inferior cerebellar peduncle
IFOF	Inferior fronto-occipital fasciculus
ILF	Inferior longitudinal fasciculus
MCP	Middle cerebellar peduncle
MdLF	Middle longitudinal fascicle
OR_ML	Optic radiation and Meyer's loop
PC	Posterior commisure
POPT	parieto-occipito pontine tract
PYT	Pyramidal tract
SCP	Superior cerebellar peduncle
SLF	Superior longitudinal fasciculus
UF	Uncinate fasciculus

Table 2: List of bundles in the default RBX atlas.

285 `scilus/rbx_flow/`), along with a suggested bundles atlas (<https://zenodo.org/record/4630660#.YJvmwXVKhdU>).

287 *3.6. Bundle segmentation QC*

288 *3.6.1. Automated pre-QC*

289 To facilitate the QC procedure, we ran a pre-QC analysis to automatically rate bundles according to pre-defined criteria before manual inspection.
290 These criteria are detailed in Table 3. Afterwards, all bundles were looked at
291 manually through an easier procedure that consists in confirming an already
292 assigned rating rather than rating from scratch.

Rating	Criteria
Fail	$x < 50$ $x == 0$ in either hemisphere (if symmetric bundle).
Warning	$x \notin [\mu - 1.5\sigma, \mu + 3.5\sigma]$
Pass	$x \in [\mu - 1.5\sigma, \mu + 3.5\sigma]$

Table 3: Automatic rating criteria, in order of priority.

x is the number of streamlines of the bundle of interest;

μ and σ are the average and the standard deviation, respectively, of the number of streamlines for the bundle of interest, across all subjects;

294 *3.6.2. Manual quality control using dmriqcipy*

295 A bundle was removed if it looked visually incomplete or if it deviated
296 from the expected pathway. A poor bundle reconstruction might have an
297 algorithmic cause, such as sub-optimal tracking parameters or improper reg-
298 istration in RBX. It might also have an anatomical cause, such as unknown
299 or undisclosed neurological conditions. Furthermore, visually evaluating a
300 bundle reconstruction is very subjective, and a rater’s evaluation can be af-
301 fected by the time of day, duration of QC, or even the angle of visualization
302 in the QC tool [63]. For all those reasons, and with the goal of establishing
303 a gold standard for machine learning tractography methods, we chose to be
304 somewhat severe in the rating of bundles, in order to minimize the number
305 of false positives, even if that meant missing out some true positive data.
306 After QC, we chose to ignore the following bundles from the atlas due to
307 generalized reconstruction errors : AC, CC_Te, Fx, ICP, PC, SCP.

308 **4. Evaluation pipeline for candidate tractograms**

309 When evaluating machine learning tractography algorithms, we focus on
310 the volume covered by the recognized bundles (compared to the gold standard
311 bundles). We make no assumptions about the ability to “explore” the brain
312 outside the scope of the *TractoInferno* dataset. Consequently, we ignore
313 anything that is not recognized as a candidate bundle, and do not try to
314 categorize streamlines as valid or invalid connections.

315 Candidate bundles are extracted in the same way that we defined the gold
316 standard bundles. First, we run RBX to extract candidate bundles from the
317 candidate whole-brain tractogram. Candidate bundles are then converted to

318 binary volume coverage masks. Finally, each candidate mask is compared
319 against its corresponding gold standard bundle mask to compute evaluation
320 metrics.

321 For each subject in the testset, and for each available bundle of the given
322 subject, we extract the following evaluation metrics: Dice score, overlap
323 and overreach. The scores are averaged over all subjects of the testset to
324 provide final scores. Altogether, these metrics help better understand the
325 performance of a candidate tractography algorithm.

326 The evaluation pipeline is available online ([https://github.com/scil-vital/](https://github.com/scil-vital/TractoInferno/)
327 *TractoInferno/*) and should be used with the provided *TractoInferno* test-
328 set, along with the default RBX-flow models.

329 5. RNN-based tractography

330 To gauge the performances of ML models trained on the *TractoInferno*
331 dataset, we implemented an RNN model and the necessary framework to
332 train it on a large-scale tractography database, which was used multiple
333 times in published papers in the last few years, such as *Learn2Track* [18],
334 *DeepTract* [22], and *Entrack* [20]. Using the base implementation, we can
335 easily modify the last layer of the model and its loss function to mimic the
336 mentioned RNN models, and a few more.

337 We choose the stacked Long Short-Term Memory (LSTM) network as the
338 recurrent building block for conditional streamline prediction. The LSTM is
339 a type of RNN designed specifically to handle long-term dependencies, with
340 the ability to deal with exploding and vanishing gradient problems [24].

341 5.1. *Learn2track*

342 *Learn2track* [18] proposed an RNN model for tractography, where the out-
343 put of the model at each timestep is a 3D vector, used as the next direction
344 of the streamline. The predicted vector is then scaled to the chosen step size,
345 in order to match the lengths of the target and prediction.

346 From the same idea, we implemented an LSTM for deterministic tractog-
347 raphy. As in the original *learn2track* paper, we used the squared error loss
348 function between the target and prediction. The loss for a single streamline
349 S composed of T steps is the following squared error:

$$\mathcal{L}(S) = - \sum_{t=1}^T (\mathbf{d}_t - \hat{\mathbf{d}}_t)^2$$

346 where \mathbf{d}_t and $\hat{\mathbf{d}}_t$ are the target and predicted directions. This model is noted
 347 as *Det-SE*.

However, to accurately reflect that only the direction of the predicted vector is important (not the magnitude), we also performed an experiment where we minimized the negative cosine similarity between the target and predicted directions:

$$\mathcal{L}(S) = - \sum_{t=1}^T \cos(\theta_t) = - \sum_{t=1}^T \frac{\mathbf{d}_t \cdot \hat{\mathbf{d}}_t}{\|\mathbf{d}_t\| \|\hat{\mathbf{d}}_t\|}$$

348 where θ_t is the angle between \mathbf{d}_t and $\hat{\mathbf{d}}_t$. This model is noted as *Det-Cosine*.

349 5.2. DeepTract

350 In the same spirit as *learn2track*, *DeepTract* [22] is a recurrent model for
 351 probabilistic tractography. In this case, the model output is a distribution
 352 over classes, where each class corresponds to a direction on the unit sphere,
 353 i.e. a discrete conditional fiber ODF.

As in the original paper, we implemented a cross-entropy loss function:

$$\mathcal{L}(S) = - \sum_{t=1}^T \sum_{m=1}^M y_{tm} \log(\hat{y}_{tm})$$

354 where M is the number of classes, and y_t and \hat{y}_t are vectors of target and
 355 predicted class probabilities. Note that we did not use label smoothing as
 356 in the original paper, nor entropy-based tracking termination. This model is
 357 noted as *Prob-Sphere*.

358 5.3. Entrack

359 *Entrack*[20] is a non-recurrent artificial neural network for probabilistic
 360 tractography. The model is instead a feed-forward neural network, but in-
 361 cludes the previous streamline direction as prior information to guide the
 362 tracking process. The model outputs the parameters for a von Mises-Fisher
 363 distribution, i.e. a 3D unit-length vector for the mean, and a scalar concen-
 364 tration parameter. The distribution is analogous to a Gaussian distribution,
 365 but defined on the unit sphere instead of euclidean space.

We chose to apply the same general idea, using a recurrent network that predicts the parameters for a von Mises-Fisher distribution on a 3D sphere.

We used the negative log-likelihood of the von Mises-Fisher distribution as the loss function:

$$\mathcal{L}(S) = - \sum_{t=1}^T \log[C(\hat{\kappa}_t) \exp(\hat{\kappa}_t \hat{\mu}_t^\top \mathbf{d}_t)]$$

where the predicted parameters of the distribution are $\hat{\mu}_t$ (a unit-length vector) and $\hat{\kappa}_t$ (a scalar concentration parameter), and \mathbf{d}_t is the target unit-length vector at step t . $C(\hat{\kappa}_t)$ abbreviates the normalization constant associated with the distribution, defined as following in the 3-dimensional case:

$$C_3(\kappa) = \frac{\kappa}{2\pi(e^\kappa - e^{-\kappa})}$$

366 Note that unlike the original method, we didn't use an entropy maximization
 367 scheme to regularize the predicted distribution. This implementation is
 368 noted as *Prob-vMF*.

369 *5.4. Gaussian distribution output*

370 Following *Entrack* and the idea of predicting the parameters of a continuous
 371 probability distribution, we implemented another model, using a multivariate Gaussian distribution instead of a von Mises-Fisher distribution.
 372 This model outputs a 3D vector for the mean, and 3 scalars for the variance,
 373 (one in each dimension). We choose to use a diagonal covariance matrix, for
 374 stability, and do not output any values for covariance.
 375

In the 3-dimensional case, the negative log-likelihood loss function is:

$$\mathcal{L}(S) = - \sum_{t=1}^T \log\left[\frac{1}{\sqrt{(2\pi)^3 |\hat{\Sigma}_t|}} \exp\left(-\frac{1}{2}(\mathbf{d}_t - \hat{\mu}_t)^\top \hat{\Sigma}_t^{-1} (\mathbf{d}_t - \hat{\mu}_t)\right)\right]$$

376 where $\Sigma_t = \begin{bmatrix} \sigma_{xt}^2 & 0 & 0 \\ 0 & \sigma_{yt}^2 & 0 \\ 0 & 0 & \sigma_{zt}^2 \end{bmatrix}$ is the predicted diagonal covariance matrix at
 377 streamline step t . This model is noted as *Prob-Gaussian*.

378 *5.5. Gaussian mixture distribution output*

379 The previous Gaussian model outputs a single average direction which is
 380 appropriated in most cases. However, there may be cases of bundle fanning or

381 forking where the single-mode assumption may be an issue. This is because
382 the Gaussian probability density can only be spread over a large area.

383 As such, some regions may be better modelled with more than one lo-
384 cation of higher density. To this end, we implemented a mixture density
385 network[64] using a mixture of 3 Gaussian distributions. For each Gaussian,
386 the model outputs 1 mixture weight, a 3D vector for the mean, and 3 scalars
387 for the variances (again, we fix the covariances to zero).

In the 3-dimensional case, using a mixture of 3 Gaussians, the negative log-likelihood loss function is:

$$\begin{aligned}\mathcal{L}(S) &= -\sum_{t=1}^T \log \left[\sum_{k=1}^3 \phi_{kt} \mathcal{N}(d_t | \hat{\mu}_{kt}, \hat{\Sigma}_{kt}) \right] \\ &= -\sum_{t=1}^T \log \left[\sum_{k=1}^3 \phi_{kt} \frac{1}{\sqrt{(2\pi)^3 |\hat{\Sigma}_{kt}|}} \exp\left(-\frac{1}{2} (\mathbf{d}_t - \hat{\mu}_{kt})^\top \hat{\Sigma}_{kt}^{-1} (\mathbf{d}_t - \hat{\mu}_{kt})\right) \right]\end{aligned}$$

388 where k denotes the number of Gaussians in the mixture, and ϕ_{kt} is the
389 mixture parameter for the Gaussian k at streamline step t . This model is
390 noted as *Prob-Mixture*.

391 5.6. Implementation details

392 All models were composed of 5 hidden layers of 500 units, used dropout
393 with a rate of 0.1, and a batch size of 50 000 streamline steps. We added skip
394 connections from the input layer to all hidden layers, and from all hidden
395 layers to the output layer, inspired by [65]. We applied layer normalization
396 [66] between all hidden layers, in order to stabilize the hidden state dynamics
397 in recurrent neural networks. We used the Adam optimizer with the default
398 parameters.

399 For all experiments, we used the maximal spherical harmonics (SH) coeffi-
400 cients of order 6 fitted to the TractoFlow-processed DWI signal as the input
401 signal. In all cases, the models were trained using the exact same train-
402 ing/validation/test datasets, with a streamline step size fixed to 1.0 mm for
403 training and tracking. To help guide the model, we also included as input
404 the diffusion signal in a neighbourhood of 6 directions (two for each axis,
405 positive and negative) at a distance of 1.2 mm.

406 All models were trained for a maximum of 30 epochs (corresponding to
407 around 2 weeks of training time on a 16Gb NVidia V100SXM2), but early

408 stopping was used to stop training when the loss has not improved after 5
409 epochs. Each epoch was capped to 10 000 updates, as the sheer size of the
410 dataset would otherwise require multiple days of training for a single epoch.

411 **6. Results & Discussion**

412 We report in Table 4 the results of the *TractoInferno* evaluation pipeline
413 for each individual tractography algorithm used to build the reference bun-
414 dles, and for every model detailed in Section 5 after the training procedure.

415 Of all the base algorithms used to build the reference tractograms, PFT
416 performed the best in terms of Dice score and overlap. This is consistent with
417 the fact that it is a state-of-the-art algorithm, and works best when trying
418 to fill the space with streamlines. However, we show that no algorithm can
419 single-handedly account for the gold standard, and using the union of all
420 methods provides a more complete reconstruction.

421 In both traditional and RNN-based variants, models with the best Dice/
422 overlap results also had the worst overreach score. However, in the case
423 of bundle reconstruction, it is less of a concern, because there is always a
424 possibility of applying post-processing techniques to filter streamlines. Also,

	Dice	Overlap	Overreach
<i>Reference methods</i>			
Deterministic	0.397	0.267	0.029
Probabilistic	0.553	0.433	0.068
PFT	0.680	0.688	0.266
SET	0.624	0.570	0.184
Ensemble (Det+Prob+PFT+SET)	1.000	1.000	0.000
<i>RNN-based methods</i>			
Det-SE (Learn2track)	0.580	0.495	0.172
Det-Cosine	0.606	0.535	0.204
Prob-Sphere (DeepTract)	0.601	0.534	0.202
Prob-vMF (Entrack)	N/A	N/A	N/A
Prob-Gaussian	0.624	0.585	0.264
Prob-Mixture	0.407	0.284	0.053

Table 4: Tractography evaluation results on the *TractoInferno* dataset. The Prob-vMF model did not produce any results, and is noted as {N/A}.

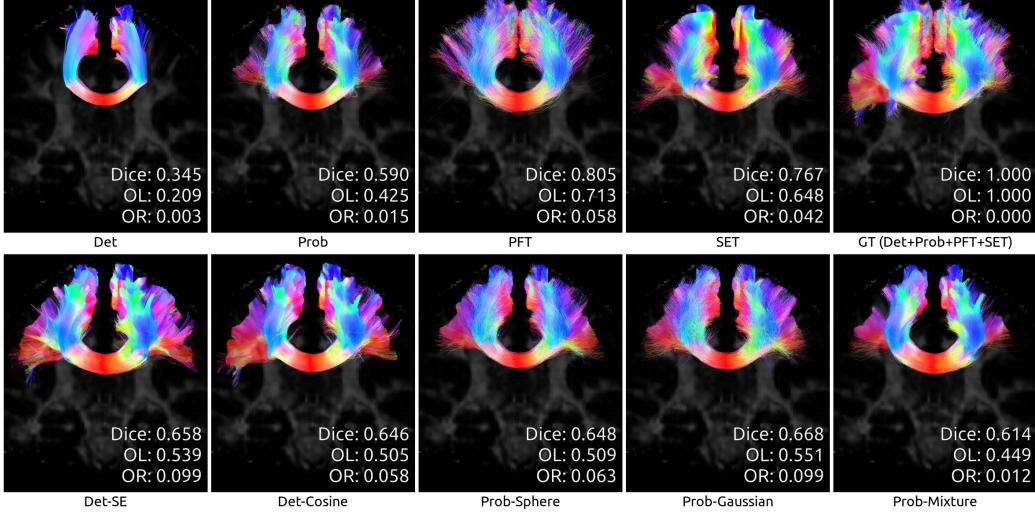


Figure 3: Reconstruction of the *Corpus Callosum* (medium difficulty) by all algorithms, for test subject sub-1006.

425 since our gold standard is not perfect, it might not cover the whole possible
 426 space as delineated by the RBX algorithm. Furthermore, because the scores
 427 are evaluated using binary bundle masks, a small number of streamlines can
 428 easily cross a high number of overreaching voxels. Ultimately, the goal is
 429 to find a model that can cover as much space as possible, so the overreach
 430 score is an interesting information to have, but is not the best indicator of
 431 performance in our case.

432 Of all the RNN-based methods, the Gaussian output model obtained the
 433 best Dice score and overlap, hinting that a probabilistic model works best.
 434 This is in line with traditional probabilistic algorithms being more suited to
 435 bundle reconstruction than deterministic approaches.

436 Given the worse performance of other probabilistic models, it seems that
 437 adding complexity is not beneficial. Training an RNN with a more complex
 438 distribution like the mixture of Gaussians might require a different archi-
 439 tecture, or more model capacity, to achieve better results. Unfortunately,
 440 the RNN with a von Mises-Fisher output had a hard time training, and pro-
 441 duced erratic streamlines that mostly did not survive the evaluation pipeline.
 442 It would seem that training the vMF distribution is too unstable when using
 443 a likelihood loss function, and performing an entropy maximization pro-
 444 cture like the original authors might be required to have a stable training

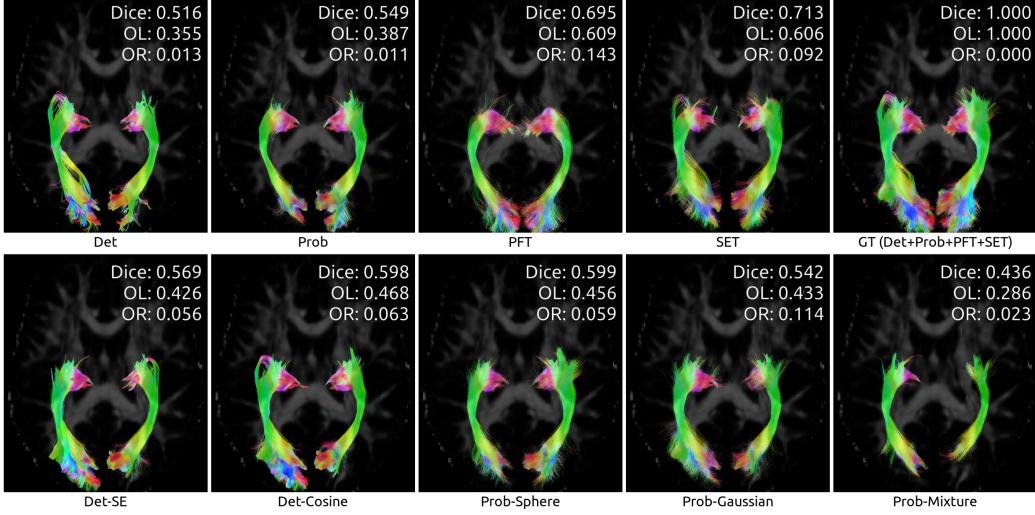


Figure 4: Reconstruction of the *Optic Radiation* (hard difficulty) by all algorithms, for test subject sub-1006.

445 procedure.

446 Across all results (both reference algorithms and RNN-based methods),
 447 the general trend holds that with a better Dice score and overlap, there is
 448 also more overreach. This indicates that there is still work to be done to
 449 limit the production of false positive streamlines.

450 To illustrate the differences between algorithms, we showcase the recon-
 451 structions of three bundles taken from a random test subject. We chose
 452 bundles of both *medium* and *hard* difficulty for tractography, as reported in
 453 [2]. Figure 3 shows a part of the *Corpus Callosum* (medium difficulty), while
 454 Figures 4 and 5 show the *Optic Radiation* and the *Pyramidal Tract* (hard dif-
 455 ficulty). Note that in all cases, as mentioned before, the Prob-vMF method
 456 did not produce any meaningful results, which explains why no results are
 457 shown.

458 Also of note, RNN-based models seem to get results on par with tra-
 459 ditional algorithms, but not quite as good as the state-of-the-art Particle-
 460 Filtered Tractography. However, Poulin et al. produced results far beyond
 461 even PFT using an RNN approach trained on a single-database, using a
 462 single-bundle per model [67]. While we did not train any model with the
 463 single-bundle approach on *TractoInferno*, both results hint that there is a
 464 need for more data, more model capacity, or for specialization of algorithms,

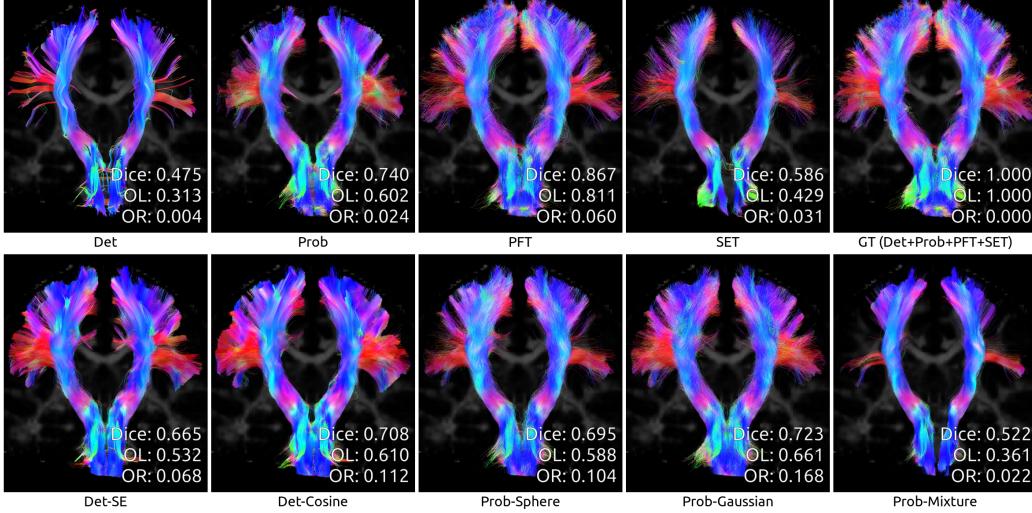


Figure 5: Reconstruction of the *Pyramidal Tract* (hard difficulty) by all algorithms, for test subject sub-1006.

465 in order to outperform currently-used methods. We advocate that *TractoIn-
466 ferno* is one way to investigate this problem further.

467 7. Conclusion

468 We provide an open-access, multi-site dMRI and tractography database
469 aimed at training and evaluating machine learning tractography models. It
470 combines data from multiple datasets, and applies the same processing and
471 QC steps for a uniform database. We also produce results using the avail-
472 able evaluation pipeline for both traditional algorithms and machine learning
473 models based on a recurrent architecture.

474 We offer *TractoInferno* as a solution to the multiple issues already re-
475 ported in the literature for machine learning tractography. Indeed, while
476 such algorithms have been proposed in the last few years with promising
477 results, none has been shown to be the fundamental solution to classical
478 tractography. They commonly suffer from variable training data, dissimilar
479 evaluation method, and limited dataset size, among others. To this end, a
480 uniform, large-scale, and multi-site database such as *TractoInferno* is an es-
481 sential tool, paving the way for reproducible and comparable research among
482 machine learning tractography researchers.

483 **8. Data access**

484 The *TractoInferno* database is freely available online on the OpenNeuro
485 platform: <https://openneuro.org/datasets/ds003900>. The evaluation
486 pipeline is available on GitHub: <https://github.com/scil-vital/TractoInferno/>.

487 **9. Special thanks**

488 Thanks to Laurent Petit for his help with the BIL & GIN database.

489 **10. Acknowledgements**

490 P.P. was supported by the FQRNT, grant #206270. This research was en-
491 abled in part by Compute Canada (www.computecanada.ca) and CBRAIN
492 [62].

493 **Appendix A. *TractoInferno* pipeline execution commands**

494 All commands used to process the *TractoInferno* dataset are reported
495 here. The input files and directories for each command might need to be
496 reorganized between steps; refer to the specific package documentation for
497 more details.

498 *Appendix A.1. QC DWI*

499 URLs:

500 • <https://github.com/scilus/dmriqcipy>
501 • https://github.com/scilus/dmriqc_flow

502 Command:

503 `nextflow run dmriqc-flow-0.1.2/main.nf -profile input_qc`
504 `--root input/`
505 `-with-singularity singularity_dmriqc_0.1.2.img -resume`
506 `--raw_dwi_nb_threads 10`

507 *Appendix A.2. TractoFlow*

508 URL: <https://github.com/scilus/tractoflow/>

509 Command:

```
510     nextflow run tractoflow-2.1.1/main.nf --root input/
511     --dti_shells "0 700 1000 1200"
512     --fodf_shells "0 700 1000 1200"
513     -with-singularity tractoflow_2.1.1_650f776_2020-07-15.img
514     -resume -profile fully_reproducible --mean_frf false
515     --set_frf true --nbr_seeds 1
```

516 *Appendix A.3. QC TractoFlow*

517 URLs:

- 518 • <https://github.com/scilus/dmriqcipy>
- 519 • https://github.com/scilus/dmriqc_flow

520 Command:

```
521     nextflow run dmriqc-flow-0.1.2/main.nf
522     -profile tractoflow_qc_light
523     --root/ ../TractoFlow/results
524     -with-singularity singularity_dmriqc_0.1.2.img -resume
```

525 *Appendix A.4. SH signal fitting*

526 URL: https://github.com/ppoulin91/tractoinferno_compute_sh_flow

527 Command:

```
528     nextflow run code/tractoinferno_compute_sh_flow/main.nf
529     --input input/ --use_attenuation --sh_order 6
530     -with-singularity scilus-1.2.1.img -resume
```

531 *Appendix A.5. Tractography (Det, Prob, PFT)*

532 URL: https://github.com/ppoulin91/tractoinferno_tracking_flow

533 Command:

```
534     nextflow run code/tractoinferno_tracking_flow/main.nf
535     --input ../TractoFlow/results
536     -with-singularity tractoflow_2.1.1_650f776_2020-07-15.img
537     -resume
```

538 *Appendix A.6. Tractography (SET)*

539 URLs:

540 • <https://github.com/StongeEtienne/set-nf>
541 • https://github.com/scilus/convert_set_flow

542 Commands:

543 nextflow run code/set-nf/main.nf
544 --tractoflow ../TractoFlow/results
545 --surfaces ../civet/results -profile civet2_dkt
546 -with-singularity set_1v1.img -resume
547 nextflow run code/convert_set_flow/main.nf
548 --root_set ../SET/results
549 --root_tractoflow ../TractoFlow/results
550 -with-singularity scilus-1.2.1.img
551 -resume

552 *Appendix A.7. RecoBundlesX (RBX)*

553 URL: https://github.com/scilus/rbx_flow/

554 Command:

555 nextflow run code/rbx_flow/main.nf -resume
556 -with-singularity scilus-1.2.0_rbxflow-1.1.0.img
557 -profile large_dataset --input input/
558 --atlas_config code/rbx-atlas/config.json
559 --atlas_anat code/rbx-atlas/mni_masked.nii.gz
560 --atlas_directory code/rbx-atlas/atlas/
561 --run_average_bundles false

562 *Appendix A.8. QC RBX*

563 URLs:

564 • <https://github.com/scilus/dmriqcipy>
565 • https://github.com/scilus/dmriqc_flow

566 Command:

567 nextflow run code/dmriqc_flow/main.nf -resume
568 -with-singularity
569 singularity_dmriqcflow_hotfix_scilpy_1.2.0.img
570 -profile rbx_qc --input ../RBX/results/

571 **References**

572 [1] S. Farquharson, J.-D. Tournier, F. Calamante, G. Fabinyi, M. Schneider-
573 Kolsky, G. D. Jackson, A. Connelly, White matter fiber tractography:
574 why we need to move beyond DTI: Clinical article, *Journal of Neuro-
575 surgery* 118 (2013) 1367–1377.

576 [2] K. H. Maier-Hein, P. F. Neher, J.-C. Houde, M.-A. Côté, E. Garyfal-
577 lidis, J. Zhong, M. Chamberland, F.-C. Yeh, Y.-C. Lin, Q. Ji, W. E.
578 Reddick, J. O. Glass, D. Q. Chen, Y. Feng, C. Gao, Y. Wu, J. Ma,
579 R. He, Q. Li, C.-F. Westin, S. Deslauriers-Gauthier, J. O. O. González,
580 M. Paquette, S. St-Jean, G. Girard, F. Rheault, J. Sidhu, C. M. W. Tax,
581 F. Guo, H. Y. Mesri, S. Dávid, M. Froeling, A. M. Heemskerk, A. Lee-
582 mans, A. Boré, B. Pinsard, C. Bedetti, M. Desrosiers, S. Brambati,
583 J. Doyon, A. Sarica, R. Vasta, A. Cerasa, A. Quattrone, J. Yeatman,
584 A. R. Khan, W. Hodges, S. Alexander, D. Romascano, M. Barakovic,
585 A. Auría, O. Esteban, A. Lemkadem, J.-P. Thiran, H. E. Cetingul,
586 B. L. Odry, B. Mailhe, M. S. Nadar, F. Pizzagalli, G. Prasad, J. E.
587 Villalon-Reina, J. Galvis, P. M. Thompson, F. D. S. Requejo, P. L. La-
588 guna, L. M. Lacerda, R. Barrett, F. Dell'Acqua, M. Catani, L. Petit,
589 E. Caruyer, A. Daducci, T. B. Dyrby, T. Holland-Letz, C. C. Hilge-
590 tag, B. Stieltjes, M. Descoteaux, The challenge of mapping the human
591 connectome based on diffusion tractography, *Nature Communications* 8
592 (2017) 1349.

593 [3] T. Sarwar, K. Ramamohanarao, A. Zalesky, Mapping connectomes with
594 diffusion MRI: deterministic or probabilistic tractography?, *Magnetic
595 Resonance in Medicine* 81 (2019) 1368–1384.

596 [4] K. G. Schilling, A. Daducci, K. Maier-Hein, C. Poupon, J.-C. Houde,
597 V. Nath, A. W. Anderson, B. A. Landman, M. Descoteaux, Challenges
598 in diffusion MRI tractography – Lessons learned from international
599 benchmark competitions, *Magnetic Resonance Imaging* 57 (2019)
600 194–209.

601 [5] M. Reisert, I. Mader, C. Anastasopoulos, M. Weigel, S. Schnell, V. Kise-
602 lev, Global fiber reconstruction becomes practical, *NeuroImage* 54
603 (2011) 955–962.

604 [6] J. F. Mangin, P. Fillard, Y. Cointepas, D. Le Bihan, V. Frouin,
605 C. Poupon, Toward global tractography, *NeuroImage* 80 (2013) 290–296.

606 [7] S. Jbabdi, M. W. Woolrich, J. L. R. Andersson, T. E. J. Behrens, A
607 Bayesian framework for global tractography, *NeuroImage* 37 (2007) 116–
608 129.

609 [8] A. Lemkaddem, D. Skiöldebrand, A. Dal Palú, J.-P. Thiran, A. Daducci,
610 Global tractography with embedded anatomical priors for quantitative
611 connectivity analysis, *Frontiers in Neurology* 5 (2014) 232.

612 [9] F. Rheault, P. Poulin, A. V. Caron, E. St-Onge, M. Descoteaux, Common
613 misconceptions, hidden biases and modern challenges of dMRI tracto-
614 graphy, *Journal of Neural Engineering* 17 (2020) 011001.

615 [10] A. Daducci, A. Dal Palù, A. Lemkaddem, J.-P. Thiran, COMMIT: Con-
616 vex Optimization Modeling for Microstructure Informed Tractography,
617 *IEEE Transactions on Medical Imaging* 34 (2015) 246–257.

618 [11] R. Smith, J.-D. Tournier, F. Calamante, A. Connelly, Feb, SIFT: Spherical-deconvolution informed filtering of tractograms, *NeuroImage*
619 67 (2013) 298–312.,

620 [12] R. Smith, J.-D. Tournier, F. Calamante, A. Connelly, SIFT2: Enabling
621 dense quantitative assessment of brain white matter connectivity using
622 streamlines tractography, *NeuroImage* 119 (2015) 338–351.,

623 [13] J. H. Legarreta, L. Petit, F. Rheault, G. Theaud, C. Lemaire, M. De-
624 scoteaux, P.-M. Jodoin, Filtering in tractography using autoencoders
625 (FINTA), *Medical Image Analysis* 72 (2021) 102126.

626 [14] E. Garyfallidis, M. Brett, M. M. Correia, G. B. Williams, I. Nimmo-
627 Smith, QuickBundles, a Method for Tractography Simplification, *Frontiers in Neuroscience* 6 (2012).

628 [15] V. Siless, K. Chang, B. Fischl, A. Yendiki, Feb, AnatomiCuts: Hi-
629 erarchical clustering of tractography streamlines based on anatomical
630 similarity, *NeuroImage* 166 (2018) 32–45.,

631 [16] P. Poulin, D. Jörgens, P.-M. Jodoin, M. Descoteaux, Tractography and
632 machine learning: Current state and open challenges, *Magnetic Reso-
633 nance Imaging* 64 (2019) 37–48.

636 [17] P. F. Neher, M.-A. Côté, J.-C. Houde, M. Descoteaux, K. H. Maier-
637 Hein, Fiber tractography using machine learning, *NeuroImage* 158
638 (2017) 417–429.

639 [18] P. Poulin, M.-A. Côté, J.-C. Houde, L. Petit, P. F. Neher, K. H. Maier-
640 Hein, H. Larochelle, M. Descoteaux, Learn to Track: Deep Learning for
641 Tractography, in: M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin,
642 D. L. Collins, S. Duchesne (Eds.), *Medical Image Computing and Com-
643 puter Assisted Intervention - MICCAI 2017*, Lecture Notes in Computer
644 Science, Springer International Publishing, Cham, 2017, pp. 540–547.

645 [19] J. Wasserthal, P. Neher, K. H. Maier-Hein, TractSeg - Fast and accurate
646 white matter tract segmentation, *NeuroImage* 183 (2018) 239–253.

647 [20] V. Wegmayr, J. M. Buhmann, Entrack: Probabilistic Spherical Regres-
648 sion with Entropy Regularization for Fiber Tractography, *International
649 Journal of Computer Vision* (2020).

650 [21] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks
651 for Biomedical Image Segmentation, in: N. Navab, J. Hornegger, W. M.
652 Wells, A. F. Frangi (Eds.), *Medical Image Computing and Computer-
653 Assisted Intervention – MICCAI 2015*, Lecture Notes in Computer Sci-
654 ence, Springer International Publishing, Cham, 2015, pp. 234–241.

655 [22] I. Benou, T. Riklin Raviv, DeepTract: A Probabilistic Deep Learning
656 Framework for White Matter Fiber Tractography, in: D. Shen, T. Liu,
657 T. M. Peters, L. H. Staib, C. Essert, S. Zhou, P.-T. Yap, A. Khan (Eds.),
658 *Medical Image Computing and Computer Assisted Intervention – MIC-
659 CAI 2019*, Lecture Notes in Computer Science, Springer International
660 Publishing, Cham, 2019, pp. 626–635.

661 [23] K. Cho, B. van Merriënboer, D. Bahdanau, Y. Bengio, On the Prop-
662 erties of Neural Machine Translation: Encoder-Decoder Approaches,
663 arXiv:1409.1259 [cs, stat] (2014).

664 [24] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, *Neural Com-
665 putation* 9 (1997) 1735–1780.

666 [25] M. F. Glasser, S. N. Sotiroopoulos, J. A. Wilson, T. S. Coalson, B. Fischl,
667 J. L. Andersson, J. Xu, S. Jbabdi, M. Webster, J. R. Polimeni, D. C.

668 Van Essen, M. Jenkinson, The minimal preprocessing pipelines for the
669 Human Connectome Project, *NeuroImage* 80 (2013) 105–124.

670 [26] B. Mazoyer, E. Mellet, G. Perchey, L. Zago, F. Crivello, G. Jobard,
671 N. Delcroix, M. Vigneau, G. Leroux, L. Petit, M. Joliot, N. Tzourio-
672 Mazoyer, BIL&GIN: A neuroimaging, cognitive, behavioral, and genetic
673 database for the study of human brain lateralization, *NeuroImage* 124
674 (2016) 1225–1231.

675 [27] A. Tsuchida, A. Laurent, F. Crivello, L. Petit, M. Joliot, A. Pepe, N. Be-
676 guedou, M.-F. Gueye, V. Verrecchia, V. Nozais, L. Zago, N. Tzourio-
677 Mazoyer, E. Mellet, S. Debette, C. Tzourio, B. Mazoyer, The MRi-Share
678 database: brain imaging in a cross-sectional cohort of 1,870 university
679 students, *bioRxiv* (2020) 2020.06.17.154666.

680 [28] V. DeLuca, J. Rothman, E. Bialystok, C. Pliatsikas, Redefining bilin-
681 gualism as a spectrum of experiences that differentially affects brain
682 structure and function, *Proceedings of the National Academy of Sci-
683 ences* 116 (2019) 7565–7574.

684 [29] R. A. Poldrack, E. Congdon, W. Triplett, K. J. Gorgolewski, K. H.
685 Karlsgodt, J. A. Mumford, F. W. Sabb, N. B. Freimer, E. D. London,
686 T. D. Cannon, R. M. Bilder, A genome-wide examination of neural
687 and cognitive function, *Scientific Data* 3 (2016) 160110.

688 [30] S. Tamm, G. Nilsonne, J. Schwarz, C. Lamm, G. Kecklund, P. Petrovic,
689 H. Fischer, T. Åkerstedt, M. Lekander, The effect of sleep restriction on
690 empathy for pain: An fMRI study in younger and older adults, *Scientific
691 Reports* 7 (2017) 12236.

692 [31] S. Tremblay, M. Desjardins, P. Bermudez, Y. Iturria-Medina, A. C.
693 Evans, P. Jolicoeur, L. De Beaumont, Mild traumatic brain injury: The
694 effect of age at trauma onset on brain structure integrity, *NeuroImage:
695 Clinical* 23 (2019) 101907.

696 [32] C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. Elliott, K. Sharp,
697 A. Motyer, D. Vukcevic, O. Delaneau, J. O'Connell, A. Cortes, S. Welsh,
698 A. Young, M. Effingham, G. McVean, S. Leslie, N. Allen, P. Donnelly,
699 J. Marchini, The UK Biobank resource with deep phenotyping and
700 genomic data, *Nature* 562 (2018) 203–209.

701 [33] V. DeLuca, C. Pliatsikas, Bilingualism and the brain, OpenNeuro
702 (2020).

703 [34] G. Nilsson, S. Tamm, P. d'Onofrio, H. A. Thuné, J. Schwarz, C. Lave-
704 bratt, J. J. Liu, K. N. Måansson, T. Sundelin, J. Axelsson, P. Fransson,
705 G. Kecklund, H. Fischer, M. Lekander, T. Åkerstedt, The stockholm
706 sleepy brain study: Effects of sleep deprivation on cognitive and emo-
707 tional processing in young and old, OpenNeuro (2020).

708 [35] G. Theaud, J.-C. Houde, A. Boré, F. Rheault, F. Morency, M. De-
709 scoteaux, TractoFlow: A robust, efficient and reproducible diffusion
710 MRI pipeline leveraging Nextflow & Singularity, NeuroImage 218 (2020)
711 116889.

712 [36] G. M. Kurtzer, V. Sochat, M. W. Bauer, Singularity: Scientific contain-
713 ers for mobility of compute, PLOS ONE 12 (2017) e0177459.

714 [37] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
715 C. Notredame, Nextflow enables reproducible computational workflows,
716 Nature Biotechnology 35 (2017) 316–319.

717 [38] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, A. Aldroubi, In vivo fiber
718 tractography using DT-MRI data, Magnetic Resonance in Medicine 44
719 (2000) 625–632.

720 [39] J.-D. Tournier, F. Calamante, A. Connelly, MRtrix: Diffusion tractogra-
721 phy in crossing fiber regions, International Journal of Imaging Systems
722 and Technology 22 (2012) 53–66.

723 [40] G. Girard, K. Whittingstall, R. Deriche, M. Descoteaux, Towards quan-
724 titative connectivity analysis: reducing tractography biases, NeuroIm-
725 age 98 (2014) 266–278.

726 [41] E. St-Onge, A. Daducci, G. Girard, M. Descoteaux, Surface-enhanced
727 tractography (SET), NeuroImage 169 (2018) 524–539.

728 [42] E. Garyfallidis, M.-A. Côté, F. Rheault, J. Sidhu, J. Hau, L. Petit,
729 D. Fortin, S. Cunanne, M. Descoteaux, Recognition of white matter
730 bundles using local and global streamline-based registration and clus-
731 tering, NeuroImage 170 (2018) 283–295.

732 [43] F. Rheault, Analyse et reconstruction de faisceaux de la matière blanche,
733 Computer Science. Université de Sherbrooke (2020).

734 [44] J. L. R. Andersson, S. Skare, J. Ashburner, How to correct susceptibility
735 distortions in spin-echo echo-planar images: application to diffusion
736 tensor imaging, *NeuroImage* 20 (2003) 870–888.

737 [45] S. M. Smith, Fast robust automated brain extraction, *Human Brain*
738 *Mapping* 17 (2002) 143–155.

739 [46] J. Veraart, D. S. Novikov, D. Christiaens, B. Ades-aron, J. Sijbers,
740 E. Fieremans, Denoising of diffusion MRI using random matrix theory,
741 *NeuroImage* 142 (2016) 394–406.

742 [47] J. L. R. Andersson, S. N. Sotiroopoulos, An integrated approach to
743 correction for off-resonance effects and subject movement in diffusion
744 MR imaging, *NeuroImage* 125 (2016) 1063–1078.

745 [48] N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A.
746 Yushkevich, J. C. Gee, N4ITK: Improved N3 Bias Correction, *IEEE*
747 *Transactions on Medical Imaging* 29 (2010) 1310–1320.

748 [49] D. Raffelt, T. Dhollander, J.-D. Tournier, R. Tabbara, R. E. Smith,
749 E. Pierre, A. Connelly, Bias field correction and intensity normalisation
750 for quantitative analysis of apparent fibre density, in: *Proc. Intl. Soc.*
751 *Mag. Reson. Med.*, volume 25, p. 3541.

752 [50] R. Mito, D. Raffelt, T. Dhollander, D. N. Vaughan, J.-D. Tournier,
753 O. Salvado, A. Brodtmann, C. C. Rowe, V. L. Villemagne, A. Connelly,
754 Fibre-specific white matter reductions in Alzheimer’s disease and mild
755 cognitive impairment, *Brain* 141 (2018) 888–902.

756 [51] T. B. Dyrby, H. Lundell, M. W. Burke, N. L. Reislev, O. B. Paulson,
757 M. Ptito, H. R. Siebner, Interpolation of diffusion weighted imaging
758 datasets, *NeuroImage* 103 (2014) 202–213.

759 [52] P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann, C. Barillot, An
760 Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic
761 Resonance Images, *IEEE Transactions on Medical Imaging* 27 (2008)
762 425–441.

763 [53] B. B. Avants, C. L. Epstein, M. Grossman, J. C. Gee, Symmetric dif-
764 feomorphic image registration with cross-correlation: Evaluating auto-
765 mated labeling of elderly and neurodegenerative brain, *Medical Image
766 Analysis* 12 (2008) 26–41.

767 [54] Y. Zhang, M. Brady, S. Smith, Segmentation of brain MR images
768 through a hidden Markov random field model and the expectation-
769 maximization algorithm, *IEEE transactions on medical imaging* 20
770 (2001) 45–57.

771 [55] R. E. Smith, J.-D. Tournier, F. Calamante, A. Connelly, Anatomically-
772 constrained tractography: Improved diffusion MRI streamlines tractog-
773 raphy through effective use of anatomical information, *NeuroImage* 62
774 (2012) 1924–1938.

775 [56] E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. van der Walt,
776 M. Descoteaux, I. Nimmo-Smith, Dipy Contributors, Dipy, a library
777 for the analysis of diffusion MRI data, *Frontiers in Neuroinformatics* 8
778 (2014) 8.

779 [57] M. Descoteaux, E. Angelino, S. Fitzgibbons, R. Deriche, Regularized,
780 fast, and robust analytical Q-ball imaging, *Magnetic Resonance in
781 Medicine* 58 (2007) 497–510.

782 [58] J.-D. Tournier, F. Calamante, A. Connelly, Robust determination of
783 the fibre orientation distribution in diffusion MRI: Non-negativity con-
784 strained super-resolved spherical deconvolution, *NeuroImage* 35 (2007)
785 1459–1472.

786 [59] E. Garyfallidis, M. Zucchini, J. Houde, M. Descoteaux, How to perform
787 best odf reconstruction from the human connectome project sampling
788 scheme, in: *Proc. Intl. Soc. Mag. Reson. Med.*

789 [60] C. Reveley, A. K. Seth, C. Pierpaoli, A. C. Silva, D. Yu, R. C. Saun-
790 ders, D. A. Leopold, F. Q. Ye, Superficial white matter fiber systems
791 impede detection of long-range cortical connections in diffusion MR trac-
792 tography, *Proceedings of the National Academy of Sciences* 112 (2015)
793 E2820–E2828.

794 [61] J. S. Kim, V. Singh, J. K. Lee, J. Lerch, Y. Ad-Dab'bagh, D. MacDon-
795 ald, J. M. Lee, S. I. Kim, A. C. Evans, Automated 3-D extraction and

796 evaluation of the inner and outer cortical surfaces using a Laplacian map
797 and partial volume effect classification, NeuroImage 27 (2005) 210–221.

798 [62] T. Sherif, P. Rioux, M.-E. Rousseau, N. Kassis, N. Beck, R. Adalat,
799 S. Das, T. Glatard, A. C. Evans, CBRAIN: a web-based, distributed
800 computing platform for collaborative neuroimaging research, Frontiers
801 in Neuroinformatics 8 (2014) 54.

802 [63] F. Rheault, A. D. Benedictis, A. Daducci, C. Maffei, C. M. W. Tax,
803 D. Romascano, E. Caverzasi, F. C. Morency, F. Corrivetti, F. Pestilli,
804 G. Girard, G. Theaud, I. Zemmoura, J. Hau, K. Glavin, K. M. Jordan,
805 K. Pomiecko, M. Chamberland, M. Barakovic, N. Goyette, P. Poulin,
806 Q. Chenot, S. S. Panesar, S. Sarubbo, L. Petit, M. Descoteaux, Tracto-
807 storm: The what, why, and how of tractography dissection repro-
808 ducibility, Human Brain Mapping 41 (2020) 1859–1874.

809 [64] C. M. Bishop, Mixture density networks, 1994.

810 [65] A. Graves, Generating Sequences With Recurrent Neural Networks,
811 arXiv:1308.0850 [cs] (2014).

812 [66] J. L. Ba, J. R. Kiros, G. E. Hinton, Layer Normalization,
813 arXiv:1607.06450 [cs, stat] (2016).

814 [67] P. Poulin, F. Rheault, E. St-Onge, P.-M. Jodoin, M. Descoteaux,
815 Bundle-Wise Deep Tracker: Learning to track bundle-specific stream-
816 line paths, in: Proceedings of the International Society for Magnetic
817 Resonance in Medicine, ISMRM-ESMRMB, 2018.