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Abstract

TractoInferno is the world’s largest open-source multi-site tractography
database, including both research- and clinical-like human acquisitions, aimed
specifically at machine learning tractography approaches and related ML al-
gorithms. It provides 284 datasets acquired from 37T scanners across 6 differ-
ent sites. Available data includes T1-weighted images, single-shell diffusion
MRI (dMRI) acquisitions, spherical harmonics fitted to the dMRI signal,
fiber ODF's, and reference streamlines for 30 delineated bundles generated
using 4 tractography algorithms, as well as masks needed to run tractog-
raphy algorithms. Manual quality control was additionally performed at
multiple steps of the pipeline. We showcase TractoInferno by benchmark-
ing the learn2track algorithm and 5 variations of the same recurrent neural
network architecture. Creating the Tractolnferno database required approx-
imately 20,000 CPU-hours of processing power, 200 man-hours of manual
QC, 3,000 GPU-hours of training baseline models, and 4 Tb of storage, to
produce a final database of 350 Gb. By providing a standardized training
dataset and evaluation protocol, TractoInferno is an excellent tool to address
common issues in machine learning tractography.
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1 1. Introduction

2 Tractography is the computerized process of reconstructing brain white
s matter fibers from diffusion MRI (dMRI) data. It usually consists of three
4+ steps: i) estimating local fiber directions from carefully pre-processed diffusion-
s weighted images (DWI) (e.g. denoising, eddy, motion, susceptibility correc-
s tions), i) reconstructing white matter pathways (i.e. tractography), and iii)
7 delineating bundles (a group of similar streamlines connecting the same brain
s regions) [1} 2.

0 Current “traditional” tractography approaches (deterministic and prob-
10 abilistic) mostly rely on making local point-wise decisions in the fiber ODF
u  field, iterating until termination [3, [4]. Global methods have also been pro-
12 posed [0 [0, [7, 8], but Rheault et al. mentions that “[...] global tractography
13 methods ultimately rely on local information patched together” and “even
1 global tractography algorithms struggle to correctly assemble a streamline”
15 [9]. Tractogram filtering [10, 11} 12), 3] is also a popular post-processing
16 method used to remove streamlines that do not fit anatomical constraints
17 (such as explaining the underlying signal), but requires an over-complete
18 tractogram as it does not create new streamlines, thus effectively “wast-
v ing” computing power. Finally, streamline clustering [14], [15] can be used
20 to group streamlines based on similarity and remove possible outliers, but
a1 it suffers from the same drawback as tractogram filtering, as it requires an
2 over-complete tractogram.

2 These approaches mostly rely on mathematical models or anatomical pri-
2 ors, and do not require histological ground truth to work. However, this is
»s an issue for machine learning algorithms, where the training dataset is an
2 integral part of the resulting model [16]. Machine learning methods need ref-
a7 erence streamlines to train on. Unfortunately, on real datasets, streamlines
s can only be generated by traditional [and yet non-machine learning] trac-
» tography methods, which are imperfect by their very nature [2]. This is an
50 issue for testing if the predictions made by these methods are reliable or not.
a Luckily, by combining streamlines (both true positives and false positives)
2 generated by several tractography algorithms and using filtering and cluster-
13 ing to remove as much false positives as possible, it is possible to establish
s a gold standard reference dataset. Even without a histologically accurate
55 ground truth, it would be desirable to have algorithms that can reproduce
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s a gold standard reference while generating as little false positive streamlines
;7 as possible.

38 In the recent years, machine learning algorithms have been proposed to
% improve the second step of the process by some combination of 1) taking
w advantage of the full diffusion information or other modalities, 2) generating
s more reliable streamlines using a reference teacher dataset, or 3) integrating
» more spatial context to guide the tracking process (either neighbourhood or
s path information) [16] 17, 18, 19, 20]. For example, TractSeg [19] is a method
« that first identifies the volume of reference of a specific white matter bundle,
s and then generates a bundle-specific tractogram by running a traditional
s tractography algorithm inside the bundle mask only. To do so, convolutional
« neural networks [21I] learn to map the diffusion volume to multiple binary
s bundle segmentation maps. LearnToTrack [18] and DeepTract [22] propose
s to use information along a streamline path to guide its generation process
o (instead of making point-wise decisions) using Recurrent Neural Networks
s [23, 24]. Entrack [20] proposes a Neural Network with a fixed context of 4
52 streamline steps, and models a probabilistic streamline direction using a von
53 Mises-Fisher distribution trained with entropy regularization.

54 Unfortunately, these machine learning methods train and evaluate their
55 models on different dataset which makes it difficult to compare their true
ss generalization capabilities [16]. It is often a combination of the ISMRM2015
57 Tractography Challenge [2] and some subjects from the HCP Young Adults
ss database [25]. Additionally, data pre-processing might vary between pro-
5o posed methods, and different algorithms and protocols are used to generate
s the reference tracts. Finally, evaluating the generalizability of a model is
s almost impossible without diverse (aka multi-site) training and test sets. As
&2 a result, all those discrepancies in methodology make it very challenging to
3 assess the reliability of a single approach, and make it almost impossible to
s fairly compare approaches.

65 We propose to address this problem by building TractoInferno: the largest
s publicly available, multi-site, dMRI and tractography database, which pro-
e vides a new baseline for training and evaluating machine learning tractogra-
s¢ phy methods. It provides 284 datasets acquired from 3T scanners across 6
oo different sites. Tractolnferno includes T1-weighted images, single-shell diffu-
w0 sion MRI (dMRI) acquisitions, spherical harmonics fitted to the dMRI signal,
7 fiber ODFs, and reference streamlines for 30 delineated bundles generated by
72 combining 4 different tractography algorithms, as well as masks needed to
73 run tractography algorithms.
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74 We use TractoInferno to benchmark the 4 tractography algorithms used
75 to create the reference tractograms, along with the learn2track [18] algo-
7 rithm and 5 variations of the same recurrent neural network architecture,
7 inspired in part by the models of (Benou and Riklin Raviv) and (Wegmayr
s |and Buhmann)) [22] 20].

79 Creating the TractoInferno database required approximately 20,000 CPU-
g0 hours of processing power, 200 man-hours of manual QC, 3,000 GPU-hours
&1 of training baseline models, and 4 Tb of storage, to produce a final database
&2 of 350 Gb.

8 TractoInferno is a dataset intended to promote the development of ma-
&« chine learning tractography algorithms, which generally suffer from multiple
ss issues, such as limited datasets or inconsistent training data. Its large-scale
ss and multi-site aspect is an undeniable benefit to best evaluate the general-
g7 ization capabilities of new ML algorithms. We consider Tractolnferno to be
ss by far the best available tool for training, evaluating, and comparing future
g0 machine learning tractography algorithms.

o 2. Datasets

o1 The proposed dataset is made of a combination of six AMRI databases,
o either publicly available and free to redistribute or acquired through open-
o3 access data sharing agreements. Databases were chosen with the explicit
o goal of having a diversity of scanner manufacturers, models, and protocols.
s We chose to fix certain parameters for uniformity, such as having only 3T
o scanners, and b-values of around 1000 s/mm?, as we don’t know how they
or could affect machine learning models. The focus is effectively on assessing
e the reliability of algorithms under different scanner manufacturers and acqui-
o sition protocols. We obtained an initial number of data from 354 subjects,
o with the original metadata described in Table

w 2.1. Mazoyer et. al - BIL & GIN

102 We retained 39 subjects from the BIL&GIN database [26], acquired on a
103 3T Philips Achieva, with the following dMRI protocol: TR = 8500 ms, TE =
s 81 ms, angle = 90°, SENSE reduction factor = 2.5, FOV 224 mm, acquisition
s matrix 112 x 112, 2 mm?® isotropic voxel.

106 The dMRI acquisition consisted of 21 gradient directions at b = 1000
w7 s/mm?, acquired twice by reversing the polarity, and then repeated twice
ws for a total of 8 DWI images, averaged down to a single volume with 21

4
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Mazoyer | Tsushida | DeLuca | Poldrack Tamm Tremblay
Name et. al et. al et. al et. al et. al et. al
[26] [27] [28] [29] [30] [31]
3T 3T 3T 3T 30 GE | o
Scanner Philips Siemens Siemens Siemens Discovery wemens
Achieva Prisma Prisma Trio MR750 Magnet(_)m
TIM Trio
# subjects | 39 20 64 130 86 15
Age avg 28.1 21.4 31.9 31.3 N/A 58.1
Age std 7.3 1.7 7.6 8.7 N/A 5.3
F/M 0/39 10/10 49/15 62/68 44/42 0/15
L/R 8/31 N/A 0/64 N/A N/A 3/12
Resolution | 2 1.75 2 2 2.3 2
b-value 1000 1000 1000 1000 1000 700
TR 8500 3540 1800 9000 7000 9200
TE 81 75 70 93 81 84
Nb dirs 21%* 32 128%** 64 45 30

Table 1: Original datasets metadata. Not all metadata information was available from the
original datasets. Missing metadata is reported as {N/A}. Resolution is in mm3 isotropic.
b-value is in s/mm?. TR and TE are in ms.

*

another identical acquisition (total of 84 DWI volumes).
**. 64 directions acquired twice, not averaged.

: 21 directions acquired twice by reversing the gradient polarity, then averaged over

directions. A single b = 0 s/mm? was also acquired alongside the DWTI
images. Subjects were all males, with age mean/std of 28.1 +- 7.3 (Min: 20,
Max: 57). 8 subjects were left-handed and 31 right-handed.

2.2. Tsushida et. al - MRi-Share

We obtained 20 subjects from the MRi-Share database [27], acquired
on a 3T Siemens Prisma, with a dMRI protocol designed to emulate the
UKBioBank project [32], specifically: TR = 3540 ms, TE = 75 ms, 1.75

mm3

isotropic voxel.

We selected the b = 1000 s/mm? DWI images only, consisting of 32
gradient directions, and 3 provided b = 0 s/mm? images. Subjects were
composed of 10 females, 10 males, with age mean/std of 21.4 +- 1.7. Mini-
mum /maximum age and handed-ness metadata were not available.

2.83. DeLuca et. al - Bilingualism and the brain
We have 64 subjects from the Bilingualism and the Brain database [28|
33], acquired on a 3T Siemens Prisma, with the following dMRI protocol:
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24 Echo planar imaging, TR = 1800 ms, TE = 70 ms, acquisition matrix 256 x
s 256, 2 mm? isotropic voxel.

126 The dMRI acquisition consisted of 64 gradient directions at b = 1000
127 s/mm?, acquired twice, and 4 b = 0 s/mm? images. Subjects were composed
125 of 49 females and 15 males, with age mean/std of 31.9 +- 7.6 (Min: 18, Max:
120 52). All subjects were right-handed.

o 2.4. Poldrack et. al - UCLA CNP

131 We got 130 healthy subjects from the UCLA Consortium for Neuropsy-
132 chiatric Phenomics LA5c Study [29], acquired on a 3T Siemens Trio, with
133 the following dMRI protocol: echo planar imaging, TR = 9000 ms, TE = 93
134 ms, acquisition matrix 93 x 93, 90 degree flip angle, 2 mm? isotropic voxel.
135 DWI were corrected for eddy currents and head motion using the b0 images
136 as reference.

137 The dMRI acquisition consisted of 64 gradient directions at b = 1000
s s/mm? and 1 b = 0 s/mm? image. Subjects consisted of 62 females and 68
130 males, with age mean/std of 31.3 +- 8.7 (Min: 21, Max: 50). Handed-ness
1o metadata was not available.

w 2.5, Tamm et. al - The Stockholm Sleepy Brain Study

142 We retained 86 subjects from the Stockholm Sleepy Brain Study database
1z [30, B34], acquired on a 3T GE Discovery MR750, with the following dMRI
s protocol: Echo planar imaging, TR = 7000 ms, TE = 81 ms, 2.3 mm?
us isotropic voxel.

146 The dMRI acquisition consisted of 45 gradient directions at b = 1000
w7 s/mm? along with 5 b = 0 s/mm? images. Subjects were composed of 44
s females and 42 males, with 47 subjects in the [20-30] years old bracket and
1o 39 subjects in the [65-75] years old bracket. Handedness was not available.

s 2.6. Tremblay et. al - mTBI and Aging study (controls)

151 We obtained 15 subjects from the mTBI and Aging Study [31], all controls
12 from the “remote” group. they were acquired on a 3T Siemens Magnetom
153 TIM Trio, with the following dMRI protocol: TR = 9200 ms, TE = 84 ms,
15 2 mm? isotropic voxel.

155 The dMRI acquisition consisted of 30 gradient directions at b = 700
156 s/mm?. along with 1 b = 0 s/mm? image. Subjects were all males, with age
157 mean/std of 58.1 +- 5.3 (Min: 52, Max: 67). 3 subjects were left-handed
153 and 12 were right-handed.
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159 3. Methodology

160 We processed the original acquisition volumes of the 354 aforementioned
11 subjects with the same pipeline to offer a uniform database of AMRI images,
12 derivatives, and bundle tractograms. First, all original DWI went through
163 a manual quality control (QC) step to remove any obvious errors prior to
1« the processing pipeline. Then, the TractoFlow pipeline was run to process
165 the data and compute necessary derivatives [35], 36 87]. Another QC step
16 was executed afterwards, to remove images with artifacts that could not be
17 corrected automatically. Next, ensemble tractography was performed using
s four different algorithms to extract a diverse set of streamlines: deterministic
160 tractography [38], probabilistic tractography [39], Particle-Filtered Tractog-
o raphy [40] and Surface-Enhanced Tractography [41]. RecoBundlesX (RBX)
i was used subsequently to perform bundle extraction on the whole-brain trac-
12 tograms, using the default suggested bundle models [42] [43]. A final man-
i3 ual QC step was performed to examine the extracted bundles, and remove
s anything that contained obvious mistakes, or did not meet our criteria for
s bundle extraction. All manual quality control steps were done using dm-
s riqepy (https://github.com/scilus/dmriqc_flow). Figure [l shows the
17 processing steps of Tractolnferno.

178 From the initial 354 volumes, after all the processing steps and quality
7o control, we were left with 284 volumes and associated bundles. The final vol-
180 umes were split into training, validation and test sets with a 70%/20%/10%
1 split for reproducibility across future experiments. The specific commands
12 for the whole pipeline are available in [Appendix Al For a final dataset size
183 of 350Gb, we needed approximately 20,000 CPU-hours of processing time,
184 200 man-hours of manual QC, and 4 Tb of storage. The models bench-
15 marked in section |5 also required an additional 3,000 GPU-hours for training
18 and generating candidate tractograms. In the next sub-sections, we detail
17 the Tractolnferno processing steps.

188 3.1. Raw data QC

189 We used dmrigepy to generate QC reports. These reports are in HTML
w0 format so it is easily assessed and annotated by multiple people. The raw data
11 reports contain multiple tabs with complementary information, as shown in
12 Figure 2] Three different raters went through the QC reports and individ-
03 ually rated every acquisition with a “score” (either pass, fail, or warning)
e and comment if necessary. Specifically, failure cases included the presence
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Figure 1: TractoInferno processing pipeline, from original DWI images to final bundles.

s of visual artifacts (e.g. missing slices, low signal-to-noise ratio, corrupted
105 data, high spatial distortion) and other artifacts harder to identify (such as
w7 a “broken” gradient acquisition scheme). Afterwards, all subjects tagged as
s “fail” were removed, and considered as impossible to repair with our avail-
109 able tools. All subjects tagged as “pass” or “warning” were passed on for
20 TractoFlow, the next step in the pipeline. Subjects tagged as “warning”
21 were re-examined after the TractoFlow processing to examine if any issues
22 remained, or if they were compensated for by the pipeline.

203 3.2. TractoFlow pipeline

204 We used TractoFlow 2.1.1 [35] to process the raw DWI. To make sure
205 that every processing step was traceable and reproducible, a Singularity [30]
206 image was used along with the Nextflow pipeline [37]. Note however that
207 some results may not be 100% reproducible due to the uncertain nature of

8
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(b) QC page for DWIL.

Current subject: openneuro_246_bval  63/210

d .
s 3 . o
. DI
[ .
o o*
S /==

(c) QC page for acquisition scheme.

Figure 2: Examples of HTML pages generated by dmrigcpy for data QC. (a) 3 slices of
the T1 image (one for each axis), plus a mosaic of multiple axial slices. (b) 3 GIFs of
the dMRI (one slice in each axis), plus a mosaic of multiple axial slices; (¢) The gradient
directions represented on a sphere.

208 registration, parallel processing, and floating point precision. We ran the
200 full pipeline except for the Topup process, as not all reverse b0 images were
20 available [44]. Specifically, the pipeline executed the following steps:

o11 e DWI brain extraction [45], denoising [46], eddy current correction [47],

212 N4 bias field correction [48], cropping, normalization [49] 50], and re-
213 sampling [51];

214 e T1 denoising [52], N4 bias field correction [48], registration [53] and
215 tissue segmentation [54] maps for Particle-Filtered Tractography [40,
216 55];

217 e DTI fitting and metrics extraction [50];
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218 e fODF fitting using constrained spherical deconvolution [57, 58] 59], with
219 a fiber response function fixed manually to [0.0015,0.0004, 0.0004].

20 3.8, TractoFlow results QC

221 Outputs from TractoFlow went through a manual QC pass to identify
2o failure cases. Using dmrigepy, we were able to easily and quickly look at
223 all maps derived from DTI and fODF metrics, along with T1 registration
24 overlay. For example, RGB maps extracted from DTI metrics allowed us to
25 quickly identify if tensor peaks were well-aligned or if a flip was needed, and
26 11 registration overlays showed whether too much deformation was present.

271 3.4. Ensemble tractography

228 Using a single tractography method as reference for a machine learn-
29 ing algorithm might induce unwanted biases. To avoid this, we chose to
230 use ensemble tractography by combining 4 different algorithms to generate
21 reference streamlines, namely deterministic [38], probabilistic [39], particle-
2 filtered [40], and surface-enhanced [41] tractography. We fixed the tracking
213 parameters to the standard default values:

23 e WM + WM/GM interface seeding
235 e 10 seeds per voxel (Det, Prob, PFT) or 10,000,000 surface seeds (SET)
236 e Step size 0.2mm (Det, Prob, SET) or 0.5mm (PFT)

237 e WM tracking mask (Det, Prob) or WM/GM/CSF probability maps
- (PFT, SET)

29 We detail each algorithm in the following three subsections.

a0 3.4.1. Determanistic tracking

21 Deterministic tracking [38] chooses the fODF peak most aligned with
a2 the previous direction as the next streamline step. It seems better suited
23 to connectomics studies [3], mainly on account of the low number of false
s positives it produces. While it may be inadequate for spatial exploration and
25 bundle reconstruction, deterministic tracking essentially produces smooth
26 streamlines that follow the easiest path through the fODF field. Smooth
a7 streamlines are likely more desirable for machine learning algorithms rather
2s  than chaotic streamlines that often change directions locally.

10
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2 3.4.2. Probabilistic tracking and Particle-Filtered Tractography

250 Probabilistic tracking [39] samples a new streamline direction inside a
51 cone of evaluation aligned with the previous direction, with a probability
2 distribution proportional to the shape of the fiber ODF within the cone.

253 Particle-Filtered Tractography [40] is an improvement over probabilis-
s tic tracking. It takes as input probability maps for streamline continua-
25 tion/stopping criteria, and allows to “go back” a few steps when a streamline
56 terminates in a region not included in the “termination-allowed” map.

257 Both algorithms are better suited for spatial exploration, at the cost of
s producing much more false positives. They are especially effective for bundle
9 reconstruction, in which case there are anatomical priors about both the
x%0 endpoints that should be connected and the pathway that should be followed
21 by the bundle.

w2 3.4.3. Surface-Enhanced Tracking

263 Finally, Surface-Enhanced Tracking [41] is a state-of-the-art tractography
x4 algorithm that relies on initializing streamlines in an anatomically plausible
s way at the cortex, then running a PFT tracking algorithm. Indeed, gyri have
%6 been shown to be problematic regions for tractography, where low dMRI
27 resolution can lead to a gyral bias in streamline terminations [60].

268 To this end, we computed the WM-GM boundary surface from the T1w
20 image using the CIVET [61] tool and the CBRAIN [62] platform. Then, SET
70 uses a geometric flow method, based on surface orthogonality, to reconstruct
on the fanning structure of the superficial white matter streamlines. The output
o2 of this flow is used to initialize and terminate a PF'T tractography algorithm.
a3 The result is a tractogram with improved cortex coverage, improved fanning
oz structure in gyri, and reduced gyral bias.

s 3.5. Bundle segmentation with RBX

276 We used RBX [42, [43] to automatically extract WM bundles. The algo-
77 rithm works by matching streamlines to an atlas of reference bundles. First,
s a quick registration step brings the atlas into native space using the atlas
2o FA image. Then, a whole-brain tractogram is compared against the bundles
280 atlas using multiple sets of parameters to extract a fixed set of bundles, listed
21 in Table 2l Finally, a majority voting step extracts the final streamlines for
22 each bundle.

283 The whole pipeline was run using a Singularity container [36] and Nextflow
20 [37] for reproducibility. It is freely available online (https://github.com/

11
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Anterior commisure

Arcuate fasciculus

Corpus callosum, Frontal lobe (most anterior part)
Corpus callosum, Frontal lobe (most posterior part)
Corpus callosum, Occipital lobe
Corpus callosum, Parietal lobe

Corpus callosum, Pre/Post central gyri
Corpus callosum, Temporal lobe
Cingulum

Frontal aslant tract

Fronto-pontine tract

Fornix

Inferior cerebellar peduncle

Inferior fronto-occipital fasciculus
Inferior longitudinal fasciculus

Middle cerebellar peduncle

Middle longitudinal fascicle

Optic radiation and Meyer’s loop
Posterior commisure

parieto-occipito pontine tract
Pyramidal tract

Superior cerebellar peduncle

Superior longitudinal fasciculus
Uncinate fasciculus

Table 2: List of bundles in the default RBX atlas.

25 scilus/rbx_flow/)), along with a suggested bundles atlas (https://zenodo.
25 org/record/4630660#.YJvmwXVKhdU).

27 3.6. Bundle segmentation QQC

8 3.0.1. Automated pre-QC

289 To facilitate the QC procedure, we ran a pre-QC analysis to automati-
200 cally rate bundles according to pre-defined criteria before manual inspection.
201 These criteria are detailed in Table[3] Afterwards, all bundles were looked at
22 manually through an easier procedure that consists in confirming an already
203 assigned rating rather than rating from scratch.
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Rating Criteria

x < 50
x == 0 in either hemisphere (if symmetric bundle).

Warning  z ¢ [ — 1.50, u + 3.50]
Pass x € [u—1.50, u+ 3.50]

Fail

Table 3: Automatic rating criteria, in order of priority.

x is the number of streamlines of the bundle of interest;

w and o are the average and the standard deviation, respectively, of the number of stream-
lines for the bundle of interest, across all subjects;

s 3.6.2. Manual quality control using dmrigcpy

205 A bundle was removed if it looked visually incomplete or if it deviated
26 from the expected pathway. A poor bundle reconstruction might have an
207 algorithmic cause, such as sub-optimal tracking parameters or improper reg-
28 istration in RBX. It might also have an anatomical cause, such as unknown
200 or undisclosed neurological conditions. Furthermore, visually evaluating a
s0 bundle reconstruction is very subjective, and a rater’s evaluation can be af-
s fected by the time of day, duration of QC, or even the angle of visualization
32 in the QC tool [63]. For all those reasons, and with the goal of establishing
33 a gold standard for machine learning tractography methods, we chose to be
50 somewhat severe in the rating of bundles, in order to minimize the number
205 of false positives, even if that meant missing out some true positive data.

w6 After QC, we chose to ignore the following bundles from the atlas due to
s07 - generalized reconstruction errors : AC, CC_Te, Fx, ICP, PC, SCP.

s 4. Evaluation pipeline for candidate tractograms

300 When evaluating machine learning tractography algorithms, we focus on
50 the volume covered by the recognized bundles (compared to the gold standard
su  bundles). We make no assumptions about the ability to “explore” the brain
sz outside the scope of the Tractolnferno dataset. Consequently, we ignore
a3 anything that is not recognized as a candidate bundle, and do not try to
s categorize streamlines as valid or invalid connections.

315 Candidate bundles are extracted in the same way that we defined the gold
ais  standard bundles. First, we run RBX to extract candidate bundles from the
a7 candidate whole-brain tractogram. Candidate bundles are then converted to
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s1s binary volume coverage masks. Finally, each candidate mask is compared
310 against its corresponding gold standard bundle mask to compute evaluation
320 metrics.

321 For each subject in the testset, and for each available bundle of the given
122 subject, we extract the following evaluation metrics: Dice score, overlap
13 and overreach. The scores are averaged over all subjects of the testset to
s24  provide final scores. Altogether, these metrics help better understand the
»s  performance of a candidate tractography algorithm.

326 The evaluation pipeline is available online (https://github.com/scil-vital/
2 TractoInferno/)) and should be used with the provided Tractolnferno test-
»s  set, along with the default RBX-flow models.

29 5. RNN-based tractography

330 To gauge the performances of ML models trained on the Tractolnferno
s dataset, we implemented an RNN model and the necessary framework to
;2 train it on a large-scale tractography database, which was used multiple
33 times in published papers in the last few years, such as Learn2Track [18],
s DeepTract [22], and Entrack [20]. Using the base implementation, we can
15 easily modify the last layer of the model and its loss function to mimic the
136 mentioned RNN models, and a few more.

337 We choose the stacked Long Short-Term Memory (LSTM) network as the
18 recurrent building block for conditional streamline prediction. The LSTM is
s9 - a type of RNN designed specifically to handle long-term dependencies, with
s the ability to deal with exploding and vanishing gradient problems [24].

s d.1. Learn2track

32 Learn2track[18] proposed an RNN model for tractography, where the out-
sz put of the model at each timestep is a 3D vector, used as the next direction
saa Of the streamline. The predicted vector is then scaled to the chosen step size,
us in order to match the lengths of the target and prediction.

From the same idea, we implemented an LSTM for deterministic tractog-
raphy. As in the original learn2track paper, we used the squared error loss
function between the target and prediction. The loss for a single streamline
S composed of T steps is the following squared error:

T

L(S) == (d;—dy)

t=1
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u where d; and d, are the target and predicted directions. This model is noted
s as Det-SE.

However, to accurately reflect that only the direction of the predicted
vector is important (not the magnitude), we also performed an experiment
where we minimized the negative cosine similarity between the target and
predicted directions:

T /\

T
— Y cos(6)
; Z ||dt||||dt||

us  where 6, is the angle between d; and cit. This model is noted as Det-Cosine.

s 5.2. DeepTract

350 In the same spirit as learn2track, DeepTract [22] is a recurrent model for
51 probabilistic tractography. In this case, the model output is a distribution
2 over classes, where each class corresponds to a direction on the unit sphere,
353 1.e. a discrete conditional fiber ODF.

As in the original paper, we implemented a cross-entropy loss function:

T

Z ytm lOg ytm)

s« where M is the number of classes, and y; and g, are vectors of target and
35 predicted class probabilities. Note that we did not use label smoothing as
16 in the original paper, nor entropy-based tracking termination. This model is
7 noted as Prob-Sphere.

s 0.3, Entrack

350 Entrack[20] is a non-recurrent artificial neural network for probabilistic
w0 tractography. The model is instead a feed-forward neural network, but in-
1 cludes the previous streamline direction as prior information to guide the
w2 tracking process. The model outputs the parameters for a von Mises-Fisher
33 distribution, i.e. a 3D unit-length vector for the mean, and a scalar concen-
w4 tration parameter. The distribution is analogous to a Gaussian distribution,
35 but defined on the unit sphere instead of euclidean space.
We chose to apply the same general idea, using a recurrent network that
predicts the parameters for a von Mises-Fisher distribution on a 3D sphere.
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We used the negative log-likelihood of the von Mises-Fisher distribution as
the loss function:

L(S) == log[C(k) exp(ky fi,"dy)]

where the predicted parameters of the distribution are g, (a unit-length
vector) and R, (a scalar concentration parameter), and d; is the target unit-
length vector at step ¢t. C(k;) abbreviates the normalization constant asso-
ciated with the distribution, defined as following in the 3-dimensional case:

B K
- 2(er — ek)

03(14)

366 Note that unlike the original method, we didn’t use an entropy maximiza-
7 tion scheme to regularize the predicted distribution. This implementation is
e noted as Prob-vMF.

w0 0.4. Gaussian distribution output

370 Following FEntrack and the idea of predicting the parameters of a contin-
sn uous probability distribution, we implemented another model, using a mul-
sz tivariate Gaussian distribution instead of a von Mises-Fisher distribution.
sz 'This model outputs a 3D vector for the mean, and 3 scalars for the variance,
s (one in each dimension). We choose to use a diagonal covariance matrix, for
a5 stability, and do not output any values for covariance.

In the 3-dimensional case, the negative log-likelihood loss function is:

T 1 1 1

L(S)=— Z log[—A eXP(_§<dt — 1)’ (di—py))]
t=1 (2m)3] 3|
o2, 0 0
where 3, = 0 Uzt 0 | is the predicted diagonal covariance matrix at
0 0 o3

376
57 streamline step ¢. This model is noted as Prob-Gaussian.

ws 5.5, Gaussian mixture distribution output

379 The previous Gaussian model outputs a single average direction which is
;0 appropriated in most cases. However, there may be cases of bundle fanning or
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ss1 forking where the single-mode assumption may be an issue. This is because
2 the Gaussian probability density can only be spread over a large area.
383 As such, some regions may be better modelled with more than one lo-
s« cation of higher density. To this end, we implemented a mixture density
s network[64] using a mixture of 3 Gaussian distributions. For each Gaussian,
s the model outputs 1 mixture weight, a 3D vector for the mean, and 3 scalars
37 for the variances (again, we fix the covariances to zero).

In the 3-dimensional case, using a mixture of 3 Gaussians, the negative

log-likelihood loss function is:

T 3
L(S) = - Zlog Z it N (di| fry, Sk
t=1

T
1 f vyl .
= — E log E Ot ——= eXP(_§(dt — ) "2 (di — )
t=1 (27)3| e

s where k denotes the number of Gaussians in the mixture, and ¢y, is the
;0 mixture parameter for the Gaussian k£ at streamline step ¢t. This model is
0 noted as Prob-Mizture.

s 5.6, Implementation details

302 All models were composed of 5 hidden layers of 500 units, used dropout
33 with a rate of 0.1, and a batch size of 50 000 streamline steps. We added skip
s connections from the input layer to all hidden layers, and from all hidden
25 layers to the output layer, inspired by [65]. We applied layer normalization
1 [66] between all hidden layers, in order to stabilize the hidden state dynamics
57 in recurrent neural networks. We used the Adam optimizer with the default
398 parameters.

300 For all experiments, we used the maximal spherical harmonics (SH) coeffi-
a0 cients of order 6 fitted to the TractoFlow-processed DWI signal as the input
w1 signal. In all cases, the models were trained using the exact same train-
w2 ing/validation/test datasets, with a streamline step size fixed to 1.0 mm for
w03 training and tracking. To help guide the model, we also included as input
w4 the diffusion signal in a neighbourhood of 6 directions (two for each axis,
ws positive and negative) at a distance of 1.2 mm.

406 All models were trained for a maximum of 30 epochs (corresponding to
w7 around 2 weeks of training time on a 16Gb NVidia V100SXM2), but early
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ws stopping was used to stop training when the loss has not improved after 5
wo epochs. Each epoch was capped to 10 000 updates, as the sheer size of the
a0 dataset would otherwise require multiple days of training for a single epoch.

a1 6. Results & Discussion

a2 We report in Table [4] the results of the Tractolnferno evaluation pipeline
a3 for each individual tractography algorithm used to build the reference bun-
aa  dles, and for every model detailed in Section [5| after the training procedure.
a15 Of all the base algorithms used to build the reference tractograms, PFT
a6 performed the best in terms of Dice score and overlap. This is consistent with
a7 the fact that it is a state-of-the-art algorithm, and works best when trying
ais to fill the space with streamlines. However, we show that no algorithm can
a0 single-handedly account for the gold standard, and using the union of all
20 methods provides a more complete reconstruction.

421 In both traditional and RNN-based variants, models with the best Dice/
a2 overlap results also had the worst overreach score. However, in the case
»3 of bundle reconstruction, it is less of a concern, because there is always a
w24 possibility of applying post-processing techniques to filter streamlines. Also,

Dice  Overlap Overreach

Reference methods

Deterministic 0.397 0.267 0.029
Probabilistic 0.553 0.433 0.068
PFT 0.680 0.688 0.266
SET 0.624 0.570 0.184
Ensemble (Det+Prob+PFT+SET) 1.000 1.000 0.000
RNN-based methods

Det-SE (Learn2track) 0.580 0.495 0.172
Det-Cosine 0.606 0.535 0.204
Prob-Sphere (DeepTract) 0.601 0.534 0.202
Prob-vMF (Entrack) N/A N/A N/A
Prob-Gaussian 0.624 0.585 0.264
Prob-Mixture 0.407 0.284 0.053

Table 4: Tractography evaluation results on the TractoInferno dataset. The Prob-vMF
model did not produce any results, and is noted as {N/A}.
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Dice: 0.345 Dice: 0.590 Dice: 0.805 Dice: 0.767 Dice: 1.000
OL: 0.209 OL: 0.425 OL:0.713 OL: 0.648 OL: 1.000
OR:0.015 OR:0.058 OR:0.042 OR: 0.000

GT (Det+Prob+PFT+SET)

Dice: 0.658 Dice: 0.646 Dice: 0.648 Dice: 0.668 Dice: 0.614
OL: 0.539 OL: 0.505 OL: 0.509 OL: 0.551 OL: 0.449
OR:0.099 OR:0.058 OR:0.063 OR:0.099 OR:0.012

Det-SE Det-Cosine Prob-Sphere Prob-Gaussian Prob-Mixture

Figure 3: Reconstruction of the Corpus Callosum (medium difficulty) by all algorithms,
for test subject sub-1006.

a5 since our gold standard is not perfect, it might not cover the whole possible
a6 space as delineated by the RBX algorithm. Furthermore, because the scores
w27 are evaluated using binary bundle masks, a small number of streamlines can
w8 easily cross a high number of overreaching voxels. Ultimately, the goal is
a0 to find a model that can cover as much space as possible, so the overreach
a0 score is an interesting information to have, but is not the best indicator of
a1 performance in our case.

432 Of all the RNN-based methods, the Gaussian output model obtained the
a3 best Dice score and overlap, hinting that a probabilistic model works best.
a3 This is in line with traditional probabilistic algorithms being more suited to
.35 bundle reconstruction than deterministic approaches.

436 Given the worse performance of other probabilistic models, it seems that
7 adding complexity is not beneficial. Training an RNN with a more complex
ss  distribution like the mixture of Gaussians might require a different archi-
10 tecture, or more model capacity, to achieve better results. Unfortunately,
a0 the RNN with a von Mises-Fisher output had a hard time training, and pro-
a1 duced erratic streamlines that mostly did not survive the evaluation pipeline.
w2 It would seem that training the vMF' distribution is too unstable when using
a3 a likelihood loss function, and performing an entropy maximization proce-
aa dure like the original authors might be required to have a stable training

19


https://doi.org/10.1101/2021.11.29.470422
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470422; this version posted November 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Dice: 0.516 Dice: 0.549 Dice: 0.695 Dice: 0.713 Dice: 1.000
OL: 0.355 OL: 0.387 OL: 0.609 OL: 0.606 OL: 1.000
OR: 0.013 OR: 0.011 OR: 0.143 OR: 0.092 OR: 0.000

.

fin )
GT (Det+Prob+PFT+SET)

Dice: 0.569 Dice: 0.598 Dice: 0.599 Dice: 0.542 Dice: 0.436
OL: 0.426 OL: 0.468 OL: 0.456 OL: 0.433 OL: 0.286
OR: 0.056 OR: 0.063 OR: 0.059 OR:0.114 OR: 0.023

vAL®,

Det-SE Det-Cosine Prob-Sphere Prob-Gaussian Prob-Mixture

Figure 4: Reconstruction of the Optic Radiation (hard difficulty) by all algorithms, for
test subject sub-1006.

ws  procedure.

446 Across all results (both reference algorithms and RNN-based methods),
a7 the general trend holds that with a better Dice score and overlap, there is
ws also more overreach. This indicates that there is still work to be done to
w9 limit the production of false positive streamlines.

450 To illustrate the differences between algorithms, we showcase the recon-
1 structions of three bundles taken from a random test subject. We chose
ss2  bundles of both medium and hard difficulty for tractography, as reported in
53 [2]. Figure[3|shows a part of the Corpus Callosum (medium difficulty), while
s+ Figures[dand p|show the Optic Radiation and the Pyramidal Tract (hard dif-
s ficulty). Note that in all cases, as mentioned before, the Prob-vMF method
a6 did not produce any meaningful results, which explains why no results are
47 shown.

458 Also of note, RNN-based models seem to get results on par with tra-
w0 ditional algorithms, but not quite as good as the state-of-the-art Particle-
wo Filtered Tractography. However, [Poulin et al. produced results far beyond
w1 even PFT using an RNN approach trained on a single-database, using a
w2 single-bundle per model [67]. While we did not train any model with the
w3 single-bundle approach on TractoInferno, both results hint that there is a
w4 need for more data, more model capacity, or for specialization of algorithms,
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Figure 5: Reconstruction of the Pyramidal Tract (hard difficulty) by all algorithms, for
test subject sub-1006.

s in order to outperform currently-used methods. We advocate that Tractoln-
w6 ferno is one way to investigate this problem further.

w7 7. Conclusion

468 We provide an open-access, multi-site dMRI and tractography database
wo aimed at training and evaluating machine learning tractography models. It
a0 combines data from multiple datasets, and applies the same processing and
a1 QC steps for a uniform database. We also produce results using the avail-
a2 able evaluation pipeline for both traditional algorithms and machine learning
a3 models based on a recurrent architecture.

474 We offer Tractolnferno as a solution to the multiple issues already re-
a5 ported in the literature for machine learning tractography. Indeed, while
ars such algorithms have been proposed in the last few years with promising
a7 results, none has been shown to be the fundamental solution to classical
as  tractography. They commonly suffer from variable training data, dissimilar
a0 evaluation method, and limited dataset size, among others. To this end, a
w0 uniform, large-scale, and multi-site database such as Tractolnferno is an es-
w1 sential tool, paving the way for reproducible and comparable research among
s machine learning tractography researchers.

21


https://doi.org/10.1101/2021.11.29.470422
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470422; this version posted November 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

483

484

485

486

487

488

489

490

491

492

493

494

495

498

499

500

501

502

503

504

505

506

available under aCC-BY-NC 4.0 International license.

8. Data access

The TractoInferno database is freely available online on the OpenNeuro
platform: https://openneuro.org/datasets/ds003900. The evaluation
pipeline is avalaible on GitHub: https://github.com/scil-vital/TractoInferno/.
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Appendix A. TractoInferno pipeline execution commands

All commands used to process the TractoInferno dataset are reported
here. The input files and directories for each command might need to be
reorganized between steps; refer to the specific package documentation for
more details.

Appendiz A.1. QC DWI
URLs:

e https://github.com/scilus/dmriqcpy
e https://github.com/scilus/dmriqc_flow
Command:

nextflow run dmriqc-flow-0.1.2/main.nf -profile input_qc
--root input/

-with-singularity singularity_dmriqc_0.1.2.img -resume
--raw_dwi_nb_threads 10
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sov  Appendiz A.2. TractoFlow
508 URL: https://github.com/scilus/tractoflow/

500 Command:

510 nextflow run tractoflow-2.1.1/main.nf --root input/

511 --dti_shells "0 700 1000 1200"

512 --fodf_shells "O 700 1000 1200"

513 -with-singularity tractoflow_2.1.1_650f776_2020-07-15.1img
514 -resume -profile fully_reproducible --mean_frf false

515 --set_frf true --nbr_seeds 1

sic Appendiz A.3. QC TractoFlow
517 URLs:

518 e https://github.com/scilus/dmriqcpy

519 e https://github.com/scilus/dmriqc_flow

520 Command:

521 nextflow run dmriqc-flow-0.1.2/main.nf

522 -profile tractoflow_qc_light

523 --root/ ../TractoFlow/results

524 -with-singularity singularity_dmriqc_0.1.2.img -resume

ss Appendiz A.4. SH signal fitting

526 URL: https://github.com/ppoulin91/tractoinferno_compute_sh_flow
527 Command:

528 nextflow run code/tractoinferno_compute_sh_flow/main.nf

529 --input input/ --use_attenuation --sh_order 6

530 -with-singularity scilus-1.2.1.img -resume

su  Appendiz A.5. Tractography (Det, Prob, PF'T)
532 URL: https://github.com/ppoulin91/tractoinferno_tracking_flow

533 Command:

534 nextflow run code/tractoinferno_tracking flow/main.nf

535 --input ../TractoFlow/results

536 -with-singularity tractoflow_2.1.1_650f776_2020-07-15.1img
537 —resume
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s Appendiz A.6. Tractography (SET)

539 URLs:

540 e https://github.com/StongeEtienne/set-nf

541 e https://github.com/scilus/convert_set_flow
542 Commands:

543 nextflow run code/set-nf/main.nf

544 --tractoflow ../TractoFlow/results

545 —--surfaces ../civet/results -profile civet2_dkt
546 -with-singularity set_1vl.img -resume

547 nextflow run code/convert_set_flow/main.nf
548 --root_set ../SET/results

549 —--root_tractoflow ../TractoFlow/results

550 -with-singularity scilus-1.2.1.img

551 —resume

2 Appendiz A.7. RecoBundlesX (RBX)
553 URL: https://github.com/scilus/rbx_flow/

554 Command:

555 nextflow run code/rbx_flow/main.nf -resume

556 -with-singularity scilus-1.2.0_rbxflow-1.1.0.img
557 -profile large_dataset --input input/

558 --atlas_config code/rbx-atlas/config.json

550 --atlas_anat code/rbx-atlas/mni_masked.nii.gz

560 --atlas_directory code/rbx-atlas/atlas/

561 --run_average_bundles false

sse Appendiz A.8. QC RBX
563 URLs:

564 e https://github.com/scilus/dmriqcpy

565 e https://github.com/scilus/dmriqc_flow

566 Command:

567 nextflow run code/dmriqc_flow/main.nf -resume
568 -with-singularity

569 singularity_dmriqcflow_hotfix_scilpy_1.2.0.img
570 -profile rbx_qc --input ../RBX/results/
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