

1 The Stickland fermentation precursor trans-4-hydroxyproline differentially impacts the metabo-
2 lism of *Clostridioides difficile* and commensal *Clostridia*

3 Reed, A.D.^{1, #}, Fletcher, J.R.^{1,a, #}, Huang, Y.Y.^{3, b}, Thanissery, R.¹, Rivera, A.J.¹, Parsons, R.J.¹,
4 Stewart, A.², Kountz, D.J.³, Shen, A.⁴, Balskus, E.P.³, Theriot, C.M.^{1,*}

5 ¹Department of Population Health and Pathobiology, College of Veterinary Medicine, North
6 Carolina State University, Raleigh, NC USA; ²Molecular Education, Technology and Research
7 Innovation Center, North Carolina State University; ³Department of Chemistry and Chemical
8 Biology, Harvard University, Cambridge, MA USA; ⁴Department of Molecular Biology and Mi-
9 crobiology, Tufts University School of Medicine, Boston, Massachusetts, USA.

10 [#]denotes co-first author

11 Current affiliation:

12 ^a Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE,
13 Minneapolis, MN 55455

14 ^b Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory,
15 Berkeley, CA

16 ***Corresponding author information:**

17 Casey M. Theriot

18 Department of Population Health and Pathobiology

19 College of Veterinary Medicine

20 Research Building 406

21 North Carolina State University

22 1060 William Moore Drive

23 Raleigh NC 27607

24 cmtherio@ncsu.edu

25 **Keywords:** *Clostridioides difficile*, hydroxyproline, amino acids, *Clostridia*, Stickland fermenta-
26 tion, colonization resistance

27 **Abstract**

28 An intact gut microbiota confers colonization resistance against *Clostridioides difficile* through a
29 variety of mechanisms, likely including competition for nutrients. Recently, proline was identi-
30 fied as an important environmental amino acid that *C. difficile* uses to support growth and cause
31 significant disease. A post-translationally modified form, trans-4-hydroxyproline, is highly
32 abundant in collagen, which is degraded by host proteases in response to *C. difficile* toxin activi-
33 ty. The ability to dehydrate trans-4-hydroxyproline via the HypD glycyl radical enzyme is wide-
34 spread amongst gut microbiota, including *C. difficile* and members of the commensal *Clostridia*,
35 suggesting that this amino acid is an important nutrient in the host environment. Therefore, we
36 constructed a *C. difficile* Δ hypD mutant and found that it was modestly impaired in fitness in a
37 mouse model of infection, and was associated with an altered microbiota when compared to mice
38 challenged with the wild type strain. Changes in the microbiota between the two groups were
39 largely driven by members of the *Lachnospiraceae* family and the *Clostridium* genus. We found
40 that *C. difficile* and type strains of three commensal *Clostridia* had significant alterations to their
41 metabolic gene expression in the presence of trans-4-hydroxyproline *in vitro*. The proline reduc-
42 tase (*prd*) genes were elevated in *C. difficile*, consistent with the hypothesis that trans-4-
43 hydroxyproline is used by *C. difficile* to supply proline for fermentation. Similar transcripts were
44 also elevated in some commensal *Clostridia* tested, although each strain responded differently.
45 This suggests that the uptake and utilization of other nutrients by the commensal *Clostridia* may
46 be affected by trans-4-hydroxyproline metabolism, highlighting how a common nutrient may be

47 a signal to each organism to adapt to a unique niche. Further elucidation of the differences be-
48 tween them in the presence of hydroxyproline and other key nutrients will be important to de-
49 termining their role in nutrient competition against *C. difficile*.

50 **Introduction**

51 *Clostridioides difficile* infection (CDI) is the cause of significant morbidity and mortality and is
52 responsible for over 4.8 billion dollars in excess medical costs each year[1,2]. The current front-
53 line treatment for CDI is the antibiotic vancomycin, which can resolve CDI[3]. However, 20-30%
54 of patients will experience a recurrence of CDI within 30 days, and 40-60% of the patients who
55 have experienced one recurrence will have multiple recurrences[4,5]. The use of antibiotics, in-
56 cluding vancomycin, is a major risk factor for CDI due to their effect on the gut microbiota,
57 which causes a loss of colonization resistance against *C. difficile*[6-8]. Colonization resistance, or
58 the ability of the gut microbiota to defend against colonization by gastrointestinal pathogens such
59 as *C. difficile* has many potential mechanisms, including the production of inhibitory metabolites
60 and competition for nutrient sources[9-11]. Conversely, *C. difficile* toxin activity is associated
61 with altered recovery of the gut microbiota, as well as liberation of numerous sugars and pep-
62 tides/amino acids *in vivo*[12-15]. However, it is unknown if *C. difficile* has a hierarchy of pre-
63 ferred nutrient sources in a host, or whether members of the microbiota also utilize similar nutri-
64 ents, and if they do, whether their use contributes to colonization resistance.

65 Much of the research on colonization resistance against *C. difficile* has focused on the ef-
66 fects of secondary bile acids produced by the gut microbiota[16-20]. While secondary bile acid
67 metabolism is an important contributor, other factors such as competition for nutrients are also
68 likely to play a role. For example, colonization of a host by non-toxigenic *C. difficile* can prevent
69 colonization by toxigenic *C. difficile*, indicating that bacteria with similar nutritional needs can

70 occupy an exclusive niche[21,22]. In addition, the increased amount of succinate available in the
71 antibiotic treated gut promotes expansion by *C. difficile*, indicating that the depletion of the mi-
72 crobiota that occurs after antibiotic use creates a beneficial environment for *C. difficile* coloniza-
73 tion and expansion[23]. Metabolic and transcriptomic analysis have also shown that the availabil-
74 ity of amino acids and other nutrients is very important in the early stage of CDI[15,23,24]. Addi-
75 tionally, the degradation of collagen by host proteases that is induced by *C. difficile* toxin activity
76 may be a source of peptides and amino acids to support *C. difficile* growth through the course of
77 infection[14,15].

78 *C. difficile* uses proline as an electron acceptor for Stickland fermentation for energy pro-
79 duction and regeneration of NAD⁺, yet it does not grow well without the presence of proline and
80 other amino acids important to Stickland fermentation, therefore it must compete for them within
81 the host environment[25-27]. The concentration of proline in media affects expression of genes in
82 the *prd* operon, which encodes proline reductase and accessory proteins, with maximal expres-
83 sion observed when proline content is high[26]. In addition, the availability of proline and
84 branched chain amino acids in the gut correlates with increased susceptibility to *C. difficile* in a
85 mouse model of infection[13]. When a *C. difficile* *prdB* mutant that was unable to utilize proline
86 as an energy source was tested in a mouse model of CDI, it was less fit *in vivo* and resulted in
87 less toxin (TcdB) in stools when compared to mice challenged with wild type *C. difficile*[13]. In
88 addition, the presence of some commensal *Clostridia* causes an increase in the reliance of *C. dif-*
89 *ficile* on proline fermentation [28]. This indicates that *C. difficile* may compete with some com-
90 mensal *Clostridia* for proline in the gut. *C. difficile* also has a competitive advantage over the
91 commensals *Clostridium scindens*, *Clostridium hylemonae*, and *Clostridium hiranonis* in a rich

92 medium, although the extent to which this is due to the ability of *C. difficile* to ferment proline is
93 unknown[16].

94 *Trans*-4-hydroxy-L-proline (hydroxyproline or hyp) is a derivative of proline that has
95 been post-translationally modified by the host via prolyl-4-hydroxylase, and is a significant
96 component of the highly abundant host protein collagen. Recently, we have shown that inflam-
97 mation resulting from *C. difficile* toxin activity leads to increased expression of host matrix met-
98 aloproteinases and subsequent degradation of collagen, likely supplying *C. difficile* with hy-
99 droxyproline and other Stickland substrates[14]. *C. difficile* can reduce hydroxyproline to proline
100 in a two-step process that requires the glycyl radical enzyme 4-hydroxyproline dehydratase
101 (HypD) and a pyrroline-5-carboxylate reductase (P5CR) encoded by the gene *proC* [28-30].
102 Homologs of HypD are widespread in the gut microbiome, and a subset of organisms, largely
103 *Clostridia*, that carry the *hypD* gene also encode an adjacent P5CR homolog, indicating that the
104 ability of bacteria to reduce hydroxyproline may be useful in the gut[29]. The widespread pres-
105 ence of HypD and the competitive fitness advantage gained by proline fermentation indicates
106 that the ability to ferment proline may play a significant role in *C. difficile* colonization in the
107 gut[29,31].

108 In this study, we hypothesized that use of hydroxyproline by *C. difficile* contributes to its fit-
109 ness *in vivo*. We tested this by examining disease kinetics of wild type (WT) *C. difficile* and a
110 Δ *hypD* mutant in a mouse model of CDI. Mice challenged with the Δ *hypD* mutant had reduced
111 weight loss, less toxin activity, and increased relative abundances of cecal *Lachnospiraceae*, a
112 family which includes many commensal *Clostridia*, as well as members of the *Clostridium* ge-
113 nus. We also show that hydroxyproline affects the transcriptomes of *C. difficile* and three com-
114 mensal *Clostridia* species (*C. scindens*, *C. hylemonae*, and *C. hiranonis*), though each had

115 unique gene expression profiles, with alterations to pathways for carbohydrate and amino acid
116 utilization among them. Together, these data show that *C. difficile* relies on hydroxyproline me-
117 tabolism *in vivo* for robust sporulation and toxin production. Further, it identifies numerous met-
118 abolic pathways in *C. difficile* and commensal *Clostridia* that are affected by hydroxyproline,
119 and the unique response of each organism indicates that hydroxyproline may act as a nutrient
120 source and a signal to prime them for metabolism of other specific nutrients.

121 **Methods**

122 **Animals and housing.** C57BL/6J WT mice (5–8 weeks old; n = 18 male and n = 18 female)
123 were purchased from Jackson Labs. The food, bedding, and water were autoclaved, and all cage
124 changes were performed in a laminar flow hood. The mice were subjected to a 12 h light and 12
125 h dark cycle. Mice were housed in a room with a temperature of 70 °F and 35% humidity. Ani-
126 mal experiments were conducted in the Laboratory Animal Facilities located on the NCSU CVM
127 campus. Animal studies were approved by NC State's Institutional Animal Care and Use Com-
128 mittee (IACUC). The animal facilities are equipped with a full-time animal care staff coordinated
129 by the Laboratory Animal Resources (LAR) division at NCSU. The NCSU CVM is accredited
130 by the Association for the Assessment and Accreditation of Laboratory Animal Care Internation-
131 al (AAALAC). Trained animal handlers in the facility fed and assessed the status of animals sev-
132 eral times per day. Those assessed as moribund were humanely euthanized by CO₂ asphyxiation.
133 **Mouse model of *C. difficile* infection.** The mice were given 0.5 mg/mL cefoperazone in their
134 drinking water for 5 days to make them susceptible to *C. difficile* infection, then plain water for 2
135 days, after which time they (n = 8, 4 males and 4 females) received 10⁵ spores of either *C. dif-*
136 *ficile* 630Δ*erm* (WT) or *C. difficile* 630Δ*erm*Δ*hypD* (Δ*hypD*) via oral gavage. One group of mice
137 (n = 8, 4 males and 4 females) received cefoperazone and no *C. difficile* spores (cef) and were

138 used as uninfected controls. Mice were weighed daily and monitored for clinical signs of distress
139 (ruffled fur, hunched posture, slow ambulation, etc.). Fecal pellets were collected 1-, 3-, 5-, and
140 7-days post challenge and diluted 1:10 w/v in sterile PBS, then serially diluted in 96-well PCR
141 plates and plated onto CCFA for enumeration of vegetative *C. difficile* CFU. The serially diluted
142 samples were then removed from the anaerobic chamber and heated to 65°C for 20 min before
143 being passed back into the chamber. The dilutions were plated onto TCCFA for enumeration of
144 spore CFUs. Additional fecal pellets were collected on days 1-7 and stored at -80°C for later use
145 in toxin activity assays and 16S rRNA sequencing.

146 At day 7 post challenge, mice were humanely sacrificed, and necropsy was performed.
147 Cecal content was harvested for enumeration of vegetative *C. difficile* and spore CFUs, as well
148 as for toxin activity. Cecal tissue was harvested for 16S rRNA sequencing. Samples for sequenc-
149 ing and toxin activity were immediately flash frozen in liquid nitrogen and stored at -80°C until
150 processing.

151 Toxin activity in the cecal content was quantified using the Vero Cell cytotoxicity as-
152 say[32]. Briefly, the content was diluted 1:10 w/v in sterile PBS, and 10-fold dilutions were add-
153 ed to Vero cells in a 96-well dish for ~16 h. The reciprocal of the lowest dilution in which ~80%
154 of the cells have rounded was reported as the titer.

155 **Bacterial strain collection and growth conditions.** The *C. difficile* strains used in this study
156 were the wild type *C. difficile* 630Δerm (WT) and the mutants *C. difficile* 630ΔermΔhypD
157 (ΔhypD), *C. difficile* 630ΔermΔp5cr (Δp5cr), *C. difficile* 630ΔermΔhypD::hypD (hypD com-
158 plement), and *C. difficile* 630ΔermΔp5cr::p5cr (p5cr complement). All assays using *C. difficile*
159 were started from spore stocks, which were prepared and tested for purity as described previous-
160 ly [32,33]. *C. difficile* spores were maintained on brain heart infusion (BHI) medium supplement-

161 ed with 100 mg/L L-cysteine and 0.1% taurocholate (T4009, Sigma-Aldrich). Then cultures were
162 started by inoculating a single colony from the plate into BHI liquid medium supplemented with
163 100 mg/L L-cysteine. The other bacterial strains used in this study were *C. hiranonis* TO 931, *C.*
164 *hylemonae* TN 271, and *C. scindens* VPI 12708. All strains were maintained on 15% glycerol
165 stocks stored in -80°C until use and were grown in BHI medium supplemented with 100 mg/L
166 L-cysteine. All strains used in this study were grown under 2.5% hydrogen under anaerobic con-
167 ditions (Coy, USA) at 37°C.

168 **Growth studies in CDMM.** *C. difficile* was grown in a well-established, defined minimal medi-
169 um (CDMM)[27]. CDMM -pro +hyp had 600 mg/L of *trans*-4-hydroxy-L-proline (Sigma) in-
170 stead of L-proline. CDMM -pro was used as a negative control. A single colony was inoculated
171 into 5 mL of media and incubated at 37°C for 24 hr, at which point the OD₆₀₀ was measured us-
172 ing a spectrophotometer.

173 **Construction of *C. difficile* strains.** To construct the pMTL-YN1C-*hypD* complementation con-
174 struct, primer pair YH-P295 and YH-P296 was used to amplify the *hypD* gene (Supplemental
175 Table 1). The resulting PCR product was digested with NotI and XhoI and ligated to pMTL-
176 YN1C digested with the same enzymes. The resulting PCR fragments were inserted into pMTL-
177 YN1C digested with NotI and XhoI using Gibson assembly [34]. The assembly mixture was
178 transformed into *E. coli* DH5 α , and the resulting plasmids were confirmed by sequencing and
179 then transformed into *E. coli* HB101/pRK24.

180 **Vectors for gene deletion and complementation.** To construct the pMTL-YN3- Δ *hypD* allelic
181 exchange construct, vector~1 kb flanking regions of *hypD* (CD630_32820) were PCR amplified
182 using primers YH-P253 and YH-P25 were used to amplify the region 4(upstream of *hypD*,) and
183 primers YH-254 and YH-256 were used to amplify a region downstream of *hypD* using *C. dif*

184 *ficile* 630 genomic DNA as the template. The resulting PCR products were used in a PCR splice
185 overlap extension (SOE) reaction with the flanking primers YH-257 and YH259. To construct
186 the pMTL-YN3- $\Delta p5cr$ allelic exchange construct, primers YH-P258 and YH-P260 were used to
187 amplify a region upstream of $p5cr$, and primers YH-254 and YH-256 were used to amplify a re-
188 gion downstream of $p5cr$ in *C. difficile* (Supplemental Table 1). To construct the pMTL-YN3- Δ
189 $p5cr$ allelic exchange vector, ~1 kb flanking regions of $p5cr$ or $proC$ (CD630_32810) were PCR
190 amplified using primers YH-P257 and YH-P258 (upstream) and primers YH-259 and YH-260
191 (downstream) with *C. difficile* 630 genomic DNA as the template (Supplemental Table 1). All
192 PCRs of flanking regions were carried out using Phusion-HF Master Mix (NEB) according to the
193 manufacturer's protocol with an annealing temperature (Ta) of 61°C and extension time of 25
194 sec. gel-purified using illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare).
195 30 ng of each upstream and downstream flanking region of the targeted gene were used as tem-
196 plates for overlap. PCR products were used in a10 μ l reactions (Ta of 72°C, extension time of
197 120s). 7 μ l of each overlap PCR mix was used as template in 20 μ l extension PCRs (Ta of 61°C,
198 extension time of 60 sec, Phusion-HF master mix) with 0.75 μ M of each flanking primer YH-
199 P253 and P256 for $\Delta hypD$, and YH-P257 and YH-P260 for $\Delta proC$ to amplify joined flanking
200 regions. The PCR SOE products were gel-purified and digested with AscI and SbfI. The assem-
201 bly-HF (NEB). was linearized-HF and gel-purified. Each deletion region was ligated into linear-
202 ized pMTL-YN3 using T4 DNA ligase (NEB) in 10 μ l reactions at a 1:9 volume ratio (vec-
203 tor:insert).Ligation reactions were *E. coli* TOP10 cells and plated out onto LB-chloramphenicol
204 (25 μ g/mL) agar plates. To construct the pMTL-YN1C- $hypD$ complementation construct, the
205 promoter region, ~300bp, upstream of the HypD activase gene (CD630_32830) and $hypD$ were
206 separately amplified using primers YH-P229-P230 (Ta of 63°C, extension time of 10 sec) and

207 YH-P231-P232 (Ta of 59°C, extension time of 60 sec), respectively (Supplemental Table 1). To
208 construct the pMTL-YN1C-*proC* complementation construct, primers YH-P233 and YH-P234
209 was used to amplify the P5CR-encoding gene along with ~200 bp of the upstream region using a
210 Ta of 60°C, extension time of 20 sec (Supplemental Table 1). The resulting PCR products were
211 gel-purified. 3-fold molar excess of each PCR insert was Gibson assembled into 50 ng or 100 ng
212 of StuI-linearized pMTL-YN1C to construct pMTL-YN1C-*hypD* and pMTL-YN1C-*proC*, re-
213 spectively. Gibson assembly reactions were transformed into *E. coli* DH5α, TOP10 cells and then
214 plated out onto LB-chloramphenicol (25 µg/mL) agar plates. The resulting plasmids were con-
215 firmed by Sanger sequencing and then transformed into *E. coli* HB101/pRK24 for conjugation.

216 **Gene deletions in *C. difficile*.** Allele-coupled exchange was used to construct clean deletions of
217 *hypD* and *PC5R* [34]. The recipient *C. difficile* strain 630Δ*erm*Δ*pyrE* (a kind gift from Nigel Min-
218 ton, c/o Marcin Dembek) was grown for 5-6 hrs in BHIS medium in an anaerobic chamber (Coy,
219 USA) *E. coli* HB101/pRK24 donor strains carrying the appropriate pMTL-YN3 allelic exchange
220 constructs were grown in LB medium containing ampicillin (50 µg/mL) and chloramphenicol
221 (20 µg/mL) at 37°C, 225 rpm, under aerobic conditions, for 5-6 hrs. Each *E. coli* strain was pel-
222 leted at 2,500 rpm for 5 min and transferred into an anaerobic chamber. One milliliter of the *C.*
223 *difficile* culture was added to each *E. coli* pellet, and 100 µL of the mixture was spotted seven
224 times onto a BHIS plate. The *E. coli* and *C. difficile* mixture was incubated for 13-18 hrs at 37°C
225 anaerobically after which the resulting growth was scraped from the plate into 1 mL phosphate
226 buffered saline (PBS). One hundred microliter aliquots of each suspension were spread onto five
227 BHIS plates containing 10 µg/mL thiamphenicol, 50 µg/mL kanamycin, and 8 µg/mL cefoxitin.
228 The plates were incubated for 3-4 days at 37°C, and transconjugants were passaged onto BHIS
229 plates containing 15 µg/mL thiamphenicol, 50 µg/mL kanamycin, 8 µg/mL cefoxitin, and 5

230 μ g/mL uracil. After selecting for the fastest growing colonies over 2-3 passages, single colonies
231 were re-struck onto CDMM plates, a defined minimal medium, containing 2 mg/mL 5-
232 fluoroorotic acid (FOA) and 5 μ g/mL uracil. FOA-resistant colonies that arose were patched on-
233 to CDMM plates containing 5-FOA and uracil, and colony PCR was performed to identify
234 clones harboring the desired deletions[35]. (Supplementary Table 1) All 630 $\Delta erm\Delta pyrE$ mutant
235 strains were complemented with *pyrE* in the *pyrE* locus as described in the next section.

236 **Complementation in *C. difficile*.** *E. coli* HB101/pRK24 donor strains carrying the appropriate
237 complementation construct were grown in LB containing ampicillin (50 μ g/mL) and chloram-
238 phenicol (20 μ g/mL) at 37°C, 225 rpm, under aerobic conditions, for 6 hrs. [35,36]. For comple-
239 mentation in the *pyrE* locus using pMTL-YN1C constructs, *C. difficile* recipient strains were
240 conjugated with either the empty pMTL-YN1C vector or the appropriate pMTL-YN1C comple-
241 mentation vectors as described previously . Transconjugants were then re-struck onto CDMM
242 and incubated for 2-4 days. Colonies that had restored the *pyrE* locus by virtue of their ability to
243 grow on CDMM were re-struck onto CDMM plates before further characterization. All clones
244 were verified by colony PCR. At least two independent clones from each complementation strain
245 were phenotypically characterized.

246 **Genomic analysis of *hypD* and *p5cr*.** This was performed using the gggenes package (version
247 0.4.0) in R (version 3.6.3) and Geneious as described previously[16]. Briefly, the *hypD* compari-
248 son was constructed by first extracting the positional information for *hypD* and *p5cr* from Gene-
249 ious [40], then obtaining amino acid identity percentage through BLASTp alignments [41] against
250 coding sequences from the reference strain *C. scindens* ATCC 35704. (NCBI accession no.
251 PRJNA508260) This data was visualized using the publicly available gggenes R package [42].

252 **RNA extraction.** *C. difficile*, *C. scindens*, *C. hiranonis* and *C. hylemonae* liquid cultures were

253 started from a single colony and grown in either BHI or BHI + 600 mg/L hydroxyproline media
254 for 14 hr before RNA extraction. Cultures were fixed by adding equal volumes of a 1:1 mixture
255 of EtOH and acetone and stored at -80°C for later RNA extraction. For extraction, the culture
256 was thawed, then centrifuged at 10,000 rpm for 10 min at 4°C. The supernatant was discarded
257 and the cell pellet resuspended in 1 mL of 1:100 BME: (beta-mercaptoethanol)H₂O, then spun
258 down at 14,000 rpm for 1 min. For RNA to be used for qRT-PCR, the cell pellet was resuspended
259 in 0.3 mL of lysis buffer from the Ambion RNA purification kit (AM1912, Invitrogen) then
260 sonicated while on ice for 10 pulses of 2 sec with a pause of 3 sec between each pulse. Extraction
261 was then performed following the manufacturers protocol from the Ambion RNA purification
262 kit. For RNA to be used for RNA-seq, the cell pellet was resuspended in 1 mL of Trizol (Ther-
263 mofisher F) and incubated at room temperature for 15 min. 200 µL of chloroform (Sigma-
264 Aldrich) was added, the solution was inverted rapidly for 20 sec, then incubated at room temper-
265 ature for 15 min and centrifuged at 14,000 rpm for 15 min at 4°C. The aqueous phase was mixed
266 with 96% ethanol and the extraction was performed using the Direct-zol RNA Miniprep Plus fol-
267 lowing the manufacturer's instructions, including an on-column DNase I treatment (R2071, Zy-
268 mo Research).

269 **Reverse transcription and quantitative real-time PCR.** Reverse transcription and quantitative
270 real-time PCR (qRT-PCR) was performed as described previously [15]. Briefly, RNA was de-
271 pleted by using Turbo DNase according to the manufacturer's instructions (AM2238, Invitrogen).
272 The DNase-treated RNA was then cleaned using an RNA clean up kit (R1019, Zymo) according
273 to manufacturer's instructions and DNA depletion was verified by amplifying 1 µL of RNA in a
274 PCR reaction. The DNA depleted RNA was used as the template for reverse transcription per-
275 formed with Moloney murine leukemia virus (MMLV) reverse transcriptase (M0253, NEB). The

276 cDNA samples were then diluted 1:4 in water and used in quantitative real-time PCR with gene-
277 specific primers using SsoAdvanced Universal Sybr green Supermix (1725271, Bio-Rad) ac-
278 cording to the manufacturer's protocol (Supplementary Table 1). Amplifications were performed
279 in technical triplicates, and copy numbers were calculated using a standard curve and normalized
280 to that of a housekeeping gene. *gyrA* was the housekeeping gene used for *C. scindens*, while
281 *rpoC* was used for *C. difficile*, *C. hiranonis* and *C. hylemonae*.

282 **RNAseq.** Sequencing of RNA derived from *in vitro* cultures was performed at the Roy J. Carver
283 Biotechnology Center at the University of Illinois at Urbana-Champaign. Ribosomal RNA was
284 removed from the samples using the RiboZero Epidemiology Kit. (Illumina). RNAseq libraries
285 were prepped with the TruSeq Stranded mRNA Sample Prep Kit (Illumina), though poly-A en-
286 richment was omitted. Library quantification was done via qPCR, and the samples were se-
287 quenced on one lane for 151 cycles from each end of the fragments on a NovaSeq 6000 using a
288 NovaSeq S4 reagent kit. The FASTQ files were generated and demultiplexed using the bcl2fastq
289 v2.20 Conversion Software (Illumina). Raw paired Illumina reads were imported into Geneious
290 10.2.6, where adapters were removed using BBduk with a Kmer length of 27. The reads were
291 mapped to the *C. difficile* 630Δerm genome (NCBI accession no. NC_009089.1), the *C.*
292 *hiranonis* DSM 13275 genome (NCBI accession no. GCA_008151785.1), the *C. hylemonae*
293 DSM 15053 genome (NCBI accession no. PRJNA523213), or the *C. scindens* ATCC 35704 ge-
294 nome (NCBI accession no. PRJNA508260) using BBMap with a Kmer length of 10 and no other
295 changes to the default settings. Differential expression analysis between the two conditions was
296 performed using DESeq2 and if genes had an adjusted p-value of <0.05 and ± 1 \log_2 fold change,
297 they were considered differentially expressed. Visualization of differentially enriched genes for
298 each organism was performed using pheatmap (version 1.0.12), ggplots (version 3.3.4), and

299 ggpubr (version 0.4.0.999) within R (version 3.6.3). Some of the differentially enriched genes
300 were hypothetical proteins, those results were removed before the figures were visualized. Full
301 RNAseq data is available in Supplemental Data File 4.

302 **Metabolomics data analysis.** *Mass spectrometry data acquisition.* Samples were diluted 1:100
303 (10 μ L sample, 990 μ L water) and transferred to an autosampler vial for analysis by UPLC-MS.
304 For quantification of amino acids, a certified reference material amino acid mix solution (*Trace-*
305 *CERT*, Sigma) was diluted to achieve a 100 μ M working standard solution. Ten calibration
306 standards ranging from 100 μ M to 250 nM were prepared by serially diluting the working stand-
307 ard solution. For quantification of 4-hydroxyproline and 5-aminovaleric acid, certified reference
308 material (Sigma) for each was suspended in water to achieve a 1 mg/mL solution which were
309 combined and diluted to achieve a 50 μ g/mL working standard solution. Ten calibration stand-
310 ards ranging from 50 μ g/mL to 25 ng/mL were prepared by serially diluting the working stand-
311 ard solution. The analysis was performed using a Thermo Vanquish UPLC instrument (Thermo
312 Fisher Scientific, Germerring, Germany) coupled to a Thermo Orbitrap Exploris 480 mass spec-
313 trometer (Thermo Fisher Scientific, Breman, Germany) with a heated electrospray ionization
314 (HESI) source. Chromatographic separation was achieved on a Waters BEH Amide column (2.1
315 x 100 mm, 1.8 μ M) maintained at 45°C. The following linear gradient of mobile phase A (H₂O
316 + 0.1% FA) and mobile phase B (MeCN + 0.1% FA) was used: 0-0.1 min (99% B, 0.4 mL/min),
317 0.1-7 min (99-30% B, 0.4 mL/min), 7-10 min (99% B, 0.4 mL/min). Samples were analyzed (2
318 μ L injections) in positive ion mode (spray voltage 3.5 kV, ion transfer tube temperature 300°C,
319 vaporizer temperature 350°C, sheath gas 50 a.u., aux gas 10 a.u., sweep gas 1 a.u.) with a mass
320 range of m/z 60-1000. MS1 data was collected with a resolving power of 60,000 and an AGC
321 target of 1e6 and ddMS2 data was collected with a resolving power of 30,000, cycle time of 0.6

322 s, AGC target of 4e5 and stepped HCD collision energy (30, 50, 150). The full data set was ac-
323 quired in a randomized fashion with water blanks and system suitability samples (QReSS, Cam-
324 bridge Isotope Laboratories) collected every 10 samples.

325 **Targeted data processing.** Peak integration and amino acid quantification were performed in
326 Skyline¹. Individual standard curves for each of the 15 amino acids plus hydroxyproline and 5-
327 aminovalerate were constructed using extracted ion chromatogram peak areas from MS1 data
328 and the slope of each curve was calculated using a linear curve fit and a 1/(x *x) weighting.
329 MS2 data was utilized to validate amino acid annotations, particularly to differentiate valine and
330 5-aminovaleric acid. The concentrations in the study samples were calculated in an identical
331 manner relative to the regression line. Calibration curves for each of the amino acids had R² val-
332 ues ranging from 0.9919 to 0.9994 for the linear range of 0.25 to 100 µM. Calibration curves for
333 4-hydroxyproline and 5-aminovaleric acid had R² values of 0.9948 to 0.9997, respectively, for
334 the linear range of 0.025 to 50 µg/mL[44].

335 **16S rRNA bacterial sequencing.** Fecal and cecal samples were sequenced by the University of
336 Michigan Microbial Systems Molecular Biology Laboratory using the Illumina MiSeq platform.
337 Microbial DNA was extracted from the fecal and cecal samples using Mag Attract Power Micro-
338 biome kit (Mo Bio Laboratories, Inc.). A dual-indexing sequencing strategy was used to amplify
339 the V4 region of the 16S rRNA gene [65]. Each 20-µL PCR mixture contained 2 µL of 10X Ac-
340 cuprime PCR buffer II (Life Technologies, CA, 1 USA), 0.15 µL of Accuprime high-fidelity
341 polymerase (Life Technologies, CA, USA), 5 µL of a 4.0 µM primer set, 3 µL DNA, and 11.85
342 µL sterile nuclease free water. The template DNA concentration was 1 to 10 ng/µL for a high
343 bacterial DNA/host DNA ratio. The PCR conditions were as follows: 2 min at 95°C, followed by
344 30 cycles of 95°C for 20 sec, 55°C for 15 sec, and 72°C for 5 min, followed by 72°C for 10 min.

345 Libraries were normalized using a Life Technologies SequalPrep normalization plate kit as per
346 manufacturer's instructions for sequential elution. The concentration of the pooled samples was
347 determined using the Kapa Biosystems library quantification kit for Illumina platforms (Kapa
348 Biosystems, MA, USA). Agilent Bioanalyzer high sensitivity DNA analysis kit (Agilent CA,
349 USA) was used to determine the sizes of the amplicons in the library. The final library consisted
350 of equal molar amounts from each of the plates, normalized to the pooled plate at the lowest con-
351 centration. Sequencing was done on the Illumina MiSeq platform, using a MiSeq reagent kit V2
352 (Illumina, CA, USA) with 500 cycles according to the manufacturer's instructions, with modifi-
353 cations [65]. Sequencing libraries were prepared according to Illumina's protocol for preparing
354 libraries for sequencing on the MiSeq (Illumina, CA, USA) for 2 or 4 nM libraries. PhiX and ge-
355 nomes were added in 16S amplicon sequencing to add diversity. Sequencing reagents were pre-
356 pared according to the Schloss SOP
357 (https://www.mothur.org/wiki/MiSeq_SOP#Getting_started), and custom read 1, read 2 and in-
358 dex primers were added to the reagent cartridge. FASTQ files were generated for paired end
359 reads.

360 **Community microbial sequencing analysis.** Analysis of the V4 region of the 16S rRNA gene
361 was performed in the statistical programming environment R using the DADA2 package (version
362 1.14.1) [45]. Forward/reverse pairs were trimmed and filtered, with forward reads truncated at
363 240 nt and reverse reads truncated at 200 nt. No ambiguous bases were allowed, and each read
364 was required to have less than two expected errors based on their quality score. Error-corrected
365 amplicon sequence variants (ASVs) were independently inferred for the forward and reverse
366 reads of each sample and then read pairs were merged to obtain final ASVs. Chimeric ASVs
367 were identified and removed. For taxonomic assignments, ASVs were compared to the Silva

368 v132 database (<https://zenodo.org/record/1172783>). The R package phyloseq (version 1.30) was
369 used to further analyze and visualize data[46]. Inverse Simpson was used to calculate alpha diver-
370 sity and Kruskal Wallis was used to determine statistical significance between treatment groups.
371 Relative abundance was calculated using phyloseq and visualized using Prism 7.0c, and differen-
372 tial-abundance analysis between the Δ hypD and WT treatment groups was performed using the
373 Aldex2 package (version 1.18.0) and visualized using the ggplots2 package (version 3.3.4) [37-
374 39].

375 **Statistical analysis.** Statistical tests were performed using Prism version 7.0c for Mac OSX
376 (GraphPad Software, La Jolla, CA, USA). Statistical significance was determined using Mann-
377 Whitney for CFUs, spore count, and toxin activity and Kruskal Wallis with Dunns multiple com-
378 parisons for mouse weights during infection. Student T Tests with Welch's Correction was ap-
379 plied to account for multiple comparisons in analyses of other data. Statistical analysis for the
380 16S and RNAseq results was performed in the R computing environment. Kruskal Wallis was
381 used for alpha diversity, Permanova Adonis in the vegan package (version 2.5-7) was used to test
382 the difference between groups for the beta diversity analysis, and ALDEX2 was used to calculate
383 the differences between treatments using a centered-log-ratio transform of ASV abundance to
384 create an effect size for each ASV[47,49].

385 **Results**

386 ***C. difficile* requires *hypD* for maximum growth in a defined minimal media supplemented
387 with hydroxyproline.** The reduction of hydroxyproline to L-proline is a two-step process requir-
388 ing the *hypD* and *p5cr* genes (Figure 1A)[30] To test the ability of *C. difficile* to utilize hydroxy-
389 proline, wild type, Δ hypD, Δ p5cr and complemented strains were grown in a defined minimal
390 medium (CDMM) with hydroxyproline substituted for proline at the same concentration (600

391 mg/L) (Figure 1B). The $\Delta hypD$ mutant had a significant growth defect in the CDMM –pro +hyp,
392 indicating that HypD is needed to utilize hydroxyproline ($p < 0.001$, Student's T Test with
393 Welch's correction). There was no growth defect observed in CDMM –pro +hyp for the $\Delta p5cr$
394 mutant, indicating that the particular *proC* homolog tested is not essential for *C. difficile* to uti-
395 lize hydroxyproline. Interestingly, the WT strain as well as $\Delta p5cr$ and both complements grew
396 significantly better in CDMM –pro +hyp than they did in CDMM alone (< 0.05 , Student's T Test
397 with Welch's correction). As expected, all strains had very poor growth in CDMM –pro, as pro-
398 line is essential for *C. difficile* growth.

399 **The presence of *hypD* affects weight loss and toxin activity in a mouse model of CDI.** To de-
400 termine if hydroxyproline utilization is required for colonization and disease, WT C57BL/6J
401 mice (n=8 per group) were challenged with 10^5 spores of WT *C. difficile* or $\Delta hypD$, and coloni-
402 zation and disease progression were measured for 7 days (Figure 2A). There was no significant
403 difference in vegetative *C. difficile* bacterial load in the feces during infection (Figure 2B), but
404 there was a significant decrease in fecal $\Delta hypD$ spores when compared to the WT group on day 7
405 post challenge (Figure 2B, $p < 0.001$, Mann-Whitney). On day 7, bacterial enumeration of cecal
406 contents showed no significant difference in the level of *C. difficile* spores (Supplemental Figure
407 1A and B), while the *C. difficile* vegetative cells were significantly higher in mice challenged
408 with $\Delta hypD$ ($p < 0.05$, Mann-Whitney). The biggest difference between the groups was seen in
409 the weights of the mice
410 throughout CDI. WT mice weighed significantly less than the cefoperazone control group (cef)
411 on days 3 ($p < 0.01$), 5 ($p < 0.001$), and 7 ($p < 0.05$) post challenge (Figure 2D, Kruskal-Wallis
412 with Dunn's multiple comparisons). There was no significant difference in weights between the
413 $\Delta hypD$ group and the cefoperazone control group, indicating that the WT mice had increased

414 clinical signs of disease compared to the $\Delta hypD$ group. This finding correlated with high toxin
415 activity from the mice in the WT group compared to the $\Delta hypD$ group on Day 3 post challenge
416 (Figure 2E, $p < 0.01$, Mann-Whitney), although the difference was not significant by Day 7.

417 **Differences in the microbiota between mice challenged with WT *C. difficile* and $\Delta hypD$ are**
418 **driven by members of the *Lachnospiraceae* Family.** To elucidate the reason behind the ob-
419 served differences in CDI between mice challenged with WT and $\Delta hypD$, the fecal microbiota of
420 the cef, WT, and $\Delta hypD$ mice was analyzed through V4 16S rRNA amplicon sequencing on day
421 0 as well as on days 2, 4 and 6 post challenge (Supplemental Data File 1). The cecal microbiota
422 was analyzed on day 7 post challenge, when necropsy occurred. When the alpha diversity was
423 analyzed in the stool at the Family level, there were significant differences between the cef and
424 $\Delta hypD$ groups on day 6, and when the cecal microbiota was analyzed on day 7, there were sig-
425 nificant differences between all groups (Supplemental Figure 2A, Supplemental Data File 2).
426 When the beta diversity was analyzed using non-metric multi-dimensional scaling analysis
427 (NMDS), there were significant differences between the groups on days 2, 4, 6 and 7 indicating
428 that there was a difference between the three groups after challenge with *C. difficile* (Supple-
429 mental Figure 2B). When only the infected groups were analyzed using NMDS, there were sig-
430 nificant differences between the WT and $\Delta hypD$ groups on day 0 and day 7 (Supplemental Fig-
431 ure 2C). On day 0, all three groups had a fecal microbiota dominated by the *Enterococcaceae*
432 (Figure 3A). Day 2 post challenge had the highest relative abundance of *Peptostreptococcaceae*,
433 the family to which *C. difficile* belongs, in both WT and $\Delta hypD$ mice, which was also when the
434 greatest weight loss was observed (Figure 1D). The amplicon sequence variant (ASV 6) classi-
435 fied as *Peptostreptococcaceae* resolved to *C. difficile*, so this was likely due to the expansion of
436 *C. difficile* in the murine gut microbiota. By day 7 post challenge, the *Lachnospiraceae* family

437 made up a significant percentage of the cecal microbiota for all three groups, with the highest
438 abundance being in the $\Delta hypD$ group at 73%, while the WT group and the cef group had 60%
439 and 43% abundance of *Lachnospiraceae* respectively (Figure 3A). Differential abundance analy-
440 sis was calculated between the WT and $\Delta hypD$ groups using ALDEx2[47]. For each ASV ana-
441 lyzed, ALDEx2 estimates the difference in the centered-log-ratio (a measure of relative abun-
442 dance) between groups and reports an effect size. The only day that had significant effect sizes
443 for any ASVs was day 7, when the cecal microbiota was analyzed. Although only 3 ASVs were
444 significant, the top 8 ASVs driving differences between the WT and $\Delta hypD$ microbiotas were
445 examined via NCBI BLAST to determine the identity of each ASV (Figure 3B, Supplemental
446 Data File 1). *Lachnospiraceae bacterium* strain D2 1X 41 and *Clostridium* species MD294 were
447 significantly higher in the WT microbiome than the $\Delta hypD$ microbiome. *Clostridium* species
448 Clone 49 was significantly higher in the $\Delta hypD$ microbiota than the WT microbiota. There were
449 also two *Lachnospiraceae* strains, including another ASV that resolved to *Lachnospiraceae bac-*
450 *terium* strain D2 1X 41 as well as *Lachnospiraceae bacterium* DW17, that were higher in the
451 $\Delta hypD$ microbiome, but did not reach significance. It is unclear why two separate ASVs that re-
452 solved to the same strain (*Lachnospiraceae bacterium* strain D2 1X 41) showed such different
453 results in terms of abundance in the WT and $\Delta hypD$ microbiotas, although it could be due to
454 misassignment, as all 8 ASVs investigated via BLAST matched with multiple strains with high
455 ID, and the highest match was selected to be the identified strain.

456 Of the top 8 ASVs driving the difference between the WT and $\Delta hypD$ cecal microbiomes
457 on day 7 post challenge, 5 were either *Clostridium* species or members of the *Lachnospiraceae*
458 family, including all statistically significant ASVs (Figure 3B). This suggests that hydroxypro-
459 line may be differentially abundant between the two groups of mice and that members of the

460 *Lachnospiraceae* family and the *Clostridium* genus respond to this by utilizing it for growth.
461 Given the previous work showing that commensal *Clostridia* are important to colonization re-
462 sistance against *C. difficile*, we next wanted to investigate the response of commensal *Clostridia*
463 to hydroxyproline[16,19].

464 **Hydroxyproline is utilized by commensal *Clostridia* and *C. difficile* when supplemented into**
465 **a rich medium.** To test for the utilization of hydroxyproline by *C. difficile* and the commensal
466 *Clostridia* strains, WT *C. difficile*, Δ *hypD*, and the commensals *C. hiranonis*, *C. hylemonae* and
467 *C. scindens* were grown in BHI and in BHI + 600mg/L of hydroxyproline (BHI and BHI +hyp)
468 media for 14 hr, then amino acids and 5-amino-valerate, the product of proline fermentation,
469 were measured using LC/MS. As expected, the BHI +hyp control had significantly higher levels
470 of hydroxyproline than the BHI alone (Figure 4A, $p < 0.01$, Student's T Test with Welch's Cor-
471 rection). WT *C. difficile* utilized hydroxyproline, as did all the commensal *Clostridia*, however,
472 the Δ *hypD* mutant did not (Fig. 4A, $p < 0.01$, Student's T Test with Welch's Correction). There
473 were no significant differences in levels of proline in bacterial cultures grown in BHI compared
474 to BHI +hyp, which is likely explained by the fact that the bacteria were grown in a rich medium
475 and that proline is being metabolized into 5-amino-valerate and other intermediates (Figure 4B).
476 The levels of 5-amino-valerate were higher on average in supernatants for all bacteria grown in
477 BHI or in BHI +hyp than in the media control for either condition, indicating that all strains test-
478 ed were likely utilizing proline and producing 5-amino-valerate (Figure 4C, Supplemental Data
479 File 3). The levels of 5-amino-valerate were significantly higher for *C. scindens* in BHI +hyp,
480 although it is unclear if the difference is biologically relevant ($p < 0.01$, Student's T Test with
481 Welch's Correction).

482 **The genomic position of *p5cr* in relation to *hypD* and the transcriptional response to hy-**

483 **droxyproline varies between *C. difficile* and commensal *Clostridia*.** When *hypD*
484 (CD630_32820) and *p5cr* (CD630_32810) were aligned across strains using *C. difficile* as the
485 reference strain, it was found that only *C. difficile* and *C. hiranonis* had the *p5cr* gene next to the
486 *hypD* gene (Figure 5A). In *C. hylemonae* and *C. scindens*, the *p5cr* gene was not adjacent to the
487 *hypD* gene. In addition, *hypD* from *C. hiranonis* showed the greatest amino acid identity (84%)
488 to the *C. difficile* HypD protein while the other two commensals only showed 55% (Figure 5A).
489 All commensals showed a 69% AA identity to the P5CR protein encoded by *C. difficile*. To de-
490 termine if this would affect the transcriptional response of *hypD* and *p5cr* to hydroxyproline, *C.*
491 *difficile*, *C. hiranonis*, *C. hylemonae* and *C. scindens* were each grown in BHI or BHI + hyp
492 overnight and the relative copy number of *hypD* and *p5cr* transcripts were analyzed using qRT-
493 PCR (Figure 5B-E).

494 All four strains tested had different transcriptional responses to hydroxyproline supplementa-
495 tion of rich media (Figure 5B-E). *C. hiranonis* had significantly increased expression of *hypD*
496 and *p5cr* in the presence of hydroxyproline, which was expected given that the two genes are
497 possibly operonic in that strain ($p < 0.001$, Student's T test). *C. hylemonae* had significantly in-
498 creased expression of *hypD*, but not of *p5cr* ($p < 0.01$, Student's T test). Neither *C. difficile* nor
499 *C. scindens* showed significantly altered expression for either gene, but the overall relative copy
500 number for *C. difficile* was approximately ten-fold higher than the relative copy number for *C.*
501 *scindens* (Figure 5B, 5E).

502 ***C. difficile* and commensal *Clostridia* each have different transcriptomic responses to the**
503 **presence of hydroxyproline.** *C. difficile*, *C. hiranonis*, *C. hylemonae* and *C. scindens* were all
504 grown in BHI or BHI supplemented with 600mg/L of hydroxyproline (BHI + hyp) media. At
505 mid-log growth (OD_{600} 0.3-0.5), RNA was extracted, and the transcriptomic response was ana-

506 lyzed using RNAseq. For *C. difficile*, many of the genes that were upregulated upon exposure to
507 hydroxyproline are involved in proline metabolism, including the copy of *proC* that is adjacent
508 to *hypD*. In particular, many of the genes in the *prd* operon, which encodes enzymes for the re-
509 duction of proline in Stickland fermentation and has previously been shown to be upregulated in
510 the presence of proline, were upregulated in *C. difficile* (Figure 6A, Supplemental Data File
511 4)[26]. Genes involved in regenerating NAD⁺ via the reduction of succinate and its conversion to
512 butyrate were decreased in expression in the presence of hydroxyproline, consistent with the role
513 of proline reductase as a preferred mechanism of reducing equivalent regeneration. In *C.*
514 *hiranonis*, most of the differentially expressed genes were downregulated, including amino acid
515 and branched chain amino acid biosynthetic genes, as well as carbohydrate utilization genes. The
516 putative ferrous iron importer gene *feoB2* was increased in *C. hiranonis* in the presence of hy-
517 droxyproline, as well as gene encoding a putative NADP-dependent α -hydroxysteroid dehydro-
518 genase, although the overall expression of the latter was quite low (Fig. 6B). Similarly, *C.*
519 *hylemonae* had several transcripts that significantly decreased with supplementation of hydroxy-
520 proline, including those encoding the glycine reductase (Fig. 6C). Conversely, the genes encod-
521 ing the glycine cleavage system were increased in *C. hiranonis* in the presence of hydroxypro-
522 line. *C. scindens* had the largest number of differentially expressed genes between the two media
523 conditions (Figure 6D). A number of genes from the *prd* operon were upregulated in response to
524 hydroxyproline, as were a number of genes encoding subunits of an electron transport complex
525 (*rnfABCDEG*) (Figure 6D). Several genes from the *bai* (bile acid inducible) operon were signifi-
526 cantly decreased, although their expression levels in BHI alone were quite low. The expression
527 of genes in the *bai* operon was decreased in *C. scindens* and *C. hylemonae*, in the presence of
528 hydroxyproline but in *C. hiranonis*, the expression of *bai* operon genes was increased in the

529 presence of hydroxyproline (Supplemental Figure 3). Overall, the variable transcriptional re-
530 sponds to the presence of hydroxyproline observed between *C. difficile* and the three commensal
531 *Clostridia* revealed changes in non-hydroxyproline associated metabolic pathways, including
532 those for fermentation of other Stickland substrates.

533 **Discussion**

534 Understanding which nutrients are required for *C. difficile* to persist and cause disease in the host
535 is important to developing targeted therapeutics against CDI. In this study, we employed bacteri-
536 al genetics to examine how the utilization of hydroxyproline by *C. difficile* affects CDI and the
537 microbiome in a mouse model of infection. To facilitate the interpretation of the *in vivo* data, the
538 $\Delta hypD$ and $\Delta p5cr$ mutants and their complements were first grown in a minimal medium with
539 hydroxyproline substituted for proline (CDMM –pro). While there was a growth defect in the
540 $\Delta hypD$ mutant, as expected, no growth defect was observed for the $\Delta p5cr$ mutant (Figure 1B).
541 This is potentially due to functional redundancy within the *C. difficile* genome where a
542 second homolog of P5CR is present (encoded by *CD630_14950*), which did not significantly
543 change expression in the presence of hydroxyproline. Also of interest is that all strains other than
544 the $\Delta hypD$ mutant showed significantly increased growth when hydroxyproline was present in
545 the media as opposed to proline. This is likely due to the repression of alternative NAD⁺ regen-
546 eration pathways that would result in butyrate production, which would impede growth of *C. dif-*
547 *ficile*, but further experiments are required to test this hypothesis[25,29,40].

548 Since $\Delta hypD$ growth was impaired *in vitro* when hydroxyproline was the only proline
549 source, we reasoned that *hypD* may be important for colonization and disease progression in a
550 mouse model of CDI. While the fecal burden of *C. difficile* was similar between the strains, the
551 mice challenged with the WT strain showed more weight loss on days 3, 5 and 7 after challenge

552 and toxin activity was higher on day 3 post challenge relative to mice colonized with $\Delta hypD$
553 (Figure 2D-E). There was no significant difference in toxin activity 7 days post challenge, indi-
554 cating that this effect is the strongest earlier during disease. While the effect is subtle, the differ-
555 ences in weight and toxin activity suggest that *C. difficile* relies on hydroxyproline for maximal
556 fitness *in vivo*, highlighting the importance of a host-derived amino acid that is likely made
557 available via toxin-induced expression of host matrix metalloproteinases[14,41,42]. *C. difficile* 630
558 was chosen for this experiment due to the genetic tools available for this strain, but it causes less
559 severe disease in a mouse model than strains R20291 or VPI 10463 [43-45]. It is possible that a
560 stronger difference between the mutant and the wild type strain would be observed in these strain
561 backgrounds, especially given their increased expression of *hypD* in the presence of hydroxypro-
562 line in a defined medium when compared to *C. difficile* 630 (Supplemental Figure 4).

563 Each of the bacteria tested had a different transcriptional response to hydroxyproline,
564 both in terms of RNAseq and when *hypD* and *p5cr* were tested individually using qRT-PCR
565 (Figures 5-6). Of particular interest was the fact that neither *C. difficile* nor *C. scindens* showed
566 upregulation of *hypD* or *p5cr* when hydroxyproline was supplemented to the media but when the
567 levels of amino acids were quantified using LC/MS, both organisms metabolized the majority of
568 hydroxyproline present (Figure 4A). For *C. scindens*, this may mean that *hypD* and/or *p5cr* are
569 always transcriptionally active or that the bacterium has another way to utilize hydroxyproline
570 that doesn't require either gene. For *C. difficile* 630 Δerm , it is more likely that *hypD* is always
571 transcriptionally active, as *C. difficile* $\Delta hypD$ did not utilize the excess hydroxyproline added to
572 the media, in addition to the growth defect previously observed (Figure 1B and 4A). The lack of
573 differential expression in *C. difficile* 630 is particularly interesting, as when the *C. difficile*
574 strains 630, R20291 and VPI 10463 were tested in a minimal medium, 630 was the only one

575 where *hypD* was not strongly upregulated in the presence of hydroxyproline, indicating that there
576 are regulatory differences between strains (Supplemental Figure 4). Unfortunately, one of the
577 limitations of the *in vitro* work in this study was the requirement to use a rich and undefined me-
578 dium, that contains a basal level of hydroxyproline, as *C. hiranonis* and *C. hylemonae* do not
579 grow well in defined media[16,46].

580 The overall transcriptional response of *C. difficile* 630Δerm and the commensal *Clostrid-
581 ia* to hydroxyproline indicated *in vitro* that while there were some similarities, each organism
582 had a relatively unique response. In *C. scindens*, over 60 transcripts were significantly altered in
583 response to hydroxyproline, with 38 of those genes being in a metabolic COG category. Of par-
584 ticular interest is that *baiA2*, *baiCD*, *baiF* and *baiH* were all downregulated in response to hy-
585 droxyproline, indicating that even without cholate in the media, the activation of the *bai* operon
586 can vary depending on the nutritional content of the media. While none of the changes in *bai*
587 transcripts in *C. hylemonae* were statistically significant, several *bai* operon genes, including
588 *baiG* and *baiE*, were downregulated in response to hydroxyproline (Supplemental Figure 3). This
589 is particularly interesting given the previous finding that *C. hylemonae* shows upregulation of the
590 *bai* operon when exposed to cholate in a defined medium, but not when exposed to cholate in
591 BHI [16,46]. Despite recent work that suggests bile acids do not play an essential role in protec-
592 tion against CDI, this study provides further evidence that there is a relationship between nutrient
593 availability and secondary bile acid production in commensal *Clostridia* [47]. Further work com-
594 bining bile acids and hydroxyproline, and other amino acids important for Stickland fermenta-
595 tion, are needed to fully dissect transcriptional networks in these organisms and define their indi-
596 vidual and combinatorial roles in colonization resistance against *C. difficile*. This supports the
597 finding that each of these commensal *Clostridia* have differing metabolic responses to hydroxy-

598 proline, and that further elucidation of their nutrient utilization *in vivo* will be fruitful for identi-
599 fying possible nutritional overlaps with *C. difficile*. This approach may allow for the develop-
600 ment of rationally designed cocktails of commensal microbiota that can compete against *C. dif-*
601 *ficile* for one or more nutrient sources in an infected host.

602 **Acknowledgements**

603 We would like to thank Jason Ridlon for providing the commensal *Clostridia* strains. YYH, DJK
604 and EPB were funded by Faculty Scholar Award and the Packard Fellowship for Science and
605 Engineering from the David and Lucile Packard Foundation (2013-39267). CMT was funded by
606 the National Institute of General Medical Sciences of the National Institutes of Health under
607 award number R35GM119438. This work was performed in part by the Molecular Education,
608 Technology and Research Innovation Center (METRIC) at NC State University, which is sup-
609 ported by the State of North Carolina.

610 **Data availability**

611 Raw sequences have been deposited in the Sequence Read Archive (SRA) with SRA submission
612 number SUB10603241 for 16S data and SUB10603493 for RNAseq data. They can both be
613 found under BioProject ID PRJNA776739. Source data are provided within each Supplementary
614 Data Files. Other data and biological materials are available from the corresponding author upon
615 reasonable requests.

616

617
618 **Figure 1: *C. difficile* Δ hypD mutant has a growth defect when hydroxyproline is substituted for proline in the**
619 **growth medium.** **A.** Schematic depicting conversion of trans-4-hydroxy-L-proline to L-proline by *hypD* and *p5cr*.
620 **B.** Growth of *C. difficile* 630 Δ erm WT, the Δ hypD and Δ p5cr mutants, as well as the complements of both mutants
621 in the defined medium CDMM, in CDMM -proline +hydroxyproline (-pro, +hyp), and CDMM -proline (-pro) Sta-
622 tistical significance was determined using Student's T Test with Welch's Correction to account for multiple compa-
623 risons (*, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001).

624
625 **Figure 2: WT *C. difficile* induces more weight loss and toxin activity than the Δ hypD mutant in a mouse mod-
626 el of CDI.** **A.** Schematic depicting experimental design. All mice (n=24) received the antibiotic cefoperazone in

627 their drinking water. Subsets of mice were orally challenged with *C. difficile* 630Δerm (WT, n=8) or *C. difficile*
628 630ΔhypDΔerm (ΔhypD, n=8). The third group of mice were only treated with cefoperazone (cef, n=8). **B-C.** *C.*
629 *difficile* vegetative cell (**B**) or spore (**C**) CFUs in feces on days 1, 3, 5 and 7 post challenge. **D.** Mouse weights from
630 1-, 3-, 5- and 7-days post challenge. shown as a percentage of baseline weight for each mouse from day 0 **E.** Toxin
631 activity on 3 and 7 days post challenge. Statistical significance for data shown in **B-E** was determined using Mann-
632 Whitney (*, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001).
633

634 **Figure 3: The Lachnospiraceae are important when determining the difference between the microbiota of**
635 **mice challenged with WT and ΔhypD.** **A.** Relative abundance at the family level for cef, *hypD* and WT fecal mi-
636 crobiome for days 0, 2, 4, and 6 post challenge and the cecal microbiome for day 7 post challenge. **B.** Top 8 ASVs
637 driving differences between *hypD* and WT cecal microbiome on day 7 post challenge. Significant ASVs (q <0.1) are
638 bolded.
639

640 **Figure 4: *C. difficile* WT, *C. hiranonis*, *C. hylemonae*, and *C. scindens* utilize hydroxyproline when it is sup-
641 plemented into a rich growth medium.** Concentration of (**A**) hydroxyproline, (**B**) proline, and (**C**) 5-amino-
642 valerate in BHI and in BHI +600 mg/L hydroxyproline. Supernatants were taken after 24 hours of growth by WT,
643 *hypD*, *C. hiranonis*, *C. hylemonae*, or *C. scindens*. BHI alone (dotted line) and BHI +600mg/L of hydroxyproline
644 were used as controls. Statistical significance was determined using Student's T Test with Welch's Correction to
645 account for multiple comparisons (*, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001).
646

647 **Figure 5: Expression of *hypD* and *p5cr* differs between *C. difficile* and selected commensal *Clostridia* in rich**

648 media supplemented with hydroxyproline. **A.** Alignment of *hypD* and *p5cr* across *C. difficile* and selected com-
649 mensal *Clostridia* strains. Each protein sequence was compared against its counterpart in the reference strain *C. dif-
650 ffcile* 630Δerm, generating the amino acid percent identity labeled within each gene. **B-E.** Expression of *hypD* and
651 *p5cr* in BHI media and BHI media with 600 mg/L hydroxyproline added of *C. difficile* (**B**), *C. hiranonis* (**C**), *C.*
652 *hylemonae* (**D**) and *C. scindens* (**E**). Experiments were run in triplicate and three biological replicates were per-
653 formed. The expression in medium supplemented with hydroxyproline was compared to expression in medium
654 without additional hydroxyproline. Statistical significance was determined using Student's T Test (*, p<0.05; **,
655 p<0.01; ***, p<0.001; ****, p<0.0001).
656

657 **Figure 6: Transcriptomic differences in response to hydroxyproline vary between *C. difficile* and commensal**
658 ***Clostridia*.** Heatmap of genes that had significantly differential expression in (**A**) *C. difficile* WT, (**B**) *C. hiranonis*,
659 (**C**) *C. hylemonae* and (**D**) *C. scindens* between Analysis was run using Geneious and DESeq2. All genes considered
660 differentially expressed had an adjusted p value of <0.05 and ± 1 log fold change.
661

662 **Supplemental Figure 1: Vegetative bacterial load in cecal content is higher in ΔhypD mutant than in WT on**
663 **Day 7.** *C. difficile* vegetative cell (**A**) or spore (**B**) CFUs in cecal content on day 7 post challenge. Statistical signifi-
664 cance was determined using Mann-Whitney (*, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001).
665

666 **Supplemental Figure 2: The Alpha and Beta diversity differ between groups on day 7.** **A.** Alpha diversity cal-
667 culated using Inverse simpson at the family level for cef, *hypD* and WT fecal microbiome for days 0, 2, 4, and 6 post
668 challenge and the cecal microbiome for day 7 post challenge. **B.** Beta diversity calculated using NMDS for cef,
669 *hypD* and WT fecal microbiome for days 0, 2, 4, and 6 post challenge and the cecal microbiome for day 7 post chal-
670 lenge. **C.** Beta diversity calculated using NMDS for *hypD* and WT fecal microbiome for days 0, 2, 4, and 6 post
671 challenge and the cecal microbiome for day 7 post challenge. Statistical significance was determined using Kruskal-
672 Wallis for Alpha diversity and Permanova Adonis for Beta diversity (*, p<0.05; **, p<0.01; ***, p<0.001; ****,
673 p<0.0001).
674

675 **Supplemental Figure 3. The transcriptional response of *hypD* to hydroxyproline differs between *C. difficile***

676 **strains.** Expression of *hypD* in CDMM and CDMM -pro +hyp of *C. difficile* 630, R20291 and VPI 10463. Experi-
677 ments were run in triplicate and two biological replicates were performed.
678

679 **Supplemental Figure 4: Transcriptional response of *bai* operon to hydroxyproline differs between *C.***

680 ***hiranonis* and other commensal *Clostridia*.** Heatmap of *baiA1* and genes within the *bai* operon in BHI and BHI +
681 hyp in (**A**) *C. hiranonis*, (**B**) *C. hylemonae* and (**C**) *C. scindens*.
682

683
684
685
686

687

688

REFERENCES

1. Lessa, F.C.; Mu, Y.; Bamberg, W.M.; Beldavs, Z.G.; Dumyati, G.K.; Dunn, J.R.; Farley, M.M.; Holzbauer, S.M.; Meek, J.I.; Phipps, E.C., et al. Burden of *Clostridium difficile* infection in the United States. *N Engl J Med* **2015**, *372*, 825-834, doi:10.1056/NEJMoa1408913.
2. Magill, S.S.; O'Leary, E.; Janelle, S.J.; Thompson, D.L.; Dumyati, G.; Nadle, J.; Wilson, L.E.; Kainer, M.A.; Lynfield, R.; Greissman, S., et al. Changes in Prevalence of Health Care-Associated Infections in U.S. Hospitals. *N Engl J Med* **2018**, *379*, 1732-1744, doi:10.1056/NEJMoa1801550.
3. Kelly, C.P. Current strategies for management of initial *Clostridium difficile* infection. *J Hosp Med* **2012**, *7 Suppl 3*, S5-10, doi:10.1002/jhm.1909.
4. Cornely, O.A.; Miller, M.A.; Louie, T.J.; Crook, D.W.; Gorbach, S.L. Treatment of first recurrence of *Clostridium difficile* infection: fidaxomicin versus vancomycin. *Clin Infect Dis* **2012**, *55 Suppl 2*, S154-161, doi:10.1093/cid/cis462.
5. Fekety, R.; McFarland, L.V.; Surawicz, C.M.; Greenberg, R.N.; Elmer, G.W.; Mulligan, M.E. Recurrent *Clostridium difficile* diarrhea: characteristics of and risk factors for patients enrolled in a prospective, randomized, double-blinded trial. *Clin Infect Dis* **1997**, *24*, 324-333, doi:10.1093/clinids/24.3.324.
6. Owens, R.C., Jr.; Donskey, C.J.; Gaynes, R.P.; Loo, V.G.; Muto, C.A. Antimicrobial-associated risk factors for *Clostridium difficile* infection. *Clin Infect Dis* **2008**, *46 Suppl 1*, S19-31, doi:10.1086/521859.
7. Seekatz, A.M.; Young, V.B. *Clostridium difficile* and the microbiota. *J Clin Invest* **2014**, *124*, 4182-4189, doi:10.1172/JCI72336.
8. Theriot, C.M.; Koenigsknecht, M.J.; Carlson, P.E., Jr.; Hatton, G.E.; Nelson, A.M.; Li, B.; Huffnagle, G.B.; J, Z.L.; Young, V.B. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to *Clostridium difficile* infection. *Nat Commun* **2014**, *5*, 3114, doi:10.1038/ncomms4114.
9. Ducarmon, Q.R.; Zwittink, R.D.; Hornung, B.V.H.; van Schaik, W.; Young, V.B.; Kuijper, E.J. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. *Microbiology and Molecular Biology Reviews* **2019**, *83*, e00007-00019, doi:10.1128/mmbr.00007-19.
10. Crobach, M.J.T.; Vernon, J.J.; Loo, V.G.; Kong, L.Y.; Pechine, S.; Wilcox, M.H.; Kuijper, E.J. Understanding *Clostridium difficile* Colonization. *Clin Microbiol Rev* **2018**, *31*, doi:10.1128/CMR.00021-17.
11. Buffie, C.G.; Pamer, E.G. Microbiota-mediated colonization resistance against intestinal pathogens. *Nature Reviews Immunology* **2013**, *13*, 790-801.
12. Guo, C.J.; Allen, B.M.; Hiam, K.J.; Dodd, D.; Van Treuren, W.; Higginbottom, S.; Nagashima, K.; Fischer, C.R.; Sonnenburg, J.L.; Spitzer, M.H., et al. Depletion of microbiome-derived molecules in the host using *Clostridium* genetics. *Science* **2019**, *366*, doi:10.1126/science.aav1282.

728 13. Battaglioli, E.J.; Hale, V.L.; Chen, J.; Jeraldo, P.; Ruiz-Mojica, C.; Schmidt, B.A.;
729 Rekdal, V.M.; Till, L.M.; Huq, L.; Smits, S.A., et al. *Clostridioides difficile* uses amino
730 acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. *Sci
731 Transl Med* **2018**, *10*, doi:10.1126/scitranslmed.aam7019.

732 14. Fletcher, J.R.; Pike, C.M.; Parsons, R.J.; Rivera, A.J.; Foley, M.H.; McLaren, M.R.;
733 Montgomery, S.A.; Theriot, C.M. *Clostridioides difficile* exploits toxin-mediated
734 inflammation to alter the host nutritional landscape and exclude competitors from the gut
735 microbiota. *Nature Communications* **2021**, *12*, 1-14.

736 15. Fletcher, J.R.; Erwin, S.; Lanzas, C.; Theriot, C.M. Shifts in the Gut Metabolome and
737 *Clostridium difficile* Transcriptome throughout Colonization and Infection in a Mouse
738 Model. *mSphere* **2018**, *3*, doi:10.1128/mSphere.00089-18.

739 16. Reed, A.D.; Nethery, M.A.; Stewart, A.; Barrangou, R.; Theriot, C.M. Strain-dependent
740 inhibition of *Clostridioides difficile* by commensal *Clostridia* encoding the bile acid
741 inducible (*bai*) operon. *J Bacteriol* **2020**, 10.1128/JB.00039-20, doi:10.1128/JB.00039-
742 20.

743 17. Winston, J.A.; Rivera, A.J.; Cai, J.; Thanissery, R.; Montgomery, S.A.; Patterson, A.D.;
744 Theriot, C.M. Ursodeoxycholic Acid (UDCA) Mitigates the Host Inflammatory Response
745 during *Clostridioides difficile* Infection by Altering Gut Bile Acids. *Infect Immun* **2020**,
746 88, doi:10.1128/IAI.00045-20.

747 18. Ridlon, J.M.; Harris, S.C.; Bhowmik, S.; Kang, D.J.; Hylemon, P.B. Consequences of
748 bile salt biotransformations by intestinal bacteria. *Gut Microbes* **2016**, *7*, 22-39,
749 doi:10.1080/19490976.2015.1127483.

750 19. Buffie, C.G.; Bucci, V.; Stein, R.R.; McKenney, P.T.; Ling, L.; Gobourne, A.; No, D.;
751 Liu, H.; Kinnebrew, M.; Viale, A., et al. Precision microbiome reconstitution restores bile
752 acid mediated resistance to *Clostridium difficile*. *Nature* **2015**, *517*, 205-208,
753 doi:10.1038/nature13828.

754 20. Sorg, J.A.; Sonenshein, A.L. Inhibiting the initiation of *Clostridium difficile* spore
755 germination using analogs of chenodeoxycholic acid, a bile acid. *J Bacteriol* **2010**, *192*,
756 4983-4990, doi:10.1128/JB.00610-10.

757 21. Wilson, K.H.; Sheagren, J.N. Antagonism of toxigenic *Clostridium difficile* by
758 nontoxigenic *C. difficile*. *J Infect Dis* **1983**, *147*, 733-736, doi:10.1093/infdis/147.4.733.

759 22. Gording, D.N.; Meyer, T.; Lee, C.; Cohen, S.H.; Murthy, U.K.; Poirier, A.; Van
760 Schooneveld, T.C.; Pardi, D.S.; Ramos, A.; Barron, M.A., et al. Administration of spores
761 of nontoxigenic *Clostridium difficile* strain M3 for prevention of recurrent *C. difficile*
762 infection: a randomized clinical trial. *JAMA* **2015**, *313*, 1719-1727,
763 doi:10.1001/jama.2015.3725.

764 23. Jenior, M.L.; Leslie, J.L.; Powers, D.A.; Garrett, E.M.; Walker, K.A.; Dickenson, M.E.;
765 Petri, W.A.; Tamayo, R.; Papin, J.A. Novel drivers of virulence in *Clostridioides difficile*
766 identified via context-specific metabolic network analysis. *bioRxiv* **2021**, 2020.2011.
767 2009.373480.

768 24. Jenior, M.L.; Leslie, J.L.; Young, V.B.; Schloss, P.D. *Clostridium difficile* colonizes
769 alternative nutrient niches during infection across distinct murine gut microbiomes.
770 *Msystems* **2017**, *2*.

771 25. Bouillaut, L.; Self, W.T.; Sonenshein, A.L. Proline-dependent regulation of *Clostridium*
772 *difficile* Stickland metabolism. *J Bacteriol* **2013**, *195*, 844-854, doi:10.1128/JB.01492-
773 12.

774 26. Karasawa, T.; Ikoma, S.; Yamakawa, K.; Nakamura, S. A defined growth medium for
775 Clostridium difficile. *Microbiology* **1995**, *141* (Pt 2), 371-375, doi:10.1099/13500872-
776 141-2-371.

777 27. Gencic, S.; Grahame, D.A. Diverse energy-conserving pathways in Clostridium difficile:
778 Growth in the absence of amino acid Stickland acceptors and the role of the Wood-
779 Ljungdahl pathway. *Journal of bacteriology* **2020**, *202*, e00233-00220.

780 28. Gorres, K.L.; Raines, R.T. Prolyl 4-hydroxylase. *Critical reviews in biochemistry and*
781 *molecular biology* **2010**, *45*, 106-124.

782 29. Huang, Y.Y.; Martinez-Del Campo, A.; Balskus, E.P. Anaerobic 4-hydroxyproline
783 utilization: Discovery of a new glycyl radical enzyme in the human gut microbiome
784 uncovers a widespread microbial metabolic activity. *Gut Microbes* **2018**, *9*, 437-451,
785 doi:10.1080/19490976.2018.1435244.

786 30. Levin, B.J.; Huang, Y.Y.; Peck, S.C.; Wei, Y.; Martinez-Del Campo, A.; Marks, J.A.;
787 Franzosa, E.A.; Huttenhower, C.; Balskus, E.P. A prominent glycyl radical enzyme in
788 human gut microbiomes metabolizes trans-4-hydroxy-l-proline. *Science* **2017**, *355*,
789 doi:10.1126/science.aai8386.

790 31. Lopez, C.A.; McNeely, T.P.; Nurmakova, K.; Beavers, W.N.; Skaar, E.P. Clostridioides
791 difficile proline fermentation in response to commensal clostridia. *Anaerobe* **2020**, *63*,
792 102210, doi:10.1016/j.anaerobe.2020.102210.

793 32. Thanissery, R.; Winston, J.A.; Theriot, C.M. Inhibition of spore germination, growth, and
794 toxin activity of clinically relevant C. difficile strains by gut microbiota derived
795 secondary bile acids. *Anaerobe* **2017**.

796 33. Thanissery, R.; Zeng, D.; Doyle, R.G.; Theriot, C.M. A Small Molecule-Screening
797 Pipeline to Evaluate the Therapeutic Potential of 2-Aminoimidazole Molecules Against
798 Clostridium difficile. *Front Microbiol* **2018**, *9*, 1206, doi:10.3389/fmicb.2018.01206.

799 34. Gibson, D.G.; Young, L.; Chuang, R.Y.; Venter, J.C.; Hutchison, C.A., 3rd; Smith, H.O.
800 Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat Methods*
801 **2009**, *6*, 343-345, doi:10.1038/nmeth.1318.

802 35. Fimlaid, K.A.; Jensen, O.; Donnelly, M.L.; Francis, M.B.; Sorg, J.A.; Shen, A.
803 Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore
804 Germination. *PLoS Pathogens* **2015**, 10.1371/journal.ppat.1005239,
805 doi:10.1371/journal.ppat.1005239.

806 36. Putnam, E.E.; Nock, A.M.; Lawley, T.D.; Shen, A. SpoIVA and SipL are Clostridium
807 difficile spore morphogenetic proteins. *J Bacteriol* **2013**, *195*, 1214-1225,
808 doi:10.1128/JB.02181-12.

809 37. Gloor, G. ALDEEx2: ANOVA-Like Differential Expression tool for compositional data.
810 *ALDEX manual modular* **2015**, *20*, 1-11.

811 38. Gómez-Rubio, V. ggplot2-elegant graphics for data analysis. *Journal of Statistical*
812 *Software* **2017**, *77*, 1-3.

813 39. McMurdie, P.J.; Holmes, S. phyloseq: an R package for reproducible interactive analysis
814 and graphics of microbiome census data. *PloS one* **2013**, *8*, e61217.

815 40. Neumann-Schaal, M.; Jahn, D.; Schmidt-Hohagen, K. Metabolism the Difficile Way: The
816 Key to the Success of the Pathogen Clostridioides difficile. *Front Microbiol* **2019**, *10*,
817 219, doi:10.3389/fmicb.2019.00219.

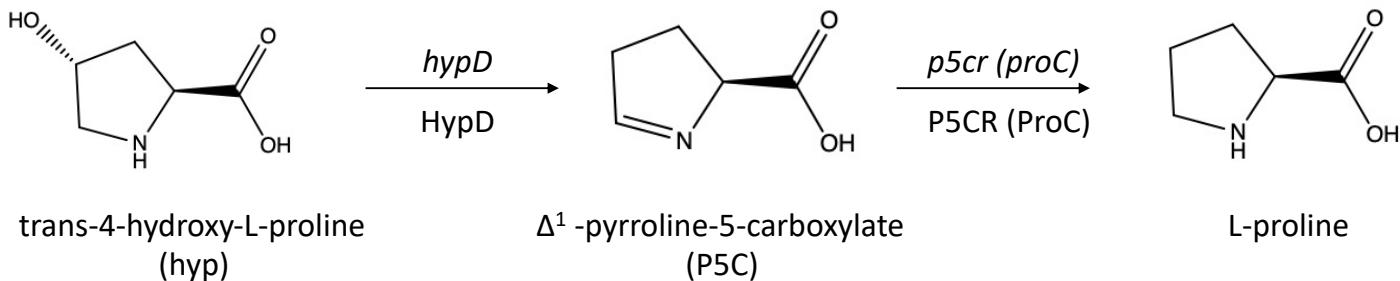
818 41. Hensbergen, P.J.; Klychnikov, O.I.; Bakker, D.; Dragan, I.; Kelly, M.L.; Minton, N.P.;
819 Corver, J.; Kuijper, E.J.; Drijfhout, J.W.; van Leeuwen, H.C. *Clostridium difficile*

820 secreted Pro-Pro endopeptidase PPEP-1 (ZMP1/CD2830) modulates adhesion through
821 cleavage of the collagen binding protein CD2831. *FEBS Lett* **2015**, 589, 3952-3958,
822 doi:10.1016/j.febslet.2015.10.027.

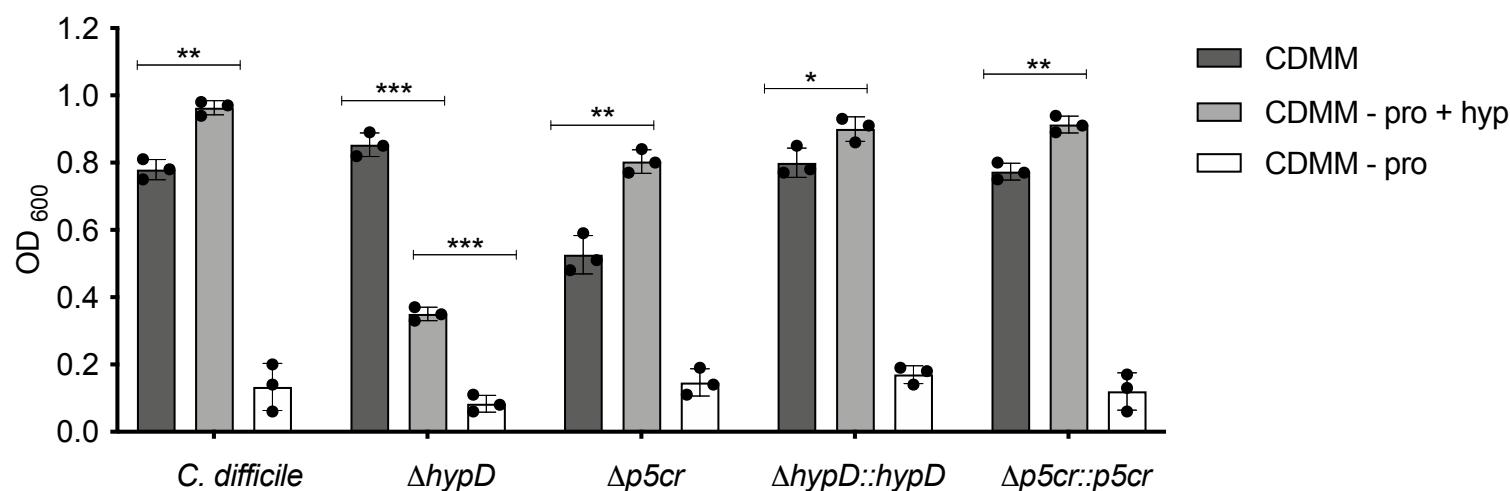
823 42. Udenfriend, S. Formation of hydroxyproline in collagen. *Science* **1966**, 152, 1335-1340.

824 43. Winston, J.A.; Thanissery, R.; Montgomery, S.A.; Theriot, C.M. Cefoperazone-treated
825 Mouse Model of Clinically-relevant *Clostridium difficile* Strain R20291. *J Vis Exp* **2016**,
826 10.3791/54850, doi:10.3791/54850.

827 44. Koenigsknecht, M.J.; Theriot, C.M.; Bergin, I.L.; Schumacher, C.A.; Schloss, P.D.;
828 Young, V.B. Dynamics and establishment of *Clostridium difficile* infection in the murine
829 gastrointestinal tract. *Infect Immun* **2015**, 83, 934-941, doi:10.1128/IAI.02768-14.

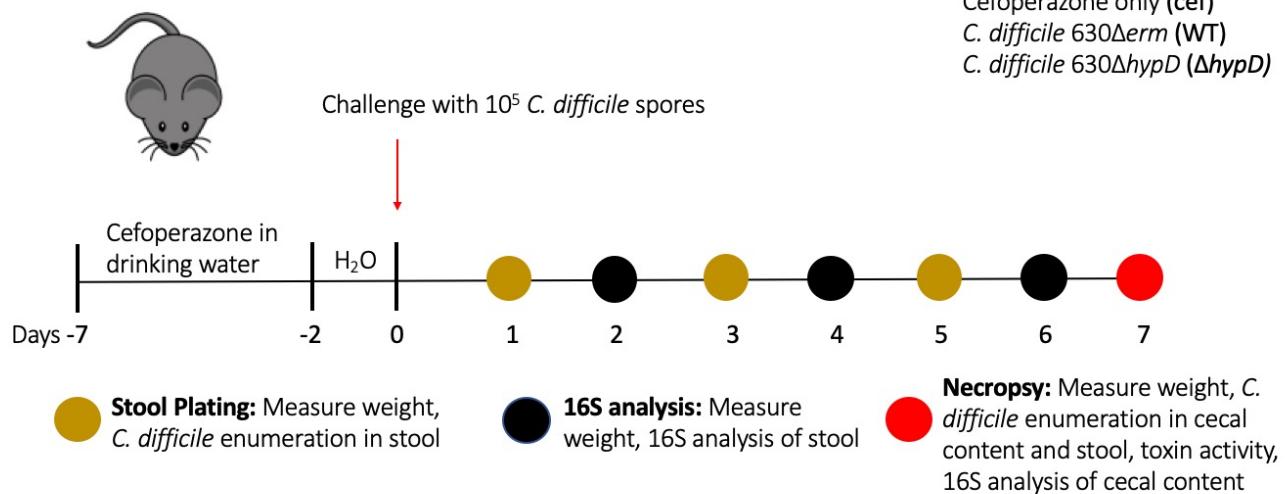

830 45. Theriot, C.M.; Koumpouras, C.C.; Carlson, P.E.; Bergin, I.I.; Aronoff, D.M.; Young,
831 V.B. Cefoperazone-treated mice as an experimental platform to assess differential
832 virulence of *Clostridium difficile* strains. *Gut microbes* **2011**, 2, 326-334.

833 46. Ridlon, J.M.; Devendran, S.; Alves, J.M.; Doden, H.; Wolf, P.G.; Pereira, G.V.; Ly, L.;
834 Volland, A.; Takei, H.; Nittono, H., et al. The 'in vivo lifestyle' of bile acid 7alpha-
835 dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid
836 metabolomics analysis of a defined microbial community in gnotobiotic mice. *Gut*
837 *Microbes* **2019**, 10.1080/19490976.2019.1618173, 1-24,
838 doi:10.1080/19490976.2019.1618173.


839 47. Aguirre, A.M.; Yalcinkaya, N.; Wu, Q.; Swennes, A.; Tessier, M.E.; Roberts, P.; Miyajima, F.; Savidge, T.; and Sorg, J.A. Bile acid-independent protection against *Clostridioides*
840 *difficile* infection. *PLoS Pathogens* 17(10): e1010015.

841

A



B

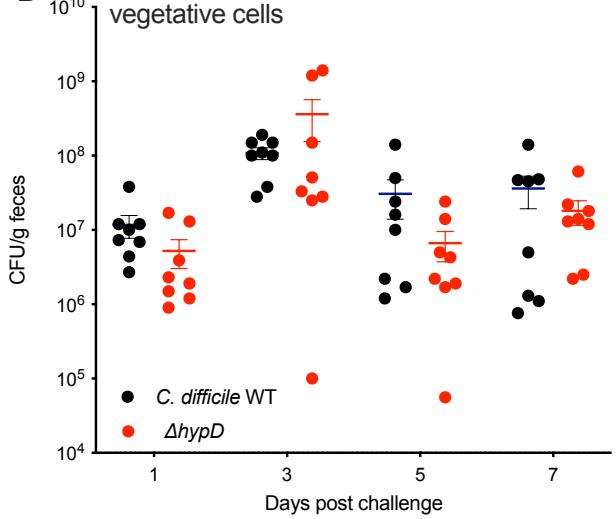
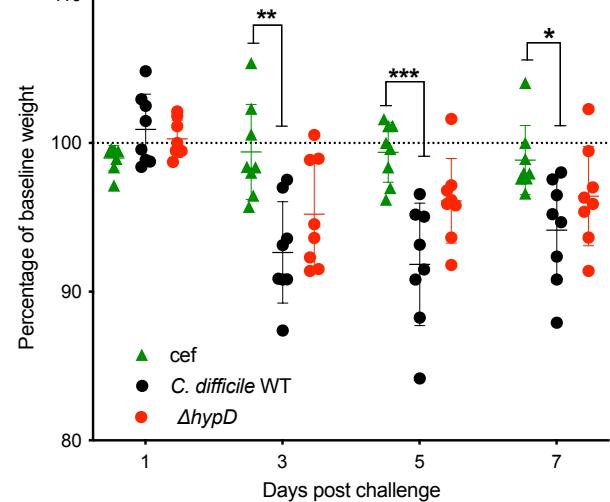
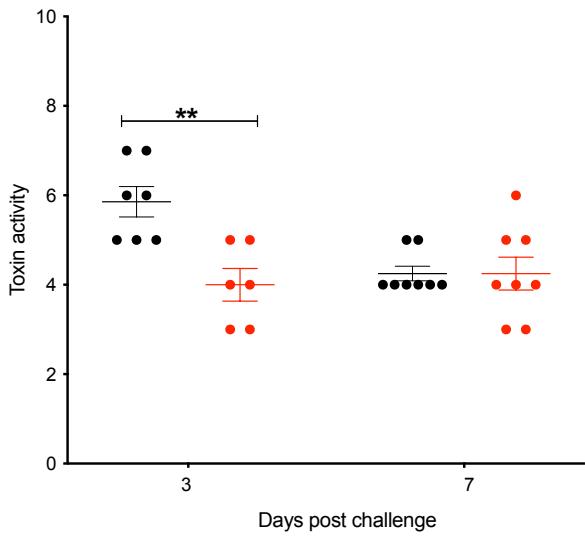


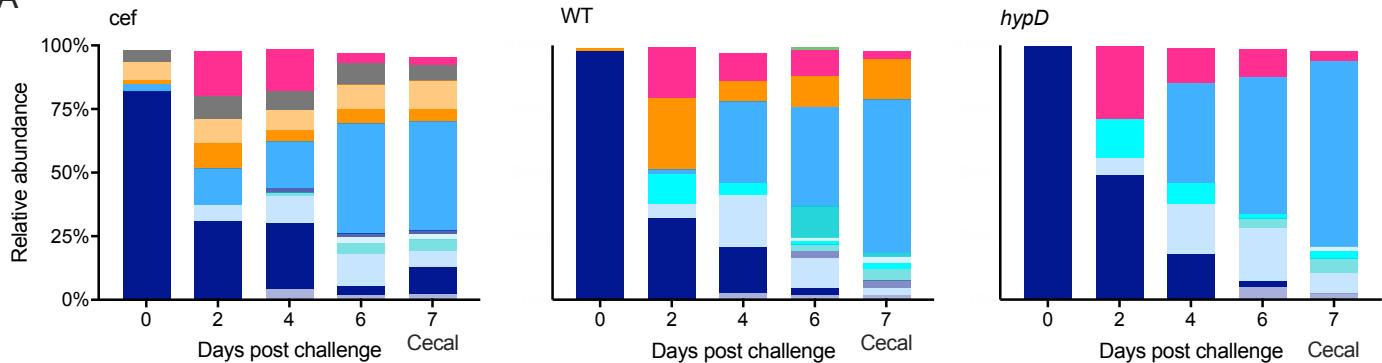
Figure 1: *C. difficile* ΔhypD mutant has a growth defect when hydroxyproline is substituted for proline in the growth medium. A. Schematic depicting conversion of trans-4-hydroxy-L-proline to L-proline by *hypD* and *p5cr*. **B.** Growth of *C. difficile* 630 Δerm WT, the ΔhypD and Δp5cr mutants, as well as the complements of both mutants in the defined medium CDMM, in CDMM -proline +hydroxyproline (-pro, +hyp), and CDMM -proline (-pro) Statistical significance was determined using Student's T Test with Welch's Correction to account for multiple comparisons (*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001).

A


B


C

D



E

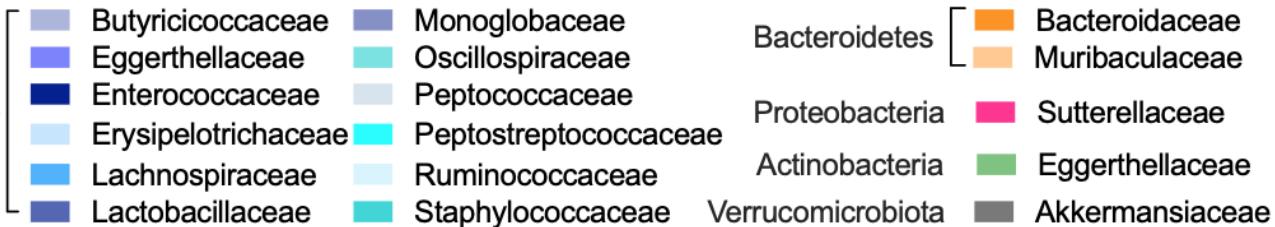
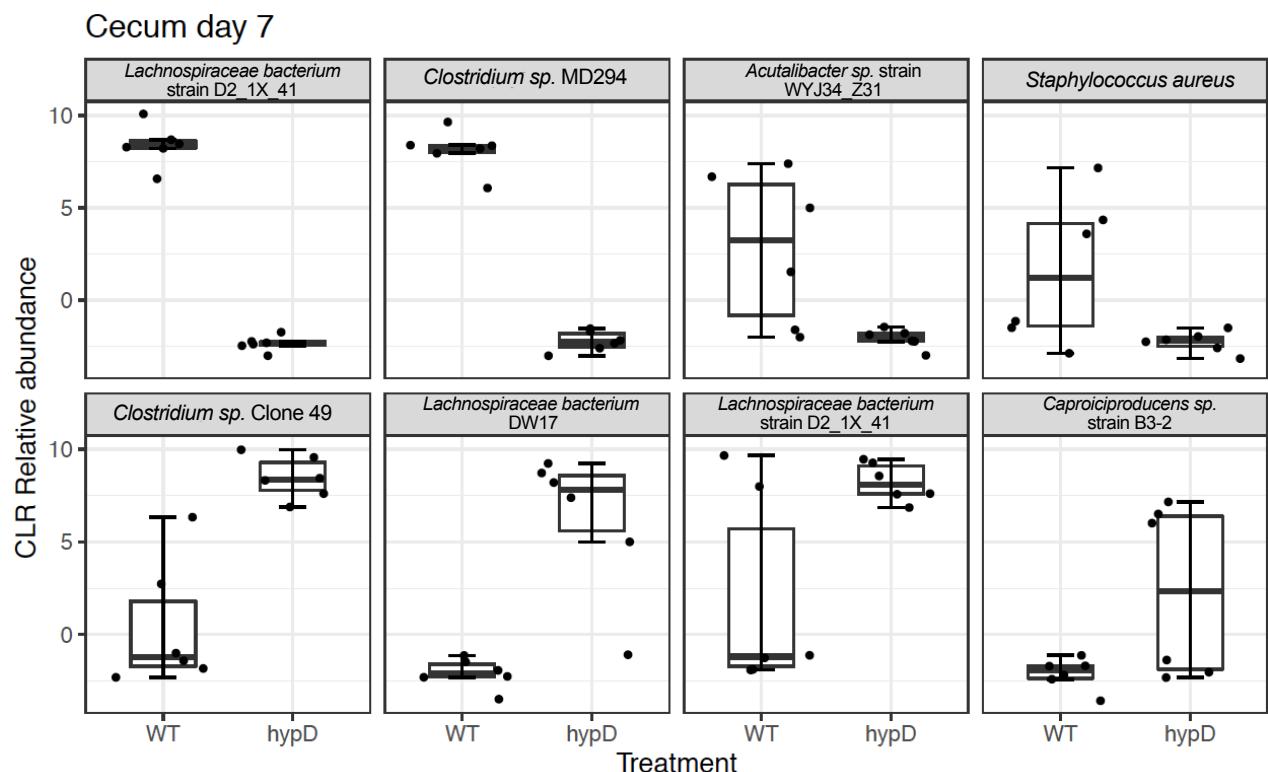
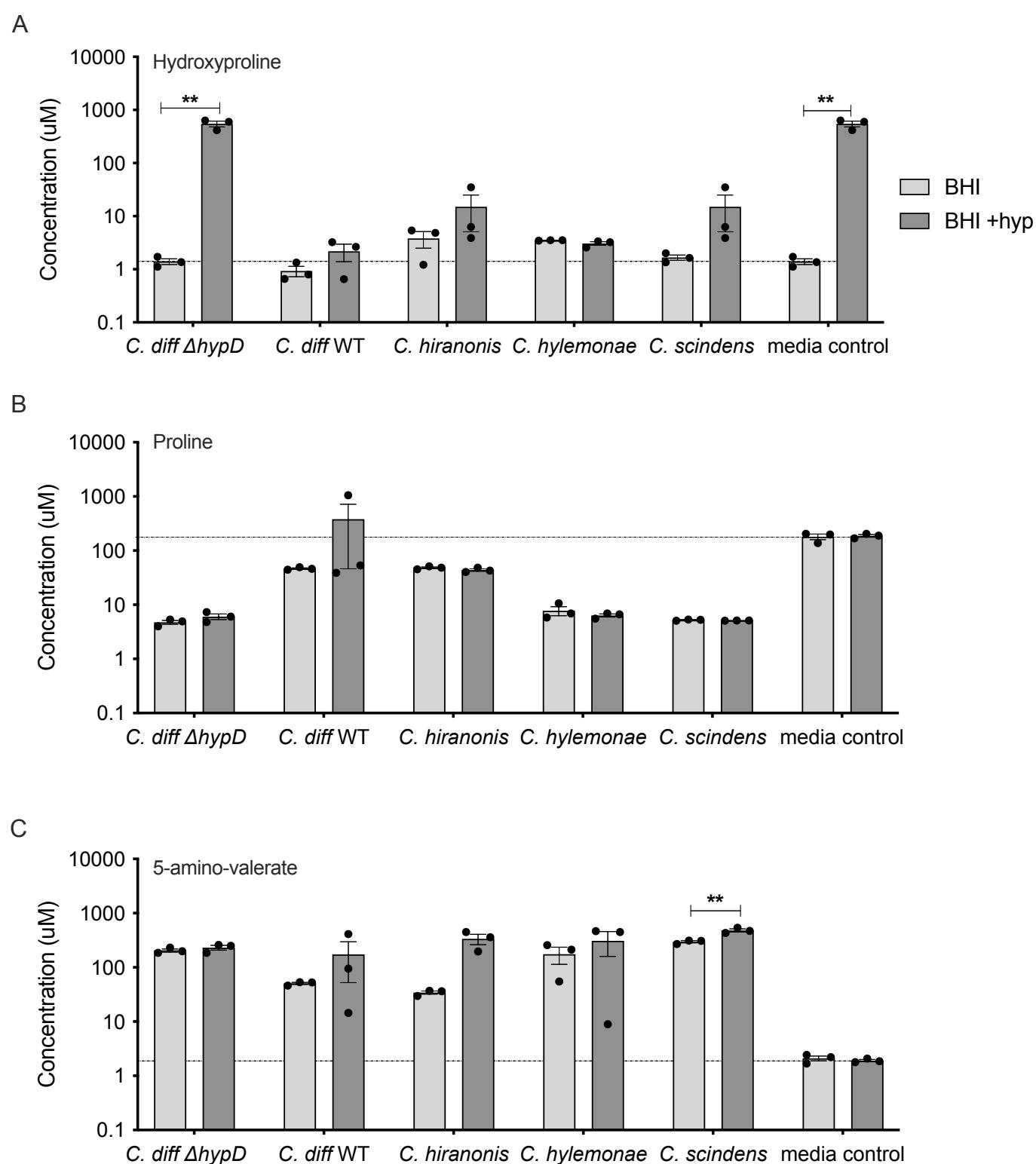


Figure 2: WT *C. difficile* induces more weight loss and toxin activity than the Δ hypD mutant in a mouse model of CDI. A. Schematic depicting experimental design. All mice (n=24) received the antibiotic cefoperazone in their drinking water. Subsets of mice were orally challenged with *C. difficile* 630 Δ erm (WT, n=8) or *C. difficile* 630 Δ hypD Δ erm (Δ hypD, n=8). The third group of mice were only treated with cefoperazone (cef, n=8). B-C. *C. difficile* vegetative cell (B) or spore (C) CFUs in feces on days 1, 3, 5 and 7 post challenge. D. Mouse weights from 1-, 3-, 5- and 7-days post challenge. shown as a percentage of baseline weight for each mouse from day 0 E. Toxin activity on 3 and 7 days post challenge. Statistical significance for data shown in B-E was determined using Mann-Whitney (*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001).


A


Firmicutes

B

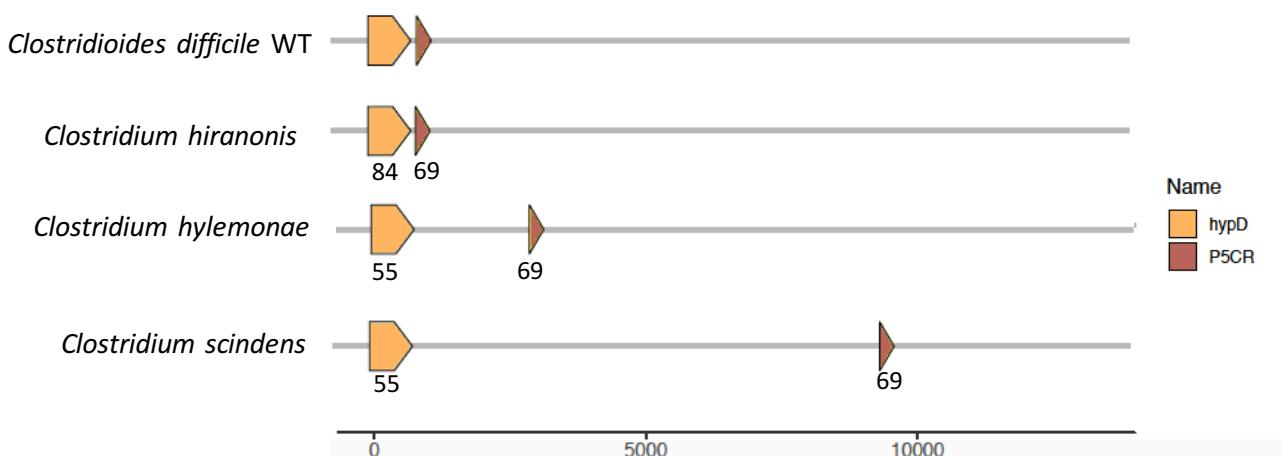


Figure 3: The *Lachnospiraceae* are important when determining the difference between the microbiota of mice challenged with WT and *hypD*. A. Relative abundance at the family level for cef, *hypD* and WT fecal microbiome for days 0, 2, 4, and 6 post challenge and the cecal microbiome for day 7 post challenge. **B.** Top 8 ASVs driving differences between *hypD* and WT cecal microbiome on day 7 post challenge. Significant ASVs ($q < 0.1$) are bolded.

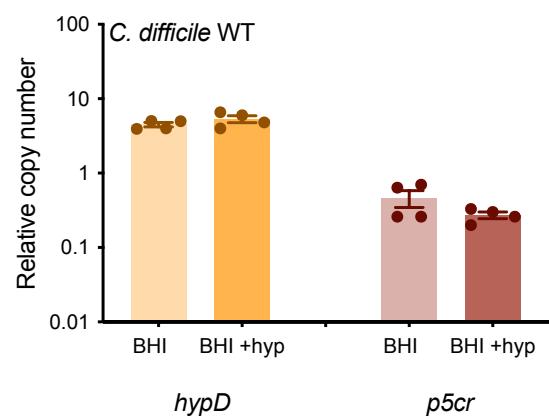
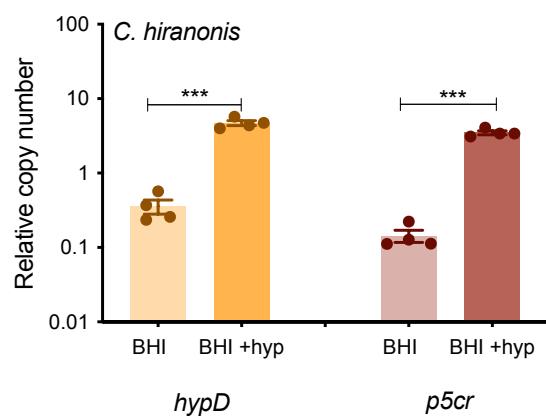
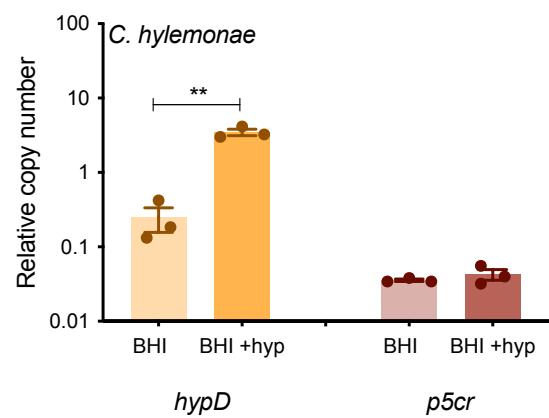
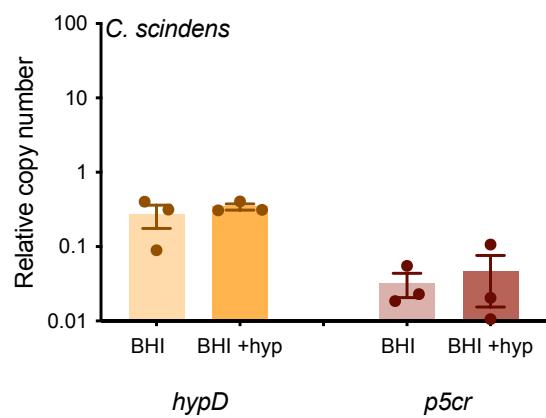


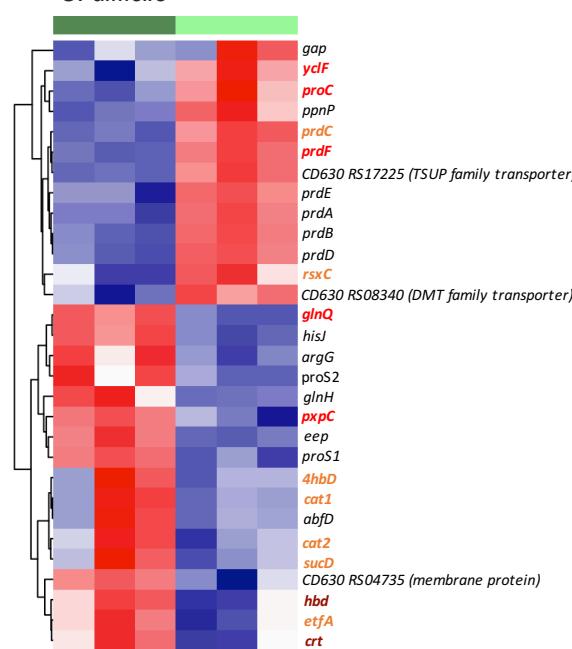
Figure 4: *C. difficile* WT, *C. hiranonis*, *C. hylemonae*, and *C. scindens* utilize hydroxyproline when it is supplemented into a rich growth medium. Concentration of (A) hydroxyproline, (B) proline, and (C) 5-amino-valerate in BHI and in BHI +600 mg/L hydroxyproline. Supernatants were taken after 24 hours of growth by WT, *hypD*, *C. hiranonis*, *C. hylemonae*, or *C. scindens*. BHI alone (dotted line) and BHI +600mg/L of hydroxyproline were used as controls. Statistical significance was determined using Student's T Test with Welch's Correction to account for multiple comparisons (*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001).


A


B


C

D



E

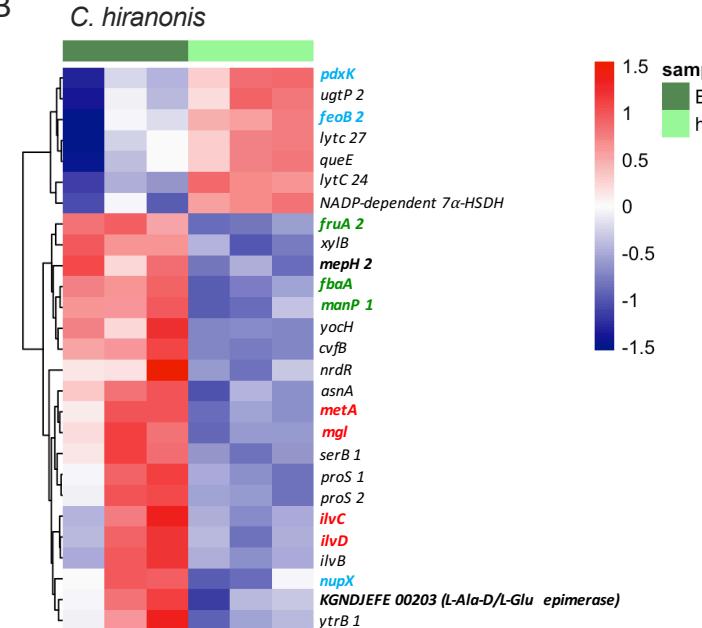
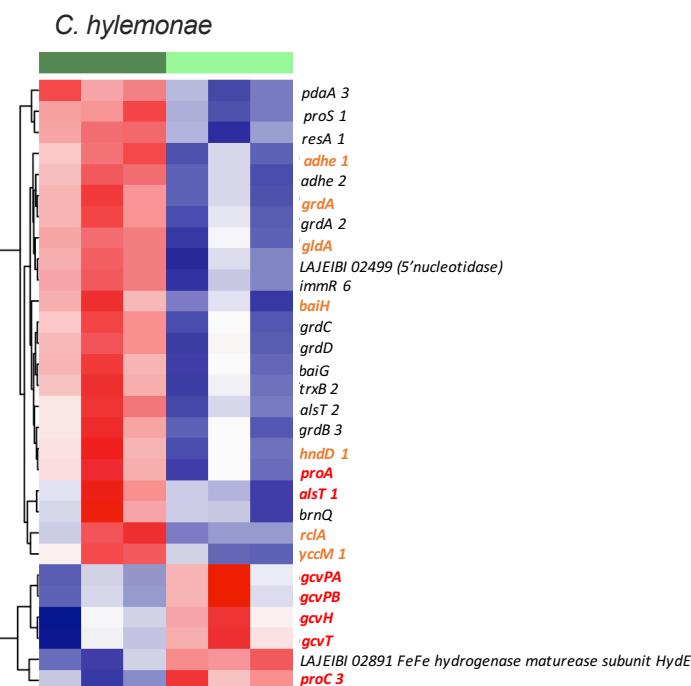
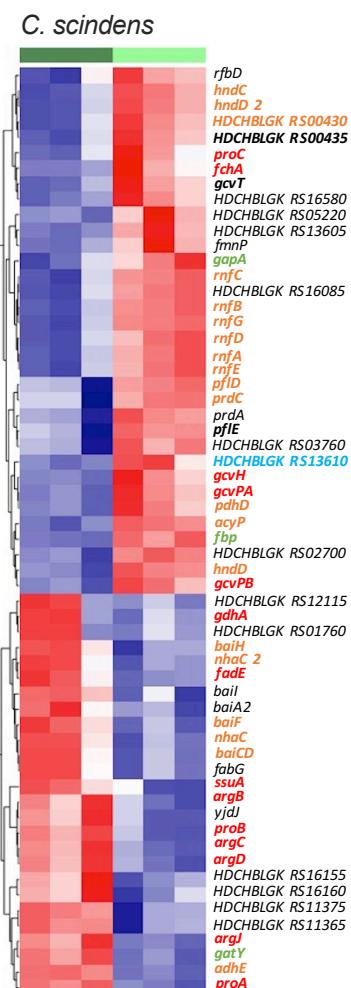


Figure 5: Expression of *hypD* and *p5cr* differs between *C. difficile* and selected commensal *Clostridia* in rich media supplemented with hydroxyproline. A. Alignment of *hypD* and *p5cr* across *C. difficile* and selected commensal *Clostridia* strains. Each protein sequence was compared against its counterpart in the reference strain *C. difficile* 630Δerm, generating the amino acid percent identity labeled within each gene. B-E. Expression of *hypD* and *p5cr* in BHI media and BHI media with 600 mg/L hydroxyproline added of *C. difficile* (B), *C. hiranonis* (C), *C. hylemonae* (D) and *C. scindens* (E). Experiments were run in triplicate and three biological replicates were performed. The expression in medium supplemented with hydroxyproline was compared to expression in medium without additional hydroxyproline. Statistical significance was determined using Student's T Test (*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001).


A


B

C

D

COG Category

Metabolism:
 Amino acid transport and metabolism
 Carbohydrate transport and metabolism
 Energy production and conversion
 Lipid production and metabolism
 Other transport and metabolism

Other:
 Cellular processes and signalling
 Information storage and processing
 Poorly characterized/no COG category

Figure 6: Transcriptomic differences in response to hydroxyproline vary between *C. difficile* and commensal *Clostridia*. Heatmap of genes that had significantly differential expression in (A) *C. difficile* WT, (B) *C. hiranonis*, (C) *C. hylemonae* and (D) *C. scindens* between Analysis was run using Geneious and DESeq2. All genes considered differentially expressed had an adjusted p value of <0.05 and ± 1 log fold change.