

1 Low dose AKT inhibitor miransertib cures PI3K-related vascular 2 malformations in preclinical models of human disease

3

4 Piotr Kobialka^{1,✉}, Helena Sabata^{1,✉}, Odena Vilalta¹, Ana Angulo-Urarte¹, Laia Muixí¹, Jasmina
5 Zanoncello¹, Oscar Muñoz-Aznar², Nagore G. Olaciregui³, Cinzia Lavarino³, Veronica Celis²,
6 Carlota Rovira⁴, Susana López⁵, Eulàlia Baselga⁶, Jaume Mora^{2,7}, Sandra D. Castillo^{1,✉,*}, Mariona
7 Graupera^{1,8,✉,*}

8

9 ¹Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute,
10 08916, Barcelona, Spain.

11 ²Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu Barcelona, 08950, Barcelona,
12 Spain.

13 ³Laboratory of Molecular Oncology, Hospital Sant Joan de Déu, 08950, Barcelona, Spain.

14 ⁴Department of Pathology. Hospital Sant Joan de Déu Barcelona, 08950, Barcelona, Spain.

15 ⁵Vascular Surgery, Hospital de la Santa Creu i de Sant Pau, 08041, Barcelona, Spain.

16 ⁶Department of Dermatology, Hospital Sant Joan de Déu, 08950, Barcelona, Spain.

17 ⁷Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, 08950,
18 Barcelona, Spain.

19 ⁸CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.

20 *Joint first authors

21 [✉]Joint last authors

22 **To whom correspondence should be addressed: S.D.C. (scastillo@carrerasresearch.org) and
23 M.G. (mgraupera@carrerasresearch.org) Tel: +34 93 557 2800

24 **ABSTRACT**

25 Low-flow vascular malformations are congenital overgrowths composed by abnormal blood
26 vessels potentially causing pain, bleeding, and obstruction of different organs. These diseases
27 are caused by oncogenic mutations in the endothelium which result in overactivation of the
28 PI3K/AKT pathway. Lack of robust *in vivo* preclinical data has prevented the development and
29 translation into clinical trials of specific molecular therapies for these diseases. Here, we describe
30 a new reproducible preclinical *in vivo* model of PI3K-driven vascular malformations using the
31 postnatal mouse retina. This model reproduces human disease with *Pik3ca* activating mutations
32 expressed in a mosaic pattern and vascular malformations formed in veins and capillaries. We
33 show that active angiogenesis is required for the pathogenesis of vascular malformations caused
34 by activating *Pik3ca* mutations. Using this model, we demonstrate that low doses of the AKT
35 inhibitor miransertib both prevents and induces the regression of PI3K-driven vascular
36 malformations. We confirmed miransertib efficacy in isolated human endothelial cells with
37 genotypes spanning most of human low-flow vascular malformations.

38

39 **Keywords**

40 AKT/ PI3K / Endothelial cell / Vascular malformations / Angiogenesis

41

42 **Short title**

43 Miransentib regresses PI3K-related vascular malformations

44 **Introduction**

45 Vascular malformations are a congenital group of diseases composed of abnormal vascular
46 channels that can occur anywhere in the body and potentially had a major impact on the quality
47 of life of patients. They tend to be painful and disfiguring, and many leading to bleeding, recurrent
48 infections, thrombosis, organ dysfunction, and even death (Van Damme et al, 2020). Vascular
49 malformations can be classified as low-flow (venous, lymphatic and capillary) and fast-flow
50 (arteriovenous) lesions, the former being the most frequent subtype. Vascular malformations
51 appear during embryonic development, when vascular growth factors are produced at high levels,
52 and expand proportionally with the physiological growth of the patient (Pang et al, 2020). Of note,
53 vascular malformations may occur in isolation or as a part of a syndrome (Canaud et al, 2021).
54 At present, there is no molecularly targeted therapy in the current management for these
55 diseases. Instead, standard of care includes a broad spectra of mostly inefficient and invasive
56 techniques including bandage compression, surgical excision, and sclerosing approaches
57 (Castillo et al, 2019).

58 Overactivation of phosphoinositide 3-kinase (PI3K) signalling is a hallmark of most low-flow
59 vascular malformations (Castillo et al, 2019; Mäkinen et al, 2021; Canaud et al, 2021). Sporadic
60 venous malformations, the most common type of vascular malformations, are caused by gain-of-
61 function mutations either in the endothelial tyrosine kinase receptor TEK/TIE2 or in the PI3K
62 catalytic subunit alpha *PIK3CA* (Limaye et al, 2015; Castillo et al, 2016a; Castel et al, 2016); with
63 TEK and *PIK3CA* mutations being mutually exclusive. Also, 80% of lymphatic malformations are
64 caused by activating *PIK3CA* mutations (Boscolo et al, 2015; Luks et al, 2015; Mäkinen et al,
65 2021). In addition, venous, lymphatic and/or capillary malformations are frequently present in
66 overgrowth syndromes caused by *PIK3CA* mutations, the so-called PROS (PIK3CA-related
67 overgrowth spectrum) (Keppler-Noreuil et al, 2015). *PIK3CA* mutations in vascular malformations
68 are similar to those found in epithelial cancer, being the missense mutations in the helical
69 (*PIK3CA*^{E542K}, *PIK3CA*^{E545K}) and the kinase (*PIK3CA*^{H1047R}) domains the most prevalent (Samuels
70 et al, 2004).

71 *PIK3CA* encodes the p110 α lipid kinase protein, which is a major signalling component
72 downstream of growth factor receptor tyrosine kinases (RTKs) (Bilanges *et al*, 2019; Kobialka &
73 Graupera, 2019). Specifically in endothelial cells, p110 α is activated by the vascular endothelial
74 growth factor receptors (VEGF-R) and TIE tyrosine kinase receptors (Graupera & Potente, 2013).
75 Hence, it is not surprising that p110 α is the sole class I PI3K isoform required for blood and
76 lymphatic vascular development (Graupera *et al*, 2008; Stanczuk *et al*, 2015). p110 α catalyses
77 the phosphorylation of the lipid second messenger phosphatidylinositol-4,5-triphosphate (PIP₂) to
78 phosphatidylinositol-3,4,5-triphosphate (PIP₃) at the cell membrane (Bilanges *et al*, 2019). PIP₃,
79 in turn, contributes to the recruitment and activation of a wide range of downstream targets, the
80 serine-threonine protein kinase AKT (also known as protein kinase B, PKB) being critical in this
81 cascade. The PI3K-AKT signalling pathway regulates many cellular processes that are key for
82 endothelial cell biology, including cell proliferation, survival, and motility (Bilanges *et al*, 2019;
83 Manning & Toker, 2017). There are three isoforms of AKT (AKT1, 2 and 3), showing high
84 homology but being not redundant. AKT1 and AKT2 are broadly expressed, with AKT1 being the
85 predominant isoform in endothelial cells (Chen *et al*, 2005; Ackah *et al*, 2005). *PIK3CA* and *TEK*
86 gain-of-function mutations in endothelial cells lead to AKT hyper-phosphorylation which result in
87 enhanced endothelial cell proliferation and resistance to cell death induced by growth factor
88 withdrawal (Cai *et al*, 2019; Le Cras *et al*, 2020). Of note, pathological proliferation burst of
89 cultured *PIK3CA* and *TEK* mutant cells is elicited by supplementation with external growth factor
90 signals.

91 The discovery that most low-flow lesions are caused by overactivation of PI3K signalling has
92 catalysed the repurpose of PI3K pathway inhibitors for these diseases. Given that pathological
93 endothelial mutant cells primarily depend on AKT signalling, inhibition of AKT is a promising
94 strategy for low-flow vascular malformations. Amongst AKT inhibitors, miransertib (ARQ 092, MK-
95 7075) is a potent and selective allosteric AKT inhibitor showing higher specificity for the AKT1
96 isoform. Miransertib suppresses AKT activity by inhibiting membrane-bound active form of AKT
97 and preventing activation of the inactive form of AKT (Yu *et al*, 2015). This inhibitor has shown
98 efficacy in preclinical studies for PI3K-driven tumours (Yu *et al*, 2015, 2017) and Proteus

99 syndrome (Lindhurst *et al*, 2015), which is caused by a somatic AKT gain-of-function mutation.
100 Also, compassionate use of this inhibitor has shown therapeutic efficacy in patients with Proteus
101 and PROS (Leoni *et al*, 2019; Biesecker *et al*, 2020; Forde *et al*, 2021).

102 Here, we show that active angiogenesis is required for the formation of *Pik3ca*-driven vascular
103 malformations and report a unique *in vivo* model of PI3K-driven vascular malformations that
104 allows a more accurate understanding of the dynamic pathogenesis of these diseases and thus
105 a more efficient assessment of therapeutic strategies. In addition, we show how analysing patient-
106 derived endothelial cells from vascular malformations allows for personalised medicine testing in
107 these diseases. Using a spectra of preclinical models we demonstrate the efficacy of the AKT
108 inhibitor miransertib at low dose for PI3K-driven vascular malformations both for prevention and
109 treatment strategies. Furthermore, we show that endothelial cells from *TEK* and *PIK3CA*-mutant
110 vascular malformations respond similarly to miransertib.

111 **Results**

112 ***Active angiogenesis is required for the formation of PI3K-driven vascular malformations***

113 Because vascular malformations appear during embryonic development when endothelial
114 mitogenic signals are produced at high concentration, we postulated that the genesis of these
115 lesions depends on the stage of vascular development. To test this idea, we took advantage of the
116 mouse retinal vasculature which allows the study of the different phases of angiogenesis. We
117 chose three developmental stages (early, intermediate and late) in which endothelial cells (ECs)
118 exhibit different dependency to mitogenic signals (Ehling *et al*, 2013). We induced the
119 endogenous expression of the *Pik3ca*^{H1047R} mutation (Kinross *et al*, 2012) in heterozygosis by
120 using the *Pdgfb*-iCreER mice, which expresses a tamoxifen-inducible Cre recombinase
121 specifically in ECs (Claxton *et al*, 2008). 4-Hydroxytamoxifen (4-OHT) was administered at
122 postnatal day (P)1, P7 or P15 and retinas were isolated one week later (Fig 1A). By analysing the
123 extent of vascular overgrowth, we found that both early and intermediate stages showed full
124 penetrance, with all retinas analysed developing vascular malformations (Fig 1B,C). However,
125 the degree of enhanced vascularity was more prominent and generalized in the early
126 developmental stage than in the intermediate period (Fig 1B-D). In contrast, only one third of the
127 retinas showed malformed vascular areas when *Pik3ca*^{H1047R} mutation was expressed at P15 (Fig
128 1B-D). By taking advantage of ROSA^{mTmG},*Pdgfb*-iCreER (later referred to as EC-mTmG) reporter
129 mice (Muzumdar *et al*, 2007), which expresses cell membrane-localized EGFP following Cre
130 recombination, we demonstrated that the *Pdgfb*-iCreER line is similarly active at all time points
131 tested (Fig 1E, F). Thus, penetrance and severity of vascular malformations in our model are
132 independent of the number of ECs recombined at the different stages. These results indicate that
133 the expression of mutant *Pik3ca* in ECs is not sufficient for the acquisition of a malformed vascular
134 phenotype and that active angiogenesis is required for PI3K-driven vascular malformations to
135 occur.

136 **A new preclinical model of PI3K-driven vascular malformations**

137 Our data show that expression of *Pik3ca*^{H1047R} in ECs at an early stage of postnatal
138 angiogenesis leads to generalised vascular malformations. However, sporadic vascular
139 malformations appear as a mosaic disease, where malformed vascular lesions tend to be isolated
140 and focal. Hence, to better reproduce the etiology of human disease, we studied the impact of a
141 decreasing range of 4-OHT doses during early developmental stage in EC-*Pik3ca*^{WT/H1047R} mouse
142 retinas (Fig 2A). To validate mosaicism and identify targeted ECs in our dosing strategy, we
143 treated EC-mTmG P1 mice in parallel with the same doses (Fig 2B, C). This approach allowed
144 us to identify the lowest 4-OHT dose (0.125 mg/kg) that led to distinguishable vascular
145 malformations with a total vascular density significantly increased compared to wild type
146 counterparts (Fig 2A, D). Also, we noticed that low dose of 4-OHT allowed the targeting of ECs
147 of all vessel subtypes including arteries, veins, and capillaries (Fig 2B). Instead, expression of
148 *Pik3ca*^{H1047R} upon low dose of 4-OHT resulted in the formation of vascular malformations only in
149 veins and capillaries (Fig 3A). This is consistent with the observation that, within the blood vessel
150 compartment, *PIK3CA* mutations are only present in human venous and capillary malformations
151 (Keppler-Noreuil *et al*, 2015; Castillo *et al*, 2016a). *Pik3ca*^{H1047R}-vascular malformations in
152 postnatal retinas showed enriched phospho (p)-S6 (Ser235/236) levels, a read-out for
153 PI3K/AKT/mTORC1 signalling, compared to the surrounding normal vasculature and wild type
154 retinas (Fig 3B, D). This focal PI3K signalling activation resulted in EC hyperproliferation (Fig 3C,
155 E) and accumulation of ECs, causing the overall enhanced vascularity (Fig 3C, F, G). These
156 lesions also exhibited loss of pericyte coverage, assessed by immunostaining for pericyte-specific
157 marker NG2, in contrast to non-malformed vasculature in the same retina and the control (Fig
158 EV3). Collectively, these results show that EC-specific mosaic induction of endogenous
159 *Pik3ca*^{H1047R} expression during active vascular growth faithfully models human low-flow vascular
160 malformations.

161 **Low dose AKT inhibitor miransertib prevents the formation of PI3K-driven vascular**
162 **malformations**

163 Targeting AKT, the main player of PI3K-driven signalling in ECs, has not yet been assessed
164 *in vivo* in vascular malformations. Thus, we took advantage of our unique *in vivo* model to examine
165 the impact of miransertib in the dynamic pathophysiology of PI3K-driven vascular malformations.
166 Previous preclinical studies of miransertib using tumor xenografts showed that the minimum dose
167 that has an impact on tumour volume is 75 mg/kg (Yu *et al*, 2017); thus, we first evaluated this
168 dose to assess miransertib for preventing the formation of *Pik3ca*-driven vascular malformations.
169 For this, we treated P1 EC-*Pik3ca*^{WT/H1047R} mice with 4-OHT and we dosed these mice with either
170 75 mg/kg of miransertib or vehicle at P1 and P2, followed by the analysis of P6 retinas (Fig 4A).
171 Miransertib prevented the formation of vascular malformations, assessed by the vascular area
172 and total EC number (Fig 4B, D, E) by inhibiting *Pik3ca*^{H1047R}-driven EC hyperproliferation
173 assessed by EdU incorporation (Fig 4B, F). Also, treatment prevented the loss of NG2-positive
174 mural cell coverage (Fig EV4). By using pS6 immunostaining, we confirmed that miransertib
175 treatment inhibited PI3K signalling in the vasculature (Fig 4C, G). Of note, wild type control retinas
176 treated with miransertib showed a slight impact on vasculature density and EC proliferation (Fig
177 4B, D, F) further supporting a key role of AKT in angiogenesis and vascular homeostasis (Kerr *et*
178 *al*, 2016; Ackah *et al*, 2005; Chen *et al*, 2005).

179 Molecularly targeted treatment of vascular malformations might require long-term, even
180 chronic, therapeutic approaches in paediatric patients. This points to the importance of identifying
181 the minimal effective dose of any candidate treatment. Thus, we next asked whether reducing the
182 dose of miransertib would provide similar efficacy and reduce knock-on effects on normal
183 vasculature in our preclinical model. To test this, we reduced miransertib dose by half (35 mg/kg)
184 and evaluated its efficacy on preventing *Pik3ca*-driven vascular malformations (Fig 5A). We
185 observed that the therapeutic efficacy of AKT inhibition by miransertib was maintained at the lower
186 dose, with decreased EC proliferation leading to reduced number of total ECs and vascular
187 density in EC-*Pik3ca*^{H1047R} miransertib-treated retinas compared to vehicle-treated counterparts
188 (Fig 5B, D-F). Low dose of miransertib efficiently inactivated PI3K signalling as shown by reduced

189 pS6 levels (Fig 5C, G). Importantly, this minimum effective dose had no impact on non-mutant
190 vasculature (Fig 5B-G). Altogether, our data demonstrate that miransertib efficiently inhibits the
191 formation of PI3K-driven vascular malformations and that lower doses than reported for
192 oncological purposes of miransertib appear equally effective for preventive strategies.

193

194 ***Treatment with low dose of miransertib induces the regression of PI3K-driven vascular***
195 ***malformations***

196 Since vascular malformations are congenital diseases, therapeutic interventions should aim
197 for inducing the regression of mass lesions. In line with this, we assessed the therapeutic effect
198 of low dose miransertib on PI3K-driven vascular malformations. For this, we first induced the
199 formation of vascular malformations by treating EC-*Pik3ca*^{WT/H1047R} mice with 4-OHT at P1 and
200 then treat these mice with 35 mg/kg (low dose) of miransertib at P4 and P5 (Fig 6A). Of note, in
201 our *in vivo* preclinical model, vascular malformations are already present at P4 (Fig EV6), showing
202 all hallmarks of PI3K-driven vascular malformations: increased vascularity (Fig EV6B, F), number
203 of ECs (Fig EV6C, G), EC hyperproliferation (Fig EV6C, H), enhanced pS6 levels (Fig EV6D, I)
204 and impaired pericyte coverage (Fig EV6E, J). In contrast to vehicle-treated, miransertib
205 treatment of EC-*Pik3ca*^{H1047R} retinas effectively regressed vascular malformations, assessed by
206 the normalisation of the vascular density, EC numbers, and proliferation rate (Fig 6B, D-F).
207 Importantly, elevated PI3K signalling induced by *Pik3ca*^{H1047R} was efficiently blunted by miransertib
208 (Fig 6C, G). These data demonstrate that low dose miransertib is effective in inducing regression
209 of PI3K-driven vascular malformations; hence opening a very promising clinical strategy for these
210 diseases.

211

212 ***Miransertib inhibits PI3K/AKT signalling and reduces cell viability in patient-derived***
213 ***PIK3CA- and TEK-mutant endothelial cells***

214 Next, we assessed the therapeutic potential of miransertib in a preclinical human setting. For
215 this, we isolated and cultured ECs derived from human vascular malformations carrying mutations
216 in *PIK3CA* and *TEK/TIE2* (Appendix Table S1), spanning the genetic causes of more than 80%

217 of low-flow lesions in patients (Castillo *et al*, 2016a; Castel *et al*, 2016; Limaye *et al*, 2015; Limaye
218 *et al*, 2009). To isolate and culture these cells, fresh surgical resections of low-flow vascular
219 malformations were subjected to tissue digestion and EC positive selection (Fig 7A). Sanger
220 sequencing and droplet digital PCR revealed that causing mutations were present in the EC
221 culture, with variant allelic frequencies (VAFs) of around 50% in these cell cultures (Fig 7B;
222 Appendix Fig S1A,B). Characterization of these cells validated their specific EC properties –
223 cobblestone morphology and expression of the EC-specific markers VE-cadherin and ERG (Fig
224 7C; Appendix Fig S1C). Next, we analysed the impact of these mutations in PI3K signalling by
225 assessing AKT and S6 phosphorylation levels. Indeed, *PIK3CA*- and *TIE2*-mutant ECs exhibited
226 constitutive activation of the pathway compared with wild type HUVECs (Fig 7D). To evaluate the
227 therapeutic efficacy of miransertib in patient-derived *PIK3CA* and *TEK* mutant ECs, we first
228 assessed its impact on PI3K/AKT signalling. At very low doses, miransertib strongly inhibited AKT
229 signalling assessed by AKT and S6 phosphorylation levels that were reduced in a dose-
230 dependent manner. This effect was similar in both *PIK3CA* and *TEK* mutant ECs (Fig 7E, F). We
231 then studied the functional impact of miransertib-mediated AKT signalling inhibition by
232 determining the dose-response effect on cell viability in ECs with either *PIK3CA*- or *TEK*-mutant
233 genotype. Miransertib robustly decreased EC viability in both genotypes showing low IC₅₀ with
234 overlapping (not significantly different) confident intervals (Fig 7G). These data show that
235 miransertib impacts the viability of patient-derived ECs at low concentrations and that it might
236 constitute a promising therapeutic strategy for both *PIK3CA* and *TEK*-mutant vascular
237 malformations.

238 **Discussion**

239 Activation of the PI3K/AKT signalling pathway by genetic mutations in the endothelium is the
240 primary etiological cause of most, if not all, low-flow vascular malformations (Castillo *et al*, 2016a;
241 Castel *et al*, 2016; Limaye *et al*, 2015; Boscolo *et al*, 2015; Luks *et al*, 2015). Despite of this, there
242 is no molecular targeted therapy approved for their clinical management today. Using the
243 postnatal mouse retina as a model of vascular malformations in combination with a tamoxifen-
244 induced strategy which allows to mosaically express the activating H1047R *Pik3ca* mutation at
245 different developmental times, we demonstrate that active angiogenesis is required for *Pik3ca*
246 mutants to generate vascular malformations. Here we report on an optimised, robust, and efficient
247 preclinical system displaying traits constituting the main hallmarks of low-flow blood vascular
248 malformations' pathogenesis: overactivation of PI3K signalling, low-flow vascular compartment
249 specificity, loss of mural cell coverage, and EC hyperproliferation. With this model we show that
250 low dose miransertib effectively target these hallmarks preventing and inducing the regression of
251 already formed vascular malformations driven by *Pik3ca* overactivation.

252 Low-flow vascular malformations are congenital diseases therefore causative mutations occur
253 during embryonic development (Pang *et al*, 2020). However, the mechanisms of how mutations
254 result in a malformed vascular bed remained elusive. Our results demonstrate that activating
255 *Pik3ca* mutations in ECs are not sufficient for a malformed vascular lesion to appear and that a
256 burst of growth factor signals is essential to generate and expand them. Indeed, we demonstrate
257 that *Pik3ca*-related vascular malformations *in vivo* form via EC hyperproliferation during active
258 angiogenesis. In line with this, cultured *TEK* or *PIK3CA* mutant endothelial cells lead to
259 pathological proliferative response only upon stimulation of growth signals (Cai *et al*, 2019; Le
260 Cras *et al*, 2020). Also, *in vivo*, other types of PI3K-related vascular malformations such as
261 *Pik3ca*-driven lymphatic malformations or hereditary hemorrhagic telangiectasia-like
262 arteriovenous malformations rely on growth factor signals to be induced and expand (Mäkinen *et*
263 *al*, 2021; Martinez-Corral *et al*, 2020; Garrido-Martin *et al*, 2014). Another important observation
264 of our model is that *Pik3ca*-related blood vascular malformations only occur in veins and in the
265 capillary bed, excluding arteries which remain unaltered. This resembles the human spectrum of

266 vascular malformations where *PIK3CA* mutations have not been reported in arterial
267 malformations. Why arteries are unaffected by *Pik3ca* mutation remains unclear. This could be
268 related to the refractory behaviour that arterial cells exhibit upon reaching their definitive
269 maturation state (Orsenigo *et al*, 2020; Luo *et al*, 2021) and the cell cycle arrested state which
270 fluid shear stress imposes on arterial ECs (Fang *et al*, 2017).

271 The growth-push concept fits with clinical observations where low-flow vascular malformations
272 appear during embryonic development, expand proportionally with the physiological growth of the
273 patient and are largely quiescent during adulthood, when the production of growth factors is
274 residual (Pang *et al*, 2020). This also explains why low-flow vascular malformations are
275 histopathologically characterized by a low rate of EC proliferation (Castillo *et al*, 2016b). However,
276 despite of being considered as non-proliferative lesions at the time of diagnosis, acute production
277 of extrinsic inputs such as hormonal changes, injury, or wound healing, reactivate malformed
278 vasculature (Pang *et al*, 2020); thereby being a key aspect to mind for preventive approaches. In
279 fact, this may explain why lesions recur upon incomplete surgical removal when wound healing
280 signals are acutely produced. Collectively, our data suggest that blocking EC growth should be
281 considered during potential reactivation scenarios. Furthermore, our study calls for revisiting
282 current classification of low-flow vascular malformation which should be considered proliferative
283 vascular disorders.

284 Inhibition of the PI3K/AKT signalling pathway has been prioritised in targeted therapy
285 strategies in medical oncology (Vanhaesebroeck *et al*, 2021; Castel *et al*, 2021). However, for
286 vascular malformations there is no molecular therapy approved in the clinic today. This is
287 surprising given that *PIK3CA* oncogenic mutations causing vascular malformations are also
288 present in epithelial cancer (Samuels *et al*, 2004). At least in part, the lack of robust and rapid
289 preclinical models for drug evaluation has hampered the field. In this study, we provide evidence
290 that the mouse retina model offers an opportunity for preclinical drug testing of blood vascular
291 disorders. The key aspects of this model are: (i) it develops in a short time frame (one week); (ii)
292 it allows for a dynamic preclinical testing which covers prevention and curative strategies; (iii) it
293 grants the quantification of disease hallmarks including vascularity, EC proliferation and PI3K

294 signalling, thus providing a robust and non-biased setting to evaluate treatment efficacy; (iv) it
295 recapitulates relevant features of vascular malformations microenvironment including the impact
296 of blood flow, extracellular matrix, surrounding pericytes, and smooth muscle cells, which may
297 influence drug response. Of relevance, this experimental system has been previously used for
298 targeted therapy validation in other vascular disorders (Ola *et al*, 2018, 2016; Alsina-Sanchis *et*
299 *al*, 2018). Importantly, our model takes into account the mosaic and focal nature of the disease,
300 in which vascular malformations arise in an otherwise normal vasculature network. Thus,
301 preclinical analysis in isolated and focal vascular malformations embedded in a normal vascular
302 plexus allows the study of the impact of drugs in both the lesion and the normal vasculature. This
303 permits the identification of potential knock-on effects of compounds in the systemic vasculature.
304 All in all, we propose mouse retinas as the standard pre-clinical model for low-flow blood vascular
305 malformations.

306 Blocking AKT signalling has been a promising therapy for cancer; however, rewiring PI3K
307 signalling due to the complex genetic landscape and instability of malignant cells have dampened
308 these expectations (Jansen *et al*, 2016). In contrast, vascular malformations are considered
309 monogenic diseases caused by activating point mutations in an otherwise stable genetic context
310 (Castel *et al*, 2020). These mutations cause an overactivation of the PI3K pathway by constitutive
311 phosphorylation of wild type AKT. Miransertib is a pan-AKT allosteric inhibitor and has been shown
312 as a promising AKT inhibitor in preclinical and clinical studies (Lazaro *et al*, 2020) by inhibiting
313 overactive wild-type AKT (Kostaras *et al*, 2020). This therapeutic approach has proven to be
314 efficient in preclinical models of cancer (Yu *et al*, 2017) and in Proteus syndrome, caused by the
315 mosaic expression of an activating *AKT1* mutation (Biesecker *et al*, 2020; Lindhurst *et al*, 2015).
316 Of relevance, miransertib has shown clinical benefit in two children with PROS (Forde *et al*, 2021).
317 Altogether, it has led to the current phase 1/2 clinical trial (NCT03094832) for the assessment of
318 miransertib in Proteus and PROS patients. Based on this, we aimed at assessing the impact of
319 miransertib as a novel treatment for isolated low-flow blood vascular malformations. This seems
320 particularly relevant for those patients in which PI3K inhibitors cause severe side effects due to
321 the pleiotropic functions of PI3K. Here, we provide the first *in vivo* demonstration of miransertib

322 efficacy in PI3K-driven vascular malformations. Our data indicate that, similar to alpelisib, a
323 selective p110 α inhibitor, low dose miransertib is sufficient to prevent and induce complete
324 regression of these diseases (Venot *et al*, 2018). We anticipate that these results will have a direct
325 impact on future clinical strategies. Indeed, these patients may need long-term or even chronic
326 treatment; thus an effective low dose may turn specially relevant to avoid undesirable side effects
327 for paediatric age patients.

328 To complement our *in vivo* preclinical approach, we have set up the isolation and culture of
329 human primary ECs from low-flow vascular lesions. On average, these cultures showed a 50%
330 allelic frequency of *PIK3CA*- or *TEK*-mutant alleles which is suggestive of clonal culture and
331 expansion. Of note, all human cells exhibited overactivation of AKT compared to non-mutant cells,
332 although with allele differences. This unique material turns really valuable to test the impact of
333 targeted therapies. In this regard, we demonstrate that miransertib similarly impairs cell viability
334 of *PIK3CA*- and *TEK*-mutant ECs derived from patients. This is in line with previous studies
335 reporting the effect of miransertib in *PIK3CA*-mutant endothelial cells (Boscolo *et al*, 2019). Our
336 results might indicate that this therapy is also effective for *TEK*-mutant vascular malformations;
337 however, the lack of *TEK*-mutant mouse lines precludes the assessment *in vivo*.

338 The discovery that most low-flow lesions are caused by the overactivation of PI3K signalling
339 has catalysed the repurpose of PI3K pathway inhibitors for these diseases. In order to promote
340 their direct clinical application, the field urgently needs reliable preclinical models before and while
341 clinical trials are running in humans. By using mouse retinas, we solve this limitation while
342 providing formal proof that low dose miransertib is sufficient to prevent and treat *Pik3ca*-related
343 vascular malformations. Complementing these data with primary human ECs offers a unique
344 opportunity for personalized medicine.

345 **Materials and Methods**

346 **Reagents**

347 All chemical reagents were purchased from Sigma-Aldrich, unless stated otherwise. Cell culture
348 media and buffers were purchased from Lonza and Gibco. Primers were obtained from Invitrogen.

349 **Mice**

350 The *in vivo* experiments were performed in agreement with the guidelines and legislations of the
351 Catalan Ministry of Agriculture, Livestock, Fisheries and Food (Catalonia, Spain), following
352 protocols approved by the local Ethics Committees of IDIBELL-CEEA. Mice were kept in
353 individually ventilated cages under specific pathogen-free conditions. All mice were crossed onto
354 the C57BL/6J genetic background. *Pik3ca*^{WT/H1047R} mice carry a single, germline Cre-inducible
355 point mutation in *Pik3ca* allele (H1047R) (Kinross et al, 2012). This mice are crossed onto *Pdgfb*-
356 iCreER mice (Claxton et al, 2008) that express an inducible iCreER recombinase from the
357 endogenous *Pdgfb* locus (EC specific). Control mice were CreiER-negative littermates injected
358 with 4-hydroxytamoxifen. iCreER-mediated recombination in *Pik3ca*^{WT/H1047R} mice was induced by
359 intraperitoneal injection of 4-hydroxytamoxifen (doses indicated in the figure legends). ROSA-
360 mTmG double fluorescent reporter mouse (Muzumdar et al, 2007) was crossed to *Pdgfb*-iCreER
361 mice. The ROSA-mTmG allele was kept heterozygous. 4-Hydroxytamoxifen was injected
362 intraperitoneally in indicated doses (see the figure legends) and mouse retinas isolated at
363 indicated time points. Cre-mediated recombination was assessed by the expression of
364 membrane-bound GFP.

365 **Pharmacological *in vivo* treatment**

366 Miransertib (ARQ 092-2MSA salt) (ArQule, Inc., a wholly-owned subsidiary of Merck & Co., Inc.,
367 Kenilworth, NJ, USA) was prepared at a stock concentration of 10 mgA/ml in 20% Captisol (m/v)
368 in 0.02 M citrate/saline buffer. 20% Captisol (m/v) in 0.02 M citrate/saline buffer was used as a
369 vehicle. Mice were injected intraperitoneally with either 75 mg/kg or 35 mg/kg dose of miransertib.

370 **Mouse retina isolation and immunostaining**

371 Mice were sacrificed by decapitation and eyes were isolated, followed by an hour incubation on
372 ice in 4% PFA in PBS. Isolated retinas were fixed for additional hour, permeabilised overnight at

373 4°C in permabilisation/blocking buffer (1% BSA, 0.3% Triton X-100 in PBS). Afterwards, the
374 retinas were incubated overnight at 4°C with specific primary antibodies, diluted in
375 permabilisation/blocking buffer (ERG (Abcam, AB92513, diluted 1:400), NG2 (Milipore, AB5320,
376 diluted 1:200), p-S6 235/236 (Cell Signalling Technology, 4857, diluted 1:100). Samples were
377 washed three times in PBS containing 1% Tween-20 (PBST), following incubation with PBlec
378 buffer (1% Triton X- 100, 1 mM CaCl₂, 1 mM MgCl₂ and 1 mM MnCl₂ in PBS, pH 6.8) for 30
379 minutes at RT. Secondary AlexaFluor-conjugated antibodies, diluted in PBlec, were added to the
380 retinas and incubated for another 2 hours (Invitrogen, A11001, A11011, A11008, A31573). Blood
381 vessels were visualised with AlexaFluor-conjugated Isolectin GS-B4 (Molecular Probes, I21411,
382 I21412). Following three washes with PBST, the tissues were flat-mounted on a microscope slide.

383 ***In vivo proliferation assay***

384 5-ethynyl-2'-deoxyuridine (EdU)-incorporation assay has been performed using a commercially
385 available kit (Invitrogen, C10340). Animals were injected intraperitoneally with 60 µl of EdU (0.5
386 mg/ml in 50% DMSO and 50% PBS solution) and after 2 hours the animals were sacrificed and
387 retinas isolated. EdU-incorporation was detected with Click-iT EdU Alexa Fluor-647 Imaging Kit,
388 following manufactures instructions. Afterwards, standard protocol for retina immunostaining was
389 applied.

390 ***Confocal imaging and image quantification***

391 Microscopy imaging was done with Leica TCS SP5 confocal microscope. Velocity, Adobe
392 Photoshop 2021 and ImageJ softwares were used for image editing and quantification,
393 respectively. Images were taken from at least 4 retina areas in each genotype. At least three
394 biological replicates per genotype were performed. To quantify the vascular lesion area, an IB4-
395 positive area was manually selected and the percentage of IB4 area per retina area was
396 quantified. To determine the recombination efficiency of mTmG allele in ECs, the ratio of GFP-
397 positive area to IB4-positive area was calculated and presented as percentage. Retina vascularity
398 was measured using IB4 channel by adjusting the threshold to select the IB4-positive area,
399 followed by quantification of the percentage of IB4-positive area in the total image area (10⁴ µm²).
400 EC number was determined manually based on EC-specific nuclei staining (Erg) in 10⁴ µm² image

401 area. Quantification of EC proliferation was done using EdU and Erg co-immunostaining – both
402 EdU- and Erg-positive ECs were quantified in the $10^4 \mu\text{m}^2$ image area. The coverage of vessels
403 by NG2-positive pericytes was quantified from both NG2 and IB4 channels by adjusting the
404 threshold and selecting the positive NG2 and IB4 areas, respectively. Then the percentage of
405 NG2 to IB4 ratio was calculated. The vascular-specific p-S6 intensity was measured using both
406 p-S6 and IB4 channels. First, a manual threshold was set to obtain the IB4-positive area and
407 define the region of interest (ROI). Then, the integrated density of p-S6 was measured in IB4-
408 positive areas. The background measurements (mean gray values) were taken from areas in
409 close proximity to the vasculature, but negative for IB4. The corrected total fluorescence (CTF)
410 was calculated based on the following equation: CTF = integrated density – (vascular area \times
411 mean gray background value).

412 ***Isolation, culture and sequencing of endothelial cells from patient-derived vascular***
413 ***malformations***

414 Patient tissue samples were obtained under therapeutic surgical resection from participants after
415 informed consent with approval of the Committees on Biomedical Investigation at Hospital Sant
416 Joan de Deu and Hospital Santa Creu i Sant Pau (Barcelona, Spain). Collected data were stored
417 in a secure database maintained by Hospital Sant Joan de Deu. Human ECs were isolated from
418 patient-derived biopsies of vascular malformations. Briefly, the biopsy was homogenized with a
419 scalpel blade and digested in dispase II (4 U/ml) and collagenase A (0.9 mg/ml) in Hank's
420 Balanced Salt Solution for maximum 1.5 hour at 37°C, vortexing the sample every 30 minutes.
421 The digested tissue was disintegrated by pipetting into a single-cell solution, following enzyme
422 inactivation with DMEM supplemented with 10% FBS and 1% penicillin/streptomycin. Cells were
423 resuspended in 100 μl of 0.5% BSA in PBS and incubated with mouse anti-human CD31 (Agilent
424 Dako, M0823, clone JC70A) antibody-coated magnetic beads (ThermoFisher Scientific, 11041)
425 for 1 hour at room temperature. CD31-positive fraction was washed with 0.5% BSA in PBS and
426 sorted with a magnet. Cells were resuspended and cultured in 0.5% gelatin-coated culture well
427 (12-well format) in EGM2 medium (PromoCell, C30140) supplemented with 10% FBS, 1%
428 penicillin/streptomycin (later referred to as EGM2 complete) at 37°C and 5% CO₂ until they reach

429 confluence. Cells were subjected for a second selection. Genomic DNA was isolated according
430 to the manufacturer's protocol (Thermo Fisher Scientific, K182001). The regions of interest in the
431 genomic DNA were amplified by PCR using Platinum™ Taq DNA Polymerase High Fidelity
432 (Thermo Fisher Scientific, 11304011). Exons 10 and 21 of *PIK3CA*, and exon 17 of *TEK* were
433 amplified. PCR products were purified according to the manufacturer's protocol (GE Healthcare,
434 28-9034-70) followed by Sanger sequencing. Sequences of the primers used: *PIK3CA* exon 10:
435 (forward) 5'-TGGTTCTTCCTGTCTCTGAAAA-3' and (reverse) 5'-
436 CCATTAGCACTTACCTGTGAC-3'. *PIK3CA* exon 21: (forward) 5'-
437 CATTGCTCCAAACTGACCA-3' and (reverse) 5'-TGTGTGGAAGATCCAATCCA-3'. *TEK* exon
438 17: (forward) 5'-TAGGCAATTCCACAGCACA-3' and (reverse) 5'-
439 GGCAAACCAGGCTAAGAGAG-3'. Droplet digital PCR was done on genomic DNA extracted
440 from cell cultures. *PIK3CA* genotyping assays from Bio-Rad were used to specifically detect the
441 *PIK3CA*^{E542K} mutation on DNA samples. The Bio-Rad QX200 ddPCR system was used and allelic
442 frequencies were calculated using Quantasoft Analysis Pro (BioRad) software.

443 **Cell immunofluorescence**

444 Human VM-derived ECs were seeded on gelatin-coated coverslips in a way to reach confluence
445 the next day and incubated overnight at 37°C in 5% CO₂. Then, cells were washed with warm
446 PBS with Mg²⁺ and Ca²⁺ then fixed with 4% PFA for 15 minutes at room temperature, followed by
447 triple wash with PBS with Mg²⁺ and Ca²⁺. Cells were permeabilised with PBS containing 0.4%
448 Triton X-100 for 5 minutes and blocked with 2% BSA in PBS for 1 hour at RT. The following
449 primary antibodies were used for 1h at RT: VE-cadherin F8 (Santa Cruz, SC-9989, 1:100), ERG
450 (Abcam, ab92513, 1:400). Then, coverslips were washed three times with PBS for 5 minutes,
451 followed by 45 min incubation at RT with appropriate secondary antibody in PBS: goat anti-mouse
452 Alexa Fluor-488 (Invitrogen A11001, diluted 1:300) and goat anti-rabbit Alexa Fluor-568
453 (Invitrogen A11011, diluted 1:300). Then, coverslips were washed with PBS three times for 5 min,
454 and in the last wash DAPI (Invitrogen, D1306, diluted 1:10 000) was added to visualize cell nuclei.
455 Coverslips were mounted on a microscope slide in a mounting medium (ThermoFisher Scientific,
456 9990402).

457 ***MTS viability assay and calculation of IC50***

458 MTS assay was used in order to determine cell viability. Briefly, 2·10³ cells were seeded on
459 gelatin-coated 96-well plates (5 technical replicates per condition) and incubated overnight at
460 37°C in 5% CO₂ atmosphere. The next day, cells were treated for 3 days with miransertib. MTS
461 assay (Abcam, ab197010) was performed for 2.5 hours and the absorbance was measured at
462 490 nm. Data (the percentage of a vehicle) were plotted against the logarithm of inhibitor
463 concentration. IC50 and 95% CI values were calculated by non-linear regression (variable slope)
464 using GraphPad Prism software.

465 ***Protein extraction and immunoblotting***

466 Cells were lysed in ice cold lysis buffer (50 mM Tris-HCl pH 7.4, 5 mM EDTA, 150 mM NaCl and
467 1% Triton X-100) containing protease (Roche, 11836153001) and phosphatase inhibitors (Sigma-
468 Aldrich, 4906837001). Total cell lysates were resolved on 10% polyacrylamide gels, transferred
469 onto nitrocellulose membranes and incubated with appropriate primary and secondary antibodies.
470 The following primary antibodies were used: p-AKT S473 (CST, 4060, diluted 1:1000), p-AKT
471 T308 (CST, 4056S, diluted 1:500), AKT (CST, 9272, diluted 1:2000), p-S6 S235/236 (CST, 4857,
472 diluted 1:1000), p-S6 S240/244 (CST, 2215S, diluted 1:1000), S6 (CST, 2212, diluted 1:1000),
473 VE-cadherin (Santa Cruz Biotechnology, sc-6458, diluted 1:500), vinculin (Abcam, ab49900,
474 diluted 1:10000). The following secondary antibodies from DAKO were used (all diluted 1:5000):
475 swine anti-rabbit (P0399), rabbit anti-goat (P0449), rabbit anti-mouse (P0260), and rabbit anti-
476 sheep (P0163).

477 ***Statistics***

478 Statistical analysis was performed by a nonparametric Mann Whitney's test using Prism 8
479 (GraphPad Software Inc.) unless indicated otherwise. All figures are displayed with individual data
480 points that indicate biological replicates and with the standard error of the mean (s.e.m.) as errors
481 bars. At least 3 biological replicates were used. P values considered as statistically significant
482 were as follows: *p < 0.05; **p < 0.01 and ***p < 0.0001.

483 **Acknowledgements**

484 We thank members of the Endothelial Pathobiology and Microenvironment Group for helpful
485 discussions. This work was partially founded by ArQule, Inc., a wholly-owned subsidiary of Merck
486 & Co., Inc., Kenilworth, NJ, USA. We thank CERCA Program/Generalitat de Catalunya and the
487 Josep Carreras Foundation for institutional support. M.G. laboratory is supported by the research
488 grants SAF2017-89116R-P (FEDER/EU) from MCIU (Spain) co-funded by European Regional
489 Developmental Fund (ERDF), a Way to Build Europe; PTEN RESEARCH Foundation (BRR-17-
490 001); La Caixa Foundation (HR18-00120; also to E.B. and J.M.); by la Asociación Española contra
491 el Cancer (AECC)-Grupos Traslacionales (GCTRA18006CARR); by la Fundación BBVA (Ayuda
492 Fundación BBVA a Equipos de Investigación Científica 2019); World Cancer Research (21-0159).
493 Personal support was from Marie-Curie ITN Actions (P.K. and J.Z.) grant agreement 675392.
494 S.D.C. is a recipient of a fellowship from the European Union's Horizon 2020 Research and
495 Innovation Programme under the Marie Skłodowska-Curie grant agreement No 749731. S.D.C.
496 is currently funded by la Caixa Banking Foundation Junior Leader project
497 (LCF/BQ/PR20/11770002). E.B. is funded by the Agencia Estatal de Investigación (Proyectos de
498 investigación en salud PI20/00102). The authors thank the Xarxa de Bancs de Tumors de
499 Catalunya (XBTC; sponsored by Pla Director d'Oncologia de Catalunya). We are grateful to the
500 Band of Parents at Hospital Sant Joan de Déu for supporting the overall research activities of the
501 Developmental Tumor laboratory (Pediatric Cancer Center Barcelona).

502

503 **Author contribution**

504 M.G., S.D.C., P.K. and H.S. were the main contributors in the conception, design, acquisition, and
505 interpretation of the data and in writing the article. P.K. H.S, O.V., A.A-U., L.M., J.Z., N.G. O., C.L.
506 and S.D.C. performed experiments and data analysis with input from S.D.C. and M.G.. C.R. and
507 O.M-A. interpreted histopathology. V.C., S.L., E.B and J.M. liaised with human subjects and
508 provided access to human tissue samples and clinical input in the study.

509 **Conflict of interest**

510 M.G. has a research agreement with ArQule, Inc., a wholly-owned subsidiary of Merck & Co.,
511 Inc., Kenilworth, NJ, USA, and Venthera. E.B. is founder and CAB of Venthera; PI and Advisor
512 for Pierre Fabre; PI of the clinical trial NCT04589650 (Novartis).

513

514 **The Paper Explained**

515 PROBLEM: Low-flow vascular malformations are congenital diseases caused by a focal
516 overgrowth of vessels. They may cause pain, bleeding, infections, and obstruction of organs.
517 Despite that their genetic causes are known for some years, which lead to the hyperactivation of
518 PI3K signalling, at present there is no molecular targeted therapy approved for these diseases.

519 RESULTS: We have generated a robust and fast preclinical *in vivo* model that allows for testing
520 of targeted drugs. With this model we have demonstrated that PI3K-driven vascular
521 malformations rely on active angiogenesis to occur. Our preclinical studies show that AKT
522 inhibition using low dose miransertib prevents the disease and fully regresses established
523 vascular malformations.

524 IMPACT: Our new *in vivo* model of PI3K-driven vascular malformations is a reliable and fast
525 preclinical setting to test new or repurposed targeted drugs. Our studies support that *Pik3ca*-
526 mutant endothelial cells cause vascular malformations upon growth stimuli highlighting the
527 importance of preventive therapeutic approaches after invasive treatments. We provide proof of
528 concept for the use of the AKT inhibitor miransertib in PI3K-driven vascular malformations which
529 opens a new window for targeted therapeutic intervention for these diseases. Also, we
530 demonstrate *in vitro* that this targeted therapy is similarly effective in both *PIK3CA* and *TEK*-
531 mutant vascular malformations.

532 **References**

533 Ackah E, Yu J, Zoellner S, Iwakiri Y, Skurk C, Shibata R, Ouchi N, Easton RM, Galasso G,
534 Birnbaum MJ, et al (2005) Akt1/protein kinase Ba is critical for ischemic and VEGF-mediated
535 angiogenesis. *J Clin Invest* 115: 2119–2127

536 Alsina-Sanchis E, Garcia-Ibanez Y, Figueiredo AM, Riera-Domingo C, Figueras A, Matias-Guiu
537 X, Casanovas O, Botella LM, Pujana MA, Riera-Mestre A, et al (2018) ALK1 loss results in
538 vascular hyperplasia in mice and humans through PI3K activation. *Arterioscler Thromb Vasc
539 Biol* 38: 1216–1229

540 Biesecker LG, Edwards M, O'Donnell S, Doherty P, MacDougall T, Tith K, Kazakin J & Schwartz
541 B (2020) Clinical report: One year of treatment of Proteus syndrome with miransertib (ARQ
542 092). *Cold Spring Harb Mol Case Stud* 6: a004549

543 Bilanges B, Posor Y & Vanhaesebrouck B (2019) PI3K isoforms in cell signalling and vesicle
544 trafficking. *Nat Rev Mol Cell Biol* 20: 515–534

545 Boscolo E, Coma S, Luks VL, Greene AK, Klagsbrun M, Warman ML & Bischoff J (2015) AKT
546 hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a
547 patient with lymphatic malformation. *Angiogenesis* 18: 151–162

548 Boscolo E, Pastura P, Glaser K, Goines J, Hammill AM, Adams DM, Dickie P, Hsi Dickie B & Le
549 Cras TD (2019) Signaling pathways and inhibitors of cells from patients with kaposiform
550 lymphangiomatosis. *Pediatr Blood Cancer* 66: e27790

551 Cai Y, Schrenk S, Goines J, Davis GE & Boscolo E (2019) Constitutive Active Mutant TIE2
552 Induces Enlarged Vascular Lumen Formation with Loss of Apico-basal Polarity and Pericyte
553 Recruitment. *Sci Rep* 9:12352

554 Canaud G, Hammill AM, Adams D, Vikkula M & Keppler-Noreuil KM (2021) A review of
555 mechanisms of disease across PIK3CA-related disorders with vascular manifestations.
556 *Orphanet J Rare Dis* 16: 306

557 Castel P, Carmona FJ, Grego-Bessa J, Berger MF, Viale A, Anderson K V., Bague S, Scaltriti M,
558 Antonescu CR, Baselga E, et al (2016) Somatic PIK3CA mutations as a driver of sporadic
559 venous malformations. *Sci Transl Med* 8: 332ra42

560 Castel P, Rauen KA & McCormick F (2020) The duality of human oncoproteins: drivers of cancer
561 and congenital disorders. *Nat Rev Cancer* 20: 383–397

562 Castel P, Toska E, Engelman JA & Scaltriti M (2021) The present and future of PI3K inhibitors for
563 cancer therapy. *Nat Cancer* 2: 587–597

564 Castillo SD, Baselga E & Graupera M (2019) PIK3CA mutations in vascular malformations. *Curr*
565 *Opin Hematol* 26: 170–178

566 Castillo SD, Tzouanacou E, Zaw-Thin M, Berenjeno IM, Parker VER, Chivite I, Milà-Guasch M,
567 Pearce W, Solomon I, Angulo-Urarte A, et al (2016a) Somatic activating mutations in *Pik3ca*
568 cause sporadic venous malformations in mice and humans. *Sci Transl Med* 8: 332ra43

569 Castillo SD, Vanhaesebroeck B & Sebire NJ (2016b) Phosphoinositide 3-kinase: a new kid on the
570 block in vascular anomalies. *J Pathol* 240: 387–396

571 Chen J, Somanath PR, Razorenova O, Chen WS, Hay N, Bornstein P & Byzova T V. (2005) Akt1
572 regulates pathological angiogenesis, vascular maturation and permeability in vivo. *Nat Med*
573 11: 1188–1196

574 Claxton S, Kostourou V, Jadeja S, Chambon P, Hodivala-Dilke K & Fruttiger M (2008) Efficient,
575 inducible cre-recombinase activation in vascular endothelium. *Genesis* 46: 74–80

576 Le Cras TD, Goines J, Lakes N, Pastura P, Hammill AM, Adams DM & Boscolo E (2020)
577 Constitutively active PIK3CA mutations are expressed by lymphatic and vascular endothelial
578 cells in capillary lymphatic venous malformation. *Angiogenesis* 23: 425–442

579 Van Damme A, Seront E, Dekeuleneer V, Boon LM & Vikkula M (2020) New and Emerging
580 Targeted Therapies for Vascular Malformations. *Am J Clin Dermatol* 21: 657–668

581 Ehling M, Adams S, Benedito R & Adams RH (2013) Notch controls retinal blood vessel
582 maturation and quiescence. *Dev* 140: 3051–3061

583 Fang JS, Coon BG, Gillis N, Chen Z, Qiu J, Chittenden TW, Burt JM, Schwartz MA & Hirschi KK
584 (2017) Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial
585 specification. *Nat Commun* 8: 2149

586 Forde K, Resta N, Ranieri C, Rea D, Kubassova O, Hinton M, Andrews KA, Semple R, Irvine AD
587 & Dvorakova V (2021) Clinical experience with the AKT1 inhibitor miransertib in two children
588 with PIK3CA-related overgrowth syndrome. *Orphanet J Rare Dis* 16: 109

589 Garrido-Martin EM, Nguyen HL, Cunningham TA, Choe SW, Jiang Z, Arthur HM, Lee YJ & Oh
590 SP (2014) Common and distinctive pathogenetic features of arteriovenous malformations in
591 hereditary hemorrhagic telangiectasia 1 and hereditary hemorrhagic telangiectasia 2 animal
592 models - Brief report. *Arterioscler Thromb Vasc Biol* 34: 2232–2236

593 Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, Salpekar A, Pearce W, Meek
594 S, Millan J, Cutillas PR, et al (2008) Angiogenesis selectively requires the p110 α isoform of
595 PI3K to control endothelial cell migration. *Nature* 453: 662–666

596 Graupera M & Potente M (2013) Regulation of angiogenesis by PI3K signaling networks. *Exp Cell
597 Res* 319: 1348–1355

598 Jansen VM, Mayer IA & Arteaga CL (2016) Is there a future for AKT inhibitors in the treatment of
599 cancer? *Clin Cancer Res* 22: 2599–2601

600 Keppler-Noreuil KM, Rios JJ, Parker VER, Semple RK, Lindhurst MJ, Sapp JC, Alomari A, Ezaki
601 M, Dobyns W & Biesecker LG (2015) PIK3CA-related overgrowth spectrum (PROS):
602 Diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. *Am J Med Genet
603 Part A* 167: 287–295

604 Kerr BA, West XZ, Kim YW, Zhao Y, Tischenko M, Cull RM, Phares TW, Peng XD, Bernier-
605 Latmani J, Petrova T V., et al (2016) Stability and function of adult vasculature is sustained by
606 Akt/Jagged1 signalling axis in endothelium. *Nat Commun* 7: 10960

607 Kinross KM, Montgomery KG, Kleinschmidt M, Waring P, Ivetac I, Tikoo A, Saad M, Hare L, Roh
608 V, Mantamadiotis T, et al (2012) An activating Pik3ca mutation coupled with Pten loss is
609 sufficient to initiate ovarian tumorigenesis in mice. *J Clin Invest* 122: 553–557

610 Kobialka P & Graupera M (2019) Revisiting PI3-kinase signalling in angiogenesis. *Vasc Biol
611 (Bristol, England)* 1: H125–H134

612 Kostaras E, Kaserer T, Lazaro G, Heuss SF, Hussain A, Casado P, Hayes A, Yandim C, Palaskas
613 N, Yu Y, et al (2020) A systematic molecular and pharmacologic evaluation of AKT inhibitors
614 reveals new insight into their biological activity. *Br J Cancer* 123: 542–555

615 Lazaro G, Kostaras E & Vivanco I (2020) Inhibitors in AKTion: ATP-competitive vs allosteric.
616 *Biochem Soc Trans* 48: 933–943

617 Leoni C, Gullo G, Resta N, Fagotti A, Onesimo R, Schwartz B, Kazakin J, Abbadessa G, Crown
618 J, Collins CD, et al (2019) First evidence of a therapeutic effect of miransertib in a teenager
619 with Proteus syndrome and ovarian carcinoma. *Am J Med Genet Part A* 179: 1319–1324

620 Limaye N, Kangas J, Mendola A, Godfraind C, Schlägel MJ, Helaers R, Eklund L, Boon LM &
621 Vikkula M (2015) Somatic Activating PIK3CA Mutations Cause Venous Malformation. *Am J
622 Hum Genet* 97: 914–921

623 Limaye N, Wouters V, Uebelhoer M, Tuominen M, Wirkkala R, Mulliken JB, Eklund L, Boon LM
624 & Vikkula M (2009) Somatic mutations in angiopoietin receptor gene TEK cause solitary and
625 multiple sporadic venous malformations. *Nat Genet* 41: 118–124

626 Lindhurst MJ, Yourick MR, Yu Y, Savage RE, Ferrari D & Biesecker LG (2015) Repression of
627 AKT signaling by ARQ 092 in cells and tissues from patients with Proteus syndrome. *Sci Rep*
628 5: 17162

629 Luks VL, Kamitaki N, Vivero MP, Uller W, Rab R, Bovee JVMG, Rialon KL, Guevara CJ, Alomari
630 AI, Greene AK, et al (2015) Lymphatic and other vascular malformative/overgrowth disorders
631 are caused by somatic mutations in PIK3CA. *J Pediatr* 166: 1048-1054.e5

632 Luo W, Garcia-Gonzalez I, Fernández-Chacón M, Casquero-Garcia V, Sanchez-Muñoz MS,
633 Mühleder S, Garcia-Ortega L, Andrade J, Potente M & Benedito R (2021) Arterialization
634 requires the timely suppression of cell growth. *Nature* 589: 437–441

635 Mäkinen T, Boon LM, Vikkula M & Alitalo K (2021) Lymphatic Malformations: Genetics,
636 Mechanisms and Therapeutic Strategies. *Circ Res* 129: 136–154

637 Manning BD & Toker A (2017) AKT/PKB Signaling: Navigating the Network. *Cell* 169: 381–405

638 Martinez-Corral I, Zhang Y, Petkova M, Ortsäter H, Sjöberg S, Castillo SD, Brouillard P, Libbrecht
639 L, Saur D, Graupera M, et al (2020) Blockade of VEGF-C signaling inhibits lymphatic
640 malformations driven by oncogenic PIK3CA mutation. *Nat Commun* 11: 2869

641 Muzumdar MD, Tasic B, Miyamichi K, Li N & Luo L (2007) A global double-fluorescent cre reporter
642 mouse. *Genesis* 45: 593–605

643 Ola R, Dubrac A, Han J, Zhang F, Fang JS, Larrivée B, Lee M, Urarte AA, Kraehling JR, Genet
644 G, et al (2016) PI3 kinase inhibition improves vascular malformations in mouse models of
645 hereditary haemorrhagic telangiectasia. *Nat Commun* 7: 13650

646 Ola R, Künzel SH, Zhang F, Genet G, Chakraborty R, Pibouin-Fragner L, Martin K, Sessa W,
647 Dubrac A & Eichmann A (2018) SMAD4 Prevents Flow Induced Arteriovenous Malformations
648 by Inhibiting Casein Kinase 2. *Circulation* 138: 2379–2394

649 Orsenigo F, Conze LL, Jauhainen S, Corada M, Lazzaroni F, Malinverno M, Sundell V, Cunha
650 SI, Brännström J, Globisch MA, et al (2020) Mapping endothelial-cell diversity in cerebral
651 cavernous malformations at single-cell resolution. *Elife* 9: e61413

652 Pang C, Lim CS, Brookes J, Tsui J & Hamilton G (2020) Emerging importance of molecular
653 pathogenesis of vascular malformations in clinical practice and classifications. *Vasc Med*
654 (*United Kingdom*) 25: 364–377

655 Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins
656 GJ, et al (2004) High Frequency of Mutations of the PIK3CA Gene in Human Cancers. *Science*
657 304: 554

658 Stanczuk L, Martinez-Corral I, Ulvmar MH, Zhang Y, Laviña B, Fruttiger M, Adams RH, Saur D,
659 Betsholtz C, Ortega S, et al (2015) CKit lineage hemogenic endothelium-derived cells
660 contribute to mesenteric lymphatic vessels. *Cell Rep* 10: 1708–1721

661 Vanhaesebroeck B, Perry MWD, Brown JR, André F & Okkenhaug K (2021) PI3K inhibitors are
662 finally coming of age. *Nat Rev Drug Discov* Jun 14

663 Venot Q, Blanc T, Rabia SH, Berteloot L, Ladraa S, Duong JP, Blanc E, Johnson SC, Hoguin C,
664 Boccaro O, et al (2018) Targeted therapy in patients with PIK3CA-related overgrowth
665 syndrome. *Nature* 558: 540–546

666 Yu Y, Hall T, Eathiraj S, Wick MJ, Schwartz B & Abbadessa G (2017) In-vitro and in-vivo combined
667 effect of ARQ 092, an AKT inhibitor, with ARQ 087, a FGFR inhibitor. *Anticancer Drugs* 28:
668 503–513

669 Yu Y, Savage RE, Eathiraj S, Meade J, Wick MJ, Hall T, Abbadessa G & Schwartz B (2015)
670 Targeting AKT1-E17K and the PI3K/AKT pathway with an allosteric AKT inhibitor, ARQ 092.
671 *PLoS One* 10: e0140479

672 **FIGURE LEGENDS**

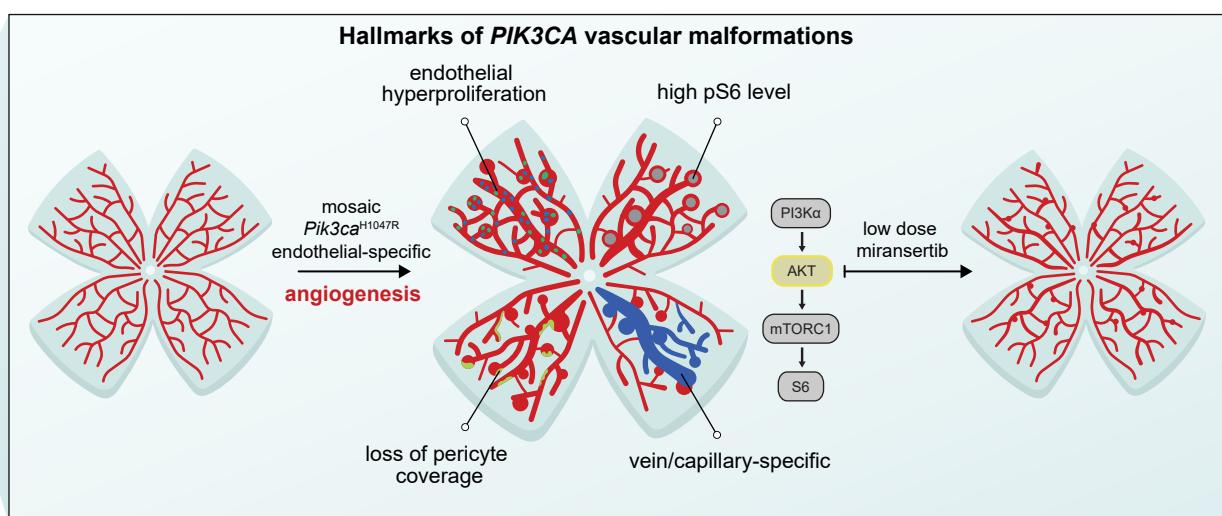
673 **Figure 1. Pathogenesis of *Pik3ca*-driven vascular malformations depends on active**
674 **angiogenesis. (A)** Experimental setup scheme showing analysed angiogenic stages in the retina
675 models. **(B)** Representative images of control and EC-*Pik3ca*^{H1047R/WT} mouse retinas isolated at
676 indicated time points stained with IB4 for blood vessels. Scale bars: 150 μ m. **(C)** Pie charts
677 showing the incidence of vascular lesions at different angiogenic stages. Lesions were
678 categorised according to their expanse (generalised or focal). Quantification was performed per
679 retina petal. Numbers below show the presence of any type of lesions per retina petal. **(D)**
680 Quantification of IB4-positive areas per retina. Error bars are s.e.m. n \geq 3 retinas per genotype.
681 **(E)** Representative images of EC-mTmG mouse retinas isolated at indicated time points stained
682 with IB4 and GFP. Scale bars: 150 μ m. **(F)** Quantification of GFP/IB4 ratio per retina. Error bars
683 are s.e.m. n \geq 3 retinas per genotype. Statistical analysis was performed by nonparametric Mann–
684 Whitney test. *p < 0.05 was considered statistically significant.

685 **Figure 2. Modelling PI3K-vascular malformations in murine retinas by mosaic expression**
686 **of *Pik3ca*^{H1047R} in ECs. (A, B)** Representative images of EC-*Pik3ca*^{H1047R/WT} **(A)** and EC-mTmG
687 **(B)** P6 retinas from mice treated with decreasing doses of 4-OHT on P1. Retinas were stained for
688 blood vessels (IB4) and GFP as indicated. Scale bars: 150 μ m. **(C)** Quantification of GFP/IB4
689 ratio of EC-mTmG retinas. Error bars are s.e.m. n \geq 3 retinas per genotype. **(D)** Quantification of
690 IB4-positive area per retina in *Pik3ca*^{H1047R/WT} retinas. Data presented as a percentage of the
691 control for each 4-OHT dose. Error bars are s.e.m. n = 4 retinas per genotype. Statistical analysis
692 was performed by nonparametric Mann–Whitney test. *p < 0.05 was considered statistically
693 significant.

694 **Figure 3. *Pik3ca*-vascular malformations in murine retinas reproduce hallmarks of human**
695 **disease. (A)** Representative images of EC-*Pik3ca*^{H1047R/WT} P6 retinas isolated from mice treated
696 with 0.125 mg/kg of 4-OHT on P1. Retinas were immunostained for blood vessels (IB4). Red
697 asterisks show arteries and arterioles and yellow arrowheads veins. Scale bars: 150 μ m (left
698 panel) and 30 μ m (right, high magnification panels). **(B)** Representative images of P6 retinas from
699 control and EC-*Pik3ca*^{H1047R/WT} mice treated with 0.125 mg/kg 4-OHT on P1, following

700 immunostaining for p-S6 (S235/236) and blood vessels (IB4). Scale bars: 150 μ m (left panels)
701 and 30 μ m (right panels, high magnification). (C) Representative control and EC-*Pik3ca*^{H1047R/WT}
702 P6 retinas immunostained for blood vessels (IB4), EC nuclei (Erg) and EdU. Scale bars: 150 μ m
703 (left panels) and 30 μ m (right panels, high magnification). Quantification of (D) p-S6 (S235/236)
704 intensity (presented as a fold change of vehicle-treated control), (E) EC proliferation by EdU
705 staining, (F) EC number by Erg positive cells and (G) retinal vascularity by IB4-positive area in
706 control and EC-*Pik3ca*^{H1047R/WT} retinas. Error bars are s.e.m. n > 5 retinas per genotype. Statistical
707 analysis was performed by nonparametric Mann–Whitney test. **p < 0.01 was considered
708 statistically significant.

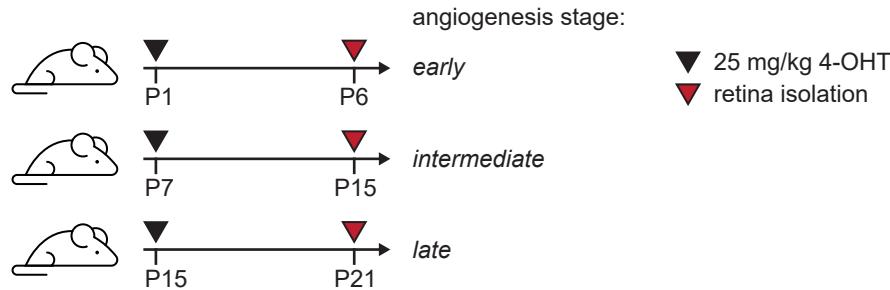
709 **Figure 4. Miransertib prevents the formation of *Pik3ca*-vascular malformations in mice.** (A)
710 4-OHT and miransertib dosing scheme used for a prevention therapeutic experimental setup. (B,
711 C) Representative images of P6 retinas isolated from control and EC-*Pik3ca*^{H1047R/WT} mouse
712 littermates. Blood vessels were stained with IB4. Lower panels showing high magnification
713 images of the representative areas showing (B) blood vessels (IB4), EC nuclei (Erg), EdU
714 incorporation and (C) pS6 (S235/236). Quantification of (D) retinal vascularity by IB4 staining, (E)
715 EC number by Erg immunostaining, (F) EC proliferation by EdU staining, and (G) pS6 (S235/236)
716 intensity (presented as a fold change of vehicle-treated control). Scale bars: 150 μ m (upper panel)
717 and 30 μ m (lower panels). n \geq 4 retinas per genotype. Statistical analysis was performed by
718 nonparametric Mann–Whitney test. *p < 0.05 and **p < 0.01 were considered statistically
719 significant.


720 **Figure 5. Low dose of miransertib prevents the growth of *Pik3ca*-vascular malformations.**
721 (A) 4-OHT and miransertib dosing scheme used for a prevention experimental setup. (B, C)
722 Representative confocal images of P6 retinas isolated from control and EC-*Pik3ca*^{H1047R/WT} mouse
723 littermates. Blood vessels were stained with IB4. Lower panels showing high magnification
724 images of the representative areas showing (B) blood vessels (IB4), EC nuclei (Erg), EdU
725 incorporation and (C) pS6 (S235/236). Quantification of (D) retinal vascularity by IB4 staining, (E)
726 EC number by Erg immunostaining, (F) EC proliferation by EdU staining, and (G) pS6 (S235/236)
727 intensity (presented as a fold change of vehicle-treated control). Scale bars: 150 μ m (upper

728 panels) and 30 μ m (lower panels). $n \geq 3$ retinas per genotype. Statistical analysis was performed
729 by nonparametric Mann–Whitney test. * $p < 0.05$ and ** $p < 0.01$ were considered statistically
730 significant.

731 **Figure 6. Low dose miransertib induces regression of *Pik3ca*-vascular malformations *in***
732 ***vivo*.** **(A)** 4-OHT and miransertib dosing scheme used for a curative experimental setup. **(B, C)**
733 Representative confocal images of P6 retinas isolated from control and EC-*Pik3ca*^{H1047R/WT} mouse
734 littermates. Blood vessels were stained with IB4. Lower panels showing high magnification
735 images of the representative areas showing **(B)** blood vessels (IB4), EC nuclei (Erg), EdU
736 incorporation and **(C)** pS6 (S235/236). Quantification of **(D)** retinal vascularity by IB4 staining, **(E)**
737 EC number by Erg immunostaining, **(F)** EC proliferation by EdU staining, and **(G)** pS6 (S235/236)
738 intensity (presented as a fold change of vehicle-treated control). Scale bars: 150 μ m (upper
739 panels) and 30 μ m (lower panels). $n \geq 4$ retinas per genotype. Statistical analysis was performed
740 by nonparametric Mann–Whitney test. * $p < 0.05$ and ** $p < 0.01$ were considered statistically
741 significant.

742 **Figure 7. Miransertib impairs cell viability of *PIK3CA*- and *TEK*-mutant patient-derived ECs.**
743 **(A)** Illustration showing the strategy of EC isolation from patient-derived biopsies. **(B)**
744 Representative sequencing chromatograms of *PIK3CA* and *TEK* mutant VM-derived ECs. Arrows
745 show the detected point mutations. **(C)** Representative confocal images of *PIK3CA* and *TEK*
746 patient-derived ECs immunostained for VE-cadherin (EC-specific junctional protein) and ERG
747 (EC-specific transcription factor). Cell nuclei were visualised with DAPI. Scale bars: 30 μ m. **(D)**
748 Immunoblot showing the activation of PI3K/AKT/mTORC1 pathway (by assessing the levels of p-
749 AKT and p-S6) among different *PIK3CA* and *TEK* patient-derived ECs. Primary HUVEC were
750 used as wild type control. **(E-F)** Immunoblot showing the impact of miransertib at increasing doses
751 on PI3K/AKT/mTORC1 pathway (by assessing p-AKT and p-S6 levels) in **(E)** *PIK3CA* and **(F)**
752 *TEK* mutant patient-derived ECs. **(G)** *PIK3CA* and *TEK* mutant EC viability upon the treatment
753 with miransertib for 72h at different doses assessed by MTS assay. Fitting curves and 95% CI
754 IC50 values for both *PI3KCA* and *TEK* ECs are shown. Statistical analysis was performed by
755 comparison of best-fit values using the extra sum-of-squares F test.


Graphical abstract

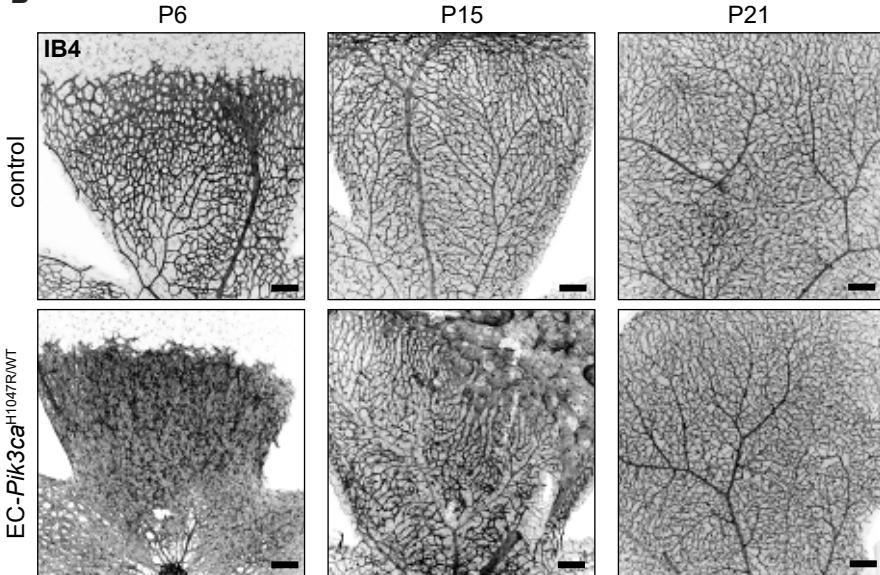
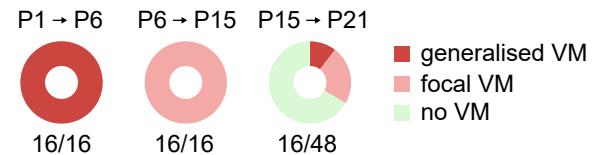
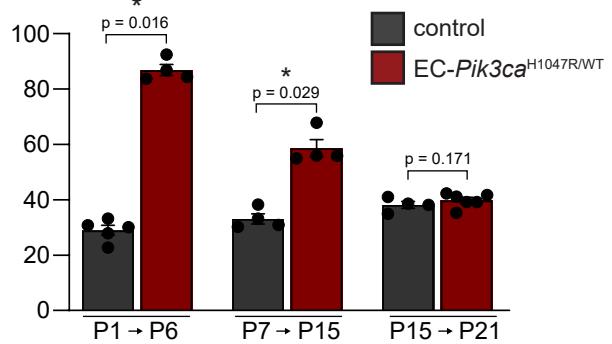
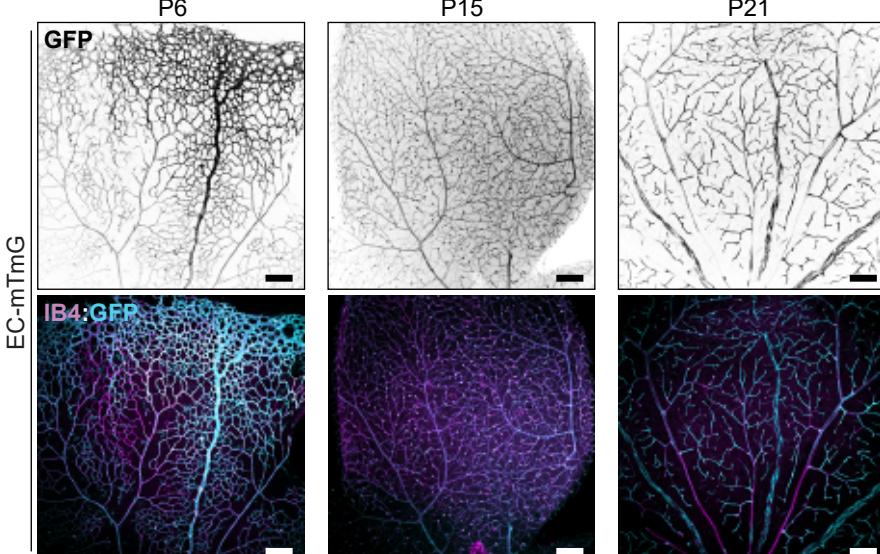
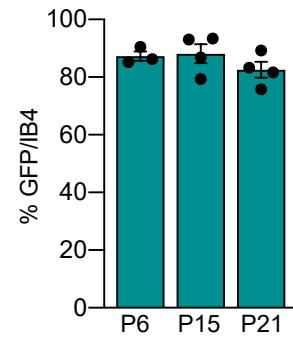

Low-flow vascular malformations are caused by PI3K signalling overactivation in endothelial cells. We have generated an optimised and robust preclinical system of PI3K-driven vascular malformations by inducing the mosaic expression of *Pik3ca*^{H1047R} in the retinal angiogenic endothelium. This preclinical model displays traits constituting the main hallmarks of the pathogenesis of low-flow blood vascular malformations: overactivation of PI3K signalling (high phospho-S6), vascular compartment specificity, loss of pericyte coverage, and endothelial cell hyperproliferation. Using this preclinical model we report that low dose AKT inhibitor miransertib prevents and regresses PI3K-driven vascular malformations.

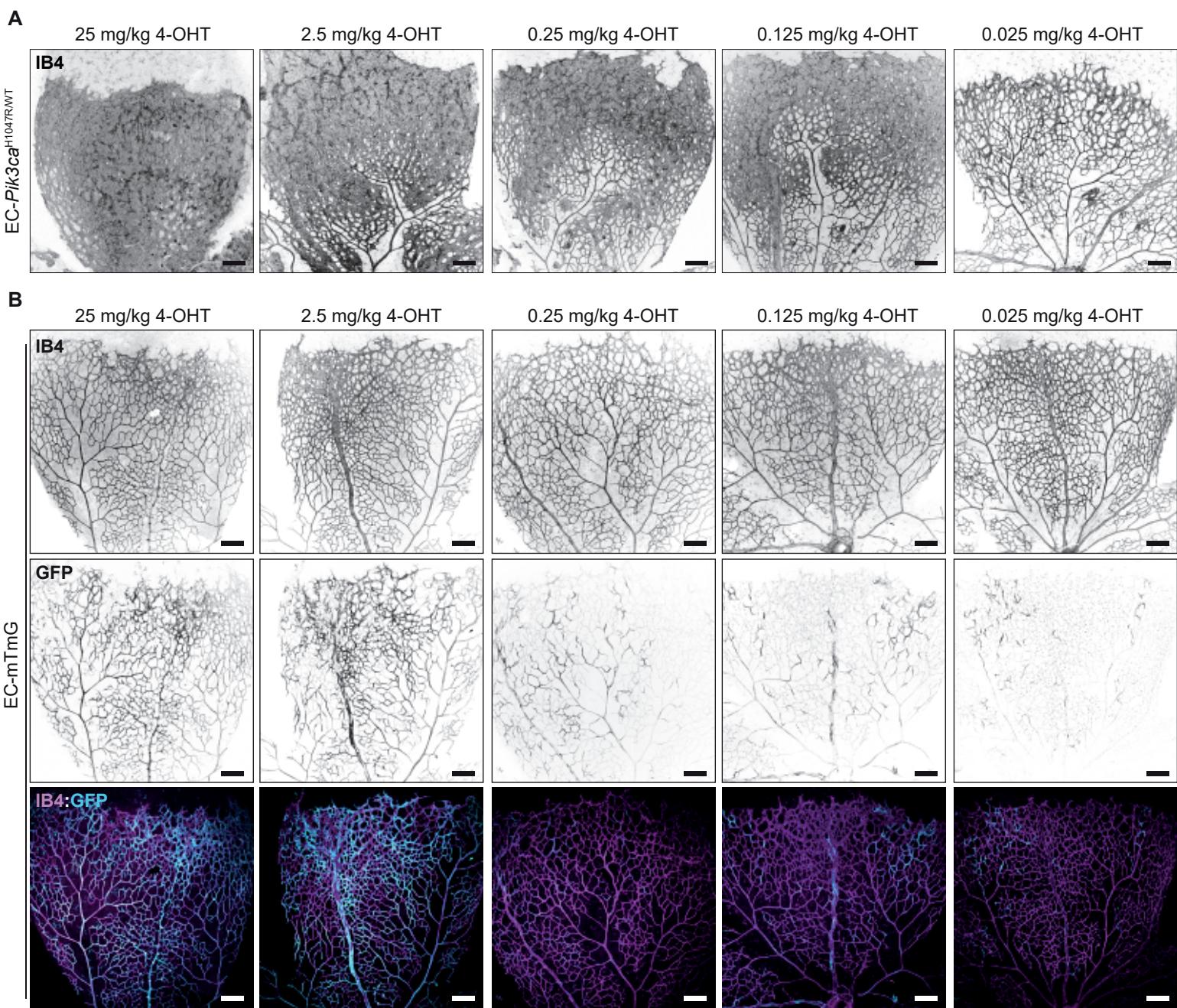
Figure 1

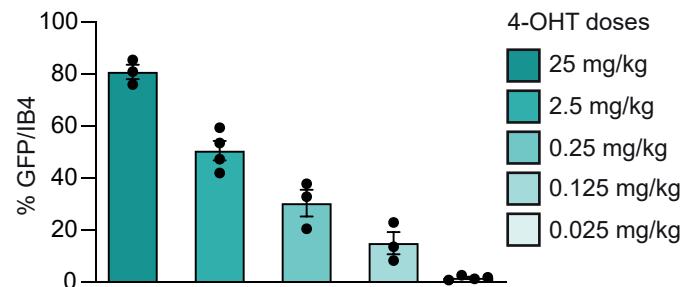

A

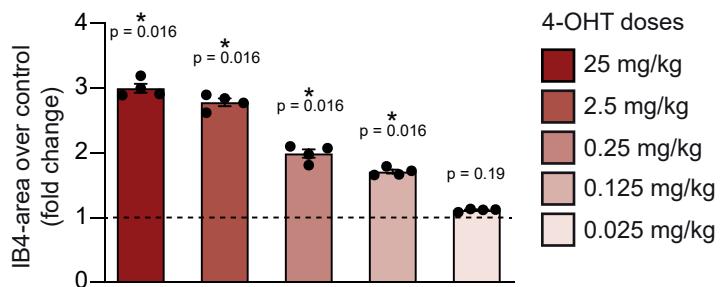

B


C

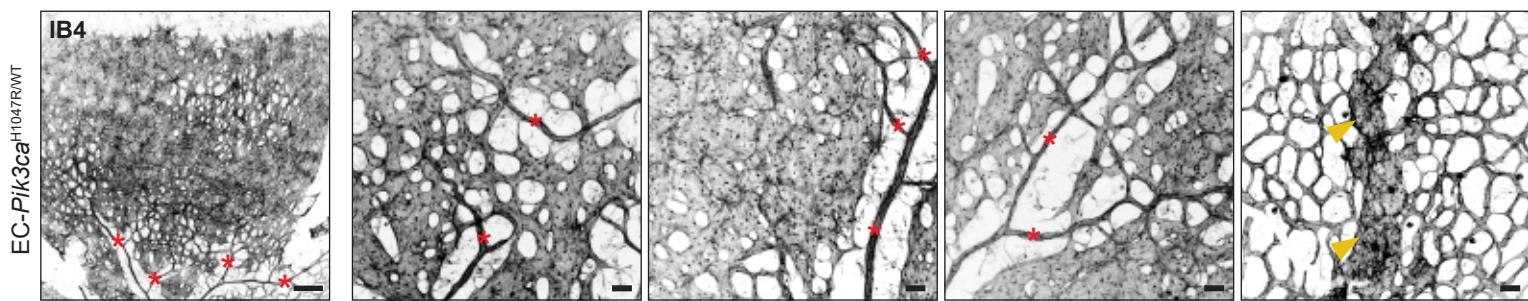

D


E


F


Figure 2

C



D

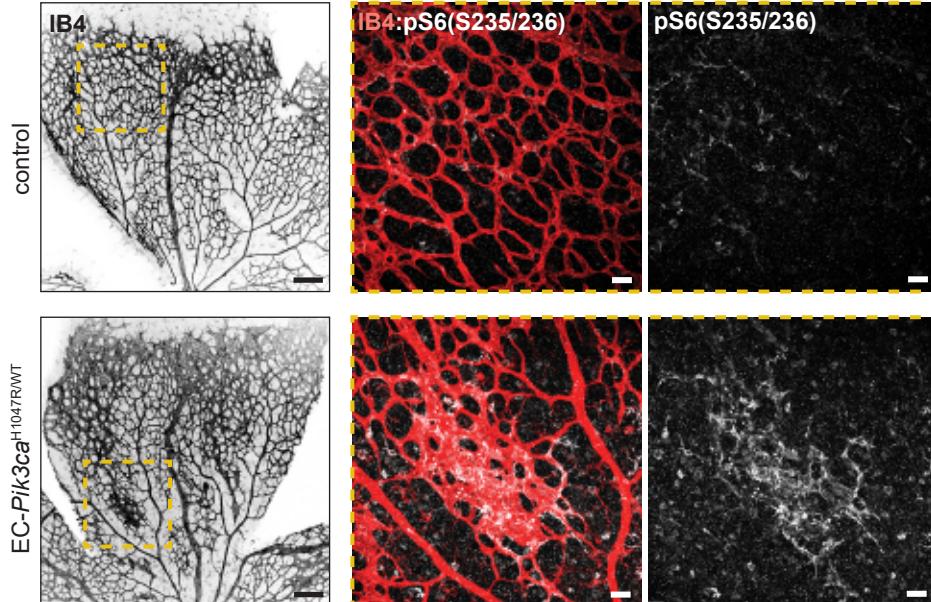
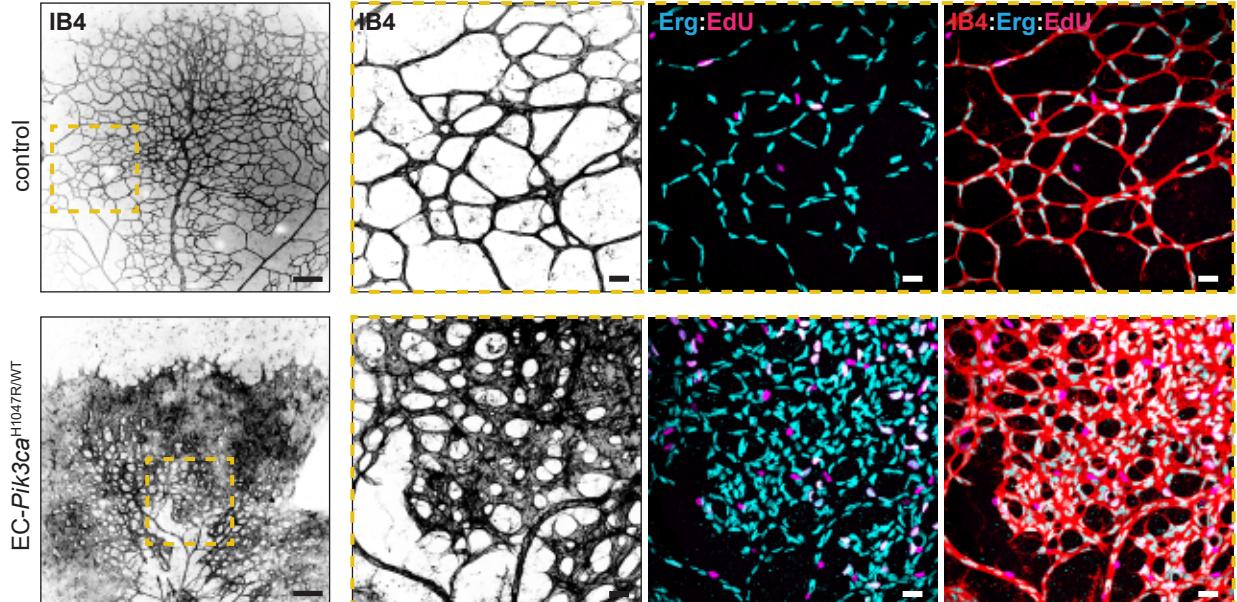
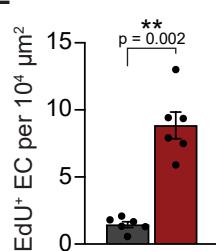
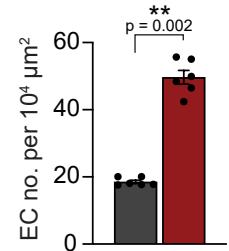


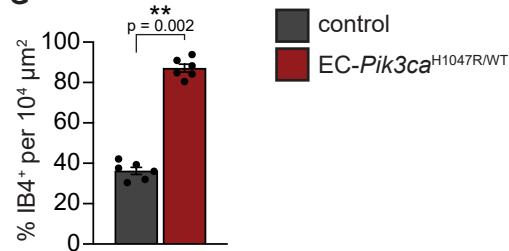
Figure 3


A

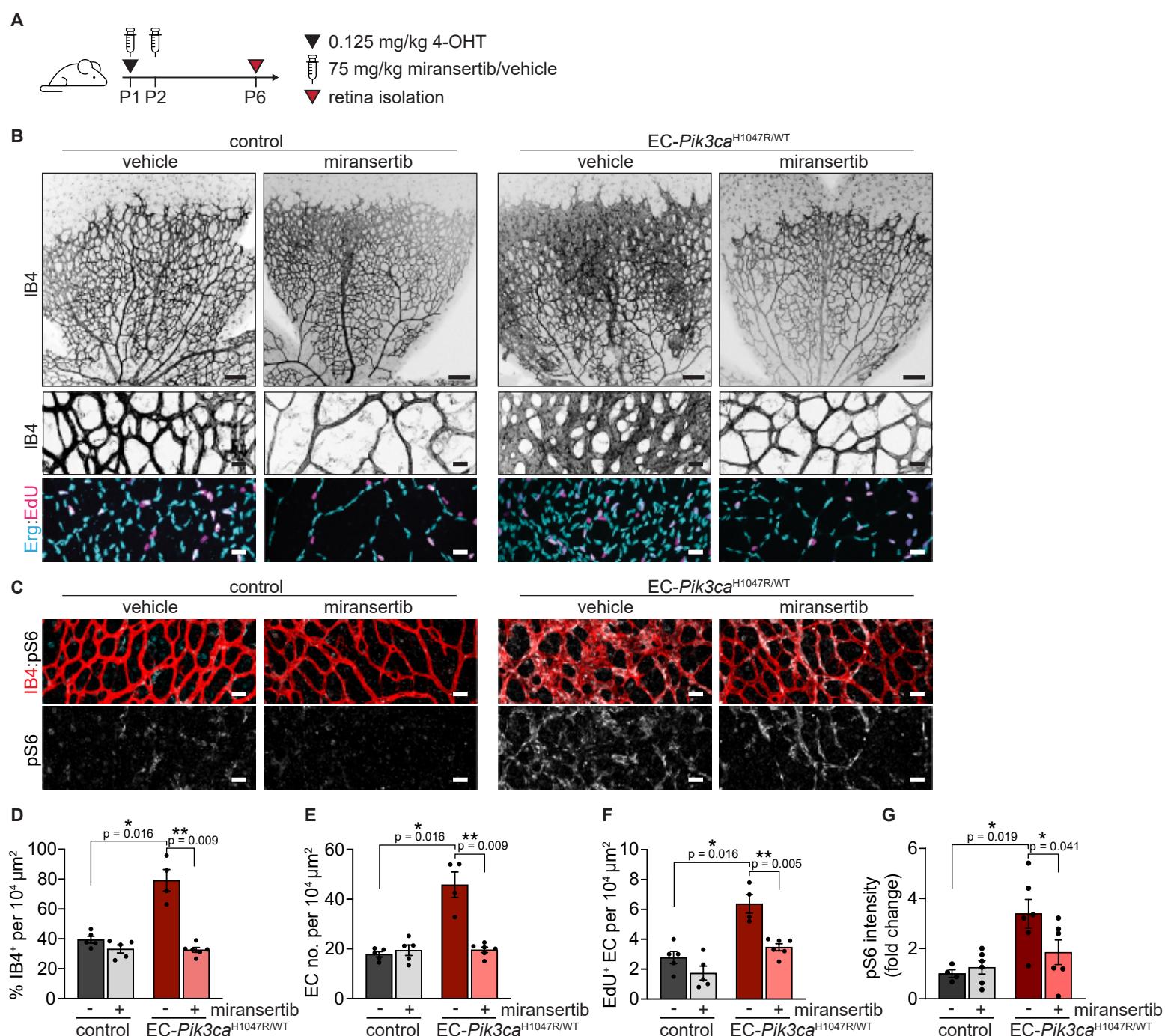

B


C

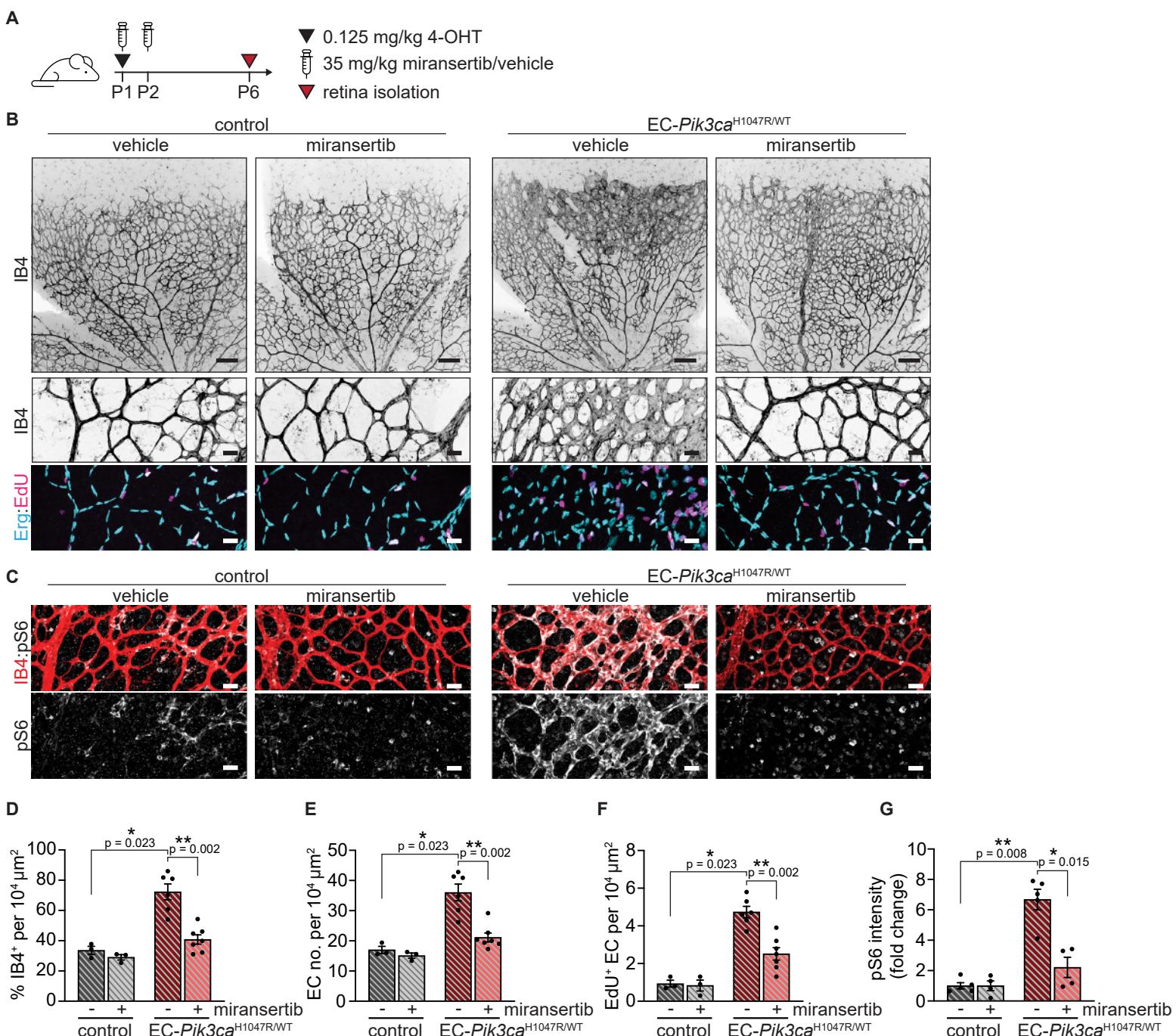

D


E

F



G



control
EC-Pik3ca^{H1047R/WT}

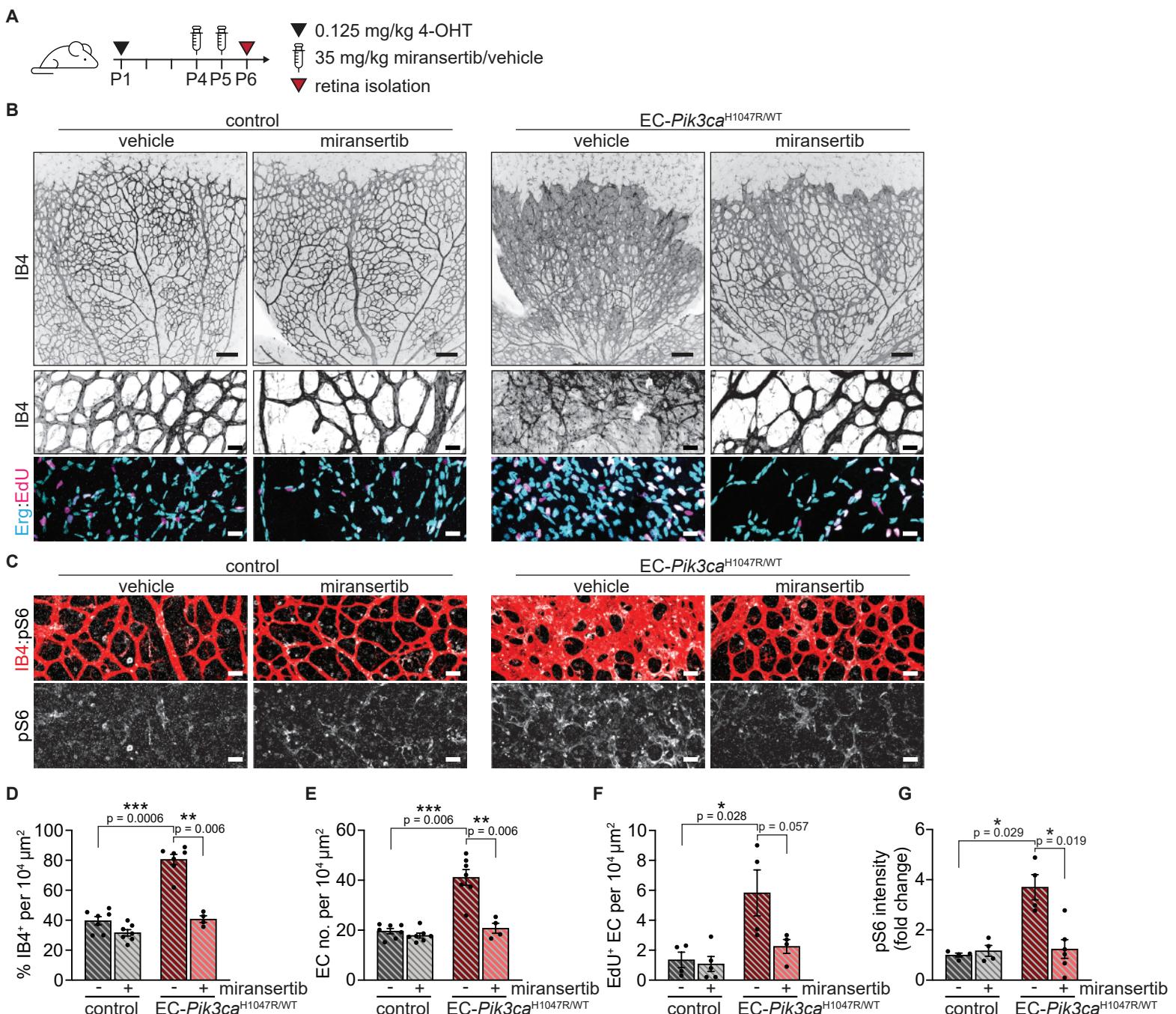

Figure 4

Figure 5

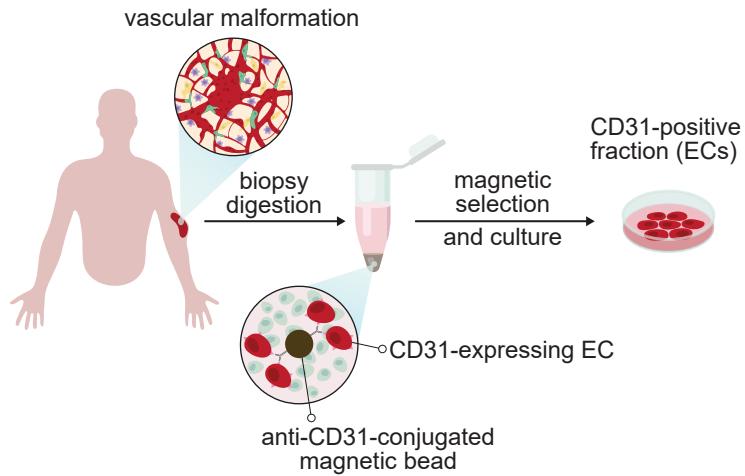


Figure 6

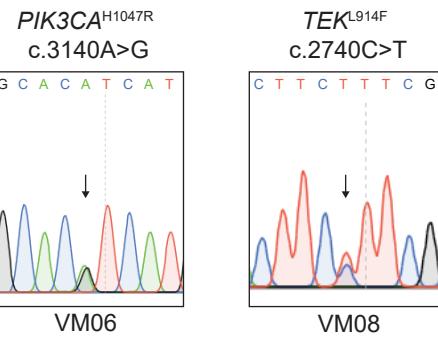
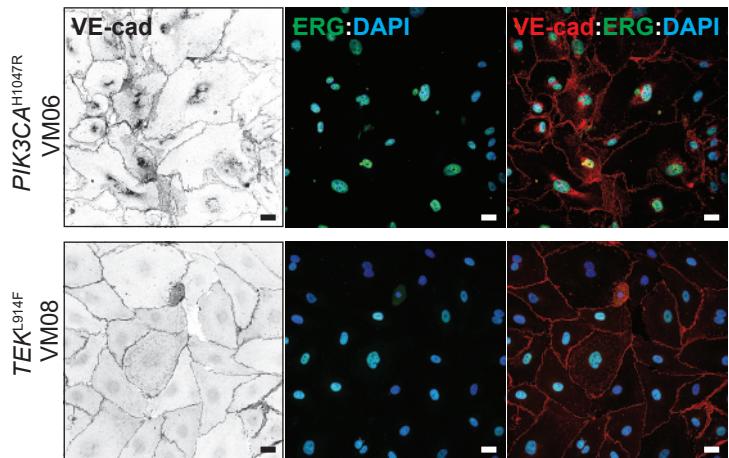
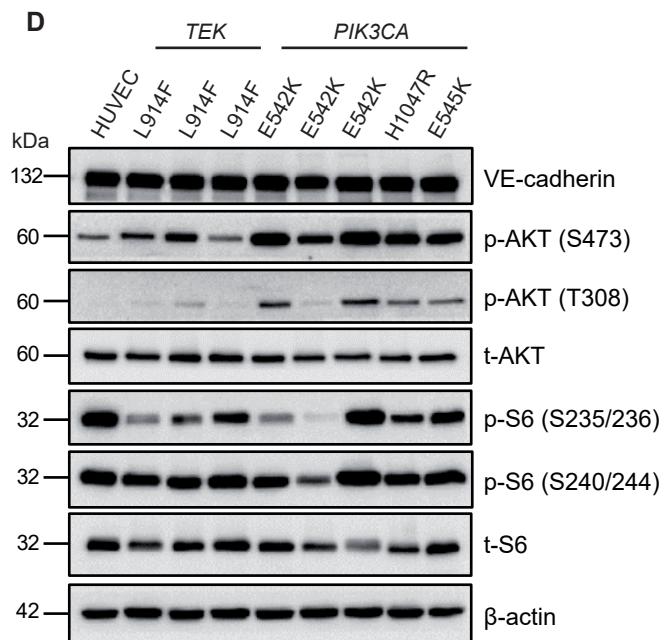
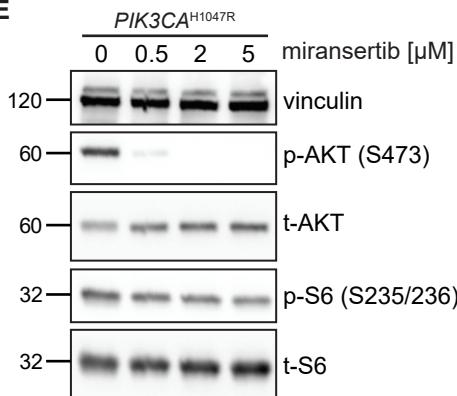
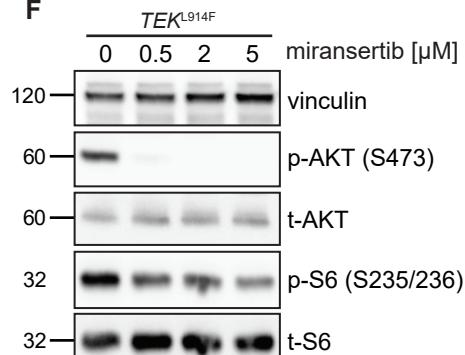


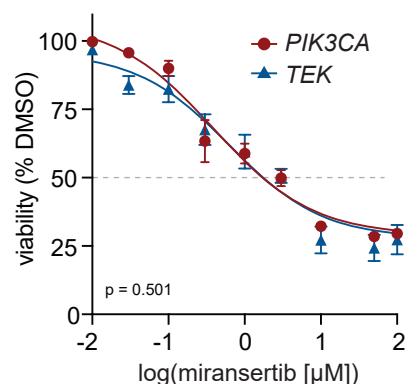
Figure 7


A


B


C


D


E

F

G

95% CI IC50_{PIK3CA} = 0.1206 - 0.7622 μM

95% CI IC50_{TEK} = 0.0006259 - 1.772 μM