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Simultaneous EEG-fMRI is a growing and promising field, as it has great potential to further our understanding of the
spatiotemporal dynamics of brain function in health and disease. In particular, there is much interest in understanding the fMRI
correlates of brain activity in the gamma band (>30 Hz), as these frequencies are thought to be associated with cognitive processes
involving perception, attention, and memory, as well as with disorders such as schizophrenia and autism. However, progress in this
area has been limited due to issues such as MR-induced artifacts in EEG recordings, which seem to be more problematic for gamma
frequencies. This paper presents a noise removal method for the gamma band of EEG that is based on the Holo-Hilbert spectral
analysis (HHSA), but with a new implementation strategy. HHSA uses a nested empirical mode decomposition (EMD) to identify
amplitude and frequency modulations (AM and FM, respectively) by averaging over frequencies with high and significant powers.
Our method examines gamma band by applying two layers of EMD to the FM and AM components, removing components with very
low power based on the power-instantaneous frequency spectrum, and subsequently reconstructs the denoised gamma-band signal
from the remaining components. Simulations demonstrate that our proposed method efficiently reduces artifacts while preserving
the original gamma signal which is especially critical for simultaneous EEG/fMRI studies.

Index Terms—Amplitude-modulated component, Empirical Mode Decomposition, frequency-modulated component, Gamma-band
denoising, Holo-Hilbert spectral analysis (HHSA), Electroencephalography (EEG).

I. INTRODUCTION

Electroencephalography (EEG) is a widely used technique
that records electrical activity of the brain non-invasively with
high temporal resolution (on the order of milliseconds) [1, 2].
EEG data has a low spatial resolution (on the order of
centimeters) [1, 2]. On the other hand, functional magnetic
resonance imaging (fMRI) based on the hemodynamic blood-
oxygenation-level-dependent (BOLD) response localizes brain
activity with a high spatial resolution (on the order of mil-
limeters), but low temporal resolution (typically 2–3 sec-
onds) [1, 3].

Fortunately, BOLD fMRI and EEG can be collected simul-
taneously to permit both high spatial and temporal resolution,
which improves our ability to understand the coupling that
exists between the brain’s electrical activity and hemodynamic
responses, i.e., neurovascular coupling [4–9]. EEG data con-
tains oscillations with different frequencies. BOLD signal is
associated with neuronal synchronization across a number of
EEG frequency bands. The powers of the alpha (8–12 Hz)
and beta (12–30 Hz) bands correlate negatively with BOLD
signal’s magnitude, while the gamma band (> 30 Hz) power
correlates positively with BOLD signal’s magnitude [10–12].
It is believed that gamma activity is most directly associ-
ated with neurovascular coupling [12–20], and some studies
have shown that gamma-band frequencies are the carrier
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frequencies associated with the temporal synchronization of
intrinsic BOLD fluctuations within resting-state functional
networks [12, 17, 21, 22]. Thus, the gamma band is of utmost
importance in the analysis of EEG-fMRI data which provides
crucial information with a high spatial and temporal resolution
for brain-network studies to clinical investigations [23–26].
Low-frequency bands, like alpha and delta (0.1–4 Hz), have
been vastly investigated, while EEG data in high-frequency
ranges, like gamma band, is not studied as much as the low-
frequency bands [27–31]. In this paper, we propose a denoising
method that applies to all EEG bands. However, we focus on
our method’s performance on the EEG gamma band due to the
gamma-band’s importance in brain-function studies and the
lack of efficient denoising methods for high-frequency EEG
bands like the gamma band.

EEG simultaneously recorded during fMRI contains arti-
facts that cannot be simply filtered [10, 32–34]. These artifacts
are primarily due to electric noise induced by the on and off
switching of the magnetic field gradients [32–34]. The shape
and amplitude of artifacts vary depending on the EEG elec-
trode’s location, head motion, and the positioning of the leads
and connectors [32, 33, 35]. In addition, Electromyographic
(EMG) recordings of muscle contractions, recorded as part of
the EEG acquisition, contain artifacts over a wide frequency
range and are maximum at frequencies exceeding 30 Hz,
which is within the gamma band [10, 31, 32]. Several noise
removal methods have been proposed, including those that use
Kalman filtering [36], the wavelet transform [37], blind source
separation [38], principal component analysis (PCA) [38], and
independent component analysis (ICA) [10, 39]. Most methods
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have concentrated on improving EEG signals at low frequen-
cies (< 30 Hz) [27–29, 31], and these denoising strategies are
shown to be inadequate for the gamma band [10]. Therefore,
an effective noise-removal method for the gamma band is
sorely needed. Of note, EEG signals are nonlinear processes
with both amplitude and frequency modulations formed by
linear additive or nonlinear multiplicative processes. Thus
spectral-analysis techniques like Fourier [9, 37], wavelet [37]
and Hilbert–Huang transform (HHT) [40] that are limited to
the analysis of stationary and linear signals, and require a
priori or a posteriori knowledge of the underlying physiology
are not qualified and efficient to extract information from
the nonlinear processes [41, 42]. Requiring a priori or a
posteriori basis places restrictions on automated techniques.
The previous Holo-Hilbert spectrum (HHS) method is ef-
fective in examining frequency modulated signals; however,
it does not provide the frequency-domain information on
the amplitude function and ignores the role of amplitude
modulation [41, 43, 44].

The recently introduced Holo-Hilbert spectral-based analy-
sis (HHSA) technique [41] examines both the amplitude mod-
ulation (AM) and frequency modulation (FM) variations of
a signal simultaneously. HHSA constructs a multidimensional
power spectrum that accommodates all possible temporal prop-
erties and interactions within a signal: additive and multiplica-
tive, intra-mode (interaction within each mode) and inter-mode
(interaction between modes), stationary and nonstationary,
linear and nonlinear interactions. HHSA identifies the AM
and FM within a signal based on the constructed power spec-
trum [7, 41]. According to this method, the signal of interest
is first decomposed into intrinsic mode functions (IMFs) using
the EMD method, known as the first layer. Then the amplitude
envelope of each of the IMFs is decomposed into a set of
amplitude-modulated IMFs, denoted by IMFsAM, constituting
the second layer [7, 41]. The intra-mode frequency variations
are examined within each frequency-modulated IMFs, denoted
by IMFsFM [45]. On the other hand, the AM frequency
represents the slow-changing inter-mode frequency variations;
it can be used to analyze interactions between IMFsFM [7].
Although the HHSA method can go through multiple iterations
until it bears no more cyclic characteristics, only two iterations
are performed in practice [7, 41, 43, 46–48].

The HHSA method has been used in a number of EEG
applications, including the examination of oscillatory brain
activity and interactions amongst EEG frequency bands (al-
pha and beta bands) [7], the study of human visual-system
processing [46], and the derivation of time-frequency spectrum
matrices to characterize sleep stages [48]. However, previous
studies applied two layers of EMD to the AM component of a
signal and not to the FM component. We show that applying
the second layer of the EMD method to the FM components
of the signal along with AM components decomposition
augments the capability of analyzing intra-mode nonlinearity.
Moreover, there is no need for applying more than two layers
of EMD decomposition and multiple iterations. Consequently,
the computational burden would be much lesser than the
HHSA method.

In the proposed method, the EEG signal is first decomposed

into IMFs. These IMFs are combined to roughly correspond
to the known EEG bands (e.g., gamma, beta) [5]. After con-
structing the gamma band, the second layer of decomposition
is applied to the AM and FM components of the gamma band
to compute its IMFsAM and IMFsFM, respectively. Analogous
to AM frequency identification of the HHSA method, the
carrier frequency of a signal is where power is significant and
high in the power-instantaneous frequency spectrum [7, 41].
Therefore, IMFsAM and IMFsFM with frequencies of low
power are considered as a noise. Accordingly, the power
spectrum of the IMFsAM and IMFsFM are used to identify and
remove noise-related IMFs from the AM and FM components
of the signal, respectively.

Another difference between the proposed and the HHSA
methods is how the signal’s AM and FM components are
computed. In the HHSA method, a signal is constructed based
on the FM and AM frequencies with the significant- and high-
energy-density; however, the signal in the proposed method is
constructed by integrating the remaining IMFsAM and IMFsFM

after removing the low power IMFsAM and IMFsFM.
Our method enhances the determination of nonlinear in-

teractions within the signal by providing frequency-domain
information on the signal’s AM and FM components. Fur-
thermore, compared to the HHSA method, denoising a signal
by removing its noisy components is more reliable than
making the denoised signal based on the specific AM and
FM frequencies. This is because neural signals interaction
is highly complicated. Consequently, the HHSA method will
likely ignore some of the components of an EEG signal that are
neural-based and informative about neural interactions. With
these theorized improvements, we hypothesize that our pro-
posed method generates more efficient and accurate gamma-
band signals than the HHSA method.

II. METHODS

A. EEG data acquisition

Resting-state EEG data were recorded using a 256-channel
MR-compatible EEG system (Geodesic EEG System 400,
Electrical Geodesic, Inc., Eugene, OR) from a subject with
1000 Hz sample rate for approximately 5 min [49]. Ad-
ditional ECG leads were positioned on the subject’s chest.
EEG was recorded simultaneously with fMRI, and channels
were referenced to the vertex electrode, Cz. The cap diameter
was adjusted to the subject before recording. Channels were
connected to the scalp through a hypoallergenic sponge soaked
in a saline solution of Potassium Chloride (KCl) and detergent.
The signals were downsampled to 200Hz, and the gradient
and ballistocardiographic artifacts were removed using the
methods described in [35, 50]. The subject gave informed
consent in accordance with the study protocol approved by
the Ethics Commission of the University of Freiburg.

B. Data simulation

The background activity of the brain was modelled using
1/f-activity (or pink noise), and sensor noise was modelled at
the channel level as additive white gaussian noise. To simulate
the EEG’s gamma band, white gaussian and pink noise were
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both filtered between 30 and 80 Hz. The filtered noises were
then added to a 30 Hz sinusoidal signal and a combination
of three 30 Hz, 60 Hz and 75 Hz sinusoidal signals to yield
different levels of SNR [51, 52]. The duration of the simulated
signals was 50 s and the sampling rate was 200 Hz.

C. Denoising EEG signals using the proposed method

To denoise the gamma band using the proposed approach,
the following steps were followed:
1) The EEG signal was first decomposed into its IMFs using
the EMD method [16]. The obtained IMFs roughly correspond
to the known EEG bands [5], but if there was a case where
several IMFs lie within the same band, they were added to
obtain only one component per band. The main goal of this
paper is denoising the gamma band; thus, the proposed method
is applied only to the gamma band, which is denoted by γ.
The gamma band signal can be written in terms of its AM and
FM components as:

γ(t) =

N∑
j=1

IMFj(t) = Re

N∑
j=1

AM︷ ︸︸ ︷
Aj(t)×

FM︷ ︸︸ ︷
ei

∫
t
ωj(τ)dτ . (1)

This equation corresponds to the first layer of the HHSA
method, where N is the number of points in the time series,
Aj(t) are the instantaneous amplitudes, and ωj(t) are the
instantaneous frequencies.
2) To extract Aj(t), the absolute value of γ(t) is used to
construct the upper envelope function by a natural spline
function through all the maxima.
3) The Aj(t) envelopes are decomposed into amplitude-
modulated IMFs using the EMD method, denoted as IMFAM:

Aj(t) =
L∑

k=1

IMFAM
k (t) = Re

L∑
k=1

Ajk(t)× ei
∫
t
Ωk(τ)dτ . (2)

4) To have the temporal variations of the FM’s and IMFAM’s
frequencies, the instantaneous frequencies ωj and Ωk of the
IMFAM are computed using the Hilbert transform [40] in the
form of a time–frequency representation.
5) A three-dimensional HHSA spectrum (consisting of ω, Ω,
and P (ω,Ω)) is constructed by incorporating the instantaneous
power, P (ω,Ω), with the instantaneous AM frequencies of
IMFAM (Ω) and the instantaneous FM frequencies (ω) across
all time points for the gamma band signal. The time variable
is integrated out to give a frequency-only spectrum.
6) According to the HHSA method [41], the carrier-wave and
envelope-modulation frequencies (ω, Ω) are identified based
on the power density in the HHSA spectrum. The prominent
modulating frequencies of the signal are where the power is
high and significant and are determined by averaging over the
frequencies with high and significant powers [41]. With com-
puted ω and Ω, the denoised signal is constructed by Eq. (1).

The steps presented above denoise a signal according to the
HHSA method. In the proposed method, the first five steps
are implemented similar to the HHSA method, but the 6th
step is skipped. Thus, after step 5, artifact removal analysis is
performed based on the proposed method as follows:

5)→7) A 2D power spectrum is computed based on the instan-
taneous power P (Ω) and frequencies, Ω, across all IMFsAM.
8) The AM component of the signal is refined based on its 2D
power spectrum, which is consistent with the HHSA spectrum
but is more informative about frequencies’ power density of
the IMFs. 2D power spectrum makes it easier to decide which
IMFs or part of IMFs need to be removed. IMFsAM, or part of
an IMFAM, of specific frequency bands are removed according
to the 2D power spectrum where power is not around its peak.
In other words, frequencies that are not in the bandwidth of
the AM component are removed. Bandwidth is the frequency
range occupied by a modulated carrier signal.
9) The FM component of the gamma-band signal is computed
using the Hilbert transform.
10) The FM component, which is represented in Eq. (1) as
ei
∫
t
ωj(τ)dτ , is decomposed into a set of frequency-modulated

IMFs with instantaneous carrier-wave frequencies νk(τ) using
the EMD-based method, denoted as IMFFM.

ei
∫
t
ωj(τ)dτ =

L∑
k=1

IMFFM
k (t) = Re

L∑
k=1

ei
∫
t
νk(τ)dτ . (3)

11) The instantaneous frequencies νk of IMFFM are then
calculated using the Hilbert Transform.
12) A 2D power spectrum of the FM component of the signal
is computed based on the instantaneous power, P (ν), and
frequencies, ν, of all IMFsFM.
13) To denoise the signal’s FM component, IMFsFM or part of
an IMFFM (i. e., just some of the frequencies in a IMF) that
do not have high-power are removed.
14) The remained IMFsAM and IMFsFM are summed up
to construct the denoised AM and FM components of the
denoised signal, respectively.

After processing both the AM and FM components of the
signal, as shown in Eqs. (2) and (3), the integration of both
the denoised AM and FM parts (Aj(t)R and (ei

∫
t
ωj(τ)dτ )R

respectively), constructs the denoised gamma signal (γR) as

γR(t) = Re

N∑
j=1

Aj(t)R ∗
(

ei
∫
t
ωj(τ)dτ

)
R
, (4)

where R means noise-reduced.
The HHSA method and our proposed method were ap-

plied to the simulated datasets. A flowchart representing the
overview of applying the proposed approach to denoise the
gamma band signal is shown in Fig. 1.

As mentioned above, when an IMF contains desired fre-
quencies with high energy and undesired frequencies with
low energy, only a part of an IMF can be removed. These
types of IMFsFM and IMFsAM can be identified by their
power spectrum. Part of an IMF is removed by zeroing all
frequencies other than the frequency range of interest. This
usually happens in the IMFs corresponding to high frequencies
in both the AM and FM spectrums. It should also be stressed
here that for denoising the FM component of a signal, two
cases are possible in the FM power spectrum: 1) a single peak
and 2) mode-mixing or multiple peaks. When a signal contains
components of close frequencies with almost the same ampli-
tude, there might be more than one frequency in some of its
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Fig. 1: Signal-processing flowchart of the proposed approach.

IMFs after decomposition, which is typical [53, 54]. In the
single-peak case, IMFsFM with frequencies in the peak range
of the FM-power spectrum are kept, and IMFsFM that do not
have high power are removed from the FM part of the signal.
In the multiple-peak case, just IMFsFM with very low powers
are removed, so IMFsFM over a broader range of frequencies
are maintained compared to single-peak case. This is because
IMFsFM with not very low power might be created by fre-
quency modulation in the original signal. The frequency range
of the frequency-modulated signal varies between above and
below the carrier frequency, depending on the maximum mod-
ulating frequency in the signal. By including more IMFsFM

in the FM part of the signal comprised of more than one
frequency, losing part of the original signal and its information
is prevented. To investigate the similarity between the pure
signal (simulated signal before adding noise) and the denoised
signal computed by the HHSA method and the proposed
approach, we computed Mutual Information (MI) [55] us-
ing Neuroscience Information Theory Toolbox (https://github.
com/nmtimme/Neuroscience-Information-Theory-Toolbox).

III. RESULTS

A. Simulation

The simulated pure and noisy gamma-band signals and
their frequency spectra are respectively shown in Fig. 2A–

2F for signal consisting of a single frequency of 30 Hz with
SNR of ≈ 2 dB (s-signal1), and in Fig. 3A–3F for signal
containing 30 Hz, 60 Hz and 75 Hz with SNR of ≈ 6 dB (s-
signal4). Signals with two different SNR values selected just
for illustration. After computing the upper envelopes of the
noisy signals, Figs. 2G and 3G, they are further decomposed
into IMFsAM using an EMD-based method, ICEEMDAN, with
300 ensembles, i.e., number of copies of the input signal, and
a level of noise of 0.2 [56].

According to the 2D power spectrum and the HHSA spec-
trum of the upper envelope (steps 5 and 7 in §II-C), the
envelope-modulation frequencies are less than ≈17–20 Hz for
s-signal1 (see Figs. 4A and 4B) and between 20 to 35 Hz
for s-signal4 (see Figs. 5A–5B) where the power density is
highest. Thus, as stated in step 8 of the proposed method,
IMFsAM (shown in Figs. 4C and 5C)) with frequencies other
than these frequency ranges are removed from each signal’s
upper envelope. Accordingly, to denoise the AM component of
s-signal1, IMFAM1 and IMFAM10 to IMFAM11 were removed.
Frequencies higher than 20 Hz in IMFAM2 were also zeroed.
To denoise the AM component of s-signal4, IMFAM3 to
IMFAM11 were excluded based on the power spectra shown
in Figs. 5A and 5B. Furthermore, since white noise is a wide-
band signal without modulation, it has a modulation frequency
of ≈ 0 Hz. Thus, IMFsAM with a frequency lower than 0.1 Hz
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Fig. 2: Representation of the simulated pure and noisy signals
with carrier frequency 30Hz, their power spectrum and the
upper envelope of the noisy signal. A) Simulated pure and
B) the noisy signals. 200 time points are shown for illustration.
Power spectrum of C) pure signal, D) filtered pink noise,
E) filtered white noise, and F) noisy signal. G) Upper envelope
of the simulated noisy signal.

were also removed for both simulated signals except for the
last IMFAM that represents the input signal’s trend [7].

To denoise the FM part of s-signal1 and s-signal4, according
to step 12 in §II-C, the power spectrum of the FM component
and its IMFsFM are computed, illustrated in Fig. 6A–6D.
According to step 13 of the method, to denoise the FM
component of s-signal1, IMFFM3 to IMFFM14 (last IMF),
shown in in Fig. 6B, as well as frequencies higher than 35 Hz
in IMFFM1 were removed. For denoising the FM component
of s-signal4, IMFFM8 to IMFFM13 (last IMF) that contains
frequencies with the lowest power, depicted in Fig. 6D, were
removed from the FM component of the s-signal4.

It should be noted that, as seen in the simulations, to denoise
the AM component in both simulation cases, just IMFsAM of
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Fig. 3: Representation of the simulated pure and noisy signals
containing 30, 60, and 70Hz frequencies, their power spectrum
and the upper envelope of the noisy signal. A) Simulated
pure and B) the noisy signal. 200 time points are shown for
illustration. Power spectrum of C) pure signal, D) filtered pink
noise, E) filtered white noise, and F) noisy signal. G) Upper
envelope of the simulated noisy signal.

frequencies within the range of frequencies with the highest
power in the power spectrum (i.e., frequencies in the band-
width) are maintained (Figs. 4C and 5C). However, to denoise
the FM component of s-signal4, a signal with more than one
prominent peak in its FM-power spectrum, shown in Fig. 6C,
only the very low-power IMFsFM are removed. As explained
in the method section, having more than one peak in the power
spectrum represents the possibility that some frequencies that
are not of very high power are caused by the combination of
signals with different frequencies and contain information. In
this situation, deciding which frequencies should be removed
is risky, and it is better to include more frequencies with the
cost of having more noises rather than losing information.

Figure 7 demonstrates the comparison between the sim-
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Fig. 4: HHSA spectrum of the noisy signal with carrier frequencies of 30Hz, its AM power spectrum, and the power spectrum
of the IMFsAM of the noisy signal. A) HHSA spectrum of the noisy signal computed using the HHT method, which is based
on the instantaneous power and frequencies of all IMFsAM and signal’s FM instantaneous frequencies. B) Power spectra based
on the instantaneous frequencies of all IMFsAM. C) Power spectrum of each of the IMFsAM.
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Fig. 6: Power spectrum of the frequency-modulated noisy signals and their IMFsFM. A) and B) are respectively power spectrum
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of the signal made of frequencies 30, 60 and 75-Hz, and its IMFsFM.
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ulated pure signal and the resultant denoised signal using
the HHSA method and our method for s-signal1, and Fig. 8
demonstrates the same comparison for s-signal4.

As shown in Figs. 7C and 8C, our proposed method identi-
fies the pure signal’s peaks, depicted in Figs. 7A and 8A, better
than the HHSA method, shown in Figs. 7B and 8B. Table I
shows the normalized MI computation results for the HHSA
and the proposed method applied to signals with different
levels of SNR and PSNR. We generated 1000 realizations
of each signal to find the frequencies with significant power.
The table includes the Ω and ω computed through the HHSA
method with p-value ≤ 0.001 and also the IMFsFM and
IMFsAM need to be removed in the proposed method. Odd-
numbered signals are made of just one carrier frequency, and
even-numbered signals are made of a combination of three
career frequencies, as explained in §II-B.

The column “Noisy signal” shows the MI between the
simulated pure (without added noise) and the noisy signals.
Columns “PM-AM” and “PM-AM-FM” show the MI between
the pure signal and the denoised signal using our proposed
method when just the amplitude component is denoised and
when both the amplitude and phase of the signal are denoised,
respectively. The higher the MI value, the more mutual infor-
mation and similarities are shared between the two signals.
Results of our method, presented in columns “PM-AM” and
“PM-AM-FM” of table I, show higher MI between the pure
and denoised signals compared to the HHSA method and
compared to the case where no denoising is applied (column
“Noisy signal” of table I).

B. Real data
To show our method’s performance on real EEG data (not

simulated), we applied the method to a sample of real EEG
signal recorded during an EEG-fMRI experiment (see §II-A).
As shown in Fig. 9, the EEG signal was decomposed into
its IMFs applying the ICEEMDAN method [56], with 300
ensembles and a level of noise of 0.2 to have an optimal
decomposition of the EEG signal. The frequency spectra of
these IMFs corresponded to the EEG frequency bands used
in the literature as follows: summation of IMF1 and IMF2
(gamma,> 30 Hz), IMF3 (beta, 12–30 Hz), IMF4 (alpha, 8–
12 Hz), IMF5 (theta, 4–8 Hz), and the summation of IMF6
to IMF18 (delta, 0.1–4 Hz). Figs. 10 and 11 represent the
overview of our method applied to the real gamma-band.

After constructing the gamma band by summing IMF1 and
IMF2 of the real EEG signal, Fig. 10A, the upper envelope
was computed, Fig. 10B, and decomposed into IMFsAM. Based
on the power spectrum of the IMFsAM, see Fig. 10D, the
AM components of the gamma signal were denoised by
removing IMFAM1 and IMFAM4 to IMFAM10, in which the
power intensity was low. Afterwards, the IMFsAM were further
denoised by removing IMF’s frequencies (not a whole IMF)
that are higher and lower than the frequencies of the peak’s
valley points identified in the 2D power spectrum of gamma
signal’s upper envelope, see Fig. 11B. In this case, frequencies
higher than 11Hz were removed from IMFAM2.

On the other hand, the signal’s FM portion,shown in
Fig. 10C, was denoised by removing IMFFM3 to IMFFM13,

as IMFFM1 and IMFFM2 had the highest power in frequencies
between ≈ 25 Hz to ≈ 55 Hz, which are the peak’s valley
points in the FM power spectrum, see Figs. 10E and 11C. Fur-
thermore, frequencies higher than 55Hz were removed from
IMFFM1 because of the valley points of the peak at ≈ 42Hz
in the FM power spectrum, Fig. 11C. Applying the HHSA
method to the real EEG data obtained the carrier frequency of
ω ≈ 41.4607 and AM frequency of Ω ≈ 2.2527 Hz, which are
in accordance with the area of high power density in the HHSA
plot indicated in Fig. 11A. Fig. 11D, shows the comparison
of the noisy gamma signal with its different denoised versions
computed by the HHSA and our proposed methods.

Figure 12 compares the power spectral density of the
denoised real gamma signal computed by the HHSA and
the proposed method. Denoised gamma signal computed by
the proposed method shows almost the same power density
as the noisy signal. The proposed method causes a slightly
lower power density in high frequencies, which might be
because of the EMG- and MR-related noises that are mainly in
high-frequency EEG signals. Thus, lower power density after
applying our method might be in consequence of removing
these artifacts from the signal that had not been adequately
denoised by the pre-existing methods during preprocessing of
the data. However, the HHSA method obtained a completely
different power spectrum density for the denoised signal,
except for the high power density for frequencies ≈ 40 Hz.

IV. DISCUSSION

In this study, we proposed a method for denoising the EEG
gamma band. Our proposed method is based on the Holo-
Hilbert method and denoises any nonstationary and nonlinear
time-series data. However, in this paper, we specifically fo-
cused on gamma-band noise suppression due to its crucial
role in mapping the brain’s function.

Our result showed that the HHSA method does not perform
well for cases with more than one peak in the FM-power
spectrum of a signal compared to the case where a single
frequency exists in each IMFs after the first application of
the EMD. Each IMF computed by the EMD method is
typically assumed to contain only one frequency, but this is
seldom the case [53, 54] as in our second simulated gamma-
band signal. For cases with multiple peaks in the FM-power
spectrum, the HHSA method goes through multiple iterations
and applies the EMD method repetitively until no more cyclic
characteristics are in the decomposed signal. Consequently, the
HHSA method is not computationally efficient. Furthermore,
there could be no clear discrepancy between the power peaks
in the computed HHSA spectrum. In this situation, different
frequency bands cannot be specified in the HHSA spectrum.
Consequently, the HHSA method results in wrong frequencies
for the AM and FM components.

However, our proposed method does not have these prob-
lems as it applies just two layers of EMD to the AM and
FM components of the signal. Besides, the denoised signal
in our method is obtained differently and is based on the
remaining IMFs after removing noisy IMFsAM and IMFsFM.
Our method yields higher MI between the pure and denoised
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Fig. 7: Comparison between the pure signal with frequency 30 Hz, the signal denoised by the HHSA and our methods. Here,
200 time points of the signals are shown for illustration. A) Pure signal. B) Denoised signal by the HHSA method. C) Denoised
signal by the proposed method. The right panel shows 50 time points of each of the signals in the left panel just for illustration.
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Fig. 8: Comparison between the pure signal, the signal denoised by the HHSA and our methods when it is made of a
combination of 30, 60, and 75 Hz frequencies. A) Pure signal. B) Denoised signal by the HHSA method. C) Denoised signal
by the proposed method. The right panel shows 50 time points of each of the signals in the left panel just for illustration.

signals compared to the HHSA method and when the signal is
not denoised. Higher MI confirms that our approach extracts
the pure signal from the noisy signal with higher efficiency.
Moreover, our method yields lower power density in high
frequencies of the denoised real gamma signal compared to
its noisy version. Lower power in high frequencies could
be evidence for our method’s potential to detect and remove
problematic artifacts in high-frequency EEG signals, notably
gradient artifacts due to abrupt head motion, which are mostly
in high frequencies [10, 31, 32].

It is worthy to note that, unlike conventional predefined
basis methods, e.g., Fourier analysis and wavelet methods [9],
the AM and FM components are separately decomposed in our
proposed method. Accordingly, the AM and FM frequencies

are detected separately, which reduces the uncertainty of FM-
frequency detection and therefore increases the accuracy of
a spectral analysis method [7]. Additionally, our proposed
method does not require any reference signal or any assump-
tion on the noisy EEG data and is applicable to all types of
data (stationary and nonstationary, linear and nonlinear).

We now discuss the limitations of our method. First, the
IMFsFM and IMFsAM required to be removed from the signal
vary from subject to subject. Second, these IMFs are specified
approximately based on their power spectrum during the
noise-reduction process. The difference between powers of
successive IMFs could be quite small. In this case, constructing
a decision boundary for removing or maintaining an IMF
becomes challenging. This argument also holds for choosing
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A)

B) C)

Fig. 9: EEG decomposition into its different bands. A) A sample of EEG signal is decomposed by applying ICEEMDAN
method to specify the gamma band using frequency spectrum. B) IMFs of the EEG signal. C) IMFs’ frequency spectrum.
Here, gamma-band signal is made by the summation of IMF1 and IMF2.

the frequencies that need to be removed from a specific IMF
based on the 2D power spectrum. Furthermore, we used sim-
ulated data instead of real EEG signals to check the proposed
method’s efficacy as denoised EEG signal is unknown in a real
EEG signal. Our method, therefore, has the general limitations
of using simulated EEG signal versus real signal.

To conclude, our proposed method efficiently reduces noise
from the EEG gamma band by analyzing its AM and FM
components. This method applies two layers of EMD to
adaptively decompose a signal into IMFs with the signal’s

time-varying amplitude and frequency features. Then the
IMFsAM and IMFsFM (or parts of them) with low powers
are removed from the signal’s AM and FM components as
they correspond to noise. Our method would improve the
interpretation and localization of the underlying brain’s active
regions by providing an efficiently denoised gamma signal.
The proposed method could also lead to a better realization of
neurovascular coupling and brain function in studies that use
simultaneous EEG/fMRI data with more problematic gamma-
band denoising.
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Fig. 10: Computing the AM and FM components of the real gamma-band and their power spectrums. A) gamma-band signal,
B) the upper envelope of the gamma signal and C) the frequency modulated gamma signal. D) and E) power spectrums of the
decomposed AM and FM components, (IMFsAM and IMFsFM), respectively.
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A) B) C)

D)

Fig. 11: The HHSA plot and the 2D power spectrum of the AM and FM components of the real gamma-signal. A) The
HHSA power spectrum. B) and C) The power spectrum of the AM and FM parts, respectively. Denoising the upper envelope
by removing IMFAM1 and IMFAM4 to IMFAM10 and also removing frequency higher than 11 Hz from IMFAM2 based on
the power spectrum of the gamma signal’s upper envelope in (B). FM part of the signal was denoised by removing IMFFM3
to IMFFM13 based on its power spectrum in (C). Furthermore, frequencies higher than 55 Hz were removed from IMFFM1.
D) Comparing the noisy gamma signals with its different denoised versions.

Simulation SNR PSNR Noisy signal HHSA ω, Ω PM-AM PM-AM-FM Removed IMFsAM Removed IMFsFM

s-signal1 2 5 0.2992 0.00001 32.3726, 3.7415 0.2830 0.3496 1, IMF2>20, 10:e-1 IMF1>35, 3:e

s-signal2 2 2 0.2739 0.00001 46.6852, 6.1437 0.3157 0.3189 3:e-1 9:e

s-signal3 6 9 0.4094 0.0002 30.7182, 10.8747 0.4059 0.4140 1, 11:e-1 IMF1>35, 3:e

s-signal4 6 6 0.3564 0.00004 45.2793, 6.8351 0.4183 0.4204 3:e-1 11:e

s-signal5 8 11 0.4633 0.0689 30.0064, 11.3193 0.4625 0.4713 11:e-1 4:e

s-signal6 8 8 0.3733 0.00005 45.6905, 6.8279 0.4841 0.4811 3:e-1 9:e

s-signal7 11 14 0.5285 0.001 30.0164, 7.1137 0.5629 0.5637 IMF1,2>15, 10:e-1 3:e

s-signal8 11 11 0.4232 0.0001 45.4284, 6.7163 0.5104 0.5215 3:e-1 11:e

TABLE I: Comparison of the MI between the simulated pure signal and its denoised version using the HHSA and the proposed
method (p-value ≤ 0.001). Odd- and even-numbered signals are made of one and a combination of three career frequencies,
respectively. Ω and ω are computed by the HHSA method; IMFsFM and IMFsAM are the removed IMFs in our method. The
column “Noisy signal” shows the MI between the simulated pure (without added noise) and the noisy signals. PM is referred
to “proposed method”. Columns PM-AM and PM-AM-FM show the MI between the pure signal and the denoised signal using
our proposed method when just the amplitude is denoised and when both the amplitude and phase are denoised, respectively.
Here “e” means the “end IMF” or the final IMF, e.g., “3:e” means IMFAM3 to final IMFAM are removed from the AM part.
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Fig. 12: Comparison of the power spectrum density for the
HHSA and our method applied to a sample real gamma signal.
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