

Lysine methylation shields an intracellular pathogen from ubiquitylation

Patrik Engström^{1*}, Thomas P. Burke¹, Anthony T. Iavarone², Matthew D. Welch^{1*}

¹Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.

²QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, CA 94720, USA.

*Correspondence to: pengstrom@berkeley.edu (P.E.), welch@berkeley.edu (M.D.W).

1 Abstract

2 Many intracellular pathogens avoid detection by their host cells. However, it remains
3 unknown how they avoid being tagged by ubiquitin, an initial step leading to anti-microbial
4 autophagy. Here, we show that the intracellular bacterial pathogen *Rickettsia parkeri* uses
5 two protein-lysine methyltransferases (PKMTs) to modify outer membrane proteins (OMPs) and
6 prevent their ubiquitylation. Mutants deficient in the PKMTs were avirulent in mice and failed to
7 grow in macrophages due to ubiquitylation and autophagy. Analysis of the lysine-methylome
8 revealed that PKMTs modify a subset of OMPs by methylation at the same sites that are recognized
9 by host ubiquitin. These findings show that lysine methylation is an essential determinant of
10 rickettsial pathogenesis that shields bacterial proteins from ubiquitylation to evade autophagic
11 targeting.

12 Main

13 Intracellular pathogens generally evade the host immune surveillance machinery. This
14 includes avoidance of surface targeting by the host ubiquitylation machinery and subsequent
15 formation of a polyubiquitin coat, a first step in cell-autonomous immunity (1-5). The ubiquitin
16 coat recruits autophagy receptors that engage with the autophagy machinery to target cytosol-
17 exposed microbes for destruction (1, 4-8). Bacterial outer membrane proteins (OMPs) are targets
18 for the host ubiquitylation machinery (9, 10), and the tick-borne obligate intracellular pathogen
19 *Rickettsia parkeri* requires the abundant surface protein OmpB to protect OMPs from
20 ubiquitylation (11). However, the detailed mechanisms that *R. parkeri* and other pathogens use to
21 block lysine ubiquitylation of surface proteins, including OMPs, are unknown. We hypothesized
22 that cell surface structures or modifications could provide protection at the molecular level. One
23 such modification is lysine methylation, which is widespread in all domains of life. This
24 modification involves the transfer of one, two, or three methyl groups to the amino group of lysine
25 side chains, the same amino group that can also be modified by ubiquitin (12). Whether lysine
26 methylation of bacterial surfaces prevents host detection and promotes intracellular survival has
27 not been explored.

28 To identify bacteria-derived surface modifications that protect against ubiquitin coating,
29 we screened a library of *R. parkeri* transposon mutants (13) (**Table S1**) for increased
30 polyubiquitylation (pUb) relative to wild-type (WT) in Vero cells (an epithelial cell line commonly
31 used to propagate and study intracellular pathogens) by immunofluorescence microscopy (**Fig.**
32 **1A**). We subsequently analyzed individual mutants and identified 4 that were ubiquitylated, similar
33 to *ompB* mutant bacteria (11) (**Fig. 1B and D**). Importantly, these 4 strains expressed OmpB (**Fig.**
34 **S1**). Two of the strains had insertions in the protein-lysine methyltransferase genes *pkmt1* and

35 *pkmt2*, which are located in two distinct chromosomal regions. The remaining two strains had
36 insertions in the *wecA* and *rmlD* genes, which are required for the biosynthesis of O-antigen (**Fig.**
37 **S2**), a common surface molecule in Gram-negative bacteria. The O-antigen also protects
38 *Francisella tularensis* from ubiquitylation (5), suggesting it performs a conserved function in this
39 process. As a control, we analyzed a strain with a mutation in the *mrdA* gene, which is required
40 for peptidoglycan biosynthesis and cell shape in other bacteria (14). This mutant strain had altered
41 shape but was not polyubiquitylated (**Fig. 1B and D**), suggesting that not all bacterial cell envelope
42 structures are required to avoid ubiquitylation. In addition, we further quantified the pUb levels
43 and observed that the *pkmt1::tn* mutant, followed by the *ompB* and *pkmt2::tn* mutants, had the
44 highest levels (**Fig. 1E**). These data indicated that OmpB, PKMTs, and the O-antigen protect *R.*
45 *parkeri* from ubiquitylation.

46 The O-antigen was previously shown to be required for rickettsial pathogenesis (15), and
47 OmpB was previously found to be required for *R. parkeri* to cause lethal disease in *Ifnar^{-/-}Ifngr^{-/-}*
48 mice lacking the type I interferon receptor (IFNAR) and IFN-g receptor (IFNGR) (16). We
49 therefore examined whether PKMT1 or PKMT2 are important for causing disease *in vivo*. We
50 observed that *Ifnar^{-/-}Ifngr^{-/-}* mice succumbed to infection with WT but not to *pkmt1::tn* or *pkmt2::tn*
51 bacteria (**Fig. 1F**). Mice infected with the *pkmt1::tn* mutant showed no signs of disease, whereas
52 mice infected with *pkmt2::tn* showed a transient loss in body weight (**Fig. S3**). This indicates that
53 PKMT1 and PKMT2 are determinants of *R. parkeri* pathogenesis.

54 Because PKMT1 or PKMT2 had previously been shown to methylate OmpB *in vitro* (17-
55 20), we next examined whether methylation protects OmpB, or another abundant outer membrane
56 protein OmpA (21), from ubiquitylation. First, Vero cells overexpressing 6xHis-tagged ubiquitin
57 were infected with WT and the *ompB*, *pkmt1::tn*, and *pkmt2::tn* strains. 6xHis-tagged ubiquitin

58 was recruited to the surface of all of the mutants, but not WT bacteria, as observed by
59 immunofluorescence microscopy (**Fig. 2A**). Then, 6xHis-ubiquitylated proteins were affinity-
60 purified from infected cells, and OmpA and OmpB were detected by western blotting. OmpA was
61 shifted towards higher molecular weights in cells infected with mutant, but not WT bacteria,
62 indicating OmpA is ubiquitylated (**Fig. 2B**). Similarly, in comparison with WT bacteria, OmpB
63 was also shifted towards higher as well as lower molecular weights in cells infected with the
64 *pkmt1::tn* and *pkmt2::tn* mutants, suggesting that OmpB is ubiquitylated (**Fig. 2B**). To confirm that
65 methylation protects OmpB and OmpA from ubiquitylation on the bacterial surface, we performed
66 pUb-enrichments of surface fractions from purified bacteria followed by western blotting. This
67 revealed that both OmpB and OmpA shifted towards higher molecular weights in the
68 methyltransferase mutants but not in WT bacteria (**Fig. 2C**). Thus, methylation is critical to protect
69 OMPs from ubiquitylation on the bacterial surface.

70 Based on our observation that methylation protects both OmpA and OmpB from
71 ubiquitylation, we set out to determine how frequently, and to what extent, lysines of *R. parkeri*
72 OMPs are methylated. Peptides with methylated lysines from whole WT bacteria were quantified
73 using label-free liquid chromatography-mass spectrometry (LC-MS). We then analyzed lysine
74 methylation frequency in abundant OMPs as well as other abundant *R. parkeri* proteins (**Table**
75 **S2**). This analysis revealed that *R. parkeri* OmpB, OmpA, and surface cell antigen 2 (Sca2)
76 proteins had the highest abundance of methylated peptides. Lysine methylation was also detected
77 in the outer-membrane assembly protein BamA and in a predicted outer membrane protein porin
78 (WP_014410329.1; from here on referred to as OMP-porin) (**Fig. 3A** and **Table S3**). We next
79 mapped both methylated and unmethylated lysines on the above-mentioned OMPs and found that
80 more than 50% of lysines detected from OmpB and OmpA were methylated, and a significant

81 fraction of lysines were also methylated in Sca2 (31%), OMP-porin (30%), and BamA (27%) (**Fig.**
82 **3B** and **Fig. S4**). Thus, in *R. parkeri*, lysine methylation of OMPs is common.

83 To identify OMPs that are methylated by PKMT1 and PKMT2 during infection, we
84 compared lysine methylation frequencies in WT with those of *pkmt1::tn* or *pkmt2::tn* mutant
85 bacteria using LC-MS. We found that monomethylation of OmpB, OmpA, the predicted OMP-
86 porin, and another surface cell antigen protein Sca1 were reduced in *pkmt1::tn* compared to WT
87 bacteria (**Fig. 3C** and **Fig. S5**). Dimethylation of rickettsial surface proteins was not reduced in the
88 mutants (**Fig. S6**). Although trimethylation was rare and therefore difficult to analyze at the
89 individual protein level (**Fig. S6**), OmpB had reduced trimethylation levels in both
90 methyltransferase mutants (**Fig. 3C**). Notably, the frequency of unmethylated lysines in OmpB
91 was specifically increased in *pkmt1::tn* bacteria (**Fig. 3C** and **Fig. S5**). Lysine methylation of five
92 other surface proteins (Sca1, Sca2, BamA, LomR, and Pal-lipoprotein), and 21 of 23 abundant
93 proteins with different predicted subcellular distributions, was not affected by mutations in the
94 *pkmt1* or *pkmt2* genes (**Fig. S5**). These data indicate that the PKMTs are required for methylation
95 of a specific subset of OMPs including OmpB.

96 To determine which OmpB residues are modified by PKMT1 and PKMT2 during *R.*
97 *parkeri* infection, we analyzed the methylation frequency of individual lysines in the mutants
98 compared to WT using LC-MS. We observed reduced monomethylation frequencies of OmpB
99 K418, K623, K634, K902, K1061, K1294, and K1323 in *pkmt1::tn* bacteria compared with WT,
100 and reduced trimethylation frequencies on K1061 and K388 in the *pkmt2::tn* strain (**Fig. 3D**).
101 These data indicate that several lysines in *R. parkeri* OmpB are methylated by PKMT1 and
102 PKMT2 during infection. Although these results were consistent with previous biochemical results
103 indicating that PKMT1 monomethylates and PKMT2 trimethylates OmpB's lysines (17, 19), we

104 found that total OmpB-methylation is unaffected in the *pkmt2::tn* mutant. This suggests that
105 PKMT1 is a primary methyltransferase for OmpB and that it can compensate, at least partly, for a
106 deficiency in PKMT2.

107 To test the hypothesis that methylation of specific lysines in OmpB shields the same
108 residues from ubiquitylation, we performed pUb-enrichments of bacterial surface fractions
109 followed by LC-MS to quantify lysines with diglycine (diGly) remnants, a signature for ubiquitin
110 after trypsin digestion. A prediction of this hypothesis is that individual lysines that are heavily
111 methylated in OmpB of *Rickettsia* species (17), including WT *R. parkeri* (**Fig. 3D**), are targets for
112 ubiquitylation in *pkmt1::tn* bacteria. In support of this hypothesis, OmpB K634 and K623 in
113 *pkmt1::tn* exhibited 7 to 10,000-fold increased ubiquitylation compared with WT bacteria (**Fig.**
114 **3E, F and Fig. S7; Table S4**). Furthermore, we observed a 13-fold increase in ubiquitylation of
115 the OMP-porin in *pkmt1::tn* bacteria (**Table S4**), indicating that methylation also protects
116 additional OMPs. However, in the *pkmt2::tn* mutant, differential OMP-ubiquitylation was below
117 detection limits (**Fig. 3E, F and Table S4**). Together, these data indicate that methylation by
118 PKMT1 camouflages lysines in OMPs from ubiquitylation.

119 Because polyubiquitylation promotes recruitment of the autophagy receptors
120 p62/SQSTM1 and NDP52 (7, 8), we hypothesized that lysine methylation shields OMPs from
121 ubiquitylation to block recruitment of these proteins. Consistent with this hypothesis, we observed
122 that the majority of *pkmt1::tn*, *pkmt2::tn*, as well as *ompB* mutant bacteria, co-localized with p62
123 and NDP52 by immunofluorescence microscopy (**Fig. S8**). These data demonstrate that PKMTs
124 protect *R. parkeri* from autophagy recognition.

125 Many pathogenic bacteria including *R. parkeri* grow in immune cells such as macrophages
126 (11), despite the fact that microbial detection in such cells triggers anti-bacterial pathways. We

127 therefore investigated whether PKMT1 or PKMT2 were required for evading autophagy targeting
128 and bacterial growth in cultured bone marrow-derived macrophages (BMDMs), as was observed
129 for OmpB (11). BMDMs were generated from control mice and mice lacking the gene encoding
130 for autophagy related 5 (ATG5), a protein required for optimal membrane envelopment around
131 pathogens targeted by autophagy, and for their subsequent destruction (6). We observed that
132 *pkmt1*::tn mutant bacteria were unable to grow in control BMDMs (*Atg5*^{fl/fl}), and that growth
133 was rescued in *Atg5*-deficient BMDMs (*Atg5*^{-/-}). Further, >91% of *pkmt1*::tn bacteria were labeled
134 with both pUb and p62 in *Atg5*-deficient BMDMs (**Fig. 4A, B, C and D**), suggesting that ubiquitin-
135 tagged bacteria were not restricted when the autophagy cascade was prevented. In contrast, the
136 *pkmt2*::tn mutant did not have a major growth defect compared with WT bacteria and 50% of the
137 bacteria were labeled with p62, irrespective of host genotype (**Fig. 4A, B, C and D**), consistent
138 with less pronounced ubiquitylation phenotypes compared to *pkmt1*::tn bacteria. Collectively,
139 these data indicate that methylation is required for *R. parkeri* growth in macrophages by avoiding
140 autophagic targeting.

141 Our work reveals a detailed molecular mechanism that camouflages bacterial surface
142 proteins from host detection. In particular, we found that lysine methylation was essential for
143 blocking ubiquitylation, a first step in cell-autonomous immunity (1-4). This highlights an intricate
144 evolutionary arms race between pathogens and hosts and reveals a strategy that pathogens can
145 adapt to counteract host responses. The lysine methyltransferases PKMT1 and PKMT2 are
146 conserved between rickettsial species (**Fig. S9** and **Fig. S10**) and contain a core Rossmann fold
147 found in the broader superfamily of class I methyltransferases that exist in diverse organisms (12,
148 18). Thus, we propose that lysine methylation, and potentially other lysine modifications, could be
149 used by pathogens, symbionts, and perhaps even in eukaryotic organelles, to prevent undesirable

150 surface ubiquitylation and downstream consequences including elimination by autophagy. Further
151 study of microbial surface modifications will continue to enhance our understanding of the
152 pathogen-host interface and could ultimately lead to new therapeutic targets for treating human
153 diseases including those caused by infectious agents.

154 **References and Notes**

155 1. F. Rando, R. J. Youle, Self and nonself: how autophagy targets mitochondria and
156 bacteria. *Cell Host Microbe* **15**, 403-411 (2014).

157 2. A. J. Perrin, X. Jiang, C. L. Birmingham, N. S. So, J. H. Brumell, Recognition of bacteria
158 in the cytosol of Mammalian cells by the ubiquitin system. *Curr Biol* **14**, 806-811 (2004).

159 3. S. J. L. van Wijk *et al.*, Linear ubiquitination of cytosolic *Salmonella* Typhimurium
160 activates NF-kappaB and restricts bacterial proliferation. *Nat Microbiol* **2**, 17066 (2017).

161 4. J. Noad *et al.*, LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading
162 bacteria by activating autophagy and NF-kappaB. *Nat Microbiol* **2**, 17063 (2017).

163 5. E. D. Case *et al.*, The *Francisella* O-antigen mediates survival in the macrophage cytosol
164 via autophagy avoidance. *Cell Microbiol* **16**, 862-877 (2014).

165 6. J. Huang, J. H. Brumell, Bacteria-autophagy interplay: a battle for survival. *Nat Rev
166 Microbiol* **12**, 101-114 (2014).

167 7. Y. T. Zheng *et al.*, The adaptor protein p62/SQSTM1 targets invading bacteria to the
168 autophagy pathway. *J Immunol* **183**, 5909-5916 (2009).

169 8. T. L. Thurston, G. Ryzhakov, S. Bloor, N. von Muhlinen, F. Rando, The TBK1 adaptor
170 and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. *Nat
171 Immunol* **10**, 1215-1221 (2009).

172 9. E. Fiskin, T. Bionda, I. Dikic, C. Behrends, Global analysis of host and bacterial
173 ubiquitinome in response to *Salmonella* Typhimurium infection. *Mol Cell* **62**, 967-981
174 (2016).

175 10. M. Polajnar, M. S. Dietz, M. Heilemann, C. Behrends, Expanding the host cell
176 ubiquitylation machinery targeting cytosolic *Salmonella*. *EMBO Rep* **18**, 1572-1585
177 (2017).

178 11. P. Engström *et al.*, Evasion of autophagy mediated by *Rickettsia* surface protein OmpB is
179 critical for virulence. *Nat Microbiol* **4**, 2538-2551 (2019).

180 12. S. Lanouette, V. Mongeon, D. Figeys, J. F. Couture, The functional diversity of protein
181 lysine methylation. *Mol Syst Biol* **10**, 724 (2014).

182 13. R. L. Lamason, N. M. Kafai, M. D. Welch, A streamlined method for transposon
183 mutagenesis of *Rickettsia parkeri* yields numerous mutations that impact infection. *PLoS
184 One* **13**, e0197012 (2018).

185 14. B. G. Spratt, A. B. Pardee, Penicillin-binding proteins and cell shape in *E. coli*. *Nature* **254**,
186 516-517 (1975).

187 15. H. K. Kim, R. Premaratna, D. M. Missiakas, O. Schneewind, *Rickettsia conorii* O antigen
188 is the target of bactericidal Weil-Felix antibodies. *Proc Natl Acad Sci U S A* **116**, 19659-
189 19664 (2019).

190 16. T. P. Burke *et al.*, Inflammasome-mediated antagonism of type I interferon enhances
191 *Rickettsia* pathogenesis. *Nat Microbiol* **5**, 688-696 (2020).

192 17. D. C. H. Yang, A. H. Abeykoon, B. E. Choi, W. M. Ching, P. B. Chock, Outer membrane
193 protein OmpB methylation may mediate bacterial virulence. *Trends Biochem Sci* **42**, 936-
194 945 (2017).

195 18. A. H. Abeykoon *et al.*, Structural insights into substrate recognition and catalysis in outer
196 membrane protein B (OmpB) by protein-lysine methyltransferases from *Rickettsia*. *J Biol
197 Chem* **291**, 19962-19974 (2016).

198 19. A. Abeykoon *et al.*, Multimethylation of *Rickettsia* OmpB catalyzed by lysine
199 methyltransferases. *J Biol Chem* **289**, 7691-7701 (2014).

200 20. A. H. Abeykoon *et al.*, Two protein lysine methyltransferases methylate outer membrane
201 protein B from *Rickettsia*. *J Bacteriol* **194**, 6410-6418 (2012).

202 21. N. F. Noriea, T. R. Clark, T. Hackstadt, Targeted knockout of the *Rickettsia rickettsii*
203 OmpA surface antigen does not diminish virulence in a mammalian model system. *mBio*
204 **6**, (2015).

205 22. R. L. Lamason *et al.*, *Rickettsia* Sca4 Reduces Vinculin-Mediated Intercellular Tension to
206 Promote Spread. *Cell* **167**, 670-683 e610 (2016).

207 23. U. Distler *et al.*, Drift time-specific collision energies enable deep-coverage data-
208 independent acquisition proteomics. *Nat Methods* **11**, 167-170 (2014).

209 24. R. S. Plumb *et al.*, UPLC/MS(E); a new approach for generating molecular fragment
210 information for biomarker structure elucidation. *Rapid Commun Mass Spectrom* **20**, 1989-
211 1994 (2006).

212 25. P. V. Shliaha, N. J. Bond, L. Gatto, K. S. Lilley, Effects of traveling wave ion mobility
213 separation on data independent acquisition in proteomics studies. *J Proteome Res* **12**, 2323-
214 2339 (2013).

215 26. S. Nahnsen, C. Bielow, K. Reinert, O. Kohlbacher, Tools for label-free peptide
216 quantification. *Mol Cell Proteomics* **12**, 549-556 (2013).

217 27. K. A. Neilson *et al.*, Less label, more free: approaches in label-free quantitative mass
218 spectrometry. *Proteomics* **11**, 535-553 (2011).

219 28. C. I. Carlström *et al.*, (Per)chlorate-reducing bacteria can utilize aerobic and anaerobic
220 pathways of aromatic degradation with (per)chlorate as an electron acceptor. *mBio* **6**,
221 (2015).

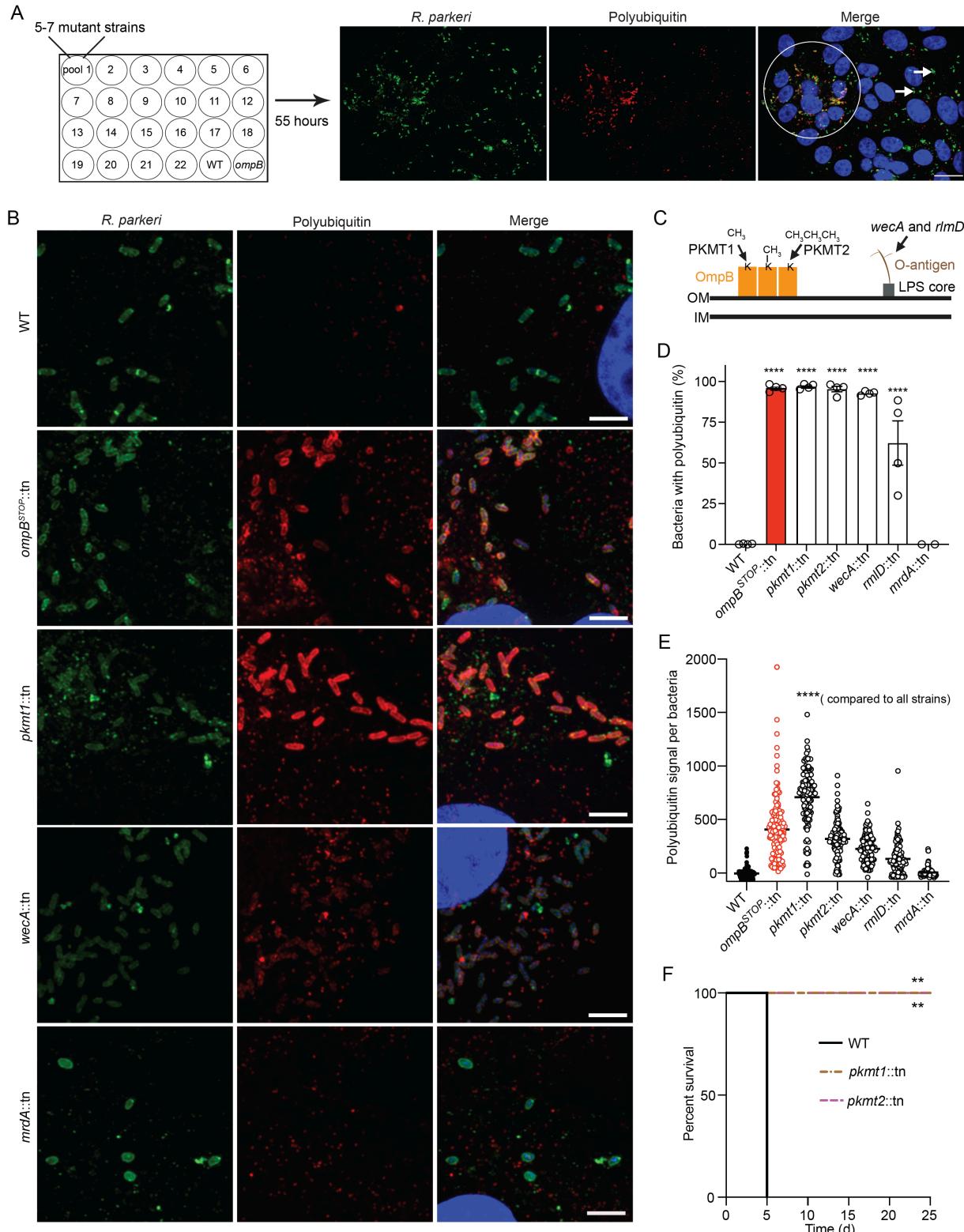
222 22. R. L. Lamason *et al.*, *Rickettsia* Sca4 Reduces Vinculin-Mediated Intercellular Tension to
223 Promote Spread. *Cell* **167**, 670-683 e610 (2016).

224 23. U. Distler *et al.*, Drift time-specific collision energies enable deep-coverage data-
225 independent acquisition proteomics. *Nat Methods* **11**, 167-170 (2014).

226 24. R. S. Plumb *et al.*, UPLC/MS(E); a new approach for generating molecular fragment
227 information for biomarker structure elucidation. *Rapid Commun Mass Spectrom* **20**, 1989-
228 1994 (2006).

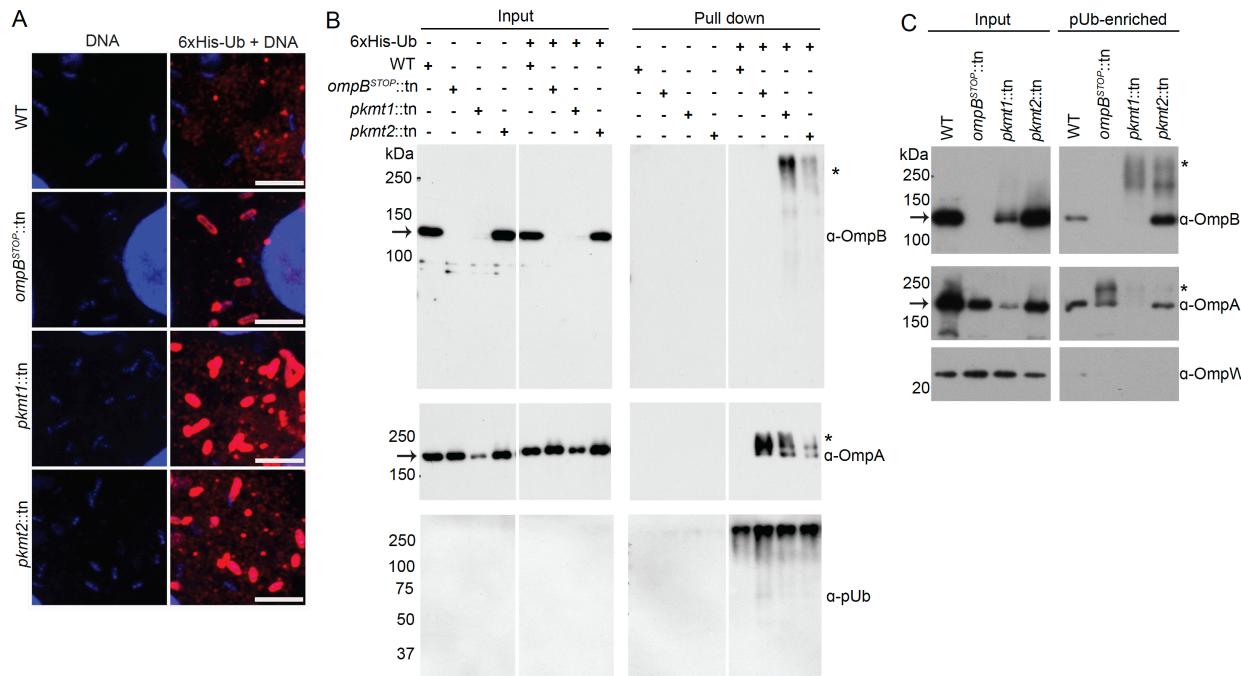
229 25. P. V. Shliaha, N. J. Bond, L. Gatto, K. S. Lilley, Effects of traveling wave ion mobility
230 separation on data independent acquisition in proteomics studies. *J Proteome Res* **12**, 2323-
231 2339 (2013).

232 26. S. Nahnsen, C. Bielow, K. Reinert, O. Kohlbacher, Tools for label-free peptide
233 quantification. *Mol Cell Proteomics* **12**, 549-556 (2013).

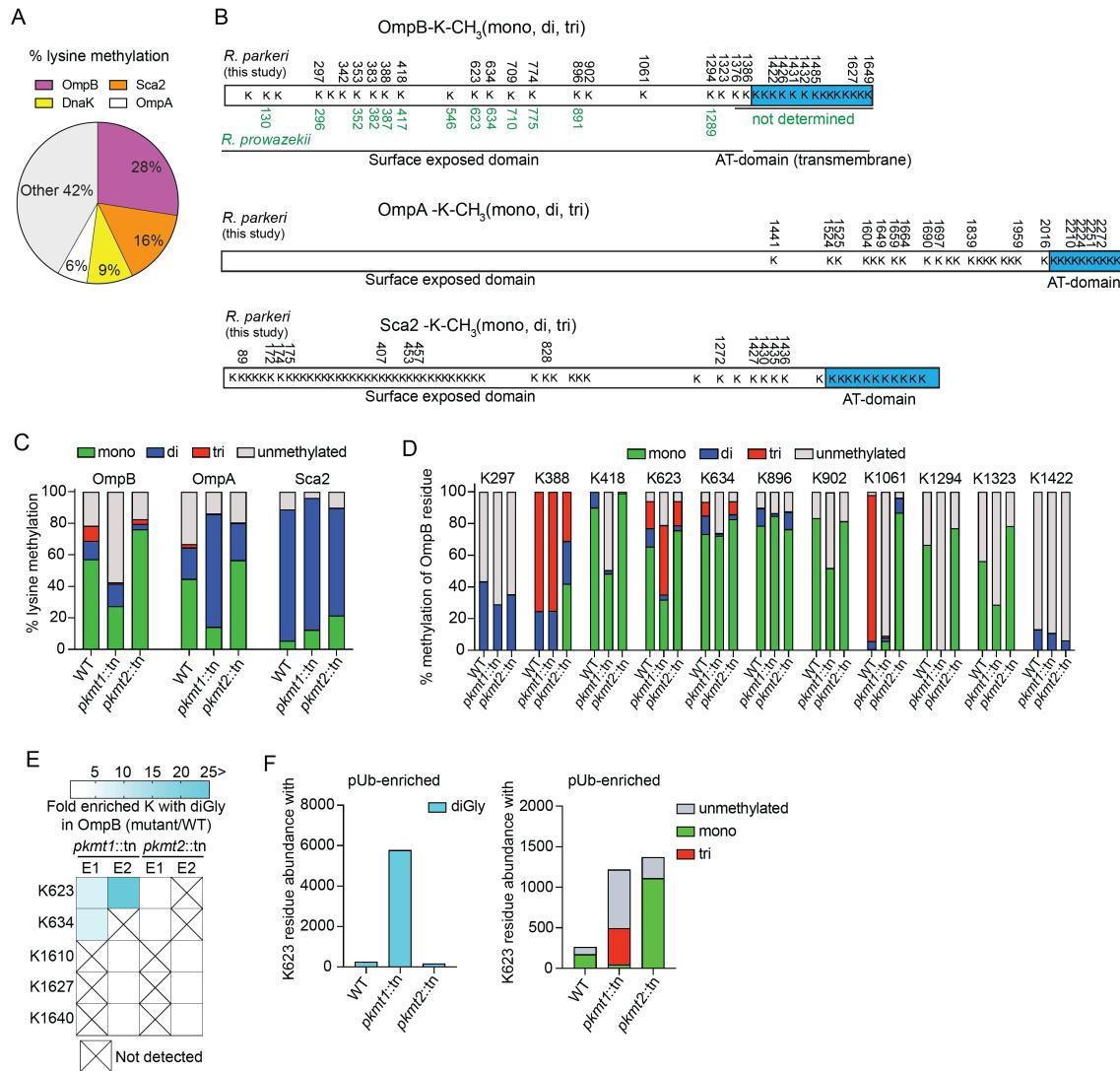

234 27. K. A. Neilson *et al.*, Less label, more free: approaches in label-free quantitative mass
235 spectrometry. *Proteomics* **11**, 535-553 (2011).

236 28. C. I. Carlström *et al.*, (Per)chlorate-reducing bacteria can utilize aerobic and anaerobic
237 pathways of aromatic degradation with (per)chlorate as an electron acceptor. *mBio* **6**,
238 e02287-14 (2015).

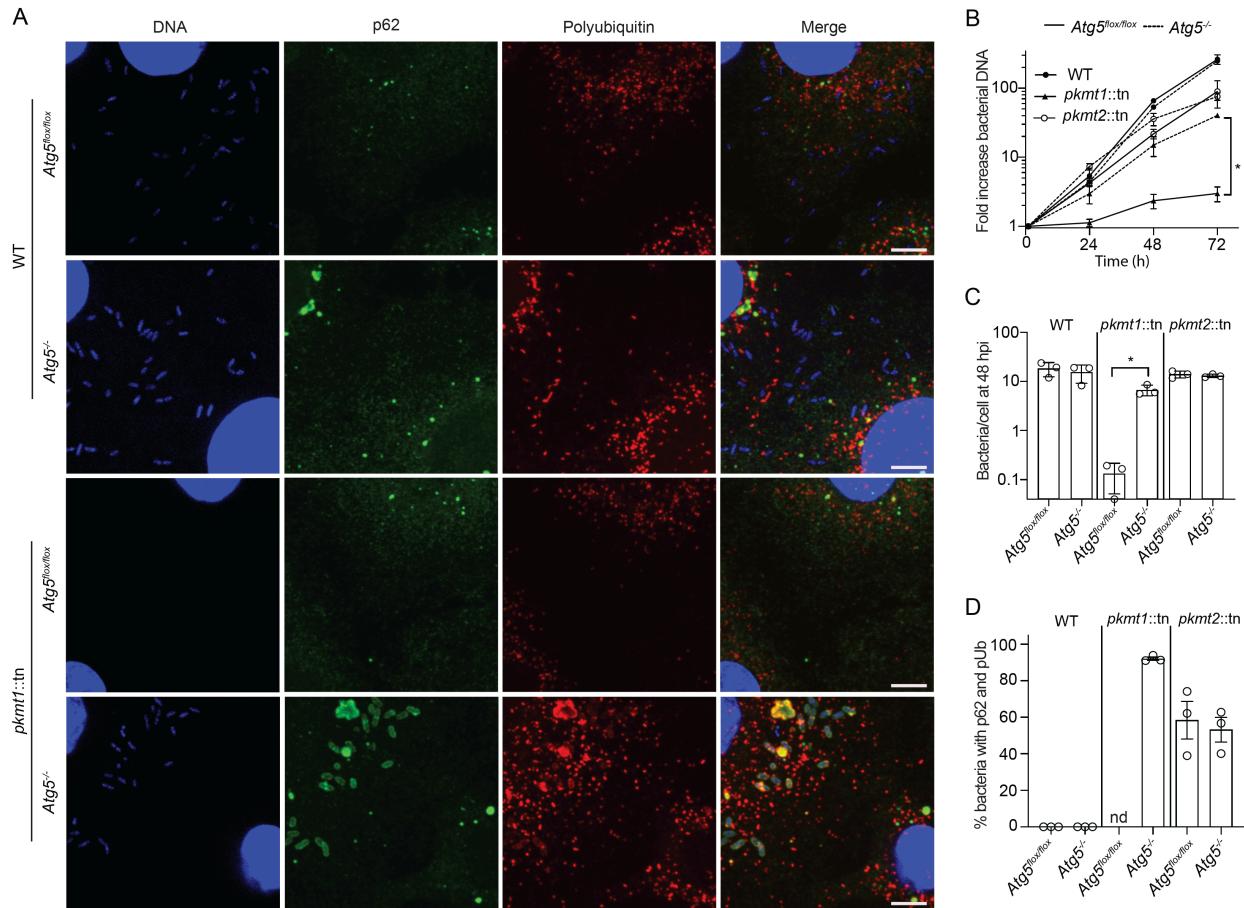
239


240 **Acknowledgements**

241 We thank Prof. Dan Portnoy (UC Berkeley) and Dr. Lilliana Radoshevich (University of
242 Iowa) for providing comments on this manuscript, and Neil Fischer (UC Berkeley) for critically
243 reading the manuscript. We also thank Dr. Hwan Kim (Stony Brook University) for kindly
244 providing the O-antigen antibody and for fruitful discussions. We are also grateful for the
245 *Atg5*^{fl/fl} and *Atg5*^{-/-} BMDMs provided by Dr. G. Golovkine (UC Berkeley), and Profs. Jeffery
246 S. Cox and Michael Rape (both UC Berkeley) for fruitful discussions. **Funding:** P.E. was
247 supported by a postdoctoral fellowship from the Sweden-America Foundation. M.D.W. was
248 supported by NIH/NIAID grants R01 AI109044 and R21 AI138550. A mass spectrometer used in
249 this study was purchased with support from NIH grant 1S10 OD020062-01. **Author**
250 **contributions:** P.E. conceived the study with the assistance of M.D.W. P.E. performed laboratory
251 work and analysis, except for mass spectrometry, which was conducted together with A.T.I., and
252 animal experiments, which were conducted by T.P.B. P.E. drafted the initial manuscript, and A.T.I.,
253 T.P.B., and M.W.D provided editorial feedback. **Data and materials availability:** All data used
254 in the analysis are provided in the main text or supplementary materials. Materials are available
255 upon request.


256
257 **Fig. 1. The O-antigen and lysine methylation are virulence factors that protect *R. parkeri***
258 **from ubiquitylation.** (A) Pools of *R. parkeri* (green) mutants screened for increased pUb (red)
259 via immunofluorescence microscopy. DNA, blue. *ompB* mutant (*II*), positive control; WT,

260 negative control. Circle, pUb-positive bacteria; arrows pUb-negative bacteria. Scale bar, 20 μ m.
261 (B) Infected cells at 72 hours post-infection (h.p.i.) stained as in A. Scale bar, 5 μ m ($n = 4$). (C)
262 Biological function of the genes identified. (D) Percentage of bacteria co-localized with pUb at 72
263 h.p.i. (Data are the mean \pm s.e.m.; $n = 4$ for WT and mutant bacteria; *mrdA*::tn; $n = 2$). Statistical
264 comparisons between WT and mutants were performed using a one-way ANOVA with Dunnett's
265 post-hoc test; **** $P < 0.0001$. (E) pUb signal per bacteria. (Lines indicate the means; $n = 3$ fields
266 of vision). Statistical comparisons were performed using a Kruskal-Wallis test with Dunn's post-
267 hoc test; **** $P < 0.0001$. (F) Survival of *Ifnar*^{-/-}/*Ifngr*^{-/-} mice intravenously infected with 5×10^6
268 WT or mutant bacteria ($n = 5$ mice, WT; $n = 6$ mice, *pkmt1*::tn and *pkmt2*::tn). Statistical
269 comparison between WT and mutants was performed using a two-way ANOVA; ** $P < 0.01$.


270

271 **Fig. 2. Lysine methylation protects OMPs from ubiquitylation.** (A) Micrographs of infected
272 Vero cells expressing 6xHis-ubiquitin stained with anti-His antibody (red) and Hoechst (blue,
273 bacterial and host DNA), at 28 h.p.i. Scale bar, 5 μ m (representative of $n = 2$). (B) Western blot of
274 His-Ub input and pull-down samples from infected control and 6xHis-ubiquitin expressing cells,
275 probed for OmpB, OmpA, and pUb (representative of $n = 3$). (C) pUb-enriched (TUBE-1, pan
276 specific) samples from purified bacteria probed for OmpB, OmpA, and OmpW (OmpB and OmpA
277 of endogenous molecular weight represent non-specific binding to TUBE-1 beads) (representative
278 of $n = 3$). Asterisks indicate OmpB and OmpA that exhibit increased molecular weight, indicating
279 ubiquitylation. Arrows indicate OmpB and OmpA of endogenous molecular weight.

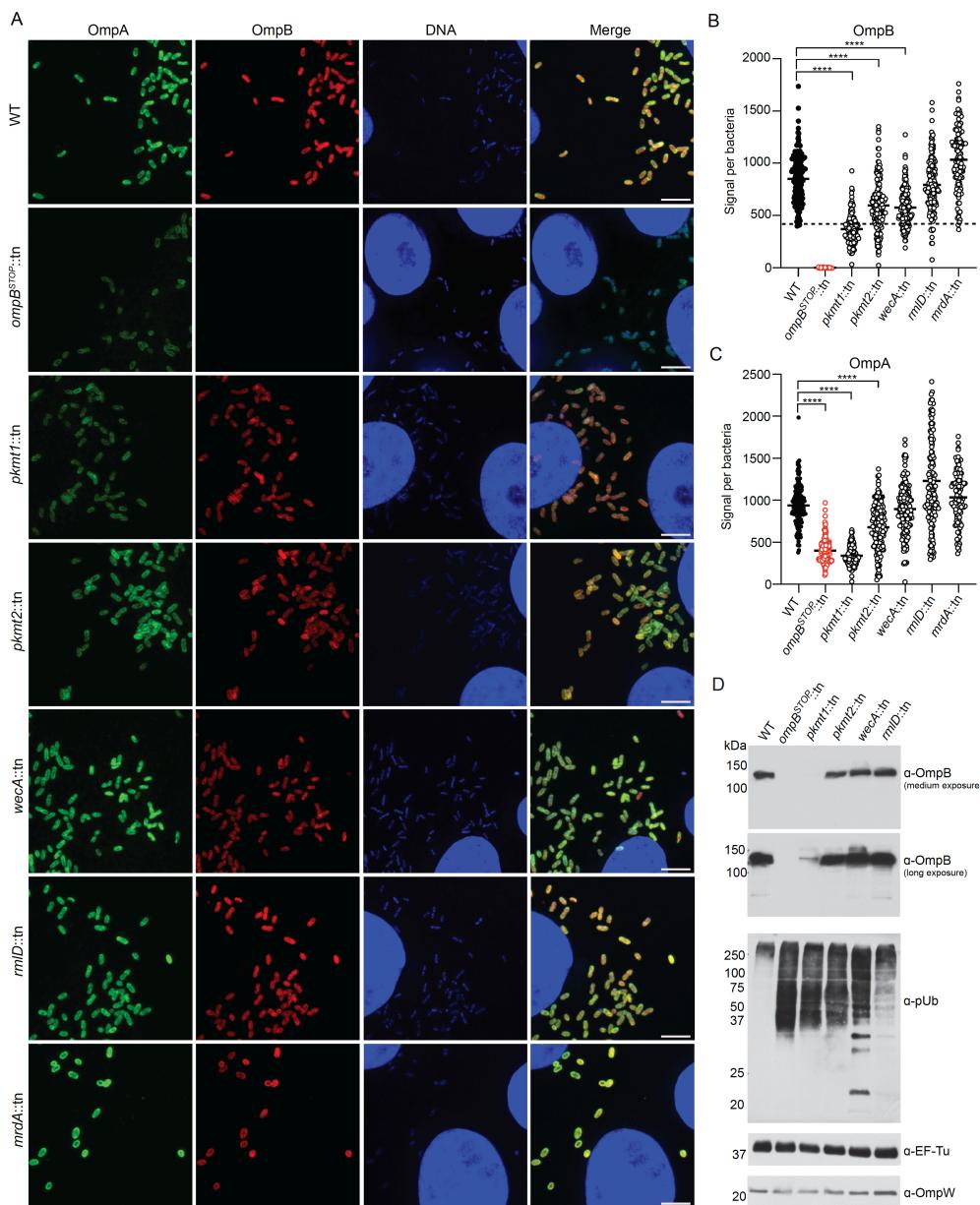
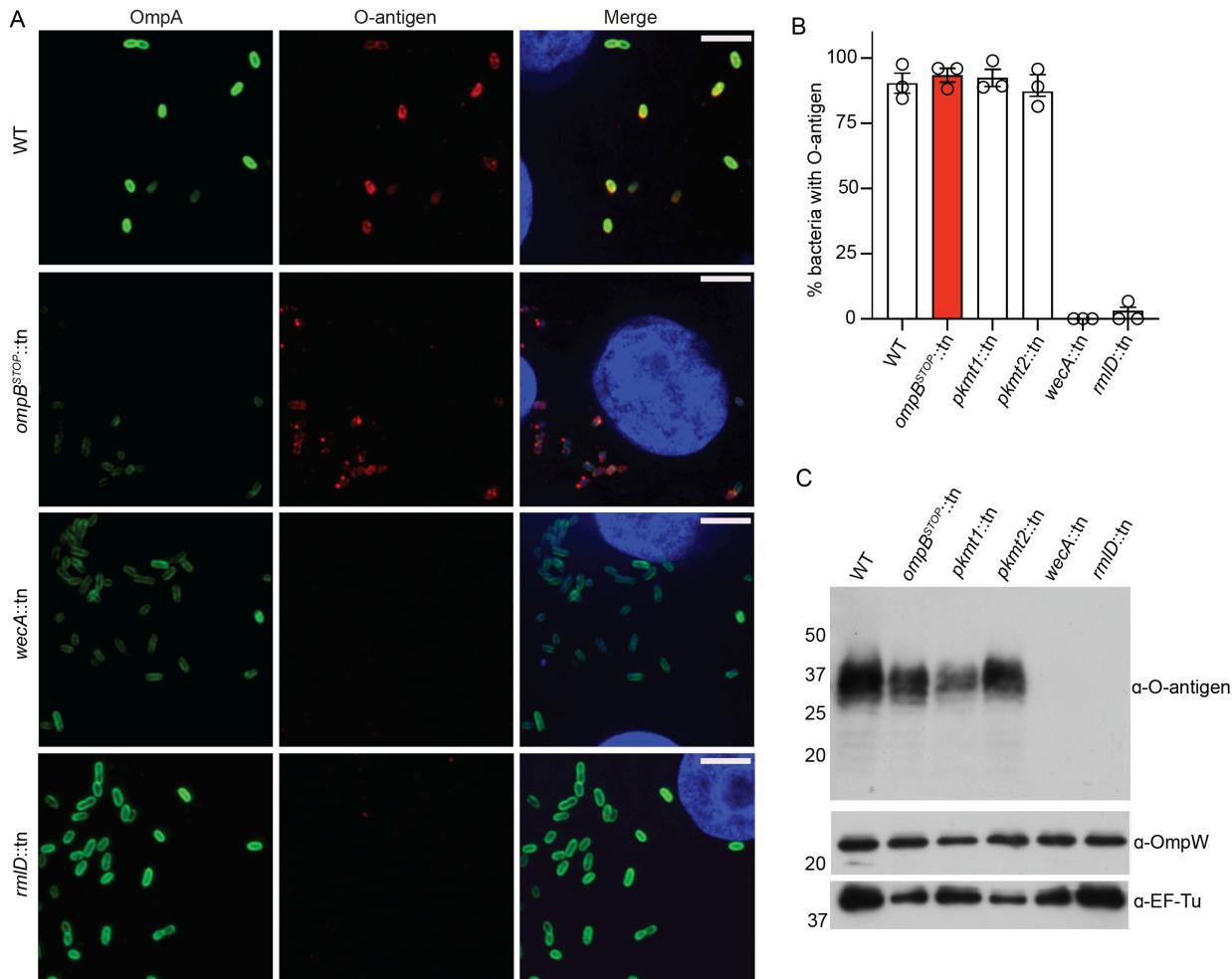
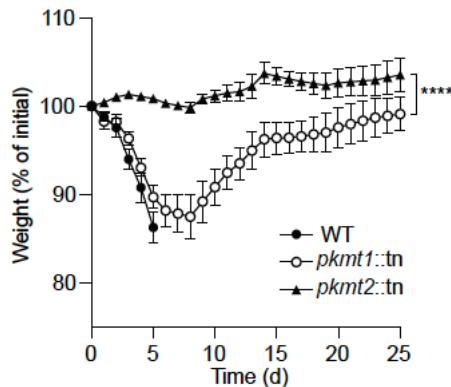

280

Fig. 3. Methylation camouflages lysines from ubiquitylation. (A) Percentage lysine methylation abundance of total among the abundantly detected proteins in WT *R. parkeri* determined by LC-MS (data are combined from $n = 2$). (B) Methylated lysines (K) are indicated with residue number in each OMP, and lysines in *R. prowazekii* OmpB known to be methylated in green (17). K78, K131, K149, K312, and K547 in OmpB were unmethylated ($n = 5$, using data-independent and data-dependent acquisition modes). (C) Percentage of total abundances of the lysines methylated in B, that is unmethylated, mono-, di-, or tri-methylated (data are the mean of $n = 2$). (D) Percentage of individual lysines in OmpB that are unmethylated, mono-, di- or tri-methylated. Only residues repeatedly detected in all strains were analyzed (data are the mean of $n = 2$). (E) Heat map representation of OmpB residues from *pkmt1::tn* or *pkmt2::tn* that have similar levels of K-diGly peptides (white boxes) compared to WT, or with a 5-fold, or more, increase of K-diGly peptides (cyan) after pUb-enrichments ($n = 2$). (F) Abundances of ubiquitylated (diGly), unmethylated, mono-, di-, or tri-methylated OmpB K623 (data are the mean of $n = 2$). Each experiment (n) was performed in technical triplicate.



295
296 **Fig. 4. Methylation prevents ATG5-dependent *R. parkeri* killing in macrophages. (A)**
297 Micrographs of infected control (*Atg5*^{fl/fl}) and *Atg5*-deficient (*Atg5*^{-/-}) BMDMs at 48 h.p.i.,
298 stained for DNA (blue), pUb (red), and p62 (green). Arrow indicate a bacterium positive for both
299 pUb and p62. Scale bars, 5 μ m ($n = 3$). (B) Bacterial growth curves in control and *Atg5*^{-/-} BMDMs,
300 as measured by genomic equivalents using qPCR ($n = 3$). (C) Quantification of the mean number
301 of bacteria per cell ($n = 3$). (D) Quantification of the percentage of bacteria with p62 and pUb (n
302 = 3). nd, not determined. Statistical comparisons in **B** and **C** were performed using a Brown-
303 Forsyth and Welch ANOVA with Dunnett's post-hoc test; *, $P < 0.05$. Presented data are the mean
304 \pm s.e.m.
305


306 **Supplementary Figures**

307
308 **Fig. S1. Polyubiquitylated mutant *R. parkeri* strains are positive for OmpA and OmpB. (A)**
309 Micrographs of Vero cells infected with the indicated strains stained for OmpA (green, 13-3
310 antibody), OmpB (red, OmpB-antibody), and DNA (blue, Hoechst) at 72 h.p.i. (representative of
311 $n = 3$). Scale bar 5 μ m. **(B)** Quantification of OmpB signal per bacterium. (Lines indicate the means;
312 $n = 3$ fields of vision; ≥ 50 bacteria per field of vision were analyzed). Statistical comparisons were
313 performed using a Kruskal-Wallis test with Dunn's post-hoc test; **** $P < 0.0001$ between
314 indicated strains. Dashed line indicates that the majority of mutant bacterial populations, except
315 *pkmt1::tn* bacteria, have OmpB levels comparable to WT bacteria. **(C)** Quantification of OmpA
316 signal per bacterium as in **B**. **(D)** Western blot of 5×10^6 purified bacteria probed for OmpB, pUb,
317 OmpW and EF-Tu (bacterial loading controls) (representative of $n = 2$).

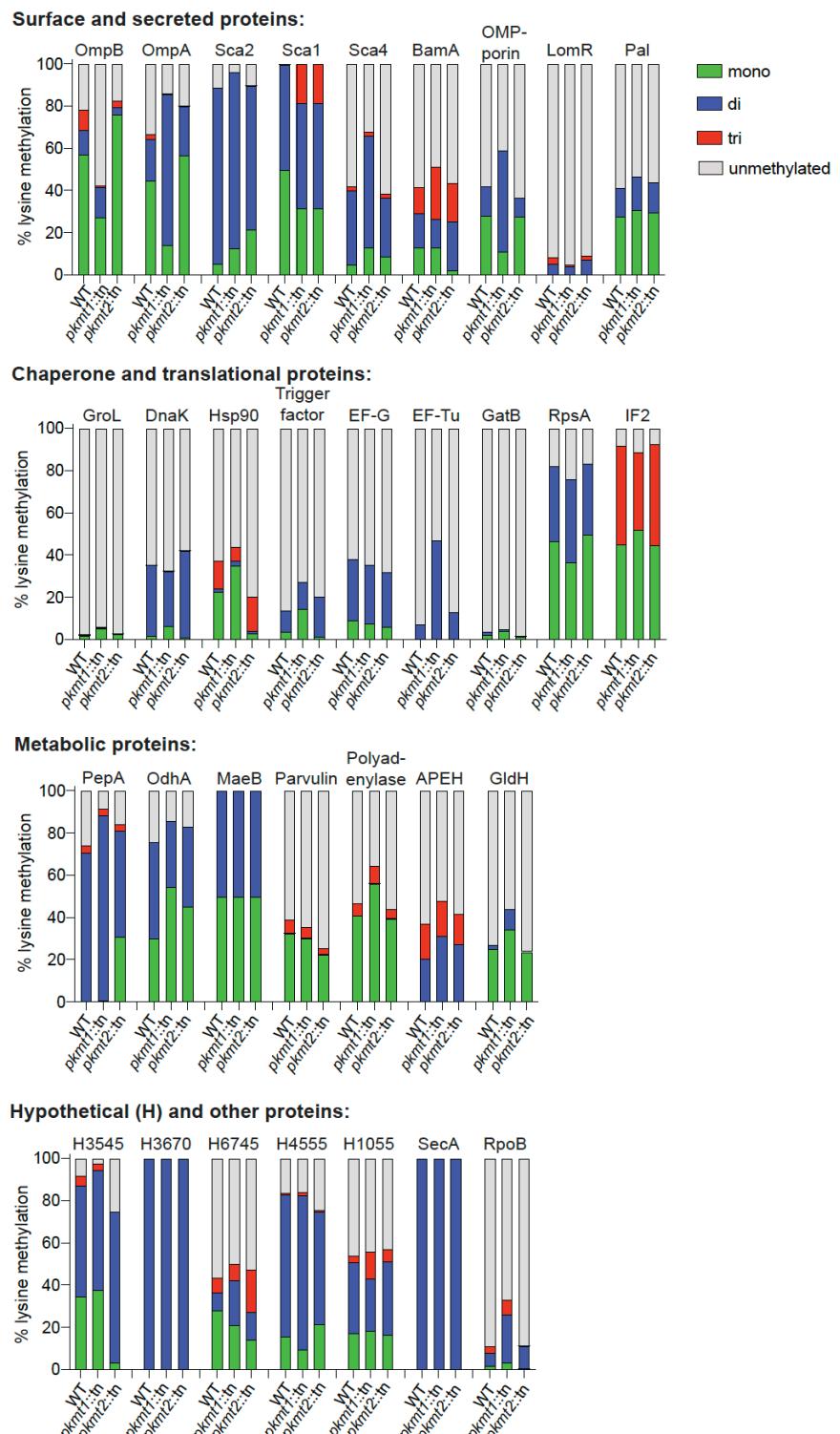
318
319 **Fig. S2. The *wecA::tn* and *rmlD::tn* bacteria lack the O-antigen. (A)** Micrographs of Vero cells
320 infected with the indicated strains stained for OmpA (green, 13-3 antibody), the O-antigen (red,
321 O-antigen antibody(15)) and DNA (blue, Hoechst) at 72 h.p.i. (representative of $n = 3$). Scale bars,
322 5 μ m. **(B)** Percentage of bacteria positive for the O-antigen at 72 h.p.i. $n = 2$; ≥ 90 bacteria were
323 counted in each infection (data are the mean \pm s.e.m.; $n = 3$). **(C)** Western blot of 5×10^6 purified
324 WT and mutant bacteria probed for the O-antigen. OmpW and EF-Tu were used as bacterial
325 loading controls (representative of $n = 3$).

326

327 **Fig. S3. PKMT1 plays a more significant role in causing disease *in vivo* compared to PKMT2.**

328 (A) Weight changes of *Ifnar*^{-/-}*Ifngr*^{-/-} mice intravenous infected with 5x10⁶ WT, *pkmt1::tn*, or
329 *pkmt2::tn* bacteria (data are the mean \pm s.e.m. $n = 5$, WT; $n = 6$, *pkmt1::tn* and *pkmt2::tn*, combined
330 from two independent experiments). A two-way ANOVA from 0 to 25 days post-infection (d.p.i.)
331 was used to statistically compare the weight changes between the *pkmt1::tn* and *pkmt2::tn* mutants.
332 *** $P < 0.0001$.

OMP-porin K-CH₃(mono or di)


46	65	201	349	394	
1	K KK	K KK	KKKK	K K KKK K	438

BamA K-CH₃(mono or di)

51	205	287	408	420	597	772	770	768
1	K	K	K	KK	KKK	KKKK	KKKKK	KKKKKK

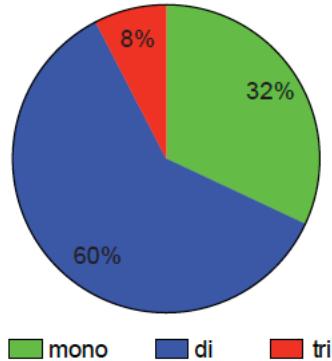
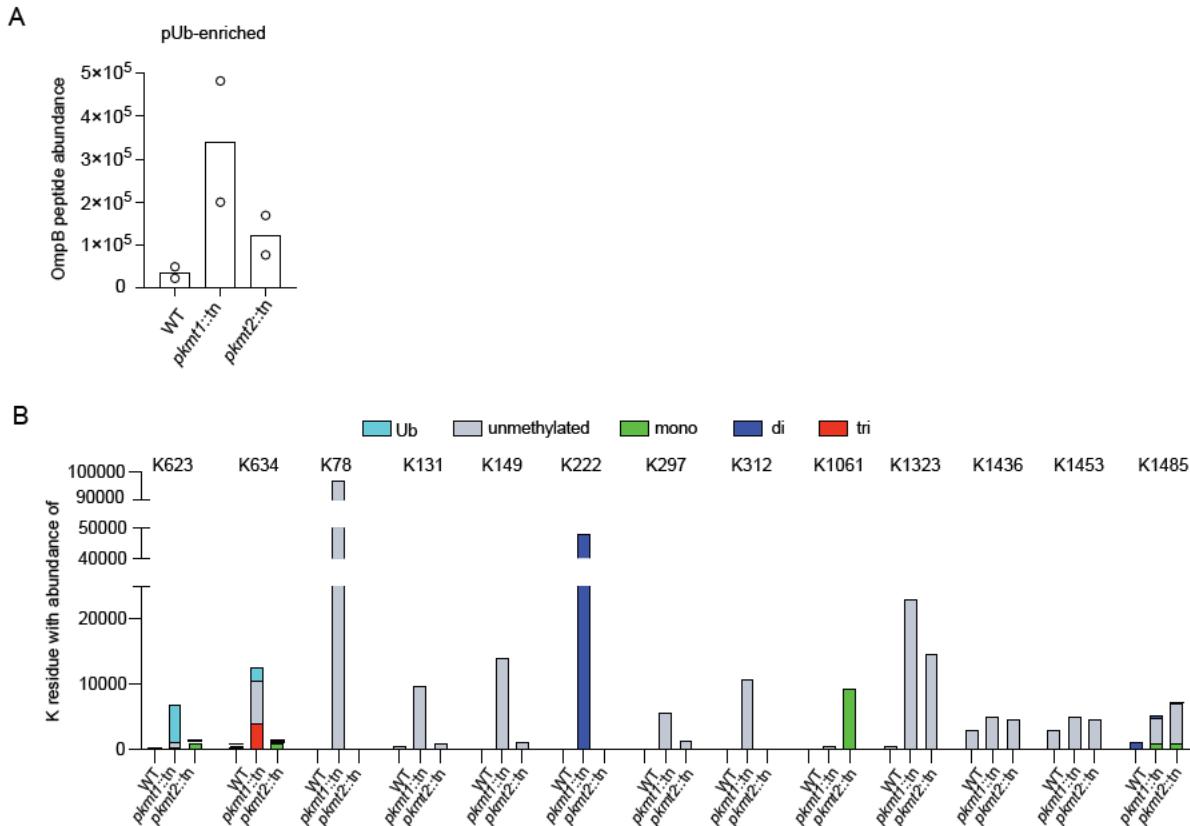
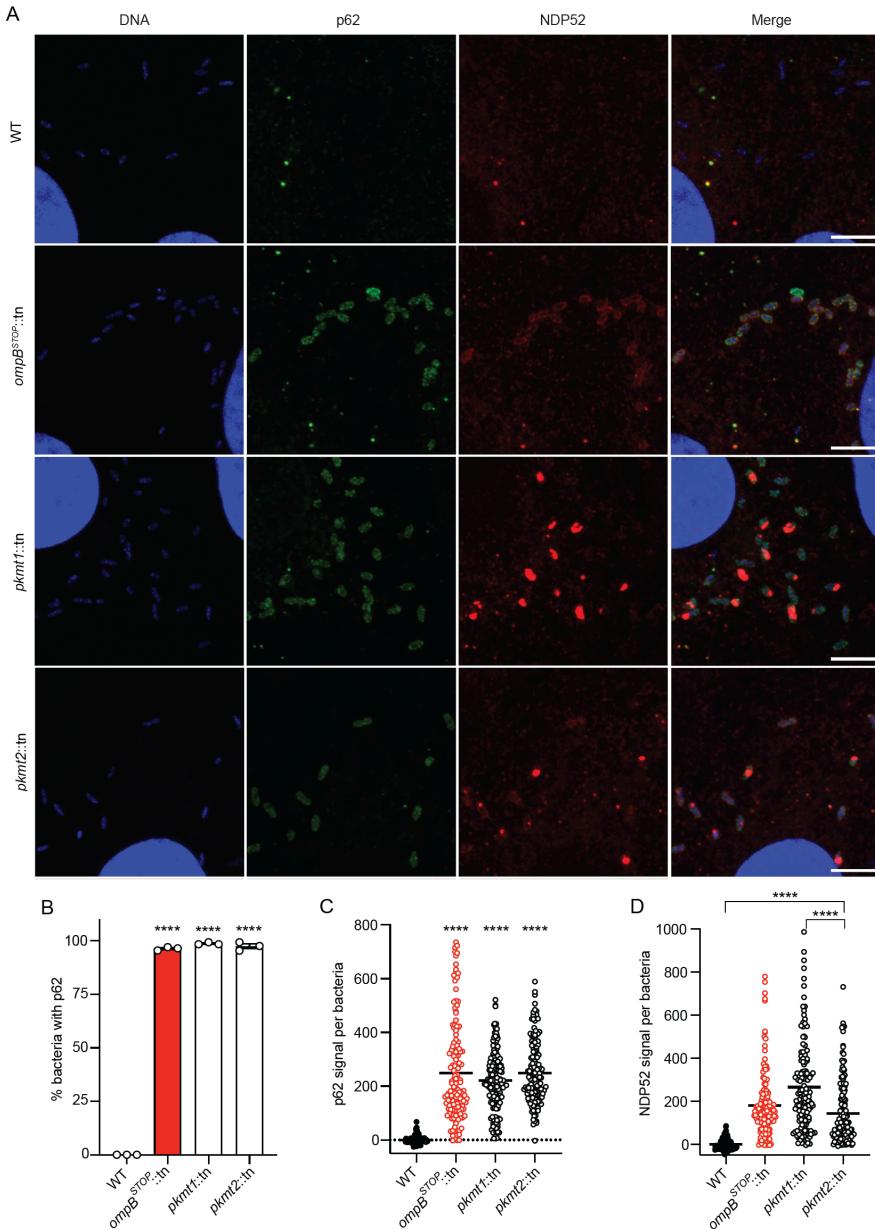

Sca4 -K-CH₃(mono or di)

Fig. S4. Lysine-methylome reveals that *R. parkeri* OMP-porin, BamA, and the released factor Sca4 are methylated. Methylated lysines are indicated with residue number, and unmethylated residues without, determined by LC-MS as in **Fig. 3B** (data is combined from five independent experiments). See also **Table S2**.



338

339 **Fig. S5. PKMT1 primarily modifies bacterial OMPs.** Percentage of total abundances of the
340 lysines methylated in WT, that is unmethylated, mono-, di-, or tri-methylated in respective strain.
341 Proteins with ≥ 3 lysines methylated detected in independent experiments are shown (mean of $n =$
342 2, performed in technical triplicates). OmpB, OmpA and Sca2 data are the same as in **Fig. 3C**. See
343 also **Table S2**.



344
345 **Fig. S6. Dimethylation is a common methylation state among the abundant *R. parkeri***
346 **proteins.** Percentage of total lysines abundances detected to be mono-, di-, or tri-methylated in
347 WT bacteria of the proteins indicated in **Table S2** (mean of $n = 2$, performed in technical
348 triplicates).

349
350
351
352
353
354
355
356

Fig. S7. OmpB K623 and K634 are frequently ubiquitylated when PKMT1-mediated methylation is reduced. (A) OmpB peptide abundance values after pUb-enrichments from respective strain, as determined by LC-MS (data are mean of $n = 2$, performed in triplicates). (B) Abundance values of lysines in OmpB that are ubiquitylated (diGly), unmethylated, mono-, di-, or tri-methylated, in respective strain after pUb-enrichments as in **Fig 2C**. Only residues detected in independent experiments are shown (data are the mean of $n = 2$, performed in technical triplicates). K623 data in **B** are the same as in **Fig. 3F**.

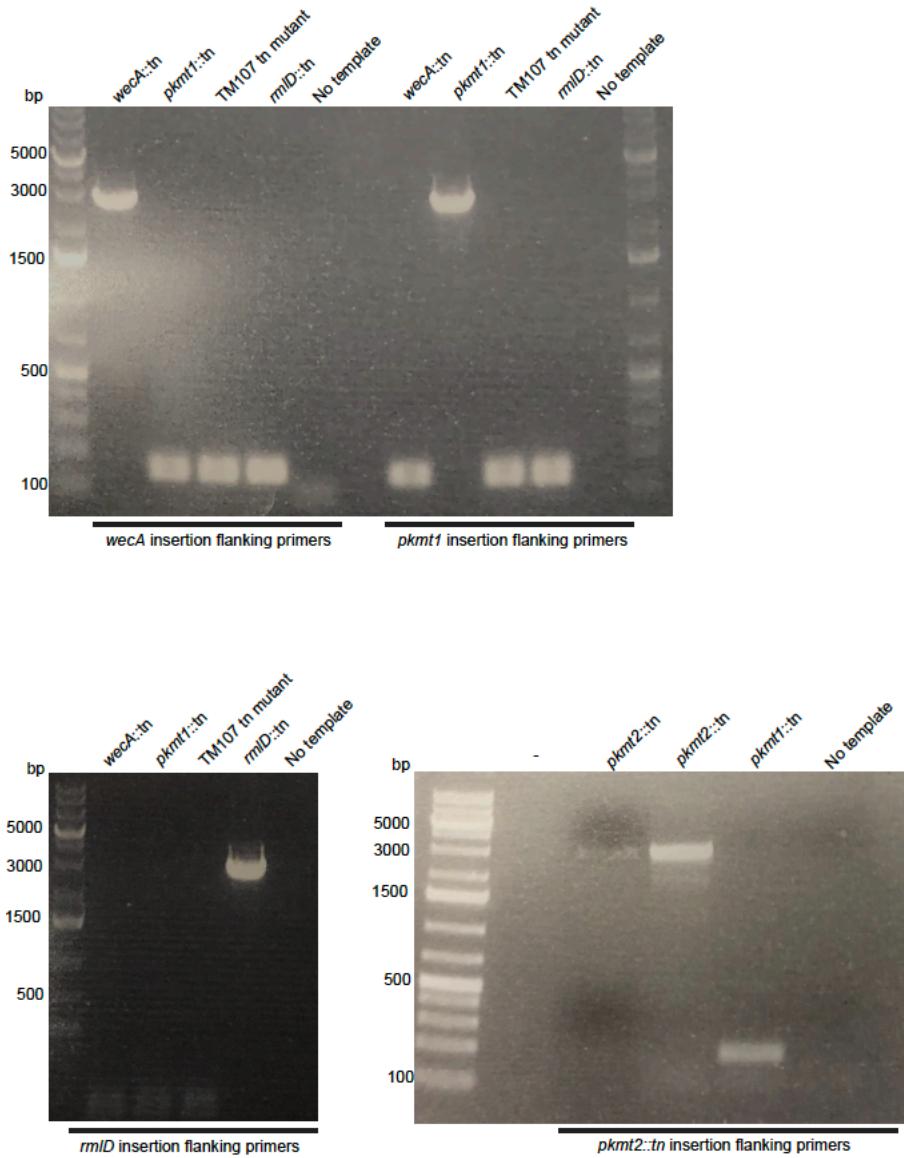
357

358

Fig. S8. OmpB and lysine methylation block recruitment of autophagy receptors to *R. parkeri*.

359 (A) Micrographs of Vero cells infected with the indicated strains: stained for bacterial and host DNA (blue, Hoechst), p62 (green, p62-antibody), and NDP52 (red, NDP52-antibody) at 72

360 h.p.i ($n = 4$ for p62 staining; $n = 2$ for NDP52 staining). (B) Percentage of bacteria that show rim- 361 like surface localization of p62 at 72 h.p.i. (Data are the mean \pm s.e.m.; $n = 3$; ≥ 142 bacteria were 362 counted for each infection). Statistical comparisons between WT and *ompB^{STOP}::tn*, *pkmt1::tn*, 363 *pkmt2::tn* were performed using a one-way ANOVA with Tukey's post-hoc test; **** $P < 0.0001$. 364 (C) Quantification of p62 signal per bacterium from a representative experiment. Lines indicate the 365 means. ($n = 3$ fields of vision; ≥ 50 bacteria per field of vision were analyzed). Statistical 366 comparisons were performed using a Kruskal-Wallis test with Dunn's post-hoc test; **** $P < 367 0.0001$ between indicated strains. (D) Quantification of NDP52 signal per bacteria as in C. 368


<i>Rickettsia parkeri</i>	1	MSPKVITNSSTPNGHDKMAKKTHSAQS VVN--GAVSDHNTYDEIPIYESYPYALTNPYHLSTLATLFGVNAPEVENAKILE	78
<i>Rickettsia rickettsii</i>	1	MSPKATNSSTPNGHDKMAKKTHSAQS VVN--GAVSDHNTYDEIPIYESYPYALTNPYHLSTLATLFGVNAPEVENAKILE	78
<i>Rickettsia conorii</i>	1	MSPKATNSSTPNGHDKMAKKTHSAQS VVN--GAVSDHNTYDEIPIYESYPYALTNPYHLSTLATLFGVNAPEVENAKILE	78
<i>Rickettsia typhi</i>	1	MSLKSSST----TNDHDK-TTKINSIQLVNctdTVADHNTYDEIPIYESYPYALTNPYHLSTLATLFGVNAPEVENAKILE	75
<i>Rickettsia prowazekii</i>	1	MSLKSTTSSLTTNNHDK-T--INSVQLVNgtGTVADHNTYDEIPIYESYPYALTNPYHLSTLATLFGVNAPEVENAKILE	77
<i>Rickettsia bellii</i>	1	MSAKASNSNLPNGHDKTKERNTQPVIN--GAIK-RNTYDEVYYESYPYSPTNFHLSTLATLFGVNAPEVENAKILE	77
<i>Rickettsia endosymbiont of Proechinophthirus fluctus</i>	1	MSPKATNSSTPNSHDKMAKKTHSVQS VVN--SAVSDHNTYDEIPIYESYPYAFTHPYHLSTLATLFGVNAPEVENAKILE	78
<i>Rickettsia parkeri</i>	79	LGCAAGGNLIPHAVLYPKAYFVGVDLSKVQIDEANKNVKALGLKNIEFHCSITDINDSFGKFDYIICHGVISWVPKTVR	158
<i>Rickettsia rickettsii</i>	79	LGCAAGGNLIPHAVLYPKAYFVGVDLSKVQIDEANKNVKALGLKNIEFHCSITDINDSFGKFDYIICHGVISWVPKTVR	158
<i>Rickettsia conorii</i>	79	LGCAAGGNLIPHAVLYPKAYFVGVDLSKVQIDEANKNVKALGLKNIEFHCSITDINDSFGKFDYIICHGVISWVPKTVR	158
<i>Rickettsia typhi</i>	76	LGCAAGGNLIPHAVLYPKAYFVGVDLSKVQIDEANKNVKALGLKNIEFHCSITDINDSFGKFDYIICHGVISWVPKIVR	155
<i>Rickettsia prowazekii</i>	78	LGCAAGGNLIPHAVLYPKAYFVGVDLSKVQIDEANKNVKALGLKNIEFHCSITDINDSFGKFDYIICHGVISWVPKIVR	157
<i>Rickettsia bellii</i>	78	LGCAAGGNLIPHAVLYPKAYFVGVDLSKVQIDEANKNVKALGLKNIEFHCSITDINDSLNKFDYIICHGVMSWVSKNVR	157
<i>Rickettsia endosymbiont of Proechinophthirus fluctus</i>	79	LGCAAGGNLIPHAVLYPKAYFVGVDLSKVQIDEANKNVKALGLKNIEFHCSITDINDSFGKFDYIICHGVISWVPKTVR	158
<i>Rickettsia parkeri</i>	159	DKIFEVCNKNLSPNGIAYISYNTLPGWNMVRTIRDMMYHSSSFANVRDRIAQSRLLLEFVKDSLSEN SKTPYAEALKTEA	238
<i>Rickettsia rickettsii</i>	159	DKIFEVCNKNLSPNGIAYISYNTLPGWNMVRTIRDMMYHSSSFANVRDRIAQSRLLLEFVKDSLSEN SKTPYAEALKTEA	238
<i>Rickettsia conorii</i>	159	DKIFEVCNKNLSPNGIAYISYNTLPGWNMVRTIRDMMYHSSSFANVRDRIAQSRLLLEFVKDSLSEN SKTPYAEALKTEA	238
<i>Rickettsia typhi</i>	156	DKIFVKVCNSNLSTNGIAYISYNTLPGWNMVRTIRDMMYHSSSFANVRDRIAQSRLLLEFVKDSLSEN SKTPYAEALKTEA	235
<i>Rickettsia prowazekii</i>	158	DKIFVKVCNRNLSTNGIAYISYNTLPGWNMVRTIRDMMYHSSSFANVRDRIAQSRLLLEFVKDSLSEN SKTPYAEALKTEA	237
<i>Rickettsia bellii</i>	158	DKIFDVVCNKNLSPNGIAYISYNTLPGWNMVRTIRDMMYHSSSFANVRDRIAQSRLLLEFVKDSLSEN SKTPYAEALKTEA	237
<i>Rickettsia endosymbiont of Proechinophthirus fluctus</i>	159	DKIFEVCNKNLSPNGIAYISYNTLPGWNMVRTIRDMMYHSSSFANVRDRIAQSRLLLEFVKDSLSEN SKTPYAEALKTEA	238
<i>Rickettsia parkeri</i>	239	GLLAQKTDHYLRDHLEEEAQFYFHEFMNEARKHNLQYIADCNLSTMLGNMPKVVQLKAVN DIVRTEQYMDFITNR	318
<i>Rickettsia rickettsii</i>	239	GLLAQKTDHYLRDHLEEEAQFYFHEFMNEARKHNLQYIADCNLSTMLGNMPKVVQLKAVN DIVRTEQYMDFITNR	318
<i>Rickettsia conorii</i>	239	GLLAQKTDHYLRDHLEEEAQFYFHEFMNEARKHNLQYIADCNLSTMLGNMPKVVQLKAVN DIVRTEQYMDFITNR	318
<i>Rickettsia typhi</i>	236	GLLAQKTDHYLRDHLEEEAQFYFHEFMNEARKYNLQYIADCNISTMLGNMPKVVQLKAVN DIVRTEQYMDFITNR	315
<i>Rickettsia prowazekii</i>	238	GLLAQKTDHYLRDHLEEEAQFYFHEFMNEARKHNLQYIADCNISTMLGNMPKVVQLKAVN DIVRTEQYMDFITNR	317
<i>Rickettsia bellii</i>	238	GLLSQTDQYFHLRDHLEEEAQFYFHEFMNEARKHNLQYIADCNISTMLGNMPKVVQLKAVN DIVRTEQYMDFITNR	317
<i>Rickettsia endosymbiont of Proechinophthirus fluctus</i>	239	GLLAQKTDHYLRDHLEEEAQFYFHEFMNEARKHNLQYIADCNLSTMLGNMPKVVQLKAVN DIVRTEQYMDFITNR	318
<i>Rickettsia parkeri</i>	319	RFRTTLLCHSDVKINRNINNDTITKFNIIIFNIVPEKPLKEVDLNNASENLKFFLNGNQDSNLTTSPYMKAILETFSEN	398
<i>Rickettsia rickettsii</i>	319	RFRTTLLCHSDVKINRNINNDTITKFNIIIFNIVPEKPLKEVDLNNASENLKFFLNGNQDSNLTTSPYMKAILETFSEN	398
<i>Rickettsia conorii</i>	319	RFRTTLLCHSDVKINRNINNDTITKFNIIIFNIVPEKPLKEVDLNNASENLKFFLNGNQDSNLTTSPYMKAILETFSEN	398
<i>Rickettsia typhi</i>	316	RFRTTLLCHNDLKLINRNINNEDITKFNIIIFNIVPEKPLKEVDLNNASENLKFFLNGNQDSNLTTSPYMKAILETFSEN	395
<i>Rickettsia prowazekii</i>	318	RFRTTLLCHNDLKLINRNINNDDITKFNIIIFNIVPEKPLKEVDLNNATENLQFFLNGNKECNLSTTSSPYMKAILETFSEN	397
<i>Rickettsia bellii</i>	318	RFRSTLLCHNDVVKINRNINNEDIMKFNIFNVVPEKSLEVKDLNNASSESLAFFLNGNQDSNLTTSPYMKAILETFSEN	397
<i>Rickettsia endosymbiont of Proechinophthirus fluctus</i>	319	RFRTTLLCHSDVKINRNINNDTITKFNIIIFNIVPEKPLKEVDLNNASENLKFFLNGNQDSNLTTSPYMKAILETFSEN	398
<i>Rickettsia parkeri</i>	399	NNPLSFEKITTEANKKLHNTKLNEIKAELNNAMKLVLQGYISITNQKHNPNPELDKPKTTKMVIHQATHTPSMWVTLNK	478
<i>Rickettsia rickettsii</i>	399	NNPLSFEKITTEANKKLHNTKLNEIKAELNNAMKLVLQGYISITNQKHNPNPELDKPKTTKMVIHQATHTPSMWVTLNK	478
<i>Rickettsia conorii</i>	399	NNPLSFEKITTEANKKLHNTKLNEIKAELNNAMKLVLQGYISITNQKHNPNPELDKPKTTKMVIHQATHTPSMWVTLNK	478
<i>Rickettsia typhi</i>	396	NNPLSFKQVTSEANKKLNNNKLNEIKAELLNAMKLVLQGYISITNQKHNPKVFLDKPKTTQVLYQAKHTPSMWVTLNK	475
<i>Rickettsia prowazekii</i>	398	NNPLSFRQVTSEANKKLNNNKLNEIKAELLNAMKLVLQGYISITNQKHNPKVFLDKPKTTQVLYQAKHTPSMWVTLNK	477
<i>Rickettsia bellii</i>	398	NNPLSFEKITEEANKKLHGTKLNEIKAELLNAMKLVLQGYIN1TTQKHRETPELNPKPTTKLVHQIAHTPYMWVTLNK	477
<i>Rickettsia endosymbiont of Proechinophthirus fluctus</i>	399	NNPLSFEKITTEANKKLHNTKLNEIKAELLNAMKLVLQGYISITNQKHNPNPELDKPKTTKMVIHQATHTPSMWVTLNK	478
<i>Rickettsia parkeri</i>	479	HEPIGVNFFEKFAFLRYMDGKHDKKAIAEVLGHVKEGELTLSKEQGVKENKEIRKELESLFPIPMIKKFSSNALLV	554
<i>Rickettsia rickettsii</i>	479	HEPIGVNFFEKFAFLRYMDGKHDKKAIAEVLGHVKEGELTLSKEQGVKENKEIRKELESLFPIPMIKKFSSNALLV	554
<i>Rickettsia conorii</i>	479	HEPIGVNFFEKFAFLRYMDGKHDKKAIAEVLGHVKEGELTLSKEQGVKENKEIRKELESLFPIPMIKKFSSNALLV	554
<i>Rickettsia typhi</i>	476	HEPIGVNFFEKFAFLRYMDGKNDKKAIAEVLGHVKEGELTLSKEQGVKENKEIRKELESLFPIPMIKKFSSNALLV	551
<i>Rickettsia prowazekii</i>	478	HEPIGVNFFEKFAFLRYMDGRNDKKAIAEVLGHVKEGELTLSREGQKIEENKEIRKELESLFPIPMIEKFCSNALLV	553
<i>Rickettsia bellii</i>	478	HEPVGVNFFEKLAIRYMDGKHDKKAIAEVLGHVKEGELTLSKGQKIEEDQEVIRKQLEVLFPMPMIDKFAANALLV	553
<i>Rickettsia endosymbiont of Proechinophthirus fluctus</i>	479	HEPIGVNFFEKFAFLRYMDGKHDKKAIAEVLGHVKEGELTLSKGQKIEEDQEVIRKQLEVLFPMPMIDKFAANALLV	554

369 **Fig. S9. The PKMT1 enzyme is highly conserved between diverse rickettsial species.** Amino
 370 acid sequence alignment of PKMT1 from *R. parkeri* ([WP_014411082.1](https://www.uniprot.org/uniprot/WP_014411082.1)), *R. rickettsii*
 371 ([WP_012262600.1](https://www.uniprot.org/uniprot/WP_012262600.1)), *R. conorii* ([WP_016926592.1](https://www.uniprot.org/uniprot/WP_016926592.1)), *R. typhi* ([WP_011191207.1](https://www.uniprot.org/uniprot/WP_011191207.1)), *R. prowazekii*
 372 ([WP_004596928.1](https://www.uniprot.org/uniprot/WP_004596928.1)), *R. bellii* ([WP_045799810.1](https://www.uniprot.org/uniprot/WP_045799810.1)), and a *Rickettsia* endosymbiont
 373 ([WP_062811822.1](https://www.uniprot.org/uniprot/WP_062811822.1)), using **COBALT**. Amino acids indicated in red are identical; blue, variation
 374 between species; grey, one or more of the analyzed proteins are lacking this residue(s).

<i>Rickettsia parkeri</i>	1	MTKQANKISYDEVYPSPFTFSYTSPPYLRTIGKLFGLNPPLAKILELGCIGIVNLLNFAETYPKSQSLGVDSLSTQI	80
<i>Rickettsia rickettsii</i>	1	MTKQANKISYDEVYPSPFTFSYTSPPYLRTIGKLFGLNPPLAKILELGCIGIVNLLNFAETYPKSQSLGVDSLSTQI	80
<i>Rickettsia conorii</i>	1	MTKQANKISYDEVYPSPFTFSYTSPPYLRTIGKLFGLNPPLAKILELGCIGIVNLLNFAETYPKSQSLGVDSLSTQI	80
<i>Rickettsia typhi</i>	1	MIKKANKISYDEVYPYPPTFSYTYPYPLRTIGKLFGLNPPLAKILELGCIGIVNLLNFAETYPKSQSLGVDSLSTQI	80
<i>Rickettsia prowazekii</i>	1	MIKTKNKISYDEVYPYPPTFSYTYPYPLRTIGKLFGLNPPLAKILELGCIGIVNLLNFAETYPKSQSLGVDSLSTQI	80
<i>Rickettsia parkeri</i>	81	ELGKKFISDLKIKNAELKALSIIDLDESYGKFDYIVCHGVYSWVPEEVQDKILKVCNKLLNPNGIAFVSYNTLPGWNMQR	160
<i>Rickettsia rickettsii</i>	81	ELGKKIISDLKIKNAELKALSIIDLDESYGKFDYIICHGVYSWVPEEVQDKILKVCNKLLNPNGIAFVSYNTLPGWNMQS	160
<i>Rickettsia conorii</i>	81	ELGKKIISDLKIKNAELKALSIIDLDESYGKFDYIVCHGVYSWVPEEVQDKILKICNKLLNPNGIAFVSYNTLPGWNMQR	160
<i>Rickettsia typhi</i>	81	ELGKKTISDAKINNVELKALSIIDLDESYGKFDYIVCHGVYSWVSEVQDKILEVLNKLLNPNGIAFVSYNTLPGWNMQN	160
<i>Rickettsia prowazekii</i>	81	BIGKKTISDSKIKNVGLKALSIIDLDESYGKFDYIVCHGVYSWVSEVQDKILEVLNKLLNPNGIAFVSYNTLPGWNMQN	160
<i>Rickettsia parkeri</i>	161	TIREMIMFHSELFNTSHDKLQQAKLLLKFINDSLESSTTPYSNFLRDETKLLSAYTDSYVLHEYLGEINTGIFYHQFIEK	240
<i>Rickettsia rickettsii</i>	161	TIREMIMFHSELFNTSHDKLQQAKLLLKFINDSLESSTTPYSNFLRDETKLLSAYTDSYVLHEYLGEINTGIFYHQFIEK	240
<i>Rickettsia conorii</i>	161	TIREMIMFHSELFNTSHDKLQQAKLLLKFINDSLESSTTPYSNFLRDETKLLSAYTDSYVLHEYLGEINTGIFYHQFIEK	240
<i>Rickettsia typhi</i>	161	TIREMMMFHSESFNTSHDKLQQARLLLKFINDSLGNSTTPYANFLRDEAKLISTRYDDSYVLHEYLGEINTGTYHQFIEK	240
<i>Rickettsia prowazekii</i>	161	TIREMMMFHSESFNTSHDKLQQSKLLLKFINDSLENSTTPYANFLREEAKLISTRYADSYVLHEYLGEINTGTYHQFIEK	240
<i>Rickettsia parkeri</i>	241	AQKHNHLNYLGDTSLTAMPIGNLPTQAAEKLQAVNDIVRTEQYMDFITNRKFRSTLLCHQNIPINRKIEFNNLKEFFTSLN	320
<i>Rickettsia rickettsii</i>	241	AQKHNHLNYLGDTSLTAMPIGNLPTQAAEKLQAVNDIVRTEQYMDFITNRKFRSTLLCHQNIPINRKIEFNNLKEFFTSLN	320
<i>Rickettsia conorii</i>	241	AQKHNHLNYLGDTSLTAMPIGNLPTQAAEKLQAVNDIVRTEQYMDFITNRKFRSTLLCHQNIPINRKIEFNNLKEFFTSLN	320
<i>Rickettsia typhi</i>	241	AQKHNHLNYLGDTSAIAMFIGNLPTKAASKLQAIINDIVCTEQYMDFITNRKFRSTLLCHQNIPINRKIEFDNLKDFYTFN	320
<i>Rickettsia prowazekii</i>	241	AQKHNHLNYLGDTSAITAMPIGNLPTKAASKLQAIINDIVRTEQYMDFITNRKFRSTLLCHQNIPINRKIEFENLKDFTTFN	320
<i>Rickettsia parkeri</i>	321	IRPVILEKAVDLTNEQENVGFYYENLPEPFISTTSPIMKAILLYVVAENIGNPISLEQVAKAEFKKLGKYQLQDFLALEQ	400
<i>Rickettsia rickettsii</i>	321	IRPVILEKAVDLTNEQENVSFYYENLPEPFISTTSPIMKAILLYVVAENISNPISLEQVAKAEFKKLGKYQLQDFLALEQ	400
<i>Rickettsia conorii</i>	321	IRPVILEKAVDLTNEQENVSFYYENLPEPFISTTSPIMKAILLYVVAENISNPISLEQVAKAEFKKLGKYQLQDFLALEQ	400
<i>Rickettsia typhi</i>	321	IRPISPEKIDLNNEQENISFYENLPEPFISTTSAIMKAILLYVVAENISNPIRLEQVAKAEFKKLGKYRLQDFLATLEQ	400
<i>Rickettsia prowazekii</i>	321	IRPISENKIDLNNEQENISFYENLPEPFISTTSAIMKAILLYVVAENISNPIRLEQVAKAEFKKLGKYQLQDFLALEQ	400
<i>Rickettsia parkeri</i>	401	HFIIFIFQGYLKIFETKPHAIATITEKPKTSEFARYQAKQAYFNNVTSVFSVTNRLNDMVGIPIFIHEKYILEMLDGTHNID	480
<i>Rickettsia rickettsii</i>	401	HFIIFIFQGYLKIFETKPHAIATITEKPKTSEFARYQAKQAYFNNVTSVFSVTNRLNDMVGIPIFIHEKYILEMLDGTHNID	480
<i>Rickettsia conorii</i>	401	HFIIFIFQGYLKIFETKPHAIATITEKPKTSEFARYQAKQAYFNNVTSVFSVTNRLNDMVGIPIFIHEKYILEMLDGTHNID	480
<i>Rickettsia typhi</i>	401	HFITLIFQGYLKIFETKPHAIATITEKPKTSQFARYQAKAHFNNVTNMFSITNRLNDMIGIPIHEKYILEMLDGTHNID	480
<i>Rickettsia prowazekii</i>	401	HFITFIFQGYLKIFETKPHAIATITEKPKTSQFVRYQAKAHFNNVTNMLSVTNRLNDMIGIPIHEKYILEMLDGTHNID	480
<i>Rickettsia parkeri</i>	481	DIKKGVLEKINSKLLTARDDKQEVTDPKLLKEFVDYVVNTSLEKFRINYLVE	534
<i>Rickettsia rickettsii</i>	481	DIKKGVLEKINSKLLTARDDKQEVTDPKLLKEFVDYAVNTSLEKFRINYLVE	534
<i>Rickettsia conorii</i>	481	DIKKGVLEKINSKLLTARDDKQEVTDPKLLKEFVDYVVNTSLEKFRINYLVE	534
<i>Rickettsia typhi</i>	481	DIKKSIIEKINSKLLTACDNKGQVVTDPKLLKEFVDYVVAVSLEKFRINYLVE	534
<i>Rickettsia prowazekii</i>	481	DIKKGMIEKINSKLLIACDNKGQAVTDPKLLKEFVDYIVNISLEKFRINYLIG	534

376

377 **Fig. S10. The PKMT2 enzyme is highly conserved between virulent rickettsial species but**
 378 **absent from *R. bellii* and the *Rickettsia endosymbiont Proechinophthirus fluctus*.** Amino acid
 379 sequence alignment of PKMT2 from *R. parkeri* ([WP_014410272.1](#)), *R. rickettsii*
 380 ([WP_012150259.1](#)), *R. conorii* ([WP_016925880.1](#)), *R. typhi* ([WP_011190574.1](#)), and *R.*
 381 *prowazekii* ([WP_004596662.1](#)) using **COBALT**. PKMT1 of *R. bellii* and the *Rickettsia*
 382 *endosymbiont Proechinophthirus fluctus* showed 51% identity to PKMT2 of *R. parkeri* using
 383 single alignment BLAST at NCBI; however, no PKMT2 variants could be found in these
 384 organisms, and therefore they were excluded from this analysis. Amino acids indicated in red are
 385 identical; blue, variation between species.

386

387

388 **Fig. S11.** Strain validation of clonality and insertion site using primers for flanking chromosomal regions ($n = 1$).

389 **Materials and Methods**

390 **Cell lines and primary mouse macrophages**

391 Vero cells were purchased from the UC Berkeley Cell Culture Facility and the identity was
392 repeatedly confirmed by mass-spectrometry analysis. Cells were grown at 37 °C and 5% CO₂ in
393 DMEM (Gibco, cat. no. 11965) with high glucose (4.5 g l⁻¹) and 2% heat-inactivated (30 min, 56
394 °C, in a water-bath) fetal bovine serum (Gemcell). Vero cells were confirmed to be mycoplasma
395 negative by DAPI staining and fluorescence microscopy screening at the UC Berkeley Cell Culture
396 Facility.

397 BMDMs generated from the femurs of mutant *Atg5*^{fl/fl} and matched *Atg5*^{-/-} C57BL/6
398 mice were a kind gift from the laboratory of Jeffery S. Cox (UC Berkeley), and they were prepared
399 as previously described (11) although in the absence of antibiotics. Genotypes were confirmed by
400 PCR and Sanger sequencing at the UC Berkeley DNA Sequencing Facility, as previously
401 described (11).

402

403 ***Rickettsia parkeri* strain generation and validation**

404 WT *R. parkeri* strain Portsmouth (NCBI accession no. [NC_017044.1](#); originally a gift from
405 C. Paddock, Center for Disease Control and Prevention) and bacterial stocks of *ompB*^{STOP}::tn (the
406 genome sequences of these bacterial strains are available at the Sequence Read Archive as
407 accession no. [SRP154218](#) (WT, [SRX4401164](#); *ompB*^{STOP}::tn, [SRX4401167](#)), *pkmt1*::tn,
408 *pkmt2*::tn, *wecA*::tn and *rlmD*::tn mutants were propagated and purified every ~6-10 months as
409 described below. Side-by-side experimental comparisons were made between stocks prepared at
410 similar times.

411 *R. parkeri* *pkmt1*::tn, *pkmt2*::tn, *wecA*::tn, and 114 other transposon insertion mutant

412 strains, screened for pUb, were previously isolated in a screen for small plaque mutants (13, 22).
413 The *ompB^{STOP}::tn* was previously isolated in a suppressor screen and lacked expression of OmpB
414 (11). The *rmlD::tn*, and 132 other transposon insertion mutant strains, screened for pUb, were
415 isolated in an independent screen in which mutants were isolated without regard for plaque size
416 (**Table S1**). The genomic locations of transposon insertion sites for all mutants were determined
417 by semi-random nested PCR. To verify the insertions and clonality, we used PCR reactions that
418 amplified the transposon insertion site using primers for flanking chromosomal regions:
419 5'GCTCACTAGATAGCACTCG'3 and 5'GCTCGATTATCTCACTTATG'3 for *rmlD::tn*,
420 5'CGTTAATAGTCCAGTTAATTGT'3 and 5'CCGTCTATACCGTCCATAAAAT'3 for
421 *wecA::tn*, 5'GCATCGAAATAACCCTGAG'3 and 5'GCAAACCTCTCAAAGAAATTAACG'3
422 for *pkmt1::tn*, 5'GCTAAGAAATCTTCTAATTGATATTTAC'3 and
423 5'CGAAAATTACCTGAGCCTT'3 for *pkmt2::tn*, 5'CGACACATAATAGCACAAACTAC'3
424 and 5'GC GGAGGCGGTAGTAAAG'3 for *mrdA::tn* (**Fig. S11**).
425

426 Screening for pUb-positive strains

427 To prepare the mutant library for screening, passage 1 (P1) transposon insertion mutants
428 were amplified one time in Vero cells using 24-well cell culture plates. At 5-12 d.p.i, when 50-
429 70% of the infected cells appeared to be rounded up (as a sign of infection) by visual inspection
430 using a light microscope, cell culture media were completely removed, and cells were subsequently
431 lysed in 500 μ L cold sterile water for 2-3 minutes (min). Next, 500 μ L of 2x cold sterile brain-
432 heart-infusion (BHI) broth (BD Difco, 237500) was added to the lysed cells, resuspended, and P2
433 bacteria were transferred to cryogenic storage vials and frozen at -80 °C.

434 To screen for pUb-positive strains, 10-40 μ L of each of five to seven P2 mutant bacterial
435 strains were diluted in 1 mL of room temperature (RT) cell culture media supplemented with 2%
436 FBS. Subsequently, the pooled bacterial suspension was centrifuged at 250g for 4 min at RT onto
437 confluent Vero cells grown on coverslips in 24-well plates. Cells were then incubated at 33 °C and
438 fixed at 50-55 h.p.i. with pre-warmed 4% paraformaldehyde (PFA) (Ted Pella Inc., 18505) for 10
439 min at RT. If cells were over-infected (i.e., individual infection foci had grown together) as
440 determined by immunofluorescence microscopy, infections of that specific pool were repeated
441 using reduced volumes of P2 bacteria. Next, fixed cells were permeabilized with 0.2% Triton-X
442 for 5 min and then stained with the anti-*Rickettsia* I7205 antibody (1:500 dilution; gift from Ted
443 Hackstadt) and anti-polyubiquitin FK1 antibody (Enzo Life Sciences, BML-PW8805-0500; 1:250
444 dilution), followed by Alexa 488 anti-rabbit antibody (Invitrogen, A11008; 1:500 dilution) or goat
445 anti-mouse Alexa-568 (Invitrogen, A11004). Whole coverslips were manually inspected on a
446 Nikon Ti Eclipse microscope with 60x (1.4 numerical aperture) Plan Apo objective. The initial
447 screen revealed that five out of 39 mutant pools contained pUb-positive areas.

448 In a secondary screen, individual strains from the pUb-positive pools were used to infect
449 Vero cells, as stated above. Infected cells were also fixed and stained as above except that a post-
450 fixation step using 100% methanol for 5 min was included and an OmpB antibody (11) and
451 Hoechst (Sigma, B2261, 1:2500 dilution) was used instead of the anti-*Rickettsia* I7205 antibody.
452 Samples were inspected as above and strains were scored as follows: 1) pUb-negative (49 strains),
453 2) a few infection foci were pUb-positive (2 strains: Sp mutant 24, insertion at bp position 753916;
454 Sp mutant 94, insertion at bp position 774831), 3) bacteria in the center of foci were pUb-positive
455 but not on the edges (2 strains: Sp mutant 43, insertion at bp position 651602-651604; Sp mutant
456 45, insertion at bp position 751156), 4) almost all bacteria in all foci were pUb-positive (4 strains):

457 *pkmt1*::tn, insertion at bp position 1161553 (gene *MC1_RS06185*); *pkmt2*::tn, insertion at bp
458 position 34100 (*MC1_RS00180*); *wecA*::tn, insertion at bp position 1223170 (*MC1_RS06510*); and
459 *rmlD*::tn, insertion at bp position 455753 (*MC1_RS02345*).

460

461 ***Rickettsia* purification**

462 *R. parkeri* strains were propagated as described previously (11). “Purified bacteria” were
463 from five T175 flasks of Vero cells that after 5-8 days of infection (normally ~75% infected as
464 observed by light microscopy) were harvested in the media using a cell scraper. Bacteria were then
465 centrifuged 12000g for 15 min at 4 °C in pre-chilled tubes. Pellets were resuspended in cold K-36
466 buffer (0.05 M KH₂PO₄, 0.05 M K₂HPO₄, pH 7, 100 mM KCl and 15 mM NaCl) and a pre-chilled
467 dounce-homogenizer (tight fit) were used for 60 strokes to release bacteria from host cells. The
468 homogenate was then centrifuged at 200g for 5 min at 4 °C to remove cellular debris. The
469 supernatant was overlaid onto cold 30% v/v MD-76R (Mallinckrodt Inc., 1317-07) diluted in K-
470 36, and centrifuged at 58300g for 20 min at 4 °C in an SW-28 swinging-bucket rotor. The bacterial
471 pellet was resuspended in cold 1x BHI broth (0.5 mL BHI per infected T175 flask), and after letting
472 DNA precipitates sediment to the bottom of the tubes, bacterial suspensions were collected,
473 aliquoted and frozen at -80 °C.

474 “Gradient-purified bacteria” were from ten T175 flasks of Vero cells, purified as above
475 with the addition of a 40/44/54% v/v MD-76R (diluted in K-36 buffer) gradient step centrifuged
476 at 58300g for 25 min at 4 °C using the SW-28 swinging bucket rotor. The bacteria were then
477 collected from the 44-54% interface, diluted in K-36 buffer, and pelleted by centrifugation at
478 12000g for 15 min at 4 °C. The pellet was resuspended in cold 1x BHI broth and subsequently
479 aliquoted and frozen at -80 °C.

480

481 **OmpW and EF-Tu antibody production**

482 The sequence encoding amino acids 22-224 of outer membrane protein W (OmpW;
483 WP_014411122.1) (a protein that lacks the signal peptide), or full-length Elongation factor Tu
484 (EF-Tu; WP_004997779.1), were amplified by PCR from *R. parkeri* genomic DNA, and
485 subsequently cloned into plasmid pETM1, which encodes N-terminal 6xHis and maltose-binding
486 proteins (MBP) tags. From the resulting plasmids, fusion proteins were expressed in *E. coli* strain
487 BL21 codon plus RIL-Cam^r (DE3) (QB3 Macrolab, UC Berkeley) by induction with 1 mM
488 isopropyl- β -D-thio-galactoside (IPTG) for 2-2.5 hours at 37 °C. Bacterial pellets were resuspended
489 in lysis buffer (50 mM NaH₂PO₄, pH 8.0, 300 mM NaCl, 1mM EDTA, and 1 mM dithiothreitol
490 (DTT)) and stored at -80 °C. For protein purification, bacteria were thawed, lysozyme was added
491 to 1 mg/mL (Sigma, L4919), and lysis was carried out by sonication. Lysates containing 6xHis-
492 MBP-OmpW and 6xHis-MBP-EF-Tu were incubated on amylose resin (New England Biolabs,
493 E8021L) (Qiagen, 1018244) and bound proteins were eluted in lysis buffer lacking EDTA and
494 DTT but containing 10 mM maltose. Fractions were analyzed by SDS-PAGE and those with the
495 highest concentrations of fusion proteins were pooled to generate rabbit antibodies against OmpW
496 and EF-Tu. 1.2 mg of purified 6xHis-MBP-OmpW and 6xHis-MBP-EF-Tu proteins were sent to
497 Pocono Rabbit Farm and Laboratory (Canadensis, PA), and immunization was carried out
498 according to their 91-d protocol.

499

500 **Western blotting**

501 To determine the levels of bacterial and host proteins in purified bacterial samples, 30%-
502 purified bacterial samples were boiled in 1x SDS loading buffer (150 mM Tris pH 6.8, 6% SDS,

503 0.3% bromophenol blue, 30% glycerol, 15% β -mercaptoethanol) for 10 min, then 5×10^6 PFUs
504 were resolved on an 8-12% SDS-PAGE gel and transferred to an Immobilon-FL polyvinylidene
505 difluoride membrane (Millipore, IPEL00010). Membranes were probed for 30 min at room
506 temperature or 4°C overnight with antibodies as follows: affinity-purified rabbit anti-OmpB
507 antibody (II) diluted 1:200-30000 in TBS-T (20 mM Tris, 150 mM NaCl, pH 8.0, 0.05% Tween
508 20 (Sigma, P9416)) plus 5% dry milk (Apex, 20-241); mouse monoclonal anti-OmpA 13-3
509 antibody diluted 1:10000-50000 in TBS-T plus 5% dry milk; rabbit anti-OmpW serum diluted
510 1:8000 in TBS-T plus 5% dry milk; mouse monoclonal FK1 anti-polyubiquitin antibody diluted
511 1:2500 in TBS-T plus 2% BSA; rabbit anti-EF-Tu serum diluted 1:15000 in TBS-T plus 5% dry
512 milk; or rabbit anti-O-antigen serum 1:5000 in TBS-T plus 5% dry milk. Secondary antibodies
513 were: mouse anti-rabbit horseradish peroxidase (HRP) (Santa Cruz Biotechnology, sc-2357), or
514 goat anti-mouse HRP (Santa Cruz Biotechnology, sc-2005), all diluted 1:1000-2500 in TBS-T plus
515 5% dry milk. Secondary antibodies were detected with ECL Western Blotting Detection Reagents
516 (GE, Healthcare, RPN2106) for 1 min at room temperature, and developed using Biomax Light
517 Film (Carestream, 178-8207).

518

519 **Immunofluorescence microscopy**

520 *R. parkeri* infections were carried out in 24-well plates with sterile circle 12-mm coverslips
521 (Thermo Fisher Scientific, 12-545-80). To initiate infection, 30%-purified bacteria were diluted in
522 cell culture media at room temperature to a MOI of 0.01 for Vero cells, and a MOI of 0.1 for
523 BMDMs. Bacteria were centrifuged onto cells at 300g for 5 min at room temperature and
524 subsequently incubated at 33 °C. Next, infected cells were fixed for 10 min at room temperature
525 in pre-warmed (37 °C) 4% PFA diluted in PBS, pH 7.4, then washed 3 times with PBS. Primary

526 antibodies were the following: for staining with the guinea pig polyclonal anti-p62 antibody
527 (Fitzgerald, 20R-PP001; 1:500 dilution), mouse polyclonal anti-NDP52 antibody (Novus
528 Biologicals, H00010241-B01P; 1:100 dilution), a rabbit anti-*Rickettsia* I7205 antibody (1:500
529 dilution; gift from Ted Hackstadt), or anti-polyubiquitin FK1 antibody (1:250 dilution), cells were
530 permeabilized with 0.5% Triton-X100 for 5 min prior to staining. For staining with mouse
531 monoclonal anti-OmpA 13-3 antibody (1:5000 dilution), anti-OmpB antibody (11) (1:1000
532 dilution), or rabbit anti-O-antigen serum (15) (1:500 dilution), infected cells were post-fixed in
533 methanol for 5 min at RT (no Triton-X). Cells were then washed 3 times with PBS and incubated
534 with the primary antibodies for 30 min at RT. To detect the primary antibodies, secondary goat
535 anti-rabbit Alexa-568 (Invitrogen, A11036), goat anti-mouse Alexa-568 (Invitrogen, A11004), or
536 goat anti-guinea pig Alexa-568 (Invitrogen, A11075), Alexa 488 anti-rabbit antibody (Invitrogen,
537 A11008; 1:500 dilution), Alexa 488 anti-mouse antibody (Invitrogen, A11001) antibodies were
538 incubated at room temperature for 30 min (all 1:500 in PBS with 2% BSA). Images were captured
539 as 15-25 z-stacks (0.1- μ m step size) on a Nikon Ti Eclipse microscope with a Yokogawa CSU-XI
540 spinning disc confocal with 100x (1.4 NA) Plan Apo objectives, and a Clara Interline CCD Camera
541 (Andor Technology) using MetaMorph software (Molecular Devices). Images were processed
542 using ImageJ using z-stack average maximum intensity projections and assembled in Adobe
543 Photoshop. For quantification of the percentage of bacteria with pUb and p62, only bacteria that
544 co-localized with rim-like patterns of the respective marker were scored as positive for staining.
545 To quantify pUb, p62, NDP52, OmpB, and OmpA signal per bacteria, z-stacks were projected as
546 stated above, and the edges of individual bacteria were marked by the freehand region of interest
547 (ROI) function in ImageJ. Subsequently, the average pixel intensity within that ROI was measured.
548 pUb/p62/NDP52 signal intensities were calculated by subtracting the average pUb/p62/NDP52

549 signal of WT bacteria from the pUb/p62/NDP52-value of each bacterium. OmpB signal intensity
550 was calculated by subtracting the average OmpB-signal of *ompB^{STOP}::tn* bacteria from the OmpB-
551 value of each bacterium. OmpA signal intensity was calculated by subtracting the average
552 background-signal (areas with no bacteria) from the OmpA-value of each bacterium.

553

554 **Sample preparation for mass spectrometry to determine the lysine methylome**

555 5×10^7 gradient-purified WT (Passage 6), *pkmt1::tn* (P4) and *pkmt2::tn* (P4) bacteria were
556 centrifuged at 11,000g for 3 min. Each pellet was resuspended in 50 μ L Tris (10 mM)-EDTA (10
557 mM), pH 7.6, and incubated for 45 min in a 45 °C water bath. Bacterial surface fractions were
558 recovered from the supernatant after centrifugation at 11,000g for 3 min. Pellet was resuspended
559 as above and incubated for additional 45 min at 45 °C before resuspension in 50 μ L Tris (10 mM)-
560 EDTA (10 mM). Both pellet and surface fractions were boiled at 95 °C for 10 min. Samples were
561 cooled to RT prior to addition of 20 μ L 50 mM NH₄HCO₃, pH 7.5, and 50 μ L of a 0.2% solution
562 of RapiGest (diluted in NH₄HCO₃, Waters, 186001861). Next, samples were heated at 80 °C for
563 15 min and cooled to RT before addition of 1 μ g of trypsin (Promega, V511A). Samples were
564 digested at 37 °C overnight. To hydrolyze the RapiGest, 20 μ L of 5% trifluoroacetic acid (TFA)
565 was added to samples which were incubated at 37 °C for 90 min prior centrifugation at 15000g for
566 25 min at 4 °C. Samples were desalted using C18 OMIX tips (Agilent Technologies, A57003100)
567 according to the manufacturer's instructions and sample volume was decreased to 20 μ L using a
568 SpeedVac vacuum concentrator. Samples were stored at 4 °C prior to analysis.

569

570 **TUBE assay and sample preparation for mass spectrometry**

571 To enrich for polyubiquitylated proteins, 3x10⁸ PFUs of “purified” WT (P6), *ompB^{STOP}::tn*
572 (P6) and *pkmt1::tn* (P4) and *pkmt2::tn* (P3) bacteria were centrifuged at 14,000g for 3 min at room
573 temperature. Next, to release the surface protein fraction, the bacterial pellets were resuspended in
574 lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA and 10% glycerol),
575 supplemented with 0.0031% v/v lysonase (Millipore, 71230), the deubiquitylase inhibitor PR619
576 (Life Sensor, SI9619) at a final concentration of 20 µM, and 0.8% w/v octyl β-D-glucopyranoside
577 (Sigma, O8001), and incubated on ice for 10 min with occasional pipetting of samples to break
578 pellet into smaller pieces. Subsequently, the lysate was cleared by centrifugation at 14,000g at 4
579 °C for 5 min and incubated with equilibrated agarose TUBE-1 (Life Sensor, UM401) for 3 h, at 4
580 °C. After binding of polyubiquitylated proteins to TUBE-1, agarose beads were washed 1 time
581 with TBS supplemented with 0.05% Tween and 5 mM EDTA, and subsequently 3 times with TBS
582 only (no Tween or EDTA) and centrifuged at 5,000g for 5 min. To prepare samples for MS
583 analysis, enriched proteins were digested at 37 °C overnight on agarose beads in RapiGest SF
584 solution (Waters, 186001861) supplemented with 0.75 µg trypsin (Promega, V511A). The reaction
585 was stopped using 1% TFA (Sigma, T6508). Octyl β-D-glucopyranoside was extracted using
586 water-saturated ethyl acetate (Sigma, 34858). Prior to submission of samples for mass
587 spectrometry analysis, samples were desalted using C18 OMIX tips (Agilent Technologies,
588 A57003100), according to the manufacturer’s instructions.

589

590 **Liquid chromatography-mass spectrometry**

591 Samples of proteolytically digested proteins were analyzed using a Synapt G2-Si ion
592 mobility mass spectrometer that was equipped with a nanoelectrospray ionization source (Waters).
593 The mass spectrometer was connected in line with an Acquity M-class ultra-performance liquid

594 chromatography system that was equipped with trapping (Symmetry C18, inner diameter: 180 μm ,
595 length: 20 mm, particle size: 5 μm) and analytical (HSS T3, inner diameter: 75 μm , length: 250
596 mm, particle size: 1.8 μm) columns (Waters). Data-independent, ion mobility-enabled, high-
597 definition mass spectra and tandem mass spectra were acquired in the positive ion mode (23-25).
598 Raw data acquisition was controlled using MassLynx software (version 4.1), and tryptic peptide
599 identification and relative quantification using a label-free approach (26, 27) were performed using
600 Progenesis QI for Proteomics software (version 4.0, Waters). Raw data were searched against
601 *Rickettsia parkeri* and *Chlorocebus sabaeus* protein databases (National Center for Biotechnology
602 Information, NCBI) to identify tryptic peptides, allowing for up to three missed proteolytic
603 cleavages, with diglycine-modified lysine (i.e., ubiquitylation remnant) and methylated lysine as
604 variable post-translational modifications. Calculation of the percentage of lysine methylation
605 (mono, di, tri or unmethylated), for each bacterial strain, was performed by dividing the abundance
606 of a residue/protein bearing a modification by the total abundance and multiplying by 100. Data-
607 dependent analysis was performed using an UltiMate3000 RSLCnano liquid chromatography
608 system that was connected in line with an LTQ-Orbitrap-XL mass spectrometer equipped with a
609 nanoelectrospray ionization source, and Xcalibur (version 2.0.7) and Proteome Discoverer
610 (version 1.3, Thermo Fisher Scientific, Waltham, MA) software, as described elsewhere (28).
611

612 **Localization of tagged ubiquitin and ubiquitin pull-downs**

613 To assess localization of 6xHis-ubiquitin during infection, confluent Vero cells grown in
614 24-well plates with coverslips were transfected with 2 μg of pCS2-6xHis-ubiquitin plasmid DNA
615 using Lipofectamine 2000 (Invitrogen, 11668-019) for 6 h in Opti-MEM (Gibco, 31985-070).
616 Subsequently, media were exchanged to media without transfection reagent, and cells were

617 incubated overnight at 37 °C and 5% CO₂. The following day (~16 h after transfection), transfected
618 cells were infected with purified WT or mutant bacteria at a MOI of 1. At 28 h.p.i., infected cells
619 were fixed with 4% PFA diluted in PBS, pH 7.4 for 10 min, then washed 3 times with PBS. Primary
620 anti-6xHis monoclonal mouse antibody (Clontech, 631212, diluted 1:1,000) was used to detect
621 6xHis-ubiquitin in samples permeabilized with 0.5% Triton-X100, and a goat anti-mouse Alexa-
622 568 (Invitrogen, A11004) to detect the primary 6xHis antibody. Hoechst (Thermo Scientific,
623 62249, diluted 1:2500) was used to detect host and bacterial DNA. Samples were imaged as
624 already described.

625 For ubiquitin pull-downs, confluent Vero cells grown in 6-well plates were transfected and
626 infected as described above. At 28 h.p.i., cells were washed once with 1x PBS, pH 7.4, and
627 subsequently lysed in urea lysis buffer (8 M urea, 50 mM Tris-HCl, pH 8.0, 300 mM NaCl, 50
628 mM Na₂HPO₄, 0.5% Igepal CA-630 (Sigma, I8896)) for 20 min at RT. Subsequently, samples
629 were sonicated, and lysate was cleared by centrifugation at 15000g for 15 min at room temperature.
630 Prior to incubation with Ni-NTA resin, an aliquot was saved for the input sample. 6xHis-ubiquitin
631 conjugates were purified by incubation and rotation with Ni-NTA resin for 3 h, at RT, in the
632 presence of 10 mM imidazole. Beads were washed 3 times with urea lysis buffer and 1 time with
633 urea lysis buffer lacking Igepal CA-630. Ubiquitin conjugates were eluted at 65 °C for 15 min in
634 2x Laemmli buffer containing 200 mM imidazole and 5% 2-mercaptoethanol (Sigma, M6250),
635 vortexed for 90 seconds, and centrifuged at 5000g for 5 min at RT. Eluted and input proteins were
636 detected by SDS-PAGE followed by western blotting, as described above.

637

638 **Animal experiments**

639 Animal research using mice was conducted under a protocol approved by the UC Berkeley
640 Institutional Animal Care and Use Committee (IACUC) in compliance with the Animal Welfare
641 Act. The UC Berkeley IACUC is fully accredited by the Association for the Assessment and
642 Accreditation of Laboratory Animal Care International and adheres to the principles of the Guide
643 for the Care and Use of Laboratory Animals. Infections were performed in a biosafety level 2
644 facility. Mice were age-matched between 8 and 18 weeks old. Mice were selected for experiments
645 based on their availability, regardless of sex. All mice were healthy at the time of infection and
646 were housed in microisolator cages and provided chow and water. Littermates of the same sex
647 were randomly assigned to experimental groups. For infections, *R. parkeri* was prepared by
648 diluting 30%-prep bacteria into cold sterile 1x PBS to 5×10^6 PFU per 200 mL. Bacterial
649 suspensions were kept on ice during injections. Mice were exposed to a heat lamp while in their
650 cages for approximately 5 min, and then each mouse was moved to a mouse restrainer (Braintree,
651 TB-150 STD). The tail was sterilized with 70% ethanol, and 200 μ L of bacterial suspensions were
652 injected using 30.5-gauge needles into the lateral tail vein. Body temperatures were monitored
653 using a rodent rectal thermometer (BrainTree Scientific, RET-3). Mice were monitored daily for
654 clinical signs of disease, such as hunched posture, lethargy, or scruffed fur. If a mouse displayed
655 severe signs of infection, as defined by a reduction in body temperature below 90 °F or an inability
656 to move around the cage normally, the animal was immediately and humanely euthanized using
657 CO₂ followed by cervical dislocation, according to IACUC-approved procedures (16).
658

659 **Statistical analysis, experimental variability and reproducibility**

660 Statistical parameters and significance are reported in the legends. Data were considered
661 to be statistically significant when $p < 0.05$, as determined by a one-way ANOVA with Dunnett's

662 post-hoc test, a Kruskal-Wallis test with Dunn's post-hoc test, a Brown-Forsyth and Welch
663 ANOVA with Dunnett's post-hoc test, or a two-way ANOVA (all two-sided). Statistical analysis
664 was performed using PRISM 6 software (GraphPad Software). If not otherwise described, n
665 indicates the number of independent biological experiments executed at different times.