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Abstract:  16 

Animal behavior usually has a hierarchical structure and dynamics. Therefore, to understand 17 

how the neural system coordinates with behaviors, neuroscientists need a quantitative description of the 18 

hierarchical dynamics of different behaviors. However, the recent end-to-end machine-learning-based 19 

methods for behavior analysis mostly focus on recognizing behavioral identities on a static timescale 20 

or based on limited observations. These approaches usually lose rich dynamic information on cross-21 

scale behaviors. Inspired by the natural structure of animal behaviors, we addressed this challenge by 22 

proposing a novel parallel and multi-layered framework to learn the hierarchical dynamics and generate 23 

an objective metric to map the behavior into the feature space. In addition, we characterized the animal 24 

3D kinematics with our low-cost and efficient multi-view 3D animal motion-capture system. Finally, 25 

we demonstrated that this framework could monitor spontaneous behavior and automatically identify 26 

the behavioral phenotypes of the transgenic animal disease model. The extensive experiment results 27 

suggest that our framework has a wide range of applications, including animal disease model 28 

phenotyping and the relationships modeling between the neural circuits and behavior. 29 

 30 

Key Words: Behavioral structure-inspired; 3D motion capture; Behavioral dynamics; Computational 31 

ethology; Behavior phenotyping. 32 
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Introduction:  34 

The structure of animal behavior follows a bottom-up hierarchy constructed by time-varying 35 

posture dynamics, which has been demonstrated to be classical in ethological theory 1,2 and recent 36 

animal studies 3–6. Such behavioral organization is considered to coordinate with neural activities 7,8. 37 

Previous studies 9–11 using large-scale neuronal recordings have provided preliminary evidence from 38 

the neural implementation perspective. As the central goal of modern neuroscience, fully decoding this 39 

cross-scale dynamic relationship requires comprehensive quantification of neural activity and behavior. 40 

Over the past few decades, scientists have been working on improving the accuracy and throughput of 41 

neural dynamics manipulation and capturing. Meanwhile, for behavior quantification, there has been a 42 

revolution from simple behavioral parameters extraction to machine-learning (ML)-based behavior 43 

sequence recognition 12,13. However, most previous methods 14,15 often emphasized feature engineering 44 

and pattern recognition for mapping raw data to behavioral identities. These black-box approaches lack 45 

the interpretability of cross-scale behavioral dynamics. Thus, it is a challenging task, but with a strong 46 

demand, to develop a general-purpose framework for the dynamic decomposition of animal 47 

spontaneous behavior. 48 

Previous researchers addressed this challenge mainly from two aspects. The first aspect is 49 

behavioral feature capturing. Conventional animal behavior experiments usually use a single camera 50 

top-view recording to capture the motion signal of behaving animals, leading to occlusions of the key 51 

body parts (e.g., paws), and these are very sensitive to viewpoint differences 16. The recent emergence 52 

of ML toolboxes 17–19 has dramatically facilitated the animal pose estimation with multiple body parts. 53 

Thus, it enables us to study the animal kinematics more comprehensively and provides potential 54 

applications for capturing 3D animal movements. The second aspect is decomposing continuous time-55 

series data into understandable behavioral modules. Previous studies on lower animals such as flies 56 

10,20–22, zebrafishes 4,23–25 and C. elegans 26–28 utilized ML strategies and multivariate analysis to detect 57 

action sequences. However, mammalian behavior is highly complicated. Besides locomotion, animals 58 

demonstrate non-locomotor movement (NM) with their limbs (e.g., grooming, rearing, turning), and 59 

their organs have high-dimensional 29–31 and variable spatio-temporal characteristics. Even for similar 60 

behaviors, the duration and composition of postural sequences vary. To define the start and end 61 

boundaries to segment continuous data into behavioral sequences, many ML-based open-source 62 

toolboxes 21 and commercial software do excellent work in feature engineering. They usually compute 63 

per-frame features that refer to position, velocity, or appearance-based features. The sliding windows 64 

technology then converts them into window features to reflect the temporal context 14,15. Although these 65 

approaches effectively identify specific behaviors, behavior recognition becomes problematic when the 66 

dynamics of particular behaviors cannot be represented by window features.  67 

The present study proposes a hierarchical 3D-motion learning framework to address our 68 

contribution to these challenges. First, we acquired the 3D markerless animal skeleton with tens of body 69 
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parts by the developed flexible and low-cost system. Through the systematic validations, we proved 70 

that our system can solve the critical challenges of body occlusion and view disappearance in animal 71 

behavior experiments. Second, aiming at the parallel and hierarchical dynamic properties of 72 

spontaneous behavior, we were the first to propose a decomposition strategy preserving the behavior’s 73 

natural structure. With this strategy, the high-dimensional, time-varying and continuous behavioral 74 

series can be represented as various quantifiable movement parameters and low-dimensional behavior 75 

map. Third, we obtained a large sample of the Shank3B-/- mouse disease model data resources with our 76 

efficient framework. The results showed that our framework could detect behavioral biomarkers that 77 

have been identified previously and discover potential new behavioral biomarkers. Finally, together 78 

with the further group analysis of the behavioral monitoring under different experimental apparatus, 79 

lighting conditions, ages, and sexes, we demonstrated our framework could contribute to the 80 

hierarchical behavior analysis, including postural kinematics characterization, movement phenotyping, 81 

and group level behavioral patterns profiling. 82 

Results: 83 

Framework of Hierarchical 3D-motion Learning 84 

Our framework first requires the preparation of the animal postural feature data (Fig. 1a). These 85 

data can be continuous body parts trajectories that comprehensively capture the motion of the animal’s 86 

limbs and torso, and they inform the natural characteristics of locomotion and NM. Locomotion can be 87 

represented by velocity-based parameters. NM is manifested by movement of the limbs or organs 88 

without movement of the torso and is controlled by dozens of degrees of freedom 32. Hence, we adopted 89 

a parallel motion decomposition strategy to extract features from these time-series data independently 90 

(Fig. 1b, c). A two-stage dynamic temporal decomposition algorithm was applied to the centralized 91 

animal skeleton postural data to obtain the NM space. Finally, together with the additional velocity-92 

based locomotion dimension, unsupervised clustering was used to reveal the structure of the rodent’s 93 

behavior.  94 

Our framework has two main advantages. First, it addresses the multi-timescale of animal 95 

behavior 33. Animal behavior is self-organized into a multi-scale hierarchical structure from the bottom 96 

up, including poses, movements, and ethograms 34,35. The poses and movements are low- and 97 

intermediate-level elements 36, while higher-level ethograms are stereotyped patterns composed of 98 

movements that adhere to inherent transfer rules in certain semantic environments 37. Our two-stage 99 

pose and movement decomposition focuses on extracting the NM features of the first two layers. Second, 100 

our framework emphasizes the dynamic and temporal variability of behavior. The most critical aspect 101 

of unsupervised approaches is to define an appropriate metric for quantifying the relationship between 102 

samples. However, the duration and speed of NM segments of the same cluster may differ. To address 103 

this, we used a model-free approach called DTAK as a metric to measure the similarity between the 104 
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NM segments and thus equip the model to automatically search repeatable NM sequences. We then 105 

apply the uniform manifold approximation and projection (UMAP) 38 algorithm to visualize high-106 

dimensional NM representations. After combining the locomotion dimension with NM space (Fig. 1c), 107 

we adopted hierarchical clustering to re-cluster the components and map the behavior’s spatial structure 108 

(Fig. 1d).  109 

Collecting Mouse Motion Data with a 3D Multi-view Motion Capture System  110 

To efficiently and comprehensively characterize the kinematics of free-moving animals, we 111 

developed a 3D multi-view motion capture system (Fig. 2a, b) based on recent advances in techniques 112 

for pose estimation17 and 3D skeletal reconstruction 39. The most critical issues in 3D animal motion 113 

capture are efficient camera calibration, body occlusion, and viewpoint disappearance, which have not 114 

been optimized or verified 12. To address these issues, we developed a multi-view video capture device 115 

(Supplementary Fig. 2a). This device integrates the behavioral apparatus, an auto-calibration module 116 

(Supplementary Fig. 2b, d), and synchronous acquisition of multi-view video streams (Supplementary 117 

Fig. 2c). While the conventional manual method requires half an hour to produce the required 118 

checkerboard for calibration, the auto-calibration module can be completed in one minute.  119 

We collected the naturalistic behavioral data of free-moving mice in a featureless circular open-120 

field (Supplementary Fig. 2a, and Supplementary Video 1). We analyzed the mouse skeleton as 16 parts 121 

(Fig. 2c) to capture the movements of the rodent’s head, torso, paws, and tail. The following motion 122 

quantification did not involve the motion features of two parts of the tail. The data obtained from 123 

tracking representative mouse poses tracking (Fig. 1d) includes the 3D coordinates (x, y, and z) of the 124 

body parts, which reveal that the high-dimensional trajectory series exhibits periodic patterns within a 125 

specific timescale. We next investigated whether the 3D motion capture system could reliably track the 126 

animal in cases of body-part occlusion and viewpoint disappearance. We checked the DeepLabCut 127 

(DLC) tracking likelihood in the collated videos (0.9807 ± 0.1224, Supplementary Fig. 4a) and 128 

evaluated the error between the estimated 2D body parts of every training set frame and the ground 129 

truth (0.534 ± 0.005%, Supplementary Fig. 5b). These results indicated that in most cases, four cameras 130 

were available for 2D pose tracking. Since 3D reconstruction can be achieved as long as any two 131 

cameras obtain the 2D coordinates of the same point in 3D space from different views, the 132 

reconstruction failure rate caused by body occlusion and viewpoint disappearances is determined by the 133 

number of available cameras. Therefore, we evaluated the average proportion of available cameras in 134 

situations of body part occlusion and viewpoint disappearance. The validation results for body-part 135 

occlusion show an average reconstruction failure rate of only 0.042% due to body occlusion or 136 

inaccurate body-part estimation (Supplementary Fig. 5c). While for viewpoint disappearances, both 137 

tests (Supplementary Fig. 6, and Supplementary Video 4, 5) proved that our system has a high 138 

reconstruction rate for animal body parts. Moreover, the artifact detection and correction features can 139 
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recover the body parts that failed to be reconstructed. We calculated an overall reconstruction quality 140 

(0.9981 ± 0.0010, Fig. 2d) to ensure that the data were qualified for downstream analysis. 141 

Decomposing Non-Locomotor Movements with Dynamic Time Alignment Kernel  142 

Conceptually, behavior adheres to a bottom-up hierarchical architecture (Fig. 3a) 34,35, and 143 

research has focused on elucidating behavioral component sequences contained in stimuli-related 144 

ethograms 40. The purpose of the two-stage NM decomposition is to bridge the low-level vision features 145 

(postural time-series) to high-level behavioral features (ethograms). The first stage of the decomposition 146 

involves extracting postural representations from postural feature data. Since the definition of NM does 147 

not involve the animal’s location or orientation, we pre-processed these data through center alignment 148 

and rotation transformation (Supplementary Fig. 7). Animal movement is continuous, and due to the 149 

high dimensionality of the mammalian skeleton, the behaviorally relevant posture variables are 150 

potentially infinite in number 12. However, adjacent poses are usually highly correlated and redundant 151 

for behavior quantification and analysis 1, which is particularly evident in long-term recording. 152 

Therefore, for computational efficiency, we adopted a temporal reduction algorithm to merge adjacent, 153 

similar poses as postural representations in a local time range.  154 

In the second stage, NM modules are detected from temporal reduced postural representations. 155 

Unlike the static property of poses, mammalian movements have high dimensionality and large 156 

temporal variability 41: e.g., the contents, phases, and durations of the three pose sequences were not 157 

the same (Fig. 3a). Hence, we adopted a model-free approach to dynamically perform temporal aligning 158 

and cluster the temporally reduced postural representation data (Fig. 3b) 42. This problem is equivalent 159 

to providing a d-dimensional time-series 𝑋𝑋 ∈  ℜ𝑑𝑑×𝑛𝑛 of animal postural representations with n frames. 160 

Our task decomposes X into m NM segments, each of which belongs to one of the corresponding k 161 

behavioral clusters. This method detects the change point by minimizing the error across segments; 162 

therefore, dynamic temporal segmentation becomes a problem of energy minimization. An appropriate 163 

distance metric is critical for modeling the temporal variability and optimizing the NM segmentation of 164 

a continuous postural time-varying series. Although dynamic time warping (DTW) has commonly been 165 

applied in aligning time-series data, it does not satisfy the triangle inequality 43. Thus, we used the 166 

improved DTAK method to measure the similarity between time sequences and construct an energy 167 

equation (objective function) for optimization. The relationship between each pair of segments was 168 

calculated with the kernel similarity matrix K (Fig. 3c). DTAK was the used to compute the normalized 169 

similarity value of K and generate the paired-wise segment kernel matrix T (Fig. 3d). 170 

Because dynamic temporal segmentation is a non-convex optimization problem whose solution 171 

is very sensitive to initial conditions, this approach begins with a coarse segmentation process based on 172 

the spectral clustering method, which combines the kernel k-means clustering algorithms. To define the 173 

timescale of segmentation, the algorithm sets the maximum and minimum lengths [𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚, 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚] to 174 
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constrain the length of the behavioral component. For the optimization process, a dynamic 175 

programming (DP)-based algorithm is employed to perform coordinate descent and minimize energy. 176 

For each iteration, the algorithm updates the segmentation boundary and segment kernel matrix until 177 

the decomposition reaches the optimal value (Fig. 3e, f). The final segment kernel matrix represents the 178 

optimal spatial relationship between these NM segments, which can be further mapped into its feature 179 

space in tandem with dimensionality reduction (DR).  180 

We demonstrate the pipeline of this two-stage behavior decomposition (Fig. 3h) in a 181 

representative 300-s sample of mouse skeletal data. The raw skeletal traces were segmented into NM 182 

slices of an average duration of 0.89 ± 0.29 s. In these segments, a few long-lasting movements occurred 183 

continuously, while most others were intermittent (Fig. 3g). The trajectories of these movement slices 184 

can reflect the actual kinematics of the behaving animal. For instance, when the animal is immobile, all 185 

of its body parts are still; when the animal is walking, its limbs show rapid periodic oscillations. 186 

Consistent with our observations, the movements corresponding to the other two opposite NMs, left 187 

and right turning, tended to follow opposite trajectories. These preliminarily results demonstrated that 188 

DTAK can be used for the decomposition and mapping of NMs. 189 

Mapping Mouse Movements with Low-Dimensional Embeddings and Unsupervised 190 

Clustering 191 

We validated our framework in a single-session experiment with free-moving mouse behavioral 192 

data collected with the 3D motion capture system. First, the two-stage behavioral decomposition 193 

strategy decomposed the 15-minute experimental data into 936 NM bouts (Supplementary Video 2). A 194 

936×936 segment kernel matrix was then constructed using the DTAK metric. This segment kernel 195 

matrix could flexibly represent the relationship and provide insight into the relationships between each 196 

behavioral component sequence in their feature space. However, since the 936-D matrix cannot provide 197 

an informative visualization of behavioral structure, it is necessary to perform DR on this data. Various 198 

DR algorithms have been designed either to preserve the global representation of original data or to 199 

focus on local neighborhoods for recognition or clustering 44,45. Thus, in animal behavior quantification, 200 

we face a trade-off between discretizing behavior to provide a more quantitative analysis and 201 

maintaining a global representation of behavior to characterize the potential manifolds of neural-202 

behavioral relationships 46. Therefore, we first evaluated the commonly used DR algorithms from the 203 

standpoints of preserving either the global or the local structure. The evaluation results show that UMAP 204 

can balance both aspects for our data (Supplementary Fig. 8) and provide 2D embeddings of these NM 205 

segments. In addition, in our parallel feature fusion framework, the factor of an animal’s interaction 206 

with the environment – i.e., velocity – is considered an independent dimension. Together with 2D NM 207 

embedding, they construct a spatio-temporal representation of movements (Fig. 4a). 208 
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We used an unsupervised clustering algorithm to investigate the behavior’s spatio-temporal 209 

representation and identify the movement phenotypes. Most unsupervised clustering require a pre-210 

specified number of clusters, and the number chosen can be data-driven or refer to the context of the 211 

practical biological problem 47. In the single experimental data shown in Figure 4a, the data-driven 212 

Bayesian Information Criterion 48 in the R package mclust was adopted to determine that the optimal 213 

cluster number was 11 (Supplementary Fig. 10). We then recalculated the similarity matrices in the new 214 

feature space (Fig. 4b) and aggregated them using a hierarchical clustering method. Finally, we cut the 215 

original video into clips of 0.963 ± 0.497 s and manually labeled them according to the behavior of the 216 

rodents in the clip: running, trotting, stepping, diving, sniffing, rising, right turning, up stretching, 217 

falling, left turning, and walking (Supplementary Table 1). The locomotion types of running, trotting, 218 

stepping, and walking accounted for 20.6% of the total activities, indicating that animals spent most of 219 

the time in the NM stage (Fig. 4c). 220 

Although we phenotyped all the clips of the entire video, it was difficult to label the behaviors 221 

of the rodents with only 11 definitions. Further, there are various heterogeneous transition stages 222 

between bouts of stereotyped movements 20,31,49. Therefore, we evaluated them by calculating the intra-223 

cluster and inter-cluster correlation coefficients (intra-CC and inter-CC, respectively; Fig. 4d, Fig. 5b). 224 

Our results showed that running, up stretching and left turning have higher intra-CC and lower inter-225 

CC, while walking and sniffing have both higher intra-CC and higher inter-CC. This is because walking 226 

and sniffing co-occur with other movements 13, such as diving and turning, respectively. Finally, to 227 

evaluate the overall clustering quality, we integrated these two parameters and defined the Clustering 228 

Quality Index (CQI, Fig. 4e), which helped to determine the stereotyped/non-stereotyped movements. 229 

Kinematic Validation of Mouse Behavioral Phenotypes 230 

 DTAK is an abstract extraction of animal motions that aims to simplify the complex temporal 231 

dynamics of behavior. Hence, we further elucidated whether the spatial kinematics of the original 232 

postural time-series of the behavioral phenotypes (e.g., running, rearing, sniffing, turning) identified 233 

with this framework were homogeneous. Manually inspecting the position, moving, bending, and other 234 

characteristics of the mouse limbs and trunk in the video clips of each phenotype group (Supplementary 235 

Video 3), we found reliable homogeneity for clips with high CQIs (CQI>0.75). To provide a kinematic 236 

validation of the identified behavioral phenotypes from the perspectives of visualization and 237 

quantification, we first visualized the average skeleton, which was averaged over all frames in each 238 

movement cluster (Fig. 5a). While some movements could be clearly recognized (e.g., left and right 239 

turning, and up stretching), the differences between movements with similar postures (running, trotting, 240 

walking, etc.) were not. The detailed kinematic parameters, especially the velocity of each body part, 241 

could provide greater sensitive differences than the unclear visually-based assessments 50. Therefore, 242 

we defined movement intensity (MI) as a metric for characterizing the kinematics of each body part in 243 
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each behavioral phenotype (see Supplementary Methods for further details). MI is related to velocity, 244 

and it contains both horizontal and vertical components. The data show that the horizontal MI 245 

components of running and trotting are the highest, followed by stepping and walking. Vertical MI 246 

components (e.g., up stretching, rising, and falling) feature richer details; we attribute their high overall 247 

vertical MI to the movement of the nose and front claws (Fig. 5a, c-e). This approach of creating 248 

portraits for each type of movement provides further support for the efficacy of our framework in the 249 

decomposition of animal behavior. The dendrogram of the movements (Fig. 5a) revealed that similar 250 

movements were arranged were closely, such as running and trotting. Interestingly, falling and left 251 

turning were on close clades. Review of the video clips of these two groups demonstrated that 37.18% 252 

of the movements in this group occurred simultaneously with left turning (28.85% for right turning). A 253 

similar phenomenon occurred in the clades of diving and sniffing due to the co-occurrence of these 254 

behaviors. The correlation and linear regression analysis of these two pairs of clades showed that both 255 

intra-CC and inter-CC were relatively high (Fig. 5b), suggesting several concomitant descriptions of 256 

animal behavior. These clustering results occurred because these movements show more characteristics 257 

of the current class.  258 

Identification of the Behavioral Signatures of the Mouse Disease Model 259 

Animal disease models play an increasingly critical role in expanding understanding of the 260 

mechanisms of human diseases and novel therapeutic development 51–53. Behavioral phenotyping 261 

provides a noninvasive approach to the assessment of neuropsychiatric disorders in animal models. By 262 

only evaluating spontaneous behavior without any induced conditions, we demonstrate the usability 263 

and unbiased character of our framework for animal phenotyping. We collected data from 20 mice (Fig. 264 

6a, nKO = 10, nWT = 10) with our 3D motion capture system and subjected them to routine velocity and 265 

anxiety index analyses (Fig. 6b-e). In agreement with prior research, we found a significant difference 266 

between the average velocities of the two groups.  267 

 We clustered the behavioral components of the 20 animals and obtained 41 behavioral 268 

phenotypes (Fig. 6f, Supplementary Fig. 10). Compared with the single-session experiment, the group 269 

analysis revealed diverse behavioral types. We found that Shank3B Knock-out (KO, Shank3B-/-) mice 270 

spent a significantly higher proportion of their time engaging in four of the movements (Fig. 6g, 271 

Supplementary Table 3). By manually reviewing the video clips of these four types, we annotated the 272 

38th movement (M38 in Fig. 6g) as hunching; we also found that three of the movements were very 273 

similar (closely arranged on the behavioral dendrogram, Fig. 6g). Therefore, we grouped them and 274 

annotated them as self-grooming. In previous studies 54–56, self-grooming has been widely reported in 275 

Shank3B-/- mice. This is partly attributable to self-grooming being a long-lasting movement (4.48 ± 7.84 276 

s, mean ± standard deviation [SD]) and thus easily recognized by human observation or software (Fig. 277 

6i). Interestingly, although hunching has only previously been reported in a few related studies 57–59, 278 
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our framework frequently detected hunching movements in KO mice. This novel finding can be 279 

attributed to the duration of a single continuous hunching movement being too short to be noticed (1.29 280 

± 1.00 s, mean ± SD) as well as to the similarity between the kinematics of hunching and rearing (M31). 281 

We proved that these two types of movements belong to distinct behavioral phenotypes. Specifically, 282 

during hunching, mice maintain an arcuate spine angle, while rearing is characterized by a stronger, 283 

wider range of necks and head motions (Fig. j-n). This ability to identify short-term and fine behavioral 284 

modules is one of the advantages of our framework. Besides the four phenotypes that KO mice preferred 285 

more than the WT mice did, the KO mice also showed four additional deficit behavioral phenotypes, 286 

namely stepping (M5), walking (M14), and two types of rising (M21 and M22). This result indicates 287 

that the locomotion intensity and vertical movement of KO mice were lower than those of WT mice. 288 

The locomotion result is consistent with the average velocity comparison shown in Fig. 6b. 289 

Finally, we demonstrated that by modeling the time spent of multi-behavioral parameters, our 290 

framework could identify the animal types. We used UMAP to perform DR of the 41-dimensional 291 

behavioral proportion data of all movement types. As expected, the two genotypes of animals were well 292 

separated in the low-dimensional space (Fig. 6h), even though there were large amounts of baseline 293 

movements with no significant difference. We defined these two types as “autistic-like behavior space.” 294 

Recent reviews suggest that most previous methods 60,61, which usually only consider a few behavioral 295 

parameters and may lose critical insights, have been challenged in the animal phenotypes’ identification. 296 

Hence, these findings indicate the potential advantages of our framework to automatically identify 297 

disease models.   298 

Discussion 299 

Inspired by the natural structure of animal behavior, the current study presents a framework for 300 

discovering quantifiable behavioral modules from high-dimensional postural time-series by combining 301 

dynamic temporal decomposition and unsupervised clustering. Behavior decomposition adopts a 302 

parallel, two-stage approach to extract animal motion features in accordance with the natural structure 303 

of animal behavior. We used DTAK to measure the similarity between behavioral modules and applied 304 

further low-dimensionality embedding to represent the behavior’s underlying feature space. The 305 

unsupervised clustering identified behavioral phenotypes from the feature space and helped to 306 

automatically assess the behavioral experiment data. In addition, the clustering step could quickly 307 

generate large amounts of distinct unlabeled behavior groups. By manually assigning annotations to 308 

each group, our framework will potentially facilitate semi-supervised behavior recognition.  309 

Our framework has two main advantages. First, our approach of tracking multiple body parts 310 

and acquiring 3D reconstruction data achieves better performance than similar recently reported rodent 311 

behavioral recognition frameworks 14,62. The multi-view motion capture system can avoid animal body 312 

occlusion and view-angle bias and estimate the pose optimally by flexibly selecting the view to use 313 
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according to the tracking reliabilities of the different views. We also confirmed the necessity of using 314 

multi-view cameras in complex experimental scenes, whereas in the simple experimental scenes, only 315 

three or even two cameras were needed (Supplementary Fig. 4). More importantly, our behavior 316 

decomposition framework emphasizes the extraction of the temporal dynamics of movements. Without 317 

making model assumptions, similar movements with various time durations and temporal variability 318 

can be efficiently represented by the self-similarity matrix. We proved that this similarity matrix is a 319 

reliable objective metric by evaluating the consistency of clustered behavior phenotypes. We further 320 

performed DR to visualize the behavioral map, which facilitates exploring the evolution of movement 321 

sequences of higher-order behavior and behavioral state transition caused by neural activity. For 322 

example, to study animal circadian rhythms, previous researchers have used behavioral recording 323 

approaches to characterize different brain states 63–65. We used our framework to perform a continuous 324 

24-hour behavioral recording, and the preliminary analysis proved that our framework could provide 325 

more comprehensive behavioral parameters and detailed quantification of behavior states 326 

(Supplementary Fig. 13). In addition, innate defensive behavior is considered to consist of three specific 327 

movement phases 37,66, but data supporting this idea is lacking. Hence, our future work will focus on 328 

modeling the transition patterns of innate behavior based on the behavioral map. 329 

Comprehensive and unbiased behavioral phenotyping is becoming a powerful approach to the 330 

study of behavioral abnormalities in animal models of neuropsychiatric disorders. In this study, we 331 

demonstrate its application to the monitoring of Shank3B mutant mice that show autistic-like behaviors. 332 

Our framework helped to reveal that Shank3B-/- engage in eight types of spontaneous behaviors 333 

significantly more often than WT mice; While grooming has been extensively observed in murine 334 

models of restricted, repetitive behavior, short-term hunching behavior has not. Previous studies 54,55 335 

mentioned that the rearing behavior of Shank3B KO mice also differs from that of WT mice; however, 336 

because hunching is kinematically similar to rearing, it is difficult to distinguish these two types by 337 

human observation or algorithms. Our 3D and sub-second methods will help to identify new behavioral 338 

biomarkers and advance understanding of the neural circuit mechanisms underlying behavioral changes 339 

caused by genetic mutations. Moreover, we further investigated the differences in the behavior patterns 340 

of Shank3B KO and WT mice at the group level. In addition to the data that had already been analyzed 341 

(collected under the condition: male mice, 5–6 weeks, white light, and circular open-field), we extended 342 

the group behavioral pattern analysis to include data collected under different conditions (i.e., different 343 

experimental apparatus, lighting, age, and sex; Supplementary Table 2). We calculated the cross-344 

correlation coefficient matrix (CCCM) of all samples based on the movement fractions and used 345 

principal component analysis to extract the main variance factors of the CCCM (Supplementary Fig. 346 

12 a, b). We found that when only a single condition was changed for male mice, there was no 347 

significant difference in population behavior patterns in mice with the same genotype (Supplementary 348 

Fig. 12 c). We also found that although some female KO mice had a weak tendency for autistic-like 349 

behavior, there was no significant difference between 5–6 week male and female KO mice at the group 350 
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level when tested under the white-light circular open field condition (Supplementary Fig. 12 c, d). 351 

Finally, we compared the behavior patterns when all conditions were the same except for the genotypes. 352 

The results showed that only the female group showed no significant difference between KO and WT 353 

genotypes, while significant differences in behavioral patterns were found between KO and WT male 354 

mice under all other conditions. These findings are consistent with previous reports that Shank3B KO 355 

male mice display more severe impairments than females do in motor coordination 67. Accordingly, the 356 

behavior phenotyping on mouse disease model can be generalized to large animals such as non-human 357 

primates, dogs, and pigs which recently emerged as valuable models for studying neurological 358 

dysfunctions 52,53. Our general-purpose framework further benefits from the significant advantage of 359 

being able to capture and analyze large animal movements, which have more complex 3D 360 

characteristics and temporal dynamics. 361 

The dynamic, high-dimensional, and multi-scale characteristics of behavior can be attributed 362 

to similar properties of the nervous system produces it. While the most advanced large-scale 363 

neuroimaging and high spatiotemporal resolution electrophysiological techniques allow researchers to 364 

elucidate the details of the firing timing of all neurons and neurofunctional connections at all scales, 365 

they cannot inform the mapping of the neural-behavioral relationship without quantifying behavior at 366 

the corresponding level. In other words, to understand the encoding/decoding relationship rules of the 367 

neural activity generating behavior and behavior’s neural representation, synchronization of large 368 

population activities and accurate measurement and identification of naturalistic, complex behavior are 369 

required. In the future, we will focus on combining our framework with free-moving two-photon 370 

microscopy and electrophysiological recording to link the neural activity patterns and functional brain 371 

connections with the cross-scale behavioral dynamics and timing patterns. Therefore, with further 372 

technical optimization and the open-source of a large sample, well-annotated disease model behavior 373 

database open source, our framework may contribute to resolving the relationships between complex 374 

neural circuitry and behavior, as well as to revealing the mechanisms of sensorimotor processing.   375 

Lastly, we would like to discuss the limitations of our framework. When extending our 376 

framework to social behavior analysis, such as the analysis of mating, social hierarchy, predation, and 377 

defense behaviors, it is challenging to track multiple, visually indistinguishable (markerless) animals 378 

without identity-swapping errors (Supplementary Video 6, 7). Alternative methods mainly focus on 379 

tracking and identifying social behaviors at the population level, which only requires the identification 380 

of features unrelated to the animals' identities such as the positional differences between animals' body 381 

parts 68. However, this approach is limited to specific behaviors and does not apply to interaction 382 

behaviors between social subjects of unequal status. Recent cutting-edge toolboxes such as DLC for 383 

multi-animal pose estimation 17, SLEAP 69, and AlphaTracker 70 have addressed the multi-animal 384 

tracking problem, but once animals with similar appearances are touching or even body-occluded, the 385 

inaccurate pose estimation of these toolboxes leads to off-tracking and identity-swapping errors. This 386 

is because when estimating multiple body parts of several animals in a single frame, the combination 387 
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of the poses of these animals is more complex and diverse, and identity-swapping in different views 388 

may happen at different times. Our 3D multi-view motion capture system promises to solve this problem 389 

by effectively reducing body-occlusion probability. As a next step, we are considering using computer 390 

vision technology (e.g., point cloud reconstruction) to fuse images from multiple views, then segment 391 

each animal's body, and estimate the body parts based on the reconstructed 3D animal. Solving these 392 

problems will extend the applicability of our framework to the benefit of the animal behavioral research 393 

community. 394 
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Fig. 1 | Hierarchical 3D-motion learning framework for animal behavior analysis. a Data 592 

preparation: 1) image streams captured from four cameras with different 2D views; 2) animal body 593 

parts are tracked to generates separate 2D skeletal trajectories (color-coded traces); 3) reconstructing 594 

3D body skeleton by integrating these four data streams. b Two-stage NM decomposition to generate 595 

the feature space: 1) pose decomposition groups continuous skeleton postural data into discrete postural 596 

sequences); 2) NM decomposition, two high-lighted (green and orange) blocks represent two NMs 597 

decomposed from the postural sequences; 3) NM sequences mapped to their 2D features space (right), 598 

where each dot on the 3D axis corresponds to the NM block on the left. c Calculation of locomotion 599 

dimension. The continuous velocity of the behaving animal is first calculated, then average the velocity 600 

of each segment obtained in the NM decomposition step. d 3D scatter plot represents the combined NM 601 

and locomotion feature space. All the movements are clustered into three types (red, green, and orange 602 

dots) with the unsupervised approach. 603 
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Fig. 1 | Hierarchical 3D-motion learning framework for animal behavior analysis. a Data preparation: 1) 
image streams captured from four cameras with different 2D views; 2) animal body parts are tracked to generates 
separate 2D skeletal trajectories (color-coded traces); 3) reconstructing 3D body skeleton by integrating these 
four data streams. b Two-stage NM decomposition to generate the feature space: 1) pose decomposition groups 
continuous skeleton postural data into discrete postural sequences; 2) NM decomposition, two high-lighted 
(green and orange) blocks represent two NMs decomposed from the postural sequences; 3) NM sequences 
mapped to their 2D features space (right), where each dot on the 3D axis corresponds to the NM block on the 
left. c Calculation of locomotion dimension. The continuous velocity of the behaving animal is first calculated, 
then average the velocity of each segment obtained in the NM decomposition step. d 3D scatter plot represents 
the combined NM and locomotion feature space. All the movements are clustered into three types (red, green, 
and orange dots) with the unsupervised approach.

Id
en

tif
ie

d 
be

ha
vi

or
al

 
ph

en
ot

yp
es

t2t1t0

tn+
2

tn+
1tn t2t1t0

tn+
2

tn+
1tn

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2020.09.14.295808doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.295808
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript Page 19 

605 

606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

Fig. 2 | Collecting animal behavior trajectories via a 3D motion capture system. a Pipeline of 3D 619 

animal skeletal reconstruction. b Center, schematic diagram of recording animal behavior with four 620 

synchronized cameras; corners, frames captured by the cameras with the DLC labels (left) and the 621 

corresponding reconstructed skeletons (right). c Left: 16 key body parts include the nose, left ear, right 622 

ear, neck, left front limb, right front limb, left hind limb, right hind limb, left front claw, right front 623 

claw, left hind claw, right hind claw, back, root tail, middle tail, and tip tail. Right: representative mouse 624 

body tracking trace data collected over 100 s showing 48 data vectors obtained by DLC for each body 625 

part (indicated with a color-coded dot) encoded by x, y, and z coordinates. For visualization purposes, 626 

mean normalization is applied to each trace. d 3D reconstruction quality assessment: 1-best quality, 0-627 

worst quality. The quality of the data obtained from the 12 mice averaged at 0.9981 ± 0.001. 628 
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Fig. 2 | Collecting animal behavior trajectories via a 3D motion capture system. a Pipeline of 3D animal 
skeletal reconstruction. b Center, schematic diagram of recording animal behavior with four synchronized 
cameras; corners, frames captured by the cameras with the DLC labels (left) and the corresponding reconstructed 
skeletons (right). c Left: 16 key body parts include the nose, left ear, right ear, neck, left front limb, right front 
limb, left hind limb, right hind limb, left front claw, right front claw, left hind claw, right hind claw, back, root 
tail, middle tail, and tip tail. Right: representative mouse body tracking trace data collected over 100 s showing 
48 data vectors obtained by DLC for each body part (indicated with a color-coded dot) encoded by x, y, and z 
coordinates. For visualization purposes, mean normalization is applied to each trace. d 3D reconstruction quality 
assessment: 1-best quality, 0-worst quality. The quality of the data obtained from the 12 mice averaged at 
0.9981±0.001.
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Fig. 3 | Dynamic temporal decomposition of multi-scale hierarchical behavior. a Illustration of the 659 

three-layer bottom-up architecture for behavior. Top: The color-coded bars indicate the types of 660 

behavior components in the corresponding time period at that layer; each upper layer component is 661 

composed of the sequence of the lower layer. The instance of “approaching” is at the ethogram level 662 

which is composed of three movement level sequences, and each movement sequence includes a set of 663 

postural representations. b Representative animal postural trajectories (black traces) with two selected 664 

similar NM segments S1 and S2 (orange bars masked). c Discrete postural sequences S’1 (12 points) 665 

and S’2 (13 points) were decomposed from S1 and S2 and used to calculate their similarity kernel matrix 666 

K. d Segment kernel matrix T calculated with DTAK. Each pixel on the matrix represents the 667 

Fig. 3 | Dynamic temporal decomposition of multi-scale hierarchical behavior. a Illustration of the three-lay-
er bottom-up architecture for behavior. Top: The color-coded bars indicate the types of behavior components in 
the corresponding time period at that layer; each upper layer component is composed of the sequence of the 
lower layer. The instance of “approaching” is at the ethogram level which is composed of three movement level 
sequences, and each movement sequence includes a set of postural representations. b Representative animal 
postural trajectories (black traces) with two selected similar NM segments S1 and S2 (orange bars masked). c 
Discrete postural sequences S’1 (12 points) and S’2 (13 points) were decomposed from S1 and S2 and used to 
calculate their similarity kernel matrix K. d Segment kernel matrix T calculated with DTAK. Each pixel on the 
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normalized similarity value of the K for a pair of segments at the ith row and the jth column (e.g., the 668 

pixel in the black box indicates the final similarity of S1 and S2). e NM segments decomposed from the 669 

postural trajectories shown in b and their color-coded labels. Segments with the same color indicate 670 

that they belong to the same types due to their higher similarity. f Optimization process of dynamic 671 

temporal decomposition. Objective Value (OV) error decreases with each iteration until the termination 672 

condition is reached (maxi-mum number of iterations or OV converges). g Top, representative 300-s 673 

skeletal traces, where the trace slices highlighted in colors corresponding to the four types of typical 674 

NMs (left turn, immobile, walk, right turn). Bottom, magnification of representative traces of these four 675 

movement types. h Workflow of the two-stage behavioral decomposition. 676 
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Fig. 4 | Identify movement phenotypes on single experimental data. a Spatio-temporal feature space 702 

of behavioral components. Each dot on the 3D scatter plot represents a movement bout (n = 935 bouts). 703 

The 11 different colors indicate the corresponding to 11 movement types shown in d. b Upper, 704 

recalculated paired-wise similarity matrix, and they were rearranged with a dendrogram (lower). Each 705 

pixel on the matrix represents the normalized similarity value of a pair of movement bouts at the ith row 706 

and the jth column. The color-coded bars indicate the labels of clustered movement (middle). c Fractions 707 

of movement bouts number. For each subject, the behavior fractions are defined as the bouts number of 708 

each behavioral phenotype divide by the total number of behavior bouts the animal occurred during the 709 

experiment. d Intra-CC (color-coded) and inter-CC (grey dots) of each movement group. The dots on 710 

each violin plot represents their intra-CC or inter-CC, and dots number in a pair of violin plot in each 711 

group are the same (Intra-CC: 0.91±0.07; Inter-CC: 0.29±0.19). e Cumulative Distribution Function 712 

(CDF) of CQI of the movement clusters. The clusters represented by the curves on the right side have 713 

better clustering qualities, and their corresponding movements are more stereotyped. f The histogram 714 

of the duration of all movements (0.963±0.497s).  715 
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Fig. 4 | Identify movement phenotypes on single experimental data. a Spatio-temporal feature space of 
behavioral components. Each dot on the 3D scatter plot represents a movement bout (n = 935 bouts). The 11 
different colors indicate the corresponding to 11 movement types  shown in d. b Upper, recalculated paired-wise 
similarity matrix, and they were rearranged with a dendrogram (lower). Each pixel on the matrix represents the 
normalized similarity value of a pair of movement bouts at the ith row and the jth column. The color-coded bars 
indicate the labels of clustered movement (middle). c Behavior fractions. For each subject, the behavior fractions 
are defined as the bout number of each behavioral phenotype divided by the total number of behavior bouts the 
animal produced during the experiment. d Intra-CC (color-coded) and inter-CC (grey dots) of each movement 
group. The dots on each violin plot represents their intra-CC or inter-CC, and dots number in a pair of violin plot 
in each group are the same (Intra-CC: 0.91±0.07; Inter-CC: 0.29±0.19). e Cumulative Distribution Function 
(CDF) of CQI of the movement clusters. The clusters represented by the curves on the right side have better 
clustering qualities, and their corresponding movements are more stereotyped. f The histogram of the duration 
of all movements (0.963±0.497s). 
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 736 

Fig. 5 | Visualization and quantification of behavioral kinematics. a Average skeleton of all frames 737 

within each movement phenotype. The skeletons are shown with solid lines and calculated by averaging 738 

poses of body parts across time. The heatmaps overlaid on the average skeleton are the distribution and 739 

movement intensity (MI; see Supplementary Methods for further details) corresponding to each 740 

movement phenotype. b Correlation and linear regression plot of movement phenotypes. The horizontal 741 

axis represents the target, and the vertical axis represents the reference (see Supplementary Methods 742 

for further details). The color-coded and gray dots correspond to the intra- and inter-cluster correlation 743 

coefficients, respectively. c The comparison of MI between different movement phenotypes. Each 744 

movement segment has two MI components (red boxes, horizontal; blue boxes, vertical). The boxes’ 745 

values for each group contain the MIs of n behavioral modules (n is the number of behavioral modules 746 

of each group). d, e Horizontal and vertical MI of each body part in different movement phenotypes. 747 

The values on each line are the MIs of all behavior modules corresponding to the phenotype, shown by 748 

body parts separately and presented as mean ± standard deviation (SD). 749 
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Fig. 5  | Visualization and quantification of behavioral kinematics. a Average skeleton of all frames within 
each movement phenotype. The skeletons are shown with solid lines and calculated by averaging poses of body 
parts across time. The heatmaps overlaid on the average skeleton are the distribution and movement intensity 
(MI; see Supplementary Methods for further details) corresponding to each movement phenotype. b Correlation 
and linear regression plot of movement phenotypes. The horizontal axis represents the target, and the vertical 
axis represents the reference (see Supplementary Methods for further details). The color-coded and gray dots 
correspond to the intra- and inter-cluster correlation coefficients, respectively. c The comparison of MI between 
different movement phenotypes. Each movement segment has two MI components (red boxes, horizontal; blue 
boxes, vertical). The boxes’ values for each group contain the MIs of n behavioral modules (n is the number of 
behavioral modules of each group). d, e Horizontal and vertical MI of each body part in different movement 
phenotypes. The values on each line are the MIs of all behavior modules corresponding to the phenotype, shown 
by body parts separately and presented as mean ± standard deviation (SD).
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Fig. 6 | Spontaneous behavior analysis reveals autistic-like behaviors in Shank3B knock-out mice. 783 

a PCR genotyping for Shank3B+/+(Wild Type, WT), Shank3B-/- (Shank3B Knock-out, KO) mice. b-e 784 

Box plot of mean velocity, mean anxiety index, maximum velocity, and locomotion of the two groups 785 

of animals (purple: KO, n = 10, green: WT, n = 10; Statistics: Mann-Whitney test for maximum velocity; 786 

Unpaired T-test for others, **** P<0.0001), values are represented as mean ± SD. f Top: recalculated 787 

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Si
m

ila
rit

y

WT band

KO band

WT

Sha
nk

3B
 KO

374 bp

153 bp

0

0.05

0.1

0.15

0.2

0.25

Fr
ac

tio
ns

KO WT

0 100 200 300 400 500 600 700 800 900

Time [s]

KO#1
KO#2
KO#3
KO#4
KO#5
KO#6
KO#7
KO#8
KO#9

KO#10
WT#1
WT#2
WT#3
WT#4
WT#5
WT#6
WT#7
WT#8
WT#9

WT#10

Su
bj

ec
t

Hunching

Self-grooming

Stepping

Rising

Self
grooming

Hunching

M39 (****)
M40 (***)

M41 (****)

M38 (*)
M21 (**)
M22 (**)

M5 (**)

Walking
M14 (*)

Rising

Walking

Stepping

****

n.s.n.s.n.s.

g h

i

a fb

c d e

0

0.05

140 160 180 200 220

Spine angle [°]

0

0.05

Hunch Rear

Movement types

150

200

250

Sp
in

e 
an

gl
e 

[°]

Neck Back Tail

Body parts

0

0.05

0.1

0.15

N
or

m
-e

ne
rg

y.
 [a

.u
.]

y

z

x

Neck Back Tail root

Rearing

Hunching

j k l m n
****

****
****

n.s

Fig. 6 | Spontaneous behavior analysis reveals autistic-like behaviors on shank3B knock-out mice. a PCR genotyping 
for Shank3B+/+(Wild Type, WT), Shank3B-/- (Shank3B Knock-out, KO) mice. b-e Box plot of mean velocity, mean anxiety 
index, maximum velocity, and locomotion of the two groups of animals (purple: KO, n=10, green: WT, n=10; Statistics: 
Mann-Whitney test for maximum velocity; Unpaired T-test for others, **** P<0.0001), values are represented as mean±std. 
f Top: recalculated paired-wise similarity matrix. The movement bouts of all of the 20 involved mice were grouped (n = 
16607) and were rearranged with dendrogram (g). Each pixel on the matrix represents the normalized similarity value of a 
pair of movement bouts at the ith row and the jth column. The color-coded bars (41 clusters) indicate the movements being 

clustered (bottom); g Comparison of the fraction of movement types between KO mice and WT mice. The bold traces and 
shadows indicate the mean±sem. Fractions of each group and light color traces are the fractions of all 20 mice (purple: KO, 
n=10, green: WT, n=10). Middle color-coded labels and dendrogram indicate the movement types. Eight movements have 
significant differences between the two groups, and the fractions of the four movements that KO mice prefer are hunching 
(M38: KO 3.00±0.56%, WT 0.94±0.15%) and self-grooming groups (M39: KO 7.65±1.21%, WT 2.34±0.33%; M40: KO 
3.73±0.72%, WT 0.75±0.19%; M41: KO 7.23±1.88%, WT 0.90±0.18%; ). ****P<0001, **P<0.01 by two-way ANOVA 
with Holm–Sidak post-hoc test. h Low-dimensional representation of the two animal groups (purple: KO, n=10, green: WT, 
n=10). The 20 dots in 3D space were dimensionally reduced from 41-dimensional movement fractions, and they are well 
separated. i Ethograms of the eight significant movements. j-n Kinematic comparison of rearing and hunching (upper row 
refers to hunching; lower row refers to rearing). j Average-skeletons of all frames and normalized moving intensity (side 
view) of rearing and hunching. k Spine lines (the lines connecting the neck, back, and tail root) extracted from all frames 
(rearing: 16834 frames, hunching: 10037 frames) in movement types. For visualization purposes, only 1% of spine lines are 
shown in the figure (rearing: 168/16834, hunching: 100/10037). Black lines refer to the averaged spine line of the hunching 
and rearing; l Histograms of the spine angles (angle between three body parts). During rearing, the spine angles of the 
animals swing, and the average spine angle is straight (181.34±15.63°). By contrast, the spine angles of the rodents during 
hunching are consistently arcuate (162.88±10.08°). m, n Box plot of spine angles of the two movement types. n Box plot 
of normalized MI of the three body parts involved. Statistics for m, n: Mann-Whitney test. **** P<0.0001. 
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paired-wise similarity matrix. The movement bouts of all 20 mice involved were grouped (n = 16607) 788 

and rearranged in a dendrogram (g). Each pixel on the matrix represents the normalized similarity value 789 

of a pair of movement bouts at the ith row and the jth column. The color-coded bars (41 clusters) indicate 790 

the movements being clustered (bottom); g Comparison of the fraction of movement types between KO 791 

mice and WT mice. The bold traces and shadows indicate the mean ± sem. Fractions of each group and 792 

light color traces are the fractions of all 20 mice (purple, KO, n = 10; green, WT, n = 10). Middle color-793 

coded labels and dendrogram indicate the movement types. Eight movements have significant 794 

differences between the two groups, and the fractions of the four movements that KO mice prefer are 795 

hunching (M38, KO = 3.00 ± 0.56%, WT = 0.94 ± 0.15%) and self-grooming groups (M39, K = 7.65 796 

± 1.21%, W = 2.34 ± 0.33%; M40, K = 3.73 ± 0.72%, W = 0.75 ± 0.19%; M41, K = 7.23 ± 1.88%, W 797 

= 0.90 ± 0.18%). ****P < 0001, **P < 0.01 by two-way ANOVA with Holm–Sidak post-hoc test. h 798 

Low-dimensional representation of the two animal groups (purple, KO, n = 10; green, WT, n = 10). The 799 

20 dots in 3D space were dimensionally reduced from 41-dimensional movement fractions, and they 800 

are well separated. i Ethograms of the eight significant movements. j-n Kinematic comparison of 801 

rearing and hunching (upper row refers to hunching; lower row refers to rearing). j Average skeletons 802 

of all frames and normalized moving intensity (side view) of rearing and hunching. k Spine lines (the 803 

lines connecting the neck, back, and tail root) extracted from all frames (rearing, 16834 frames; 804 

hunching, 10037 frames) in movement types. For visualization purposes, only 1% of spine lines are 805 

shown in the figure (rearing, 168/16834; hunching, 100/10037). Black lines refer to the averaged spine 806 

line of the hunching and rearing phenotypes; l Histograms of the spine angles (angle between three 807 

body parts). During rearing, the spine angles of the animals swing, and the average spine angle is 808 

straight (181.34 ± 15.63°). By contrast, the spine angles of the rodents during hunching are consistently 809 

arcuate (162.88 ± 10.08°). m, n Box plot of spine angles of the two movement types. n Box plot of 810 

normalized MI of the three body parts involved. Statistics for m, n: Mann-Whitney test. **** P<0.0001.  811 
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and orange dots) with the unsupervised approach.
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Fig. 2 | Collecting animal behavior trajectories via a 3D motion capture system. a Pipeline of 3D animal 
skeletal reconstruction. b Center, schematic diagram of recording animal behavior with four synchronized 
cameras; corners, frames captured by the cameras with the DLC labels (left) and the corresponding reconstructed 
skeletons (right). c Left: 16 key body parts include the nose, left ear, right ear, neck, left front limb, right front 
limb, left hind limb, right hind limb, left front claw, right front claw, left hind claw, right hind claw, back, root 
tail, middle tail, and tip tail. Right: representative mouse body tracking trace data collected over 100 s showing 
48 data vectors obtained by DLC for each body part (indicated with a color-coded dot) encoded by x, y, and z 
coordinates. For visualization purposes, mean normalization is applied to each trace. d 3D reconstruction quality 
assessment: 1-best quality, 0-worst quality. The quality of the data obtained from the 12 mice averaged at 
0.9981±0.001.
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Fig. 3 | Dynamic temporal decomposition of multi-scale hierarchical behavior. a Illustration of the three-lay-
er bottom-up architecture for behavior. Top: The color-coded bars indicate the types of behavior components in 
the corresponding time period at that layer; each upper layer component is composed of the sequence of the 
lower layer. The instance of “approaching” is at the ethogram level which is composed of three movement level 
sequences, and each movement sequence includes a set of postural representations. b Representative animal 
postural trajectories (black traces) with two selected similar NM segments S1 and S2 (orange bars masked). c 
Discrete postural sequences S’1 (12 points) and S’2 (13 points) were decomposed from S1 and S2 and used to 
calculate their similarity kernel matrix K. d Segment kernel matrix T calculated with DTAK. Each pixel on the 
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matrix represents the normalized similarity value of the K for a pair of segments at the ith row and the jth column 
(e.g., the pixel in the black box indicates the final similarity of S1 and S2). e NM segments decomposed from the 
postural trajectories shown in b and their color-coded labels. Segments with the same color indicate that they 
belong to the same types due to their higher similarity. f Optimization process of dynamic temporal decomposi-
tion. Objective Value (OV) error decreases with each iteration until the termination condition is reached (maxi-
mum number of iterations or OV converges). g Top, representative 300-s skeletal traces, where the trace slices 
highlighted in colors corresponding to the four types of typical NMs (left turn, immobile, walk, right turn). 
Bottom, magnification of representative traces of these four movement types. h Workflow of the two-stage 
behavioral decomposition.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2020.09.14.295808doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.295808
http://creativecommons.org/licenses/by-nc-nd/4.0/


-0.2

0

0.2

0.4

N
or

m
al

iz
ed

-v
el

oc
ity

UMAP1

0.6

UMAP2

0.8

1

-6

-4

-2

0

0

0.1

0.2

Fr
ac

tio
ns

Run
nin

g

Trot
tin

g

Step
pin

g
Divin

g

Snif
fin

g
Risin

g

Righ
t tu

rni
ng

Up s
tre

tch
ing

Fall
ing

Le
ft t

urn
ing

Walk
ing

-0.5

0

0.5

1

C
or

r-C
oe

ffi
ci

en
t 0.4 0.5 0.6 0.7 0.8 0.9 1

CQI

0

1

C
D

F

0 0.5 1 1.5 2
Segment durations [s]

0

0.1

0.2

Fr
ac

tio
n

Si
m

ila
rit

y

a b

c e

d

f

Fig. 4 | Identify movement phenotypes on single experimental data. a Spatio-temporal feature space of 
behavioral components. Each dot on the 3D scatter plot represents a movement bout (n = 935 bouts). The 11 
different colors indicate the corresponding to 11 movement types  shown in d. b Upper, recalculated paired-wise 
similarity matrix, and they were rearranged with a dendrogram (lower). Each pixel on the matrix represents the 
normalized similarity value of a pair of movement bouts at the ith row and the jth column. The color-coded bars 
indicate the labels of clustered movement (middle). c Behavior fractions. For each subject, the behavior fractions 
are defined as the bout number of each behavioral phenotype divided by the total number of behavior bouts the 
animal produced during the experiment. d Intra-CC (color-coded) and inter-CC (grey dots) of each movement 
group. The dots on each violin plot represents their intra-CC or inter-CC, and dots number in a pair of violin plot 
in each group are the same (Intra-CC: 0.91±0.07; Inter-CC: 0.29±0.19). e Cumulative Distribution Function 
(CDF) of CQI of the movement clusters. The clusters represented by the curves on the right side have better 
clustering qualities, and their corresponding movements are more stereotyped. f The histogram of the duration 
of all movements (0.963±0.497s). 
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Fig. 5  | Visualization and quantification of behavioral kinematics. a Average skeleton of all frames within 
each movement phenotype. The skeletons are shown with solid lines and calculated by averaging poses of body 
parts across time. The heatmaps overlaid on the average skeleton are the distribution and movement intensity 
(MI; see Supplementary Methods for further details) corresponding to each movement phenotype. b Correlation 
and linear regression plot of movement phenotypes. The horizontal axis represents the target, and the vertical 
axis represents the reference (see Supplementary Methods for further details). The color-coded and gray dots 
correspond to the intra- and inter-cluster correlation coefficients, respectively. c The comparison of MI between 
different movement phenotypes. Each movement segment has two MI components (red boxes, horizontal; blue 
boxes, vertical). The boxes’ values for each group contain the MIs of n behavioral modules (n is the number of 
behavioral modules of each group). d, e Horizontal and vertical MI of each body part in different movement 
phenotypes. The values on each line are the MIs of all behavior modules corresponding to the phenotype, shown 
by body parts separately and presented as mean ± standard deviation (SD).
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Fig. 6 | Spontaneous behavior analysis reveals autistic-like behaviors on shank3B knock-out mice. a PCR genotyping 
for Shank3B+/+(Wild Type, WT), Shank3B-/- (Shank3B Knock-out, KO) mice. b-e Box plot of mean velocity, mean anxiety 
index, maximum velocity, and locomotion of the two groups of animals (purple: KO, n=10, green: WT, n=10; Statistics: 
Mann-Whitney test for maximum velocity; Unpaired T-test for others, **** P<0.0001), values are represented as mean±std. 
f Top: recalculated paired-wise similarity matrix. The movement bouts of all of the 20 involved mice were grouped (n = 
16607) and were rearranged with dendrogram (g). Each pixel on the matrix represents the normalized similarity value of a 
pair of movement bouts at the ith row and the jth column. The color-coded bars (41 clusters) indicate the movements being 

clustered (bottom); g Comparison of the fraction of movement types between KO mice and WT mice. The bold traces and 
shadows indicate the mean±sem. Fractions of each group and light color traces are the fractions of all 20 mice (purple: KO, 
n=10, green: WT, n=10). Middle color-coded labels and dendrogram indicate the movement types. Eight movements have 
significant differences between the two groups, and the fractions of the four movements that KO mice prefer are hunching 
(M38: KO 3.00±0.56%, WT 0.94±0.15%) and self-grooming groups (M39: KO 7.65±1.21%, WT 2.34±0.33%; M40: KO 
3.73±0.72%, WT 0.75±0.19%; M41: KO 7.23±1.88%, WT 0.90±0.18%; ). ****P<0001, **P<0.01 by two-way ANOVA 
with Holm–Sidak post-hoc test. h Low-dimensional representation of the two animal groups (purple: KO, n=10, green: WT, 
n=10). The 20 dots in 3D space were dimensionally reduced from 41-dimensional movement fractions, and they are well 
separated. i Ethograms of the eight significant movements. j-n Kinematic comparison of rearing and hunching (upper row 
refers to hunching; lower row refers to rearing). j Average-skeletons of all frames and normalized moving intensity (side 
view) of rearing and hunching. k Spine lines (the lines connecting the neck, back, and tail root) extracted from all frames 
(rearing: 16834 frames, hunching: 10037 frames) in movement types. For visualization purposes, only 1% of spine lines are 
shown in the figure (rearing: 168/16834, hunching: 100/10037). Black lines refer to the averaged spine line of the hunching 
and rearing; l Histograms of the spine angles (angle between three body parts). During rearing, the spine angles of the 
animals swing, and the average spine angle is straight (181.34±15.63°). By contrast, the spine angles of the rodents during 
hunching are consistently arcuate (162.88±10.08°). m, n Box plot of spine angles of the two movement types. n Box plot 
of normalized MI of the three body parts involved. Statistics for m, n: Mann-Whitney test. **** P<0.0001. 
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Fig. 6 | Spontaneous behavior analysis reveals autistic-like behaviors on shank3B knock-out mice. a PCR genotyping 
for Shank3B+/+(Wild Type, WT), Shank3B-/- (Shank3B Knock-out, KO) mice. b-e Box plot of mean velocity, mean anxiety 
index, maximum velocity, and locomotion of the two groups of animals (purple: KO, n=10, green: WT, n=10; Statistics: 
Mann-Whitney test for maximum velocity; Unpaired T-test for others, **** P<0.0001), values are represented as mean±std. 
f Top: recalculated paired-wise similarity matrix. The movement bouts of all of the 20 involved mice were grouped (n = 
16607) and were rearranged with dendrogram (g). Each pixel on the matrix represents the normalized similarity value of a 
pair of movement bouts at the ith row and the jth column. The color-coded bars (41 clusters) indicate the movements being 

clustered (bottom); g Comparison of the fraction of movement types between KO mice and WT mice. The bold traces and 
shadows indicate the mean±sem. Fractions of each group and light color traces are the fractions of all 20 mice (purple: KO, 
n=10, green: WT, n=10). Middle color-coded labels and dendrogram indicate the movement types. Eight movements have 
significant differences between the two groups, and the fractions of the four movements that KO mice prefer are hunching 
(M38: KO 3.00±0.56%, WT 0.94±0.15%) and self-grooming groups (M39: KO 7.65±1.21%, WT 2.34±0.33%; M40: KO 
3.73±0.72%, WT 0.75±0.19%; M41: KO 7.23±1.88%, WT 0.90±0.18%; ). ****P<0001, **P<0.01 by two-way ANOVA 
with Holm–Sidak post-hoc test. h Low-dimensional representation of the two animal groups (purple: KO, n=10, green: WT, 
n=10). The 20 dots in 3D space were dimensionally reduced from 41-dimensional movement fractions, and they are well 
separated. i Ethograms of the eight significant movements. j-n Kinematic comparison of rearing and hunching (upper row 
refers to hunching; lower row refers to rearing). j Average-skeletons of all frames and normalized moving intensity (side 
view) of rearing and hunching. k Spine lines (the lines connecting the neck, back, and tail root) extracted from all frames 
(rearing: 16834 frames, hunching: 10037 frames) in movement types. For visualization purposes, only 1% of spine lines are 
shown in the figure (rearing: 168/16834, hunching: 100/10037). Black lines refer to the averaged spine line of the hunching 
and rearing; l Histograms of the spine angles (angle between three body parts). During rearing, the spine angles of the 
animals swing, and the average spine angle is straight (181.34±15.63°). By contrast, the spine angles of the rodents during 
hunching are consistently arcuate (162.88±10.08°). m, n Box plot of spine angles of the two movement types. n Box plot 
of normalized MI of the three body parts involved. Statistics for m, n: Mann-Whitney test. **** P<0.0001. 
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