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Abstract:

Animal behavior usually has a hierarchical structure and dynamics. Therefore, to understand
how the neural system coordinates with behaviors, neuroscientists need a quantitative description of the
hierarchical dynamics of different behaviors. However, the recent end-to-end machine-learning-based
methods for behavior analysis mostly focus on recognizing behavioral identities on a static timescale
or based on limited observations. These approaches usually lose rich dynamic information on cross-
scale behaviors. Inspired by the natural structure of animal behaviors, we addressed this challenge by
proposing a novel parallel and multi-layered framework to learn the hierarchical dynamics and generate
an objective metric to map the behavior into the feature space. In addition, we characterized the animal
3D kinematics with our low-cost and efficient multi-view 3D animal motion-capture system. Finally,
we demonstrated that this framework could monitor spontaneous behavior and automatically identify
the behavioral phenotypes of the transgenic animal disease model. The extensive experiment results
suggest that our framework has a wide range of applications, including animal disease model

phenotyping and the relationships modeling between the neural circuits and behavior.

Key Words: Behavioral structure-inspired; 3D motion capture; Behavioral dynamics; Computational

ethology; Behavior phenotyping.
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Introduction:

The structure of animal behavior follows a bottom-up hierarchy constructed by time-varying
posture dynamics, which has been demonstrated to be classical in ethological theory 2 and recent
animal studies *¢. Such behavioral organization is considered to coordinate with neural activities 75,
Previous studies *!! using large-scale neuronal recordings have provided preliminary evidence from
the neural implementation perspective. As the central goal of modern neuroscience, fully decoding this
cross-scale dynamic relationship requires comprehensive quantification of neural activity and behavior.
Over the past few decades, scientists have been working on improving the accuracy and throughput of
neural dynamics manipulation and capturing. Meanwhile, for behavior quantification, there has been a
revolution from simple behavioral parameters extraction to machine-learning (ML)-based behavior

sequence recognition '>!*. However, most previous methods '+

often emphasized feature engineering
and pattern recognition for mapping raw data to behavioral identities. These black-box approaches lack
the interpretability of cross-scale behavioral dynamics. Thus, it is a challenging task, but with a strong
demand, to develop a general-purpose framework for the dynamic decomposition of animal
spontaneous behavior.

Previous researchers addressed this challenge mainly from two aspects. The first aspect is
behavioral feature capturing. Conventional animal behavior experiments usually use a single camera
top-view recording to capture the motion signal of behaving animals, leading to occlusions of the key
body parts (e.g., paws), and these are very sensitive to viewpoint differences '°. The recent emergence
of ML toolboxes "' has dramatically facilitated the animal pose estimation with multiple body parts.
Thus, it enables us to study the animal kinematics more comprehensively and provides potential
applications for capturing 3D animal movements. The second aspect is decomposing continuous time-

series data into understandable behavioral modules. Previous studies on lower animals such as flies

10,2022 4,23-25 26-28

, zebrafishes and C. elegans utilized ML strategies and multivariate analysis to detect
action sequences. However, mammalian behavior is highly complicated. Besides locomotion, animals
demonstrate non-locomotor movement (NM) with their limbs (e.g., grooming, rearing, turning), and

their organs have high-dimensional %!

and variable spatio-temporal characteristics. Even for similar
behaviors, the duration and composition of postural sequences vary. To define the start and end
boundaries to segment continuous data into behavioral sequences, many ML-based open-source
toolboxes ! and commercial software do excellent work in feature engineering. They usually compute
per-frame features that refer to position, velocity, or appearance-based features. The sliding windows
technology then converts them into window features to reflect the temporal context '4!5. Although these
approaches effectively identify specific behaviors, behavior recognition becomes problematic when the
dynamics of particular behaviors cannot be represented by window features.

The present study proposes a hierarchical 3D-motion learning framework to address our

contribution to these challenges. First, we acquired the 3D markerless animal skeleton with tens of body
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parts by the developed flexible and low-cost system. Through the systematic validations, we proved
that our system can solve the critical challenges of body occlusion and view disappearance in animal
behavior experiments. Second, aiming at the parallel and hierarchical dynamic properties of
spontaneous behavior, we were the first to propose a decomposition strategy preserving the behavior’s
natural structure. With this strategy, the high-dimensional, time-varying and continuous behavioral
series can be represented as various quantifiable movement parameters and low-dimensional behavior
map. Third, we obtained a large sample of the Shank3B” mouse disease model data resources with our
efficient framework. The results showed that our framework could detect behavioral biomarkers that
have been identified previously and discover potential new behavioral biomarkers. Finally, together
with the further group analysis of the behavioral monitoring under different experimental apparatus,
lighting conditions, ages, and sexes, we demonstrated our framework could contribute to the
hierarchical behavior analysis, including postural kinematics characterization, movement phenotyping,

and group level behavioral patterns profiling.
Results:
Framework of Hierarchical 3D-motion Learning

Our framework first requires the preparation of the animal postural feature data (Fig. 1a). These
data can be continuous body parts trajectories that comprehensively capture the motion of the animal’s
limbs and torso, and they inform the natural characteristics of locomotion and NM. Locomotion can be
represented by velocity-based parameters. NM is manifested by movement of the limbs or organs
without movement of the torso and is controlled by dozens of degrees of freedom *2. Hence, we adopted
a parallel motion decomposition strategy to extract features from these time-series data independently
(Fig. 1b, ¢). A two-stage dynamic temporal decomposition algorithm was applied to the centralized
animal skeleton postural data to obtain the NM space. Finally, together with the additional velocity-
based locomotion dimension, unsupervised clustering was used to reveal the structure of the rodent’s
behavior.

Our framework has two main advantages. First, it addresses the multi-timescale of animal
behavior 3. Animal behavior is self-organized into a multi-scale hierarchical structure from the bottom

34,35

up, including poses, movements, and ethograms . The poses and movements are low- and

intermediate-level elements °

, while higher-level ethograms are stereotyped patterns composed of
movements that adhere to inherent transfer rules in certain semantic environments 3’. Our two-stage
pose and movement decomposition focuses on extracting the NM features of the first two layers. Second,
our framework emphasizes the dynamic and temporal variability of behavior. The most critical aspect
of unsupervised approaches is to define an appropriate metric for quantifying the relationship between
samples. However, the duration and speed of NM segments of the same cluster may differ. To address

this, we used a model-free approach called DTAK as a metric to measure the similarity between the
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NM segments and thus equip the model to automatically search repeatable NM sequences. We then
apply the uniform manifold approximation and projection (UMAP) * algorithm to visualize high-
dimensional NM representations. After combining the locomotion dimension with NM space (Fig. 1c¢),
we adopted hierarchical clustering to re-cluster the components and map the behavior’s spatial structure

(Fig. 1d).
Collecting Mouse Motion Data with a 3D Multi-view Motion Capture System

To efficiently and comprehensively characterize the kinematics of free-moving animals, we
developed a 3D multi-view motion capture system (Fig. 2a, b) based on recent advances in techniques
for pose estimation'” and 3D skeletal reconstruction *. The most critical issues in 3D animal motion
capture are efficient camera calibration, body occlusion, and viewpoint disappearance, which have not
been optimized or verified 2. To address these issues, we developed a multi-view video capture device
(Supplementary Fig. 2a). This device integrates the behavioral apparatus, an auto-calibration module
(Supplementary Fig. 2b, d), and synchronous acquisition of multi-view video streams (Supplementary
Fig. 2c¢). While the conventional manual method requires half an hour to produce the required
checkerboard for calibration, the auto-calibration module can be completed in one minute.

We collected the naturalistic behavioral data of free-moving mice in a featureless circular open-
field (Supplementary Fig. 2a, and Supplementary Video 1). We analyzed the mouse skeleton as 16 parts
(Fig. 2¢) to capture the movements of the rodent’s head, torso, paws, and tail. The following motion
quantification did not involve the motion features of two parts of the tail. The data obtained from
tracking representative mouse poses tracking (Fig. 1d) includes the 3D coordinates (X, y, and z) of the
body parts, which reveal that the high-dimensional trajectory series exhibits periodic patterns within a
specific timescale. We next investigated whether the 3D motion capture system could reliably track the
animal in cases of body-part occlusion and viewpoint disappearance. We checked the DeepLabCut
(DLC) tracking likelihood in the collated videos (0.9807 + 0.1224, Supplementary Fig. 4a) and
evaluated the error between the estimated 2D body parts of every training set frame and the ground
truth (0.534 £+ 0.005%, Supplementary Fig. 5b). These results indicated that in most cases, four cameras
were available for 2D pose tracking. Since 3D reconstruction can be achieved as long as any two
cameras obtain the 2D coordinates of the same point in 3D space from different views, the
reconstruction failure rate caused by body occlusion and viewpoint disappearances is determined by the
number of available cameras. Therefore, we evaluated the average proportion of available cameras in
situations of body part occlusion and viewpoint disappearance. The validation results for body-part
occlusion show an average reconstruction failure rate of only 0.042% due to body occlusion or
inaccurate body-part estimation (Supplementary Fig. 5¢). While for viewpoint disappearances, both
tests (Supplementary Fig. 6, and Supplementary Video 4, 5) proved that our system has a high

reconstruction rate for animal body parts. Moreover, the artifact detection and correction features can
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recover the body parts that failed to be reconstructed. We calculated an overall reconstruction quality

(0.9981 £ 0.0010, Fig. 2d) to ensure that the data were qualified for downstream analysis.

Decomposing Non-Locomotor Movements with Dynamic Time Alignment Kernel

) 34,35’ and

Conceptually, behavior adheres to a bottom-up hierarchical architecture (Fig. 3a
research has focused on elucidating behavioral component sequences contained in stimuli-related
ethograms *°. The purpose of the two-stage NM decomposition is to bridge the low-level vision features
(postural time-series) to high-level behavioral features (ethograms). The first stage of the decomposition
involves extracting postural representations from postural feature data. Since the definition of NM does
not involve the animal’s location or orientation, we pre-processed these data through center alignment
and rotation transformation (Supplementary Fig. 7). Animal movement is continuous, and due to the
high dimensionality of the mammalian skeleton, the behaviorally relevant posture variables are
potentially infinite in number '*. However, adjacent poses are usually highly correlated and redundant

for behavior quantification and analysis !

, which is particularly evident in long-term recording.
Therefore, for computational efficiency, we adopted a temporal reduction algorithm to merge adjacent,
similar poses as postural representations in a local time range.

In the second stage, NM modules are detected from temporal reduced postural representations.
Unlike the static property of poses, mammalian movements have high dimensionality and large
temporal variability *': e.g., the contents, phases, and durations of the three pose sequences were not
the same (Fig. 3a). Hence, we adopted a model-free approach to dynamically perform temporal aligning
and cluster the temporally reduced postural representation data (Fig. 3b) #>. This problem is equivalent
to providing a d-dimensional time-series X € R%*™ of animal postural representations with » frames.
Our task decomposes X into m NM segments, each of which belongs to one of the corresponding &
behavioral clusters. This method detects the change point by minimizing the error across segments;
therefore, dynamic temporal segmentation becomes a problem of energy minimization. An appropriate
distance metric is critical for modeling the temporal variability and optimizing the NM segmentation of
a continuous postural time-varying series. Although dynamic time warping (DTW) has commonly been
applied in aligning time-series data, it does not satisfy the triangle inequality **. Thus, we used the
improved DTAK method to measure the similarity between time sequences and construct an energy
equation (objective function) for optimization. The relationship between each pair of segments was
calculated with the kernel similarity matrix K (Fig. 3c). DTAK was the used to compute the normalized
similarity value of K and generate the paired-wise segment kernel matrix 7" (Fig. 3d).

Because dynamic temporal segmentation is a non-convex optimization problem whose solution
is very sensitive to initial conditions, this approach begins with a coarse segmentation process based on
the spectral clustering method, which combines the kernel k-means clustering algorithms. To define the

timescale of segmentation, the algorithm sets the maximum and minimum lengths [Wy,in, Winax] tO
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constrain the length of the behavioral component. For the optimization process, a dynamic
programming (DP)-based algorithm is employed to perform coordinate descent and minimize energy.
For each iteration, the algorithm updates the segmentation boundary and segment kernel matrix until
the decomposition reaches the optimal value (Fig. 3e, f). The final segment kernel matrix represents the
optimal spatial relationship between these NM segments, which can be further mapped into its feature
space in tandem with dimensionality reduction (DR).

We demonstrate the pipeline of this two-stage behavior decomposition (Fig. 3h) in a
representative 300-s sample of mouse skeletal data. The raw skeletal traces were segmented into NM
slices of an average duration of 0.89 + 0.29 s. In these segments, a few long-lasting movements occurred
continuously, while most others were intermittent (Fig. 3g). The trajectories of these movement slices
can reflect the actual kinematics of the behaving animal. For instance, when the animal is immobile, all
of its body parts are still; when the animal is walking, its limbs show rapid periodic oscillations.
Consistent with our observations, the movements corresponding to the other two opposite NMs, left
and right turning, tended to follow opposite trajectories. These preliminarily results demonstrated that

DTAK can be used for the decomposition and mapping of NMs.

Mapping Mouse Movements with Low-Dimensional Embeddings and Unsupervised

Clustering

We validated our framework in a single-session experiment with free-moving mouse behavioral
data collected with the 3D motion capture system. First, the two-stage behavioral decomposition
strategy decomposed the 15-minute experimental data into 936 NM bouts (Supplementary Video 2). A
936x936 segment kernel matrix was then constructed using the DTAK metric. This segment kernel
matrix could flexibly represent the relationship and provide insight into the relationships between each
behavioral component sequence in their feature space. However, since the 936-D matrix cannot provide
an informative visualization of behavioral structure, it is necessary to perform DR on this data. Various
DR algorithms have been designed either to preserve the global representation of original data or to
focus on local neighborhoods for recognition or clustering **#°. Thus, in animal behavior quantification,
we face a trade-off between discretizing behavior to provide a more quantitative analysis and
maintaining a global representation of behavior to characterize the potential manifolds of neural-
behavioral relationships *. Therefore, we first evaluated the commonly used DR algorithms from the
standpoints of preserving either the global or the local structure. The evaluation results show that UMAP
can balance both aspects for our data (Supplementary Fig. 8) and provide 2D embeddings of these NM
segments. In addition, in our parallel feature fusion framework, the factor of an animal’s interaction
with the environment — i.e., velocity — is considered an independent dimension. Together with 2D NM

embedding, they construct a spatio-temporal representation of movements (Fig. 4a).
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We used an unsupervised clustering algorithm to investigate the behavior’s spatio-temporal
representation and identify the movement phenotypes. Most unsupervised clustering require a pre-
specified number of clusters, and the number chosen can be data-driven or refer to the context of the
practical biological problem *’. In the single experimental data shown in Figure 4a, the data-driven
Bayesian Information Criterion *® in the R package mclust was adopted to determine that the optimal
cluster number was 11 (Supplementary Fig. 10). We then recalculated the similarity matrices in the new
feature space (Fig. 4b) and aggregated them using a hierarchical clustering method. Finally, we cut the
original video into clips of 0.963 + 0.497 s and manually labeled them according to the behavior of the
rodents in the clip: running, trotting, stepping, diving, sniffing, rising, right turning, up stretching,
falling, left turning, and walking (Supplementary Table 1). The locomotion types of running, trotting,
stepping, and walking accounted for 20.6% of the total activities, indicating that animals spent most of
the time in the NM stage (Fig. 4c¢).

Although we phenotyped all the clips of the entire video, it was difficult to label the behaviors
of the rodents with only 11 definitions. Further, there are various heterogeneous transition stages
between bouts of stereotyped movements 2314’ Therefore, we evaluated them by calculating the intra-
cluster and inter-cluster correlation coefficients (intra-CC and inter-CC, respectively; Fig. 4d, Fig. 5b).
Our results showed that running, up stretching and left turning have higher intra-CC and lower inter-
CC, while walking and sniffing have both higher intra-CC and higher inter-CC. This is because walking
and sniffing co-occur with other movements %, such as diving and turning, respectively. Finally, to
evaluate the overall clustering quality, we integrated these two parameters and defined the Clustering

Quality Index (CQI, Fig. 4e), which helped to determine the stereotyped/non-stereotyped movements.
Kinematic Validation of Mouse Behavioral Phenotypes

DTAK is an abstract extraction of animal motions that aims to simplify the complex temporal
dynamics of behavior. Hence, we further elucidated whether the spatial kinematics of the original
postural time-series of the behavioral phenotypes (e.g., running, rearing, sniffing, turning) identified
with this framework were homogeneous. Manually inspecting the position, moving, bending, and other
characteristics of the mouse limbs and trunk in the video clips of each phenotype group (Supplementary
Video 3), we found reliable homogeneity for clips with high CQIs (CQI>0.75). To provide a kinematic
validation of the identified behavioral phenotypes from the perspectives of visualization and
quantification, we first visualized the average skeleton, which was averaged over all frames in each
movement cluster (Fig. 5a). While some movements could be clearly recognized (e.g., left and right
turning, and up stretching), the differences between movements with similar postures (running, trotting,
walking, etc.) were not. The detailed kinematic parameters, especially the velocity of each body part,
could provide greater sensitive differences than the unclear visually-based assessments >°. Therefore,

we defined movement intensity (MI) as a metric for characterizing the kinematics of each body part in
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each behavioral phenotype (see Supplementary Methods for further details). Ml is related to velocity,
and it contains both horizontal and vertical components. The data show that the horizontal MI
components of running and trotting are the highest, followed by stepping and walking. Vertical MI
components (e.g., up stretching, rising, and falling) feature richer details; we attribute their high overall
vertical MI to the movement of the nose and front claws (Fig. 5a, c-e). This approach of creating
portraits for each type of movement provides further support for the efficacy of our framework in the
decomposition of animal behavior. The dendrogram of the movements (Fig. 5a) revealed that similar
movements were arranged were closely, such as running and trotting. Interestingly, falling and left
turning were on close clades. Review of the video clips of these two groups demonstrated that 37.18%
of the movements in this group occurred simultaneously with left turning (28.85% for right turning). A
similar phenomenon occurred in the clades of diving and sniffing due to the co-occurrence of these
behaviors. The correlation and linear regression analysis of these two pairs of clades showed that both
intra-CC and inter-CC were relatively high (Fig. 5b), suggesting several concomitant descriptions of
animal behavior. These clustering results occurred because these movements show more characteristics

of the current class.
Identification of the Behavioral Signatures of the Mouse Disease Model

Animal disease models play an increasingly critical role in expanding understanding of the
mechanisms of human diseases and novel therapeutic development '3, Behavioral phenotyping
provides a noninvasive approach to the assessment of neuropsychiatric disorders in animal models. By
only evaluating spontaneous behavior without any induced conditions, we demonstrate the usability
and unbiased character of our framework for animal phenotyping. We collected data from 20 mice (Fig.
6a, nko = 10, nwr = 10) with our 3D motion capture system and subjected them to routine velocity and
anxiety index analyses (Fig. 6b-e). In agreement with prior research, we found a significant difference
between the average velocities of the two groups.

We clustered the behavioral components of the 20 animals and obtained 41 behavioral
phenotypes (Fig. 6f, Supplementary Fig. 10). Compared with the single-session experiment, the group
analysis revealed diverse behavioral types. We found that Shank3B Knock-out (KO, Shank3B"") mice
spent a significantly higher proportion of their time engaging in four of the movements (Fig. 6g,
Supplementary Table 3). By manually reviewing the video clips of these four types, we annotated the
38™ movement (M38 in Fig. 6g) as hunching; we also found that three of the movements were very
similar (closely arranged on the behavioral dendrogram, Fig. 6g). Therefore, we grouped them and

annotated them as self-grooming. In previous studies 3¢

, self-grooming has been widely reported in
Shank3B™- mice. This is partly attributable to self-grooming being a long-lasting movement (4.48 + 7.84
s, mean + standard deviation [SD]) and thus easily recognized by human observation or software (Fig.

6i). Interestingly, although hunching has only previously been reported in a few related studies 3",
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our framework frequently detected hunching movements in KO mice. This novel finding can be
attributed to the duration of a single continuous hunching movement being too short to be noticed (1.29
+1.00 s, mean + SD) as well as to the similarity between the kinematics of hunching and rearing (M31).
We proved that these two types of movements belong to distinct behavioral phenotypes. Specifically,
during hunching, mice maintain an arcuate spine angle, while rearing is characterized by a stronger,
wider range of necks and head motions (Fig. j-n). This ability to identify short-term and fine behavioral
modules is one of the advantages of our framework. Besides the four phenotypes that KO mice preferred
more than the WT mice did, the KO mice also showed four additional deficit behavioral phenotypes,
namely stepping (M5), walking (M14), and two types of rising (M21 and M22). This result indicates
that the locomotion intensity and vertical movement of KO mice were lower than those of WT mice.
The locomotion result is consistent with the average velocity comparison shown in Fig. 6b.

Finally, we demonstrated that by modeling the time spent of multi-behavioral parameters, our
framework could identify the animal types. We used UMAP to perform DR of the 41-dimensional
behavioral proportion data of all movement types. As expected, the two genotypes of animals were well
separated in the low-dimensional space (Fig. 6h), even though there were large amounts of baseline
movements with no significant difference. We defined these two types as “autistic-like behavior space.”

Recent reviews suggest that most previous methods ¢!

, which usually only consider a few behavioral
parameters and may lose critical insights, have been challenged in the animal phenotypes’ identification.
Hence, these findings indicate the potential advantages of our framework to automatically identify

disease models.
Discussion

Inspired by the natural structure of animal behavior, the current study presents a framework for
discovering quantifiable behavioral modules from high-dimensional postural time-series by combining
dynamic temporal decomposition and unsupervised clustering. Behavior decomposition adopts a
parallel, two-stage approach to extract animal motion features in accordance with the natural structure
of animal behavior. We used DTAK to measure the similarity between behavioral modules and applied
further low-dimensionality embedding to represent the behavior’s underlying feature space. The
unsupervised clustering identified behavioral phenotypes from the feature space and helped to
automatically assess the behavioral experiment data. In addition, the clustering step could quickly
generate large amounts of distinct unlabeled behavior groups. By manually assigning annotations to
each group, our framework will potentially facilitate semi-supervised behavior recognition.

Our framework has two main advantages. First, our approach of tracking multiple body parts
and acquiring 3D reconstruction data achieves better performance than similar recently reported rodent
behavioral recognition frameworks 42, The multi-view motion capture system can avoid animal body

occlusion and view-angle bias and estimate the pose optimally by flexibly selecting the view to use
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according to the tracking reliabilities of the different views. We also confirmed the necessity of using
multi-view cameras in complex experimental scenes, whereas in the simple experimental scenes, only
three or even two cameras were needed (Supplementary Fig. 4). More importantly, our behavior
decomposition framework emphasizes the extraction of the temporal dynamics of movements. Without
making model assumptions, similar movements with various time durations and temporal variability
can be efficiently represented by the self-similarity matrix. We proved that this similarity matrix is a
reliable objective metric by evaluating the consistency of clustered behavior phenotypes. We further
performed DR to visualize the behavioral map, which facilitates exploring the evolution of movement
sequences of higher-order behavior and behavioral state transition caused by neural activity. For
example, to study animal circadian rhythms, previous researchers have used behavioral recording
approaches to characterize different brain states . We used our framework to perform a continuous
24-hour behavioral recording, and the preliminary analysis proved that our framework could provide
more comprehensive behavioral parameters and detailed quantification of behavior states
(Supplementary Fig. 13). In addition, innate defensive behavior is considered to consist of three specific
movement phases 7%, but data supporting this idea is lacking. Hence, our future work will focus on
modeling the transition patterns of innate behavior based on the behavioral map.

Comprehensive and unbiased behavioral phenotyping is becoming a powerful approach to the
study of behavioral abnormalities in animal models of neuropsychiatric disorders. In this study, we
demonstrate its application to the monitoring of Shank3B mutant mice that show autistic-like behaviors.
Our framework helped to reveal that Shank3B’~ engage in eight types of spontaneous behaviors
significantly more often than WT mice; While grooming has been extensively observed in murine
models of restricted, repetitive behavior, short-term hunching behavior has not. Previous studies %
mentioned that the rearing behavior of Shank3B KO mice also differs from that of WT mice; however,
because hunching is kinematically similar to rearing, it is difficult to distinguish these two types by
human observation or algorithms. Our 3D and sub-second methods will help to identify new behavioral
biomarkers and advance understanding of the neural circuit mechanisms underlying behavioral changes
caused by genetic mutations. Moreover, we further investigated the differences in the behavior patterns
of Shank3B KO and WT mice at the group level. In addition to the data that had already been analyzed
(collected under the condition: male mice, 5—6 weeks, white light, and circular open-field), we extended
the group behavioral pattern analysis to include data collected under different conditions (i.e., different
experimental apparatus, lighting, age, and sex; Supplementary Table 2). We calculated the cross-
correlation coefficient matrix (CCCM) of all samples based on the movement fractions and used
principal component analysis to extract the main variance factors of the CCCM (Supplementary Fig.
12 a, b). We found that when only a single condition was changed for male mice, there was no
significant difference in population behavior patterns in mice with the same genotype (Supplementary
Fig. 12 c¢). We also found that although some female KO mice had a weak tendency for autistic-like

behavior, there was no significant difference between 5—6 week male and female KO mice at the group
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level when tested under the white-light circular open field condition (Supplementary Fig. 12 ¢, d).
Finally, we compared the behavior patterns when all conditions were the same except for the genotypes.
The results showed that only the female group showed no significant difference between KO and WT
genotypes, while significant differences in behavioral patterns were found between KO and WT male
mice under all other conditions. These findings are consistent with previous reports that Shank3B KO
male mice display more severe impairments than females do in motor coordination . Accordingly, the
behavior phenotyping on mouse disease model can be generalized to large animals such as non-human
primates, dogs, and pigs which recently emerged as valuable models for studying neurological
dysfunctions %, Our general-purpose framework further benefits from the significant advantage of
being able to capture and analyze large animal movements, which have more complex 3D
characteristics and temporal dynamics.

The dynamic, high-dimensional, and multi-scale characteristics of behavior can be attributed
to similar properties of the nervous system produces it. While the most advanced large-scale
neuroimaging and high spatiotemporal resolution electrophysiological techniques allow researchers to
elucidate the details of the firing timing of all neurons and neurofunctional connections at all scales,
they cannot inform the mapping of the neural-behavioral relationship without quantifying behavior at
the corresponding level. In other words, to understand the encoding/decoding relationship rules of the
neural activity generating behavior and behavior’s neural representation, synchronization of large
population activities and accurate measurement and identification of naturalistic, complex behavior are
required. In the future, we will focus on combining our framework with free-moving two-photon
microscopy and electrophysiological recording to link the neural activity patterns and functional brain
connections with the cross-scale behavioral dynamics and timing patterns. Therefore, with further
technical optimization and the open-source of a large sample, well-annotated disease model behavior
database open source, our framework may contribute to resolving the relationships between complex
neural circuitry and behavior, as well as to revealing the mechanisms of sensorimotor processing.

Lastly, we would like to discuss the limitations of our framework. When extending our
framework to social behavior analysis, such as the analysis of mating, social hierarchy, predation, and
defense behaviors, it is challenging to track multiple, visually indistinguishable (markerless) animals
without identity-swapping errors (Supplementary Video 6, 7). Alternative methods mainly focus on
tracking and identifying social behaviors at the population level, which only requires the identification
of features unrelated to the animals' identities such as the positional differences between animals' body
parts . However, this approach is limited to specific behaviors and does not apply to interaction
behaviors between social subjects of unequal status. Recent cutting-edge toolboxes such as DLC for
multi-animal pose estimation '7, SLEAP ®, and AlphaTracker ° have addressed the multi-animal
tracking problem, but once animals with similar appearances are touching or even body-occluded, the
inaccurate pose estimation of these toolboxes leads to off-tracking and identity-swapping errors. This

is because when estimating multiple body parts of several animals in a single frame, the combination
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of the poses of these animals is more complex and diverse, and identity-swapping in different views
may happen at different times. Our 3D multi-view motion capture system promises to solve this problem
by effectively reducing body-occlusion probability. As a next step, we are considering using computer
vision technology (e.g., point cloud reconstruction) to fuse images from multiple views, then segment
each animal's body, and estimate the body parts based on the reconstructed 3D animal. Solving these
problems will extend the applicability of our framework to the benefit of the animal behavioral research

community.
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s96  the feature space: 1) pose decomposition groups continuous skeleton postural data into discrete postural
s97  sequences); 2) NM decomposition, two high-lighted (green and orange) blocks represent two NMs
s decomposed from the postural sequences; 3) NM sequences mapped to their 2D features space (right),
599 where each dot on the 3D axis corresponds to the NM block on the left. ¢ Calculation of locomotion
e00  dimension. The continuous velocity of the behaving animal is first calculated, then average the velocity
601 of each segment obtained in the NM decomposition step. d 3D scatter plot represents the combined NM
602 and locomotion feature space. All the movements are clustered into three types (red, green, and orange
603  dots) with the unsupervised approach.
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619 Fig. 2 | Collecting animal behavior trajectories via a 3D motion capture system. a Pipeline of 3D
620  animal skeletal reconstruction. b Center, schematic diagram of recording animal behavior with four
621 synchronized cameras; corners, frames captured by the cameras with the DLC labels (left) and the
622 corresponding reconstructed skeletons (right). ¢ Left: 16 key body parts include the nose, left ear, right
623  ear, neck, left front limb, right front limb, left hind limb, right hind limb, left front claw, right front
624  claw, left hind claw, right hind claw, back, root tail, middle tail, and tip tail. Right: representative mouse
625  body tracking trace data collected over 100 s showing 48 data vectors obtained by DLC for each body
626  part (indicated with a color-coded dot) encoded by X, y, and z coordinates. For visualization purposes,
627 mean normalization is applied to each trace. d 3D reconstruction quality assessment: 1-best quality, 0-
628  worst quality. The quality of the data obtained from the 12 mice averaged at 0.9981 + 0.001.
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659 Fig. 3 | Dynamic temporal decomposition of multi-scale hierarchical behavior. a Illustration of the
es0  three-layer bottom-up architecture for behavior. Top: The color-coded bars indicate the types of
661 behavior components in the corresponding time period at that layer; each upper layer component is
es2  composed of the sequence of the lower layer. The instance of “approaching” is at the ethogram level
663  which is composed of three movement level sequences, and each movement sequence includes a set of
664  postural representations. b Representative animal postural trajectories (black traces) with two selected
665 similar NM segments S7 and S2 (orange bars masked). ¢ Discrete postural sequences S’/ (12 points)
ess  and.S’2 (13 points) were decomposed from S7 and S2 and used to calculate their similarity kernel matrix
e67 K. d Segment kernel matrix 7 calculated with DTAK. Each pixel on the matrix represents the
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normalized similarity value of the K for a pair of segments at the i row and the j* column (e.g., the
pixel in the black box indicates the final similarity of S/ and S2). e NM segments decomposed from the
postural trajectories shown in b and their color-coded labels. Segments with the same color indicate
that they belong to the same types due to their higher similarity. f Optimization process of dynamic
temporal decomposition. Objective Value (OV) error decreases with each iteration until the termination
condition is reached (maxi-mum number of iterations or OV converges). g Top, representative 300-s
skeletal traces, where the trace slices highlighted in colors corresponding to the four types of typical
NDMs (left turn, immobile, walk, right turn). Bottom, magnification of representative traces of these four
movement types. h Workflow of the two-stage behavioral decomposition.
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702 Fig. 4| Identify movement phenotypes on single experimental data. a Spatio-temporal feature space
703 of behavioral components. Each dot on the 3D scatter plot represents a movement bout (n = 935 bouts).
704  The 11 different colors indicate the corresponding to 11 movement types shown in d. b Upper,
705 recalculated paired-wise similarity matrix, and they were rearranged with a dendrogram (lower). Each
706 pixel on the matrix represents the normalized similarity value of a pair of movement bouts at the i row
707 and the j/ column. The color-coded bars indicate the labels of clustered movement (middle). ¢ Fractions
708 of movement bouts number. For each subject, the behavior fractions are defined as the bouts number of
709 each behavioral phenotype divide by the total number of behavior bouts the animal occurred during the
710 experiment. d Intra-CC (color-coded) and inter-CC (grey dots) of each movement group. The dots on
711 each violin plot represents their intra-CC or inter-CC, and dots number in a pair of violin plot in each
712 group are the same (Intra-CC: 0.91£0.07; Inter-CC: 0.29+0.19). e Cumulative Distribution Function
713 (CDF) of CQI of the movement clusters. The clusters represented by the curves on the right side have
714 better clustering qualities, and their corresponding movements are more stereotyped. f The histogram
715 of the duration of all movements (0.963£0.497s).
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Fig. 5| Visualization and quantification of behavioral kinematics. a Average skeleton of all frames
within each movement phenotype. The skeletons are shown with solid lines and calculated by averaging
poses of body parts across time. The heatmaps overlaid on the average skeleton are the distribution and
movement intensity (MI; see Supplementary Methods for further details) corresponding to each
movement phenotype. b Correlation and linear regression plot of movement phenotypes. The horizontal
axis represents the target, and the vertical axis represents the reference (see Supplementary Methods
for further details). The color-coded and gray dots correspond to the intra- and inter-cluster correlation
coefficients, respectively. ¢ The comparison of MI between different movement phenotypes. Each
movement segment has two MI components (red boxes, horizontal; blue boxes, vertical). The boxes’
values for each group contain the Mls of n behavioral modules (# is the number of behavioral modules
of each group). d, e Horizontal and vertical MI of each body part in different movement phenotypes.
The values on each line are the MIs of all behavior modules corresponding to the phenotype, shown by
body parts separately and presented as mean + standard deviation (SD).
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Fig. 6 | Spontaneous behavior analysis reveals autistic-like behaviors in Shank3B knock-out mice.

a PCR genotyping for Shank3B"*(Wild Type, WT), Shank3B™ (Shank3B Knock-out, KO) mice. b-e

Box plot of mean velocity, mean anxiety index, maximum velocity, and locomotion of the two groups

of'animals (purple: KO, n= 10, green: WT, n = 10; Statistics: Mann-Whitney test for maximum velocity;

Unpaired T-test for others, **** P<(.0001), values are represented as mean + SD. f Top: recalculated
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paired-wise similarity matrix. The movement bouts of all 20 mice involved were grouped (n = 16607)
and rearranged in a dendrogram (g). Each pixel on the matrix represents the normalized similarity value
of a pair of movement bouts at the i row and the j column. The color-coded bars (41 clusters) indicate
the movements being clustered (bottom); g Comparison of the fraction of movement types between KO
mice and WT mice. The bold traces and shadows indicate the mean + sem. Fractions of each group and
light color traces are the fractions of all 20 mice (purple, KO, n = 10; green, WT, n = 10). Middle color-
coded labels and dendrogram indicate the movement types. Eight movements have significant
differences between the two groups, and the fractions of the four movements that KO mice prefer are
hunching (M38, KO = 3.00 + 0.56%, WT = 0.94 £+ 0.15%) and self-grooming groups (M39, K = 7.65
+ 1.21%, W =2.34 £ 0.33%; M40, K=3.73 £ 0.72%, W = 0.75 £ 0.19%; M41, K =7.23 + 1.88%, W
=0.90 £ 0.18%). ****P <0001, **P < 0.01 by two-way ANOVA with Holm—Sidak post-hoc test. h
Low-dimensional representation of the two animal groups (purple, KO, n=10; green, WT, n=10). The
20 dots in 3D space were dimensionally reduced from 41-dimensional movement fractions, and they
are well separated. i Ethograms of the eight significant movements. j-n Kinematic comparison of
rearing and hunching (upper row refers to hunching; lower row refers to rearing). j Average skeletons
of all frames and normalized moving intensity (side view) of rearing and hunching. k Spine lines (the
lines connecting the neck, back, and tail root) extracted from all frames (rearing, 16834 frames;
hunching, 10037 frames) in movement types. For visualization purposes, only 1% of spine lines are
shown in the figure (rearing, 168/16834; hunching, 100/10037). Black lines refer to the averaged spine
line of the hunching and rearing phenotypes; 1 Histograms of the spine angles (angle between three
body parts). During rearing, the spine angles of the animals swing, and the average spine angle is
straight (181.34 £+ 15.63°). By contrast, the spine angles of the rodents during hunching are consistently
arcuate (162.88 £ 10.08°). m, n Box plot of spine angles of the two movement types. n Box plot of

normalized MI of the three body parts involved. Statistics for m, n: Mann-Whitney test. **** P<(0.0001.
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Fig. 1 | Hierarchical 3D-motion learning framework for animal behavior analysis. a Data preparation: 1)
image streams captured from four cameras with different 2D views; 2) animal body parts are tracked to generates
separate 2D skeletal trajectories (color-coded traces); 3) reconstructing 3D body skeleton by integrating these
four data streams. b Two-stage NM decomposition to generate the feature space: 1) pose decomposition groups
continuous skeleton postural data into discrete postural sequences; 2) NM decomposition, two high-lighted
(green and orange) blocks represent two NMs decomposed from the postural sequences; 3) NM sequences
mapped to their 2D features space (right), where each dot on the 3D axis corresponds to the NM block on the
left. ¢ Calculation of locomotion dimension. The continuous velocity of the behaving animal is first calculated,
then average the velocity of each segment obtained in the NM decomposition step. d 3D scatter plot represents
the combined NM and locomotion feature space. All the movements are clustered into three types (red, green,
and orange dots) with the unsupervised approach.
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Fig. 2 | Collecting animal behavior trajectories via a 3D motion capture system. a Pipeline of 3D animal
skeletal reconstruction. b Center, schematic diagram of recording animal behavior with four synchronized
cameras; corners, frames captured by the cameras with the DLC labels (left) and the corresponding reconstructed
skeletons (right). ¢ Left: 16 key body parts include the nose, left ear, right ear, neck, left front limb, right front
limb, left hind limb, right hind limb, left front claw, right front claw, left hind claw, right hind claw, back, root
tail, middle tail, and tip tail. Right: representative mouse body tracking trace data collected over 100 s showing
48 data vectors obtained by DLC for each body part (indicated with a color-coded dot) encoded by x, y, and z
coordinates. For visualization purposes, mean normalization is applied to each trace. d 3D reconstruction quality
assessment: 1-best quality, O-worst quality. The quality of the data obtained from the 12 mice averaged at
0.9981+0.001.
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Fig. 3 | Dynamic temporal decomposition of multi-scale hierarchical behavior. a [llustration of the three-lay-
er bottom-up architecture for behavior. Top: The color-coded bars indicate the types of behavior components in
the corresponding time period at that layer; each upper layer component is composed of the sequence of the
lower layer. The instance of “approaching” is at the ethogram level which is composed of three movement level
sequences, and each movement sequence includes a set of postural representations. b Representative animal
postural trajectories (black traces) with two selected similar NM segments S/ and S2 (orange bars masked). ¢
Discrete postural sequences S’/ (12 points) and S’°2 (13 points) were decomposed from S/ and S2 and used to
calculate their similarity kernel matrix K. d Segment kernel matrix 7 calculated with DTAK. Each pixel on the
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matrix represents the normalized similarity value of the K for a pair of segments at the i row and the j* column
(e.g., the pixel in the black box indicates the final similarity of S/ and S2). e NM segments decomposed from the
postural trajectories shown in b and their color-coded labels. Segments with the same color indicate that they
belong to the same types due to their higher similarity. f Optimization process of dynamic temporal decomposi-
tion. Objective Value (OV) error decreases with each iteration until the termination condition is reached (maxi-
mum number of iterations or OV converges). g Top, representative 300-s skeletal traces, where the trace slices
highlighted in colors corresponding to the four types of typical NMs (left turn, immobile, walk, right turn).
Bottom, magnification of representative traces of these four movement types. h Workflow of the two-stage
behavioral decomposition.
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Fig. 4 | Identify movement phenotypes on single experimental data. a Spatio-temporal feature space of
behavioral components. Each dot on the 3D scatter plot represents a movement bout (n = 935 bouts). The 11
different colors indicate the corresponding to 11 movement types shown in d. b Upper, recalculated paired-wise
similarity matrix, and they were rearranged with a dendrogram (lower). Each pixel on the matrix represents the
normalized similarity value of a pair of movement bouts at the i row and the j* column. The color-coded bars
indicate the labels of clustered movement (middle). ¢ Behavior fractions. For each subject, the behavior fractions
are defined as the bout number of each behavioral phenotype divided by the total number of behavior bouts the
animal produced during the experiment. d Intra-CC (color-coded) and inter-CC (grey dots) of each movement
group. The dots on each violin plot represents their intra-CC or inter-CC, and dots number in a pair of violin plot
in each group are the same (Intra-CC: 0.91+0.07; Inter-CC: 0.29+0.19). e Cumulative Distribution Function
(CDF) of CQI of the movement clusters. The clusters represented by the curves on the right side have better
clustering qualities, and their corresponding movements are more stereotyped. f The histogram of the duration
of all movements (0.963+0.497s).
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Fig. 5 | Visualization and quantification of behavioral kinematics. a Average skeleton of all frames within
each movement phenotype. The skeletons are shown with solid lines and calculated by averaging poses of body
parts across time. The heatmaps overlaid on the average skeleton are the distribution and movement intensity
(MI; see Supplementary Methods for further details) corresponding to each movement phenotype. b Correlation
and linear regression plot of movement phenotypes. The horizontal axis represents the target, and the vertical
axis represents the reference (see Supplementary Methods for further details). The color-coded and gray dots
correspond to the intra- and inter-cluster correlation coefficients, respectively. ¢ The comparison of MI between
different movement phenotypes. Each movement segment has two MI components (red boxes, horizontal; blue
boxes, vertical). The boxes’ values for each group contain the MIs of n behavioral modules (n is the number of
behavioral modules of each group). d, e Horizontal and vertical MI of each body part in different movement
phenotypes. The values on each line are the Mls of all behavior modules corresponding to the phenotype, shown
by body parts separately and presented as mean + standard deviation (SD).
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Fig. 6 | Spontaneous behavior analysis reveals autistic-like behaviors on shank3B knock-out mice. a PCR genotyping
for Shank3B**(Wild Type, WT), Shank3B~- (Shank3B Knock-out, KO) mice. b-e Box plot of mean velocity, mean anxiety
index, maximum velocity, and locomotion of the two groups of animals (purple: KO, n=10, green: WT, n=10; Statistics:
Mann-Whitney test for maximum velocity; Unpaired T-test for others, **** P<(0.0001), values are represented as mean=std.
f Top: recalculated paired-wise similarity matrix. The movement bouts of all of the 20 involved mice were grouped (n =
16607) and were rearranged with dendrogram (g). Each pixel on the matrix represents the normalized similarity value of a
pair of movement bouts at the i row and the j” column. The color-coded bars (41 clusters) indicate the movements being
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clustered (bottom); g Comparison of the fraction of movement types between KO mice and WT mice. The bold traces and
shadows indicate the mean+sem. Fractions of each group and light color traces are the fractions of all 20 mice (purple: KO,
n=10, green: WT, n=10). Middle color-coded labels and dendrogram indicate the movement types. Eight movements have
significant differences between the two groups, and the fractions of the four movements that KO mice prefer are hunching
(M38: KO 3.00+0.56%, WT 0.94+0.15%) and self-grooming groups (M39: KO 7.65+1.21%, WT 2.34+0.33%; M40: KO
3.73+0.72%, WT 0.75+0.19%; M41: KO 7.23+1.88%, WT 0.90+0.18%; ). ****P<0001, **P<0.01 by two-way ANOVA
with Holm—Sidak post-hoc test. h Low-dimensional representation of the two animal groups (purple: KO, n=10, green: WT,
n=10). The 20 dots in 3D space were dimensionally reduced from 41-dimensional movement fractions, and they are well
separated. i Ethograms of the eight significant movements. j-n Kinematic comparison of rearing and hunching (upper row
refers to hunching; lower row refers to rearing). j Average-skeletons of all frames and normalized moving intensity (side
view) of rearing and hunching. k Spine lines (the lines connecting the neck, back, and tail root) extracted from all frames
(rearing: 16834 frames, hunching: 10037 frames) in movement types. For visualization purposes, only 1% of spine lines are
shown in the figure (rearing: 168/16834, hunching: 100/10037). Black lines refer to the averaged spine line of the hunching
and rearing; 1 Histograms of the spine angles (angle between three body parts). During rearing, the spine angles of the
animals swing, and the average spine angle is straight (181.34415.63°). By contrast, the spine angles of the rodents during
hunching are consistently arcuate (162.88+£10.08°). m, n Box plot of spine angles of the two movement types. n Box plot
of normalized MI of the three body parts involved. Statistics for m, n: Mann-Whitney test. **** P<0.0001.
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