

1 **Heh2/Man1 may be an evolutionarily conserved sensor of NPC assembly state**

2

3 Sapan Borah[%], David J. Thaller[%], Zhanna Hakhverdyan[&], Elisa C. Rodriguez[%], Michael P.
4 Rout[&], Megan C. King[%] and C. Patrick Lusk^{%*}

5

6 [%]Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT,
7 06520

8 [&]The Rockefeller University, 1230 York Avenue, New York, NY, 10065

9

10 *Correspondence to C. Patrick Lusk

11 patrick.lusk@yale.edu

12

13

14

15 **Abstract**

16 Integral membrane proteins of the Lap2-emerin-MAN1 (LEM) family have emerged as important
17 components of the inner nuclear membrane (INM) required for the functional and physical
18 integrity of the nuclear envelope. However, like many INM proteins, there is limited
19 understanding of the biochemical interaction networks that enable LEM protein function. Here,
20 we show that Heh2/Man1 can be affinity purified with major scaffold components of the nuclear
21 pore complex (NPC), specifically the inner ring complex, in evolutionarily distant yeasts.
22 Interactions between Heh2 and nucleoporins is mediated by its C-terminal winged-helix (WH)
23 domain and are distinct from interactions required for INM targeting. Disrupting interactions
24 between Heh2 and the NPC leads to NPC clustering. Interestingly, Heh2's association with
25 NPCs can also be broken by knocking out Nup133, a component of the outer ring that does not
26 physically interact with Heh2. Thus, Heh2's association with NPCs depends on the structural
27 integrity of both major NPC scaffold complexes. We propose a model in which Heh2 acts as a
28 sensor of NPC assembly state, which may be important for NPC quality control mechanisms
29 and the segregation of NPCs during cell division.

30

31

32

33 **Introduction**

34 The eukaryotic genome is enclosed by a nuclear envelope that is contiguous with the
35 endoplasmic reticulum (ER). Despite this continuity, the nuclear envelope contains a unique
36 proteome that defines its function as a selective barrier. This barrier not only establishes
37 nuclear-cytoplasmic compartmentalization but also directly impacts genome organization and
38 function at the nuclear periphery (Mekhail and Moazed, 2010; Taddei and Gasser, 2012;
39 Buchwalter et al., 2019). The key elements of this biochemical specialization are the nuclear
40 pore complexes (NPCs), which control nucleocytoplasmic molecular exchange, and proteins
41 specifically associated with the inner and outer nuclear membranes (INM and ONM)(Ungrecht
42 and Kutay, 2017; Hampoelz et al., 2019). While ONM proteins generally act as adaptors that
43 connect the cytoskeleton to the nucleus (Burke and Roux, 2009), INM protein function is less
44 well defined. This is due in part to challenges inherent with defining biochemical interactions
45 between low abundance integral membrane proteins that exist within a complex and integrated
46 network of peripheral chromatin and nuclear scaffold proteins like the lamins (outside of yeasts).
47 Nonetheless, there is confidence that there are several dozen integral INM proteins with the
48 most evolutionarily conserved families being the LAP2-emerin-MAN1 (LEM) proteins and the
49 SUN family proteins (Mans et al., 2004; Ungrecht and Kutay, 2015).

50 LEM family proteins are so named for their LEM domain, a short ~40 amino acid helix-
51 extension-helix motif that, at least in higher eukaryotes, binds to barrier to autointegration factor
52 (BAF)(Furukawa, 1999; Cai et al., 2007). As there is no BAF in yeasts, the LEM domain must
53 possess other conserved functions, which may more directly relate to genome integrity,
54 ensuring the stability of repetitive DNA (Mekhail et al., 2008), and also contributing to the
55 mechanical integrity of the nucleus (Schreiner et al., 2015). There are up to seven LEM domain
56 proteins in humans but in the two most commonly used yeast models, *Saccharomyces*
57 *cerevisiae* (Sc) and *Schizosaccharomyces pombe* (Sp) there are only two:
58 ScHeh1(Src1)/SpHeh1(Lem2) and ScHeh2/SpHeh2(Man1)(Barton et al., 2015). Of these two,
59 ScHeh1 and SpHeh1 are likely orthologs derived from a common ancestor, while ScHeh2 and
60 SpHeh2 resulted from independent duplication events of their respective paralogs ScHeh1 and
61 SpHeh1 (Rhind et al., 2011; Gonzalez et al., 2012). Despite their independent evolutionary
62 history, there is evidence that Heh2 in both yeasts specifically makes functional connections
63 with NPCs. For example, in *S. cerevisiae*, we demonstrated synthetic genetic interactions
64 between genes encoding NPC components (nucleoporins or nups), and *HEH2* (Yewdell et al.,
65 2011). In the *S. pombe* cousin, *S. japonicus*, it has also been suggested that Heh2 supports

66 connections between chromatin and NPCs to support their segregation between daughter cells
67 in mitosis (Yam et al., 2013). However, the underlying biochemical connections between Heh2
68 and the NPC are not understood.

69 Understanding the nature of the connections between Heh2 and the NPC may also help
70 illuminate mechanisms underlying the biogenesis of NPCs. As the total proteome, interactome
71 and structure of NPCs have come to light, it is now understood that the enormous (50-100 MD)
72 NPC is built from a relatively small (~30) number of nups (Hampelz et al., 2019). These nups
73 are organized into modular subcomplexes that, in multiples of 8, assemble the 8-fold radially
74 symmetric NPC scaffold composed of inner and outer ring complexes (IRC and ORC), the
75 central transport channel and asymmetric (perpendicular to the plane of the nuclear envelope)
76 cytosolic filaments/mRNA export platform and nuclear basket (Kosinski et al., 2016; Kim et al.,
77 2018). How NPCs are assembled in space and time during interphase remains ill-defined, but
78 likely begins within the nucleus at the INM (Marelli et al., 2001; Makio et al., 2009; Yewdell et
79 al., 2011; Mészáros et al., 2015; Otsuka et al., 2016). The recruitment of nups to an assembly
80 site occurs alongside membrane-remodeling that evaginates the INM and ultimately drives
81 fusion with the ONM (Otsuka et al., 2016). Consistent with an inside-out model, the cytosolic-
82 facing mRNA export platform is likely added at a terminal step in NPC assembly (Otsuka et al.,
83 2016; Onischenko et al., 2017). In genetic backgrounds where the cytoplasmic-facing mRNA
84 export platform is not assembled, herniations or blebs are observed over assembling NPCs,
85 which may reflect defects in INM-ONM fusion and/or the triggering of NPC assembly quality
86 control pathways (Thaller and Lusk, 2018).

87 Both Heh1 and Heh2 have been implicated in mechanisms of NPC assembly quality control in
88 which they regulate the recruitment of the endosomal sorting complexes required for transport
89 (ESCRT) to the nuclear envelope (Webster et al., 2014, 2016; Thaller et al., 2019). One early
90 model suggested that Heh2 may differentially bind to NPC assembly intermediates over fully
91 formed NPCs (Webster et al., 2014). However, this has yet to be formally interrogated. In order
92 to be more incisive as to how Heh2 impacts NPC function, here we have thoroughly analyzed
93 the biochemical interaction network of endogenous Heh2. Using two evolutionary distant yeasts,
94 we show that Heh2 can co-purify with the NPC's IRC. These interactions do not require the LEM
95 domain or any INM targeting sequences but instead depend on a C-terminal domain predicted
96 to fold into a winged helix (WH)(Caputo et al., 2006). Further, by decoupling NPC clustering
97 from perturbations to NPC structure, we demonstrate that Heh2 associates with NPCs *in vivo*.
98 Most interestingly, the association of Heh2 with the NPCs can be completely broken by

99 knocking out Nup133, a nucleoporin of the ORC, suggesting that Heh2's association with the
100 NPC depends on its structural integrity. Taken together, we suggest a model in which Heh2 may
101 be a sensor of NPC assembly state.

102

103 **Results**

104 **Heh2 binds to specific nups in evolutionarily distant yeasts**

105 To better define the interacting partners of Heh1 and Heh2, we performed one-step affinity
106 purifications of Heh1-TAP and Heh2-TAP (produced at endogenous levels) from cryolysates
107 derived from logarithmically growing budding yeast (Hakhverdyan et al., 2015). As shown in Fig.
108 1A, we did not detect any obvious stoichiometric binding partners of Heh1-TAP despite robust
109 recovery of the fusion protein. In marked contrast, Heh2-TAP co-purified with at least 8
110 additional proteins, which were visible by SDS-PAGE and Coomassie blue staining of bound
111 fractions. Excision of these bands followed by mass spectrometric (MS) protein identification
112 revealed that Heh2 binds to the IRC of the NPC and a subset of cytosolic-facing nups, including
113 Nup159, Nup188, Nup192, Nup170, Pom152, Nup157, Nup116, Nic96 and Nsp1. For context,
114 we have colored the identified nups in a diagram of a single spoke from the budding yeast NPC
115 structure (Kim et al., 2018) in Fig. 1A.

116 We were next curious whether Heh2's association with the NPC was also observed in other
117 yeast species where the NPC structure is different than in budding yeast. For example, fission
118 yeast NPCs are made up of a similar catalogue of nups (Baï et al., 2004; Chen et al., 2004;
119 Asakawa et al., 2014), but there is evidence that there is asymmetry with respect to the ORC,
120 which contains 16 copies (instead of 8) of the "Y" complex on the nucleoplasmic side of the
121 NPC (Asakawa et al., 2019). Of additional interest, although *HEH1* in both *S. cerevisiae* and *S.*
122 *pombe* is derived from a common ancestor, these yeasts are separated by ~500 million years of
123 evolution (Rhind et al., 2011). Intriguingly, and in contrast, *ScHEH2* and *SpHEH2* arose from
124 distinct duplication events (Mans et al., 2004), and might therefore be expected to carry out
125 distinct functions.

126 Interestingly however, despite this unique evolutionary history, the affinity-purifications of
127 SpHeh2-TAP and SpHeh1-TAP were qualitatively similar to the *S. cerevisiae* versions with
128 SpHeh1-TAP co-purifying with few specific proteins (compare to the WT control) and SpHeh2-
129 TAP with several specific species (Fig. 1B). Note that SpHeh2-TAP is proteolytically sensitive

130 and is purified both as a full length (~115 kDa) and a smaller (~65 kDa) form (Fig. 1B).
131 Nonetheless, like its distant *S. cerevisiae* cousin, the SpHeh2-complex consisted of essentially
132 the same subset of inner ring nups including Nup184, Nup186, Nup155, Pom152, Npp106,
133 Nup98 and Nup97 (Fig. 1B). To facilitate a comparison, the *S. cerevisiae* homologues are listed
134 next to the identified *S. pombe* nups in Fig. 1B. Thus, despite the distinct duplication events that
135 gave rise to *HEH2* in both species, the physical association of Heh2 with the IRC likely points to
136 an important and conserved function that was likely shared by a common ancestor before being
137 independently specialized in the two species lineages.

138

139 **Heh2 fails to interact with NPCs lacking Nup133**

140 That Heh2 binds to nups suggests that it may be a component of the NPC. To assess this
141 possibility, we next examined the distribution of Heh2-GFP at the nuclear envelope alongside an
142 NPC marker, Nup82-mCherry. We also took advantage of a standard approach of knocking out
143 *NUP133*, which leads to NPC clustering and facilitates co-localization analysis, as individual
144 NPCs cannot be resolved with conventional light microscopy (Doye et al., 1994; Pemberton et
145 al., 1995; Li et al., 1995; Aitchison et al., 1995; Heath et al., 1995). Consistent with prior work
146 (Yewdell et al., 2011), we observed a punctate NPC-like distribution of Heh2-GFP at the nuclear
147 envelope of otherwise WT cells, which exhibited some co-localization with Nup82-mCherry (Fig.
148 2A). Indeed, when we quantified the correlation between the GFP and mCherry fluorescence at
149 each pixel along the nuclear envelope of 20 cells, we observed a modest positive correlation (r
150 = 0.39; Fig. 2B). In marked contrast, deletion of *NUP133* led to a striking anti-correlation
151 between Nup82-mCherry and Heh2-GFP ($r = -0.27$), which was obvious in the micrographs
152 where Heh2-GFP was diminished or undetectable at the Nup82-mCherry clusters (Fig. 2A, B,
153 bottom panels). We note further that Heh2-GFP is no longer punctate along the nuclear
154 envelope in *nup133Δ* cells, which suggests that there may in fact be an association with NPCs
155 (as supported by the biochemistry) but that this interaction is broken without Nup133.

156 To continue with the exploration of potential functional commonalities between ScHeh2 and
157 SpHeh2, we also tested whether deletion of the orthologous *S. pombe* *Nup132* impacted
158 SpHeh2-GFP distribution (Baï et al., 2004). As has been reported by others, SpHeh2 also has a
159 punctate distribution evocative of NPCs (Fig. 2C)(Gonzalez et al., 2012; Steglich et al., 2012).
160 Consistent with this, we observed coincidence between SpHeh2-GFP and SpNup107-mCherry
161 fluorescence with a correlation value of $r = 0.49$ (Fig. 2D, top). Interestingly, as in *S. cerevisiae*,
162 deletion of *Nup132* lead to a clear anti-correlation ($r = -0.03$) of the SpHeh2-GFP and

163 SpNup107-mCherry signals, suggesting that their physical interaction could be disrupted (Fig.
164 2D, bottom). Remarkably, this anti-correlation was observed even with minimal clustering of
165 SpNup107-mCherry in this strain (Fig. 2C). Thus, this result reinforces that disrupting NPC
166 structure by deleting a critical ORC component compromises Heh2's ability to interact with
167 NPCs in both organisms.

168

169 **Heh2 co-localizes with NPCs**

170 To reconcile the apparent inconsistency between the affinity purifications, which suggested that
171 Heh2 binds NPCs, and the lack of Heh2-GFP co-clustering with nups in *nup133Δ* strains, we
172 sought an orthogonal approach to assess Heh2-GFP co-localization with NPCs that were not
173 missing key structural components. In prior work, we observed that the anchor-away approach
174 (Haruki et al., 2008)(Fig. 3A) can drive rapid NPC clustering through the rapamycin-induced
175 dimerization of a Nsp1-FRB fusion that was incorporated into NPCs (and likely exposed to the
176 cytosol) with Pma1-FKBP12 (a plasma membrane anchor, Fig. 3A) within 15 min (Colombi et
177 al., 2013). The rapidity of this response strongly suggested that fully formed NPCs are driven
178 into clusters independent of NPC mis-assembly. Further, we did not detect any removal of
179 Nsp1-FRB from NPCs under these conditions (Colombi et al., 2013). Consistent with this, we
180 assessed the co-localization of Nup82-GFP with Nup170-mCherry in strains expressing Nsp1-
181 FRB and Pma1-FKPB12 in the presence of carrier alone (DMSO) or rapamycin. As expected,
182 both of the fluorescent proteins localized in a punctate distribution at the nuclear envelope in the
183 presence of DMSO with a significant $r = 0.48$ positive correlation between the GFP and
184 mCherry fluorescence (Fig. 3B, far right panel). Upon addition of rapamycin, we observed rapid
185 clustering and concurrent co-localization of both signals along the nuclear envelope, which was
186 evident in the coincidence of the GFP and mCherry fluorescence peaks of line profiles along the
187 nuclear envelope and a correlation that increased to $r = 0.74$ (Fig. 3B, middle and right panels).

188 We next tested how this approach to NPC clustering influenced Heh2-GFP localization. As a
189 control, we also assessed the distribution of Heh1-GFP, which does not stably interact with
190 nups (Fig. 1A). As shown in Fig. 3C, the addition of rapamycin lead to the clear co-localization
191 of Heh2-GFP and Nup170-mCherry. This again was evident through the examination of line
192 profiles of a representative nuclear envelope where there was coincidence between the peaks
193 of the GFP and mCherry fluorescence and further supported by the increased positive
194 correlation of GFP and mCherry fluorescence (from $r = 0.18$ to $r = 0.64$; Fig. 3C, middle and

195 right panels). Note, however, that unlike the comparison between the two nups (Fig. 3B), there
196 are peaks of Heh2-GFP fluorescence that are not coincident with the NPC clusters (Fig. 3C,
197 arrowheads in line profiles). Thus, while it is clear that Heh2-GFP associates with NPCs, there
198 is also an additional pool of Heh2-GFP at the INM. Last, we did not observe similar effects with
199 Heh1-GFP, which failed to cluster with NPCs (Fig. 3D) or correlate with their distribution ($r = -$
200 0.01)(Fig. 3D, right panel). Thus, this NPC clustering approach more faithfully mirrored our
201 biochemical analysis of both Heh1 and Heh2 and supports the interpretation that Heh2 is a
202 shared component of NPCs and the INM.

203

204 **Inhibition of NPC assembly reduces the Heh2 pool bound to NPCs**

205 A model in which there are two pools of Heh2 was further supported by experiments where we
206 reduced NPC number by inhibiting NPC assembly. For example, by again leveraging the
207 anchor-away strategy, we inhibited NPC assembly by trapping newly synthesized Nup192-FRB-
208 GFP for 3 h (Colombi et al., 2013). Under these conditions, there is a reduction of NPCs that is
209 reflected by lower levels of Nup192-FRB-GFP at the nuclear envelope and a concomitant
210 accumulation of newly synthesized Nup192-FRB-GFP at the plasma membrane (Fig. 4A, B,
211 rapamycin panels). In this scenario, we tested whether Nup192-FRB-GFP and Heh2-mCherry
212 co-localized at the nuclear envelope (Fig. 4B). As a control, we also tested co-localization with
213 Pom152-mCherry (Fig. 4A). While Pom152-mCherry distribution was similar to Nup192-FRB-
214 GFP with line profiles showing coincidence between mCherry and GFP fluorescence peaks
215 along the nuclear envelope (Fig. 4A, far right), there were clear gaps in the Nup192-FRB-GFP
216 signal that were filled by Heh2-mCherry (Fig. 4B, see arrowheads). This result is also
217 represented in line profiles across the nuclear envelope where the Heh2-mCherry signal fills
218 areas that are devoid of GFP-peaks (Fig. 4B, right bottom panel). Importantly, however, a
219 subset of Nup192-FRB-GFP peaks that likely correspond to NPCs that were assembled prior to
220 rapamycin addition still coincided with Heh2-mCherry peaks (Fig. 4B, right bottom panel). Thus,
221 these data are consistent with the interpretation that inhibition of NPC assembly leads to a
222 decrease in the pool of Heh2 bound to NPCs (due to their reduced number) and an increase in
223 the free pool at the INM. This conclusion is further supported by affinity-purifications of Heh2-
224 TAP from Nup192-FRB-GFP strains under the same conditions. While in DMSO-treated
225 conditions the expected IRC profile of nups was detected (Fig. 4C), upon inhibition of NPC
226 assembly with rapamycin, we observed a ~2-3 fold reduction of these nups (orange line in
227 densitometry plot at right) while the total amount of Heh2-TAP affinity purified remained

228 unchanged (Fig. 4C). Thus, we favor a model in which Heh2 remains capable of binding to the
229 IRC in fully formed NPCs, even when their number is decreased upon assembly inhibition.

230

231 **Heh2's association with NPCs depends on the integrity of the NPC scaffold**

232 If Heh2 binds the IRC, it remained unclear why deletion of *NUP133* abrogated Heh2's NPC
233 association, as the IRC is expected to be intact in this background. Thus, to rule out that Heh2
234 may be binding IRC nups outside of the context of fully formed NPCs, we directly tested
235 whether deletion of *NUP133* lead to a loss of Heh2 IRC binding. Strikingly, affinity purifications
236 of Heh2-TAP in *nup133Δ* cells did not reveal any obvious binding partners, with the potential
237 exception of Nup159, further supporting the *in vivo* evidence that the structurally deficient
238 *nup133Δ* NPCs are incompetent for binding Heh2 (Fig. 5A). This result is illustrated as a loss of
239 the colored Heh2-interacting nups within the context of a side and center view of a NPC spoke
240 in Fig. 5B. Consistent with the conserved lack of colocalization of scHeh2-GFP and spHeh2-
241 GFP with NPCs in the absence of Nup133/Nup132, we also observed a loss of nups in affinity-
242 purified fractions of SpHeh2-TAP from *nup132Δ* extracts (Fig. 5C).

243 We next explored the hierarchy of physical interactions that control Heh2's association with the
244 IRC by affinity-purifying Heh2-TAP from several IRC nup deletion backgrounds. Interestingly,
245 and in contrast with the deletion of *NUP133*, we were unable to define any single knockout of an
246 inner ring nup that fully broke Heh2's biochemical association with this complex. For example, in
247 cases where we deleted the genes encoding Nup157 or Pom152, we observed the discrete loss
248 of these, and only these, proteins from bound fractions (Fig. 5A, B). Deletion of *NUP170* and
249 *NUP188* led to a more severe disruption of nups bound to Heh2, but in these cases, Pom152
250 and a band at the molecular weight of Nup159 remained (Fig. 5A, B). Thus, it seems likely that
251 Heh2 makes several direct connections to nups in the IRC, with the most obvious candidates
252 being Pom152, Nup170 and/or Nup188. Heh2 may also directly bind to Nup159, although this
253 association alone is insufficient to maintain association with the NPC *in vivo* (Fig. 2A).

254 Our inability to fully break interactions between Heh2 and the NPC by abrogating single nups
255 within the IRC was further supported by the lack of any major changes to Heh2-GFP distribution
256 in the *nup170Δ*, *nup188Δ* and *pom152Δ* strains; in all cases the punctate, NPC-like distribution
257 of Heh2-GFP was retained (Fig. 5D). The one potential exception here was that, in addition to
258 the punctate nuclear envelope distribution, a cortical ER pool of Heh2-GFP could be discerned
259 specifically in *nup170Δ* strains (Fig. 5D, arrowhead). These data are consistent with prior work

260 demonstrating that Nup170 is uniquely required for the efficient targeting of overexpressed
261 Heh2 to the INM (King et al., 2006). Thus, we suggest that, with the exception of Nup170, the
262 physical interactions with the IRC described here are dispensable for INM targeting. Such an
263 assertion is further supported by the exclusive nuclear envelope localization of Heh2-GFP in
264 *nup133Δ* cells where virtually all of its biochemical interactions to the NPC are broken (Fig. 2A).
265 These data thus make the prediction that the INM targeting and NPC-binding elements of Heh2
266 are distinct.

267

268 **The conserved WH domain of Heh2 is required for NPC association**

269 To explore the possibility that INM targeting and NPC-binding may require unique structural
270 elements of Heh2, we generated truncations of Heh2 where the N-terminal nucleoplasmic
271 domain (which contains the INM-targeting information (King et al., 2006; Meinema et al., 2011))
272 and the C-terminal WH domains are deleted (Fig. 6A). Interestingly, deletion of the N-terminus
273 did not impact binding to nups, as a similar (if more robust) profile of the IRC was recovered in
274 affinity purifications of *heh2*-(316-663)-TAP (Fig. 6B). These data suggest that Heh2 can reach
275 the NPC (or at least bind to nups) in the absence of its N-terminal INM targeting domain. In
276 marked contrast, deletion of the WH domain, which does not impact INM targeting (Meinema et
277 al., 2011), led to a striking reduction of nup binding (Fig. 6B). These results were also mirrored
278 *in vivo*. For example, compared with Heh2-GFP, *heh2*-(1-570)-GFP did not exhibit a punctate
279 distribution at the nuclear envelope (Fig. 6C), which was quantified as a reduced coefficient of
280 variation of the fluorescence signal along the nuclear envelope (Fig. 6D). Consistent with the
281 idea that this change in localization of *heh2*-(1-570)-GFP was due to a loss of its interaction with
282 NPCs, it also failed to cluster with NPCs in the Nsp1-FRB NPC clustering assay (Fig. 6E) with
283 no positive correlation between *heh2*-(1-570)-GFP and Nup170-mCherry signals in either
284 DMSO ($r = 0.0$) or rapamycin ($r = -0.08$) treated cells (Fig. 6F). Thus, the WH domain of Heh2
285 is the major determinant of its association with NPCs.

286

287 **WH-domain-mediated interactions with NPCs are required for normal NPC distribution**

288 As the Heh2 WH-domain was specifically required for Heh2-binding to NPCs, but not for INM
289 targeting, there was an opportunity to define a putative NPC-specific function for Heh2. Indeed,
290 deletion of *HEH2* leads to a marked clustering of Nup82-GFP, which was quantified as a

291 coefficient of variation (CV) of the fluorescence along the nuclear envelope that was
292 approximately double the value in WT cells (Fig. 6G, H). To directly test whether this phenotype
293 was due to a loss of nup-binding, we assessed the distribution of Nup82-GFP in cells
294 expressing *heh2*-(1-570). Indeed, as shown in Fig. 6G, this targeted abrogation of the nup-
295 binding WH domain also resulted in a clear redistribution of Nup82-GFP, showing a clustering
296 coefficient nearly identical to that seen in *heh2* Δ cells (Fig. 6H). Thus, interactions between
297 Heh2 and the NPC are required for normal NPC distribution.

298 Interestingly, expression of *heh2*-(316-663) from its endogenous locus also impacted NPC
299 distribution, but with a unique phenotype. Because this truncation of Heh2 lacks its INM
300 targeting information, this fusion will be mislocalized to the endoplasmic reticulum (King et al.,
301 2006; Meinema et al., 2011). In these cells, Nup84-GFP accumulated in clusters at the nuclear
302 envelope but also appeared within cytosolic foci (Fig. 6I, arrowheads) in ~17% of cells. Together
303 then, these data support a model in which both the N-terminal and C-terminal domains of Heh2
304 are important for NPC distribution, however, the underlying mechanisms behind these
305 alterations are unique and reflect either too little (in the case of *heh2*-(1-570)) and likely
306 inappropriate (in the case of *heh2*-(316-663) interactions with nups.

307

308 **Discussion**

309 We have explored the physical and functional relationship between the integral INM protein
310 Heh2 and the NPC. This study was motivated by our prior discovery of predominantly genetic
311 interactions between *HEH2* and nup genes (Yewdell et al., 2011), in addition to other work
312 considering Heh2 as a factor in a NPC assembly surveillance pathway (Webster et al., 2014,
313 2016). In the latter, we imparted Heh2 the ability to discern between NPC assembly
314 intermediates and fully formed NPCs. This concept was centered, in part, on data showing that
315 Heh2 does not associate with clustered NPCs in *nup133* Δ strains, which was interpreted in a
316 model where Heh2 does not bind to fully formed NPCs. We now provide a more nuanced
317 explanation for these data, as deletion of Nup133 breaks Heh2's otherwise robust physical
318 association with the NPC (Fig. 5A). Thus, in light of the new data presented here, a
319 reconsideration of the role of Heh2 in NPC biology is needed. Given these new observations,
320 we suggest that Heh2 likely binds to fully formed NPCs. Several data support this assertion
321 including: 1) The biochemical interactions that suggest the formation of a stable complex
322 between Heh2 and the IRC (Fig. 1A, B). 2) The maintenance of these interactions even upon

323 NPC assembly inhibition (Fig. 4C) and 3) The punctate distribution of Heh2 at steady-state and
324 upon clustering of functional NPCs driven by the anchoring of Nsp1-FRB (Fig. 3C).

325 Despite the demonstration that Heh2 associates with NPCs, several new conundrums arise as a
326 consequence of this work. The first is that we do not observe any robust physical association
327 between Heh2 and the ORC, and yet, deletion of Nup133 leads to a loss of Heh2 binding to the
328 NPC (Fig. 5A). In contrast, we cannot break Heh2's association with NPCs by knocking out any
329 individual component of the IRC (Fig. 5A, D). While the latter can be explained in a model where
330 Heh2 makes several direct but redundant connections with nups, likely Pom152 and Nup170
331 and/or Nup188, the former is more challenging to interpret. Several potential models can be
332 considered. The first deals with the very nature of *nup133Δ* NPC clustering, which has so far
333 remained only partially explained on a mechanistic level. For example, one thought is that the
334 association of NPCs with the pore membrane is destabilized without the amphipathic
335 helix/ALPS motif in Nup133 (Drin et al., 2007), which may lead to pore clustering (Fernandez-
336 Martinez et al., 2012). In such a scenario, given that it is an integral membrane protein, Heh2's
337 interactions with the NPC may depend on the presence of specific lipids or membrane curvature
338 (or both) at the pore membrane. Alternatively, the clustering itself may sterically preclude an
339 interaction with Heh2. It is also possible that the IRC may not be fully functional or be
340 structurally perturbed in this context. Regardless of the underlying mechanism, as Heh2's
341 association with the NPC ultimately depends on the function of both of its major scaffold
342 complexes (i.e. the IRC and ORC), we favor a model in which Heh2 can, through a mechanism
343 that remains to be defined, "sense" the structural integrity of the NPC.

344 A model in which Heh2 is a sensor for the NPC scaffold fits within a quality control mechanism
345 framework. For example, recent work suggests that NPC clustering can facilitate clearance of
346 NPCs by autophagy (Lee et al., 2020). Thus, it is tempting to speculate that damage to the NPC
347 scaffold may trigger the release of Heh2, which would in turn lead to the clustering of damaged
348 NPCs. Such an idea is supported by the clustering that we observe in contexts where Heh2-
349 NPC interactions are abrogated (Fig. 6G, H). Similarly, as we have previously reported, NPC
350 clustering may also be an input that ensures that damaged or malformed NPCs are not
351 transmitted to daughter cells (Webster et al., 2014). Thus, the consistent theme is that breaking
352 interactions between Heh2 and NPCs may be an input to their segregation and/or clearance. A
353 corollary to this is that Heh2 bound to NPCs may in fact promote the inheritance of functional
354 NPCs. This may be best illustrated by work from *S. japonicus* where it was demonstrated that
355 the Heh2 orthologue contributes to anchoring NPCs to chromatin to promote their proper

356 segregation between daughters (Yam et al., 2013). Indeed, our observation that Heh2 also
357 engaged in interactions with the IRC in *S. pombe* argues that it supports a fundamental role(s)
358 across diverse yeasts.

359 How, then, do interactions between Heh2 and NPCs ensure proper NPC distribution? We
360 speculate that in the absence of mechanisms to keep NPCs apart, NPCs have an inherent
361 conformation or affinity that drives their clustering. In this scenario, binding NPCs to INM
362 proteins could help ensure their physical segregation. Although this could be envisaged purely
363 as a steric inhibition of NPC-NPC interactions, we favor the concept that the distribution of
364 NPCs and other elements of the nuclear architecture are co-dependent. Indeed, our prior work
365 suggests that SpHeh2 antagonizes the flow of chromatin into nuclear deformations (Schreiner et
366 al., 2015), in essence maintaining normal chromatin distribution at the nuclear periphery, a
367 direct corollary of the effect here on NPC distribution. As SpHeh2 binds both chromatin
368 (Gonzalez et al., 2012; Steglich et al., 2012) and NPCs (this work), it is tempting to speculate
369 that it supports the normal organization of NPCs and chromatin by dynamically linking these two
370 major structural components of the nucleus. This concept is consistent with evidence in
371 mammalian cells where NPCs are well established to be anchored to the lamin network (Daigle
372 et al., 2001; Maeshima et al., 2006; Xie and Burke, 2017; Kittisopikul et al., 2020). In scenarios
373 in which this lamin connection is broken, for example in lamin knockouts, NPCs also cluster
374 together (Xie and Burke, 2017; Kittisopikul et al., 2020). Although NPCs are more dynamic
375 along the nuclear envelope in budding yeast (Belgareh and Doye, 1997; Bucci and Wente,
376 1997), their interactions with chromatin through multiple mechanisms (Luthra et al., 2007; Tan-
377 Wong et al., 2009) could nonetheless contribute to their normal distribution. Whether clustering
378 has an impact on NPC function per se remains ill defined, although one could speculate that
379 NPC clustering has a more profound impact on the NPC's roles in chromatin organization and
380 gene expression as opposed to nuclear transport (Capelson et al., 2010; Raices and D'Angelo,
381 2017).

382 One particularly interesting feature of our analysis of Heh2 is that the NPC binding and INM
383 targeting sequences are distinct and on two physically separated domains. Certainly there is
384 evidence from both genetic and biochemical analyses where the function of specific domains of
385 the LEM domain proteins can be separated (Grund et al., 2008; Yewdell et al., 2011; Barrales et
386 al., 2016; Hirano et al., 2018; Thaller et al., 2019; von Appen et al., 2020). However, we wonder
387 whether there are functional implications for the integration of these two interaction platforms,
388 which could place Heh2 in a tug-of-war between its residence bound to the NPC and its release

389 to the INM. This would be yet another example in an emerging theme for these LEM domain
390 proteins in which they bridge distinct sets of physical interactions to maintain the dynamic
391 organization of the nuclear envelope system.

392 **Figure legends**

393 **Figure1. Heh2 binds to specific nups in evolutionary distant yeasts**

394 (A) Heh2 specifically binds the IRC. Affinity purifications were performed from cell extracts
395 derived from strains expressing endogenous Heh1-TAP or Heh2-TAP or from WT cells (no
396 TAP). Bound proteins were separated by SDS-PAGE and visualized by Coomassie staining.
397 Numbers at left indicate position of MW standards in kD. Heh1-TAP and Heh2-TAP are
398 indicated, and colored circles demark proteins identified by MS from Heh2-TAP lane, as
399 indicated in key. This color scheme is also used to indicate positions of nups within a single
400 spoke of the NPC structure (from PDBDEV_00000010; Kim et al., 2018). ORC is outer ring
401 complex, IRC is inner ring complex.

402 (B) As in A but affinity purifications performed from *S. pombe* cell extracts. The corresponding
403 *S. cerevisiae* homologues of the identified *S. pombe* nups are also listed.

404

405 **Figure 2. Heh2 fails to interact with NPCs lacking Nup133**

406 (A) Deconvolved fluorescence micrographs of Heh2-GFP and Nup82-mCherry with merge in
407 WT and *nup133* Δ strains. Arrowheads point to regions depleted of Heh2-GFP that contain
408 Nup82-mCherry in a cluster. Scale bar is 5 μ m.

409 (B) Scatterplot with Pearson correlation coefficient (r) of Heh2-GFP and Nup82-mCherry
410 fluorescence intensity (in arbitrary units, a.u.) along the nuclear rim of 20 cells, from two
411 independent experiments.

412 (C) Deconvolved fluorescence micrographs of SpHeh2-GFP, and SpNup107-mCherry with
413 merge in WT and *nup132* Δ *S. pombe* cells. Scale bar is 5 μ m.

414 (D) Scatterplot with Pearson correlation coefficient (r) of SpHeh2-GFP and SpNup107-mCherry
415 fluorescence intensity (in arbitrary units, a.u.) along the nuclear rim of 20 cells, from two
416 independent experiments.

417

418 **Figure 3. Heh2 associates with NPCs in vivo.**

419 (A) Schematic of NPC clustering assay mediated by the rapamycin-induced dimerization of
420 Nsp1-FRB (at the NPC) and Pma1-FKBP12. N is nucleus, V is vacuole.

421 **(B-D)** Left: Deconvolved fluorescence micrographs of indicated GFP tagged proteins and
422 Nup170-mCherry as a NPC marker with merge in cells treated with DMSO (carrier) or
423 rapamycin for 15 min. Scale bar is 5 μ m. Middle: Line profiles of fluorescence intensity of GFP
424 and mCherry fusions (in arbitrary units, a.u.) along the nuclear envelope of a single cell. Right:
425 Scatterplot with Pearson correlation coefficient (r) of GFP and mCherry fluorescence intensity
426 (in arbitrary units, a.u.) along the nuclear rim of 30 cells, from three independent experiments.

427

428 **Figure 4. Inhibition of NPC assembly reduces the Heh2-nup bound pool**

429 **(A, B)** Deconvolved fluorescence micrographs of Nup192-FRB-GFP with either Pom152-
430 mCherry or Heh2-mCherry with merge after treating cells with DMSO (carrier) or rapamycin for
431 3 h to inhibit NPC assembly. Note accumulation of newly synthesized Nup192-FRB-GFP at the
432 plasma membrane as it binds to the Pma1-FKBP12 anchor. Arrowheads point to Heh2-mCherry
433 at the nuclear envelope that is resolvable from Nup192-FRB-GFP signal. Scale bar is 2 μ m. At
434 right are line profiles of GFP and mCherry fluorescence intensity (in arbitrary units, a.u.) along
435 the nuclear envelope of single cells corresponding to DMSO (top) and rapamycin (bottom)
436 conditions.

437 **(C)** Inhibiting NPC assembly reduces Heh2-IRC binding. Affinity purifications were performed
438 from cell extracts derived from cells expressing Heh2-TAP with Nup192-FRB-GFP and Pma1-
439 FKBP12 treated with carrier (DMSO) alone, or with rapamycin (rap) to inhibit NPC assembly.
440 Bound proteins were separated by SDS-PAGE and visualized with Coomassie. Position of MW
441 markers (kD) are indicated at left and proteins are marked with colored circles that denote their
442 identity as per key at right. Densitometry of the protein staining of the DMSO (black) and
443 rapamycin (orange) lanes on right.

444

445 **Figure 5. NPC scaffold integrity affects Heh2's association with NPCs**

446 **(A)** Affinity purifications were performed from cell extracts derived from the indicated nup gene
447 deletion strains expressing endogenous Heh2-TAP or from WT cells (no TAP). Bound proteins
448 were separated by SDS-PAGE and visualized by Coomassie staining. Numbers at left indicate
449 position of MW standards in kD. Proteins are marked with colored circles that denote their
450 identity as per key at right.

451 **(B)** The nups affinity purified from the indicated genetic backgrounds in A are placed within a
452 single spoke of the NPC structure (from PDBDEV_00000010; Kim et al., 2018) in side and
453 center views. Individual nups are colored as in the key in A.

454 **(C)** As in A but affinity purifications performed from *S. pombe* cell extracts.

455 **(D)** Deconvolved fluorescence micrographs of Heh2-GFP in indicated strain backgrounds. White
456 arrowhead points to Heh2-GFP fluorescence at the cortical ER in *nup170Δ* cells. Scale bars are
457 5 μ m.

458

459 **Figure 6. The WH domain of Heh2 is required for its association with NPCs**

460 **(A)** Schematic of Heh2 and Heh2 truncations showing the LEM (Lap2-Emerin-Man1) domain, a
461 bipartite nuclear localization signal (NLS), intrinsically disordered region (IDR), luminal domain
462 (LD), transmembrane domains (TM1 and TM2) and winged helix (WH); numbers represent
463 amino acid numbers. INM, inner nuclear membrane.

464 **(B)** Affinity purifications were performed from cell extracts derived from strains expressing the
465 indicated TAP fusions or from WT cells (no TAP). Bound proteins were separated by SDS-
466 PAGE and visualized by Coomassie staining. Numbers at left indicate position of MW standards
467 in kD. Red circles denote position of TAP-fusions.

468 **(C)** Deconvolved fluorescence micrographs of Heh2-GFP or heh2-(1-570)-GFP and the NPC
469 marker Nup82-mCherry, with merge. Scale bar is 5 μ m.

470 **(D)** To quantitatively evaluate the distribution of Heh2-GFP and heh2-(1-570)-GFP, a coefficient
471 of variation (CV) of the GFP fluorescence along the nuclear envelope was calculated. Individual
472 CV values (multiplied by 100) were plotted with mean and SD from 60 cells, from three
473 independent experiments. *p* values were calculated from Student's t-test where **** indicates *p*
474 ≤ 0.0001 .

475 **(E)** Deconvolved fluorescence micrographs of heh2-(1-570)-GFP and Nup170-mCherry with
476 merge in cells expressing Nsp1-FRB and Pma1-FKBP12. Cells were treated with carrier
477 (DMSO) or rapamycin. Addition of rapamycin leads to NPC clustering as described in Fig. 3A.
478 Scale bar is 5 μ m.

479 **(F)** Scatterplot with Pearson correlation coefficient (*r*) of heh2-(1-570)-GFP and Nup170-
480 mCherry fluorescence intensity (in arbitrary units, a.u.) along the nuclear envelope of 30 cells

481 from three independent experiments like that shown in E. Values are from cells from DMSO
482 (top) and rapamycin-treated (bottom) conditions.

483 **(G)** The WH domain of Heh2 is required for normal NPC distribution. Deconvolved fluorescence
484 micrographs of Nup82-GFP in indicated strain backgrounds. Scale bar is 5 μ m.

485 **(H)** To quantitatively evaluate the distribution of Nup82-GFP in the indicated strains, a
486 coefficient of variation (CV) of the GFP fluorescence along the nuclear envelope was calculated.
487 Individual CV values (multiplied by 100) were plotted with mean and SD from 60 cells, from
488 three independent experiments. *p* values were calculated from one-way ANOVA with Tukey's
489 post-hoc test where ns is *p* > 0.05, *****p* ≤ 0.0001.

490 **(I)** Deconvolved fluorescence micrographs of Nup84-GFP in WT and cells where *HEH2* is
491 replaced by *heh2-(316-663)*. Arrowheads point to cytosolic Nup84-GFP foci. Scale bar is 5 μ m.

492 **(J)** Quantification of the percentage of cells where Nup84-GFP is found in the cytosol from
493 experiment in I. Error bars are SD from four independent experiments. *p* values were calculated
494 with unpaired t-test where ** indicates *p* ≤ 0.01.

495

496

497

498

499

500

501

502

503

504

505

506

507

508 **Materials and methods**

509 **Yeast culture and strain generation**

510 All yeast strains used in this study are listed in Table S1. *S. cerevisiae* strains were grown in
511 YPD consisting of 1% Yeast extract (BD), 2% Bacto-peptone (BD) and, 2% D-glucose (Sigma).
512 For microscopy experiments, YPD was supplemented with 0.025% adenine hemi-sulfate
513 (Sigma). Yeast cells were grown at 30°C to mid-log phase, unless otherwise stated.
514 Transformation of *S. cerevisiae* cells, mating, sporulation and tetrad-dissections were carried
515 out using standard protocols (Amberg et al., 2005). Deletion and truncation of yeast ORFs and
516 tagging of ORFs with fluorescent protein genes, FRB and TAP-tags was performed utilizing the
517 pFA6a or pK3F plasmid templates (Longtine et al., 1998; Zhang et al., 2017).

518 *S. pombe* strains were grown in YE5S media consisting of 5% Yeast extract (BD), 30% D-
519 glucose (Sigma) and 1.25% SP complete supplements (adenine hemisulfate, L-histidine
520 hydrochloride monohydrate, L-leucine, L-lysine hydrochloride and uracil) from Sunrise Science
521 products, at 30°C. *S. pombe* strains were crossed and maintained utilizing standard media and
522 techniques as described in (Moreno et al., 1991). PCR based gene disruption and tagging were
523 performed utilizing pFA6a plasmid templates (Bähler et al., 1998; Hentges et al., 2005).

524

525 **Plasmids**

526 All plasmids used in this study are listed in Table S2. The pFA6a-TAP-his3MX6 and pFA6a-
527 TAP-TRP1 plasmids were constructed as follows: the TAP coding sequence was PCR-amplified
528 from chromosomal DNA from a strain expressing Heh2-TAP (SBCPL42, Dharmacon yeast
529 resources) using Phusion High fidelity DNA polymerase (New England BioLabs) and cloned into
530 the *PacI* and *AscI* sites of pFA6a-his3MX6 and pFA6a-TRP1.

531 pFA6a-3xHA-FRB-GFP-his3MX6 was generated by Gibson Assembly (New England BioLabs).
532 The 3xHA epitope coding sequence was PCR-amplified from pFA6a-3xHA-hisMX6 (Longtine et
533 al., 1998) using Q5 DNA polymerase (New England BioLabs) and assembled into pFA6a-FRB-
534 GFP-hisMX6, or pFA6a-FRB-hisMX6 (EUROSCARF) digested with *Sall* and *PacI*.

535

536 **Immunoaffinity purification**

537 To affinity purify TAP-fusions, *S. cerevisiae* strains were grown overnight and 2 ml of culture
538 was diluted into 1 l of YPD the next morning and grown for 20-24 h to late log phase ($OD_{600} \sim 2$).
539 *S. pombe* cells were grown overnight and transferred to fresh medium the next morning to an
540 OD_{600} of 0.1 and grown for 7 h. *S. pombe* cells were further diluted to an OD_{600} of 0.01 in 1 l
541 YES medium and grown for another 18-20 h. Both *S. cerevisiae* and *S. pombe* cells were grown
542 at 30°C at 200 rpm and cells were harvested by centrifugation. Cells were washed with ice-cold
543 water once, collected by centrifugation and resuspended in 100 μ l freezing solution (20 mM
544 HEPES, pH 7.4, 1.2% polyvinylpyrrolidone and protease inhibitor cocktail [Sigma]) per g of cells.
545 The cell slurry was snap-frozen in liquid nitrogen immediately. The frozen cell pellets were cryo-
546 milled 6 times at 30 Hz for 3 min in a Retsch MM400 mixer mill and stored at -80°C.

547 To perform immunoaffinity purifications, 200 mg of frozen yeast grindate was resuspended in 4-
548 times volume of homogenization buffer (400 mM Na₃Cit, pH 8.0, 10 mM Deoxy Big CHAP) and
549 protease inhibitor cocktail at room temperature. The homogenate was clarified by centrifugation
550 at 16,000 g for 10 min at 4°C. The soluble fraction was incubated with 25 μ l of Rabbit-IgG
551 coated Dynabeads for 1 h at 4°C under gentle rotation. After binding, beads were collected on a
552 magnetic rack and washed three times with 500 μ l ice-cold homogenization buffer. The proteins
553 were eluted by incubating beads with 20 μ l of 1X NuPAGE lithium dodecyl sulfate sample buffer
554 (Invitrogen) at room temperature for 10 min. The eluate was separated on a magnetic rack and
555 further incubated with 50 mM DTT at 70°C for 10 min. The eluted proteins were separated on a
556 4–12% NuPAGE gel (Novex) and stained with Imperial protein stain (Thermo Scientific). The
557 proteins of interest were excised for identification by MS.

558 **Conjugation of Dynabeads with Rabbit IgG**

559 Purified rabbit IgG (Sigma, I5006) was dissolved in 0.1 M sodium phosphate buffer, pH 7.4, to a
560 final concentration of 1 mg/ml. The IgG solution was filtered through a 0.22 μ m syringe filter and
561 mixed with an equal volume of 3 M (NH₄)₂SO₄. For conjugation, 100 mg of Dynabeads® M-270
562 Epoxy (Invitrogen) were transferred to a 15 ml centrifuge tube, suspended in 6 ml 0.1 M sodium
563 phosphate buffer, pH 7.4 and incubated at room temperature for 15 min on a tube rotator. The
564 beads were collected on a magnetic rack, the buffer aspirated and beads were washed again
565 with 0.1 M sodium phosphate buffer, pH 7.4 by vortexing. The buffer was removed and beads
566 were resuspended in 2 ml of IgG solution and incubated at 30°C for 65-70 h on a tube rotator.
567 The beads were separated on a magnetic rack and quickly washed with 100 mM glycine, pH
568 2.5, followed by a wash with 10 mM Tric-HCl, pH 8.8. Beads were again washed quickly with
569 freshly prepared 100 mM Triethylamine and followed by 4 washes with PBS for 5 min each and

570 one wash with PBS with 0.5% Triton X-100 for 15 min. The beads were washed one final time
571 with PBS, collected on a magnetic rack and resuspended in 667 μ l PBS with 50% glycerol.

572 **Anchor-away experiments**

573 The anchor-away experiments were performed as described by Haruki et al., 2008. Briefly,
574 strains expressing Nup-FRB fusions and Pma1-FKPB12 in HHY110 (*tor1-1 fpr1 Δ*) were
575 incubated with a final concentration of 1 μ g/ml rapamycin for 30 min (to cluster NPCs in the
576 context of Nsp1-FRB) or 3 h to inhibit assembly (Nup192-FRB).

577 **Fluorescence microscopy, image processing and analysis**

578 Fluorescence micrographs were acquired on a DeltaVision microscope (Applied Precision, GE
579 Healthcare) with a 100x, 1.4 NA objective (Olympus). The images were captured with a
580 CoolSnapHQ² CCD camera (Photometrics). Fluorescence micrographs were deconvolved with
581 the iterative algorithm sofWoRx. 6.5.1 (Applied Precision, GE Healthcare).

582 Clustering of NPCs was quantified as described previously (FernandezMartinez et al., 2012): A
583 6-pixel wide freehand line was drawn along the nuclear envelope contour and mean
584 fluorescence intensities were measured using FIJI/ImageJ (Schindelin et al., 2012). Clustering
585 was assessed by calculating the coefficient of variance (SD/mean X 100) of the fluorescence
586 intensities at the nuclear envelope.

587 **Modeling of NPC spokes**

588 Color coding of an isosurface representation of individual nup densities as assigned in Kim et al.
589 2018 within an individual spoke of the NPC from the PDB DEV ID:00000010 was completed
590 using ChimeraX (UCSF) (Goddard et al., 2018).

591

592 **Acknowledgements**

593 We thank Jean Kanyo and the Yale Keck Biotechnology Resource Laboratory for help with MS
594 analysis. We would like to thank Valérie Doye for *S. pombe* strains. We would like to thank
595 the members of the Lusk and King laboratories for critical input on experimental design and data
596 analysis. This work was supported by the NIH: R01 GM105672 to CPL, R21 HG006742 to CPL
597 and MCK, and R01 GM112108 and P41 GM109824 to MPR and the NSF: EFMA-1806504 to
598 MCK.

599 **References**

600 Aitchison, J.D., G. Blobel, and M.P. Rout. 1995. Nup120p: a yeast nucleoporin required for NPC
601 distribution and mRNA transport. *J. Cell Biol.* 131:1659–1675. doi:10.1083/jcb.131.6.1659.

602 Amberg, D.C., D.J. Burke, and J.N.J.N. Strathern. 2005. Methods in Yeast Genetics: A Cold
603 Spring Harbor Laboratory Course Manual, 2005 Edition. 2005 ed. Cold Spring Harbor
604 Laboratory Press.

605 von Appen, A., D. LaJoie, I.E. Johnson, M.J. Trnka, S.M. Pick, A.L. Burlingame, K.S. Ullman,
606 and A. Frost. 2020. LEM2 phase separation promotes ESCRT-mediated nuclear envelope
607 reformation. *Nature*. 582. doi:10.1038/s41586-020-2232-x.

608 Asakawa, H., T. Kojidani, H.J. Yang, C. Ohtsuki, H. Osakada, A. Matsuda, M. Iwamoto, Y.
609 Chikashige, K. Nagao, C. Obuse, Y. Hiraoka, and T. Haraguchi. 2019. Asymmetrical
610 localization of nup107-160 subcomplex components within the nuclear pore complex in
611 fission yeast. *PLoS Genet.* 15:1–30. doi:10.1371/journal.pgen.1008061.

612 Asakawa, H., H.J. Yang, T.G. Yamamoto, C. Ohtsuki, Y. Chikashige, K. Sakata-Sogawa, M.
613 Tokunaga, M. Iwamoto, Y. Hiraoka, and T. Haraguchi. 2014. Characterization of nuclear
614 pore complex components in fission yeast *Schizosaccharomyces pombe*. *Nucl. (United
615 States)*. 5. doi:10.4161/nucl.28487.

616 Bähler, J., J.Q. Wu, M.S. Longtine, N.G. Shah, A. McKenzie, A.B. Steever, A. Wach, P.
617 Philipsen, and J.R. Pringle. 1998. Heterologous modules for efficient and versatile PCR-
618 based gene targeting in *Schizosaccharomyces pombe*. *Yeast*. 14:943–951.
619 doi:10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y.

620 Baï, S.W., J. Rouquette, M. Umeda, W. Faigle, D. Loew, S. Sazer, and V. Doye. 2004. The
621 Fission Yeast Nup107-120 Complex Functionally Interacts with the Small GTPase
622 Ran/Spi1 and Is Required for mRNA Export, Nuclear Pore Distribution, and Proper Cell
623 Division. *Mol. Cell. Biol.* 24:6379–6392. doi:10.1128/mcb.24.14.6379-6392.2004.

624 Barrales, R.R., M. Forn, P.R. Georgescu, Z. Sarkadi, and S. Braun. 2016. Control of
625 heterochromatin localization and silencing by the nuclear membrane protein Lem2. *Genes
626 Dev.* 30:133–148. doi:10.1101/gad.271288.115.

627 Barton, L.J., A.A. Soshnev, and P.K. Geyer. 2015. Networking in the nucleus: a spotlight on
628 LEM-domain proteins. *Curr. Opin. Cell Biol.* 34:1–8.

629 doi:<https://doi.org/10.1016/j.ceb.2015.03.005>.

630 Belgareh, N., and V. Doye. 1997. Dynamics of nuclear pore distribution in nucleoporin mutant
631 yeast cells. *J. Cell Biol.* 136:747–759. doi:10.1083/jcb.136.4.747.

632 Bucci, M., and S.R. Wente. 1997. In vivo dynamics of nuclear pore complexes in yeast. *J. Cell*
633 *Biol.* 136:1185–99.

634 Buchwalter, A., J.M. Kaneshiro, and M.W. Hetzer. 2019. Coaching from the sidelines: the
635 nuclear periphery in genome regulation. *Nat. Rev. Genet.* 20:39–50. doi:10.1038/s41576-
636 018-0063-5.

637 Burke, B., and K.J. Roux. 2009. Nuclei Take a Position: Managing Nuclear Location. *Dev. Cell.*
638 17:587–597. doi:10.1016/j.devcel.2009.10.018.

639 Cai, M., Y. Huang, J.-Y. Suh, J.M. Louis, R. Ghirlando, R. Craigie, and G.M. Clore. 2007.
640 Solution NMR structure of the barrier-to-autointegration factor-Emerin complex. *J. Biol.*
641 *Chem.* 282:14525–14535. doi:10.1074/jbc.M700576200.

642 Capelson, M., C. Doucet, and M.W. Hetzer. 2010. Nuclear pore complexes: guardians of the
643 nuclear genome. *Cold Spring Harb. Symp. Quant. Biol.* 75:585–597.
644 doi:10.1101/sqb.2010.75.059.

645 Caputo, S., J. Couprie, I. Duband-Goulet, E. Kondé, F. Lin, S. Braud, M. Gondry, B. Gilquin,
646 H.J. Worman, and S. Zinn-Justin. 2006. The carboxyl-terminal nucleoplasmic region of
647 MAN1 exhibits a DNA binding winged helix domain. *J. Biol. Chem.* 281:18208–18215.
648 doi:10.1074/jbc.M601980200.

649 Chen, X.Q., X. Du, J. Liu, M.K. Balasubramanian, and D. Balasundaram. 2004. Identification of
650 genes encoding putative nucleoporins and transport factors in the fission yeast
651 *Schizosaccharomyces pombe*: a deletion analysis. *Yeast.* 21:495–509.
652 doi:10.1002/yea.1115.

653 Colombi, P., B.M. Webster, F. Fröhlich, and C. Patrick Lusk. 2013. The transmission of nuclear
654 pore complexes to daughter cells requires a cytoplasmic pool of Nsp1. *J. Cell Biol.*
655 203:215–232. doi:10.1083/jcb.201305115.

656 Daigle, N., J. Beaudouin, L. Hartnell, G. Imreh, E. Hallberg, J. Lippincott-Schwartz, and J.
657 Ellenberg. 2001. Nuclear pore complexes form immobile networks and have a very low
658 turnover in live mammalian cells. *J. Cell Biol.* 154:71–84. doi:10.1083/jcb.200101089.

659 Doye, V., R. Wepf, and E.C. Hurt. 1994. A novel nuclear pore protein Nup133p with distinct
660 roles in poly(A)+ RNA transport and nuclear pore distribution. *EMBO J.* 13:6062–6075.

661 Drin, G., J.F. Casella, R. Gautier, T. Boehmer, T.U. Schwartz, and B. Antonny. 2007. A general
662 amphipathic α -helical motif for sensing membrane curvature. *Nat. Struct. Mol. Biol.*
663 14:138–146. doi:10.1038/nsmb1194.

664 Fernandez-Martinez, J., J. Phillips, M.D. Sekedat, R. Diaz-Avalos, J. Velazquez-Muriel, J.D.
665 Franke, R. Williams, D.L. Stokes, B.T. Chait, A. Sali, and M.P. Rout. 2012. Structure-
666 function mapping of a heptameric module in the nuclear pore complex. *J. Cell Biol.*
667 196:419–434. doi:10.1083/jcb.201109008.

668 Furukawa, K. 1999. LAP2 binding protein 1 (L2BP1/BAF) is a candidate mediator of LAP2-
669 chromatin interaction. *J. Cell Sci.* 112:2485–2492.

670 Goddard, T.D., C.C. Huang, E.C. Meng, E.F. Pettersen, G.S. Couch, J.H. Morris, and T.E.
671 Ferrin. 2018. UCSF ChimeraX: Meeting modern challenges in visualization and analysis.
672 *Protein Sci.* 27:14–25. doi:10.1002/pro.3235.

673 Gonzalez, Y., A. Saito, and S. Sazer. 2012. Fission yeast Lem2 and Man1 perform fundamental
674 functions of the animal cell nuclear lamina. *Nucleus.* 3:60–76. doi:10.4161/nucl.18824.

675 Grund, S.E., T. Fischer, G.G. Cabal, O. Antúnez, J.E. Pérez-Ortín, and E. Hurt. 2008. The inner
676 nuclear membrane protein Src1 associates with subtelomeric genes and alters their
677 regulated gene expression. *J. Cell Biol.* 182:897–910. doi:10.1083/jcb.200803098.

678 Hakhverdyan, Z., M. Domanski, L.E. Hough, A.R.A.A. Oroskar, A.R.A.A. Oroskar, S. Keegan,
679 D.J. Dilworth, K.R. Molloy, V. Sherman, J.D. Aitchison, D. Fenyö, B.T. Chait, T.H. Jensen,
680 M.P. Rout, and J. Lacava. 2015. Rapid, optimized interactomic screening. *Nat. Methods.*
681 12:553–560. doi:10.1038/nmeth.3395.

682 Hampaetz, B., A. Andres-Pons, P. Kastritis, and M. Beck. 2019. Structure and Assembly of the
683 Nuclear Pore Complex. *Annu. Rev. Biophys.* 48:515–536. doi:10.1146/annurev-biophys-
684 052118-115308.

685 Haruki, H., J. Nishikawa, and U.K. Laemmli. 2008. The Anchor-Away Technique: Rapid,
686 Conditional Establishment of Yeast Mutant Phenotypes. *Mol. Cell.* 31:925–932.
687 doi:10.1016/j.molcel.2008.07.020.

688 Heath, C. V, C.S. Copeland, D.C. Amberg, V. Del Priore, M. Snyder, and C.N. Cole. 1995.

689 Nuclear pore complex clustering and nuclear accumulation of poly(A)+ RNA associated
690 with mutation of the *Saccharomyces cerevisiae* RAT2/NUP120 gene. *J. Cell Biol.*
691 131:1677–1697. doi:10.1083/jcb.131.6.1677.

692 Hentges, P., B. Van Driessche, L. Tafforeau, J. Vandenhoute, and A.M. Carr. 2005. Three novel
693 antibiotic marker cassettes for gene disruption and marker switching in
694 *Schizosaccharomyces pombe*. *Yeast*. 22:1013–1019. doi:10.1002/yea.1291.

695 Hirano, Y., Y. Kinugasa, H. Asakawa, Y. Chikashige, C. Obuse, T. Haraguchi, and Y. Hiraoka.
696 2018. Lem2 is retained at the nuclear envelope through its interaction with Bqt4 in fission
697 yeast. *Genes to Cells*. 23:122–135. doi:10.1111/gtc.12557.

698 Kim, S.J., J. Fernandez-Martinez, I. Nudelman, Y. Shi, W. Zhang, B. Raveh, T. Herricks, B.D.
699 Slaughter, J.A. Hogan, P. Upla, I.E. Chemmama, R. Pellarin, I. Echeverria, M. Shivaraju,
700 A.S. Chaudhury, J. Wang, R. Williams, J.R. Unruh, C.H. Greenberg, E.Y. Jacobs, Z. Yu,
701 M.J. De La Cruz, R. Mironksa, D.L. Stokes, J.D. Aitchison, M.F. Jarrold, J.L. Gerton, S.J.
702 Ludtke, C.W. Akey, B.T. Chait, A. Sali, and M.P. Rout. 2018. Integrative structure and
703 functional anatomy of a nuclear pore complex. *Nature*. 555:475–482.
704 doi:10.1038/nature26003.

705 King, M.C., C.P. Lusk, and G. Blobel. 2006. Karyopherin-mediated import of integral inner
706 nuclear membrane proteins. *Nature*. 442:1003–1007. doi:10.1038/nature05075.

707 Kittisopikul, M., T. Shimi, M. Tatli, J.R. Tran, Y. Zheng, O. Medalia, K. Jaqaman, S.A. Adam,
708 and R.D. Goldman. 2020. Nuclear Lamins A/C and B1 Provide a Structural Framework
709 That Organizes and Anchors Nuclear Pore Complexes. *bioRxiv*. 2020.04.03.022798.
710 doi:10.1101/2020.04.03.022798.

711 Kosinski, J., S. Mosalaganti, A. von Appen, R. Teimer, A.L. DiGuilio, W. Wan, K.H. Bui, W.J.H.
712 Hagen, J.A.G. Briggs, J.S. Glavy, E. Hurt, and M. Beck. 2016. Molecular architecture of the
713 inner ring scaffold of the human nuclear pore complex. *Science*. 352:363–365.
714 doi:10.1126/science.aaf0643.

715 Lee, C.W., F. Wilfling, P. Ronchi, M. Allegretti, S. Mosalaganti, S. Jentsch, M. Beck, and B.
716 Pfander. 2020. Selective autophagy degrades nuclear pore complexes. *Nat. Cell Biol.*
717 22:159–166. doi:10.1038/s41556-019-0459-2.

718 Li, O., C. V Heath, D.C. Amberg, T.C. Dockendorff, C.S. Copeland, M. Snyder, and C.N. Cole.
719 1995. Mutation or deletion of the *Saccharomyces cerevisiae* RAT3/NUP133 gene causes

720 temperature-dependent nuclear accumulation of poly(A)+ RNA and constitutive clustering
721 of nuclear pore complexes. *Mol. Biol. Cell.* 6:401–417. doi:10.1091/mbc.6.4.401.

722 Longtine, M.S., A. McKenzie, D.J. Demarini, N.G. Shah, A. Wach, A. Brachat, P. Philippsen,
723 and J.R. Pringle. 1998. Additional modules for versatile and economical PCR-based gene
724 deletion and modification in *Saccharomyces cerevisiae*. *Yeast*. 14:953–961.
725 doi:10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U.

726 Luthra, R., S.C. Kerr, M.T. Harreman, L.H. Apponi, M.B. Fasken, S. Ramineni, S. Chaurasia,
727 S.R. Valentini, and A.H. Corbett. 2007. Actively transcribed GAL genes can be physically
728 linked to the nuclear pore by the SAGA chromatin modifying complex. *J. Biol. Chem.*
729 282:3042–3049. doi:10.1074/jbc.M608741200.

730 Maeshima, K., K. Yahata, Y. Sasaki, R. Nakatomi, T. Tachibana, T. Hashikawa, F. Imamoto,
731 and N. Imamoto. 2006. Cell-cycle-dependent dynamics of nuclear pores: Pore-free islands
732 and lamins. *J. Cell Sci.* 119:4442–4451. doi:10.1242/jcs.03207.

733 Makio, T., L.H. Stanton, C.C. Lin, D.S. Goldfarb, K. Weis, and R.W. Wozniak. 2009. The
734 nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly. *J.*
735 *Cell Biol.* 185:459–473. doi:10.1083/jcb.200810029.

736 Mans, B.J., V. Anantharaman, L. Aravind, and E. V. Koonin. 2004. Comparative genomics,
737 evolution and origins of the nuclear envelope and nuclear pore complex. *Cell Cycle*.
738 3:1625–1650. doi:10.4161/cc.3.12.1316.

739 Marelli, M., C.P. Lusk, H. Chan, J.D. Aitchison, and R.W. Wozniak. 2001. A link between the
740 synthesis of nucleoporins and the biogenesis of the nuclear envelope. *J. Cell Biol.*
741 153:709–724. doi:10.1083/jcb.153.4.709.

742 Meinema, A.C., J.K. Laba, R.A. Hapsari, R. Otten, F.A.A. Mulder, A. Kraft, G. Van Den Bogaart,
743 C.P. Lusk, B. Poolman, and L.M. Veenhoff. 2011. Long unfolded linkers facilitate
744 membrane protein import through the nuclear pore complex. *Science (80-)*. 333:90–93.
745 doi:10.1126/science.1205741.

746 Mekhail, K., and D. Moazed. 2010. The nuclear envelope in genome organization, expression
747 and stability. *Nat. Rev. Mol. Cell Biol.* 11:317–328. doi:10.1038/nrm2894.

748 Mekhail, K., J. Seebacher, S.P. Gygi, and D. Moazed. 2008. Role for perinuclear chromosome
749 tethering in maintenance of genome stability. *Nature*. 456:667–670.

750 doi:10.1038/nature07460.

751 Mészáros, N., J. Cibulka, M.J. Mendiburo, A. Romanauska, M. Schneider, and A. Köhler. 2015.

752 Nuclear pore basket proteins are tethered to the nuclear envelope and can regulate

753 membrane curvature. *Dev. Cell.* 33:285–298. doi:10.1016/j.devcel.2015.02.017.

754 Moreno, S., A. Klar, and P. Nurse. 1991. Molecular genetic analysis of fission yeast

755 *Schizosaccharomyces pombe*. *Methods Enzymol.* 194:795–823. doi:10.1016/0076-

756 6879(91)94059-I.

757 Onischenko, E., J.H. Tang, K.R. Andersen, K.E. Knockenhauer, P. Vallotton, C.P. Derrer, A.

758 Kralt, C.F. Mugler, L.Y. Chan, T.U. Schwartz, and K. Weis. 2017. Natively Unfolded FG

759 Repeats Stabilize the Structure of the Nuclear Pore Complex. *Cell.* 171:904-917.e19.

760 doi:10.1016/j.cell.2017.09.033.

761 Otsuka, S., K.H. Bui, M. Schorb, M. Julius Hossain, A.Z. Politi, B. Koch, M. Eltsov, M. Beck, and

762 J. Ellenberg. 2016. Nuclear pore assembly proceeds by an inside-out extrusion of the

763 nuclear envelope. *eLife.* 5:1–23. doi:10.7554/eLife.19071.

764 Pemberton, L.F., M.P. Rout, and G. Blobel. 1995. Disruption of the nucleoporin gene NUP133

765 results in clustering of nuclear pore complexes. *Proc. Natl. Acad. Sci. U. S. A.* 92:1187–

766 1191. doi:10.1073/pnas.92.4.1187.

767 Raices, M., and M.A. D'Angelo. 2017. Nuclear pore complexes and regulation of gene

768 expression. *Curr. Opin. Cell Biol.* 46:26–32. doi:<https://doi.org/10.1016/j.ceb.2016.12.006>.

769 Rhind, N., Z. Chen, M. Yassour, D.A. Thompson, B.J. Haas, N. Habib, I. Wapinski, S. Roy, M.F.

770 Lin, D.I. Heiman, S.K. Young, K. Furuya, Y. Guo, A. Pidoux, H.M. Chen, B. Robbertse, J.M.

771 Goldberg, K. Aoki, E.H. Bayne, A.M. Berlin, C.A. Desjardins, E. Dobbs, L. Dukaj, L. Fan,

772 M.G. FitzGerald, C. French, S. Gujja, K. Hansen, D. Keifenheim, J.Z. Levin, R.A. Mosher,

773 C.A. Müller, J. Pfiffner, M. Priest, C. Russ, A. Smialowska, P. Swoboda, S.M. Sykes, M.

774 Vaughn, S. Vengrova, R. Yoder, Q. Zeng, R. Allshire, D. Baulcombe, B.W. Birren, W.

775 Brown, K. Ekwall, M. Kellis, J. Leatherwood, H. Levin, H. Margalit, R. Martienssen, C.A.

776 Nieduszynski, J.W. Spatafora, N. Friedman, J.Z. Dalgaard, P. Baumann, H. Niki, A. Regev,

777 and C. Nusbaum. 2011. Comparative functional genomics of the fission yeasts. *Science*

778 (80-). 332:930–936. doi:10.1126/science.1203357.

779 Schreiner, S.M., P.K. Koo, Y. Zhao, S.G.J. Mochrie, and M.C. King. 2015. The tethering of

780 chromatin to the nuclear envelope supports nuclear mechanics. *Nat. Commun.* 6:1–13.

781 doi:10.1038/ncomms8159.

782 Steglich, B., G.J. Filion, B. van Steensel, and K. Ekwall. 2012. The inner nuclear membrane
783 proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in
784 *S. pombe*. *Nucleus*. 3:77–87. doi:10.4161/nucl.18825.

785 Taddei, A., and S.M. Gasser. 2012. Structure and function in the budding yeast nucleus.
786 *Genetics*. 192:107–129. doi:10.1534/genetics.112.140608.

787 Tan-Wong, S.M., H.D. Wijayatilake, and N.J. Proudfoot. 2009. Gene loops function to maintain
788 transcriptional memory through interaction with the nuclear pore complex. *Genes Dev.*
789 23:2610–2624. doi:10.1101/gad.1823209.

790 Thaller, D.J., M. Allegretti, S. Borah, P. Ronchi, M. Beck, and C.P. Lusk. 2019. An escrt-lem
791 protein surveillance system is poised to directly monitor the nuclear envelope and nuclear
792 transport system. *eLife*. 8. doi:10.7554/eLife.45284.

793 Thaller, D.J., and C. Patrick Lusk. 2018. Fantastic nuclear envelope herniations and where to
794 find them. *Biochem. Soc. Trans.* 46:877–889. doi:10.1042/BST20170442.

795 Ungrich, R., and U. Kutay. 2015. Establishment of NE asymmetry—targeting of membrane
796 proteins to the inner nuclear membrane. *Curr. Opin. Cell Biol.* 34:135—141.
797 doi:10.1016/j.ceb.2015.04.005.

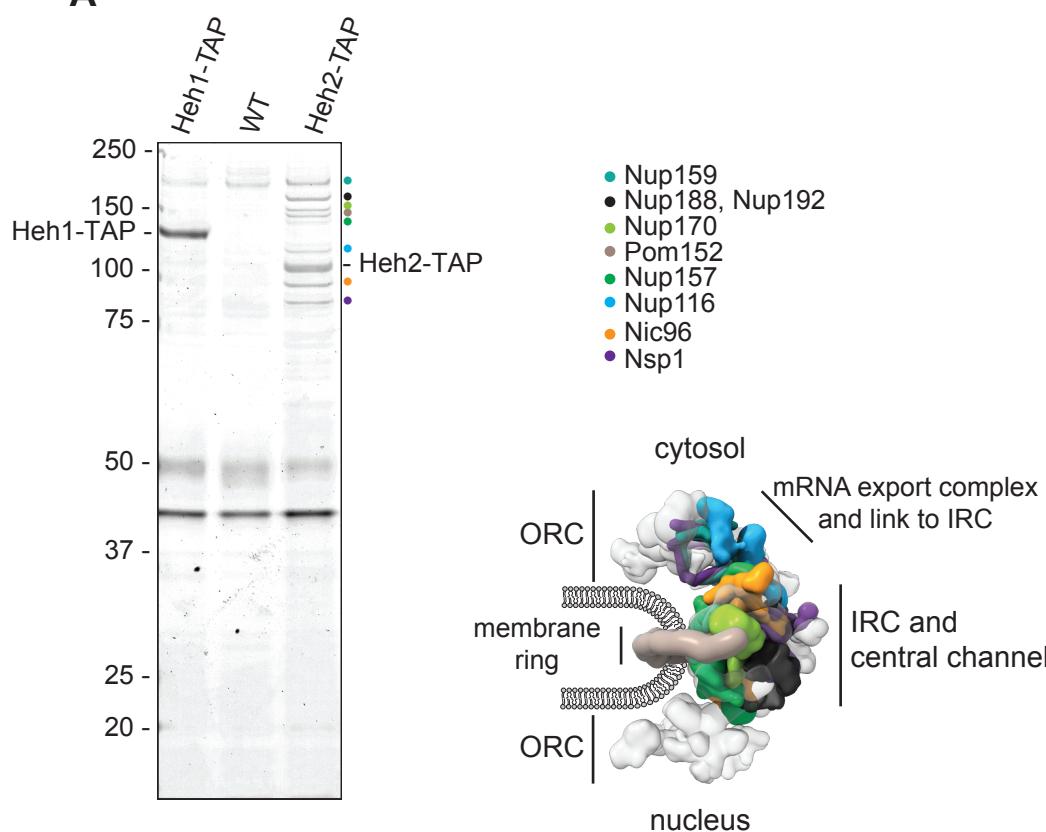
798 Ungrich, R., and U. Kutay. 2017. Mechanisms and functions of nuclear envelope remodelling.
799 *Nat. Rev. Mol. Cell Biol.* 18:229–245. doi:10.1038/nrm.2016.153.

800 Webster, B.M., P. Colombi, J. Jäger, and C. Patrick Lusk. 2014. Surveillance of nuclear pore
801 complex assembly by ESCRT-III/Vps4. *Cell*. 159:388–401. doi:10.1016/j.cell.2014.09.012.

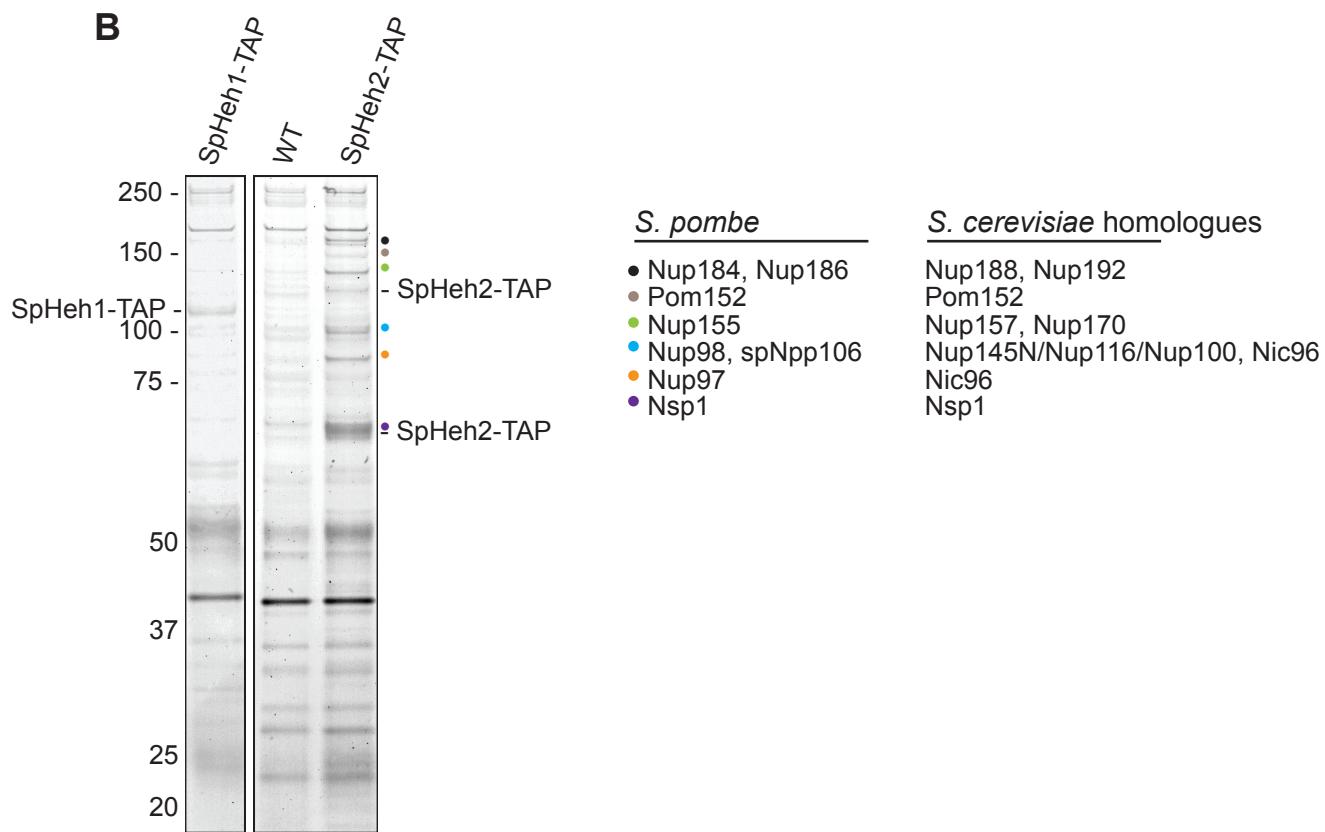
802 Webster, B.M., D.J. Thaller, J. Jäger, S.E. Ochmann, S. Borah, and C.P. Lusk. 2016. Chm7 and
803 Heh1 collaborate to link nuclear pore complex quality control with nuclear envelope
804 sealing. *EMBO J.* 35. doi:10.15252/embj.201694574.

805 Xie, W., and B. Burke. 2017. Nuclear networking. *Nucleus*. 8:323–330.
806 doi:10.1080/19491034.2017.1296616.

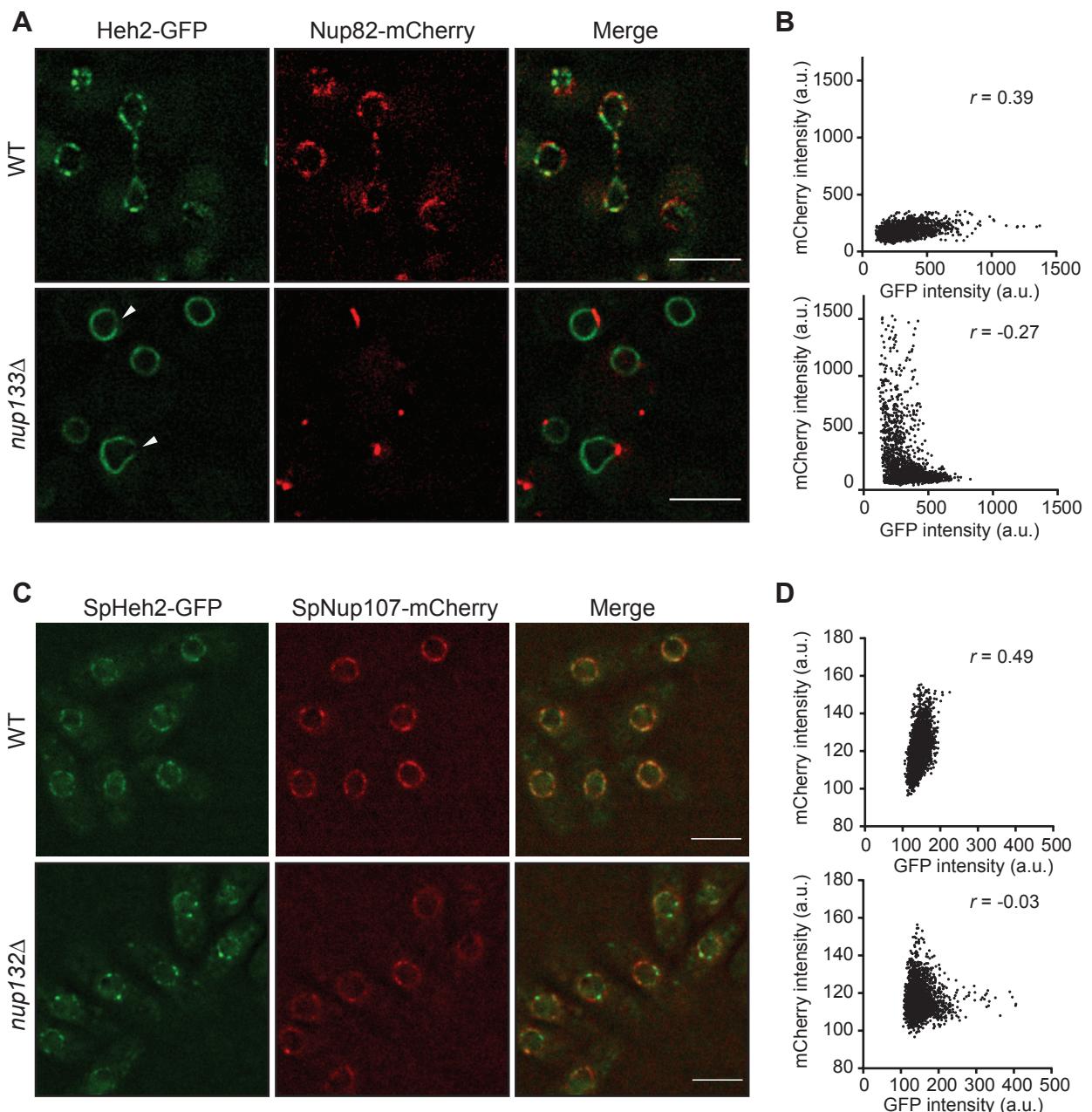
807 Yam, C., Y. Gu, and S. Oliferenko. 2013. Partitioning and remodeling of the
808 *Schizosaccharomyces japonicus* mitotic nucleus require chromosome tethers. *Curr. Biol.*
809 23:2303–2310. doi:10.1016/j.cub.2013.09.057.

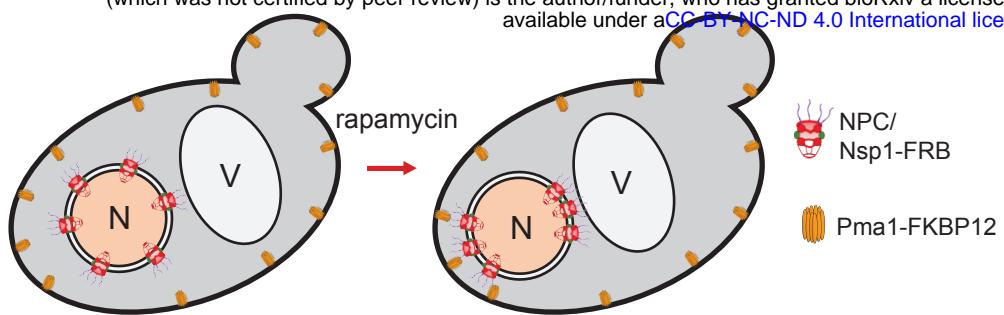

810 Yewdell, W.T., P. Colombi, T. Makhnevych, and C.P. Lusk. 2011. Luminal interactions in
811 nuclear pore complex assembly and stability. *Mol. Biol. Cell.* 22:1375–1388.
812 doi:10.1091/mbc.E10-06-0554.

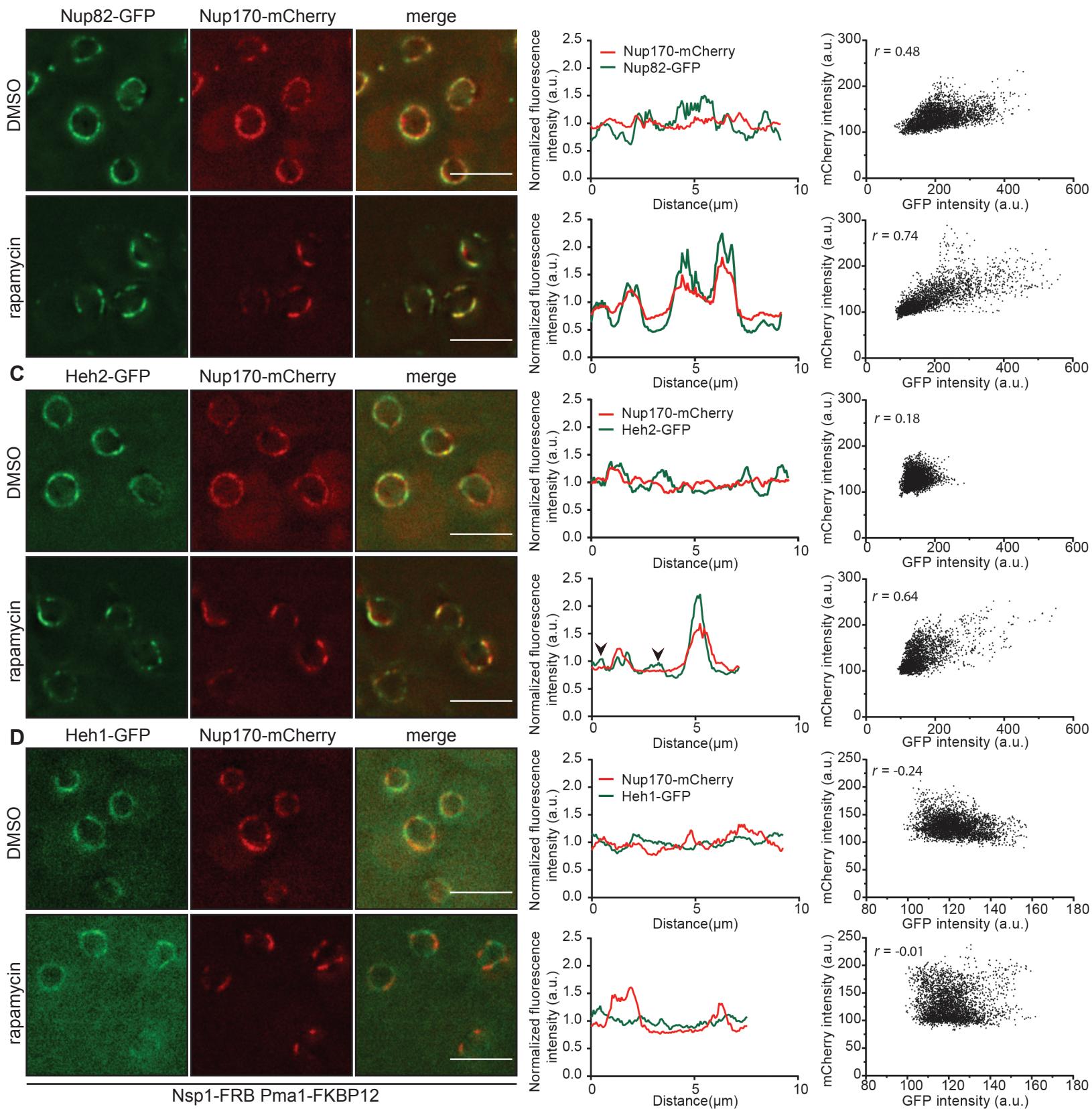
813 Zhang, Y., N.D. Serratore, and S.D. Briggs. 2017. N-ICE plasmids for generating N-terminal 3 ×
814 FLAG tagged genes that allow inducible, constitutive or endogenous expression in
815 *Saccharomyces cerevisiae*. *Yeast.* 34:223–235. doi:10.1002/yea.3226.

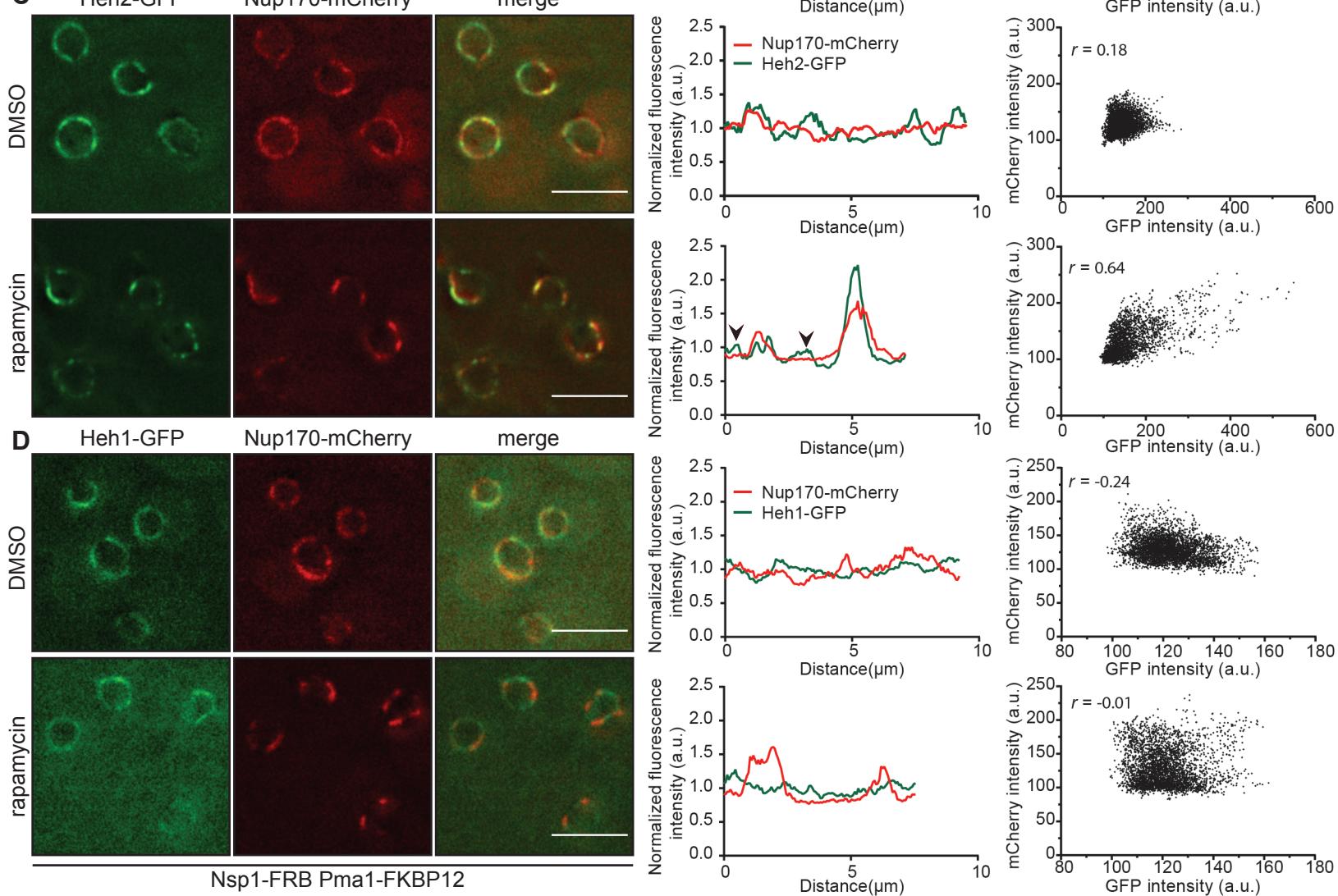

816

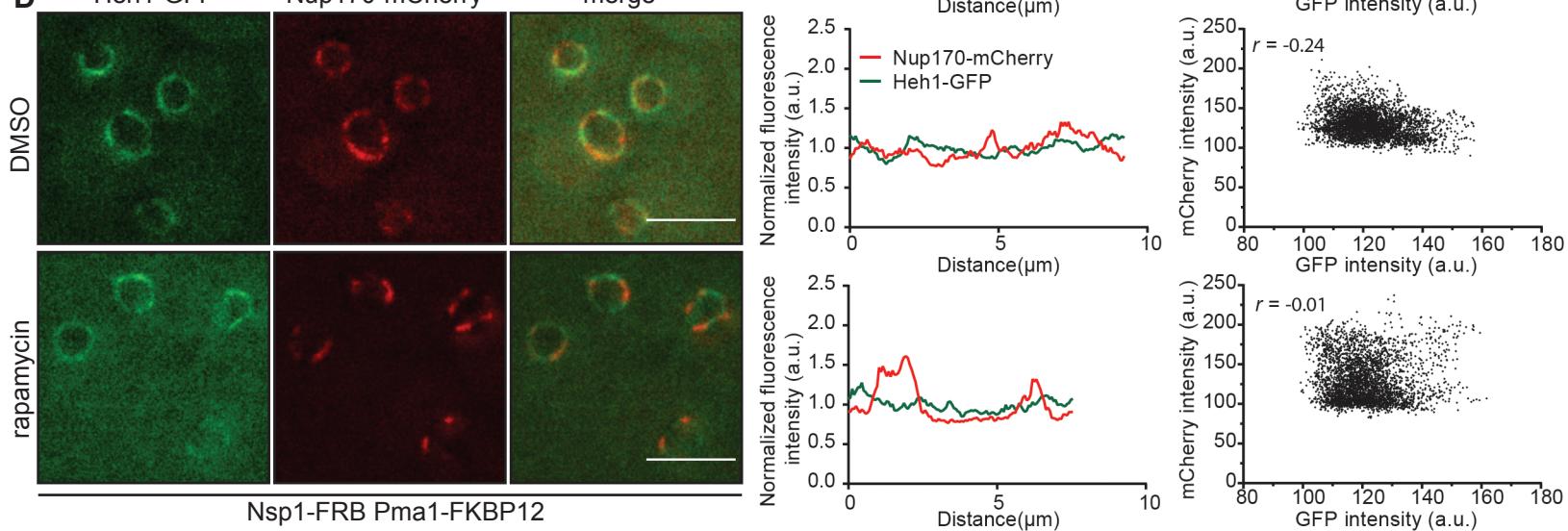
Borah et al., Figure 1


A

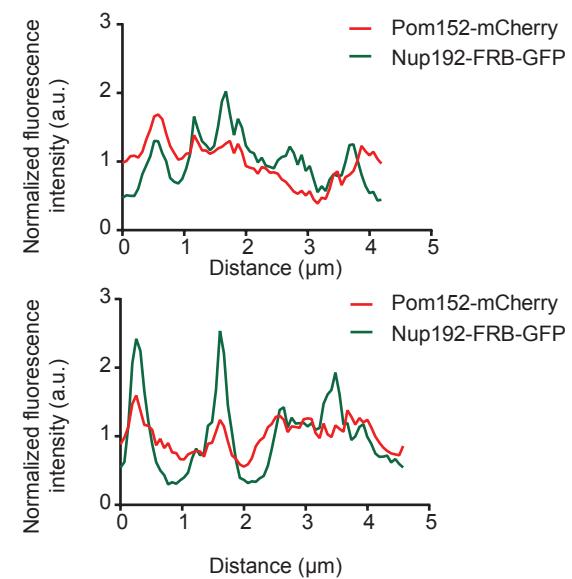
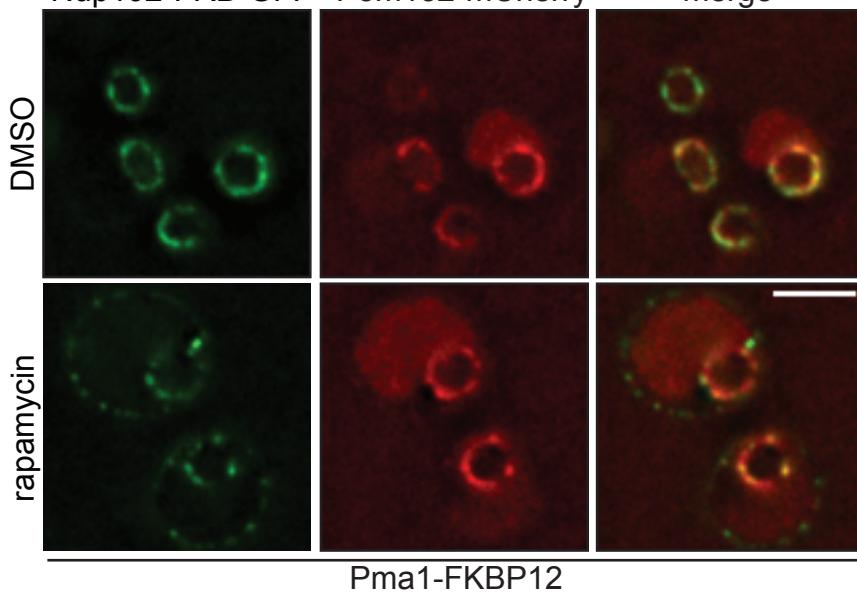

B


Borah et al., Figure 2

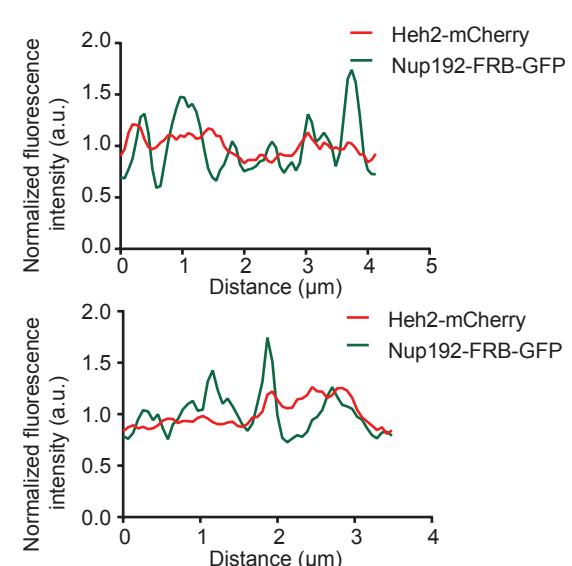

A


B

C

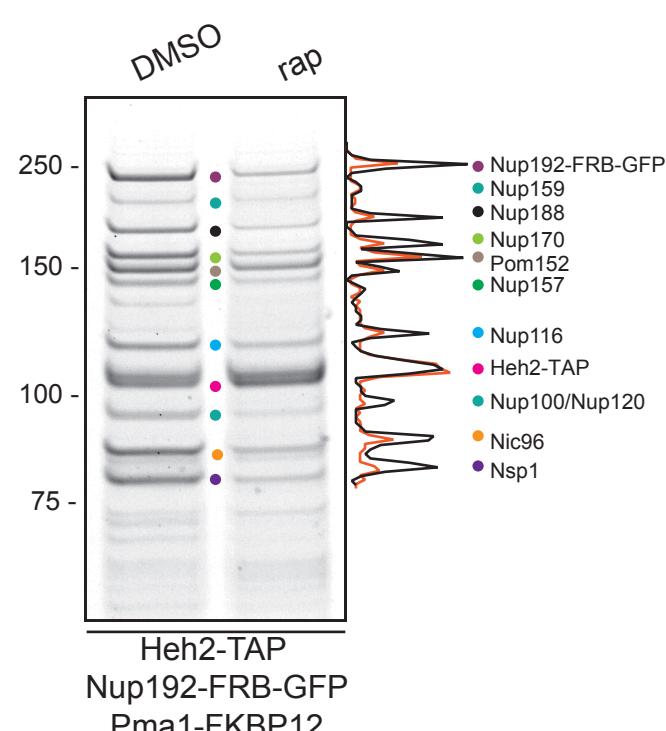


D

Nsp1-FRB Pma1-FKBP12



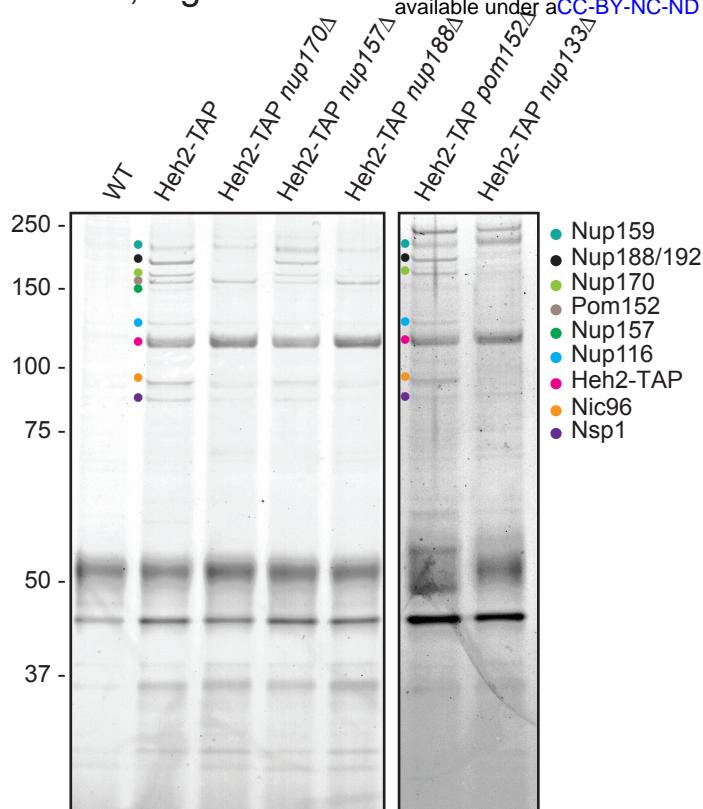
A

Nup192-FRB-GFP Pom152-mCherry

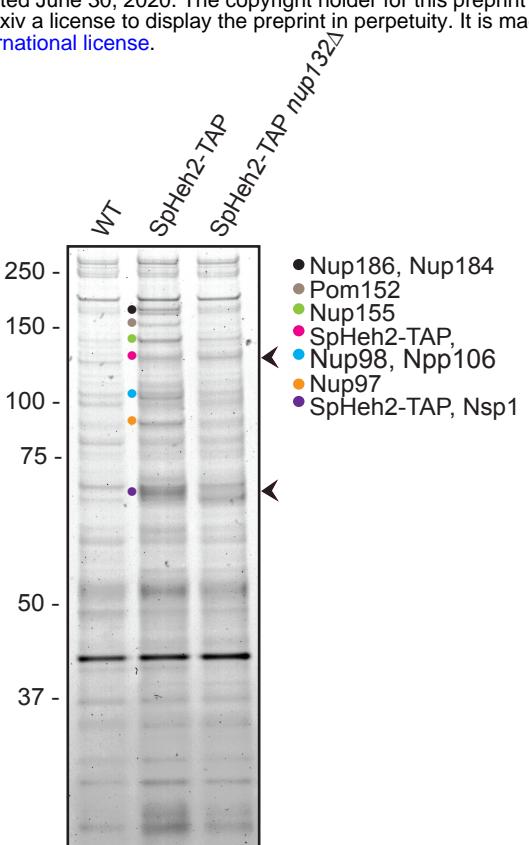


B

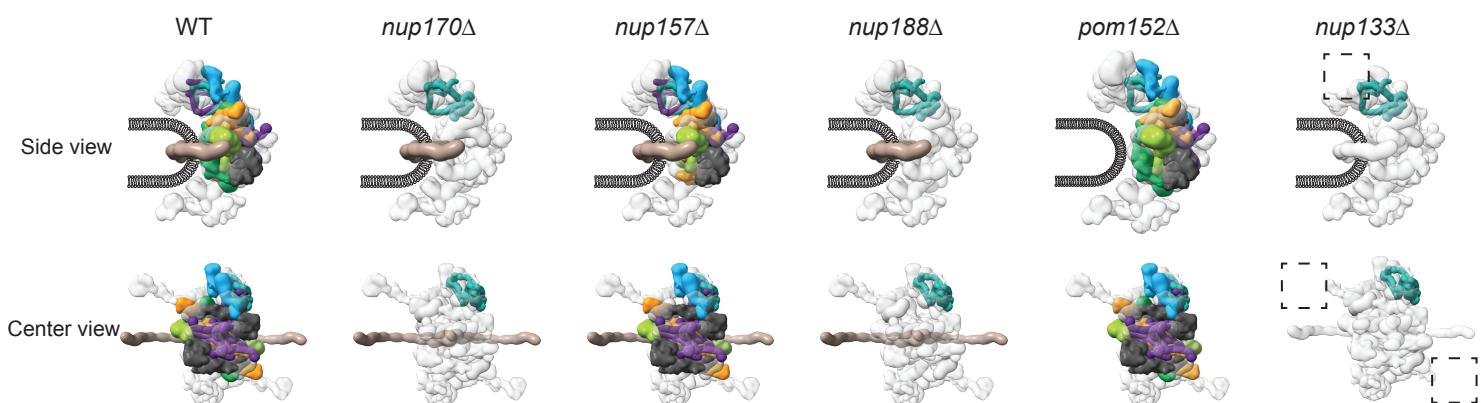
Nup192-FRB-GFP Heh2-mCherry merge

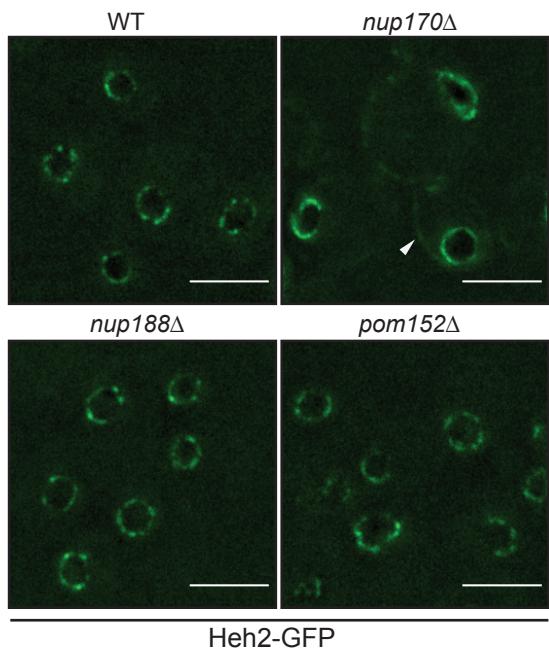


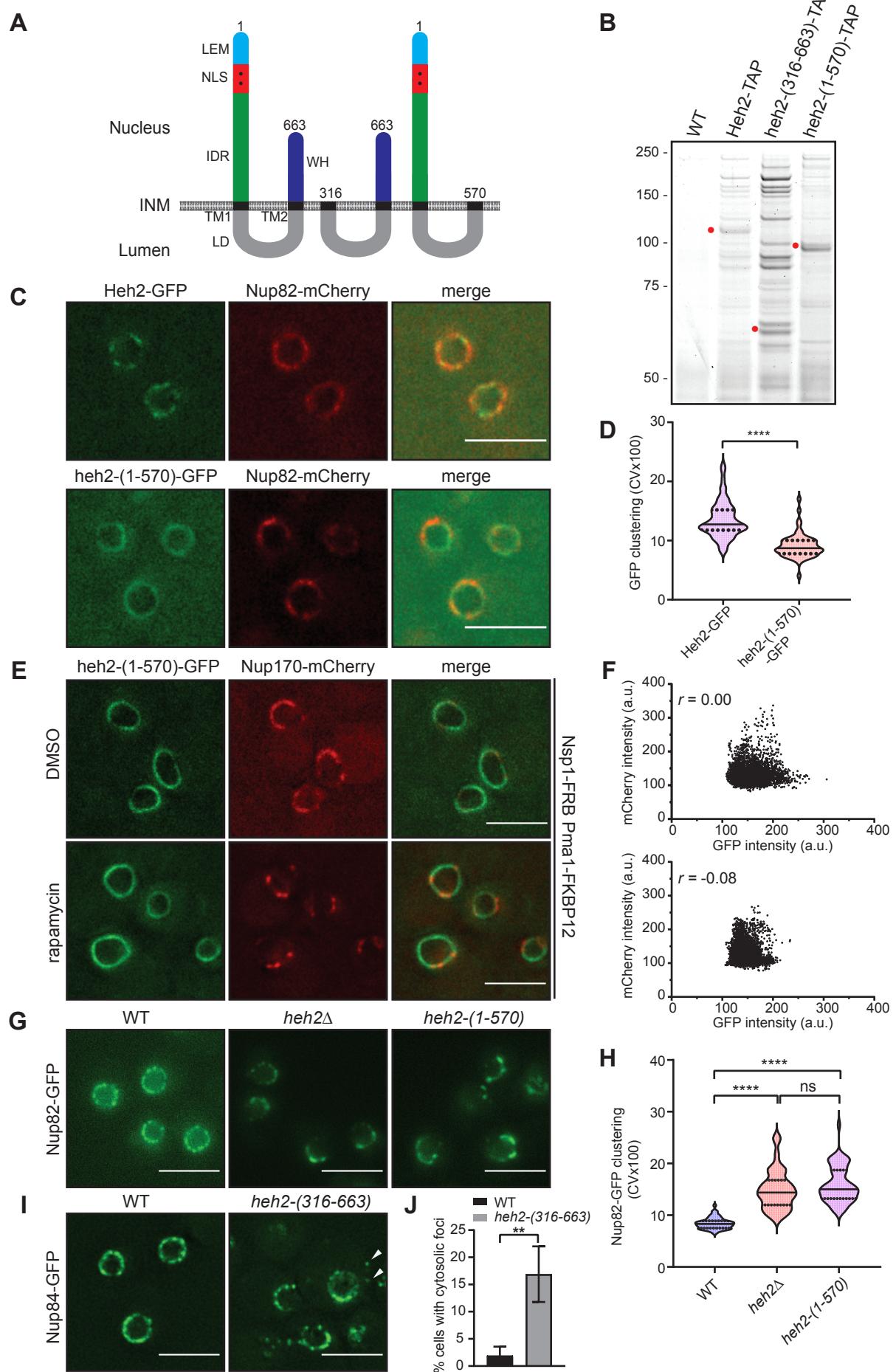
6



Borah et al., Figure 5


A


C


B

D

Borah et al., Figure 6

Table S1. Yeast strains
***Saccharomyces cerevisiae* strains**

Name	Genotype	Origin	Generation
W303a	MATa, ade2-1 can1-100 HIS33-11,15 leu2-3,112 trp1-1 ura3-1	EUROSCARF	
W303a	MATa, ade2-1 can1-100 HIS33-11,15 leu2-3,112 trp1-1 ura3-1	EUROSCARF	
CPL111	W303, heh2Δ::kanMX6	This study	
CPL112	W303, heh2Δ::kanMX6	This study	
SBCPL42	Heh2-TAP::HIS	Dharmacon	
SBCPL54	W303, HEH2-TAP::TRP1	This study	Integration through PCR product transformation
SBCPL174	W303, HEH1-TAP::HIS33	Dharmacon	
SBCPL64	W303, heh2 (1-571)-TAP::KAN	This study	Integration through PCR product transformation
SBCPL122	W303, 3xFLAG heh2(316-663)-TAP::TRP	This study	N-terminal 3xFLAG integration through PCR product transformation, Zhang et al., 2017
SBCPL76	W303, heh2Δ::kanMX6 Nup82-GFP::TRP	This study	Integration through PCR product transformation
SBCPL75	W303, heh2(1-571)-TAP::KAN NUP82-GFP::TRP	This study	Integration through PCR product transformation in SBCPL64
SBCPL88	W303, HEH2-3HA-GFP::hphMX6	This study	Integration through PCR product transformation
SBCPL89	W303, HEH2-3HA-GFP::hphMX6	This study	Integration through PCR product transformation
SBCPL139	W303, HEH2-3HA-GFP::hphMX6 NUP82-mCherry::natMX6	This study	Progeny from cross between SBCPL138 and CVCPL109
SBCPL96	W303, HEH2-TAP::TRP nup170Δ::natMX6	This study	Progeny from cross between SBCPL54 and CPL634
SBCPL56	W303, HEH2-TAP::TRP nup188Δ::KAN	This study	Progeny from cross between SBCPL54 and CPL766
SBCPL169	W303, HEH2-TAP::TRP nup157Δ::hphMX6	This study	Progeny from cross between SBCPL54 and CPL240
SBCPL61	W303, HEH2-TAP::hphMX6 nup133Δ::kan	This study	Progeny from cross between SBCPL54 and CPL337
SBCPL170	W303, HEH2-TAP-TAP::TAP pom152Δ::kan	This study	Progeny from cross between SBCPL55 and CPL398
SBCPL138	W303, HEH2-3HA-GFP::hphMX6 nup133Δ::KAN	This study	Progeny from cross between SBCPL89 and CPL337
SBCPL145	W303, HEH2-3HA-GFP::hphMX6 nup170Δ::natMX6	This study	Progeny from cross between SBCPL89 and CPL634
SBCPL150	W303, HEH2-3HA-GFP::hphMX6 pom152Δ::KAN	This study	Progeny from cross between SBCPL88 and CPL399
SBCPL157	W303, HEH2-3HA-GFP::hphMX6 nup188Δ::KAN	This study	Progeny from cross between SBCPL88 and CPL768
SBCPL140	W303, HEH2-3HA-GFP::hphMX6 NUP82-mCherry::natMX6 nup133Δ::KAN	This study	Progeny from cross between SBCPL138 and CVCPL109
HHY110	W303, MAT alpha tor1-1 fpr1::natMX6 PMA1-2xFKB12::TRP1	Euroscarf (Haruki et al., 2008)	
CPL1230	HHY110, NSP1-FRB-GFP::HIS33MX6 NUP170-mCherry::kanMX6	This study	PCR-based integration using pFA6a-mCherry-kanMX6 and pFA6a-FRB-GFP-His3MX6
SBCPL84	HHY110, Nsp1-FRB::HIS3 fpr1::natMX6 Pma1-2xFKB12::TRP tor1-1 NUP170-mCherry::KAN HEH2-3HA-GFP::hphMX6	This study	Integration through PCR product transformation in CPL1230
SBCPL85	HHY110, Nsp1-FRB::HIS3 fpr1::natMX6 Pma1-2xFKB12::TRP tor1-1 NUP170-mCherry::KAN HEH1-3HA-GFP::hphMX6	This study	Integration through PCR product transformation in CPL1230
SBCPL86	HHY110, NSP1-FRB::HIS3 fpr1::natMX6 Pma1-2xFKB12::TRP tor1-1 NUP170-mCherry::KAN NUP82-3HA-GFP::hphMX6	This study	Integration through PCR product transformation in CPL1230
SBCPL109	HHY110, NSP1-FRB::HIS3 fpr1::natMX6 Pma1-2xFKB12::TRP tor1-1 NUP170-mCherry::KAN heh2(1-570)-3HA-GFP::hphMX6	This study	Integration through PCR product transformation in CPL1230
SBCPL63	HHY110, HEH2-TAP::KAN Nup192-3xHA-FRB-GFP::HIS3 Pma1-2xFKB12::TRP fpr1::natMX6 tor1-1	This study	Integration through PCR product transformation in DTCPL1539
DTCPL1846	HHY110, NUP192-3xHA-FRB-GFP::his3 POM152-mCherry::kanMX6 PMA1-2xFKB12::TRP1 fpr1::natMX6 tor1-1	This study	Integration through PCR product transformation in DTCPL1539 and DTCPL1645
DTCPL1881	HHY110, NUP192-3xHA-FRB-GFP::his3 HEH2-3xHA-mCherry::kanMM6 PMA1-2xFKB12::TRP1 fpr1::natMX6 tor1-1	This study	Progeny from cross between DTCPL1539 and DTCPL1870
<i>Schizosaccharomyces pombe</i> strains			
MKSP399	h+ leu1-32 ura4-D18	This study	
MKSP3045	h+ Heh2-TAP::Hyr leu1-32 ura4-D18	This study	Integration through PCR product transformation
MKSP3049	h? Heh2-TAP::Hyr nup132::KanR leu1-32 ura4-D18	This study	Progeny from cross between MKSP3045 and MKSP264
MKSP3071	h? Heh2-GFP::Hyr Nup107-mCherry::NatR leu1-32 ura4-D18	This study	Progeny from cross between MKSP1410 and MKSP1118
MKSP3090	h+ Heh2-GFP::Hyr Nup107-mCherry::NatR nup132::KanR leu1-32 ura4-D18	This study	Progeny from cross between MKSP3071 and MKSP264

Table S2. Plasmids

Name	Description	Source
pFA6a-GFP-his3MX6	Template for PCR based chromosomal integration of GFP ORF	Longtine et al., 1998
pFA6a-GFP-natMX6	Template for PCR based chromosomal integration of GFP ORF	Van Driessche et al., 2005
pFA6a-GFP-kanMX6	Template for PCR based chromosomal integration of GFP ORF	Longtine et al., 1998
pFA6a-hphMX6	Template for PCR based chromosomal integration of hphMX6 cassette	Longtine et al., 1998
pFA6a-natMX6	Template for PCR based chromosomal integration of natMX6 cassette	Longtine et al., 1998
pFA6a-kanMX6	Template for PCR based chromosomal integration of kanMX6 cassette	Longtine et al., 1998
pFA6a-mCherry-kanMX6	Template for PCR based chromosomal integration of mCherry ORF	EUROSCARF
pFA6a-mCherry-natMX6	Template for PCR based chromosomal integration of mCherry ORF	EUROSCARF
pSBCPL3	pFA6a-TAP-his3MX6, template for PCR based chromosomal integration of TAP-TAG	This study
pSBCPL4	pFA6a-TAP-TRP, template for PCR based chromosomal integration of TAP-TAG	This study
pK3F	N-ICE plasmid pK3F, for N-terminal 3xFLAG integration	Addgene
pSH47	Cre recombinase under the GAL1 promoter	EUROSCARF