

1 **Biased Auditory Nerve Central Synaptopathy Exacerbates Age-related Hearing Loss**

2

3 Meijian Wang¹, Chuangeng Zhang¹, Shengyin Lin¹, Yong Wang¹, Benjamin J. Seicol¹, Robert W.
4 Ariss², and Ruili Xie^{1,3,4,*}

5

6 ¹Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, Columbus,
7 OH 43210, USA

8 ²College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA

9 ³Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA

10 ⁴Lead Contact

11 *Correspondence: ruili.xie@osumc.edu

12

13

14

15 Figures: 4

16 Tables: 1

17 Supplemental Video: 1

18 Supplemental Figures: 3

19

20 **SUMMARY**

21
22 Sound information is transmitted from the cochlea to the brain by different subtypes of spiral
23 ganglion neurons (SGN), which show varying degrees of vulnerability under pathological conditions.
24 It remains unclear how information from these SGNs reassemble among target neurons in the
25 cochlear nucleus (CN) at the auditory nerve (AN) central synapses, and how different synapses
26 change during hearing loss. Combining immunohistochemistry with electrophysiology, we
27 investigated the giant endbulb of Held synapses and their postsynaptic bushy neurons in mice
28 under normal hearing and age-related hearing loss (ARHL). We found that calretinin-expressing
29 and non-calretinin-expressing endbulbs converge at continuously different ratios onto bushy
30 neurons with varying physiological properties. Endbulbs degenerate during ARHL, and the
31 degeneration is more severe in non-calretinin-expressing synapses, which correlates with a
32 gradual decrease in neuronal subpopulation predominantly innervated by these inputs. Our
33 findings suggest that biased AN central synaptopathy and shifted CN neuronal composition
34 underlie reduced auditory input and altered central auditory processing during ARHL.

35

36

37

38

39 **Key Words**

40 Auditory nerve central synapse, synaptopathy, age-related hearing loss, spiral ganglion neuron,
41 calretinin, VGlut1, endbulb of Held, bushy neuron, cochlear nucleus, synaptic convergence

42

43

44

45 **INTRODUCTION**

46 Spiral ganglion neurons (SGN) of the peripheral auditory system convey sound information from
47 sensory hair cells to the cochlear nucleus (CN) (Nayagam et al., 2011), which is the first station
48 of the central auditory system. Most SGNs (90-95%) are type I (Kiang et al., 1982; Spoendlin,
49 1969) and can be divided into three subtypes based on their spontaneous firing rate and threshold,
50 fiber caliber and preferential terminal distribution around the hair cell basal circumference
51 (Liberman, 1978, 1980, 1982a, b; Liberman and Oliver, 1984). More recently, these subtypes of
52 type I SGNs were shown to have distinct molecular signatures, including calretinin as a marker
53 for type I_a SGNs with high spontaneous rate/low threshold (Petitpre et al., 2018; Shrestha et al.,
54 2018; Sun et al., 2018). These SGN subtypes differentially encode sound intensity, and
55 collectively ensure a comprehensive representation of the acoustic environment. Transfer of
56 sound information through the bipolar SGNs begins at their dendritic terminal of cochlear
57 synapses on hair cells, and ends at their central auditory nerve (AN) synapses in the CN
58 (Nayagam et al., 2011; Yu and Goodrich, 2014). Pathology of the cochlear synapses (known as
59 “cochlear synaptopathy”) from hearing loss and aging preferentially affects the low spontaneous
60 rate/high threshold subtype of type I SGNs (Furman et al., 2013; Liberman et al., 2015), and is
61 widely recognized as a major mechanism that underlies hidden hearing loss (Kujawa and
62 Liberman, 2015; Liberman et al., 2015; Liberman, 2017). However, it is not known how different
63 subtypes of AN synapses converge onto individual CN neurons (Nayagam et al., 2011; Spirou et
64 al., 2005; Yu and Goodrich, 2014), how different innervation patterns correlate with properties of
65 postsynaptic CN neurons, and most importantly, how subtype-specific changes of AN synapses
66 can affect neural processing by target CN neurons under pathological conditions.

67

68 The most prominent AN synapse is the large endbulb of Held (Rouiller et al., 1986; Ryugo and
69 Fekete, 1982), which reliably transmits information about the temporal fine structure (TFS) of
70 sound to its postsynaptic bushy neuron in ventral CN (Joris et al., 1994a; Joris et al., 1994b; Manis
71 et al., 2011). Such TFS information is crucial for pitch perception and speech recognition (Moore,
72 2008; Shannon et al., 1995), which are often compromised in hearing impaired patients (Anderson
73 et al., 2012; Grose and Mamo, 2010; Lorenzi et al., 2006). After hearing loss, endbulb of Held
74 synapses show modified synaptic morphology with reduced size and simplified complexity (Ryugo
75 et al., 1997; Ryugo et al., 1998; Wright et al., 2014), as well as altered function associated with
76 compromised synaptic transmission (Oleskevich and Walmsley, 2002; Wang and Manis, 2005;
77 Wright et al., 2014; Xie and Manis, 2017b; Zhuang et al., 2017), which degrades the firing of
78 postsynaptic bushy neurons (Xie, 2016). Despite decades of research on the endbulbs of Held,

79 little is known about the convergence of—as well as how synaptopathy occurs among—different
80 subtypes of endbulb of Held synapses during hearing loss. Furthermore, the impacts of subtype-
81 specific synaptopathy on the response properties of postsynaptic bushy neurons remain unclear.

82

83 To investigate these questions, we combined immunohistochemistry with electrophysiology using
84 acute brain slices from CBA/CaJ mice at three age groups: young mice (1.5-4.5 months) with
85 normal hearing, middle-aged mice (17-19 months) with moderate ARHL that mimics hidden
86 hearing loss (Sergeyenko et al., 2013), and old mice (28-32 months) with prominent ARHL.
87 Endbulb synapses from type I_a SGNs (high spontaneous rate/low threshold) were differentiated
88 from the other subtypes (type I_b or I_c SGNs with medium/low spontaneous rate and medium/high
89 threshold) based on immunostaining for calretinin (Petitpre et al., 2018; Shrestha et al., 2018; Sun
90 et al., 2018). We report the innervation patterns of type I_a and non-type I_a endbulbs on individual
91 bushy neurons and their intrinsic and AN-evoked response properties, as well as subtype-specific
92 AN central synaptopathy during ARHL.

93

94 RESULTS

95 **Multiple subtypes of AN central synapses converge onto individual CN neurons**

96 We performed current clamp recording from bushy neurons in parasagittal CN slices and filled
97 the target neurons with Alexa Fluor 594, which was included in the electrode solution (Fig. 1A-B).
98 Slices were post hoc immunostained using antibodies against VGlut1, which labels glutamate
99 vesicles in all AN synaptic terminals, and calretinin, which labels only the AN fibers and synapses
100 from type I_a SGNs (STAR methods). As shown in Fig. 1C, the bushy neuron receives inputs from
101 type I_a endbulb of Held synapses (red), which contains glutamate vesicles revealed as VGlut1-
102 labeled puncta (yellow in merged panel). In addition, there are VGlut1-labeled puncta (green in
103 merged panel) that are not enclosed in calretinin-labeled synapses, indicating that they are from
104 non-type I_a AN synapses (presumably type I_b or I_c). Z-stack images were used to reconstruct the
105 3-dimentional structure of the type I_a endbulbs as well as VGlut1-labeled puncta surrounding the
106 soma of the labeled bushy neuron (Fig. 1D-H; Supplemental Video 1). This approach reveals that
107 type I_a and non-type I_a AN synapses converge onto individual CN neurons (Fig. 1F).

108

109 **The proportion of type I_a synaptic inputs correlates with physiological properties of** 110 **postsynaptic neurons.**

111 We studied the innervation pattern of type I_a and non-type I_a synapses onto 49 bushy neurons
112 and their response properties using young mice (Fig. 2A-L). The ratio of convergence between

113 different synaptic inputs varied on a continuum among bushy neurons from type I_a-dominant (I_a-
114 D; with I_a volume > 50%) to non-type I_a-dominant (Non-I_a-D; with I_a volume < 50%), as quantified
115 by the volume of VGlut1-labeled puncta from each subtype (Fig. 2M). In addition, the proportion
116 of type I_a inputs onto a postsynaptic bushy neuron correlates with its intrinsic properties and AN-
117 evoked firing properties (Fig. 2A-L, N-O). Compared to Non-I_a-D neurons, I_a-D neurons showed
118 significantly more depolarized resting membrane potential (Fig. 2P), smaller spike amplitude (Fig.
119 2R), required less current injection to trigger threshold spikes (Fig. 2S), but had similar input
120 resistance (Fig. 2Q). Therefore, bushy neurons that receive more type I_a-inputs (I_a-D) are more
121 excitable than those that receive more non-type I_a inputs (Non-I_a-D). Consistently, trains of AN
122 stimulation at 100 Hz evoked sustained spikes with moderate adaptation in I_a-D neurons (Fig. 2C,
123 F), but only elicited transient or onset spikes in Non-I_a-D neurons (Fig. 2I, L). In summary, neurons
124 receiving mostly type I_a inputs showed significantly higher AN-evoked firing rate (Fig. 2T) and less
125 spike adaptation (Fig. 2U). They also fired spikes with higher temporal precision (Fig. 2V). Similar
126 differences were also observed in the responses to trains of AN stimulation at 400 Hz (Fig. S1).
127 These results indicate that AN synapses from different subtypes of SGNs are not uniformly
128 distributed onto populations of CN bushy neurons, and that the pattern of synaptic input is
129 correlated with the intrinsic excitability of target cells.

130

131 **AN synaptopathy is more severe in non-type I_a synapses and associated with altered 132 composition of bushy neuron population during ARHL**

133 We next examined the innervation pattern of AN synapses and bushy neuron responses in
134 middle-aged and old mice with different levels of ARHL, as revealed by significantly elevated
135 threshold to clicks in auditory brainstem response (ABR) and reduced ABR wave I amplitude (Fig.
136 3 A-C). Recordings were obtained from 31 bushy neurons in middle-aged (Fig. 3D-G) and 35
137 bushy neurons in old (Fig. 3H-K) mice. Similar to the young mice, we observed bushy neurons
138 with both I_a-D inputs and Non-I_a-D inputs in middle-aged and old mice (Fig. 3D-K). However, the
139 total volume of VGlut1-labeled puncta per neuron significantly decreased with age (Fig. 3L),
140 suggesting an overall degeneration of AN synapses during ARHL. Interestingly, the degeneration
141 differentially affected type I_a (Fig. 3M) and non-type I_a (Fig. 3N) synapses, in which it was more
142 profound in non-type I_a synapses (Two-way ANOVA: age effect, $F_{(2,224)} = 16.2$, $p < 0.0001$;
143 synaptic subtype effect, $F_{(1,224)} = 36.2$, $p < 0.0001$). On average, the volume of VGlut1-labeled
144 puncta from type I_a synapses decreased by 15% in middle-aged mice and 41% in old mice
145 compared to young mice (Fig. 3M). In contrast, the volume of non-type I_a puncta decreased by
146 34% and 73% in middle-aged and old mice (Fig. 3N), respectively. These results show that there

147 is a progressive AN central synaptopathy during ARHL, and this synaptopathy is biased with more
148 severe degeneration in non-type I_a synapses.

149
150 Consistent with more profound degeneration of non-type I_a synapses, the prevalence of neurons
151 with Non-I_a-D inputs progressively decreased with age (Fig. 3O). The differences between I_a-D
152 and non-I_a-D neurons in intrinsic membrane properties (Fig. 3P-R) and AN-evoked responses
153 (Fig. 3S-U) were retained in middle-aged and old mice (see also Figs. S2 and S3), except that
154 there were more neurons during aging that failed to fire any spike to AN stimulation (Fig. 3G, K)
155 (3/49 in young, 5/31 in middle-aged, 7/35 in old mice). The results suggest an age-related shift in
156 the composition of bushy neuron population during ARHL in the direction of having relatively more
157 I_a-D neurons.

158
159 **Synaptopathy in individual type I_a endbulb of Held synapses during ARHL**
160 As calretinin-staining labels the entire type I_a synaptic terminal, we reconstructed the 3-
161 dimentional profile of individual type I_a endbulb of Held synapses onto bushy neurons from all
162 three age groups of mice (Figs. 1G, 4A-C). On average, bushy neurons with identifiable type I_a
163 endbulb terminals received between 1 - 3 type I_a endbulbs with an average of 1.5 ± 0.6 (n = 64)
164 in young, 1.5 ± 0.6 (n = 20) in middle-aged, and 1.7 ± 0.7 (n = 32) in old mice (Kruskal-Wallis test:
165 p = 0.472). Individual type I_a endbulbs degenerated during aging with significantly decreased
166 volume of the synaptic terminal (Fig. 4D) as well as the volume of VGluT1-labeled puncta within
167 each endbulb (Fig. 4E). However, there was no change in the volume ratio between the two (Fig.
168 4F), suggesting that the relative quantity of synaptic vesicles remains constant. Thus, AN
169 synaptopathy during ARHL occurs with reduced synaptic terminal volume as well as a balanced
170 decrease in functional components of the synaptic machinery, at least in type I_a endbulb of Held
171 synapses.

172
173

174 **DISCUSSION**

175
176 **Convergence of different subtypes of AN central synapses**
177 Here we address how different subtypes of SGN neurons project onto individual principal neurons
178 in the CN. The findings provide new insights on how auditory information from the cochlea,
179 especially sound intensity information, is transformed and encoded in CN neurons. Sound
180 intensity at each inner hair cell is conveyed by distributed firing rates amongst three subtypes of

181 type I SGNs that operate over different ranges (Liberman, 1978). How this information is
182 reassembled in CN neurons for central processing has remained unclear despite decades of
183 research. Classical studies relied on tracing individual HRP filled AN fibers with known
184 spontaneous rates (Fekete et al., 1984; Liberman, 1991, 1993; Ryugo, 2008; Ryugo and Sento,
185 1991; Ryugo et al., 1996; Sento and Ryugo, 1989; Tsuji and Liberman, 1997), but because most
186 of the filled individual fibers ended on different cells, it was not clear how different subtypes of AN
187 synapses converge. Using calretinin as one known marker for type I_a SGNs (Petitpre et al., 2018;
188 Shrestha et al., 2018; Sun et al., 2018), we have shown that different subtypes of AN synapses
189 innervate individual CN neurons with a continuous distribution of convergence that correlates with
190 distinct physiological properties of postsynaptic neurons. Our results support the notion that
191 information from different subtypes of SGNs is transformed and processed in the central auditory
192 system in a new dimension that extends even within a single cell type per traditional classification.
193 Further investigation of this new dimension is essential in understanding the connection between
194 cochlear pathology and central processing disorders under hearing impairments.

195

196 **AN synaptopathy and altered composition of bushy neuron population during ARHL**

197 Our findings of a relative loss of type I_b/I_c AN terminals on bushy neurons during ARHL are
198 consistent with age-related selective cochlear synaptopathy in low spontaneous rate/high
199 threshold (type I_c) SGNs (Furman et al., 2013; Liberman et al., 2015), and suggests that over a
200 long time, type I_b/I_c SGN cell death leads to loss of their central synapses. Such biased AN
201 synaptopathy consequently results in relatively more abundant type I_a AN central synapses
202 among the surviving population, which retains more than 70% of all SGNs at 100% life span
203 (Sergeyenko et al., 2013). It remains unclear if the increased prevalence of I_a-D neurons during
204 ARHL (Fig. 3O) is solely due to the loss of Non-I_a-D neurons after biased AN synaptopathy, or
205 the conversion of Non-I_a-D neurons to I_a-D neurons after adaptive changes like modified
206 expression of voltage-gated ion channels. The observed shift in the composition of neuronal
207 population during ARHL suggests that CN neural circuitry is altered following biased AN
208 synaptopathy, which is expected to impact the central auditory processing in upper nuclei
209 throughout the auditory nervous system.

210

211 **Hidden hearing loss in middle-aged mice**

212 CBA/CaJ mice in middle-aged group have relatively normal ABR thresholds but greatly reduced
213 wave I amplitude (Fig. 3A-C), a scenario that mimics hidden hearing loss (Kujawa and Liberman,
214 2015; Sergeyenko et al., 2013). Both biased AN synaptopathy (Fig. 3L-N) and shifted composition

215 of neuronal population (Fig. 3O) were observed in this age group. The findings indicate that
216 following selective cochlear synaptopathy, which is considered the primary cause of hidden
217 hearing loss, significant changes in central structures along the auditory pathway also occur at
218 this stage before hearing loss becomes substantial. In particular, bushy neurons are specialized
219 in processing temporal information (Joris et al., 1994a; Joris et al., 1994b). Decreased prevalence
220 of Non- I_a -D bushy neurons (Fig. 3O) in middle aged mice suggests that the temporal processing
221 of high intensity information from non-type I_a SGNs is compromised in CN neural circuitry under
222 hidden hearing loss. Since CN neurons initiate parallel pathways in the central auditory system
223 (Cant and Benson, 2003), the shifted composition of CN neuronal population could be the trigger
224 of many central auditory processing disorders including hyperacusis (loudness intolerance) and
225 tinnitus (Auerbach et al., 2014; Caspary and Llano, 2017; Luo et al., 2017; Niu et al., 2013;
226 Radziwon et al., 2019; Sheppard et al., 2019; Shore and Wu, 2019; Vogler et al., 2011; Wang et
227 al., 2011).

228

229 **Clinical implications**

230 Cochlear implantation has been widely used in the clinic to treat hearing loss. Its performance
231 relies on the function of SGNs. Age-related AN central synaptopathy is no doubt one of the factors
232 that limit the performance of cochlear implants. Indeed, duration of deafness is the most important
233 predictor of the postimplant outcomes (Rubinstein et al., 1999). The stimulation parameters of
234 modern cochlear implants activate all SGNs indiscriminately. Our study suggests that, if possible,
235 differential stimulation of different subtypes of SGNs in cochlear implants with enhanced activation
236 of non-type I_a SGNs may compensate the biased AN central synaptopathy and altered CN
237 neuronal census, which would enhance auditory processing, improve cochlear implant
238 performance and overall hearing.

239

240 **ACKNOWLEDGMENTS**

241 We thank Paul B. Manis for comments on the manuscript. This work was supported by NIH grant
242 R01DC016037 to R.X.. Images and video were generated at OSU Campus Microscopy and
243 Imaging Facility, supported by grant P30CA016058.

244

245 **AUTHOR CONTRIBUTIONS**

246 R.X. designed the research; R.X., M.W., C.Z., S.L., and Y.W. conducted the research; M.W., R.X.,
247 B.J.S., and R.W.A. analyzed the data; R.X. wrote the paper; All authors edited the paper.

248

249 **DECLARATION OF INTERESTS**

250 The authors declare no competing interests.

251

252

253 **FIGURE LEGENDS**

254

255 **Figure 1. Multiple subtypes of AN synapses converge onto individual CN neurons.**

256 (A) Diagram of the CN and experimental setup. It depicts two endbulb of Held synapses (E1 and
257 E2) from different AN fibers (AN1 and AN2) that innervate the target bushy neuron, which is
258 recorded and filled with fluorescent dye (shown in magenta). AN is activated by electric stimulation.
259 CN: cochlear nucleus; AVCN: anteroventral CN; PVCN: posteroventral CN; DCN: dorsal CN.

260 (B) Example responses of a bushy neuron to current step injections (top) and trains of stimulation
261 at AN (bottom). Ticks: stimulus onset. Scale: 10 mV and 20 ms.

262 (C) Single frame confocal images of the bushy neuron in (B) filled with Alexa Fluor 594 dye
263 (magenta) during whole-cell patch clamp recording. The slice was then immunostained against
264 VGluT1 (green) and calretinin (CR; red). A single type I_a endbulb of Held synapse is labeled by
265 both calretinin (star) and VGluT1 (arrow). The overlap-labeled puncta are shown in yellow in
266 merged panel (arrow). VGluT1-labeled puncta that do not overlap with CR staining are shown in
267 green (arrowhead), which are from AN synapses that do not express calretinin (non-type I_a
268 synapse). Scale: 10 μ m.

269 (D) 3D reconstruction of the bushy neuron and AN synapses in (C). Red: CR-stained type I_a
270 endbulb of Held synapse. Scale: 10 μ m, also applies to E-H. See also Supplemental Video 1.

271 (E) same as in (D) except revealing only the VGluT1-labeled puncta. Yellow (arrow): VGluT1-
272 labeled puncta inside the calretinin-expressing type I_a synapses; green (arrowhead): puncta from
273 non-calretinin-expressing (non-type I_a) synapses.

274 (F) View of all VGluT1-labeled puncta from (E). Note that this bushy neuron received mostly type
275 I_a synaptic inputs from the AN.

276 (G) Morphology of a single type I_a endbulb of Held synapse from (D).

277 (H) VGluT1-stained puncta inside the single endbulb in (G).

278

279 **Figure 2. The proportion of type I_a synaptic inputs correlates with physiological properties**
280 **of postsynaptic neurons.**

281 (A-C) Example bushy neuron that received mostly type I_a synaptic inputs (I_a-dominant, or I_a-D)
282 from the AN. (A) Reconstructed VGluT1-stained puncta surrounding the soma of the bushy cell

283 (not shown) from type I_a synapses (yellow) and non-type I_a synapses (green). I_a%: volume
284 percentage of the VGluT1-stained puncta from type I_a synapses over total. Scale: 5 μ m. (B)
285 Responses of the bushy cell to current step injections. Red traces: threshold current injection
286 (bottom) and response (top). Scale: 10 mV and 20 ms. (C) The neuron fired sustained spikes to
287 a train of auditory nerve stimulation (black bar) at 100 Hz. Scale: 10 mV and 1 s. PSTH: post-
288 stimulus time histogram. Adap: spike adaptation index. PH: period histogram. VS: vector strength.
289 (D-F) Example bushy neuron with I_a-D but lower proportion of type I_a inputs.
290 (G-I, J-L) Two example bushy neurons that received mostly non-type I_a synaptic inputs (Non-type
291 I_a-dominant, or Non-I_a-D), and fired only transient or onset spikes to AN stimulus trains.
292 (M) Bushy neurons with different fraction of type I_a inputs (x-axis) show correlated distribution in
293 their total volume of VGluT1-stained puncta (black), volume of type I_a only puncta (yellow), and
294 volume of non-type I_a only puncta (green). Linear regression lines: black, $r^2 = 0.09$, $p = 0.039$;
295 yellow, $r^2 = 0.57$, $p < 0.0001$; green, $r^2 = 0.38$, $p < 0.0001$.
296 (N) Bushy neurons with different fraction of type I_a inputs (x-axis) show correlated difference in
297 threshold spike amplitude, as shown in B, E, H and K. Linear regression line: $r^2 = 0.40$, $p < 0.0001$.
298 (O) Bushy neurons with different fraction of type I_a inputs (x-axis) show different firing patterns to
299 100 Hz stimulus trains, as measured by spike adaptation index. Linear regression line: $r^2 = 0.13$,
300 $p = 0.015$.
301 (P-V) Comparisons between bushy neurons with dominant type I_a inputs (I_a-D; I_a% > 50%) and
302 those with dominant non-type I_a inputs (Non-I_a-D; I_a% < 50%) in resting potential (P), input
303 resistance (Q), threshold spike amplitude (R), threshold current injection that triggered the first
304 spike (S), firing rate throughout the 100 Hz train (T), spike adaptation index (U), and vector
305 strength of the spikes (V). Unpaired t-test or Mann-Whitney test: NS, $p > 0.05$; * $p < 0.05$; ** $p <$
306 0.01; *** $p < 0.001$.

307 Data are represented as mean \pm SD. See also Figure S1.

308

309 **Figure 3. AN synaptopathy is more severe in non-type I_a synapses and associated with
310 altered composition of bushy neuron population during ARHL**

311

312 (A) Example ABR waveforms from mice at different ages to clicks at different intensities. Red dots
313 mark the positive and negative peaks of ABR wave I at 80 dB SPL. Thick traces: threshold ABR
314 wave. Scale: 2 ms, 5 μ V.

315 (B) ABR click thresholds in mice from three age groups. One-way ANOVA and post-hoc tests:
316 ***p < 0.001; ****p < 0.0001. ABR threshold was beyond 85 dB SPL in 12 old mice and not
317 determined.

318 (C) Growth curves of ABR wave I amplitude in all mice. Thin lines: individual mice; thick lines:
319 average of each age group, with error bars represent SEM.

320 (D-K) Synaptic inputs and response traces of example bushy neurons from middle-aged (D-G)
321 and old (H-K) mice. Panels are presented in the same pattern as in **Fig. 2A-L**. Left panel:
322 reconstructed VGluT1-stained puncta surrounding the soma of the bushy cell (not shown) from
323 type I_a synapses (yellow) and non-type I_a synapses (green). I_a%: volume percentage of the
324 VGluT1-stained puncta from type I_a synapses over total. Scale: 5 μ m. Middle panel: responses of
325 the bushy cell to current step injections. Scale: 10 mV and 20 ms. Right panels: example response
326 to a train of auditory nerve stimulation (black bar) at 100 Hz. Scale: 10 mV and 1 s. PSTH: post-
327 stimulus time histogram. Adap: spike adaptation index. PH: period histogram. VS: vector strength.
328 D is from the same cell in **Fig. 1B-H**. AN stimulation only evoked EPSPs but failed to trigger any
329 spike in G and K. No adaptation index or vector strength was obtained from these cells. See also
330 Figure S2 for middle aged mice and Figure S3 for old mice.

331 (L-N): Comparisons of the total volume (L), type I_a only volume (M) and non-type I_a only volume
332 (N) of VGluT1-labeled puncta on bushy neurons from three age groups. One-way ANOVA or
333 Kruskal-Wallis with post-hoc tests: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

334 (O) Prevalence of bushy neurons that receive I_a-D and Non-I_a-D synaptic inputs among three age
335 groups. Numbers mark the cell count of each type over group total.

336 (P-U) Comparisons of bushy neurons among three age groups in resting potential (P), threshold
337 spike amplitude (Q), threshold current injection that triggered the first spike (R), firing rate to 100
338 Hz stimulation (S), spike adaptation index (T), and vector strength of the spikes throughout the
339 100 Hz trains (U). Two-way ANOVA revealed significant cell type effect (I_a-D vs. Non-I_a-D) in all
340 panels (P-U): **p < 0.01; ***p < 0.001; ****p < 0.0001. Age effect was only significant in vector
341 strength (U): p < 0.001.

342 Data in L-N and P-U are presented as mean \pm SD.

343

344 **Figure 4. Synaptopathy in individual type I_a endbulb of Held synapses during ARHL.**

345 (A) Morphology of individual type I_a endbulb of Held synapses in young mice. Panels from left to
346 right: filled neurons (magenta) with reconstructed type I_a endbulbs, type I_a endbulbs alone, type I_a
347 endbulbs (semi-transparent) with enclosed VGluT1-labeled puncta (yellow), and VGluT1-labeled
348 puncta alone. Top panels: example neuron with only one type I_a endbulb of Held synapse. Bottom

349 panels: example neuron with two type I_a endbulb of Held synapses, which are shown in red and
350 blue respectively.

351 **(B)** Morphology of individual type I_a endbulb of Held synapses in middle-aged mice.

352 **(C)** Morphology of individual type I_a endbulb of Held synapses in old mice. Scales in **A-C**: 5 μ m.

353 **(D-F)** Comparisons of individual type I_a endbulb volume (**D**), enclosed VGluT1-puncta volume (**E**),
354 and VGluT1/endbulb volume ratio (**F**) among all three age groups. Kruskal-Wallis and post-hoc
355 tests: ****p < 0.0001.

356 Data are presented as mean \pm SD.

357

358

359 **STAR METHODS**

360

361 **RESOURCE AVAILABILITY**

362 ***Lead Contact***

363 Further information and requests for resources and reagents should be directed to and will be
364 fulfilled by the Lead Contact, Ruili Xie (ruili.xie@osumc.edu).

365 ***Materials Availability***

366 This study did not generate new unique reagents.

367 ***Data and Code Availability***

368 The article includes all data generated during this study. Custom-written procedures in Igor Pro
369 were used in the analysis of all electrophysiological data and will be available upon request.

370

371 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

372 CBA/CaJ mice were purchased from The Jackson Laboratory, bred and maintained at the animal
373 facility at The Ohio State University. Experiments used 32 young mice (1.5-4.5 months), 22
374 middle-aged mice (17-19 months), and 55 aged mice (28-32 months) of either sex. All
375 experiments were conducted under the guidelines of the protocols approved by the Institutional
376 Animal Care and Use Committees at The Ohio State University.

377

378 **METHOD DETAILS**

379 ***Auditory Brainstem Response (ABR)***

380 Hearing status of the mice were assessed by measuring ABR to clicks as previously described
381 (Wang et al., 2019; Xie, 2016). Briefly, mice were anaesthetized with IP injection of ketamine (100
382 mg/kg) and xylazine (10 mg/kg) and placed inside a sound-attenuating chamber. Body
383 temperature was maintained at ~ 36 °C using a feedback-controlled heating pad. ABR to clicks
384 were acquired using a RZ6-A-P1 system with BioSigRZ software (Tucker-Davis Technologies).
385 Clicks (0.1 ms, monophasic with alternating phase; 21 times/s) were delivered through a free field
386 MF1 magnetic speaker 10 cm away from the pinna. Recording needle electrodes were placed at
387 the ipsilateral pinna and vertex, with the ground electrode at the rump. ABR wave at each sound
388 level was averaged from 512 repetitions.

389 ***Brain Slice Preparation***

390 Under ketamine/xylazine anesthesia, mice were decapitated and the skulls were opened to
391 retrieve the brainstem. Parasagittal slices containing the cochlear nucleus were cut at a thickness
392 of 225 - 240 µm using a Vibratome 1000 (Technical Products, Inc.) or a VT1200S Microtome

393 (Leica Biosystems). Slices were then incubated in artificial cerebral spinal fluid (ACSF) at 34 °C
394 for 30-45 minutes before recordings began. ACSF contained (in mM): 122 NaCl, 3 KCl, 1.25
395 NaH₂PO₄, 25 NaHCO₃, 20 glucose, 3 *myo*-inositol, 2 sodium pyruvate, 0.4 ascorbic acid, 1.8
396 CaCl₂ and 1.5 MgSO₄, and was constantly gassed with 95% O₂ and 5% CO₂.

397 ***Electrophysiological Recording***

398 After incubation, the brain slice was moved to an ACSF-bathed recording chamber under an Axio
399 Examiner microscope (Carl Zeiss). Whole-cell recordings in current clamp mode were performed
400 from bushy neurons of the AVCN. Recording pipettes were made using a P-2000 micropipette
401 puller (Sutter Instrument) and filled with electrode solution that contained (in mM): 126 potassium
402 gluconate, 6 KCl, 2 NaCl, 10 HEPES, 0.2 EGTA, 4 MgATP, 0.3 GTP, 10 Tris-phosphocreatine,
403 and pH adjusted to 7.20. Alexa Fluor 594 was added to the electrode solution at the final
404 concentration of 0.01% by weight to dye-fill the neuron for online visualization of cell morphology
405 as well as cell labeling upon completion. Data acquisition used hardware and software from
406 Molecular devices, including Multiclamp 700B amplifier, Digidata 1550B acquisition system and
407 pClamp 11 software. All recordings were made at 34 °C. Only bushy neurons were included in
408 the study, which were identified based on electrophysiological response properties and
409 morphological features as previously described (Cant and Morest, 1979; Manis et al., 2019;
410 Webster and Trune, 1982; Wu and Oertel, 1984). Responses to current step injections were
411 obtained to assess intrinsic membrane properties. Auditory nerve stimulation (Fig. 1A) was
412 delivered through a 75 µm diameter concentric stimulating electrode (Frederick Haer Company).
413 The stimulus pulse had a duration of 0.1 ms, with intensity set at ~30% above the threshold
414 intensity level that first triggered spikes in the target neuron. For neurons that failed to fire any
415 spikes, stimulus intensity was tested up to the level that would cause tissue damage at the
416 stimulation site. Responses to trains of auditory nerve stimulation at 100 and 400 Hz were
417 recorded. After completion of data acquisition, the recording electrode was slowly withdrawn until
418 it broke off from the target neuron, which usually resealed itself with preserved neuronal
419 morphology and remained filled with Alexa Fluor 594 dye. The brain slice was immediately fixed
420 in 4% paraformaldehyde in PBS for 15 minutes, followed by post-hoc immunostaining.

421 ***Immunohistochemistry***

422 Fixed brain slices with dye-filled neurons were processed for immunostaining as previously
423 described (Karakottir and Attwell, 2006; Lin and Xie, 2019). After rinsing in PBS (3 times, 15
424 minutes each), slices were pre-incubated in blocking solution (10% horse serum, 0.5% Triton X-
425 100, and 0.05% NaN₃ in PBS) for 6 hours at room temperature, followed by overnight incubation
426 with primary antibodies against VGluT1 (guinea pig anti VGluT1; Cat# 135304, Synaptic Systems,

427 1:500) and calretinin (rabbit anti calretinin; Cat# 214102, Synaptic Systems, 1:500) at 4 °C. Slices
428 were then rinsed again in PBS (4 times, 20 minutes each), incubated with secondary antibodies
429 (goat anti guinea pig IgG, Alexa 488 conjugated; Cat # A11073, Thermo Fisher Scientific, 1:500;
430 and goat anti rabbit IgG, Alexa 647 conjugated; Cat# A21245, Thermo Fisher Scientific, 1:500) at
431 room temperature for 4 hours, re-rinsed, and mounted on slide with DAPI-Fluoromount-G
432 mounting media (Southern Biotech). Filled neurons and labeled auditory nerve synapses were
433 imaged using an Olympus FV3000 confocal microscope. Images were sampled using a 60x oil
434 immersion objective, 3.0 times software zoom, a z-step size of 0.3 μ m, and at a resolution of
435 either 800 x 800 or 1024 x 1024 pixels.

436 ***Image processing***

437 All image processing and measurement were done using Imaris software (version 9.5.0; Oxford
438 Instruments). Three-dimensional reconstruction of the dye-filled target bushy neuron (magenta),
439 VGluT1-labeled puncta (green) and type I_a endbulb of Held terminals (red) in close proximity to
440 the soma of the target neuron were made by generating 3D surfaces in three separate channels
441 using the semi-automatic method. VGluT1-labeled puncta that located inside type I_a endbulbs
442 were determined as puncta from type I_a synapses and marked in yellow, while those outside of
443 type I_a endbulbs were from non-type I_a synapses and marked in green (Fig. 1D-F, Supplemental
444 Video 1). Volumes of VGluT1-labeled puncta and individual recognizable endbulb of Held
445 synapses were measured.

446 ***Electrophysiology Analysis***

447 Electrophysiological data were analyzed in Igor Pro (WaveMetrics) using custom-written functions.
448 Responses to current step injections were used to quantify the intrinsic membrane properties as
449 previously described (Xie, 2016; Xie and Manis, 2017a). Input resistance was calculated as the
450 slope of the current voltage relationship curve between current injection of -25, -50, -75, and -100
451 pA and the resulted peak hyperpolarization amplitudes. Depolarizing current step injection was
452 gradually increased by the step of 25 pA until the target neuron fired the first spike, i.e. the
453 threshold spike. This current level was determined as the threshold current of the neuron.
454 Threshold spike amplitude was calculated as the voltage difference between the resting
455 membrane potential and the peak of the threshold spike. Spike adaptation index of the responses
456 to 100 and 400 Hz trains were calculated as the ratio of the firing rate during the last 5 seconds
457 of the train to the firing rate during the first second. Vector strength (Goldberg and Brown, 1969)
458 of the stimulus train-evoked spikes was calculated using the formula: VS =
459 $\sqrt{(\sum \sin \theta_i)^2 + (\sum \cos \theta_i)^2} / n$, where θ_i is the phase angle of the spike i relative to the stimulation
460 cycle, and n is the total number of spikes throughout the stimulus trains.

461 **Statistical Analysis**

462 Statistical analysis used GraphPad Prism (version 6.0h). Kolmogorov-Smirnov test was first
463 performed to check if population data are normally distributed. As stated in the text, statistical
464 comparisons of group data with normal distribution were made using unpaired t-test or one-way
465 ANOVA followed by Tukey's multiple comparisons test. Comparisons of group data that are not
466 normally distributed used Mann Whitney test or Kruskal-Wallis test followed by Dunn's multiple
467 comparisons test. Two-way ANOVA was also used (Fig. 3P-U) as stated. All data are presented
468 as mean \pm SD except in Fig. 3C, which plotted mean \pm SEM for clarity purpose of the panel.

469

470

471 **SUPPLEMENTAL INFORMATION**

472

473 **Supplemental Video 1.** Three-dimensional reconstruction of the target neuron and connected
474 synapses. Background music: *The Story Unfolds* - Jingle Punks (https://youtu.be/_8iySHvdx0)
475

476 **Figure S1.** Bushy neurons with different convergence of AN synaptic inputs fire differently to
477 trains of AN stimulation at 400 Hz.

478 **(A)** The same example bushy neuron in Fig. **2A** fired sustained spikes to trains of AN stimulation
479 at 400 Hz. This neuron received mostly type I_a synaptic inputs (88% in I_a-VGluT1 puncta volume
480 as shown in Fig. **2A**). Scale: 10 mV and 1 s. PSTH: post-stimulus time histogram. Adap: spike
481 adaptation index. PH: period histogram. VS: vector strength.

482 **(B-D)** Responses of bushy neurons in Fig. **2D**, **G**, and **J** to AN stimulation at 400 Hz. Vector
483 strength of the cell in **D** was not calculated due to insufficient number of spikes.

484 **(E-G)** Comparisons between bushy neurons with dominant type I_a inputs (I_a-D; I_a% > 50%) and
485 those with dominant non-type I_a inputs (Non-I_a-D; I_a% < 50%) to 400 Hz AN stimulus trains in firing
486 rate (**E**), spike adaptation index (**F**), and vector strength (**G**). Vector strength in 11 out of 21
487 neurons that received Non-I_a-D inputs (blue) was not available due to insufficient number of spikes.
488 Unpaired t-test or Mann Whitney test: NS, p > 0.05; ***p < 0.0001.

489

490 **Figure S2.** Properties of bushy neurons from middle-aged mice with different convergence of AN
491 synaptic inputs.

492 **(A-D)** Responses of the same example bushy neurons in Fig. **3D-G** to trains of AN stimulation at
493 400 Hz. Cells in red are I_a-D neurons that receive over 50% of type I_a-puncta volume. Cells in blue
494 are Non-I_a-D neurons with less than 50% of type I_a-puncta volume. Scale: 10 mV and 1 s. PSTH:
495 post-stimulus time histogram. Adap: spike adaptation index. PH: period histogram. VS: vector
496 strength. No spike was evoked from the cell in **D**, and no adaptation index or vector strength was
497 calculated.

498 **(E)** Bushy neurons with different fraction of type I_a inputs (x-axis) show correlated distribution in
499 their total volume of VGluT1-stained puncta (black), volume of type I_a only puncta (yellow), and
500 volume of non-type I_a only puncta (green). Linear regression lines: black, $r^2 = 0.16$, p = 0.025;
501 yellow, $r^2 = 0.62$, p < 0.0001; green, $r^2 = 0.40$, p < 0.0001.

502 **(F-H)** Comparisons between the intrinsic property of I_a-D and Non-I_a-D bushy neurons from the
503 middle-aged mice, including threshold current (**F**), threshold spike amplitude (**G**), and threshold
504 current injection that evoked first spikes (**H**).

505 (I-N) Comparisons of firing properties between I_a -D and Non- I_a -D bushy neurons in response to
506 100 Hz (I-K) and 400 Hz trains (L-N), including firing rate, spike adaptation index and vector
507 strength.

508 Data are represented as mean \pm SD. Unpaired t-test or Mann-Whitney test: NS, $p > 0.05$; * $p <$
509 0.05; ** $p < 0.01$; *** $p < 0.001$.

510

511 **Figure S3.** Properties of bushy neurons from old mice with different convergence of AN synaptic
512 inputs.

513 (A-D) Responses of the same example bushy neurons in Fig. 3H-K to trains of AN stimulation at
514 400 Hz. Cells in red are I_a -dominant neurons that receive over 50% of type I_a -puncta volume.
515 Cells in blue are non- I_a -dominant neurons with less than 50% of type I_a -puncta volume. Scale: 10
516 mV and 1 s. PSTH: post-stimulus time histogram. Adap: spike adaptation index. PH: period
517 histogram. VS: vector strength. No spike was evoked from the cell in D, and no adaptation index
518 or vector strength was calculated.

519 (E) Bushy neurons with different fraction of type I_a inputs (x-axis) show correlated distribution in
520 their total volume of VGluT1-stained puncta (black), volume of type I_a only puncta (yellow), and
521 volume of non-type I_a only puncta (green). Linear regression lines: black, $r^2 = 0.13$, $p = 0.033$;
522 yellow, $r^2 = 0.40$, $p < 0.0001$; green, $r^2 = 0.49$, $p < 0.0001$.

523 (F-H) Comparisons between the intrinsic property of I_a -D and Non- I_a -D bushy neurons from old
524 mice, including resting potential (F), threshold spike amplitude (G), and threshold current injection
525 that evoked first spikes (H).

526 (I-N) Comparisons of firing properties between I_a -D and Non- I_a -D bushy neurons in response to
527 100 Hz (I-K) and 400 Hz trains (L-N), including firing rate, spike adaptation index and vector
528 strength.

529 Data are represented as mean \pm SD. Unpaired t-test or Mann-Whitney test: NS, $p > 0.05$; * $p <$
530 0.05; *** $p < 0.001$.

531

532 **References**

- 533
- 534 Anderson, S., Parbery-Clark, A., White-Schwoch, T., and Kraus, N. (2012). Aging affects neural
535 precision of speech encoding. *J Neurosci* 32, 14156-14164.
- 536 Auerbach, B.D., Rodrigues, P.V., and Salvi, R.J. (2014). Central gain control in tinnitus and
537 hyperacusis. *Frontiers in neurology* 5, 206.
- 538 Cant, N.B., and Benson, C.G. (2003). Parallel auditory pathways: projection patterns of the
539 different neuronal populations in the dorsal and ventral cochlear nuclei. *Brain research
540 bulletin* 60, 457-474.
- 541 Cant, N.B., and Morest, D.K. (1979). Organization of the neurons in the anterior division of the
542 anteroventral cochlear nucleus of the cat. Light-microscopic observations. *Neuroscience*
543 4, 1909-1923.
- 544 Caspary, D.M., and Llano, D.A. (2017). Auditory thalamic circuits and GABA_A receptor function:
545 Putative mechanisms in tinnitus pathology. *Hear Res* 349, 197-207.
- 546 Fekete, D.M., Rouiller, E.M., Liberman, M.C., and Ryugo, D.K. (1984). The central projections of
547 intracellularly labeled auditory nerve fibers in cats. *J Comp Neurol* 229, 432-450.
- 548 Furman, A.C., Kujawa, S.G., and Liberman, M.C. (2013). Noise-induced cochlear neuropathy is
549 selective for fibers with low spontaneous rates. *J Neurophysiol* 110, 577-586.
- 550 Goldberg, J.M., and Brown, P.B. (1969). Response of binaural neurons of dog superior olfactory
551 complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. *J
552 Neurophysiol* 32, 613-636.
- 553 Grose, J.H., and Mamo, S.K. (2010). Processing of temporal fine structure as a function of age.
554 *Ear and hearing* 31, 755-760.
- 555 Joris, P.X., Carney, L.H., Smith, P.H., and Yin, T.C. (1994a). Enhancement of neural synchronization
556 in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic
557 frequency. *J Neurophysiol* 71, 1022-1036.
- 558 Joris, P.X., Smith, P.H., and Yin, T.C. (1994b). Enhancement of neural synchronization in the
559 anteroventral cochlear nucleus. II. Responses in the tuning curve tail. *J Neurophysiol* 71,
560 1037-1051.
- 561 Karadottir, R., and Attwell, D. (2006). Combining patch-clamping of cells in brain slices with
562 immunocytochemical labeling to define cell type and developmental stage. *Nat Protoc* 1,
563 1977-1986.
- 564 Kiang, N.Y., Rho, J.M., Northrop, C.C., Liberman, M.C., and Ryugo, D.K. (1982). Hair-cell
565 innervation by spiral ganglion cells in adult cats. *Science* 217, 175-177.
- 566 Kujawa, S.G., and Liberman, M.C. (2015). Synaptopathy in the noise-exposed and aging cochlea:
567 Primary neural degeneration in acquired sensorineural hearing loss. *Hear Res* 330, 191-
568 199.
- 569 Liberman, L.D., Suzuki, J., and Liberman, M.C. (2015). Dynamics of cochlear synaptopathy after
570 acoustic overexposure. *J Assoc Res Otolaryngol* 16, 205-219.
- 571 Liberman, M.C. (1978). Auditory-nerve response from cats raised in a low-noise chamber. *The
572 Journal of the Acoustical Society of America* 63, 442-455.
- 573 Liberman, M.C. (1980). Morphological differences among radial afferent fibers in the cat cochlea:
574 an electron-microscopic study of serial sections. *Hear Res* 3, 45-63.

- 575 Liberman, M.C. (1982a). The cochlear frequency map for the cat: labeling auditory-nerve fibers
576 of known characteristic frequency. *The Journal of the Acoustical Society of America* 72,
577 1441-1449.
- 578 Liberman, M.C. (1982b). Single-neuron labeling in the cat auditory nerve. *Science* 216, 1239-1241.
- 579 Liberman, M.C. (1991). Central projections of auditory-nerve fibers of differing spontaneous rate.
580 I. Anteroventral cochlear nucleus. *J Comp Neurol* 313, 240-258.
- 581 Liberman, M.C. (1993). Central projections of auditory nerve fibers of differing spontaneous rate,
582 II: Posteroventral and dorsal cochlear nuclei. *J Comp Neurol* 327, 17-36.
- 583 Liberman, M.C. (2017). Noise-induced and age-related hearing loss: new perspectives and
584 potential therapies. *F1000Res* 6, 927.
- 585 Liberman, M.C., and Oliver, M.E. (1984). Morphometry of intracellularly labeled neurons of the
586 auditory nerve: correlations with functional properties. *J Comp Neurol* 223, 163-176.
- 587 Lin, S., and Xie, R. (2019). Principal Neurons in the Anteroventral Cochlear Nucleus Express Cell-
588 Type Specific Glycine Receptor alpha Subunits. *Neuroscience* 415, 77-88.
- 589 Lorenzi, C., Gilbert, G., Carn, H., Garnier, S., and Moore, B.C. (2006). Speech perception problems
590 of the hearing impaired reflect inability to use temporal fine structure. *Proc Natl Acad Sci
591 U S A* 103, 18866-18869.
- 592 Luo, H., Pace, E., and Zhang, J. (2017). Blast-induced tinnitus and hyperactivity in the auditory
593 cortex of rats. *Neuroscience* 340, 515-520.
- 594 Manis, P.B., Kasten, M.R., and Xie, R. (2019). Classification of neurons in the adult mouse cochlear
595 nucleus: Linear discriminant analysis. *PLoS One* 14, e0223137.
- 596 Manis, P.B., Xie, R., Wang, Y., Marrs, G.S., and Spirou, G.A. (2011). The Endbulbs of Held. In
597 *Synaptic Mechanisms in the Auditory System*, L.O. Trussell, A.N. Popper, and R.R. Fay, eds.
598 (New York: Springer), pp. 61-93.
- 599 Moore, B.C. (2008). The role of temporal fine structure processing in pitch perception, masking,
600 and speech perception for normal-hearing and hearing-impaired people. *J Assoc Res
601 Otolaryngol* 9, 399-406.
- 602 Nayagam, B.A., Muniak, M.A., and Ryugo, D.K. (2011). The spiral ganglion: connecting the
603 peripheral and central auditory systems. *Hear Res* 278, 2-20.
- 604 Niu, Y., Kumaraguru, A., Wang, R., and Sun, W. (2013). Hyperexcitability of inferior colliculus
605 neurons caused by acute noise exposure. *J Neurosci Res* 91, 292-299.
- 606 Oleskevich, S., and Walmsley, B. (2002). Synaptic transmission in the auditory brainstem of
607 normal and congenitally deaf mice. *J Physiol* 540, 447-455.
- 608 Petitpre, C., Wu, H., Sharma, A., Tokarska, A., Fontanet, P., Wang, Y., Helmbacher, F., Yackle, K.,
609 Silberberg, G., Hadjab, S., and Lallemend, F. (2018). Neuronal heterogeneity and
610 stereotyped connectivity in the auditory afferent system. *Nature communications* 9, 3691.
- 611 Radziwon, K., Auerbach, B.D., Ding, D., Liu, X., Chen, G.D., and Salvi, R. (2019). Noise-Induced
612 loudness recruitment and hyperacusis: Insufficient central gain in auditory cortex and
613 amygdala. *Neuroscience* 422, 212-227.
- 614 Rouiller, E.M., Cronin-Schreiber, R., Fekete, D.M., and Ryugo, D.K. (1986). The central projections
615 of intracellularly labeled auditory nerve fibers in cats: an analysis of terminal morphology.
616 *J Comp Neurol* 249, 261-278.
- 617 Rubinstein, J.T., Parkinson, W.S., Tyler, R.S., and Gantz, B.J. (1999). Residual speech recognition
618 and cochlear implant performance: effects of implantation criteria. *Am J Otol* 20, 445-452.

- 619 Ryugo, D.K. (2008). Projections of low spontaneous rate, high threshold auditory nerve fibers to
620 the small cell cap of the cochlear nucleus in cats. *Neuroscience* 154, 114-126.
- 621 Ryugo, D.K., and Fekete, D.M. (1982). Morphology of primary axosomatic endings in the
622 anteroventral cochlear nucleus of the cat: a study of the endbulbs of Held. *J Comp Neurol*
623 210, 239-257.
- 624 Ryugo, D.K., Pongstaporn, T., Huchton, D.M., and Niparko, J.K. (1997). Ultrastructural analysis of
625 primary endings in deaf white cats: morphologic alterations in endbulbs of Held. *J Comp Neurol*
626 385, 230-244.
- 627 Ryugo, D.K., Rosenbaum, B.T., Kim, P.J., Niparko, J.K., and Saada, A.A. (1998). Single unit
628 recordings in the auditory nerve of congenitally deaf white cats: morphological correlates
629 in the cochlea and cochlear nucleus. *J Comp Neurol* 397, 532-548.
- 630 Ryugo, D.K., and Sento, S. (1991). Synaptic connections of the auditory nerve in cats: relationship
631 between endbulbs of held and spherical bushy cells. *J Comp Neurol* 305, 35-48.
- 632 Ryugo, D.K., Wu, M.M., and Pongstaporn, T. (1996). Activity-related features of synapse
633 morphology: a study of endbulbs of held. *J Comp Neurol* 365, 141-158.
- 634 Sento, S., and Ryugo, D.K. (1989). Endbulbs of held and spherical bushy cells in cats:
635 morphological correlates with physiological properties. *J Comp Neurol* 280, 553-562.
- 636 Sergeyenko, Y., Lall, K., Liberman, M.C., and Kujawa, S.G. (2013). Age-related cochlear
637 synaptopathy: an early-onset contributor to auditory functional decline. *J Neurosci* 33,
638 13686-13694.
- 639 Shannon, R.V., Zeng, F.G., Kamath, V., Wygonski, J., and Ekelid, M. (1995). Speech recognition
640 with primarily temporal cues. *Science* 270, 303-304.
- 641 Sheppard, A., Liu, X., Alkharabsheh, A., Chen, G.D., and Salvi, R. (2019). Intermittent Low-level
642 Noise Causes Negative Neural Gain in the Inferior Colliculus. *Neuroscience* 407, 135-145.
- 643 Shore, S.E., and Wu, C. (2019). Mechanisms of Noise-Induced Tinnitus: Insights from Cellular
644 Studies. *Neuron* 103, 8-20.
- 645 Shrestha, B.R., Chia, C., Wu, L., Kujawa, S.G., Liberman, M.C., and Goodrich, L.V. (2018). Sensory
646 Neuron Diversity in the Inner Ear Is Shaped by Activity. *Cell* 174, 1229-1246 e1217.
- 647 Spirou, G.A., Rager, J., and Manis, P.B. (2005). Convergence of auditory-nerve fiber projections
648 onto globular bushy cells. *Neuroscience* 136, 843-863.
- 649 Spoendlin, H. (1969). Innervation patterns in the organ of corti of the cat. *Acta Otolaryngol* 67,
650 239-254.
- 651 Sun, S., Babola, T., Pregernig, G., So, K.S., Nguyen, M., Su, S.M., Palermo, A.T., Bergles, D.E., Burns,
652 J.C., and Muller, U. (2018). Hair Cell Mechanotransduction Regulates Spontaneous
653 Activity and Spiral Ganglion Subtype Specification in the Auditory System. *Cell* 174, 1247-
654 1263 e1215.
- 655 Tsuji, J., and Liberman, M.C. (1997). Intracellular labeling of auditory nerve fibers in guinea pig:
656 central and peripheral projections. *J Comp Neurol* 381, 188-202.
- 657 Vogler, D.P., Robertson, D., and Mulders, W.H. (2011). Hyperactivity in the ventral cochlear
658 nucleus after cochlear trauma. *J Neurosci* 31, 6639-6645.
- 659 Wang, H., Brozoski, T.J., and Caspary, D.M. (2011). Inhibitory neurotransmission in animal models
660 of tinnitus: maladaptive plasticity. *Hear Res* 279, 111-117.
- 661 Wang, Y., and Manis, P.B. (2005). Synaptic transmission at the cochlear nucleus endbulb synapse
662 during age-related hearing loss in mice. *J Neurophysiol* 94, 1814-1824.

- 663 Wang, Y., Wang, M., and Xie, R. (2019). D-Stellate Neurons of the Ventral Cochlear Nucleus
664 Decrease in Auditory Nerve-Evoked Activity during Age-Related Hearing Loss. *Brain Sci* 9.
665 Webster, D.B., and Trune, D.R. (1982). Cochlear nuclear complex of mice. *Am J Anat* 163, 103-
666 130.
667 Wright, S., Hwang, Y., and Oertel, D. (2014). Synaptic transmission between end bulbs of Held
668 and bushy cells in the cochlear nucleus of mice with a mutation in Otoferlin. *J
669 Neurophysiol* 112, 3173-3188.
670 Wu, S.H., and Oertel, D. (1984). Intracellular injection with horseradish peroxidase of
671 physiologically characterized stellate and bushy cells in slices of mouse anteroventral
672 cochlear nucleus. *J Neurosci* 4, 1577-1588.
673 Xie, R. (2016). Transmission of auditory sensory information decreases in rate and temporal
674 precision at the endbulb of Held synapse during age-related hearing loss. *J Neurophysiol*
675 116, 2695-2705.
676 Xie, R., and Manis, P.B. (2017a). Radiate and planar multipolar neurons of the mouse
677 anteroventral cochlear nucleus: Intrinsic excitability and characterization of their auditory
678 nerve input. *Frontiers in neural circuits*.
679 Xie, R., and Manis, P.B. (2017b). Synaptic transmission at the endbulb of Held deteriorates during
680 age-related hearing loss. *J Physiol* 595, 919-934.
681 Yu, W.M., and Goodrich, L.V. (2014). Morphological and physiological development of auditory
682 synapses. *Hear Res* 311, 3-16.
683 Zhuang, X., Sun, W., and Xu-Friedman, M.A. (2017). Changes in Properties of Auditory Nerve
684 Synapses following Conductive Hearing Loss. *J Neurosci* 37, 323-332.
685
686

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Guinea pig anti-vGluT1	Synaptic Systems	RRID: AB_887878
Rabbit anti-calretinin	Synaptic Systems	RRID: AB_2228331
Goat anti-guinea pig, Alexa 488 conjugated	Thermo Fisher Scientific	RRID: AB_2534117
Goat anti-rabbit, Alexa 647 conjugated	Thermo Fisher Scientific	RRID: AB_2535813
Bacterial and Virus Strains		
Biological Samples		
Chemicals, Peptides, and Recombinant Proteins		
Critical Commercial Assays		
Deposited Data		
Experimental Models: Cell Lines		
Experimental Models: Organisms/Strains		
Mouse: CBA/Caj	Jackson Laboratory	Stock #: 000654
Oligonucleotides		
Recombinant DNA		
Software and Algorithms		
Igor Pro v 6.37	WaveMetrics	https://www.waveMetrics.com
Imaris v	Oxford Instruments	https://imaris.oxinst.com
Prism v 6.0h	GraphPad	https://www.graphpad.com/scientific-software/prism/
Other		

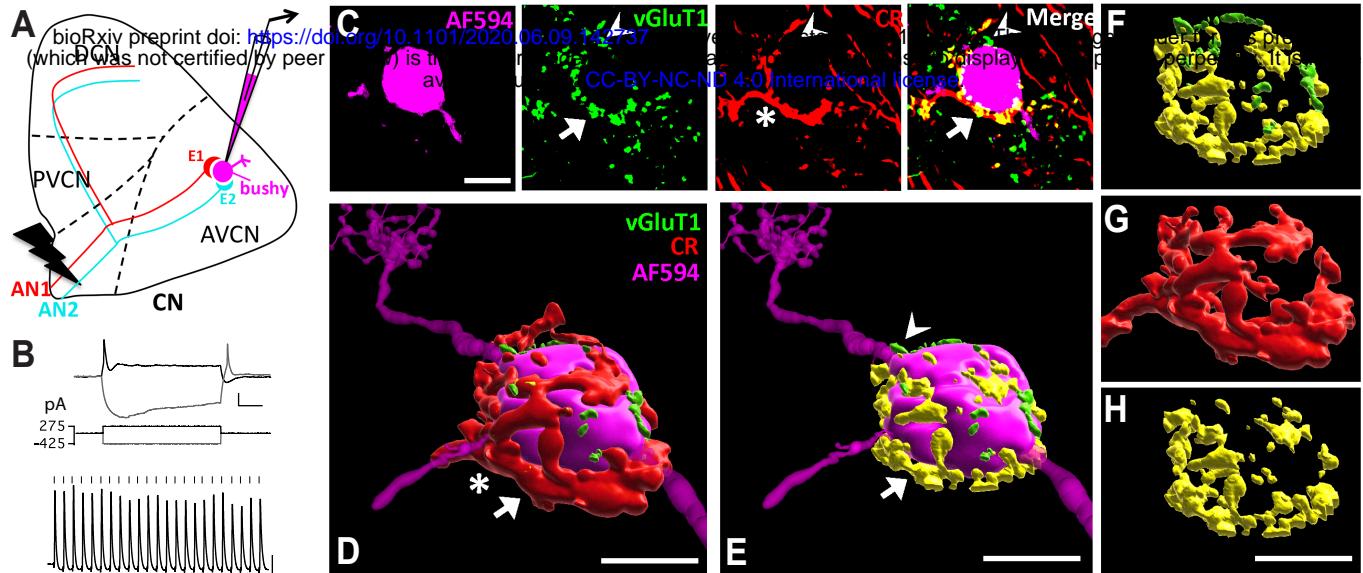
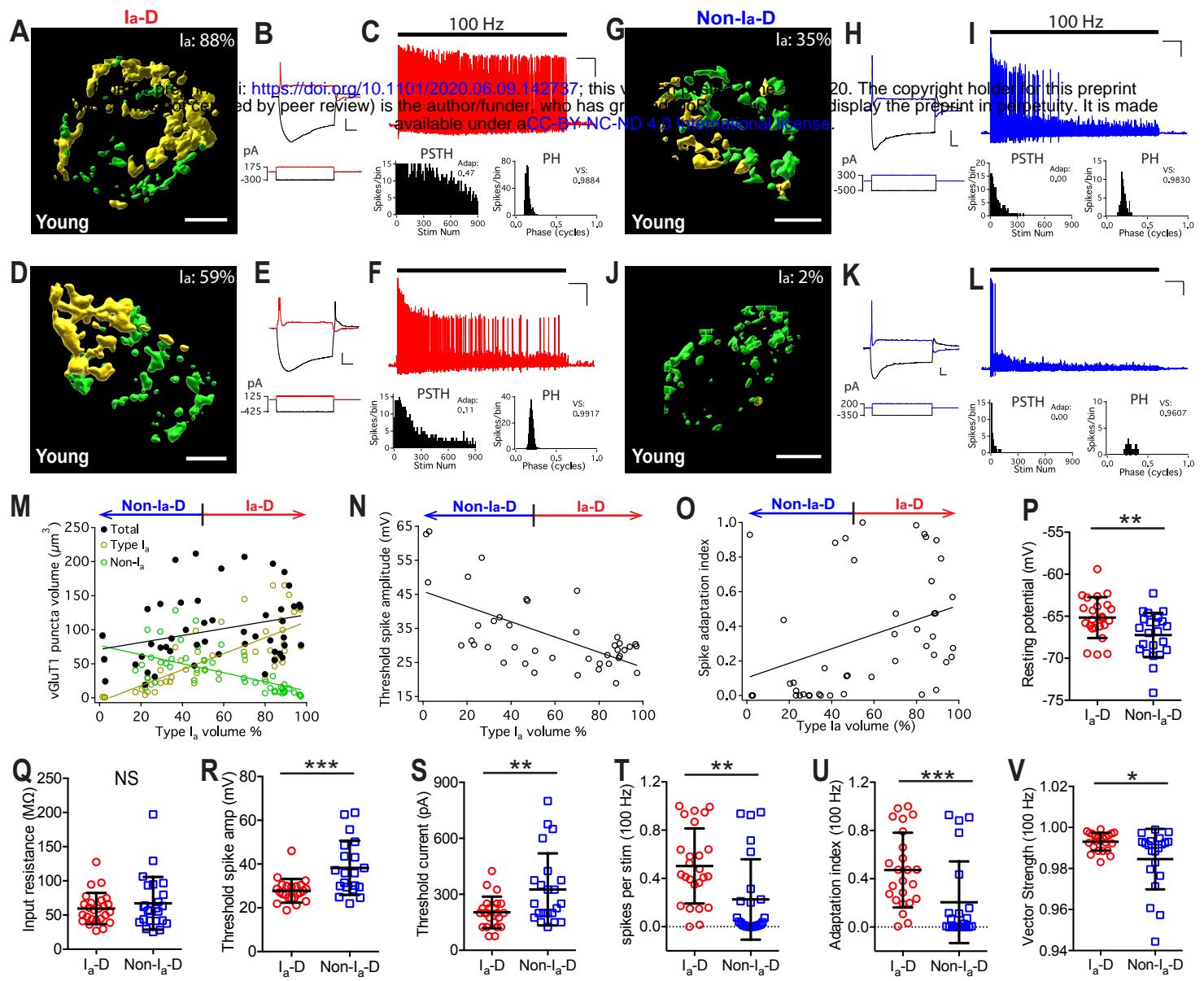



Figure 1

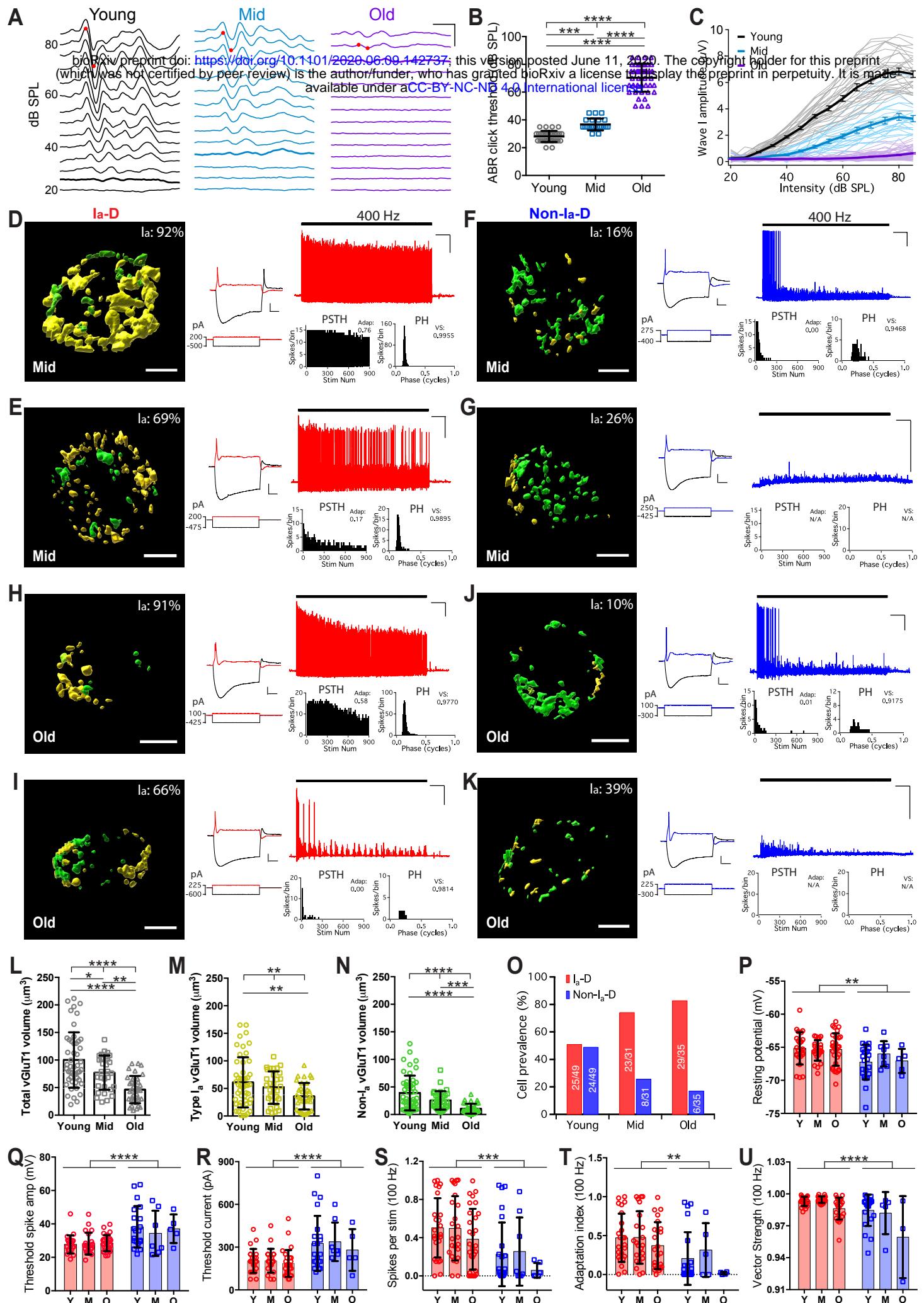
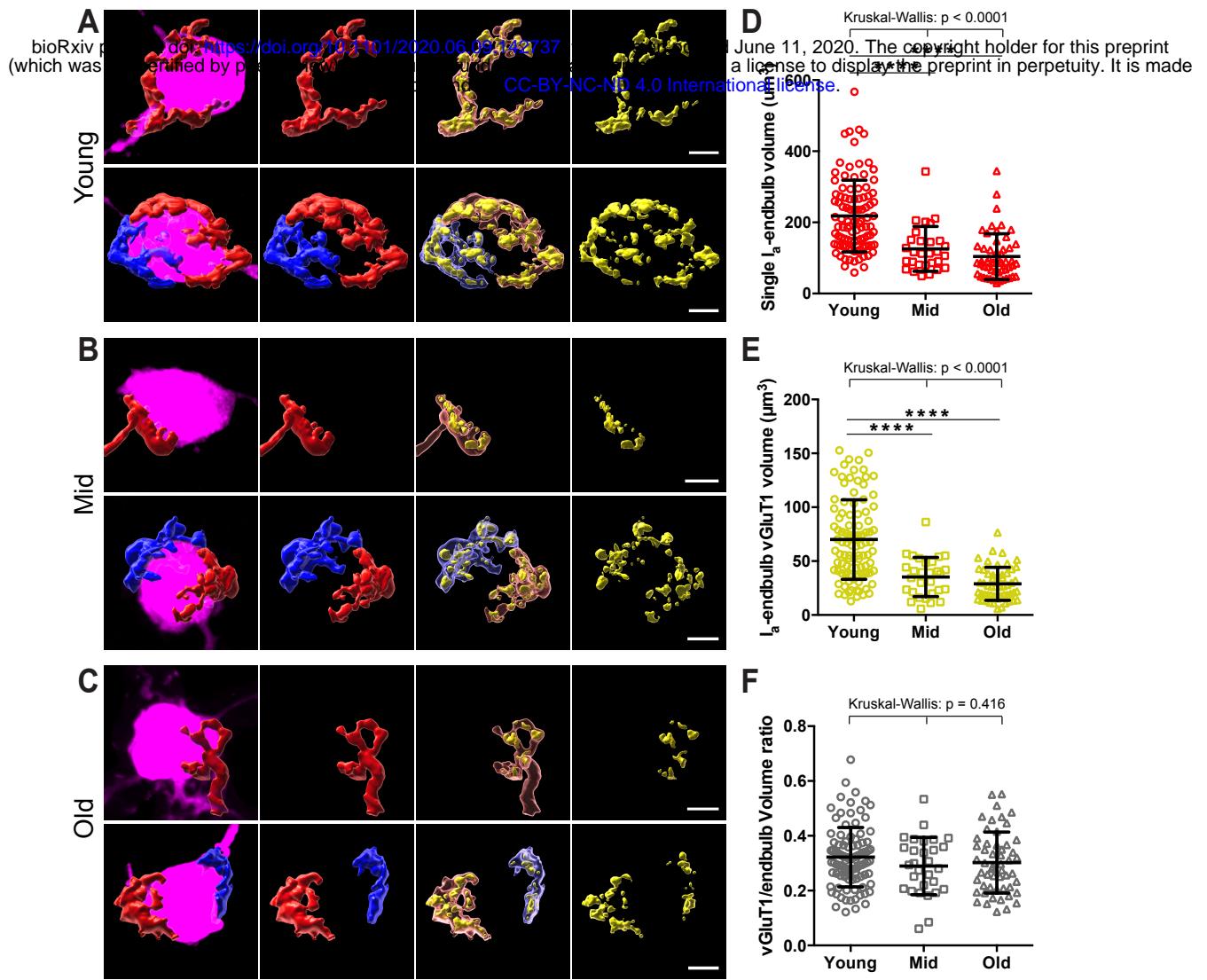
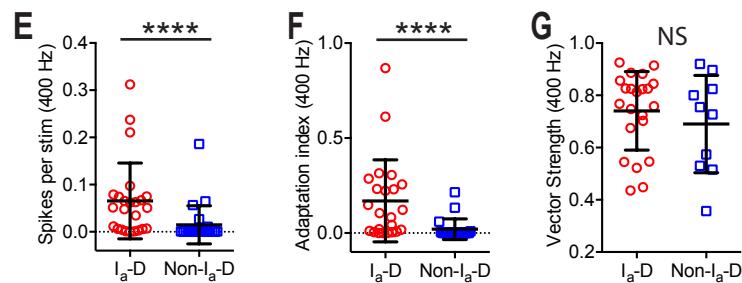
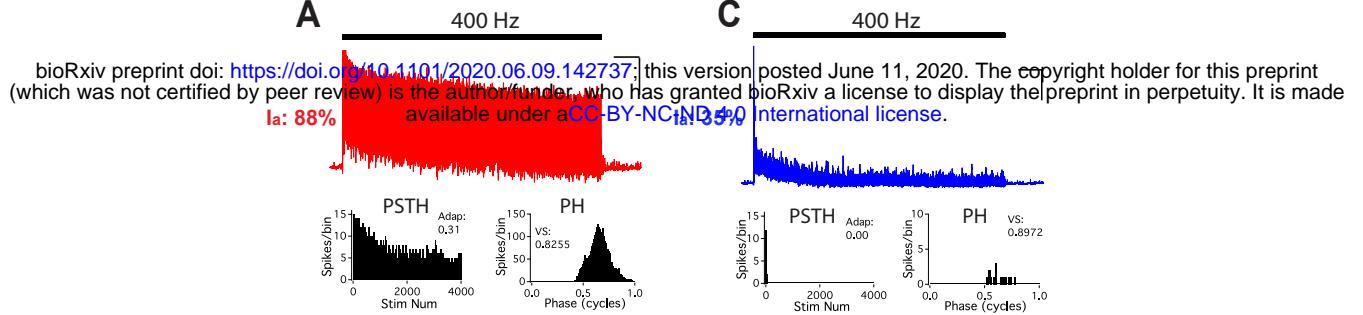
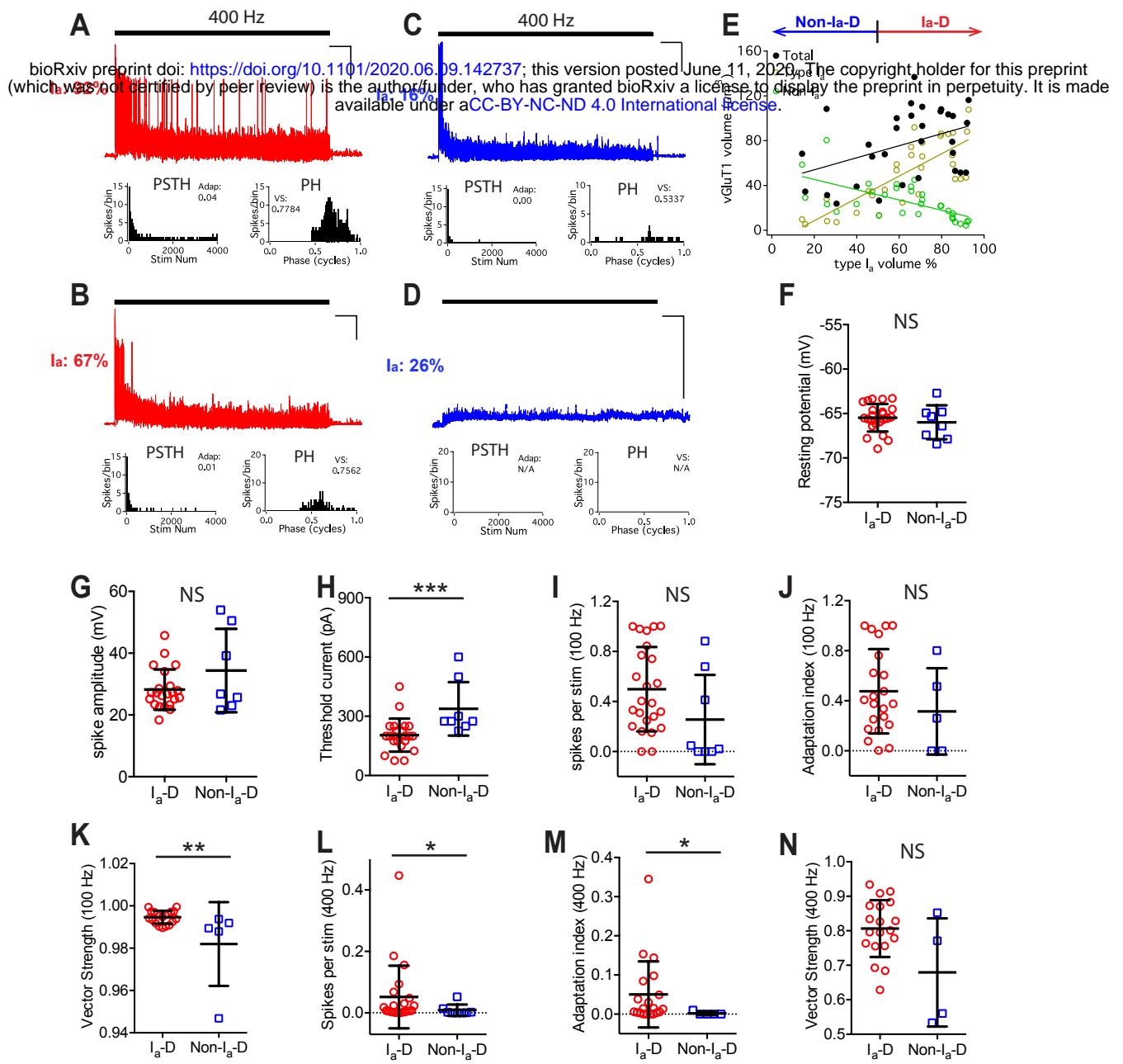
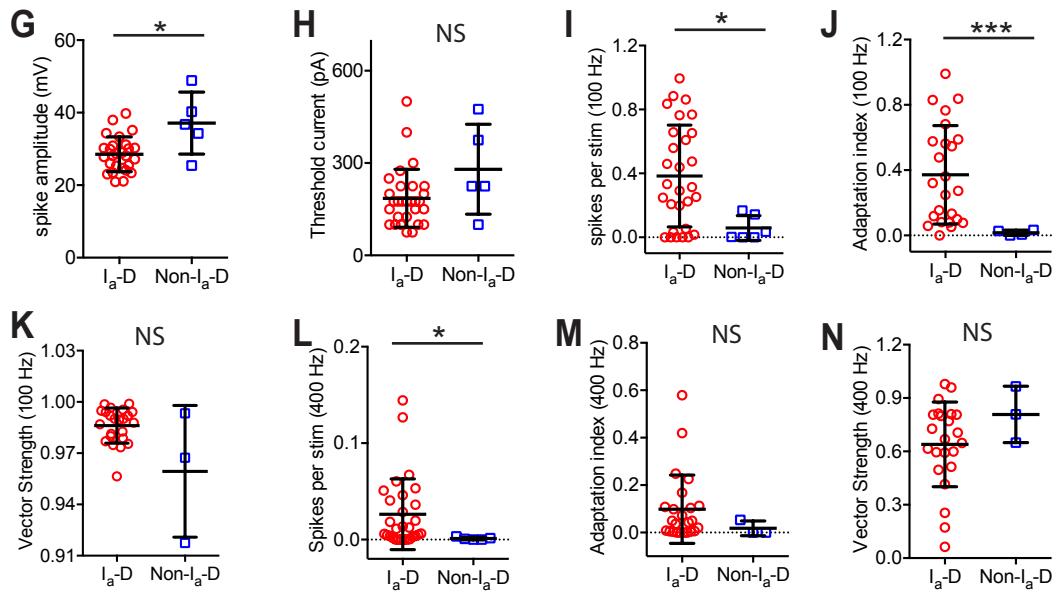
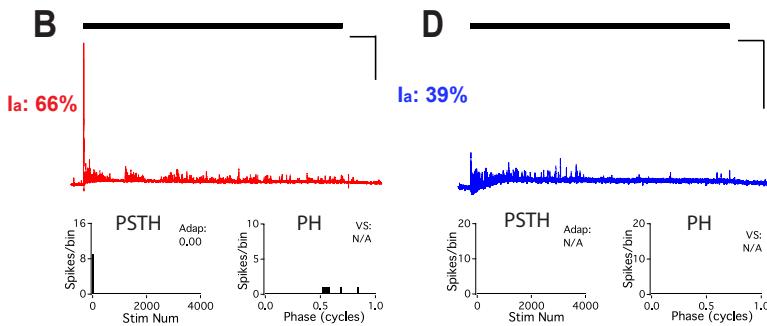
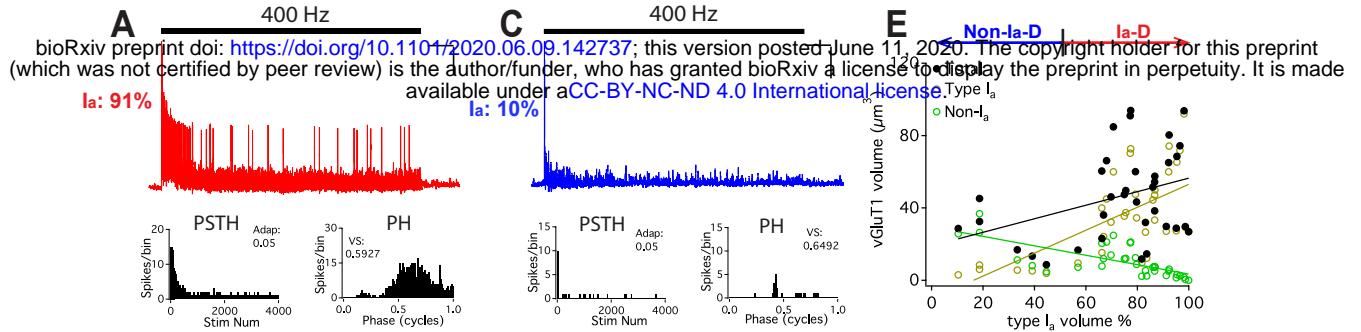


Figure 3




Figure 4

Supplemental Figure 1

Supplemental Figure 2

Supplemental Figure 3