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Abstract 

Nearly half of the classes of natural products known as ribosomally synthesized and post-translationally 

modified peptides (RiPPs) are reliant on a protein domain called the RiPP recognition element (RRE) for 

peptide maturation. The RRE binds specifically to a linear precursor peptide and directs the post-

translational modification enzymes to their substrate. Given its prevalence across various types of RiPP 

biosynthetic gene clusters (BGCs), the RRE could theoretically be used as a bioinformatic handle to 

identify novel classes of RiPPs. In addition, due to the high affinity and specificity of most 

RRE:precursor peptide complexes, a thorough understanding of the RRE domain could be exploited for 

biotechnological applications. However, sequence divergence of the RRE domain across RiPP classes has 

precluded automated identification of RREs based solely on sequence similarity. Here, we introduce 

RRE-Finder, a novel tool for identifying RRE domains with high sensitivity. RRE-Finder can be used in 

“precision” mode to confidently identify RREs in a class-specific manner or in “exploratory” mode, 

which was designed to assist in the discovery of novel RiPP classes. RRE-Finder operating in precision 

mode on the UniProtKB protein database retrieved over 30,000 high-confidence RREs spanning all 

characterized RRE-dependent RiPP classes, as well as several yet-uncharacterized RiPP, putatively novel 

gene cluster architectures that will require future experimental work. Finally, RRE-Finder was used in 

precision mode to explore a possible evolutionary origin of  the RRE domain. Altogether, RRE-Finder 

provides a powerful new method to probe RiPP biosynthetic diversity and delivers a rich dataset of RRE 

sequences that will provide a foundation for deeper biochemical studies into this intriguing and versatile 

protein domain. 

Introduction 

As of late 2019, nearly one-quarter of a million prokaryotic genomes were publicly available in the 

National Center for Biotechnology Information (NCBI) genome databases1. This vast genomic resource 

has been accelerating the pace of natural product discovery, with a recent surge of interest pertaining to 

the ribosomally synthesized and post-translationally modified peptides (RiPPs)2. RiPP biosynthesis starts 
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with the ribosomal synthesis of a linear precursor peptide. The genes for RiPP precursor peptides are 

typically very short, have hypervariable sequences, and encode a peptide comprised of two parts—an N-

terminal “leader” region and a C-terminal “core” region. With a few notable exceptions, the precursor 

peptide is genetically encoded adjacent to one or more genes encoding proteins that bind with high 

specificity and affinity to the leader region of the precursor. This interaction facilitates subsequent post-

translational modification of the core residues3. After modification is complete, the leader peptide is often 

proteolytically removed and the mature RiPP product is exported from the producing organism3 (Figure 

1). The exact nature of post-translational modifications is used to categorize RiPPs into individual classes, 

of which nearly 40 have been reported2. For example, lanthionine linkages define the lanthipeptide class 

while oxazol(in)e and thiazol(in)e heterocycles define the linear azol(in)e-containing peptide (LAP) 

class4,5. 

Many RiPP biosynthetic proteins recognize and bind their cognate precursor peptide through a 

domain known as the RiPP recognition element (RRE)6. The RRE consists of a conserved secondary 

structure of three, N-terminal alpha helices followed by a three-stranded beta sheet. The precursor peptide 

binds in a cleft between the third alpha helix (α3) and the third beta strand (β3), forming an ordered, four-

stranded, antiparallel beta sheet (Figure S1). RRE domains can exist either as a discretely encoded protein 

(<100 residues) or as a fusion to a larger protein domain6–10. All RREs share sequence similarity to PqqD, 

which is a protein involved in pyrroloquinoline quinone (PQQ) cofactor synthesis—a redox cofactor 

produced by many prokaryotes11. Thus, the existence of a PqqD-like protein encoded nearby regulators, 

enzymes, and transporters is strongly indicative of an RRE-dependent RiPP cluster. The prevalence of 

PqqD-like proteins in RiPP clusters led to the discovery of the RRE domain and its conservation across 

RiPP classes in 20156. Before this time, the importance of leader peptide recognition was established for a 

few RiPPs, such as nisin (lanthipeptide) and streptolysin S (LAP) biosynthesis12,13. In addition, an RRE-

containing protein from microcin C7 synthesis (MccB) was co-crystallized with its cognate leader peptide 
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in 2009, but it was not appreciated at the time that other RiPP classes employ a similar domain, due to 

RRE sequence divergence14.  

Consistent with the rapid expansion of characterized RiPP BGCs, a diverse collection of 

modifications and enzymatic domains are found amongst the ~40 known RiPP classes. However, the lack 

of a common genetic feature remains a major obstacle in the bioinformatic detection of novel RiPP 

classes. The fact that RRE domains are found in a major proportion of prokaryotic RiPP BGCs therefore 

provides a new opportunity: of the ~30 known RiPP classes produced by prokaryotes, over 50% contain 

an identifiable RRE domain, which are found both as discrete polypeptides and as fusions to other 

biosynthetic proteins (Tables S1, S2). Considering the RRE domain appears to be the most conserved 

genetic feature found across prokaryotic RiPP classes, it theoretically could be used as an imperfect but 

useful bioinformatic handle to expand known RiPP sequence-function space by uncovering novel RRE-

dependent RiPP classes. 

The strategy outlined above is complicated by the sequence diversity of the RRE domain6,9–11. For 

example, if a pair-wise sequence alignment method (e.g. NCBI BLAST16) is used to compare RRE 

domains from two unrelated RiPP classes, sequence similarity will frequently not be detected, particularly 

in cases where the RRE domain is fused to a larger protein. The most appropriate Pfam17 model (a family 

of proteins sharing sequence homology) for defining the RRE domain is PF05402, which extensively 

covers bona fide PqqD proteins from PQQ BGCs. PF05402 incompletely retrieves RRE-containing 

proteins from only a few other RiPP classes (e.g. lasso peptides and sactipeptides) and most RRE-

dependent RiPP classes are not represented in this Pfam18,19,20 (Figure S2). These results underscore the 

inability of a single bioinformatic model to capture the breadth of RRE sequence diversity. Owing to the 

fact that RREs share considerable structural similarity, HHpred21 is a more sensitive algorithm for 

detecting RRE domains. HHpred detects remote protein homology by aligning profile hidden Markov 

models (pHMMs; a model that defines amino acid frequency for a protein family) and comparing their 

(predicted) secondary structures. RREs were originally detected using this method by analyzing several 
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RiPP modifying enzymes, which showed consistent homology to PqqD6. However, HHpred requires 

generation of a multiple sequence alignment (MSA) and secondary structure prediction using PSIPRED22. 

These steps require several minutes of computing time per protein query, rendering the process 

unattractive for large datasets. In this work, we report a customized tool that permits the rapid and 

accurate detection of RREs in known and potentially novel RiPP classes with the principle goal of 

directing natural product hunters to the most fruitful areas of the RiPP sequence-function space. 

 

Results and Discussion 

Development of RRE-Finder  

This work presents a new tool for mining microbial genomes in search of RRE domains, called 

RRE-Finder. This tool has two modes of operation. The first is “precision” mode, which employs a set of 

35 custom pHMMs designed to detect RRE domains in a class-dependent manner (Figure S3, Table S3 

Dataset S1). The precision mode pHMMs are primarily based on known RiPP classes—in most cases, 

representative RRE-containing proteins from these classes have been verified to bind their cognate 

precursor peptide either through X-ray crystallography or binding assays such as fluorescence 

polarization. The second mode, “exploratory” mode, uses a truncated version of the HHpred21 pipeline 

with a custom database of detected RREs. Depending on the end-user’s objective, RRE-Finder can be 

used in precision mode to accurately predict the presence of an RRE domain as well as the likely RiPP 

class in which the precursor peptide belongs. Alternatively, in exploratory mode, the user can retrieve a 

wider array of putative RRE-containing proteins to assist in the discovery of novel RRE-dependent RiPP 

classes. RRE-Finder accelerates the process of identifying RRE domains by several orders of magnitude 

compared to HHPred. Precision mode, for instance, can analyze >5,000 protein sequences per second 

(Table S4). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2020. ; https://doi.org/10.1101/2020.03.14.992123doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.14.992123
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

In addition to models based on known RiPP classes, precision mode includes several “auxiliary” 

models based on high confidence, novel RiPP classes. We justified the inclusion of these models based on 

repeated observation of RRE domains within RiPP-like genomic contexts across multiple prokaryotic 

species. In general, for RiPP classes where an extensive survey of the bioinformatic space has been 

performed (e.g. lasso peptides23,24, sactipeptides and rantipeptides25, thiopeptides26), custom HMMs were 

built by first visualizing sequence space through use of a sequence similarity network (SSN) for all RRE-

containing proteins in the dataset27. SSN visualization using the Cytoscape tool28 facilitated selection of 

the most diverse and nonredundant subset of RRE primary sequences for MSA seed sequence alignment. 

In cases where a published dataset was available for a given RiPP class, model prediction accuracy was 

gauged by using HMMscan (from the HMMER3 suite of tools29) on the relevant dataset using bit score 

cutoffs of 15, 25, and 35 (subsequently referred to as tolerant, moderate, and stringent cutoffs). A given 

HMM was considered acceptable if >95% of RRE-containing proteins within the dataset were retrieved 

by the model at a bit score of 25 (Table S5). 

 In cases where a deep, bioinformatic profiling of a RiPP class has not been previously published 

or where a mature natural product is not known (i.e. for generating the auxiliary models), seed alignment 

input sequences were gathered using PSI-BLAST30 to find diverse homologous sequences to a 

representative sequence from each given class. The generated HMMs were considered valid if an 

HMMsearch of the UniProtKB database31 with a bit score cutoff of 25 gave only hits with similar BGC 

architecture to the target class. In addition, characterized datasets of RiPP proteins (e.g. lanthipeptides32,33, 

lasso peptides23,24, and sactipeptides25) were used to test auxiliary models using HMMscan analysis. 

Models giving few or no hits were considered to have acceptably low false positive rates. 

Exploratory mode, on the other hand, was built for the detection of RRE domains with greater 

sequence divergence from those detected by precision mode. For this mode, we employed a variation of 

the HHpred pipeline to detect structural similarity to RRE domains. The HHpred pipeline uses a clustered 

UniProt database (uniclust30)34, which comprises a small, representative set of all UniProt protein 

sequence diversity. Query proteins are compared to the uniclust30 database to generate a representative 
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protein family for the query, and the consensus sequence of this representative protein family is compared 

to those of other protein families. This search also incorporates comparison of (predicted) secondary 

structures. As such, HHpred can detect distantly related sequences and overlap in secondary structures 

between a query protein and the UniProt database. However, the vast search space used far exceeds what 

is necessary if the only goal is to detect RRE domains. 

To accelerate the HHpred pipeline for RRE detection, we first built a smaller, more specialized 

HHpred database, consisting of ~3,400 diverse RRE sequences. These sequences were gathered by 

mining 5,000 RiPP BGCs from the antiSMASH database35 using HHpred.  Rather than manually curating 

the retrieved RREs in a class-specific manner, as was done for precision mode, we included all detected 

RREs indiscriminately. The selected RREs were supplemented with 7 RREs from LAP BGCs and one 

RRE from a proteusin BGC, as no BGCs from these RiPP classes were present in the antiSMASH 

database. 

The collection of 3,413 RREs was used to build databases for two filtering steps (Figure 2). For 

the first filter, all RREs were clustered into representative protein families with MMSeqs236, resulting in 

558 RRE families. These RRE families were further enriched by querying each family against the 

uniclust30 database using hhblits, an iterative search tool from HHpred37. For each of the 558 RRE 

families, custom pHMMs were constructed, allowing for an initial filtering step with HMMsearch29. The 

second filtering step functions in a similar manner to HHpred. However, rather than using the uniclust30 

database to retrieve a protein family for a query, we employed a smaller, custom HHpred database 

consisting of the 3,413 RRE sequences retrieved from the antiSMASH database and additional sequences 

retrieved by hhblits. Using this custom database, only protein queries that are homologous to one of the 

558 clustered RRE families will return results. For queries without homology, no protein family would be 

found in the database, effectively filtering out these sequences. Finally, exploratory mode compares the 

family of proteins homologous to a query protein to three RRE structures in the Protein Data Bank (PDB 

entries: 5V1T, 5SXY, 3G2B). Any proteins showing homology to these models are output as putative 
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RRE domains. In all, by employing a small, custom library of RRE sequences, exploratory mode 

significantly accelerates detection of RREs over the HHpred pipeline. 

 

Model Validation Against the MIBiG Database 

As an initial test of accuracy, RRE-Finder was evaluated in precision and exploratory modes 

against the MIBiG database38. This database contains characterized BGCs for almost 2,000 natural 

products, including polyketides, non-ribosomal peptides, and RiPPs. All proteins within the MIBiG set 

(version 1.4) of RiPP (n = 242) and non-RiPP BGCs (n = 1,575) were analyzed by RRE-Finder at 

tolerant, moderate, and stringent bit score cutoffs (Figure 3). 

 In general, both precision and exploratory modes accurately predicted the presence of RRE 

domains in >90% of the RRE-dependent RiPP BGCs. Taken together, both modes retrieved 93% 

(115/122) of known RRE-containing proteins (Table S6). With increasing bit score stringency, the 

number of RRE sequences retrieved decreased in both RiPP and non-RiPP BGCs, as expected (Figure 3). 

At all bit score cutoffs, exploratory mode predicted more RRE domains in RiPP BGCs (higher true 

positive rate compared to precision mode), while precision mode retrieved fewer proteins from non-RiPP 

BGCs (lower false positive rate compared to exploratory mode). 

Further analysis of the results at varied bit score stringencies led us to choose a bit score cutoff of 

25 as a middle ground between precision and recall. At this cutoff, most of the RREs found within the 

MIBiG set by precision mode were also found by exploratory mode (101/117, Figure 3). Only the RREs 

of linear-azol(in)e containing peptides (LAPs)4, streptides39, and polytheonamides40 proved more difficult 

to detect by exploratory mode (Table S6). Further enriching the exploratory mode training set with RREs 

from these RiPP classes restored detection of the RREs from the polytheonamide cluster, although 

precision mode proved most consistent for RRE detection within the LAP and streptide classes. 

In contrast, precision mode detected only 66% (101/152) of the RREs retrieved by exploratory 

mode. A significant number (n = 18) of the RRE-containing proteins not detected by precision mode were 
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those contained in LanB-like proteins, which are found in lanthipeptide and thiopeptide BGCs. It has been 

shown that the LanB RRE domain found in thiopeptide BGCs is possibly vestigial as the cognate leader 

peptide is not required for catalytic processing41. Exploratory mode also detected a significant number (n 

= 14) of RREs fused to dehydrogenase enzymes present in cyanobactin, LAP, and thiopeptide BGCs, 

which were not detected by precision mode. These RREs are also perhaps vestigial; thus, precision mode 

does not include a model for identifying this type of RRE domain. 

While exploratory mode detects a greater number of RREs, it also displays a higher false positive 

rate (e.g. proteins retrieved from non-RiPP clusters). These retrieved sequences primarily consisted of 

helix-turn-helix domains, methyltransferases, and proteins with homology to known RRE-containing 

proteins that occur in non-RiPP contexts, such as radical S-adenosylmethionine (rSAM) enzymes (Table 

S7). Many DNA-binding regulators possess a helix-turn-helix domain, which are structurally homologous 

to RRE domains (Figure S4). Indeed, most RRE domains analyzed by HHpred show homology to known 

DNA-binding domains and regulatory elements (e.g. PDB entries: 3DEE, 2G9W, 2OBP). Because 

regulatory proteins are not known to bind or modify RiPP precursor peptides, RRE-Finder includes an 

option to filter out proteins that correspond to such domains. 

 RRE-Finder operating in either mode retrieved LanB-like proteins within polyketide BGCs. 

There is precedence for the assimilation of RiPP-modifying enzymes into polyketide pathways32, although 

the RRE domain within these proteins may be vestigial (Figure S5). Thus, retrieval of proteins outside of 

canonical RiPP BGCs may not be false positives. Further biochemical validation is required to confirm or 

refute a functional RRE in these instances. 

Finally, some HMMs employed by precision mode were generated largely using RRE sequences 

from the MIBiG database. In these cases, validation against MIBiG alone is not sufficient to prove these 

models exhibit appropriate recall and precision. As an orthogonal means of precision mode validation, we 

performed an HMMscan of the 5,000 RiPP BGCs from the antiSMASH database initially used to 

generate the exploratory mode custom databases35. As previously stated, these BGCs primarily belong to 
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the lanthipeptide, thiopeptide, LAP, sactipeptide, and lasso peptide classes. Because this collection of 

gene clusters was not curated to include only RRE-dependent RiPP BGCs, there are clusters not 

anticipated to be retrieved by precision mode (e.g. class II-IV lanthipeptides)15. These clusters were 

purposely included in the analysis as a negative control. All proteins within each of the 5,000 BGCs were 

scanned by precision mode at tolerant, moderate, and stringent bit score cutoffs. At these bit score 

stringencies, the percentage of gene clusters predicted by precision mode to contain an RRE were 90%, 

87%, and 83%, respectively. The 10% of BGCs not predicted to contain an RRE by precision mode were 

manually examined, and the majority of these clusters belong to RiPP classes that are RRE-independent. 

Thus, precision mode accurately predicts the presence of RREs in an unbiased collection of gene clusters, 

and appropriately filters out RRE-independent RiPP clusters. 

Defining the Scope of RRE-Dependent RiPP BGCs 

Next, we aimed to profile the extent to which the RRE domain is present within sequenced 

genomes by mining the entire UniProtKB database with both modes of RRE-Finder31. Using HMMsearch 

at a moderate bit score cutoff of 25, precision mode retrieved ~30,000 proteins (~13,000 non-redundant 

sequences, Figure 4). A parallel search using exploratory mode yielded ~70,000 non-redundant RRE-

containing proteins, almost completely encompassing the proteins retrieved by precision mode, except for 

three proteins. As expected, the numbers of proteins retrieved by precision mode is larger than has been 

previously reported for virtually all RiPP classes, owing to on-going genome sequencing. For example, 

the thiopeptide F protein model is the top-scoring model for ~500 of the retrieved UniProtKB proteins, 

which roughly a 25% increase from the most recent bioinformatic survey of thiopeptide BGCs26. In some 

cases, however, the number of retrieved proteins for a given model may be misleading. For example, the 

precision mode model specific to discretely encoded lasso peptide RREs is the top-scoring model for 

~5,000 of the retrieved proteins. However, co-occurrence analysis of these clusters revealed that only 

~3,500 of the retrieved proteins co-occur with the expected leader peptidase and lasso cyclase enzymes. 

This number is more consistent with the most recent bioinformatic survey of lasso peptides, which 
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reported ~3,000 lasso peptide BGCs with discretely encoded RREs24,42. Proteins retrieved by this model 

often co-occur with other common RiPP enzymes, such as rSAM enzymes (which represent ~300 of the 

“false positive” BGCs). Thus, we caution that the number of proteins retrieved by any given model should 

not be equated to the number of gene clusters specific to a particular RiPP class without analysis of the 

local genomic neighborhood. 

The excised RRE sequences from all proteins identified by precision mode were visualized using 

a sequence similarity network (SSN)27. This SSN confirms known relationships between RREs in 

separate RiPP classes. For example, discretely encoded lasso peptide RREs (referred to as either the B1 or 

E protein) group separately from RRE-peptidase fusions (known as the B protein), consistent with a 

different recognition sequence on the leader peptide for these two varieties of lasso peptides (Figures 5, 

S6, S7)23,24. In contrast, the heterocycloanthracins (a subclass of LAPs), cluster more tightly with 

thiopeptides than they do other LAPs. This relationship was expected given that heterocycloanthracin and 

thiopeptide BGCs feature an RRE domain fused to an “ocin-ThiF-like” protein (TIGR0393) that delivers 

the peptide substrate to the biosynthetic enzymes4,43. Other LAP pathways do not fuse the RRE domain to 

a member of TIGR0393 but rather contain an RRE fusion to members of TIGR038824,6,43,44. Another 

method to view RRE relatedness is through model redundancy (Figures S8, S9). In cases where there is 

significant overlap in the proteins retrieved by one or more models (i.e. thiopeptides and 

heterocycloanthracins; goadsporins and cyanobactins), this model redundancy is reflective of RREs in 

these classes binding their cognate leader peptides through similar motifs. Similarly, lack of model 

overlap is indicative of a divergent leader peptide recognition sequence. For example, even at a tolerant 

bit score cutoff of 15, there is virtually no overlap between the lanthipeptide-associated RRE domains 

with any other RiPP class, reflective of a unique recognition sequence not observed in other classes45,15 

(Figure S8). 

 

Evolution of the RRE Domain 
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 Sequence similarity between leader peptide recognition sequences in closely related RiPP classes 

suggests that the RRE domain emerged once and then diverged to recognize a variety of leader peptides. 

Because the leader peptide binds as an ordered beta-strand between the α3 helix and β3 strand of the 

RRE, substitution of key α3 and β3 residues logically tune the RRE specificity to target peptides. In fact, 

analysis of residue-level conservation between RREs of divergent RiPP classes reveals that the α3 and β3 

regions exhibit higher levels of residue conservation than the rest of the RRE, presumably due to selective 

pressure to conserve leader peptide:RRE contacts. This remains true when comparing closely related 

RiPP classes, such as LAPs and thiopeptides (Table S8). The other regions of the RRE, which are not 

directly involved in binding the leader peptide, show much lower levels of conservation when compared 

to the α3 and β3 regions; these regions are more tolerant of mutation, so long as the α3-β3 secondary 

structure is maintained. 

A representative diversity-maximized phylogenetic tree of excised RRE domains retrieved by 

precision mode (bit score cutoff of 25) supports the hypothesis that the RRE domain co-evolved with the 

leader peptide to expand specificity to all RRE-dependent RiPP classes (Figure S10). The sequences 

contained within this tree do not include all proteins retrieved by precision mode from the UniProtKB 

database. Instead, 10% of the proteins contained within each cluster of the SSN (Figure 5) were 

employed, along with all singleton nodes, to generate a representative collection of sequences spanning 

all RRE-dependent classes. The tree employs a helix-turn-helix DNA-binding protein as an outgroup 

(PDB entry 3DEE), as this protein scores well in HHpred searches of characterized RRE proteins, such as 

PqqD and LynD. As previously mentioned, it is plausible that the RRE domain evolved from DNA-

binding regulatory elements, given the shared secondary structure and the similar function of these 

domains to specifically bind a stretch of DNA or a peptide (Figure S4). Unsurprisingly, the diversity-

maximized tree shows a closer relationship between the helix-turn-helix outgroup and discretely encoded 

RRE domains, such as in PQQ and lasso peptide clusters. This is consistent with the theory that stand-

alone RRE domains were likely the first types of RRE domains to evolve. Furthermore, all fused RREs 

contained within the tree form monophyletic clades, suggesting that fused RREs evolved separately for 
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separate RiPP classes. Once again, this is unsurprising as some classes employ N-terminal fused RRE 

domains, while others code for C-terminal (e.g. proteusins) or internal RREs (e.g. lanthipeptides). 

 

Using RRE-Finder to Identify Novel RiPP Clusters 

Theoretically, the sequence space retrieved by exploratory mode and the auxiliary models of 

precision mode encompasses RRE-containing proteins from potentially novel RiPP classes. To explore 

this sequence space, divergent clusters mined from UniProtKB were manually examined for novel RiPP 

contexts. All proteins retrieved were grouped based on their best fit Pfam model. As expected, many of 

the proteins retrieved by exploratory mode are clear false positives—either regulatory elements or other 

proteins containing helix-turn-helix motifs. The proteins retrieved also included 1,050 methyltransferases, 

which were assumed to be false positives, given their prevalent occurrence in non-RiPP BGCs (Table S9). 

Excluding these false positives, RRE-Finder reveals many potentially novel RiPP clusters with 

new gene architectures containing both discrete and fused RRE domains. Included in these clusters are 

RRE-protein fusions that are not present in known classes, such as RRE-glycosyltransferase fusions and 

RRE-glutathione S-transferase fusions (Figure S11, Table S10). Of the nine potential RiPP clusters shown 

in Figure S11, four contain genes encoding rSAM enzymes, which are common in several RiPP classes25. 

The presence of rSAM enzymes in conjunction with predicted RREs is suggestive of a RiPP BGC.  

However, out of the nine gene clusters, only three contained probable precursor peptides (small genes 

<150 amino acids, clustered with the RRE-containing protein); therefore, manual curating of potentially 

novel clusters found by RRE-Finder is recommended. 

 
 
RRE-Finder incorporation into antiSMASH and RODEO 

 To democratize the use of RRE-Finder to identify RREs in gene clusters of interest, RRE-Finder 

is available as a standalone command-line tool (https://github.com/Alexamk/RREFinder). Protein queries 

can be input in either FASTA or GenBank formats, and the tool is also capable of analyzing and updating 

antiSMASH output files. Precision mode of RRE-Finder will be incorporated into the next release of 
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antiSMASH. We have also incorporated the precision models of RRE-Finder into RODEO23, which is a 

genome-mining tool for RiPP discovery that provides genomic neighborhood visualization and prediction 

of precursor peptides. Protein-coding sequences within the genetic locus are annotated according to Pfam 

and TIGRFAM models to identify conserved domains and predict function. With the “include RRE 

scoring” function enabled, proteins that contain an identifiable RRE are annotated, along with their E-

value significance. In cases of fused RRE domains, the position of the RRE domain within the larger 

protein is specified. RRE predictive scoring, powered by RRE-Finder, is now available within the 

command line (https://github.com/the-mitchell-lab/rodeo2) and webtool (http://rodeo.scs.illinois.edu) 

versions of RODEO. 

 

 
Conclusion 

RRE-Finder rapidly and accurately detects RRE domains within known and potentially novel RiPP 

classes. Although not all RiPP classes are RRE-dependent, the majority of prokaryotic RiPP classes are, 

including the largest known classes (i.e. class I lanthipeptides, lasso peptides, and ranthipeptides). RiPP 

natural products are a prime candidate for pathway engineering, as precursor peptides and their cognate 

modifying enzymes are all genetically encoded, typically within one BGC. However, efforts to 

bioinformatically predict RiPP BGCs lag behind those for predicting PKS/NRPS clusters, due to a lack of 

strongly conserved protein domains spanning multiple RiPP classes. Virtually no novel RiPP classes have 

been discovered using solely a bioinformatic approach: The ranthipeptide class was defined solely using 

bioinformatics, however this class had previously been predicted and misclassified as sactipeptides25. 

Furthermore, bioinformatics have been used to vastly expand known diversity within some classes—for 

example, the streptide class has been expanded to include enzymes that diverge from the class-defining 

Lys-Trp crosslinking enzymes39,46. Recently, two new RiPP classes—the peptide amino-acyl tRNA 

ligases (PEARLs) and the α-keto β-amino acid-containing peptides—were discovered through 

bioinformatic means47,48. However, both of these classes were discovered through the presence of known 
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RiPP biosynthetic enzymes within the clusters, rather than through unbiased bioinformatic discovery. 

Through precision mode of RRE-Finder, we have shown that characterized RiPP classes contain more 

members than currently reported, although analysis of the genomic neighborhood is often necessary to 

confirm class identity. Precision mode can further be employed, particularly with low bit score 

stringency, to predict novel RRE domains, such as those predicted by the auxiliary models. Finally, using 

RRE-Finder in exploratory mode reveals a set of over 70,000 proteins that are predicted to contain an 

RRE, suggesting that many more novel classes of RRE-dependent RiPPs are likely to exist in nature. 
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Figure 1. RRE-dependent RiPP biosynthesis. (A) RiPP biosynthetic gene clusters contain one or more 

short precursor peptides, often encoded adjacent to the modifying enzymes. Leader peptidases and 

proteins for immunity/export (often ABC transporters) are also frequently encoded in the local genome 

neighborhood. RRE domains are found fused to biosynthetic proteins as well as being produced as 

discrete proteins. (B) Modifying proteins bind the leader region of the precursor peptide employing the 

RRE domain. Post-translational modifications are then installed on the core region of the precursor 

peptide.  
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Figure 2. RRE-Finder employs two modes for RRE detection. Precision mode (top) of RRE-Finder 

uses a set of pHMMs to accurately predict RREs. These pHMMs are based on characterized RRE 

domains for individual RiPP classes, either from published datasets or from the MIBiG database. 

Exploratory mode uses a combination of pHMMs and a truncated HHPred pipeline (including secondary 

structure prediction) to identify divergent RRE sequences (albeit with a higher false-positive rate). 
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Figure 3. MIBiG validation of RRE-Finder. Both modes were used to retrieve RRE-containing proteins 

in 242 RiPP BGCs (A, B) and 1,575 non-RiPP BGCs (C, D) from the MIBiG database. With increasing 

bit score stringency, the number of RRE detected decreased in both types of BGCs (A, C). At a bit score 

of 25, exploratory mode of RRE-Finder detects most of the RREs found by precision mode in RiPP BGCs 

(B), as well as several other RREs. However, the number of RREs detected in non-RiPP BGCs is 

significantly lower for precision mode compared to exploratory mode (D). 
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Figure 4. Summary of precision mode model hits to UniProtKB. The number of protein matches 

within the UniProt database are summarized for several large classes of RiPPs. A scan of the entire 

UniProt database of non-redundant proteins was carried out at three separate bit score cutoffs. Number of 

hits for a bit score 25 cutoff is indicated above the data for each class. Full data on hits to each precision 

mode model are available in Supplementary Dataset 1. 
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Figure 5. Sequence similarity network of UniProtKB proteins retrieved by precision mode. Shown 

is a RepNode60 SSN at an alignment score of 22 (sequences with >60% identity are conflated to a single 

node and edges represent a BLAST expectation value better than 10-22). Proteins are colored based on the 

best-fit model by which they were detected. White nodes in region 3 represent proteins that were retrieved 

by the discrete lasso peptide RRE model but do not co-occur with the requisite lasso peptide machinery 

(i.e. a leader peptidase and a lasso cyclase). These proteins represent possible false positives from this 

model. The discrete lasso peptide RREs clustering with sacti/ranthipeptides in region 2 are stand-alone 

RRE proteins that co-occur with radical SAM enzymes. The network was generated using the EFI-EST 

webtool (https://efi.igb.illinois.edu/efi-est/)27.  
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