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Abstract

Recent advancement of single-cell RNA-seq technology facilitates the study of cell
lineages in developmental processes as well as cancer. In this manuscript, we
developed a computational method, called redPATH, to reconstruct the pseudo
developmental time of cell lineages using a consensus asymmetric Hamiltonian path
algorithm. Besides, we implemented a novel approach to visualize the trajectory
development of cells and visualization methods to provide biological insights. We
validated the performance of redPATH by segmenting different stages of cell
development on multiple neural stem cell and cancerous datasets, as well as other
single-cell transcriptome data. In particular, we identified a subpopulation of
malignant glioma cells, which are stem cell-like. These cells express known
proliferative markers such as GFAP (also identified ATP1A2, IGFBPL1, ALDOC) and
remain silenced in quiescent markers such as 1D3. Furthermore, MCL1 is identified as
a significant gene that regulates cell apoptosis, and CSF1R confirms previous studies
for re-programming macrophages to control tumor growth. In conclusion, redPATH is
a comprehensive tool for analyzing single-cell RNA-Seq datasets along a pseudo

developmental time. The software is available via http://github.com/tinglab/redPATH.

KEYWORDS: Single-cell pseudo time reconstruction; Cell differentiation; Cell

proliferation; Consensus Hamiltonian path;
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Introduction

Developmental research at a single cell level has been supported by flow cytometry
and imaging methods over the past few decades. Three fundamental questions of
interest include how individual cells develop into different cell types and tissues, how
these cells function, and the underlying mechanism in gene regulations. Such cell
development processes have yet remained significantly obscure [1]. Recent advances
in single-cell RNA sequencing (ScCRNA-seq) technology [2] have enabled us to
characterize the whole transcriptome of individual cells, thus allowing us to study the
subtle difference in heterogeneous cell populations. For example, single-cell analysis
in tumors, immunology, neurology, and hematopoiesis have led to new and profound
biological findings [3-8].

Specifically, for glioblastoma (GBM), single-cell analysis reveals the functionality
of tumor  microenvironment in  GBM. The relationships  among
microglia/macrophages, malignant cells, oligodendrocytes, and T cells have been
uncovered, confirming previous biological conclusions [3-5]. Glioma associated
microglia/macrophages (GAM) were known to regulate tumor growth, adversely
changing its functionality under normal conditions [9-13]. Recent research [13]
targeted GAM for re-activation of its antitumor inflammatory immune response to
suppress tumor growth. Previously, potential markers (such as CSF1R) have also been
identified for reprogramming of GAM; however, it acquired resistance over time and
resumed vigorous tumor growth [14,15].

Many algorithms have been developed to study cell development processes,
including cell differentiation and cell proliferation, by inferring a pseudo-time
trajectory at the single-cell level for both snapshot data as well as multiple time-point
data. A recent review [16] compared multiple state-of-the-art methods for
developmental trajectory inference including Monocle2 [17], TSCAN [18],
SCORPIUS [19], and for cell cycle processes such as reCAT [20]. Popular trajectory

tools also include Seurat, DPT, Wishbone and numerous others [21-25]. Both
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Monocle2 and TSCAN assume a free branching structure of cell fate development
whereas SCORPIUS assumes a linear development. Most of the existing methods
would have two main steps, linear or non-linear dimensionality reduction followed by
trajectory inference.

Monocle2 [17] uses an unsupervised feature selection called *‘dpFeature’, where it
selects the genes that are differentially expressed among unsupervised clusters of
cells. Then a principal graph is learned via a reverse graph embedding (RGE)
algorithm, ‘DDRTree’, where it reflects the structure of the graph in much
lower-dimensional space. The pseudo-time is then inferred by calculating a minimum
spanning tree (MST) on the distance of the projection points to the line segment on
the principal graph.

TSCAN [18] takes into consideration the dropout event. The raw gene expression
is first processed by gene clustering to gain an average gene expression. Since many
of the gene clusters are highly correlated, TSCAN reduces the dimensionality using
principal component analysis (PCA). Then MST is applied to cell cluster centroids,
which are inferred from the reduced space to form a trajectory. Finally, each cell is
projected onto the MST trajectory to obtain the pseudo-time.

SCORPIUS [19] is a fully unsupervised trajectory inference method. First, it
calculates the Spearman’s rank correlation between cells and defines an outlier metric
for each cell. Then multi-dimensional scaling (MDS) is applied to the correlation
distance matrix to learn a low dimensional representation of each cell. An initial
principal curve is then calculated as the shortest path between the k-means (k set to 4)
cluster centers of the cells. The principal curve is then learned iteratively by
projecting the cells onto the curve.

Traditional trajectory inference analysis would remove cell cycle effects through
the removal of cycling genes. However, the cell cycle process and cell differentiation
process seem to be coupled according to recent research, especially in the

development of neural stem cells (NSCs) [26]. Within the sub-ventricular zone
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(SVZ), it is estimated that 80% of adult neural stem cells undergo symmetric
differentiation, and 20% undergo symmetric proliferation with little evidence of
asymmetric divisions. To date, only one computational method, CycleX [27], attempts
to decipher such a relationship between the two developmental processes.

In this work, redPATH successfully recovers the pseudo time of the differentiation
process and also discovered some unique genes along with cell development (Figure
1). The performance and stability of redPATH are validated and compared with
multiple state-of-art methods, showing its consistency in explaining marker gene
expression changes. Here, we first implemented a consensus Hamiltonian path
(cHMT) algorithm to reconstruct the pseudo-time of a linear differentiation process.
We propose to model the differentiation process between cells using an asymmetric
measure (Kullback-Leibler distance). The linear development assumption has
importance in studies of more differentiated lineages at later stages of development.

Furthermore, the linear structure allows us to study the relationship between
differentiation and proliferation more clearly. Additionally, we developed an
approach to decipher and combine multiple Hamiltonian path solutions into a
transition matrix to visualize the trajectory (linear or branched) developmental trend.
Subsequent analysis and visualizations are implemented to provide biological insights
into the developmental processes. redPATH is incorporated with reCAT in an attempt
to visualize the relationship between differentiation and the cell cycle within the cell
development of neural cells. Finally, glioma datasets are analyzed with a new

perspective, uncovering a subpopulation within malignant cancerous cells.
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Materialsand methods
Overview of redPATH

As shown in Figure 1, redPATH consists of three main steps, namely data
pre-processing, pseudo time inference, and biological analysis. There are two main
challenges in the pseudo time inference problem in single-cell transcriptome data. The
curse of dimensionality and the high level of noise together can severely affect the
performance of pseudo time inference.

There are two main assumptions for redPATH. First, we assume the higher
similarity between cells within the same cell type or the same developmental stage
than those between different states. Second, although a linear developmental trend is
assumed, multiple Hamiltonian path solutions are utilized to detect both linear and

branching trajectories.
Data pre-processing

The pre-processing step includes standard normalization procedures using existing
methods such as edgeR and DEseq2 if the gene expression matrix is not yet
normalized [28-31]. We take the log2 expression value for transcripts per kilobase
million (TPM+1) or fragments per kilobase million (FPKM+1). Then we use the Gene
Ontology database [32-34] to select genes that are associated with the following
ontologies (hereby referred to as GO genes): “Cell Development”, “Cell
Morphology”, “Cell Differentiation”, “Cell Fate” and “Cell Maturation”. Note that the

selection of genes still includes a portion of cell cycling genes.

The selected ontologies are ones that are closely related to cell development. We
then filter out the selected genes using a dispersion ratio. The dispersion ratio is
simply a ratio of the mean over its standard deviation. We set the cut-off to 10 in

order to retain at least a few hundred genes. For each gene j, we calculate the ratio

denoted by disp; using the following formula:
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where ¢; is the j-th gene expression value for the i-th cell and g/ is the average
gene expression for the j-th gene over all cells. In all the analyses, the cut-off is set by
default to eisp; = 10. This feature selection procedure reduces the dimensionality

problem from ten thousands of genes to a few hundred.

Consensus Hamiltonian Path (cHMT)

Let X be the gene expression matrix of N cells (rows) by M selected GO genes
(columns). We want to infer an N by 1 vector denoting the pseudo time of each cell.
This problem can be remodeled as a Hamiltonian path problem with the assumptions
of cell similarity within a particular cell type and that the differentiation process is
linear. Although many heuristic solutions have been developed to solve this
NP-complete problem, most produce inconsistent results due to locally optimal
solutions [35]. In order to overcome this difficulty, we developed a consensus
Hamiltonian path solution to infer the pseudo time. The algorithm consists of the
following main steps:

INPUT: X(N, M)
FOR k=3to N:
1. Xis clustered into k groups of cells
2. Generate X’(k, M) by taking the average over k clusters
3. A Hamiltonian path solution is calculated for each k.
Merge each path solution to produce the final solution
Intuitively, we first infer a rough pseudo time ordering of large clusters of cells,

then gradually refine the solution with the increase of k.
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The clustering method in step 1 is inspired by spectral clustering and SCORPIUS

[19]. Briefly, the Spearman correlation distance matrix is first calculated as the

pairwise distance between two cell vectors x;,%; :

D(xx;) = —ﬂ{xi'zjj 1 (2

where x; and x; are both m-dimensional vectors of the GO gene expressions and C()

denotes the Spearman correlation value. Then using the N by N correlation distance

matrix, we apply double centering to normalize the matrix. Finally, a simple

hierarchical clustering is applied for k¢ [3... N].

Next, a Hamiltonian path problem is solved for each value of k. In this context, the
solution is defined as a path that visits each cell cluster or cell while minimizing the
total distance. Hence the definition of the distance function is important to the final
solution. A naive cost function would be to use the Euclidean distance between the
cluster centers. However, in order to better model the biological mechanism, we
proposed an asymmetric distance measure, namely the Kullback-Leibler distance
(KL-distance), or more often referred to as KL-divergence [36]. KL-divergence

simply measures the difference between two distributions. In this scenario, we have a
pairwise comparison between each m-dimensional cell vector: x; (i.e., when k = N)

or cluster averaged vector (i.e., when k < N). In the following notations, cell vector

will encompass the cluster averaged vector in general.

x-
dg (i) = Zxg #ln—  (3)
i

Equation 3 shows the calculation of the KL-distance for two different
distributions, namely, from x; to x; , with each representing an m-dimensional

distribution of gene expression. The vice versa direction would result in a different
value. The intuition here is that the differentiation process is directional and

irreversible. Hence, given a more differentiated cell, the distance for it to reverse back
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to a less differentiated cell should be penalized. Although we cannot be sure of which
cell is more or less differentiated, the KL-distance metric gives a small directional
restriction in this sense. Direct comparison of the performance of KL-distance and
Euclidean distance is given in Figure S1.

After calculating the pairwise distance between each cell vector, we now turn to
the modeling of a Hamiltonian path problem. We first define the problem as a graph

G = (V, E) where V is the list of vertices, and E represents the number of edges. In

our case, each vertex corresponds to a cell vector x; = (x;1, X2, ... X;3¢) and the edge

weight between each vertex is calculated by dg; (x;|[x;) and dg (x;||x;) as defined

in Equation 3. The goal here is to find the shortest path that visits each vertex or cell
once.

Next, we developed an O(n?)-time heuristic algorithm with a simple modification
for the arbitrary insertion algorithm [35] for the Hamiltonian path problem. It should
be noted that the Hamiltonian path problem is a classic NP-hard problem, so no
algorithm guarantees an optimal solution in any case. Briefly, our heuristic algorithm
considers the asymmetric property of our data and modifies the calculation of the
insertion cost in the arbitrary insertion algorithm. The main structure of the algorithm
remains the same, but we provide a new perspective in solving a Hamiltonian path
problem using asymmetrical distances directly. Details of the modified algorithm can
be found in the supplementary material. The modified algorithm is performed
multiple times, ensuring the quality and robustness of each Hamiltonian path solution.
Additionally, a novel approach to find the initial start and endpoints is developed
which increased the probability of finding the optimal global solution by the heuristic.

In order to overcome the instability of the Hamiltonian path solutions as well as
refining cell heterogeneity at single-cell resolution, we propose a consensus
Hamiltonian path in a similar way to reCAT. An advantage of the proposed algorithm
is that it will automatically discover the start and end cells of the path. First, a

reference Hamiltonian path is built using the enumerated results of five different paths
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obtained from k = 3 to 7 (by default). Since there are two possible starting points of
each solution, we then calculate the pairwise correlation between each of the four
paths and their respective reverse, yielding °C, = 10 additive correlation scores and 2°
= 32 total comparisons. The ordering direction of the best combinations determined
by the best correlation score is taken. All five paths are merged to give a reference
path by projecting onto the space of [0, 1] and taking the average. The base path is
then normalized by feature scaling once again. Hence the direction of the path is
determined by the reference path. Subsequently, for each of the following
Hamiltonian paths, k = 7 to N, the Spearman correlation of each path and its reverse is
compared with the reference path. Finally, after adjusting the direction, each path is
then merged to the reference path to obtain our final pseudo time. The consensus
Hamiltonian path ordering is essentially obtained by sorting the pseudo time values.

Furthermore, we developed an approach to visualize trajectory (linear or branched)
development of cells. Intuitively, redPATH recovers a linear pseudo time by merging
multiple path solutions to a single path, which naturally merges branching situations
as well. We hypothesize that the branching trajectory can be detected by observing the
detail transition of cells in each of the merged solutions.

The main idea is to transform multiple Hamiltonian path solutions into a transition
probability matrix followed by PCA visualization. Given p Hamiltonian path
solutions, we record all the transitions in each path pi and construct an N by N
transition matrix. For instance, if N = 3 and the pi-th solution is 2-3-1, then we add a
probability value for the transitions 2-3 and 3-1. The transition probabilities are
added together until all Hamiltonian path solutions are recorded.

Biological Analysis

With the Hamiltonian path ordering, we can identify key genes or gene modules
specific to the differentiation process. In order to quantify the expression changes
over the pseudo time series, we used two statistical measures: maximal information

coefficient (MIC) and distance correlation (dCor) [37,38]. Compared to the standard
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Pearson or Spearman correlation coefficients, these measures are more robust and
have a range of [0, 1]. The scores are calculated for all of the genes and ranked
accordingly. The genes which exceed a threshold of 0.5 are selected for downstream
analysis. However, the downside of these measures is that they cannot determine a
positive or negative correlation.

Then we designed a simple hidden Markov model (HMM) to infer two (or
possibly three) hidden states of each gene. The two hidden states represent an
on/highly expressed or off/lowly expressed state in each cell. The observed variable is
simply the gene expression value. In this model, we assume a univariate Gaussian
distribution over the two hidden states.

The model is initialized with ##ua.) and M) where the mean and standard
deviation are estimated with the sorted observed gene expression values. Then the
transition probability is inferred using the Baum-Welch algorithm [39]. Subsequently,
the Viterbi algorithm is implemented to infer the hidden states of the gene in each cell.
The inferred states are then clustered using hierarchical clustering and visualized
through a heatmap to provide an overall understanding of the gene expression changes
over the developmental process. The gene clusters are further analyzed using
GOsummaries [40] and PANTHER [41], which provides some biological insights to
the gene modules.

Coupling the differentiation and cell cycle process

In order to identify the relationship between cell differentiation and proliferation,
we incorporate reCAT and redPATH to visualize their relationship. One of the
challenges faced in analyzing the cell cycle is the removal of GO cells. To date, there
is currently no known algorithm to identify GO cells. Here, we developed a novel
approach using statistical tests to identify the GO cells before continuing further
analysis.

The intuition for the developed approach is that GO cells tend to be inactive in

terms of cell cycling genes, and they are in a resting phase. Hence, we hypothesize


https://doi.org/10.1101/2020.03.05.977686
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.05.977686; this version posted March 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

that GO-like cells will have the lowest cycling expression. We first transform the gene
expression matrix into average expression values for each of the following six mean
cell cycle scores, G1, S, G1/S, G2, M, G2/M. This is adapted from reCAT, and we
used the annotation from Cyclebase to calculate the average scores. Then we apply
k-means with k set to 5 (i.e., GO, G1, S, G2, M stages) to the mean scores. Pairwise
analysis of variance (ANOVA) tests were performed for each of the mean scores for
the group that was least expressed. The criterion is set such that the identified group
must be significant (p-value < 0.001) in all of the six mean scores in its comparison
with the remaining groups. The results are validated on a couple of datasets where the
GO cells are known (Figure S2).

After the removal of GO cells, we inferred the pseudo differentiation and cycling
time for each cell using reCAT and redPATH, respectively. Then we produced 3-D
spiral plots as an attempt to visualize their relationship. Briefly, the pseudo time of
reCAT is projected onto a circle as the X and Y axis, and then the differentiation time
is plotted on the Z-axis. Marker genes are used to depict the gradual change of the cell

types in each dataset.

Evaluation Metrics

In order to quantitatively assess the pseudo temporal ordering, we used four
metrics to compare our results with existing algorithms. There are limitations to
evaluating the accuracy of the orderings because the delicate ordering within each
different cell type remains unknown. The only information available is the cell type
labeling obtained from biological experiments, which may also potentially contain
some bias due to technical noise during biological experiments. Using the cell type
information, we developed change index (CI), bubble sort index (BSI), and further
applied Kendall correlation (KC) and pseudo-temporal ordering (POS) score to
evaluate the reconstructed pseudo-time.

For illustration purposes, an example of a linear development of different cell

types is used here. A linear development of the neural system in the sub-ventricular
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zone is defined from quiescent neural stem cells (QNSC) to activated neural stem cells
(aNSC) then differentiating into neural progenitor cells (NPC). In other words, we
assume that we have 3 stages of development, ordering from gNSC to aNSC to NPC.

The first metric, change index, was adopted from reCAT [20]. Assuming the
number of states is ns (which is 3 in our example), we calculate the number of state
changes, s, after re-ordering the cells. Then we calculate the change index as Cl =1 —
(s-ns-1) /(N -ns)where N is the total number of cells. Hence, a temporal ordering
that completely resembles the true labeling of cell types would have a value of 1 and
the worst case of 0.

From experimental results, we found that the change index may be inaccurate
when a large subset of a particular cell type is grouped together, but inserted within
another cell type of development. Hence we designed a second metric called the
bubble sort index to evaluate the re-ordered time series. The intuition behind this
index is inspired by the number of steps, s, taken to re-sort the time series. This is
basically the number of moves of switching adjacent cells that it needs to make to
correct the ordering and has better stability over the change index. The number of
steps sis then divided by S, which is the number of steps taken to sort the worst-case
scenario (i.e., the reverse of the correct ordering), to produce the bubble sort index.
Generally, the bubble sort index results in higher values in the range of [0, 1].

Thirdly, we also used the Kendall correlation coefficient to evaluate our time
series. Both Spearman and Kendall correlation would work better than the Pearson
correlation in this case due to the consideration of ranking in the implementation of
these two methods. Additionally, the POS score is also adapted from TSCAN [18] to

evaluate the performance of each algorithm.
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Results
Validation and evaluation of redPATH

Introduction

The intuition of redPATH is first validated, and its performance is then compared
with current state-of-the-art algorithms. This comparison is mainly based on three
neural stem cell datasets [6,7,42], one hematopoietic dataset [8], one human
hematopoietic dataset [43], and three embryonic time point datasets [44-46]. The
further downstream analysis included recent glioma datasets [5] to uncover
underlying mechanisms behind cancerous cells. All the datasets used are listed in
Tablel.

For the neuronal dataset of Dulken and Llorens-Bobadilla, both studies look at the
development of neural stem cells (NSCs) in the subventricular zone (SVZ), whereas
Shin’s data was obtained from the subgranular zone (SGZ). The development lineage
is quite clear where quiescent NSC (gNSC) becomes activated NSC (aNSC) and
further differentiates into neural progenitor cells (NPC) and finally into neuroblasts
(NB) or neurons. The hematopoietic data looks at the development of dendritic cells
near the end of the lineage. The macrophage and dendritic cell precursor (MDP)
differentiate into common dendritic cell precursors (CDP) and give rise to
pre-dendritic cells (preDC). An important question of interest is how differentiation
and proliferation processes are regulated within these different cells. This is explored
in the later parts of this paper, which discusses the incorporation of reCAT and

redPATH to provide a simple exploratory analysis.

Quantitative evaluation of redPATH
First of all, the modeling of single-cell trajectory as a Hamiltonian path problem needs

to be confirmed as a valid approach. From Figure 2A, we can see that the
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developmental process across cells is aligned by the Hamiltonian path for k=3 and
k=7 clusters. This sets the foundation for redPATH. Assuming the order of the
development progression is correct, the ordering is refined by combining the paths of
larger k and thereby obtaining a stable solution.

redPATH is compared with Monocle2, TSCAN, and SCORPIUS for its
performance. The results are shown in Figure 2B, where redPATH consistently
shows the best performance across all the scores for the three neuronal datasets and
one hematopoietic dataset.

A comparison is made by using the same input (the selected Gene Ontology
genes) for each of the algorithms. SCORPIUS claims to be robust when using all the
genes without gene selection, but the performance did drop by a small margin across
all datasets when using the full gene expression matrix. It should be noted that
NSC-Llorens-B performed quite well overall partially because the data was sequenced
at a much deeper length. The rightmost bar from Figure 2B represents the redPATH
method. The error bar represents a 99% confidence interval based on 20 runs of both
SCORPIUS and our algorithm. Furthermore, redPATH (Cl: 0.69, BSI: 0.92, KC:
0.82) is on par with SCORPIUS (CI: 0.62, BSI: 0.92, KC: 0.84) on a multi-time point
dataset (MESC — Deng) with ten cell types. The outperformance of the change index
also proves its capability to analyze time point data as well as snapshot data.
Additional multiple time-point datasets are evaluated, and results are shown in the

supplementary Figure S3.

The performance of many algorithms may be susceptible to cell subpopulation
and different gene selections. In Figure 3, we present the robustness of each
algorithm on subsamples of cells. For each of Llorens-B-NSC and Dulken-NSC
datasets, we sampled 30%, 50%, 70%, and 100% of all cells 20 times. As shown in
Figure 3A, the evaluation of redPATH on all three metrics is relatively consistent and
stable; a similar pattern is observed in Figure 3B. A comparison of the gene feature

selection approach is also included in the supplementary Figure S4. Additionally, we
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also compared performance of redPATH with a different set of selected genes using

dpFeature (Figure S5).

Observing the differencesin inferred biological development

Accounting for all the metrics across each dataset, SCORPIUS has a relatively better
performance than the rest of the other methods. In order to further explore the
differences in biological functions between redPATH and SCORPIUS pseudo-time,
we observe the developmental trend on some marker genes on all three NSC datasets
(Figure 4). Smnl and Aldoc [42,47,48] are considered to be marker genes for the
differentiation of neural stem cells. In vivo experiments [42] had been conducted to
show that Smnl is highly expressed in NPC with little activity in NSC, and Aldoc is
only expressed in quiescent NSCs and low-expressed in aNSC and NPC. We
compared gene expression development for redPATH and SCORPIUS due to the
overall better performance of these two algorithms (Figure 4). A comparison of
additional marker genes is included in the supplementary (Figure S6).

On both NSC-Dulken and NSC-Llorens-B dataset, the performance of redPATH
is on par with SCORPIUS, and no significant difference is observed. In the rightmost
panel (NSC-Shin dataset), the ordering of SCORPIUS clearly shows a different
patterning compared to the other NSC datasets. With the Smnl1 gene (Figure 4A),
SCORPIUS starts with a high expression (which is supposed to be lowly expressed at
the start of the trajectory), then decreases, which is different from the conclusion
made from biological experiments. redPATH fits the developmental trend with
relatively low expression at the beginning of the trajectory and shows consistency
across datasets for the same cell type. We can observe that SCORPIUS tends to
identify some bell-shaped trend, which could be explained by iteratively fitting
principal curves in their algorithm. This observation can also be made from Figure
4B in the NSC-Shin dataset. Here, redPATH proves to be robust across different
datasets and correctly orders the developmental pseudo-time in accordance with

biological observations.
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I dentifying trajectory development of cells

Utilizing the multiple Hamiltonian path solutions from redPATH, we can
construct a cell transition matrix and visualize the developmental trend on a PCA plot
(Figure 5). The trajectory plots are shown for two linear progression datasets,
Llorens-B-NSC and Dulken-NSC, as well as a branching hematopoietic stem cell
dataset (hHSC). The progression in NSC cells along the pseudo time reflects that
there is a linear development from NSC to NPC (Figure 5A-B). However, for the
hHSC dataset, the PCA plot suggests a branching development of cells (Figure 5C),
confirming with the original discovery of binary cell fate decisions [49]. There appear
to be two separate progressions of cell differentiation. A comparison of trajectory
plots produced by different algorithms can be found in the supplementary Figure S7
and S8.

Coupling proliferation with differentiation

As an attempt to visualize the relationship between the cell cycle process and
differentiation, 3-D plots are produced for the NSC-Llorens-B dataset. Before
analyzing the relationship between cell proliferation and differentiation, GO-like cells
are removed from the dataset. The developed approach was run twice to remove all
possible GO cells from the dataset (with a threshold of p-value < 0.001). The
differential pseudo-time is re-calculated with redPATH on the remaining cells, and
cell cycle analysis results are obtained from running reCAT. Here redPATH (CI:
0.862, BSI: 0.977, KC: 0.852) outperforms SCORPIUS (CI: 0.828, BSI: 0.853, KC:
0.589) on the remaining 61 cells, showing its reliability even in a very small sample
dataset. NSC marker genes (Egfr, Smnl [7,42]) further validates that most GO-like
cells have been removed from the downstream analysis, where neither expresses

much during the quiescent state (Figure 6).

Using the two evaluation statistics of distance correlation (dCor) and maximal
information coefficient (MIC) at the threshold of 0.65, we uncovered three genes

(Foxml, Tubb5, Nek2), which correlates highly with both cell proliferation and
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differentiation. Differentially associated marker genes such as Dcx, DIx1-2, DIx5,
Tubb3, Cd24a, Sox11, DIx6asl, Mfge8, 09, and Atpla2, are in concordance with
previous studies [6,7,47,50]. Similarly, we also uncovered interesting genes that are
cell cycle-related. For example, Cdkl and Aurkb which associate with cell
proliferation and NSC activations.

Foxml was recently reported to regulate a micro-RNA network which controls the
self-renewal capacity in neural stem cells [51]. redPATH provides an interactive plot
that can visualize different cell types, cell cycle stages, and gene expression together.
Reducing the left panel of Figure 7 to NSC and NPCs, Foxml is highly expressed in
G1 and G2/M cycling stages, which is indicative of cell proliferation. Observing
NSCs (the inner orange points on the left), a subset of cells within the ellipse is lowly
expressed as compared to the outer orange points. This could suggest that NSCs may
be at its earlier stages of activation, which is more quiescent-like as compared to the

higher expressed activated NSCs.

redPATH analysis on glioma datasets

Assuming that the snapshot on the cancerous dataset provides the different
development stages of single cells among the dissected tissue, we can uncover some
underlying mechanisms by observing the pseudo temporal development of gene
expression change from microglia/microphage cells to malignant cells within a tumor
dissection. Normal microglia cells exist to eliminate any intruding cells, also acting as
antigen-presenting cells which activate T-cells [52]. However, immune functions of
microglia/macrophage cells within glioma tumors are impaired and are more
commonly known as glioma-associated microglia/macrophages (GAMs), which
regulate tumor growth [9,10,12,13]. As the original publication [5] suggests,
malignant cells include some properties of neural stem cells with active differentiation
in glial cells specifically. Although the tumor microenvironment is much more

complicated, gene modules and possible relevant genes can be inferred.
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Genemodule extraction

In the original publication [5], the authors have classified each tumor cell as either
malignant cell, microglia/macrophage, oligodendrocyte, or T cell using clustering and
copy number variation analysis. Although these four cell types do not differentiate
into one another, GAMs and T cells are altered to regulate malignant cells. Here, we
re-ordered the cells using redPATH and successfully recovered a pseudo
developmental trend to observe gene expression change.

MGH107, a grade Il astrocytoma that has not been treated yet, shows a gradual
change in gene expressions indicating a subpopulation of malignant cells. The other
two grade 1V tumors showed less progression but still revealed a subpopulation in
MGH57 (Supplementary Figure S9).

Using dCor and MIC, 921; 55; 762 significantly identified genes are retained for
analysis for MGH45, MGH57, MGH107 respectively (threshold >= 0.5). The gene
expression profile of oligodendrocytes is closer to malignant cells. Here, the result for

MGH107 is shown (Figure 8).
Stem-cell like subpopulation in glioma cells

Focussing on the glial cell development / the central nervous system development
gene module of MGH107 in Figure 8, astrocytic and stem cell-like markers (ATP1A2,
GFAP, CLU, ALDOC [5,42,53]) are found to be expressed in the latter half of the
malignant cells while quiescent markers such as D3 remained silenced. Additionally,
a subpopulation of malignant cells can be clearly identified by observing the
top-ranked identified genes such as VIM, SPARCL1, TIMP3 (Supplementary Figure
S5). This indicates a high potency of the malignant cells to differentiate and
proliferate. The malignant cells of Grade 1V glioblastoma (recurrent) MGH45 show a
constant gene expression pattern. However, MGH57 (Grade IV glioblastoma)
revealed a relatively small subpopulation of malignant cells that does not express
OLIG1, OLIG2, DLL1, CCND1, IGFBPL1, and express ALDOC and ATP1A2
(Supplementary Figure S9). Here, ATP1A2, IGFBPL1, and ALDOC are all possible
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significant stem-like markers from prior analysis on the neural stem cells mentioned
above. These results indicate a subset of non-proliferative malignant cells in MGH57
and MGH107. MGHA45 is a recurrent glioblastoma patient, hence it is possible that a

large portion of malignant cells are stem-cell-like.

Apoptosis program within different gliomas

An interesting exploratory finding is the apoptosis program within gliomas. Apoptosis
is a mechanism within the body that is activated intrinsically or extrinsically which
leads to cell death. All three tumor patients had not been treated with medication or
radiation before; hence external factors of cell death are not applicable.

MCL1 [54-56], an important BCL-2 family apoptosis regulator is significantly
expressed within the same gene cluster of “glial cell development” (dCor: 0.59, MIC:
0.50). The expression of MCL1 activates BAX and BAK modules in the apoptosis
pathway in general. Also, it has been recently reported [56] that silencing MCL1 leads
to inhibition of cell proliferation, thereby promoting apoptosis in glioma cells. Here, it
can be observed in Figure 9A that there are two subpopulations for the malignant
cells expressing in MCL1. Figure 9A of MGH45 also shows that microglia are
inhibited. The proportion of malignant cells, which possibly promotes apoptosis to
proliferating malignant cells, are similar: MGH107 - 0.45, MGH57 - 0.5, MGH45 -
0.35.

Intuitively, the situation of MGH45 appears to be quite severe, where only a small
number of cells activate apoptosis. Although numerous other apoptosis signaling
pathways are available, further biological validation would be beyond the scope of
this analysis. Drugs targeted at the BCL-2 family and MCL-1 inhibitor was under

pre-clinical trials in 2015 with promising results [11,57,58].

Discovery of potential significant genes
Additionally, we ranked the top genes in the supplementary. There are numerous

overlaps in MGH45 and MGH107, where CSF1R (dCor: 0.95; 0.93, MIC: 0.78; 0.78)
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is discovered with distinct change between microglia / macrophage and malignant
cells. It has been previously reported that inhibition of CSF1R in macrophages may
lead to a re-programming of macrophages, which in turn reduces tumor growth
[14,59]. However, experiments also showed that inhibition of CSF1R eventually
acquires resistance and PI3K signaling pathways are activated to support malignant
cells [15]. It is trivial from Figure 9B that the microglia/macrophages are overly
expressed within the tumor microenvironment. Additional marker genes can be found
in the supplementary (Supplementary Figure S10).

Overall, redPATH can be utilized to analyze single-cell transcriptome datasets
with and without cell type labeling. As shown in the heatmap analysis of glioma cells,
redPATH can also correctly recover the cell type segmentation along a developmental
pseudo-time.

Discussion

With the initial intent to analyze pseudo developmental processes of single-cell
transcriptome data, we developed a novel comprehensive tool named redPATH to
provide computational analytics for understanding cell development as well as cancer
mechanisms. redPATH shows its robustness in recovering the pseudo-developmental
time of cells and its capability in detecting both branched or linear progressions. The
algorithm demonstrates high consistency across different sample numbers as well as
different feature selection methods. Subsequently, analytical functions implemented
include: 1) detection of GO-like cells, 2) gene discovery using dCor and MIC, 3) 2- or
3-state HMM segmentation inferring low / highly expressed gene state, 4) gene
module extraction and 3D visualizations for differentiation and proliferation
processes, and 5) visualization for identifying branched or linear cell development.

In this manuscript, we show that redPATH is capable of recovering the cell
developmental processes successfully and we analyze glioma datasets with a new
perspective. This results in the discovery of stem-cell-like and apoptotic marker genes

(such as ATP1A2, MCL1, IGFBPL1, ALDOC) along with a deepened understanding


https://doi.org/10.1101/2020.03.05.977686
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.05.977686; this version posted March 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

of diseases and cell development. It is capable of discovering significant novel genes
using the pseudo-time rather than testing the differential genes by groups. Although
the advantage is that cell type labeling is not required here, this approach may fail
when the pseudo-time results perform poorly.

redPATH attempts to visualize the coupling relationship between cell proliferation
and differentiation; however, integrative models are preferred to analyze such
processes simultaneously. The underlying mechanism remains obscure and requires
more integrative computational models. Furthermore, biological validations are

required for the identified lists of significant genes.
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Availability
redPATH is available through https://github.com/tinglab/redPATH. Details about the

data used in this manuscript can be accessed in Table 1. Briefly, data accession
numbers for neural stem cells include: PRINA324289, GSE67833, GSE71485;
hematopoietic cells: GSE60783, GSE70245; embryonic stem cells: GSE45719,
GSE100471, GSE100597; and glioma cells: GSE89567.
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Figurel  Overview of redPATH
Pipeline of the redPATH algorithm and analysis. Parts 1-2 provides the schematic
illustration of the algorithm, comprising of data preprocessing steps and trajectory

inference. The rightmost panel lists the main biological analysis functions included in
redPATH.
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Figure2  Validation of redPATH

A shows the Hamiltonian path solution by projecting each cell and cluster centres
onto scaled and centred principal components (PCs) 1-2 for k=3 and k=7 respectively.
The purple triangle represents the cluster centres and dotted line reflects the
Hamiltonian path. Each cell is colored by its cell type label. B provides the
performance evaluation of different algorithms on four single-cell datasets using
change index (CI), bubblesort index (BSI), Kendall correlation (KC), and
pseudo-temporal ordering score (POS). Bar plots are colored by the algorithm used,
and the rightmost bar (in red) represents redPATH. The error bar shown represents the
99% confidence interval based on 20 runs of the algorithm. Missing bars in the plots

represent an evaluation value of less than 0.5.
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Figure3  Robustness analysison algorithms

A-B 30%, 50%, 70%, and all cells are sampled from the Llorens-NSC and
Dulken-NSC datasets, respectively, and each column represents different algorithms.
Each algorithm is run for the same 20 subsamples and is evaluated on Bl, CI, and KC.
The boxplot represents the standard quantile range for the calculated values. The

horizontal line denotes the 0.8 mark for the evaluation value.
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Figure4  Qualitative comparison on expression changes

A depicts the difference in gene expression trend for Smnl by plotting the gene
expression against inferred pseudo time. Comparison is made across three NSC
datasets (Dulken, Llorens-B, and Shin respectively for each column) using redPATH

and SCORPIUS. B Similarly for Aldoc.
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Figure5 Trajectory development of cells

A-C Visualization of the differentiation development process colored by pseudo time
and cell type information for Llorens-NSC, Dulken-NSC, and hHSC, respectively.
Each point represents a cell in space, and the PCA is performed on the calculated
transition matrix. The left panel depicts the pseudo time of each cell, and the right

shows the corresponding cell type information.
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Figure6 Validation on theremoval of GO-like cells
Llorens-NSC is processed by removing GO-like cells, and pseudo time is calculated
on the remaining cells. Expression changes of Egfr and Smnl are plotted against the

inferred differential pseudo time.
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Figure7 3D visualization of cell proliferation and differ entiation on Foxml1
A plots the differential pseudo time (z-axis) against proliferation pseudo time (x- and
y-axis) colored by cell type and cell cycle stages. B shows the gradual change in

expression for the 3D plot.
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Figure8 Heatmap analysison M GH107

Heatmap plot is produced according to the inferred HMM results from redPATH,
indicating on / highly expressed state or off / lowly expressed state of each gene. The
horizontal ordering denotes the differential pseudo time while each row represents a

significantly identified gene. Gene clustering is shown on the left with Gene Ontology

enrichments.
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Figure9 MCL1 and CSF1R expression changesin glioma cells
A shows the expression trend along the pseudo time in MCL1 for MGH107 and
MGH45, respectively. Similarly for CSF1Rin B.
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Tables

Tablel Description of analyzed datasets

Table 1. Description of analyzed datasets

Datasets No. of cells No. of cell types Organism

Neural Stem Cells:

NSC-Dulken (PRINA324289) 250 3 Mus musculus
NSC-Llorens-B (GSE67833) 145 3 Mus musculus
NSC-Shin (GSE71485) 168 2 Mus musculus

Hematopoietic Cells:
HC-Schlitzer (GSE60783) 251 3 Mus musculus

Embryonic Stem Cells:

MESC-Deng (GSE45719) 268 10 Mus musculus
mCV (GSE100471) 598 3 Mus musculus
mGas (GSE100597) 639 4 Mus musculus

Glioma Cells (GSE89567):

MGH45 - WHO IV 594 4 Homo sapiens
MGH57 - WHO IV 334 1 Homo sapiens
MGH107 - WHO I 252 3 Homo sapiens
Human HSC (hHSC): (GSE70245) 382 4 Homo sapiens
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