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Abstract 

Recent advancement of single-cell RNA-seq technology facilitates the study of cell 

lineages in developmental processes as well as cancer. In this manuscript, we 

developed a computational method, called redPATH, to reconstruct the pseudo 

developmental time of cell lineages using a consensus asymmetric Hamiltonian path 

algorithm. Besides, we implemented a novel approach to visualize the trajectory 

development of cells and visualization methods to provide biological insights. We 

validated the performance of redPATH by segmenting different stages of cell 

development on multiple neural stem cell and cancerous datasets, as well as other 

single-cell transcriptome data. In particular, we identified a subpopulation of 

malignant glioma cells, which are stem cell-like. These cells express known 

proliferative markers such as GFAP (also identified ATP1A2, IGFBPL1, ALDOC) and 

remain silenced in quiescent markers such as ID3. Furthermore, MCL1 is identified as 

a significant gene that regulates cell apoptosis, and CSF1R confirms previous studies 

for re-programming macrophages to control tumor growth. In conclusion, redPATH is 

a comprehensive tool for analyzing single-cell RNA-Seq datasets along a pseudo 

developmental time. The software is available via http://github.com/tinglab/redPATH. 

 

KEYWORDS: Single-cell pseudo time reconstruction; Cell differentiation; Cell 

proliferation; Consensus Hamiltonian path;  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.05.977686doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.977686
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

Developmental research at a single cell level has been supported by flow cytometry 

and imaging methods over the past few decades. Three fundamental questions of 

interest include how individual cells develop into different cell types and tissues, how 

these cells function, and the underlying mechanism in gene regulations. Such cell 

development processes have yet remained significantly obscure [1]. Recent advances 

in single-cell RNA sequencing (scRNA-seq) technology [2] have enabled us to 

characterize the whole transcriptome of individual cells, thus allowing us to study the 

subtle difference in heterogeneous cell populations. For example, single-cell analysis 

in tumors, immunology, neurology, and hematopoiesis have led to new and profound 

biological findings [3−8].  

Specifically, for glioblastoma (GBM), single-cell analysis reveals the functionality 

of tumor microenvironment in GBM. The relationships among 

microglia/macrophages, malignant cells, oligodendrocytes, and T cells have been 

uncovered, confirming previous biological conclusions [3−5]. Glioma associated 

microglia/macrophages (GAM) were known to regulate tumor growth, adversely 

changing its functionality under normal conditions [9−13]. Recent research [13] 

targeted GAM for re-activation of its antitumor inflammatory immune response to 

suppress tumor growth. Previously, potential markers (such as CSF1R) have also been 

identified for reprogramming of GAM; however, it acquired resistance over time and 

resumed vigorous tumor growth [14,15].  

Many algorithms have been developed to study cell development processes, 

including cell differentiation and cell proliferation, by inferring a pseudo-time 

trajectory at the single-cell level for both snapshot data as well as multiple time-point 

data. A recent review [16] compared multiple state-of-the-art methods for 

developmental trajectory inference including Monocle2 [17], TSCAN [18], 

SCORPIUS [19], and for cell cycle processes such as reCAT [20]. Popular trajectory 

tools also include Seurat, DPT, Wishbone and numerous others [21−25]. Both 
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Monocle2 and TSCAN assume a free branching structure of cell fate development 

whereas SCORPIUS assumes a linear development. Most of the existing methods 

would have two main steps, linear or non-linear dimensionality reduction followed by 

trajectory inference.  

Monocle2 [17] uses an unsupervised feature selection called ‘dpFeature’, where it 

selects the genes that are differentially expressed among unsupervised clusters of 

cells. Then a principal graph is learned via a reverse graph embedding (RGE) 

algorithm, ‘DDRTree’, where it reflects the structure of the graph in much 

lower-dimensional space. The pseudo-time is then inferred by calculating a minimum 

spanning tree (MST) on the distance of the projection points to the line segment on 

the principal graph.  

TSCAN [18] takes into consideration the dropout event. The raw gene expression 

is first processed by gene clustering to gain an average gene expression. Since many 

of the gene clusters are highly correlated, TSCAN reduces the dimensionality using 

principal component analysis (PCA). Then MST is applied to cell cluster centroids, 

which are inferred from the reduced space to form a trajectory. Finally, each cell is 

projected onto the MST trajectory to obtain the pseudo-time.  

SCORPIUS [19] is a fully unsupervised trajectory inference method. First, it 

calculates the Spearman’s rank correlation between cells and defines an outlier metric 

for each cell. Then multi-dimensional scaling (MDS) is applied to the correlation 

distance matrix to learn a low dimensional representation of each cell. An initial 

principal curve is then calculated as the shortest path between the k-means (k set to 4) 

cluster centers of the cells. The principal curve is then learned iteratively by 

projecting the cells onto the curve.  

Traditional trajectory inference analysis would remove cell cycle effects through 

the removal of cycling genes. However, the cell cycle process and cell differentiation 

process seem to be coupled according to recent research, especially in the 

development of neural stem cells (NSCs) [26]. Within the sub-ventricular zone 
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(SVZ), it is estimated that 80% of adult neural stem cells undergo symmetric 

differentiation, and 20% undergo symmetric proliferation with little evidence of 

asymmetric divisions. To date, only one computational method, CycleX [27], attempts 

to decipher such a relationship between the two developmental processes.  

In this work, redPATH successfully recovers the pseudo time of the differentiation 

process and also discovered some unique genes along with cell development (Figure 

1). The performance and stability of redPATH are validated and compared with 

multiple state-of-art methods, showing its consistency in explaining marker gene 

expression changes. Here, we first implemented a consensus Hamiltonian path 

(cHMT) algorithm to reconstruct the pseudo-time of a linear differentiation process. 

We propose to model the differentiation process between cells using an asymmetric 

measure (Kullback-Leibler distance). The linear development assumption has 

importance in studies of more differentiated lineages at later stages of development. 

Furthermore, the linear structure allows us to study the relationship between 

differentiation and proliferation more clearly. Additionally, we developed an 

approach to decipher and combine multiple Hamiltonian path solutions into a 

transition matrix to visualize the trajectory (linear or branched) developmental trend. 

Subsequent analysis and visualizations are implemented to provide biological insights 

into the developmental processes. redPATH is incorporated with reCAT in an attempt 

to visualize the relationship between differentiation and the cell cycle within the cell 

development of neural cells. Finally, glioma datasets are analyzed with a new 

perspective, uncovering a subpopulation within malignant cancerous cells.  
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Materials and methods 

Overview of redPATH 

As shown in Figure 1, redPATH consists of three main steps, namely data 

pre-processing, pseudo time inference, and biological analysis. There are two main 

challenges in the pseudo time inference problem in single-cell transcriptome data. The 

curse of dimensionality and the high level of noise together can severely affect the 

performance of pseudo time inference.  

There are two main assumptions for redPATH. First, we assume the higher 

similarity between cells within the same cell type or the same developmental stage 

than those between different states. Second, although a linear developmental trend is 

assumed, multiple Hamiltonian path solutions are utilized to detect both linear and 

branching trajectories. 

Data pre-processing 

The pre-processing step includes standard normalization procedures using existing 

methods such as edgeR and DEseq2 if the gene expression matrix is not yet 

normalized [28−31]. We take the log2 expression value for transcripts per kilobase 

million (TPM+1) or fragments per kilobase million (FPKM+1). Then we use the Gene 

Ontology database [32−34] to select genes that are associated with the following 

ontologies (hereby referred to as GO genes): “Cell Development”, “Cell 

Morphology”, “Cell Differentiation”, “Cell Fate” and “Cell Maturation”. Note that the 

selection of genes still includes a portion of cell cycling genes. 

The selected ontologies are ones that are closely related to cell development. We 

then filter out the selected genes using a dispersion ratio. The dispersion ratio is 

simply a ratio of the mean over its standard deviation. We set the cut-off to 10 in 

order to retain at least a few hundred genes. For each gene j, we calculate the ratio 

denoted by  using the following formula: 
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where  is the j-th gene expression value for the i-th cell and  is the average 

gene expression for the j-th gene over all cells. In all the analyses, the cut-off is set by 

default to . This feature selection procedure reduces the dimensionality 

problem from ten thousands of genes to a few hundred. 

Consensus Hamiltonian Path (cHMT) 

Let X be the gene expression matrix of N cells (rows) by M selected GO genes 

(columns). We want to infer an N by 1 vector denoting the pseudo time of each cell. 

This problem can be remodeled as a Hamiltonian path problem with the assumptions 

of cell similarity within a particular cell type and that the differentiation process is 

linear. Although many heuristic solutions have been developed to solve this 

NP-complete problem, most produce inconsistent results due to locally optimal 

solutions [35]. In order to overcome this difficulty, we developed a consensus 

Hamiltonian path solution to infer the pseudo time. The algorithm consists of the 

following main steps: 

INPUT: X(N, M) 

FOR k = 3 to N: 

1. X is clustered into k groups of cells 

2. Generate X’(k, M) by taking the average over k clusters 

3. A Hamiltonian path solution is calculated for each k. 

Merge each path solution to produce the final solution 

Intuitively, we first infer a rough pseudo time ordering of large clusters of cells, 

then gradually refine the solution with the increase of k.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.05.977686doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.977686
http://creativecommons.org/licenses/by-nc-nd/4.0/


The clustering method in step 1 is inspired by spectral clustering and SCORPIUS 

[19]. Briefly, the Spearman correlation distance matrix is first calculated as the 

pairwise distance between two cell vectors : 

 

where  and  are both m-dimensional vectors of the GO gene expressions and C() 

denotes the Spearman correlation value. Then using the N by N correlation distance 

matrix, we apply double centering to normalize the matrix. Finally, a simple 

hierarchical clustering is applied for .   

Next, a Hamiltonian path problem is solved for each value of k. In this context, the 

solution is defined as a path that visits each cell cluster or cell while minimizing the 

total distance. Hence the definition of the distance function is important to the final 

solution. A naïve cost function would be to use the Euclidean distance between the 

cluster centers. However, in order to better model the biological mechanism, we 

proposed an asymmetric distance measure, namely the Kullback-Leibler distance 

(KL-distance), or more often referred to as KL-divergence [36]. KL-divergence 

simply measures the difference between two distributions. In this scenario, we have a 

pairwise comparison between each m-dimensional cell vector:  (i.e., when k = N) 

or cluster averaged vector (i.e., when k < N). In the following notations, cell vector 

will encompass the cluster averaged vector in general.  

 

Equation 3 shows the calculation of the KL-distance for two different 

distributions, namely, from  to  , with each representing an m-dimensional 

distribution of gene expression. The vice versa direction would result in a different 

value. The intuition here is that the differentiation process is directional and 

irreversible. Hence, given a more differentiated cell, the distance for it to reverse back 
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to a less differentiated cell should be penalized. Although we cannot be sure of which 

cell is more or less differentiated, the KL-distance metric gives a small directional 

restriction in this sense. Direct comparison of the performance of KL-distance and 

Euclidean distance is given in Figure S1. 

After calculating the pairwise distance between each cell vector, we now turn to 

the modeling of a Hamiltonian path problem. We first define the problem as a graph 

G = (V, E) where V is the list of vertices, and E represents the number of edges. In 

our case, each vertex corresponds to a cell vector  and the edge 

weight between each vertex is calculated by  and  as defined 

in Equation 3. The goal here is to find the shortest path that visits each vertex or cell 

once.  

Next, we developed an O(n2)-time heuristic algorithm with a simple modification 

for the arbitrary insertion algorithm [35] for the Hamiltonian path problem. It should 

be noted that the Hamiltonian path problem is a classic NP-hard problem, so no 

algorithm guarantees an optimal solution in any case. Briefly, our heuristic algorithm 

considers the asymmetric property of our data and modifies the calculation of the 

insertion cost in the arbitrary insertion algorithm. The main structure of the algorithm 

remains the same, but we provide a new perspective in solving a Hamiltonian path 

problem using asymmetrical distances directly. Details of the modified algorithm can 

be found in the supplementary material. The modified algorithm is performed 

multiple times, ensuring the quality and robustness of each Hamiltonian path solution. 

Additionally, a novel approach to find the initial start and endpoints is developed 

which increased the probability of finding the optimal global solution by the heuristic.  

In order to overcome the instability of the Hamiltonian path solutions as well as 

refining cell heterogeneity at single-cell resolution, we propose a consensus 

Hamiltonian path in a similar way to reCAT. An advantage of the proposed algorithm 

is that it will automatically discover the start and end cells of the path. First, a 

reference Hamiltonian path is built using the enumerated results of five different paths 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.05.977686doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.977686
http://creativecommons.org/licenses/by-nc-nd/4.0/


obtained from k = 3 to 7 (by default). Since there are two possible starting points of 

each solution, we then calculate the pairwise correlation between each of the four 

paths and their respective reverse, yielding 5C2 = 10 additive correlation scores and 25 

= 32 total comparisons. The ordering direction of the best combinations determined 

by the best correlation score is taken. All five paths are merged to give a reference 

path by projecting onto the space of [0, 1] and taking the average. The base path is 

then normalized by feature scaling once again. Hence the direction of the path is 

determined by the reference path. Subsequently, for each of the following 

Hamiltonian paths, k = 7 to N, the Spearman correlation of each path and its reverse is 

compared with the reference path. Finally, after adjusting the direction, each path is 

then merged to the reference path to obtain our final pseudo time. The consensus 

Hamiltonian path ordering is essentially obtained by sorting the pseudo time values. 

Furthermore, we developed an approach to visualize trajectory (linear or branched) 

development of cells. Intuitively, redPATH recovers a linear pseudo time by merging 

multiple path solutions to a single path, which naturally merges branching situations 

as well. We hypothesize that the branching trajectory can be detected by observing the 

detail transition of cells in each of the merged solutions. 

The main idea is to transform multiple Hamiltonian path solutions into a transition 

probability matrix followed by PCA visualization. Given p Hamiltonian path 

solutions, we record all the transitions in each path pi and construct an N by N 

transition matrix. For instance, if N = 3 and the pi-th solution is 2-3-1, then we add a 

probability value for the transitions 2–3 and 3–1. The transition probabilities are 

added together until all Hamiltonian path solutions are recorded.  

Biological Analysis 

With the Hamiltonian path ordering, we can identify key genes or gene modules 

specific to the differentiation process. In order to quantify the expression changes 

over the pseudo time series, we used two statistical measures: maximal information 

coefficient (MIC) and distance correlation (dCor) [37,38]. Compared to the standard 
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Pearson or Spearman correlation coefficients, these measures are more robust and 

have a range of [0, 1]. The scores are calculated for all of the genes and ranked 

accordingly. The genes which exceed a threshold of 0.5 are selected for downstream 

analysis. However, the downside of these measures is that they cannot determine a 

positive or negative correlation. 

Then we designed a simple hidden Markov model (HMM) to infer two (or 

possibly three) hidden states of each gene. The two hidden states represent an 

on/highly expressed or off/lowly expressed state in each cell. The observed variable is 

simply the gene expression value. In this model, we assume a univariate Gaussian 

distribution over the two hidden states.  

The model is initialized with  and  where the mean and standard 

deviation are estimated with the sorted observed gene expression values. Then the 

transition probability is inferred using the Baum-Welch algorithm [39]. Subsequently, 

the Viterbi algorithm is implemented to infer the hidden states of the gene in each cell. 

The inferred states are then clustered using hierarchical clustering and visualized 

through a heatmap to provide an overall understanding of the gene expression changes 

over the developmental process. The gene clusters are further analyzed using 

GOsummaries [40] and PANTHER [41], which provides some biological insights to 

the gene modules. 

Coupling the differentiation and cell cycle process 

In order to identify the relationship between cell differentiation and proliferation, 

we incorporate reCAT and redPATH to visualize their relationship. One of the 

challenges faced in analyzing the cell cycle is the removal of G0 cells. To date, there 

is currently no known algorithm to identify G0 cells. Here, we developed a novel 

approach using statistical tests to identify the G0 cells before continuing further 

analysis. 

The intuition for the developed approach is that G0 cells tend to be inactive in 

terms of cell cycling genes, and they are in a resting phase. Hence, we hypothesize 
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that G0-like cells will have the lowest cycling expression. We first transform the gene 

expression matrix into average expression values for each of the following six mean 

cell cycle scores, G1, S, G1/S, G2, M, G2/M. This is adapted from reCAT, and we 

used the annotation from Cyclebase to calculate the average scores. Then we apply 

k-means with k set to 5 (i.e., G0, G1, S, G2, M stages) to the mean scores. Pairwise 

analysis of variance (ANOVA) tests were performed for each of the mean scores for 

the group that was least expressed. The criterion is set such that the identified group 

must be significant (p-value < 0.001) in all of the six mean scores in its comparison 

with the remaining groups. The results are validated on a couple of datasets where the 

G0 cells are known (Figure S2). 

After the removal of G0 cells, we inferred the pseudo differentiation and cycling 

time for each cell using reCAT and redPATH, respectively. Then we produced 3-D 

spiral plots as an attempt to visualize their relationship. Briefly, the pseudo time of 

reCAT is projected onto a circle as the X and Y axis, and then the differentiation time 

is plotted on the Z-axis. Marker genes are used to depict the gradual change of the cell 

types in each dataset. 

Evaluation Metrics 

In order to quantitatively assess the pseudo temporal ordering, we used four 

metrics to compare our results with existing algorithms. There are limitations to 

evaluating the accuracy of the orderings because the delicate ordering within each 

different cell type remains unknown. The only information available is the cell type 

labeling obtained from biological experiments, which may also potentially contain 

some bias due to technical noise during biological experiments. Using the cell type 

information, we developed change index (CI), bubble sort index (BSI), and further 

applied Kendall correlation (KC) and pseudo-temporal ordering (POS) score to 

evaluate the reconstructed pseudo-time.  

For illustration purposes, an example of a linear development of different cell 

types is used here. A linear development of the neural system in the sub-ventricular 
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zone is defined from quiescent neural stem cells (qNSC) to activated neural stem cells 

(aNSC) then differentiating into neural progenitor cells (NPC). In other words, we 

assume that we have 3 stages of development, ordering from qNSC to aNSC to NPC. 

The first metric, change index, was adopted from reCAT [20]. Assuming the 

number of states is ns (which is 3 in our example), we calculate the number of state 

changes, s, after re-ordering the cells. Then we calculate the change index as CI = 1 – 

(s - ns - 1) / (N – ns) where N is the total number of cells. Hence, a temporal ordering 

that completely resembles the true labeling of cell types would have a value of 1 and 

the worst case of 0.   

From experimental results, we found that the change index may be inaccurate 

when a large subset of a particular cell type is grouped together, but inserted within 

another cell type of development. Hence we designed a second metric called the 

bubble sort index to evaluate the re-ordered time series. The intuition behind this 

index is inspired by the number of steps, s, taken to re-sort the time series. This is 

basically the number of moves of switching adjacent cells that it needs to make to 

correct the ordering and has better stability over the change index. The number of 

steps s is then divided by S, which is the number of steps taken to sort the worst-case 

scenario (i.e., the reverse of the correct ordering), to produce the bubble sort index. 

Generally, the bubble sort index results in higher values in the range of [0, 1].  

Thirdly, we also used the Kendall correlation coefficient to evaluate our time 

series. Both Spearman and Kendall correlation would work better than the Pearson 

correlation in this case due to the consideration of ranking in the implementation of 

these two methods. Additionally, the POS score is also adapted from TSCAN [18] to 

evaluate the performance of each algorithm. 
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Results  

Validation and evaluation of redPATH 

Introduction 

The intuition of redPATH is first validated, and its performance is then compared 

with current state-of-the-art algorithms. This comparison is mainly based on three 

neural stem cell datasets [6,7,42], one hematopoietic dataset [8], one human 

hematopoietic dataset [43], and three embryonic time point datasets [44−46]. The 

further downstream analysis included recent glioma datasets [5] to uncover 

underlying mechanisms behind cancerous cells. All the datasets used are listed in 

Table 1. 

For the neuronal dataset of Dulken and Llorens-Bobadilla, both studies look at the 

development of neural stem cells (NSCs) in the subventricular zone (SVZ), whereas 

Shin’s data was obtained from the subgranular zone (SGZ). The development lineage 

is quite clear where quiescent NSC (qNSC) becomes activated NSC (aNSC) and 

further differentiates into neural progenitor cells (NPC) and finally into neuroblasts 

(NB) or neurons. The hematopoietic data looks at the development of dendritic cells 

near the end of the lineage. The macrophage and dendritic cell precursor (MDP) 

differentiate into common dendritic cell precursors (CDP) and give rise to 

pre-dendritic cells (preDC). An important question of interest is how differentiation 

and proliferation processes are regulated within these different cells. This is explored 

in the later parts of this paper, which discusses the incorporation of reCAT and 

redPATH to provide a simple exploratory analysis. 

Quantitative evaluation of redPATH 

First of all, the modeling of single-cell trajectory as a Hamiltonian path problem needs 

to be confirmed as a valid approach. From Figure 2A, we can see that the 
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developmental process across cells is aligned by the Hamiltonian path for k=3 and 

k=7 clusters. This sets the foundation for redPATH. Assuming the order of the 

development progression is correct, the ordering is refined by combining the paths of 

larger k and thereby obtaining a stable solution.  

redPATH is compared with Monocle2, TSCAN, and SCORPIUS for its 

performance. The results are shown in Figure 2B, where redPATH consistently 

shows the best performance across all the scores for the three neuronal datasets and 

one hematopoietic dataset. 

A comparison is made by using the same input (the selected Gene Ontology 

genes) for each of the algorithms. SCORPIUS claims to be robust when using all the 

genes without gene selection, but the performance did drop by a small margin across 

all datasets when using the full gene expression matrix. It should be noted that 

NSC-Llorens-B performed quite well overall partially because the data was sequenced 

at a much deeper length. The rightmost bar from Figure 2B represents the redPATH 

method. The error bar represents a 99% confidence interval based on 20 runs of both 

SCORPIUS and our algorithm. Furthermore, redPATH (CI: 0.69, BSI: 0.92, KC: 

0.82) is on par with SCORPIUS (CI: 0.62, BSI: 0.92, KC: 0.84) on a multi-time point 

dataset (mESC – Deng) with ten cell types. The outperformance of the change index 

also proves its capability to analyze time point data as well as snapshot data. 

Additional multiple time-point datasets are evaluated, and results are shown in the 

supplementary Figure S3.  

The performance of many algorithms may be susceptible to cell subpopulation 

and different gene selections. In Figure 3, we present the robustness of each 

algorithm on subsamples of cells. For each of Llorens-B-NSC and Dulken-NSC 

datasets, we sampled 30%, 50%, 70%, and 100% of all cells 20 times. As shown in 

Figure 3A, the evaluation of redPATH on all three metrics is relatively consistent and 

stable; a similar pattern is observed in Figure 3B. A comparison of the gene feature 

selection approach is also included in the supplementary Figure S4. Additionally, we 
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also compared performance of redPATH with a different set of selected genes using 

dpFeature (Figure S5). 

Observing the differences in inferred biological development 

Accounting for all the metrics across each dataset, SCORPIUS has a relatively better 

performance than the rest of the other methods. In order to further explore the 

differences in biological functions between redPATH and SCORPIUS pseudo-time, 

we observe the developmental trend on some marker genes on all three NSC datasets 

(Figure 4). Stmn1 and Aldoc [42,47,48] are considered to be marker genes for the 

differentiation of neural stem cells. In vivo experiments [42] had been conducted to 

show that Stmn1 is highly expressed in NPC with little activity in NSC, and Aldoc is 

only expressed in quiescent NSCs and low-expressed in aNSC and NPC. We 

compared gene expression development for redPATH and SCORPIUS due to the 

overall better performance of these two algorithms (Figure 4). A comparison of 

additional marker genes is included in the supplementary (Figure S6). 

On both NSC-Dulken and NSC-Llorens-B dataset, the performance of redPATH 

is on par with SCORPIUS, and no significant difference is observed. In the rightmost 

panel (NSC-Shin dataset), the ordering of SCORPIUS clearly shows a different 

patterning compared to the other NSC datasets.  With the Stmn1 gene (Figure 4A), 

SCORPIUS starts with a high expression (which is supposed to be lowly expressed at 

the start of the trajectory), then decreases, which is different from the conclusion 

made from biological experiments. redPATH fits the developmental trend with 

relatively low expression at the beginning of the trajectory and shows consistency 

across datasets for the same cell type. We can observe that SCORPIUS tends to 

identify some bell-shaped trend, which could be explained by iteratively fitting 

principal curves in their algorithm. This observation can also be made from Figure 

4B in the NSC-Shin dataset. Here, redPATH proves to be robust across different 

datasets and correctly orders the developmental pseudo-time in accordance with 

biological observations.  
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Identifying trajectory development of cells 

Utilizing the multiple Hamiltonian path solutions from redPATH, we can 

construct a cell transition matrix and visualize the developmental trend on a PCA plot 

(Figure 5). The trajectory plots are shown for two linear progression datasets, 

Llorens-B-NSC and Dulken-NSC, as well as a branching hematopoietic stem cell 

dataset (hHSC). The progression in NSC cells along the pseudo time reflects that 

there is a linear development from NSC to NPC (Figure 5A-B). However, for the 

hHSC dataset, the PCA plot suggests a branching development of cells (Figure 5C), 

confirming with the original discovery of binary cell fate decisions [49]. There appear 

to be two separate progressions of cell differentiation. A comparison of trajectory 

plots produced by different algorithms can be found in the supplementary Figure S7 

and S8.  

Coupling proliferation with differentiation 

As an attempt to visualize the relationship between the cell cycle process and 

differentiation, 3-D plots are produced for the NSC-Llorens-B dataset. Before 

analyzing the relationship between cell proliferation and differentiation, G0-like cells 

are removed from the dataset. The developed approach was run twice to remove all 

possible G0 cells from the dataset (with a threshold of p-value < 0.001). The 

differential pseudo-time is re-calculated with redPATH on the remaining cells, and 

cell cycle analysis results are obtained from running reCAT. Here redPATH (CI: 

0.862, BSI: 0.977, KC: 0.852) outperforms SCORPIUS (CI: 0.828, BSI: 0.853, KC: 

0.589) on the remaining 61 cells, showing its reliability even in a very small sample 

dataset. NSC marker genes (Egfr, Stmn1 [7,42]) further validates that most G0-like 

cells have been removed from the downstream analysis, where neither expresses 

much during the quiescent state (Figure 6). 

Using the two evaluation statistics of distance correlation (dCor) and maximal 

information coefficient (MIC) at the threshold of 0.65, we uncovered three genes 

(Foxm1, Tubb5, Nek2), which correlates highly with both cell proliferation and 
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differentiation. Differentially associated marker genes such as Dcx, Dlx1-2, Dlx5, 

Tubb3, Cd24a, Sox11, Dlx6as1, Mfge8, Sp9, and Atp1a2, are in concordance with 

previous studies [6,7,47,50]. Similarly, we also uncovered interesting genes that are 

cell cycle-related. For example, Cdk1 and Aurkb which associate with cell 

proliferation and NSC activations.   

Foxm1 was recently reported to regulate a micro-RNA network which controls the 

self-renewal capacity in neural stem cells [51]. redPATH provides an interactive plot 

that can visualize different cell types, cell cycle stages, and gene expression together. 

Reducing the left panel of Figure 7 to NSC and NPCs, Foxm1 is highly expressed in 

G1 and G2/M cycling stages, which is indicative of cell proliferation. Observing 

NSCs (the inner orange points on the left), a subset of cells within the ellipse is lowly 

expressed as compared to the outer orange points. This could suggest that NSCs may 

be at its earlier stages of activation, which is more quiescent-like as compared to the 

higher expressed activated NSCs.  

 

redPATH analysis on glioma datasets 

Assuming that the snapshot on the cancerous dataset provides the different 

development stages of single cells among the dissected tissue, we can uncover some 

underlying mechanisms by observing the pseudo temporal development of gene 

expression change from microglia/microphage cells to malignant cells within a tumor 

dissection. Normal microglia cells exist to eliminate any intruding cells, also acting as 

antigen-presenting cells which activate T-cells [52]. However, immune functions of 

microglia/macrophage cells within glioma tumors are impaired and are more 

commonly known as glioma-associated microglia/macrophages (GAMs), which 

regulate tumor growth [9,10,12,13]. As the original publication [5] suggests, 

malignant cells include some properties of neural stem cells with active differentiation 

in glial cells specifically. Although the tumor microenvironment is much more 

complicated, gene modules and possible relevant genes can be inferred.  
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Gene module extraction 

In the original publication [5], the authors have classified each tumor cell as either 

malignant cell, microglia/macrophage, oligodendrocyte, or T cell using clustering and 

copy number variation analysis. Although these four cell types do not differentiate 

into one another, GAMs and T cells are altered to regulate malignant cells. Here, we 

re-ordered the cells using redPATH and successfully recovered a pseudo 

developmental trend to observe gene expression change.  

MGH107, a grade II astrocytoma that has not been treated yet, shows a gradual 

change in gene expressions indicating a subpopulation of malignant cells. The other 

two grade IV tumors showed less progression but still revealed a subpopulation in 

MGH57 (Supplementary Figure S9).  

Using dCor and MIC, 921; 55; 762 significantly identified genes are retained for 

analysis for MGH45, MGH57, MGH107 respectively (threshold >= 0.5). The gene 

expression profile of oligodendrocytes is closer to malignant cells. Here, the result for 

MGH107 is shown (Figure 8). 

Stem-cell like subpopulation in glioma cells 

Focussing on the glial cell development / the central nervous system development 

gene module of MGH107 in Figure 8, astrocytic and stem cell-like markers (ATP1A2, 

GFAP, CLU, ALDOC [5,42,53]) are found to be expressed in the latter half of the 

malignant cells while quiescent markers such as ID3 remained silenced. Additionally, 

a subpopulation of malignant cells can be clearly identified by observing the 

top-ranked identified genes such as VIM, SPARCL1, TIMP3 (Supplementary Figure 

S5). This indicates a high potency of the malignant cells to differentiate and 

proliferate. The malignant cells of Grade IV glioblastoma (recurrent) MGH45 show a 

constant gene expression pattern. However, MGH57 (Grade IV glioblastoma) 

revealed a relatively small subpopulation of malignant cells that does not express 

OLIG1, OLIG2, DLL1, CCND1, IGFBPL1, and express ALDOC and ATP1A2 

(Supplementary Figure S9). Here, ATP1A2, IGFBPL1, and ALDOC are all possible 
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significant stem-like markers from prior analysis on the neural stem cells mentioned 

above. These results indicate a subset of non-proliferative malignant cells in MGH57 

and MGH107. MGH45 is a recurrent glioblastoma patient, hence it is possible that a 

large portion of malignant cells are stem-cell-like.  

 

Apoptosis program within different gliomas 

An interesting exploratory finding is the apoptosis program within gliomas. Apoptosis 

is a mechanism within the body that is activated intrinsically or extrinsically which 

leads to cell death. All three tumor patients had not been treated with medication or 

radiation before; hence external factors of cell death are not applicable.  

MCL1 [54–56], an important BCL-2 family apoptosis regulator is significantly 

expressed within the same gene cluster of “glial cell development” (dCor: 0.59, MIC: 

0.50). The expression of MCL1 activates BAX and BAK modules in the apoptosis 

pathway in general. Also, it has been recently reported [56] that silencing MCL1 leads 

to inhibition of cell proliferation, thereby promoting apoptosis in glioma cells. Here, it 

can be observed in Figure 9A that there are two subpopulations for the malignant 

cells expressing in MCL1. Figure 9A of MGH45 also shows that microglia are 

inhibited. The proportion of malignant cells, which possibly promotes apoptosis to 

proliferating malignant cells, are similar: MGH107 - 0.45, MGH57 - 0.5, MGH45 - 

0.35.  

Intuitively, the situation of MGH45 appears to be quite severe, where only a small 

number of cells activate apoptosis. Although numerous other apoptosis signaling 

pathways are available, further biological validation would be beyond the scope of 

this analysis. Drugs targeted at the BCL-2 family and MCL-1 inhibitor was under 

pre-clinical trials in 2015 with promising results [11,57,58].  

Discovery of potential significant genes 

Additionally, we ranked the top genes in the supplementary. There are numerous 

overlaps in MGH45 and MGH107, where CSF1R (dCor: 0.95; 0.93, MIC: 0.78; 0.78) 
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is discovered with distinct change between microglia / macrophage and malignant 

cells. It has been previously reported that inhibition of CSF1R in macrophages may 

lead to a re-programming of macrophages, which in turn reduces tumor growth 

[14,59]. However, experiments also showed that inhibition of CSF1R eventually 

acquires resistance and PI3K signaling pathways are activated to support malignant 

cells [15]. It is trivial from Figure 9B that the microglia/macrophages are overly 

expressed within the tumor microenvironment. Additional marker genes can be found 

in the supplementary (Supplementary Figure S10).  

Overall, redPATH can be utilized to analyze single-cell transcriptome datasets 

with and without cell type labeling. As shown in the heatmap analysis of glioma cells, 

redPATH can also correctly recover the cell type segmentation along a developmental 

pseudo-time.  

Discussion 

With the initial intent to analyze pseudo developmental processes of single-cell 

transcriptome data, we developed a novel comprehensive tool named redPATH to 

provide computational analytics for understanding cell development as well as cancer 

mechanisms. redPATH shows its robustness in recovering the pseudo-developmental 

time of cells and its capability in detecting both branched or linear progressions. The 

algorithm demonstrates high consistency across different sample numbers as well as 

different feature selection methods. Subsequently, analytical functions implemented 

include: 1) detection of G0-like cells, 2) gene discovery using dCor and MIC, 3) 2- or 

3-state HMM segmentation inferring low / highly expressed gene state, 4) gene 

module extraction and 3D visualizations for differentiation and proliferation 

processes, and 5) visualization for identifying branched or linear cell development. 

In this manuscript, we show that redPATH is capable of recovering the cell 

developmental processes successfully and we analyze glioma datasets with a new 

perspective. This results in the discovery of stem-cell-like and apoptotic marker genes 

(such as ATP1A2, MCL1, IGFBPL1, ALDOC) along with a deepened understanding 
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of diseases and cell development. It is capable of discovering significant novel genes 

using the pseudo-time rather than testing the differential genes by groups. Although 

the advantage is that cell type labeling is not required here, this approach may fail 

when the pseudo-time results perform poorly.  

redPATH attempts to visualize the coupling relationship between cell proliferation 

and differentiation; however, integrative models are preferred to analyze such 

processes simultaneously. The underlying mechanism remains obscure and requires 

more integrative computational models. Furthermore, biological validations are 

required for the identified lists of significant genes.  
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Availability  

redPATH is available through https://github.com/tinglab/redPATH. Details about the 

data used in this manuscript can be accessed in Table 1. Briefly, data accession 

numbers for neural stem cells include: PRJNA324289, GSE67833, GSE71485; 

hematopoietic cells: GSE60783, GSE70245; embryonic stem cells: GSE45719, 

GSE100471, GSE100597; and glioma cells: GSE89567. 
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Figures 

 

 

Figure 1 Overview of redPATH 

Pipeline of the redPATH algorithm and analysis. Parts 1-2 provides the schematic 

illustration of the algorithm, comprising of data preprocessing steps and trajectory 

inference. The rightmost panel lists the main biological analysis functions included in 

redPATH.  
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Figure 2 Validation of redPATH 

A shows the Hamiltonian path solution by projecting each cell and cluster centres 

onto scaled and centred principal components (PCs) 1-2 for k=3 and k=7 respectively. 

The purple triangle represents the cluster centres and dotted line reflects the 

Hamiltonian path. Each cell is colored by its cell type label. B provides the 

performance evaluation of different algorithms on four single-cell datasets using 

change index (CI), bubblesort index (BSI), Kendall correlation (KC), and 

pseudo-temporal ordering score (POS). Bar plots are colored by the algorithm used, 

and the rightmost bar (in red) represents redPATH. The error bar shown represents the 

99% confidence interval based on 20 runs of the algorithm. Missing bars in the plots 

represent an evaluation value of less than 0.5.  
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Figure 3 Robustness analysis on algorithms 

A-B 30%, 50%, 70%, and all cells are sampled from the Llorens-NSC and 

Dulken-NSC datasets, respectively, and each column represents different algorithms. 

Each algorithm is run for the same 20 subsamples and is evaluated on BI, CI, and KC. 

The boxplot represents the standard quantile range for the calculated values. The 

horizontal line denotes the 0.8 mark for the evaluation value. 
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Figure 4 Qualitative comparison on expression changes 

A depicts the difference in gene expression trend for Stmn1 by plotting the gene 

expression against inferred pseudo time. Comparison is made across three NSC 

datasets (Dulken, Llorens-B, and Shin respectively for each column) using redPATH 

and SCORPIUS. B Similarly for Aldoc. 
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Figure 5 Trajectory development of cells 

A-C Visualization of the differentiation development process colored by pseudo time 

and cell type information for Llorens-NSC, Dulken-NSC, and hHSC, respectively. 

Each point represents a cell in space, and the PCA is performed on the calculated 

transition matrix. The left panel depicts the pseudo time of each cell, and the right 

shows the corresponding cell type information. 
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Figure 6 Validation on the removal of G0-like cells 

Llorens-NSC is processed by removing G0-like cells, and pseudo time is calculated 

on the remaining cells. Expression changes of Egfr and Stmn1 are plotted against the 

inferred differential pseudo time.  

 

 

 

 

Figure 7 3D visualization of cell proliferation and differentiation on Foxm1 

A plots the differential pseudo time (z-axis) against proliferation pseudo time (x- and 

y-axis) colored by cell type and cell cycle stages. B shows the gradual change in 

expression for the 3D plot.  
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Figure 8 Heatmap analysis on MGH107 

Heatmap plot is produced according to the inferred HMM results from redPATH, 

indicating on / highly expressed state or off / lowly expressed state of each gene. The 

horizontal ordering denotes the differential pseudo time while each row represents a 

significantly identified gene. Gene clustering is shown on the left with Gene Ontology 

enrichments. 

 

Figure 9 MCL1 and CSF1R expression changes in glioma cells 

A shows the expression trend along the pseudo time in MCL1 for MGH107 and 

MGH45, respectively. Similarly for CSF1R in B. 
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Tables 

Table 1  Description of analyzed datasets 

 

 

Table 1. Description of analyzed datasets 

Datasets No. of cells No. of cell types Organism 

Neural Stem Cells:    

    NSC-Dulken (PRJNA324289)  250 3 Mus musculus 

    NSC-Llorens-B (GSE67833) 145 3 Mus musculus 

    NSC-Shin (GSE71485) 168 2 Mus musculus 

Hematopoietic Cells:     

    HC-Schlitzer (GSE60783) 251 3 Mus musculus 

Embryonic Stem Cells:    

    mESC-Deng (GSE45719) 268 10 Mus musculus 

    mCV (GSE100471) 598 3 Mus musculus 

    mGas (GSE100597) 639 4 Mus musculus 

Glioma Cells (GSE89567):    

    MGH45 – WHO IV 594 4 Homo sapiens 

    MGH57 – WHO IV 334 1 Homo sapiens 

    MGH107 – WHO II 252 3 Homo sapiens 

Human HSC (hHSC): (GSE70245) 382 4 Homo sapiens 
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It has been uploaded as a separate file: Supplementary Materials S1. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.05.977686doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.977686
http://creativecommons.org/licenses/by-nc-nd/4.0/

