
Phenotype Discovery from Population Brain Imaging
Weikang Gong1,∗ Christian F. Beckmann1,2,3 Stephen M. Smith1

1Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Well-
come Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
2Radboud University Medical Centre, Department of Cognitive Neuroscience, Nijmegen, Netherlands.
3Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen,
Netherlands. *

Neuroimaging allows for the non-invasive study of the brain in rich detail. Data-driven discovery of
patterns of population variability in the brain has the potential to be extremely valuable for early dis-
ease diagnosis and understanding the brain. The resulting patterns can be used as imaging-derived
phenotypes (IDPs), and may complement existing expert-curated IDPs. However, population datasets,
comprising many different structural and functional imaging modalities from thousands of subjects,
provide a computational challenge not previously addressed. Here, for the first time, a multimodal
independent component analysis approach is presented that is scalable for data fusion of voxel-level
neuroimaging data in the full UK Biobank (UKB) dataset, that will soon reach 100,000 imaged sub-
jects. This new computational approach can estimate modes of population variability that enhance
the ability to predict thousands of phenotypic and behavioural variables using data from UKB and
the Human Connectome Project. A high-dimensional decomposition achieved improved predictive
power compared with widely-used analysis strategies, single-modality decompositions and existing
IDPs. In UKB data (14,503 subjects with 47 different data modalities), many interpretable associa-
tions with non-imaging phenotypes were identified, including multimodal spatial maps related to
fluid intelligence, handedness and disease, in some cases where IDP-based approaches failed.

1 Introduction1

Large-scale multimodal brain imaging has enormous potential for boosting epidemiological and neu-2

roscientific studies, generating markers for early disease diagnosis and prediction of disease progres-3

sion, and the understanding of human cognition, by means of linking to clinical or behavioural vari-4

ables. Recent major studies have been acquiring brain magnetic resonance imaging (MRI), genetics and5

demographic/behavioural data from large cohorts. Examples are the UK Biobank (UKB)1, the Human6

Connectome Project (HCP)2 and the Adolescent Brain Cognitive Development (ABCD) study3. These7

studies involve multimodal data, meaning that several distinct types of MRI data are acquired, mapping8

activity, functional networks, structural connectivity, white matter microstructure, and organisation and9

volumes of different brain tissues and sub-structures1. However, the multimodal, high-dimensional and10

noisy nature of such big datasets makes many existing analytical approaches for extracting interpretable11

information impractical4.12

Traditionally, large-scale neuroimaging studies first summarize the imaging data into interpretable13

image-derived phenotypes (IDPs)1, 5, which are scalar quantities derived from raw imaging data (e.g.,14

regional volumes from structural MRI, mean task activations from task MRI, resting-state functional15

connectivities between brain parcels). This knowledge-based approach is simple and efficient, and ef-16

fectively reduces the high-dimensional data into interpretable, compact, convenient features. However,17

there may well be a large loss of information, due to such "expert-hand-designed" features not cap-18

turing important sources of subject variability (or even just losing sensitivity by the pre-defined spatial19

sub-areas being suboptimal), as well as ignoring cross-modality relationships. Further, such uni-modal20

compartmentalised analyses do not utilise the fact that for many biological effects of interest we expect21
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there to be biological convergence across different data modalities, iė,̇ changes in the underlying bio-22

logical phenotype likely manifest themselves across multiple quantitative phenotypes, so that a joint23

analysis effectively increases both the power of detecting such effects and the interpretability of the24

findings.25

In contrast to such uni-modal analyses, data-driven multivariate approaches (i.e., unsupervised26

machine learning) have been proposed, which perform simultaneous decomposition of voxel-level data27

directly, generally representing data as the summation of a number of "components" or "modes". Each28

mode is formed as the outer product of two vectors: one is a vector of subject weights (describing the rel-29

ative strength of expression of that mode in each subject), and a vector of voxel weights (in effect a spatial30

map for each data modality, describing the spatial localisation of the mode). The subject weight vectors31

(one per mode) can be considered "features" (similar to IDPs, but being data-driven) for use in further32

modelling, such as for the prediction of non-imaging variables. They are often either based on eigen-33

decomposition, such as multi-set canonical correlation analysis (mCCA)6, 7, or based on variations of34

independent component analysis (ICA)8–11. Among them, FMRIB’s Linked ICA (FLICA)11 is an efficient35

approach which has been successfully applied to identify brain systems that are involved in lifespan36

development and diseases12, 13, attention deficit hyperactivity disorder14, preterm brain development15
37

and cognition and psychopathology16. FLICA has advantages compared with uni-modal analysis on38

IDPs, including: (1) It leverages the cross-modality information of multimodal data, so has the potential39

to detect patterns that are not discoverable in any single modality; (2) It is a data-driven objective ap-40

proach which automatically discovers meaningful patterns in voxel-level multimodal data by searching41

for spatial non-Gaussian sources that have been shown to likely reflect real structured features in neu-42

roimaging data17. While this approach has been applied successfully to medium-sized cohort data12–16,43

the original algorithms for carrying out FLICA do not scale well with increasing data size, and are unable44

to analyze large datasets such as UKB, where dozens of different modalities over tens of thousands of45

subjects are available. Importantly, because the core FLICA algorithms are multivariate, acting in a com-46

plex way simultaneously across all subjects, modalities and voxels using Variational Bayesian updates of47

parameters, this problem cannot be solved through simple parallelisation or other algorithmically sim-48

ple methods for distributing computations across a large cluster, and so cannot be addressed simply by49

increasing the number of processors or memory available.50

To tackle this problem, we propose an approach that embeds advanced data compression tech-51

niques across the different data dimensions into the FLICA approach. We use a multimodal extension52

of MELODIC’s Incremental Group Principal component analysis18 (mMIGP, applied across modalities)53

and online dictionary learning19 (DicL, applied within-modalities) to efficiently reduce the size of multi-54

modal neuroimaging data. The reduced data are then characterised through FLICA in terms of underly-55

ing modality-specifc maps and subject loading vectors. Here we refer to this combination of techniques56

as Big-data FLICA, or BigFLICA for short). Two important advantages of the proposed approach are: (1)57

Preserving key information in original data but also reducing the effects of stochastic domain-specific58

noise; (2) Increasing the computational efficiency of the FLICA algorithm for extremely large population59

datasets. BigFLICA is scalable for simultaneously analyzing all the multimodal data of the full 100,000-60

subjects UKB dataset using only a modest computing cluster (Fig. 1).61

We first demonstrate the effectiveness of our approach through extensive simulations. Then, in62

real data, we quantify performance in terms of the prediction accuracy of non-imaging-derived phe-63

notypes (nIDPs)20, 21, such as health outcome measures. Using voxel-level imaging data of 81 modali-64

ties from 1,003 subjects in the HCP and 47 modalities from 14,053 subjects in the UKB, we show that65

BigFLICA can perform comparably with original FLICA11 in terms of the prediction accuracy for nIDPs66

(158 in HCP and 8,787 in UKB). Most importantly, we systematically investigated whether there are67

benefits to jointly fusing multimodal data together, instead of analysing them separately. We show68
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Figure 1: Overview of the proposed approach for jointly analyzing a biobank-scale multimodal neuroimag-
ing dataset. Currently for the UKB dataset (voxel-level data, 14503 subjects, 47 modalities), the total data size is
approximately 800 GB, and if we directly feed these data into FLICA and extract 750 components, we will need
approximately 1066 GB CPU memory and 1680 hours computation time. Our new approach, BigFLICA, used mul-
timodal MIGP and dictionary learning to preprocess the multimodal data; this is efficient and memory friendly,
and much of this preprocessing can be easily parallelized. BigFLICA only used 50 GB memory and 73 hours to
analyze the same dataset using a 24-core compute server.

that significant improvements in the prediction accuracy of nIDPs are found when comparing a high-69

dimensional BigFLICA with other widely-used data analysis strategies: (1) doing single-modality ICA70

and concatenating the results across modalities and (2) using existing IDPs (5,812 in HCP and 3,913 in71

UKB). In particular, the improvements in prediction of many health outcome and cognitive variables72

are large, more than doubling prediction accuracy for some variables. Furthermore, we investigate the73

relationship between modes derived by BigFLICA and IDPs. We find that although the modes were esti-74

mated from the same set of voxel-level data, they have complementary information which can be com-75

bined together to further increase the prediction accuracy of nIDPs. Finally, we applied BigFLICA to76

analyze the UKB data and extracted 750 components. Existing multimodal ICA cannot estimate this77

many modes from this many subjects. We found several interpretable associations between modes of78

BigFLICA and nIDPs, including modes that relate to fluid intelligence, handedness, age started wearing79

glasses or contact lenses and hypertension. In many cases BigFLICA can find associations with nIDPs with80

greater statistical sensitivity than was possible with IDPs. Overall, BigFLICA demonstrated the advan-81

tages of data-driven joint multimodal modelling in the analysis of biobank-scale multimodal datasets.82

2 Results83

Brief overview of the proposed approach: BigFLICA. FLICA11 is a Bayesian ICA approach for multi-84

modal data fusion. The input of FLICA is K modalities’ data matrices Y (k) with dimensions N ×Pk ,k =85

1, . . . ,K , where Pk is the number of features (e.g., voxels) and N is the number of subjects. FLICA aims to86

find a joint L-dimensional decomposition of all Y (k): Y (k) = HW (k)X (k)+E (k), where H(N×L) is the shared87

subject mode (mixing matrix) across modalities (a vector of subject weights for each mode), so is a ‘link’88

across different modalities, W (k)
(L×L) is a positive diagonal mode-weights matrix (one overall weight per89

modality per mode), X (k)
(L×Pk ) is the independent (spatial) feature maps for the L components of a modal-90

ity (one map per modality per mode), and E (k)
(N×Pk ) is the modality-specific Gaussian noise term (Fig. 1).91

We propose two efficient approaches that can either be used separately or combined together to reduce92
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the size of the original data matrices, and therefore reduce the computational load of the original FLICA.93

An overview of BigFLICA is shown in Fig. 1.94

The first approach, termed multimodal extension of MELODIC’s Incremental Group Principal95

component analysis18 (mMIGP), aims to reduce the subject dimension to a linear combination of the96

original subjects. mMIGP is a time- and memory-efficient approximation of principal component anal-97

ysis (PCA) on feature-concatenated multimodal data. To this end, if we aim to get a L? decomposition,98

we first apply MIGP18 separately within each modality to estimate Ũ (k)
(N×L?), which is an approximation99

of an L?-dimensional PCA decomposition of one modality Y (k). This step can be done in parallel across100

modalities. Then, we concatenate all Ũ (k) in the component dimension and apply another MIGP to get101

U(N×L?), which is an L?-dimensional approximate PCA decomposition of all modalities together. Fi-102

nally, we project the original data of each modality Y (k) to the PCA-reduced space using U . If no further103

reduction (e.g., dictionary learning as below) is to be applied, the data that could then be fed into the104

core FLICA would be the K component-by-feature matrices V (k) of size L?×Pk , and FLICA would then105

extract L (L < L?) components from these (Methods). This step almost adds little computational cost106

compared with the original FLICA, because a similar PCA step is needed to initialize the parameters of107

the original FLICA, but this approach is feasible for large numbers of subjects and modalities. Although108

different modalities usually have different overall signal-to-noise ratios (SNR), which is largely ignored109

by this mMIGP step, the subsequent FLICA can take this into account by the modality-specific noise110

terms, and a high-dimensional mMIGP is used to capture modes with even small variations in each111

modality.112

It is known that voxels are correlated in both a local fashion (local spatial autocorrelation) and113

across brain networks (long range correlation); hence, effective feature subsampling could hope to cap-114

ture all important information in the data but also reduce the cost of spatial modelling in FLICA22.115

Therefore, we incorporate an approach, termed sparse online Dictionary Learning19 (DicL), to reduce116

the dimension of feature (e.g., voxel) space that can capture both local and distant spatial correlation117

structure. Specifically, for each modality, we use DicL to model the V (k) as a sparse linear combination118

of L?? basis elements: V (k) = A(k)D (k), where D (k) is the sparse spatial dictionary basis, and A(k) is the119

feature loadings. By minimizing the reconstruction error, and enforcing sparsity in the dictionary basis120

D (k), we aim to achieve an optimal subsampling of feature space. The inputs of FLICA are then K smaller121

matrices A(k), which are only of dimension L?×L??, and FLICA then extracts L (L < min(L?,L??)) com-122

ponents from these (Methods). Compared with doing FLICA with the original K large N ×Pk matrices,123

using the DicL preprocessed data can greatly reduce the computation load of FLICA. DicL can easily be124

parallelized across modalities and is memory friendly, which further increases efficiency (Fig. 1).125

Evaluation of BigFLICA in simulations. We first applied BigFLICA on simulated data to evaluate the126

performance of mMIGP and DicL as data preprocessing approaches under different parameter settings127

and data signal-to-noise ratios. The mean correlation of extracted components with simulated ground128

truth was compared with the corresponding result from the original FLICA (Methods).129

For mMIGP, Fig. 2a shows that, in most of the situations, the BigFLICA with mMIGP preprocessing130

gave similar results to the original FLICA, and both FLICA and BigFLICA accurately find the underlying131

ground truth in most cases. This is in agreement with results of simulations in the MIGP paper18 that it132

can accurately approximate a full-data PCA in different situations. The optimal dimension of mMIGP is133

different among simulations; sometimes a relative low dimension can achieve an accurate estimation of134

components (e.g. Fig. 2a first three columns), while in other cases a high dimension is needed (e.g. Fig.135

2a the fourth column).136

For DicL, Fig. 2b shows that in almost all circumstances: (1) increasing the dictionary dimensions137
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b

Figure 2: Evaluation of multimodal extension of MIGP (mMIGP) and dictionary learning (DicL) as the data
preprocessing steps for the FLICA using simulations. BigFLICA achieves similar performance as compared with
original FLICA that uses the full data. a, Evaluation of mMIGP preprocessing. We compared the correlations
(Z-transformed) of extracted components with ground truth across 50 simulations using the original FLICA (the
left column of each figure) and the mMIGP preprocessed FLICA (other columns). The mMIGP dimensions vary
between 50 and 400; the SNRs are between 4 and 0.04 (left to right), and the number of FLICA and ground truth
components are 25, 35, 45 (top to bottom). As there are 500 subjects, the reduction factor is from 10 to 1.25. b,
Evaluation of DicL preprocessing. We compared the the correlations of extracted components with ground truth
using the original FLICA (FLICA results given in the titles of each figure) and the DicL preprocessed FLICA with
different sparsity parameters and dictionary dimensions (cells of the heatmaps). The SNRs are between 4 and 0.04
(left to right), and the number of FLICA and ground truth components are 25, 50, 100 (top to bottom). As there are
27,000 original features per modality, the reduction factor is from 270 to 9.

will boost the performance of subsequent FLICA analysis; (2) the optimal sparsity parameters are usually138

between λ = 0.5 to 2, and they have similar performance; (3) In most cases the optimal performance139

given by DicL matches that of non-reduced analysis (noted in figure legends). Therefore, in the real data140

analysis, when using the DicL approach, we always use a very high dimensional DicL decomposition141

and fix the sparsity parameter to λ= 1.142
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Table 1: Comparison of computation time and amount of RAM usage of BigFLICA with the original FLICA in the
UKB dataset (14,503 subjects, 47 different modalities). BigFLICA greatly increases computational efficiency in
different settings. Both BigFLICA and FLICA were run on the same computer using all 24 cores in all computation
stages with Intel Xeon CPU E7-8857 v2 @ 3.00GHz and 2TB RAM.

Approaches
Number of components 100K subjects

nIC=25 nIC=100 nIC=250 nIC=500 nIC=750 750 components (estimated)

Computation Time (hours)

The original FLICA 160 h 300 h 580 h 1,020 h 1,680 h 12,000 h
BigFLICA (mMIGP preprocessing) 23 h 54 h 135 h 315 h 565 h 630 h
BigFLICA (mMIGP+DicL preprocessing) 52 h 53 h 58 h 65 h 73 h 120 h

Peak RAM (GB)

The original FLICA 801 GB 821 GB 879 GB 963 GB 1,066 GB 6,000 GB
BigFLICA (mMIGP preprocessing) 66 GB 88 GB 136 GB 215 GB 297 GB 297 GB
BigFLICA (mMIGP+DicL preprocessing) 50 GB 50 GB 50 GB 50 GB 50 GB 50 GB

Computation time comparison. Table 1 shows the comparison of the computation time and mem-143

ory requirement of BigFLICA with the original FLICA in the UKB dataset. All code was implemented in144

Python 2.7, and both BigFLICA and FLICA were run using 24 cores on a single compute node with Intel145

Xeon CPU E7-8857 v2 @ 3.00GHz CPU and 2048 GB RAM. The computation time includes: (1) Prepro-146

cessing of data using mMIGP and DicL (BigFLICA only); (2) Initialization of FLICA parameters; (3) FLICA147

VB parameter updates. For the 100,000-subjects data, BigFLICA greatly decreases the computation time148

and memory usage from an unrealistic amount to a modest configuration for a modern HPC cluster,149

which therefore allows for the possibility of data-driven population phenotype discovery.150

Real data: Comparing BigFLICA with the original FLICA based on the prediction accuracy of nIDPs.151

As there is no ground truth available, we tested modes of BigFLICA have a similar prediction accuracy152

of nIDPs compared with the original FLICA, using data from the HCP, and a subset of 1,036 subjects153

from the UKB. Elastic-net regression with nested 5-fold cross-validation was used to predict each of154

the nIDPs. This approach is widely-used and has been shown to achieve a robust and state-of-the-art155

performance in many neuroimaging studies24, 25. Pearson correlation between each of the predicted156

and the true nIDPs in the outer test fold is used to quantify accuracy. The statistical significance of157

differences of prediction accuracy between two approaches are estimated by a weighted paired t-test158

approach. (Methods).159

Fig. 3 shows the Bland-Altman plots comparing the prediction accuracy of nIDPs between original160

FLICA and BigFLICA with mMIGP preprocessing only (Fig. 3a), and with DicL preprocessing only (Fig.161

3b), and with both data reduction approaches (Fig. 3c), in the UKB and HCP datasets. In these compar-162

isons, mMIGP reduced the data to approximately 1/10 to 1/2 of the original data size, and DicL reduced163

data to approximately 1/75 of the original data size. Overall, BigFLICA can estimate similar sets of modes164

with comparable prediction accuracy in real multimodal neuroimaging data, i.e., the difference of the165

correlation between two methods is centered around zero across a wide range of mean correlation val-166

ues (which are also reflected in the insignificant p-values of weighted paired t-test), which demonstrates167

that the mMIGP and DicL approaches are effective to reduce data and preserve key information in the168

data.169

Comparing BigFLICA with multiple independent single-modality ICA decomposition. We also com-170

pared BigFLICA outputs against features pooled across those from separate ICA processing of each171

modality. Fig. 4a shows that BigFLICA has a worse prediction performance than via running ICA sep-172

arately on each modality when the dimensionality L is low. This is because at low dimensional de-173

composition, single-modality ICA is most efficient because the constraints imposed on the degrees-of174

freedom implied in the FLICA model is insufficient to capture the important data variation into joint175

components. However, when L becomes large, the prediction accuracy becomes better than the single-176

modality ICA (e.g., > 250 in UKB). This is because, at high dimensional decomposition, BigFLICA effec-177
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c

Figure 3: Comparison of prediction accuracy of nIDPs between BigFLICA and the original FLICA. Overall, for
most of the comparisons, the differences of prediction accuracy are not significant. In each of the Bland–Altman
plots, each point represents the prediction of one nIDP, where the x-axis is the average prediction correlation of
the two approaches while the y-axis is the difference, i.e., BigFLICA - FLICA. The z- and p-values in the titles re-
flected the statistical significance of the differences. The Bonferroni correction 0.05 threshold corresponds to a
raw p-value of 1.7e-3. a, Comparing FLICA with mMIGP preprocessing with the original FLICA. We used a subset
of 1,036 subjects in the UKB dataset (top) and the HCP (bottom). The number of estimated FLICA components is
set to 50, and mMIGP dimensions are set from 100 to 500. b, Comparing FLICA with DicL preprocessing with the
original FLICA. We used a subset of 1,036 subjects in the UKB dataset (top) and the HCP (bottom). The dictionary
dimension is set to a high value of 2000, and the sparsity parameter is set to λ= 1 for all modalities. The number
of estimated FLICA components are set from 25 to 300. c, Comparing FLICA with both mMIGP and DicL prepro-
cessing combined, with the original FLICA. The mMIGP dimension is set to 500, and other settings are the same
as in b. We use only a subset of UKB here so that running the original FLICA is computationally feasible.

tively combines multimodal information by considering cross-modal correlation in the data decompo-178

sition stage. Although the cross-modal correlation is considered in the final prediction stage when using179

single-modality ICA, the fact that BigFLICA identifies and takes advantage of correlated information be-180

tween modalities at an earlier stage in feature generation helps improve the prediction performance.181
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b

Figure 4: Comparison of prediction accuracy of nIDPs between BigFLICA against single-modality ICA and the
IDPs. Overall, for high-dimensional BigFLICA decompositions in the UKB dataset, BigFLICA achieved statistical
significant increases of prediction accuracy of nIDPs compared with single-modality ICA and IDPs. Combining
BigFLICA and IDPs together future improves compared with IDPs alone. In each of the Bland–Altman plots, each
point represents the prediction of an nIDP, where the x-axis is the average prediction correlation of the two ap-
proaches, while the y-axis is the difference. The z- and p-values in the titles reflected the statistical significance of
the differences. The Bonferroni correction 0.05 threshold corresponds to a raw p-value of 1.7e-3. a, Comparing
BigFLICA with the concatenation of single-modality ICA outputs. Top: UKB; Bottom: HCP. The number of FLICA
components is set from 25 to 750. b, Comparing BigFLICA with IDPs. Top: UKB; Bottom: HCP. The number of
IDPs is 3,913 in UKB and 5,812 in the HCP. c, Comparing the concatenation of BigFLICA and IDPs against IDPs
only. Top: UKB; Bottom: HCP.

Comparing BigFLICA with hand-curated imaging-derive phenotypes We compared the predictive per-182

formance of BigFLICA with IDPs in both HCP and UKB datasets (Methods). Fig. 4b shows that, in the183

UKB data, when the number of modes is low, BigFLICA has a worse predictive power than the joint184

performance of 3,913 IDPs, due to the same insufficient degree-of-freedom reason as above. However,185

when the dimensionality becomes higher, BigFLICA is clearly outperforming the IDPs, owing to jointly186

fusing multimodal voxelwise data by considering cross-modality correlation. In the HCP data, the per-187

formance is overall similar. These results indicate that BigFLICA can potentially explain more pheno-188
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typic and behavioural variances than IDPs.189

In more detail, Tables S1 shows that, in the UKB dataset, the high-dimensional BigFLICA (nIC=750)190

has improved prediction accuracy for many nIDPs that relate to cognition phenotypes and health out-191

comes compared with IDPs. These tables do not include nIDPs where both methods have low predictive192

power (r < 0.1). In the HCP dataset (Table S2), BigFLICA (nIC=100) also shows improved prediction193

accuracy in many cognitive and health outcomes variables compared with using IDPs.194

Further, when we concatenated the modes of BigFLICA and IDPs together to predict nIDPs, as195

shown in Fig. 4c, the combined feature sets have a significant improvement of prediction accuracy than196

the IDPs alone in the UKB data. There are almost no differences for the same comparison in the HCP197

data. This suggests that BigFLICA and IDPs may contain some complementary information of nIDPs.198

To investigate the relationships between BigFLICA and IDPs further, we built prediction models199

that used modes of BigFLICA to predict each of the IDPs, to further characterise information overlap200

and complementarity between the two approaches. As shown in Figs. S2a and S2b, different types of201

IDPs can be predicted differently, and the resting-state functional connectivities always had the worst202

accuracy in both the HCP and the UKB datasets, because they are (relatively) noisy. However, when using203

BigFLICA modes to predict 6 new summary features of the connectivity matrices (derived by applying204

ICA to the matrix of subjects by network matrix edges)5, the accuracy is very high (r range from 0.85205

to 0.89 for a 100 dimensional BigFLICA decomposition). In addition, when we used IDPs to predict206

modes of BigFLICA, as shown in Figs. S2c and S2d, the prediction correlation almost showed a bimodal207

distribution, which means that some of the FLICA modes can be predicted by the IDPs (mean r ≈ 0.8)208

while others cannot (mean r ≈ 0.2). These results further demonstrates that BigFLICA and IDPs span209

significant complementary variance.210

BigFLICA comparison with mCCA and reproducibility We next compared BigFLICA against mCCA211

(eigendecomposition based modelling, which of course also would require similar advances to BigFLICA212

in order to work on large data; see online Methods). Overall, BigFLICA had (very slightly) improved pre-213

diction accuracy (Fig. S3), and with slightly more parsimonious modelling (Fig. S4). However, with214

split-half (across subjects) reproducibility testing, BigFLICA components were considerably more re-215

producible than those from mCCA (median BigFLICA correlation greater than 0.9 in all cases, while216

many mCCA dimensionalities have median correlation less than 0.5) (Fig. S5).217

Examples of BigFLICA modes in the 14k UKB dataset We now give four examples of significant asso-218

ciations between BigFLICA modes and nIDPs, namely, Fluid intelligence, Age started wearing glasses or219

contact lenses, Handedness and hypertension. In Fig. 5, we show the top four most strongly associated220

modalities in FLICA modes that correlate with a given nIDP. Fig. S6 shows the population cross-subject221

mean maps for several task and rest fMRI modalities fed into FLICA. This helps give interpretive context222

for the FLICA mode maps, which depict subject variability in the activity/connectivity relative to these223

group mean maps.224

For Fluid intelligence, using all modes (ICs) from the 750 dimensional BigFLICA decomposition225

as features (predictors) in multivariate elastic net prediction, a cross-validated prediction correlation of226

r = 0.26 is achieved. When we correlated each of the BigFLICA modes and IDPs with the fluid intel-227

ligence score in the UKB, we found that several task-fMRI-related BigFLICA modes have the strongest228

associations (Fig. 5a). The first (IC 25) involves task contrast "faces" and "faces>shapes" and the second229

(IC 57) involves contrast "shapes" and "face" (see Tables S5 for the full list of these modalities). As the230

correlation of the mode IC 25 (i.e., its subject weights vector) with fluid intelligence is negative (r=-0.14),231

this means that the negative-weights voxels (such as in the anterior insula) are positively correlated232
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with intelligence. The fMRI task (Hariri faces-shapes matching29) has, as expected, the greatest popula-233

tion average activation in sensory-motor areas (plus some amygdala involvement due to the emotion-234

ally negative nature of the faces), as seen in Fig. S6. However, the main brain areas involved in these235

modes are distinct, including anterior cingulate cortex, frontal pole, inferior frontal gyrus, and anterior236

insula; it is therefore interesting that the areas found by BigFLICA to be modulated in these components237

(and found to associate with intelligence) are more “frontal, cognitive” areas than the sensory-motor238

areas primarily activated on average. The top associations between fluid intelligence and IDPs also in-239

volve task-fMRI IDPs (Tables S3), but these were a factor of two weaker than associations with BigFLICA240

modes.241

For Age started wearing glasses or contact lenses, BigFLICA achieved a prediction correlation of242

r = 0.16. Several resting-state connectivty and task modalities showed associations in primary visual243

areas (Fig. 5b), which is consistent with the fact that this is a vision-related health variable. Lower age244

of first wearing glasses is correlated with stronger activity in primary visual areas, and also with strength245

of resting-fMRI connectivity (or functional coherence) within the relevant areas of group-average con-246

nectivity; interestingly, in nearby distinct (but still primary visual) areas, there is reduction of correlation247

(blue voxels), suggesting greater differentiation of primary visual areas.248

For Handedness, BigFLICA achieved a prediction correlation of r = 0.23. BigFLICA identified sev-249

eral multimodal, lateralized (or laterally asymmetric) modes, including resting-state mode 14 (left-lateralised250

language network), task, surface area and white matter tracts (Fig. 5c). There are several resting-state251

connectivity-related IDPs correlated with handedness (Tables S3), consistent with a recent study30 that252

also used UKB IDPs, while no IDPs related to other modalities are found significant; in both cases the253

maximum IDP correlation only reached r=0.12, whereas the strongest association with BigFLICA modes254

was almost double this.255

For a health variable hypertension (Fig. 5d), BigFLICA achieved a prediction correlation of r =256

0.22. Several TBSS-related modalities showed consistent associations in the External Capsule tracts.257

Meanwhile, white matter hyperintensity (T2-Lesion volume) in the corresponding areas is also higher258

in people with hypertension. Several consistent findings have been reported in the literature31–33.259

3 Discussion260

In this paper, we presented BigFLICA, a multimodal data fusion approach which is scalable and tuneable261

to analyze the full UK-Biobank neuroimaging dataset, and other large-scale multimodal imaging stud-262

ies. To the best of our knowledge, this is the first approach for data-driven (unsupervised) multimodal263

analysis in a brain imaging dataset of this size and complexity. Building on the top of the powerful FLICA264

model, we proposed a two-stage dimension-reduction approach that combines an incremental group-265

PCA (mMIGP) and dictionary learning (DicL) to effectively preprocess the multimodal dataset and re-266

duce the computational load of the final FLICA, while maintaining or even improving performance,267

with as much as a 150-fold “intelligent” reduction in data size. We provide effective ways of choosing268

the hyper-parameters of BigFLICA, so that it is free of tuning except for choosing the final number of269

estimated components. Although this approach is motivated by the need for analyzing extremely big270

neuroimaging data, it is also applicable to other kinds of data such as genetics and behavioural mea-271

sures. An easy-to-use version of this software will be integrated into an upcoming version of the FSL272

software package34, 35. BigFLICA results on UKB will also be released via the UKB database as new data-273

driven IDPs (image features), for further epidemiological and neuroscientific research.274

A strength of our work is that, unlike previous work that was limited to more moderate datasets275

and a few phenotypic and behavioural variables8–11, 36, we used two of the largest, high-quality mul-276
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a
Task z5 Task c5 Task z2 Task c2

Task z1 Task z2 Task c1 Task c2

Modes correlated with fluid intelligence

R L

Rest 14 Task z2 Task z1 Task c2

TBSS-MO TBSS-OD TBSS-L1 TBSS-FA

Tracts TBSS-MO Area TBSS-OD

c Modes correlated with handedness

R L

b Modes correlated with Age started wearing glasses

Rest 9Rest 5Rest 20 Rest 2

Task z5 Task c5 Task c2 Task z2
R L

T2-LesionTBSS-L3TBSS-MD TBSS-ISOVF

TBSS-MD TBSS-L3 TBSS-ISOVF T2-Lesion

Modes correlated with hypertensiond
R L

TBSS-ICVFT2-LesionTBSS-MD TBSS-L2

Figure 5: Examples of BigFLICA modes in the 14k UKB dataset. For each subfigure, each row shows one IC
(BigFLICA mode or independent component) with top 4 most strongly associated modalities. a, Two BigFLICA
modes that significantly correlate with fluid intelligence (IC25: r = −0.14; IC57: r = −0.12). b, Two BigFLICA
modes that significantly correlate with Age started wearing glasses or contact lenses (IC164: r = −0.10; IC13: r =
−0.05). c, Three BigFLICA modes that significantly correlate with handedness (IC235: r = −0.23; IC569: r = 0.07;
IC232: r = −0.04). d, Three BigFLICA modes that significantly correlate with hypertension (IC259: r = 0.12; IC13:
r = −0.11; IC319: r = −0.09). The Bonferroni corrected 0.05 threshold corresponds to an uncorrected p-value of
9.2×10−9 (corrected for number of components (750) and number of nIDPs (7245)). All of the above correlations
passed the Bonferroni threshold except for IC232 with uncorrected p = 2.1×10−7.

timodal neuroimaging datasets, and thousands of phenotypic and behavioural variables to validate277

the proposed approach. We demonstrated that BigFLICA is not only much faster than the original278

FLICA (and can be run on very large data that is simply not analysable with FLICA or other existing279

methods), but also estimates similar modes with a comparable performance for predicting the non-280

imaging-derived phenotypes in real data (when tested on a large data subset that is just small enough281

to allow for comparison against FLICA). We provide insights into the advantages of data-driven multi-282

modal fusion in big datasets by quantitative analysis37, 38. First, when comparing BigFLICA with sim-283
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pler IDP-based approaches (and also single-modality ICA approaches), we demonstrated that a high-284

dimensional BigFLICA has improved predictive power overall. We demonstrated the value of multi-285

modal fusion instead of analyzing each modality separately. Second, when combining high-dimensional286

BigFLICA-derived features with IDPs together, the predictive power increased further compared with us-287

ing either method alone. In addition, when we used BigFLICA-derived features and manually created288

(with expert knowledge) IDPs to predict each other, they cannot predict each other perfectly (although289

they are derived from the same imaging data). This indicates that BigFLICA-derived features and IDPs290

can be complementary to each other, both therefore providing potentially important imaging biomark-291

ers that capture different signal in the imaging data. An interesting finding is that although a high-292

dimensional BigFLICA has a much higher predictive power than a low dimensional decomposition, a293

low dimensional decomposition can still explain more than 80% of the total variance of the high dimen-294

sional decomposition. This suggests that some the phenotypic and behavioural variables are explained295

by only small proportions of variance of imaging data. Finally, in addition to the value of using BigFLICA-296

derived features for relating imaging to non-imaging data, BigFLICA components (particularly at lower297

dimensionalities) may allow us to learn more about how the different brain imaging modalities (and298

hence different spatial and biological aspects of the brain’s structure and function) relate to each other.299

We see opportunities to improve the current approach. First, BigFLICA is limited to linear feature300

estimation, while the “ideal, true” information in imaging data may be highly nonlinear. Therefore, a301

nonlinear extension of BigFLICA, which might be achieved with kernel methods or deep neural net-302

works, is an important area of further research. Second, BigFLICA is an unsupervised dimension reduc-303

tion and feature generation approach. However, integrating some supervision, i.e., the target variable304

(such as disease outcomes), into the dimension reduction may boost the performance of the algorithm.305

Additionally, because BigFLICA generates data-driven features, as opposed to expert-created IDPs, the306

biological or anatomical interpretation of features is often likely not to be immediately obvious, requir-307

ing potentially intensive expert study. Future work could attempt to automate this interpretation pro-308

cess, for example by relating features to existing anatomical templates and atlases, and even by mining309

imaging literature. Finally, BigFLICA, or extensions, may be an effective way of discovering imaging310

confound factors39 that cannot be found by traditional approaches.311
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Methods427

FLICA model. The input to FLICA is K modalities’ data matrices Y (k) with each modality’s dimensions428

being N ×Pk ,k = 1, . . . ,K , where Pk is the number of features (e.g., voxels) in modality k and N is the429

number of subjects. FLICA aims to find a joint L-dimensional decomposition of all Y (k):430

Y (k) = HW (k)X (k) +E (k), k = 1, . . . ,K (1)

where H(N×L) is the shared subject mode (mixing matrix) across modalities, so is a ‘link’ across differ-431

ent modalities, W (k)
(L×L) is a positive diagonal mode-weights matrix, X (k)

(L×Pk ) is the independent (spatial)432

feature maps for the L components of modality k, and E (k)
(N×Pk ) is the Gaussian noise term.433

Multimodal extension of MELODIC’s Incremental Group Principal component analysis for subject-434

space dimension reduction. We propose a multimodal extension of our previous MIGP approach18,435

termed mMIGP, to reduce the subject dimension of multimodal data. MIGP has been extensively val-436

idated in simulations and real neuroimaging data for finding an approximate PCA decomposition in a437

time- and memory-efficient way18. Suppose that our multimodal data are K matrices Y (k),k = 1, . . . ,K438

with dimensions N ×Pk , where N is the number of subjects and Pk is the number of features (e.g. vox-439

els) in a modality. In mMIGP, each feature is z-score normalized first. Then, an MIGP is applied to each440

modality separately to find an L?-dimensional approximate PCA decomposition. Specifically, we want441

to find an approximation of a singular value decomposition (SVD) of each Y (k):442

Y (k) = Ũ (k)S̃(k)(Ṽ (k))τ, k = 1, . . . ,K (2)

where Ũ (k)
(N×L?) and Ṽ (k)

(Pk×L?) are the left and right singular vectors, while S̃(k)
(L?×L?) are the singular values.443

A naive SVD on Y (k) scales quadratically with N , which is not efficient when N is large. To find the ap-444

proximation, MIGP sequentially feed a subset of (columns of) Y (k) in to an SVD, so that these subsets445

are reduced to a low-dimensional representation. The low-dimensional representation is then concate-446

nated with another subset of (columns of) Y (k), and is fed into another SVD to find the low-dimensional447

representation of them. The final SVD approximation is found after one pass of all data. The computa-448

tional complexity of MIPG scales linearly with N . For a detailed description, please see Appendix A of449

the MIGP paper18.450

The third step is to concatenate all Ũ (k) in the component dimension and apply another MIGP for451

finding a L?-dimensional approximate PCA decompositions U of size N×L?, which is a low-dimensional452

representation of multimodal data in the analysis. Finally, the z-score normalized data Y (k) of each453

modality is projected onto the U by:454

V (k) =UτY (k) ,k = 1,2, . . . ,K (3)

the V (k),k = 1,2, . . . ,K are the inputs of subsequent FLICA algorithm. Therefore, the total size of data455

output by this stage is L?
∑K

k=1 Pk , which is smaller than the original input size N
∑K

k=1 Pk . The fractional456

reduced data size is L?/N , and the L? can be fixed when more subjects are introduced, so it is scalable in457

the big-data analysis. In practice, we usually choose L? based on the percentage of explained variance458

of SVD in the third step.459

If we feed V (k),k = 1,2, . . . ,K into FLICA to estimate L? FLICA modes, the output subject mode460

matrix H? is of the size L?×L, so we then simply multiply this by U to get the final subject-mode matrix:461

H =U H? (4)

The mMIGP approach is equivalent to performing an approximate PCA on feature-concatenated462

data. The advantage is that it does not need to fit all data into the memory, and even can be parallelized463

across modalities18. This approach is also equivalent to applying mCCA across all modalities 40.464
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Sparse dictionary learning for voxel-space dimension reduction. If the resolution of the data is high465

and the number of modalities is large, applying just the mMIGP reduction still leaves FLICA as being466

memory and computationally expensive. Therefore, we propose a method that can effectively reduce467

the voxel dimension, and preserve the important spatial information for subsequent FLICA spatial mod-468

elling. Although the most obvious ways of voxel subsampling are either to apply regular spatial down-469

sampling (similarly, local voxel clustering) or apply PCA within each modality, the former only focuses470

on the local patterns22 (and does not adapt downsampling to local variations in redundant information471

across voxels) while the later empirically finds more global and noise patterns in neuroimaging data,472

and does not work at all well empirically in this context (see also Allen, et al.23 and references therein).473

The method we used here is sparse Dictionary Learning (DicL)19, which effectively performs ‘voxel474

grouping’ in both local and global fashion. It can be used directly on each of the original z-score normal-475

ized modalities, i.e., Y (k),k = 1,2, . . . ,K , or on the mMIGP reduced data, i.e., V (k),k = 1,2, . . . ,K . Taking476

the former as an example, the sparse DicL is adopted here:477

Y (k) = A(k)D (k) ,k = 1,2, . . . ,K (5)

where D (k) is sparse spatial dictionary basis, and A(k) is the feature loadings with each column represent-478

ing a linear combination of information from a group of voxels which might either be a local cluster or479

spatially distributed network. By minimizing an l1-regularized sparse-coding objective function, a local480

optimal solution can be obtained:481

l (A(k),D (k)) =
Pk∑

i=1
‖Y (k)

i − A(k)D (k)
i ‖2

F +λ‖D (k)
i ‖1

s.t . C = {A(k) ∈RN×L??s.t . ∀ j = 1, . . . ,L??, (A(k)
j )τA(k)

j 6 1}

(6)

where subscript i represents the i -th column of the corresponding matrix, and λ is a regularization pa-482

rameter. The l1-regularization term enforces that the learned spatial loadings D (k) are sparse. The objec-483

tive function can be efficiently optimized by a block-coordinate descent optimizer with warm restarts.484

It has been implemented in the SPAMS package (http://spams-devel.gforge.inria.fr/).485

Compared with simply using PCA in this step, sparse DicL has three advantages: (1) the spatial loading486

matrix D (k) can be sparse, so a smaller number of voxels are involved in each column of the dictionary;487

(2) the columns of the dictionary do not need to be orthogonal to each other, which is more flexible;488

(3) an "overcomplete" dictionary is allowed, i.e., the number of dictionary basis vectors can exceed the489

minimum of N and Pk , which further increases the flexibility.490

After the above modality-wise DicL, the final inputs to FLICA are the matrices A(k),k = 1,2, . . . ,K ,491

of size N ×L?? if we use Y (k),k = 1,2, . . . ,K , or L?×L?? if we use V (k),k = 1,2, . . . ,K . Note that (unlike the492

typical approach of feeding spatial PCA eigenvectors into ICA) we are not feeding the spatial dictionary493

basis (D (k)) into the FLICA core modelling, but the feature loadings (A(k)). To get the spatial loading494

matrices from FLICA, we do voxel-wise multiple regression where the target variable is a voxel and the495

design matrix is the FLICA subject mode. We could change the order by applying DicL first and then496

mMIGP, but this empirically has a lower computation efficiency.497

Evaluation of BigFLICA in simulations. We simulated 500 subjects, and each had two modalities, which498

were both 30×30×30 images. We first simulated K ground-truth (independent) spatial maps X ; each of499

these was a 30×30×30 image. The spatial maps were a weighted sum of two Gaussian white noise im-500

ages, where the first one was 30×30×30 with weight 0.05, and the second was a 5×5×5 cube randomly501

located in the full image with weight 0.95. Then, random positive component weights W , Gaussian ran-502

dom subject loadings H and Gaussian white noise terms E were simulated. Finally, after vectorizing503

each spatial map and noise term, the data for a single modality Y was generated as Y = HW X +σE ,504
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where σ was a parameter to control the signal-to-noise ratio (SNR). A small amount of spatial smooth-505

ing using a Gaussian kernel was applied to spatial maps X and noise terms E to mimic real image data.506

Each of the two modalities also had 5 unique spatial maps that were not shared by each other. The voxels507

were z-score normalized before feeding into the subsequent FLICA analysis. The SNR was defined as:508

var (vec(HW X ))/var (vec(σE)).509

Performance evaluation: When FLICA was applied to the simulated data, the number of indepen-510

dent components was always set to the ground truth K . The performance was measured by the similarity511

between estimated subject-mode matrix H? and the ground truth H . The similarity was measured by512

the greedy matching of the components based on maximum correlation and then estimating the mean513

correlations across components.514

Evaluation of mMIGP for subject-space dimension reduction: After generating simulated data, we515

reduced the data to varying dimensions (L? = 50,100,200,300,400) using mMIGP, and then fed the re-516

duced data into FLICA. This was compared with the original FLICA. The number of ground-truth com-517

ponents was set to 25,35,45 and the SNR was set to 4,1,0.25,0.04. All simulations were repeated 50518

times.519

Evaluation of DicL for voxel-space dimension reduction: To evaluate the influence of the DicL520

parameters on the subsequent FLICA results, we performed the DicL on simulated data using varying521

parameter combinations (λ= 0.1 to 16 and L?? = 100 to 3000) followed by FLICA (nIC = 25,50,100). This522

was compared with the original FLICA. The SNR was set to 4,1,0.25,0.04, and the number of iterations523

for the DicL was set to 50, because we empirically find that this number of iterations is sufficient for DicL524

to converge to a stable result in simulation and real data. All simulations were repeated 50 times.525

HCP and UK Biobank data. The voxel/vertex-wise neuroimaging data of 81 different modalities of 1,003526

subjects from the HCP S1200 data release were used in this paper2. The preprocessing was conducted by527

the HCP team using an optimized pipeline41. The 81 modalities included (1) 25 resting-state ICA dual-528

regression spatial maps (z-score normalized); (2) 47 unique task contrast maps as z-statistics from 7529

different fMRI tasks; (3) 3 T1-image derived modalities (grey matter volume, surface area, surface thick-530

ness); (4) 6 Tract-Based Spatial Statistics (TBSS) features from diffusion MRI (FA, L1, L2, L3, MD, MO)42.531

In addition, 158 nIDPs were used here, which was the same as our previous study43. Names of nIDPs are532

in Supplementary File 1.533

The UK Biobank imaging data were mainly preprocessed by FSL34, 35 and FreeSurfer44 following534

an optimized pipeline45 (https://www.fmrib.ox.ac.uk/ukbiobank/). The voxel-wise neu-535

roimaging data of 47 modalities of 14,053 subjects were used in this paper, including: (1) 25 “modalities”536

from the resting-state fMRI ICA dual-regression spatial maps (z-score normalized); (2) 6 modalities from537

the emotion task fMRI: 3 contrasts (shapes, faces, faces>shapes) of z-statistics and 3 contrasts of param-538

eter estimate maps; (3) 10 diffusion MRI derived modalities (9 TBSS features, including FA, MD, MO, L1,539

L2, L3, OD, ICVF, ISOVF42, 46 and a summed tractography map of 27 tracts from AutoPtx in FSL); (4) 4 T1-540

MRI derived modalities (grey matter volume and Jacobian map (which shows expansion/contraction541

generated by the nonlinear warp to standard space, and hence reflects local volume) in the volumetric542

space, and cortical area and thickness in the Freesurfer’s fsaverage surface space); (5) 1 susceptibility-543

weighted MRI map (T2-star); (6) 1 T2-FLAIR MRI derived modality (white matter hyperintensity map544

estimated by BIANCA47). A detailed description is in Table. S5. In addition, the 8,787 nIDPs were in-545

cluded, but we retained the 7,245 of those, that have at least 1,000 non-missing values (subjects). Names546

of nIDPs are in Supplementary Files. Group-level resting-state independent component spatial maps547

and task activation z-statistic maps are in the Supplementary Files.548

When carrying out nIDP prediction, a total of 13 and 54 confounding variables were regressed549
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out from nIDPs using linear regression in the HCP and the UKB datasets respectively (Supplementary550

Materials). Subjects with a missing modality were imputed by the mean value of all other subjects. We551

did not impute the missing nIDPs.552

Comparing BigFLICA with the original FLICA on real data. On real data, we do not know the ground553

truth components, and the data may not follow the assumptions of ICA. Therefore, we rely on the per-554

formance of predicting nIDPs as a surrogate criterion to evaluate different methods. We applied the555

proposed mMIGP approach to HCP data and a subset of 1,036 UKB subjects (so that the original FLICA556

is computationally tractable). Elastic-net regression, from the glmnet package48, was used to predict the557

nIDPs using FLICA’s subject modes as model regressors (features). This approach is widely-used and has558

been shown to achieve a robust and state-of-the-art performance in many neuroimaging studies24, 25. To559

evaluate the model performance, for each nIDP, we used 5-fold cross validation, and compute Pearson560

correlation between the predicted and true values of each nIDP across the 5 test sets. As there are tuning561

parameters within the Elastic-net regression, in each training set, we performed a nested 5-fold cross562

validation to tune the model parameters, and used the best model selected in the nested 5-fold cross563

validation to do the prediction in the test set. When comparing any two approaches, the same training-564

validation-testing split was used. The prediction accuracy was quantified as the Pearson correlation565

between predicted and the true values of each nIDP in the test sets.566

To evaluate MIGP preprocessing, we reduced the dimension to varying L? (from 100 to 500) using567

MIGP first and then used FLICA to extract L = 50 components. The original FLICA was also applied to568

extract 50 components. To evaluate DicL preprocessing, we used the DicL (dictionary dimension = 2000569

and sparsity parameter λ = 1) to reduce the data dimension of each modality followed by the FLICA to570

extract varying numbers of components (nIC= 25,50,100,200,300). The original FLICA was also applied571

to extract the same numbers of components. The prediction accuracy of BigFLICA was compared with572

the original FLICA applied on non-reduced data.573

Statistical significance of difference of prediction accuracy between two approaches. To compare the574

overall prediction accuracy of two approaches (e.g. BigFLICA with mMIGP preprocessing vs. the original575

FLICA), we estimate the statistical significance of the difference between the prediction correlations576

across nIDPs. Suppose that we have a total of p nIDPs, we first filter out a subset of nIDPs where both577

methods have low prediction accuracy (r < 0.1 in our analysis), resulting in p1 nIDPs. If we perform a578

simple paired t-test, the correlation structures among nIDPs makes the samples dependent with each579

other, so that the p-value is not valid. Based the fact that a paired t-test is a special case of general linear580

model (where the y variable is the difference of the prediction accuracy, and the x variable is a column of581

ones, and the statistical significance is the significance of the coefficient of x), we used a weighted least582

square approach (by lscov function in Matlab) to get a reliable statistical significance estimation by taken583

the covariance structures between nIDPs (which is estimated as the covariance of the nIDPs-by-subject584

matrix) into account.585

Parameter settings of running BigFLICA in the full HCP and UKB datasets. We applied BigFLICA ap-586

proach to extract varying number of target components in two datasets. In HCP, we used FLICA with587

DicL preprocessing only (dictionary dimension 2000 and λ = 1). In UKB, we used FLICA with both588

mMIGP and DicL preprocessing (dictionary dimension 5000, λ= 1 and mMIGP dimension 1000 (>95%589

explained variance)). The number of FLICA VB iterations is 1000.590

Comparing BigFLICA with multiple independent single-modality ICA decomposition. ICA is a widely-591

used approach for decomposing single-modality neuroimaging data, including functional MRI43 but592

also in structural MRI49 and diffusion MRI50. A natural question arises whether BigFLICA is able to com-593

bine multimodal information more effectively than the single-modality approaches such as ICA (we594

used the fastICA algorithm51), which ignores inter-modality relationships.595
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We first performed ICA on each modality of HCP and UKB data separately to extract 25,100, 250,596

500 and 750 components. For a given component number, we built a prediction model using the con-597

catenated ICA subject modes (across modalities) to predict each of the nIDPs. To be fair, for BigFLICA,598

we extract the same number of ICs to build the prediction model. For example, in the UKB data and599

a 25-dimensional decomposition, the predictor is a Subject×(25× 47) matrix for single-modality ICA,600

where 25 is the number of components in each modality and 47 is the total number of modalities. For601

BigFLICA, the predictor is a Subject×25 matrix. This is arguably a fair comparison because each of the602

BigFLICA modes potentially contains information from all modalities. The method to build a predictive603

model and evaluate this is the same as above, except that when we used the concatenated ICA subject604

modes, we added a univariate screening step in the training set to select the top 300 most informative605

features according to their correlation with an nIDP in the training set. This step, in general, boosts the606

predictive accuracy because the dimensionality of concatenated ICA modes is usually very high, so that607

many of the modes are pure noise with respect to any given nIDP. Therefore, the univariate screening608

can help the elastic-net regression to filter out noisy features effectively. We did not perform univariate609

screening when using the BigFLICA subject modes to predict nIDPs.610

Besides the main results, in Fig. S1, we also compared, in the UKB data, the 750-dimensional611

BigFLICA decomposition with the 25-dimensional ICA decomposition concatenated across modalities,612

i.e., we have 25×47 features in the single-modality ICA. In this comparison, the number of features for613

the two methods are almost the same, but we can see that BigFLICA clearly outperforms the single-614

modality ICA.615

Comparing BigFLICA with hand-curated imaging-derived phenotypes. A popular choice of data anal-616

ysis strategy is to extract imaging features based on expert knowledge (e.g., regional volumes and thick-617

ness, and resting-state functional connectivities between brain regions), often referred to as IDPs1. Brain618

IDPs have been shown to genetically correlate with many SNPs in our previous genome-wide association619

study (GWAS) in UK Biobank5, and they have been shown to change in many psychiatric diseases26–28.620

We extracted 5,812 IDPs from the HCP, including (1) 199 structural MRI features from Freesurfer as621

provided by the HCP; (2) 4700 regional mean task activations from 47 independent task contrasts using a622

100-dimensional parcellation atlas52; (3) 625 functional connectivities (FCs) based on a 25-dimensional623

ICA parcellation with partial correlation to estimate FCs; (4) 288 regional mean TBSS features (FA, L1,624

L2, L3, MD, MO) using the Johns Hopkins University tract atlas. The names of these IDPs are given in625

the Supplementary File 3.626

We used 3,913 IDPs from UKB, including global and local features from the 6 imaging modalities627

(T1, T2-FLAIR, swMRI, tfMRI, rfMRI, and dMRI)53. The names of these IDPs are given in the Supple-628

mentary File 4.629

We built prediction models that use IDPs or BigFLICA modes to predict each of the nIDPs using630

the same strategy as above. The FLICA dimension is set to 25, 100, 250, 500, 750. In addition, we also631

concatenated IDPs and each of the BigFLICA subject modes together to predict the nIDPs, and the per-632

formance is compared with using IDPs alone. We used a univariate screening step to select the top633

300/500 most informative IDPs according to their correlation with an nIDP in the inner-fold (i.e., train-634

ing set) of HCP/UKB. Finally, we also built models that use IDPs to predict each of the FLICA subject635

modes and vice versa, aiming to evaluate the shared variances between features extracted by these two636

different approaches in the same data.637

Reproducibility of BigFLICA. To test whether BigFLICA’s spatial independent components are esti-638

mated reliably, the whole UKB dataset was divided into two parts: the first part contained 7,000 subjects639

and the second part contained the remaining 7,503 subjects. We applied BigFLICA to the two parts sepa-640
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rately. After estimating the subject modes, we reconstructed the z-score normalized (voxel-wise) spatial641

maps of each modality by regressing the subject mode against the mMIGP-reduced data. The spatial in-642

dependent components of each modality were concatenated spatially and greedily paired, based on the643

absolute correlation between two runs. When we computed the correlations, only voxels whose abso-644

lute z-scores that are both larger than 3 in two runs were preserved (to reduce noise, given that there are645

huge numbers of empty voxels across all modalities for a given FLICA component in general; this does646

not bias the metric of reproducibility towards finding common similar patterns). Fig. S5 (left) shows647

that the FLICA components have very high reproducibility in the split-half test across a varying number648

of components.649

Comparing BigFLICA with mCCA. We tested whether BigFLICA (independent components-based spa-650

tial modelling) was better than mCCA (eigendecomposition based modelling, which could be consid-651

ered to be similar to the output of BigFLICA without running the final core FLICA unmixing - note that652

to enable mCCA to run requires the same mMIGP initial processing that we have added in this work)653

in three ways. The number of extracted components was the same when performing this compari-654

son. First, for the prediction accuracy of nIDPs, Fig. S3 shows that, in the UKB data, BigFLICA has a655

(very slightly) improved prediction accuracy compared with mCCA. Then, we proposed a hypothesis656

that modes of BigFLICA are more parsimonious features of nIDPs compared with mCCA, or in other657

word, a smaller number of modes of BigFLICA can predict the nIDPs. Results shown in Fig. S4 vali-658

date this hypothesis: for a given number of components and a given nIDP, BigFLICA modes have a (on659

average) higher proportion of zero weights in the elastic-net predictions, when compared with mCCA660

modes. The advantage is that a more parsimonious representation usually has a better biological inter-661

pretability. Finally, we estimated and compared the split-half reproducibility of BigFLICA and mCCA. As662

shown in Fig. S5 (right), BigFLICA has a much higher between-subject reproducibility than mCCA.663

Contribution of different modalities in a BigFLICA decomposition. Besides using BigFLICA for explor-664

ing the relationships between imaging and non-imaging phenotypic and behavioural data, we can also665

use it to investigate the relationship between different modalities. For each mode, BigFLICA estimates a666

vector of positive numbers reflecting the contributions of different modalities (i.e., the diagonal of each667

W(k), where the higher the number, the more important is one modality to a mode). We concatenated all668

such vectors across all modes so that it is a mode-by-modality matrix W , and normalized each column669

to sum to one. Six examples of such matrices are shown in Fig. S7, with different numbers of estimated670

modes in the UKB dataset.671

We then calculate each row’s sum (across columns) in W , thereby reflecting the overall contribu-672

tion of each modality in the BigFLICA decomposition. As shown in Fig. S8, across all FLICA dimension-673

alities (numbers of estimated modes), each of the 25 resting-state fMRI dual-regression spatial maps674

usually has a low overall contribution, followed by task fMRI maps, while modalities reflecting more675

about structure of the brain (e.g., structural MRI and diffusion MRI) generally have high overall contri-676

butions. The relative differences of modality contribution between functional MRI-related modalities677

and structural/diffusion MRI-related modalities become larger with increasing number of estimated678

modes. We further estimated the total shared variances between a lower dimensional BigFLICA decom-679

position and a higher dimensional decomposition. Table S4 shows that a higher dimensional decompo-680

sition explains almost all variances of a lower dimensional decomposition (upper triangle of the table),681

while a lower dimensional decomposition can explain a large proportion of the variances of a higher682

dimensional decomposition.683

Relationship between different modalities in a BigFLICA decomposition. We calculated the cosine684

similarity between different columns of W (using the 750-dimensional BigFLICA decomposition), to685

measure the similarity of different modalities in terms of their contribution to the BigFLICA decom-686

position, i.e., the more similar information two modalities carry, the more likely they will have similar687
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contribution to a mode. Fig. S9a shows that the modality relationship matrix is clearly grouped into688

three large clusters. The first is all resting-state modalities, while the second is the task fMRI maps, and689

the third is the diffusion MRI, structural MRI-related modalities and swMRI. The white matter hyper-690

intensity map (T2 lesions) forms a single cluster. As a comparison, we also performed a 50-dimensional691

ICA decomposition within each modality, and calculated the shared variances between every pair of 50692

ICs in two modalities using a simple multivariate regression model. As shown in Fig. S9b, we also ob-693

served a similar pattern as Fig. S9a. The main difference is that in Fig. S9a, there are relatively stronger694

correlations within resting-state modalities and between resting-state and other modalities, but weaker695

correlations between task modalities and structural related modalities. These results reflect the fact that696

the multimodal modelling effects of BigFLICA learn different inter-modality relationships compared697

with single-modality ICA.698
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Supplementary Materials699

Confounding variables regressed out in our analysis UKB dataset: age, age squared, age X sex, age700

squared X sex, age (quantile normalised), age squared (quantile normalised), age X sex (quantile nor-701

malised), age squared X sex (quantile normalised), rfMRI head motion, tfMRI head motion, head size702

scaling, rfMRI head motion squared, tfMRI head motion squared, [4] confounds relating to bed posi-703

tion in scanner (x), [4] confounds relating to bed position in scanner (y), [4] confounds relating to bed704

position in scanner (z), [4] confounds relating to bed position in scanner (table), [4] confounds relating705

to bed position in scanner (x) squared, [4] confounds relating to bed position in scanner (y) squared,706

[4] confounds relating to bed position in scanner (z) squared, [4] confounds relating to bed position in707

scanner (table) squared, [10] confounds modelling slow date-related drift 1, [10] confounds modelling708

slow date-related drift 2, [10] confounds modelling slow date-related drift 3, [10] confounds modelling709

slow date-related drift 4, [10] confounds modelling slow date-related drift 5, [10] confounds modelling710

slow date-related drift 6, [10] confounds modelling slow date-related drift 7, [10] confounds modelling711

slow date-related drift 8, [10] confounds modelling slow date-related drift 9, [10] confounds modelling712

slow date-related drift 10, rfMRI head motion (quantile normalised), tfMRI head motion (quantile nor-713

malised), head size scaling (quantile normalised), [4] confounds relating to bed position in scanner (x)714

(quantile normalised), [4] confounds relating to bed position in scanner (y) (quantile normalised), [4]715

confounds relating to bed position in scanner (z) (quantile normalised), [4] confounds relating to bed716

position in scanner (table) (quantile normalised), [4] confounds relating to bed position in scanner (x)717

squared (quantile normalised), [4] confounds relating to bed position in scanner (y) squared (quantile718

normalised), [4] confounds relating to bed position in scanner (z) squared (quantile normalised), [4]719

confounds relating to bed position in scanner (table) squared (quantile normalised), [10] confounds720

modelling slow date-related drift 1 (quantile normalised), [10] confounds modelling slow date-related721

drift 2 (quantile normalised), [10] confounds modelling slow date-related drift 3 (quantile normalised),722

[10] confounds modelling slow date-related drift 4 (quantile normalised), [10] confounds modelling slow723

date-related drift 5 (quantile normalised), [10] confounds modelling slow date-related drift 6 (quantile724

normalised), [10] confounds modelling slow date-related drift 7 (quantile normalised), [10] confounds725

modelling slow date-related drift 8 (quantile normalised), [10] confounds modelling slow date-related726

drift 9 (quantile normalised), [10] confounds modelling slow date-related drift 10 (quantile normalised),727

imaging centre, sex.728

HCP dataset: image reconstruction version, age, age squared, sex, age X sex, age squared X sex,729

race, ethnicity, rfMRI motion, Height, Weight, FS_IntraCranial_Vol, FS_BrainSeg_Vol.730
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Figure S1: Comparing the prediction performance of the 750-dimensional FLICA with the 25-dimensional single-
modality ICA concatenated across 47 modalities in the UKB data.
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Figure S2: Relationships between FLICA and IDPs. (a,b) The plots show the results of predicting each IDP using
BigFLICA modes in a the HCP and b the UKB dataset. The IDPs are appearing in order along the x axis, and are
grouped and coloured by modality types. (a,b) The histograms of predicting BigFLICA modes using all IDPs in c
the HCP and d the UKB dataset.
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Figure S3: Comparing FLICA and mCCA in the UKB data. Comparing the predictive performance of FLICA with
mCCA (or equivalently the subject-by-component matrix obtained in the mMIGP step) across different numbers
of extracted components in the UKB dataset. The FLICA and mCCA dimensions are the same in each figure.
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Figure S4: The difference of the proportion of zeros weights (BigFLICA-mCCA) in predicting nIDPs across 5 di-
mensions of decomposition in the UKB data.
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Figure S5: Split-half reproducibility of FLICA and mCCA spatial maps in the UKB dataset. The split-half repro-
ducibility of BigFLICA and mCCA in the UKB dataset by first computing the correlation between modality-wise
concatenated spatial maps after eliminating low-weight voxels and then greedy matching.
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Figure S6: Group average maps of task activations and resting-state networks in the UKB dataset. These are pro-
vided to help interpret the population variability maps (modulations of these maps) shown in Fig. 5. Top: group
average of emotion task activation z-statistic maps (task z1: “shapes”, task z2: “face”, task z5: “faces>shapes”).
Group average task contrast (effect size) maps c1, c2 and c5 are highly similar to z-stat maps so that they are not
shown. Bottom: group average resting-state networks from a 25-dimensional ICA parcellation in the UKB data.
The six maps shown here are the networks from Fig. 5.
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Figure S7: The contribution of each modality in each BigFLICA mode (independent component).
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Figure S8: The relative contribution of different modalities of a BigFLICA decomposition (nIC=25-750) in the
UKB data. For each modality, we take the sum of its overall contribution (estimated by BigFLICA) across all com-
ponents.
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Figure S9: The relationships between different modalities in the UKB data. a). The cosine similarity of modality
contributions across 750 components (estimated by BigFLICA) between every pair of modalities. b). The amount
of shared variance between two 50-dimensional single-modality ICA decompositions in each pair of modalities.
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Table S1: Comparison of prediction performance of Cognitive Phenotypes and Health and Medical History
Health Outcomes between BigFLICA (nIC=750) and 3,913 IDPs in the UKB dataset. We excluded an nIDP if both
methods have prediction r-value< 0.1.

Variable Names r-value FLICA -log10(p) FLICA r-value IDPs -log10(p) IDPs Percent Improvement Sample size

cognitive phenotypes

Digits entered correctly (0.1) 0.104 3.6 0.003 0.3 3141.6 1126
Time to complete round (1.2) 0.108 11.7 0.073 5.9 47.4 4119
Number of fluid intelligence questions attempted within time limit (1.0) 0.107 11.6 0.078 6.6 37.6 4116
Duration to first press of snap-button in each round (2.7) 0.11 37.6 0.081 21.1 35.1 13749
Mean time to correctly identify matches (0.0) 0.108 38.6 0.083 23.1 30.6 14471
Duration screen displayed (2.0) 0.103 33.6 0.079 20.3 30.2 13809
Duration to first press of snap-button in each round (2.10) 0.104 33.7 0.08 20.3 30.1 13751
Duration to complete alphanumeric path (trail #2) (0.0) 0.145 33.7 0.113 20.8 28.7 6966
Time to complete round (0.2) 0.113 41 0.088 25.5 27.8 14115
Number of symbol digit matches made correctly (0.0) 0.156 43.5 0.122 27 27.7 7862
Number of symbol digit matches attempted (0.0) 0.167 49.8 0.132 31.4 26.6 7862
Number of fluid intelligence questions attempted within time limit (2.0) 0.151 68.4 0.122 44.9 23.8 13362
Duration to first press of snap-button in each round (2.11) 0.1 31.6 0.082 21.3 22.9 13741
Time to complete round (0.1) 0.143 36 0.117 24.4 22.5 7670
Time to complete round (2.2) 0.114 39.4 0.093 26.8 22.1 13394
Mean time to correctly identify matches (2.0) 0.141 61.6 0.116 42 21.6 13768
Maximum digits remembered correctly (0.0) 0.15 38.2 0.129 28.7 15.9 7465
Fluid intelligence score (2.0) 0.256 198.7 0.232 162.6 10.3 13362
Fluid intelligence score (0.0) 0.199 47.8 0.183 40.5 8.8 5266
Touchscreen duration (2.0) 0.127 52.5 0.121 48 4.7 14412
Fluid intelligence score (1.0) 0.18 31 0.188 33.5 -3.9 4116
Number of fluid intelligence questions attempted within time limit (0.0) 0.098 12.4 0.103 13.4 -4 5266
Fluid intelligence score (0.0) 0.198 72.1 0.209 80.5 -5.3 8090
Touchscreen duration (1.0) 0.103 10.8 0.127 16 -19.2 4134

Health and Medical History Health Outcomes

Age asthma diagnosed (0.0) 0.122 5.6 0.051 1.5 139.4 1397
Interpolated Age of participant when non-cancer illness first diagnosed (0.3) 0.102 5.1 0.072 2.9 42.7 1794
Interpolated Year when non-cancer illness first diagnosed (0.3) 0.104 5.3 0.074 3 41.5 1794
Medication for cholesterol, blood pressure, diabetes, or take exogenous hormones (2.0) 0.153 40.4 0.113 22.2 36.4 7507
Treatment/medication code (1140884600 - metformin) 0.121 48.1 0.092 28.1 32 14503
Number of treatments/medications taken (0.0) 0.13 55.6 0.099 32.4 31.8 14503
Age started wearing glasses or contact lenses (2.0) 0.158 73.8 0.124 45.8 27.3 13129
Number of self-reported non-cancer illnesses (0.0) 0.115 43.7 0.093 28.6 24.4 14503
Number of treatments/medications taken (1.0) 0.13 16.7 0.107 11.7 21.4 4134
Age started wearing glasses or contact lenses (0.0) 0.149 61.6 0.124 43.2 19.8 12321
Number of treatments/medications taken (2.0) 0.188 114.4 0.157 80.2 19.4 14435
Treatment/medication code (1140879802 - amlodipine) 0.113 41.9 0.096 30.5 17.8 14503
Medication for cholesterol, blood pressure or diabetes (0.0) 0.15 35.1 0.131 26.7 15.1 6756
Diabetes diagnosed by doctor (2.0) 0.124 49.6 0.108 38.3 14.2 14379
Non-cancer illness code, self-reported (1220 - diabetes) 0.109 39.1 0.098 31.8 11.1 14503
Diagnoses - secondary ICD10 (I10 - I10 Essential (primary) hypertension) 0.146 69.8 0.135 59.5 8.4 14503
Overall health rating (0.0) 0.113 41.6 0.104 35.7 8.1 14477
Non-cancer illness code, self-reported (1065 - hypertension) 0.218 155.7 0.203 133.6 7.9 14503
Medication for cholesterol, blood pressure or diabetes (2.0) 0.145 33.2 0.136 29.3 6.7 6829
Overall health rating (2.0) 0.11 39.5 0.113 41.7 -2.8 14388
Non-cancer illness code, self-reported (1261 - multiple sclerosis) 0.111 40.2 0.118 46 -6.6 14503
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Table S2: Comparison of prediction performance of 158 nIDPs between FLICA (nIC=100) and 5,812 IDPs in the
HCP dataset. We excluded an nIDP if both methods have prediction r-value< 0.1. The meanings of each vari-
ables can be found at HCP wiki: https://wiki.humanconnectome.org/display/PublicData/HCP+
Data+Dictionary+Public-+Updated+for+the+1200+Subject+Release

Variable Names r FLICA -log10(p) r IDPs -log10(p) Improvement (%) nSubj Variable Names r FLICA -log10(p) r IDPs -log10(p) Improvement (%) nSubj

Odor_AgeAdj 0.108 3.5 0.036 0.9 197.4 1001 ASR_Thot_Pct 0.216 11.6 0.206 10.6 4.9 1000
FamHist_Fath_DrgAlc 0.158 6.6 0.065 1.7 144.1 999 PicSeq_AgeAdj 0.301 22 0.29 20.4 3.9 1003
NEOFAC_C 0.176 8 0.084 2.4 110 1001 Avg_Weekend_Beer_Wine_Cooler_7days 0.307 22.5 0.296 20.9 3.8 985
ASR_Soma_Pct 0.124 4.4 0.074 2 66.3 1000 DSM_Somp_Pct 0.12 4.1 0.115 3.9 3.6 1000
ASR_Soma_Raw 0.162 6.9 0.101 3.2 60.7 1000 PicSeq_Unadj 0.293 20.9 0.284 19.6 3.2 1003
VSPLOT_CRTE 0.13 4.7 0.085 2.4 53.2 1000 ASR_Oth_Raw 0.168 7.3 0.163 7 2.7 1000
ASR_Intn_Raw 0.101 3.2 0.067 1.8 51.4 1000 ASR_Thot_Raw 0.231 13.2 0.226 12.6 2.4 1000
DSM_Inat_Raw 0.161 6.8 0.109 3.5 48.3 1000 VSPLOT_OFF 0.417 42.8 0.407 40.8 2.3 1000
SSAGA_Alc_D4_Dp_Sx 0.204 10.4 0.139 5.3 46.6 1002 SSAGA_Alc_Hvy_Frq_Drk 0.244 13.9 0.239 13.4 2 951
AngHostil_Unadj 0.103 3.2 0.072 2 42 1002 Avg_Weekend_Cigarettes_7days 0.181 8.3 0.178 8 1.9 985
ProcSpeed_AgeAdj 0.24 14.2 0.175 7.9 37.2 1003 SSAGA_Alc_Hvy_Max_Drinks 0.466 52 0.459 50.3 1.5 951
DSM_Depr_Raw 0.118 4.1 0.087 2.5 36.7 1000 ASR_Extn_T 0.186 8.8 0.183 8.6 1.4 1000
Times_Used_Any_Tobacco_Today 0.157 6.5 0.117 3.9 34.8 985 NEOFAC_N 0.159 6.6 0.157 6.5 0.9 1001
ProcSpeed_Unadj 0.268 17.6 0.201 10.2 33.5 1003 ASR_Rule_Raw 0.285 19.7 0.283 19.4 0.6 1000
ASR_Intr_Raw 0.189 9.1 0.143 5.5 32.3 1000 ER40SAD 0.117 4 0.117 4 0.6 1000
SSAGA_Mj_Ab_Dep 0.127 4.5 0.097 3 31.2 1002 SSAGA_Alc_Hvy_Frq_5plus 0.3 20.8 0.299 20.6 0.5 951
SSAGA_Alc_D4_Ab_Sx 0.153 6.3 0.119 4.1 29.4 1002 ListSort_Unadj 0.397 38.7 0.4 39.3 -0.7 1003
NEOFAC_O 0.253 15.6 0.195 9.6 29.2 1001 AngAggr_Unadj 0.28 19 0.283 19.4 -1.1 1002
Flanker_AgeAdj 0.181 8.4 0.142 5.5 27.5 1003 VSPLOT_TC 0.361 31.8 0.367 32.9 -1.7 1000
ASR_Intr_Pct 0.161 6.8 0.127 4.5 26.8 1000 FearAffect_Unadj 0.118 4.1 0.12 4.2 -1.9 1002
DDisc_AUC_40K 0.341 28.3 0.277 18.7 23 1000 Total_Drinks_7days 0.28 18.7 0.286 19.5 -2.1 985
SSAGA_Alc_12_Drinks_Per_Day 0.336 26 0.277 17.7 21.3 950 NEOFAC_A 0.223 12.4 0.229 12.9 -2.3 1001
Flanker_Unadj 0.239 14 0.197 9.8 20.9 1003 Total_Cigarettes_7days 0.174 7.7 0.178 8 -2.4 985
SSAGA_Times_Used_Stimulants 0.117 4 0.098 3 19.9 1002 ListSort_AgeAdj 0.393 38.1 0.406 40.6 -3 1003
ASR_Witd_Raw 0.23 13 0.192 9.3 19.5 1000 DSM_Hype_Raw 0.163 6.9 0.17 7.5 -4 1000
PicVocab_Unadj 0.572 87.7 0.487 60.5 17.4 1003 Avg_Weekday_Any_Tobacco_7days 0.183 8.5 0.191 9.1 -4.3 985
ER40ANG 0.102 3.2 0.087 2.5 16.9 1000 Avg_Weekend_Drinks_7days 0.265 16.8 0.278 18.5 -4.8 985
Avg_Weekday_Drinks_7days 0.197 9.7 0.169 7.3 16.8 985 SSAGA_Alc_12_Frq 0.228 12.3 0.24 13.5 -4.8 951
EmotSupp_Unadj 0.128 4.6 0.11 3.6 16.5 1002 ASR_Rule_Pct 0.185 8.7 0.194 9.5 -5 1000
Dexterity_AgeAdj 0.316 24.3 0.271 18 16.5 1003 ASR_Aggr_Raw 0.103 3.2 0.109 3.5 -5.3 1000
SSAGA_Alc_Hvy_Drinks_Per_Day 0.335 25.9 0.288 19.1 16.3 950 THC 0.264 17 0.281 19.2 -6 1003
CardSort_AgeAdj 0.345 28.9 0.297 21.4 16 1001 Total_Any_Tobacco_7days 0.192 9.2 0.205 10.4 -6.2 985
PicVocab_AgeAdj 0.57 87 0.492 61.9 15.8 1003 Avg_Weekday_Cigarettes_7days 0.167 7.2 0.178 8.1 -6.3 985
Taste_AgeAdj 0.186 8.8 0.161 6.8 15.6 998 SSAGA_Times_Used_Illicits 0.147 5.8 0.158 6.6 -6.5 1002
DSM_Antis_Pct 0.168 7.3 0.146 5.7 15.4 1000 PercStress_Unadj 0.165 7.1 0.177 8.1 -6.7 1002
SSAGA_Times_Used_Hallucinogens 0.163 7 0.143 5.6 14.1 1002 SSAGA_Alc_12_Frq_5plus 0.324 24.3 0.349 28.1 -7.1 951
DSM_Adh_Pct 0.219 11.9 0.192 9.3 14.1 1000 ASR_Crit_Raw 0.185 8.7 0.2 10.1 -7.5 1000
Taste_Unadj 0.188 9 0.165 7.1 13.9 998 MMSE_Score 0.175 7.9 0.189 9.1 -7.6 1003
ASR_Attn_Raw 0.147 5.8 0.129 4.7 13.8 1000 Num_Days_Used_Any_Tobacco_7days 0.218 11.8 0.238 14 -8.7 1000
Dexterity_Unadj 0.302 22.2 0.266 17.3 13.5 1003 PercHostil_Unadj 0.107 3.4 0.117 4 -8.8 1002
SSAGA_Alc_12_Max_Drinks 0.409 39.2 0.36 30.1 13.5 951 SCPT_SPEC 0.185 8.7 0.204 10.5 -9.7 1000
DDisc_AUC_200 0.295 21.2 0.26 16.5 13.4 1000 ER40_CR 0.158 6.6 0.176 8 -10.4 1000
DSM_Depr_Pct 0.119 4.1 0.105 3.4 13.4 1000 ASR_Totp_Raw 0.151 6.1 0.171 7.6 -11.8 1000
SSAGA_ChildhoodConduct 0.192 9.4 0.169 7.5 13.4 1002 SSAGA_TB_Smoking_History 0.148 5.9 0.168 7.4 -11.8 1002
ASR_Witd_Pct 0.151 6.1 0.134 4.9 13.1 1000 IWRD_TOT 0.174 7.8 0.198 9.9 -12.1 1000
CardSort_Unadj 0.36 31.6 0.319 24.7 12.9 1001 ASR_TAO_Sum 0.169 7.5 0.195 9.6 -13.1 1000
SSAGA_Alc_Hvy_Frq 0.254 15.1 0.226 12.1 12.5 951 Num_Days_Drank_7days 0.183 8.6 0.211 11.1 -13.3 1000
PMAT24_A_CR 0.512 67.4 0.456 51.9 12.3 999 Avg_Weekend_Any_Tobacco_7days 0.193 9.3 0.224 12.2 -13.6 985
LifeSatisf_Unadj 0.208 10.8 0.186 8.8 11.8 1002 FearSomat_Unadj 0.106 3.4 0.125 4.4 -15.1 1002
DSM_Somp_Raw 0.154 6.3 0.138 5.2 11.3 1000 ASR_Totp_T 0.153 6.2 0.183 8.5 -16.1 1000
DSM_Adh_Raw 0.182 8.5 0.165 7.1 10.4 1000 DSM_Anxi_Raw 0.143 5.6 0.174 7.8 -17.6 1000
Avg_Weekday_Beer_Wine_Cooler_7days 0.286 19.6 0.26 16.3 10 985 SSAGA_TB_Still_Smoking 0.181 8.4 0.225 12.5 -19.5 1002
PSQI_Score 0.168 7.4 0.153 6.3 9.9 1003 SCPT_SEN 0.083 2.4 0.106 3.4 -21.2 1000
Total_Beer_Wine_Cooler_7days 0.36 31.1 0.329 25.9 9.5 985 SSAGA_Mj_Times_Used 0.172 7.7 0.221 12.1 -21.9 1002
ASR_Attn_Pct 0.188 9 0.173 7.7 8.8 1000 MeanPurp_Unadj 0.085 2.4 0.11 3.6 -22.8 1002
SSAGA_Alc_12_Frq_Drk 0.275 17.5 0.257 15.3 7.1 951 PercReject_Unadj 0.083 2.4 0.108 3.5 -23.4 1002
ReadEng_AgeAdj 0.494 62.3 0.464 54.4 6.3 1003 NEOFAC_E 0.102 3.2 0.139 5.3 -26.8 1001
DSM_Antis_Raw 0.244 14.5 0.229 13 6.2 1000 DSM_Anxi_Pct 0.088 2.6 0.122 4.3 -27.7 1000
ASR_Extn_Raw 0.203 10.3 0.191 9.3 6 1000 Avg_Weekend_Hard_Liquor_7days 0.074 2 0.106 3.4 -29.8 985
ASR_Aggr_Pct 0.119 4.1 0.113 3.7 5.6 1000 SSAGA_Alc_Age_1st_Use 0.136 4.9 0.202 9.8 -32.8 951
ReadEng_Unadj 0.487 60.4 0.464 54.2 5 1003 Total_Hard_Liquor_7days 0.07 1.9 0.135 4.9 -47.9 985
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Table S3: Three examples of top 10 most significant correlations of BigFLICA modes (left) and IDPs (right) with
nIDPs in UKB dataset.

BigFLICA modes r-value p-value IDP names r-value p-value

Top 10 modes/IDPs correlate with fluid intelligence

IC25 -0.146 6.54E-65 IDP_tfMRI_90th-percentile_BOLD_shapes -0.074 1.05E-15
IC57 -0.122 3.49E-45 IDP_tfMRI_median_BOLD_shapes -0.069 1.28E-13

IC332 -0.081 7.26E-21 IDP_tfMRI_90th-percentile_zstat_faces-shapes_amygdala 0.068 1.48E-13
IC484 -0.072 9.87E-17 rfMRI amplitudes (ICA25 node 6) 0.066 2.75E-13

IC4 -0.069 1.18E-15 rfMRI connectivity (ICA100: IC13-IC32) -0.065 3.82E-13
IC27 0.064 1.98E-13 IDP_tfMRI_90th-percentile_zstat_shapes -0.063 7.95E-12

IC188 -0.058 2.80E-11 IDP_tfMRI_median_zstat_faces-shapes 0.063 1.20E-11
IC708 -0.055 1.51E-10 IDP_tfMRI_median_zstat_faces-shapes_amygdala 0.062 1.51E-11
IC164 0.055 1.68E-10 rfMRI connectivity (ICA100: IC11-IC19) 0.056 3.94E-10
IC47 -0.054 3.40E-10 IDP_tfMRI_median_BOLD_faces-shapes 0.057 5.16E-10

Top 10 modes/IDPs correlate with Age started wearing glasses or contact lenses

IC164 0.101 2.74E-31 IDP_tfMRI_90th-percentile_BOLD_faces-shapes 0.081 5.38E-18
IC25 0.067 1.63E-14 IDP_tfMRI_median_BOLD_faces-shapes 0.064 7.16E-12

IC249 0.057 5.65E-11 IDP_tfMRI_median_zstat_faces-shapes 0.064 1.01E-11
IC13 0.054 7.68E-10 rfMRI connectivity (ICA100: IC4-IC40) -0.061 1.81E-11

IC138 0.041 2.33E-06 rfMRI connectivity (ICA100: IC17-IC42) -0.060 4.34E-11
IC190 0.038 1.65E-05 IDP_tfMRI_90th-percentile_zstat_faces-shapes 0.061 9.88E-11
IC563 -0.037 1.84E-05 rfMRI amplitudes (ICA25 node 19) 0.056 8.97E-10
IC656 0.037 1.98E-05 rfMRI amplitudes (ICA100 node 16) 0.054 3.08E-09
IC297 -0.037 2.32E-05 rfMRI connectivity (ICA100: IC15-IC43) -0.050 3.14E-08
IC580 0.037 2.53E-05 rfMRI connectivity (ICA100: IC21-IC28) 0.049 6.90E-08

Top 10 modes/IDPs correlate with hypertension

IC259 0.121 2.95E-48 IDP_dMRI_TBSS_MD_External_capsule_L 0.135 4.17E-53
IC38 -0.111 3.09E-41 IDP_dMRI_TBSS_MD_External_capsule_R 0.132 6.44E-51

IC319 0.094 5.98E-30 IDP_dMRI_TBSS_L1_External_capsule_L 0.130 2.29E-49
IC29 0.091 5.82E-28 IDP_dMRI_TBSS_L3_External_capsule_R 0.126 6.51E-47
IC40 0.088 2.82E-26 IDP_dMRI_TBSS_L3_External_capsule_L 0.126 1.70E-46
IC1 -0.083 1.57E-23 IDP_dMRI_TBSS_L3_Anterior_limb_of_internal_capsule_L 0.122 4.64E-44

IC171 -0.073 1.00E-18 IDP_dMRI_TBSS_L1_External_capsule_R 0.122 5.37E-44
IC26 -0.067 6.73E-16 IDP_dMRI_TBSS_ISOVF_External_capsule_L 0.122 7.49E-44

IC176 -0.062 6.75E-14 IDP_dMRI_TBSS_L2_Anterior_limb_of_internal_capsule_L 0.120 2.60E-42
IC84 0.057 9.14E-12 IDP_dMRI_TBSS_MD_Anterior_limb_of_internal_capsule_L 0.118 2.91E-41

Top 10 modes/IDPs correlate with handedness

IC235 -0.226 5.71E-168 rfMRI connectivity (ICA100: IC29-IC34) 0.115 1.30E-40
IC408 -0.079 1.76E-21 rfMRI connectivity (ICA25: IC1-IC6) 0.095 6.93E-28
IC569 0.066 1.90E-15 rfMRI connectivity (ICA100: IC10-IC34) 0.095 7.70E-28
IC382 0.051 8.40E-10 rfMRI connectivity (ICA25: IC14-IC22) 0.085 7.43E-23
IC251 0.047 1.13E-08 rfMRI connectivity (ICA100: IC3-IC19) 0.085 8.01E-23
IC232 0.043 2.12E-07 rfMRI connectivity (ICA100: IC14-IC34) 0.081 7.28E-21
IC742 0.042 4.41E-07 rfMRI connectivity (ICA25: IC1-IC22) 0.080 2.93E-20
IC643 -0.039 2.39E-06 rfMRI connectivity (ICA100: IC30-IC34) -0.074 1.46E-17
IC419 0.036 1.66E-05 rfMRI connectivity (ICA100: IC27-IC52) 0.073 3.07E-17
IC332 0.036 1.76E-05 rfMRI connectivity (ICA100: IC6-IC13) 0.071 3.39E-16
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Table S4: Percent of shared variance (%) of BigFLICA decomposition across a range of dimensionalities in the
UKB data. Upper triangle: the explained variance of a lower-dimensional decomposition by a higher-dimensional
decomposition. Lower triangle: the explained variance of a higher-dimensional decomposition by a lower-
dimensional decomposition.

IC25 IC100 IC250 IC500 IC750

IC25 100.00 99.98 99.99 99.99 99.99
IC100 88.57 100.00 99.97 99.98 99.99
IC250 86.38 96.99 100.00 99.98 99.99
IC500 87.77 95.45 96.79 100.00 99.97
IC750 85.33 95.31 96.91 99.65 100.00
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Table S5: A description of 47 Modalities of UKB dataset used in this paper.

Abbreviation full description

rest k (k=1-25) Dual regression between IC k of 25 dimensional decomposition of rsfMRI and the whole brain
task z1 Z-statistics of emotion task contrast "shapes"
task z2 Z-statistics of emotion task contrast "face"
task z5 Z-statistics of emotion task contrast "faces>shapes"
task c1 Contrasts of parameter estimate of emotion task contrast "shapes"
task c2 Contrasts of parameter estimate of emotion task contrast "face"
task c5 Contrasts of parameter estimate of emotion task contrast "faces>shapes"
TBSS-FA Tract-Based Spatial Statistics - fractional anisotropy
TBSS-MD Tract-Based Spatial Statistics - mean diffusivity
TBSS-MO Tract-Based Spatial Statistics - tensor mode
TBSS-L1 Tract-Based Spatial Statistics - amount of diffusion along the principal directions 1
TBSS-L2 Tract-Based Spatial Statistics - amount of diffusion along the principal directions 2
TBSS-L3 Tract-Based Spatial Statistics - amount of diffusion along the principal directions 3
TBSS-OD Tract-Based Spatial Statistics - orientation dispersion index
TBSS-ICVF Tract-Based Spatial Statistics - intra-cellular volume fraction
TBSS-ISOVF Tract-Based Spatial Statistics - isotropic or free water volume fraction
tracts summed tractography map of 27 tracts from AutoPtx in FSL
VBM voxel-based morphometry
Area Cortical surface area from Freesurfer
Thickness Cortical surface thickness from Freesurfer
Jacobian Jacobian map of nonlinear registration of T1 image to MNI152 standard space
swMRI T2* image derived from swMRI
T2 lesion White matter hyperintensity map estimated by BIANCA
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