

Phenotype Discovery from Population Brain Imaging

Weikang Gong^{1,*} Christian F. Beckmann^{1,2,3} Stephen M. Smith¹

¹Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.

²Radboud University Medical Centre, Department of Cognitive Neuroscience, Nijmegen, Netherlands.

³Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands. *

Neuroimaging allows for the non-invasive study of the brain in rich detail. Data-driven discovery of patterns of population variability in the brain has the potential to be extremely valuable for early disease diagnosis and understanding the brain. The resulting patterns can be used as imaging-derived phenotypes (IDPs), and may complement existing expert-curated IDPs. However, population datasets, comprising many different structural and functional imaging modalities from thousands of subjects, provide a computational challenge not previously addressed. Here, for the first time, a multimodal independent component analysis approach is presented that is scalable for data fusion of voxel-level neuroimaging data in the full UK Biobank (UKB) dataset, that will soon reach 100,000 imaged subjects. This new computational approach can estimate modes of population variability that enhance the ability to predict thousands of phenotypic and behavioural variables using data from UKB and the Human Connectome Project. A high-dimensional decomposition achieved improved predictive power compared with widely-used analysis strategies, single-modality decompositions and existing IDPs. In UKB data (14,503 subjects with 47 different data modalities), many interpretable associations with non-imaging phenotypes were identified, including multimodal spatial maps related to fluid intelligence, handedness and disease, in some cases where IDP-based approaches failed.

¹ 1 Introduction

² Large-scale multimodal brain imaging has enormous potential for boosting epidemiological and neuroscientific studies, generating markers for early disease diagnosis and prediction of disease progression, and the understanding of human cognition, by means of linking to clinical or behavioural variables. Recent major studies have been acquiring brain magnetic resonance imaging (MRI), genetics and demographic/behavioural data from large cohorts. Examples are the UK Biobank (UKB)¹, the Human Connectome Project (HCP)² and the Adolescent Brain Cognitive Development (ABCD) study³. These studies involve multimodal data, meaning that several distinct types of MRI data are acquired, mapping activity, functional networks, structural connectivity, white matter microstructure, and organisation and volumes of different brain tissues and sub-structures¹. However, the multimodal, high-dimensional and noisy nature of such big datasets makes many existing analytical approaches for extracting interpretable information impractical⁴.

¹³ Traditionally, large-scale neuroimaging studies first summarize the imaging data into interpretable image-derived phenotypes (IDPs)^{1,5}, which are scalar quantities derived from raw imaging data (e.g., regional volumes from structural MRI, mean task activations from task MRI, resting-state functional connectivities between brain parcels). This knowledge-based approach is simple and efficient, and effectively reduces the high-dimensional data into interpretable, compact, convenient features. However, there may well be a large loss of information, due to such "expert-hand-designed" features not capturing important sources of subject variability (or even just losing sensitivity by the pre-defined spatial sub-areas being suboptimal), as well as ignoring cross-modality relationships. Further, such uni-modal compartmentalised analyses do not utilise the fact that for many biological effects of interest we expect

^{*}Correspondence should be addressed to: Weikang Gong. E-mail: weikang.gong@ndcn.ox.ac.uk

22 there to be biological convergence across different data modalities, i.e; changes in the underlying bio-
23 logical phenotype likely manifest themselves across multiple quantitative phenotypes, so that a joint
24 analysis effectively increases both the power of detecting such effects and the interpretability of the
25 findings.

26 In contrast to such uni-modal analyses, data-driven multivariate approaches (i.e., unsupervised
27 machine learning) have been proposed, which perform simultaneous decomposition of voxel-level data
28 directly, generally representing data as the summation of a number of "components" or "modes". Each
29 mode is formed as the outer product of two vectors: one is a vector of subject weights (describing the rel-
30 ative strength of expression of that mode in each subject), and a vector of voxel weights (in effect a spatial
31 map for each data modality, describing the spatial localisation of the mode). The subject weight vectors
32 (one per mode) can be considered "features" (similar to IDPs, but being data-driven) for use in further
33 modelling, such as for the prediction of non-imaging variables. They are often either based on eigen-
34 decomposition, such as multi-set canonical correlation analysis (mCCA)^{6,7}, or based on variations of
35 independent component analysis (ICA)⁸⁻¹¹. Among them, FMRIB's Linked ICA (FLICA)¹¹ is an efficient
36 approach which has been successfully applied to identify brain systems that are involved in lifespan
37 development and diseases^{12,13}, attention deficit hyperactivity disorder¹⁴, preterm brain development¹⁵
38 and cognition and psychopathology¹⁶. FLICA has advantages compared with uni-modal analysis on
39 IDPs, including: (1) It leverages the cross-modality information of multimodal data, so has the potential
40 to detect patterns that are not discoverable in any single modality; (2) It is a data-driven objective ap-
41 proach which automatically discovers meaningful patterns in voxel-level multimodal data by searching
42 for spatial non-Gaussian sources that have been shown to likely reflect real structured features in neu-
43 roimaging data¹⁷. While this approach has been applied successfully to medium-sized cohort data¹²⁻¹⁶,
44 the original algorithms for carrying out FLICA do not scale well with increasing data size, and are unable
45 to analyze large datasets such as UKB, where dozens of different modalities over tens of thousands of
46 subjects are available. Importantly, because the core FLICA algorithms are multivariate, acting in a com-
47 plex way simultaneously across all subjects, modalities and voxels using Variational Bayesian updates of
48 parameters, this problem cannot be solved through simple parallelisation or other algorithmically sim-
49 ple methods for distributing computations across a large cluster, and so cannot be addressed simply by
50 increasing the number of processors or memory available.

51 To tackle this problem, we propose an approach that embeds advanced data compression tech-
52 niques across the different data dimensions into the FLICA approach. We use a multimodal extension
53 of MELODIC's Incremental Group Principal component analysis¹⁸ (mMIGP, applied across modalities)
54 and online dictionary learning¹⁹ (DicL, applied within-modalities) to efficiently reduce the size of multi-
55 modal neuroimaging data. The reduced data are then characterised through FLICA in terms of underly-
56 ing modality-specific maps and subject loading vectors. Here we refer to this combination of techniques
57 as Big-data FLICA, or BigFLICA for short). Two important advantages of the proposed approach are: (1)
58 Preserving key information in original data but also reducing the effects of stochastic domain-specific
59 noise; (2) Increasing the computational efficiency of the FLICA algorithm for extremely large population
60 datasets. BigFLICA is scalable for simultaneously analyzing all the multimodal data of the full 100,000-
61 subjects UKB dataset using only a modest computing cluster (**Fig. 1**).

62 We first demonstrate the effectiveness of our approach through extensive simulations. Then, in
63 real data, we quantify performance in terms of the prediction accuracy of non-imaging-derived phe-
64 notypes (nIDPs)^{20,21}, such as health outcome measures. Using voxel-level imaging data of 81 modalities
65 from 1,003 subjects in the HCP and 47 modalities from 14,053 subjects in the UKB, we show that
66 BigFLICA can perform comparably with original FLICA¹¹ in terms of the prediction accuracy for nIDPs
67 (158 in HCP and 8,787 in UKB). Most importantly, we systematically investigated whether there are
68 benefits to jointly fusing multimodal data together, instead of analysing them separately. We show



Figure 1: Overview of the proposed approach for jointly analyzing a biobank-scale multimodal neuroimaging dataset. Currently for the UKB dataset (voxel-level data, 14503 subjects, 47 modalities), the total data size is approximately 800 GB, and if we directly feed these data into FLICA and extract 750 components, we will need approximately 1066 GB CPU memory and 1680 hours computation time. Our new approach, BigFLICA, used multimodal MIGP and dictionary learning to preprocess the multimodal data; this is efficient and memory friendly, and much of this preprocessing can be easily parallelized. BigFLICA only used 50 GB memory and 73 hours to analyze the same dataset using a 24-core compute server.

69 that significant improvements in the prediction accuracy of nIDPs are found when comparing a high-
70 dimensional BigFLICA with other widely-used data analysis strategies: (1) doing single-modality ICA
71 and concatenating the results across modalities and (2) using existing IDPs (5,812 in HCP and 3,913 in
72 UKB). In particular, the improvements in prediction of many health outcome and cognitive variables
73 are large, more than doubling prediction accuracy for some variables. Furthermore, we investigate the
74 relationship between modes derived by BigFLICA and IDPs. We find that although the modes were esti-
75 mated from the same set of voxel-level data, they have complementary information which can be com-
76 bined together to further increase the prediction accuracy of nIDPs. Finally, we applied BigFLICA to
77 analyze the UKB data and extracted 750 components. Existing multimodal ICA cannot estimate this
78 many modes from this many subjects. We found several interpretable associations between modes of
79 BigFLICA and nIDPs, including modes that relate to *fluid intelligence, handedness, age started wearing*
80 *glasses or contact lenses and hypertension*. In many cases BigFLICA can find associations with nIDPs with
81 greater statistical sensitivity than was possible with IDPs. Overall, BigFLICA demonstrated the advan-
82 tages of data-driven joint multimodal modelling in the analysis of biobank-scale multimodal datasets.

83 2 Results

84 **Brief overview of the proposed approach: BigFLICA.** FLICA¹¹ is a Bayesian ICA approach for multi-
85 modal data fusion. The input of FLICA is K modalities' data matrices $Y^{(k)}$ with dimensions $N \times P_k$, $k =$
86 $1, \dots, K$, where P_k is the number of features (e.g., voxels) and N is the number of subjects. FLICA aims to
87 find a joint L -dimensional decomposition of all $Y^{(k)}$: $Y^{(k)} = HW^{(k)}X^{(k)} + E^{(k)}$, where $H_{(N \times L)}$ is the shared
88 subject mode (mixing matrix) across modalities (a vector of subject weights for each mode), so is a 'link'
89 across different modalities, $W_{(L \times L)}^{(k)}$ is a positive diagonal mode-weights matrix (one overall weight per
90 modality per mode), $X_{(L \times P_k)}^{(k)}$ is the independent (spatial) feature maps for the L components of a modal-
91 ity (one map per modality per mode), and $E_{(N \times P_k)}^{(k)}$ is the modality-specific Gaussian noise term (Fig. 1).
92 We propose two efficient approaches that can either be used separately or combined together to reduce

93 the size of the original data matrices, and therefore reduce the computational load of the original FLICA.
94 An overview of BigFLICA is shown in **Fig. 1**.

95 The first approach, termed multimodal extension of MELODIC's Incremental Group Principal
96 component analysis¹⁸ (mMIGP), aims to reduce the subject dimension to a linear combination of the
97 original subjects. mMIGP is a time- and memory-efficient approximation of principal component anal-
98 ysis (PCA) on feature-concatenated multimodal data. To this end, if we aim to get a L^* decomposition,
99 we first apply MIGP¹⁸ separately within each modality to estimate $\tilde{U}_{(N \times L^*)}^{(k)}$, which is an approximation
100 of an L^* -dimensional PCA decomposition of one modality $Y^{(k)}$. This step can be done in parallel across
101 modalities. Then, we concatenate all $\tilde{U}^{(k)}$ in the component dimension and apply another MIGP to get
102 $U_{(N \times L^*)}$, which is an L^* -dimensional approximate PCA decomposition of all modalities together. Fi-
103 nally, we project the original data of each modality $Y^{(k)}$ to the PCA-reduced space using U . If no further
104 reduction (e.g., dictionary learning as below) is to be applied, the data that could then be fed into the
105 core FLICA would be the K component-by-feature matrices $V^{(k)}$ of size $L^* \times P_k$, and FLICA would then
106 extract L ($L < L^*$) components from these (**Methods**). This step almost adds little computational cost
107 compared with the original FLICA, because a similar PCA step is needed to initialize the parameters of
108 the original FLICA, but this approach is feasible for large numbers of subjects and modalities. Although
109 different modalities usually have different overall signal-to-noise ratios (SNR), which is largely ignored
110 by this mMIGP step, the subsequent FLICA can take this into account by the modality-specific noise
111 terms, and a high-dimensional mMIGP is used to capture modes with even small variations in each
112 modality.

113 It is known that voxels are correlated in both a local fashion (local spatial autocorrelation) and
114 across brain networks (long range correlation); hence, effective feature subsampling could hope to cap-
115 ture all important information in the data but also reduce the cost of spatial modelling in FLICA²².
116 Therefore, we incorporate an approach, termed sparse online Dictionary Learning¹⁹ (DicL), to reduce
117 the dimension of feature (e.g., voxel) space that can capture both local and distant spatial correlation
118 structure. Specifically, for each modality, we use DicL to model the $V^{(k)}$ as a sparse linear combination
119 of L^{**} basis elements: $V^{(k)} = A^{(k)}D^{(k)}$, where $D^{(k)}$ is the *sparse spatial dictionary basis*, and $A^{(k)}$ is the
120 *feature loadings*. By minimizing the reconstruction error, and enforcing sparsity in the dictionary basis
121 $D^{(k)}$, we aim to achieve an optimal subsampling of feature space. The inputs of FLICA are then K smaller
122 matrices $A^{(k)}$, which are only of dimension $L^* \times L^{**}$, and FLICA then extracts L ($L < \min(L^*, L^{**})$) com-
123 ponents from these (**Methods**). Compared with doing FLICA with the original K large $N \times P_k$ matrices,
124 using the DicL preprocessed data can greatly reduce the computation load of FLICA. DicL can easily be
125 parallelized across modalities and is memory friendly, which further increases efficiency (**Fig. 1**).

126 **Evaluation of BigFLICA in simulations.** We first applied BigFLICA on simulated data to evaluate the
127 performance of mMIGP and DicL as data preprocessing approaches under different parameter settings
128 and data signal-to-noise ratios. The mean correlation of extracted components with simulated ground
129 truth was compared with the corresponding result from the original FLICA (**Methods**).

130 For mMIGP, **Fig. 2a** shows that, in most of the situations, the BigFLICA with mMIGP preprocessing
131 gave similar results to the original FLICA, and both FLICA and BigFLICA accurately find the underlying
132 ground truth in most cases. This is in agreement with results of simulations in the MIGP paper¹⁸ that it
133 can accurately approximate a full-data PCA in different situations. The optimal dimension of mMIGP is
134 different among simulations; sometimes a relative low dimension can achieve an accurate estimation of
135 components (e.g. **Fig. 2a** first three columns), while in other cases a high dimension is needed (e.g. **Fig.**
136 **2a** the fourth column).

137 For DicL, **Fig. 2b** shows that in almost all circumstances: (1) increasing the dictionary dimensions

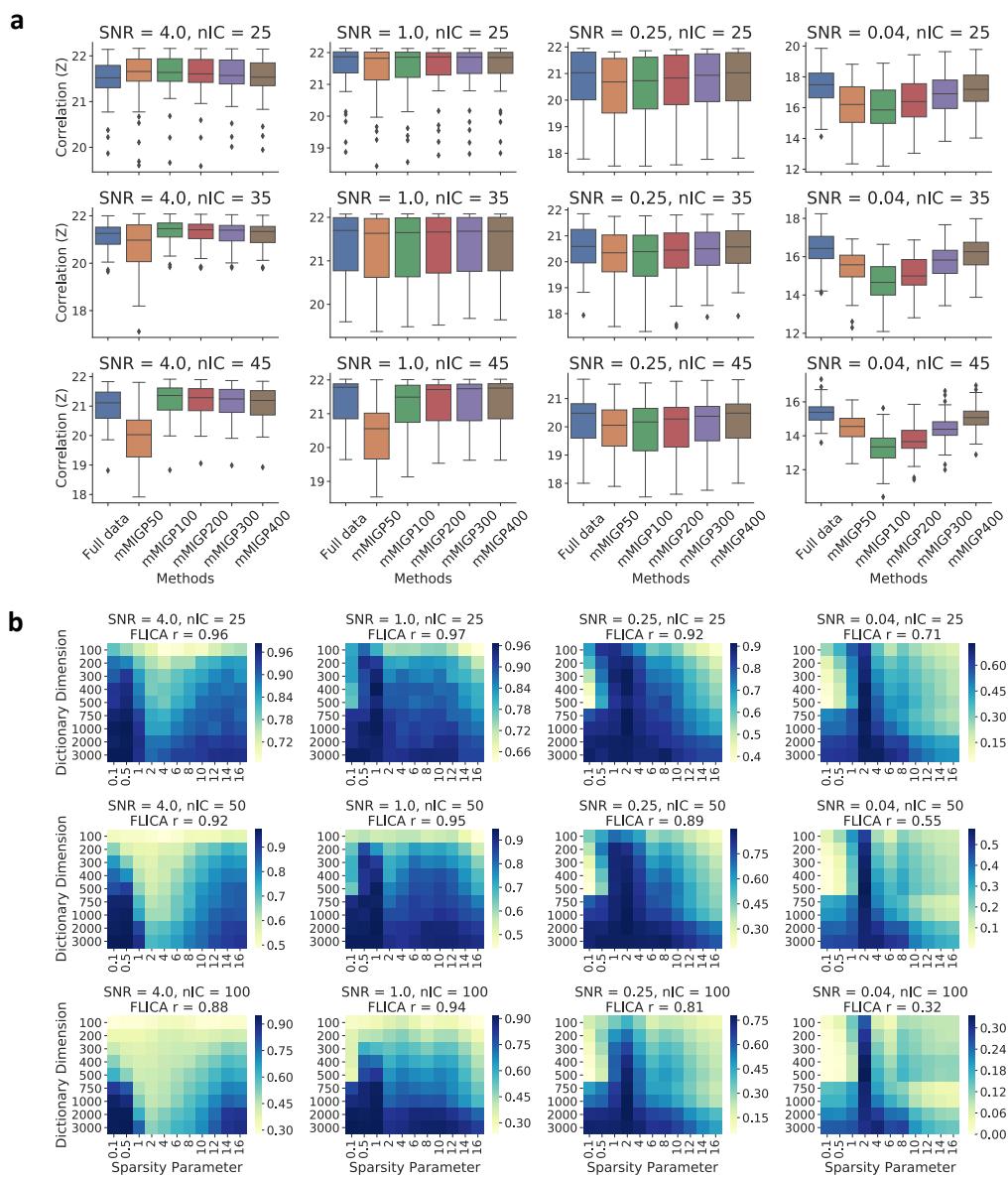


Figure 2: Evaluation of multimodal extension of MIGP (mMIGP) and dictionary learning (DicL) as the data preprocessing steps for the FLICA using simulations. BigFLICA achieves similar performance as compared with original FLICA that uses the full data. a, Evaluation of mMIGP preprocessing. We compared the correlations (Z-transformed) of extracted components with ground truth across 50 simulations using the original FLICA (the left column of each figure) and the mMIGP preprocessed FLICA (other columns). The mMIGP dimensions vary between 50 and 400; the SNRs are between 4 and 0.04 (left to right), and the number of FLICA and ground truth components are 25, 35, 45 (top to bottom). As there are 500 subjects, the reduction factor is from 10 to 1.25. b, Evaluation of DicL preprocessing. We compared the the correlations of extracted components with ground truth using the original FLICA (FLICA results given in the titles of each figure) and the DicL preprocessed FLICA with different sparsity parameters and dictionary dimensions (cells of the heatmaps). The SNRs are between 4 and 0.04 (left to right), and the number of FLICA and ground truth components are 25, 50, 100 (top to bottom). As there are 27,000 original features per modality, the reduction factor is from 270 to 9.

138 will boost the performance of subsequent FLICA analysis; (2) the optimal sparsity parameters are usually
 139 between $\lambda = 0.5$ to 2, and they have similar performance; (3) In most cases the optimal performance
 140 given by DicL matches that of non-reduced analysis (noted in figure legends). Therefore, in the real data
 141 analysis, when using the DicL approach, we always use a very high dimensional DicL decomposition
 142 and fix the sparsity parameter to $\lambda = 1$.

Table 1: Comparison of computation time and amount of RAM usage of BigFLICA with the original FLICA in the UKB dataset (14,503 subjects, 47 different modalities). BigFLICA greatly increases computational efficiency in different settings. Both BigFLICA and FLICA were run on the same computer using all 24 cores in all computation stages with Intel Xeon CPU E7-8857 v2 @ 3.00GHz and 2TB RAM.

Approaches		Number of components					100K subjects
		nIC=25	nIC=100	nIC=250	nIC=500	nIC=750	750 components (estimated)
Computation Time (hours)	The original FLICA	160 h	300 h	580 h	1,020 h	1,680 h	12,000 h
	BigFLICA (mMIGP preprocessing)	23 h	54 h	135 h	315 h	565 h	630 h
	BigFLICA (mMIGP+DicL preprocessing)	52 h	53 h	58 h	65 h	73 h	120 h
Peak RAM (GB)	The original FLICA	801 GB	821 GB	879 GB	963 GB	1,066 GB	6,000 GB
	BigFLICA (mMIGP preprocessing)	66 GB	88 GB	136 GB	215 GB	297 GB	297 GB
	BigFLICA (mMIGP+DicL preprocessing)	50 GB	50 GB	50 GB	50 GB	50 GB	50 GB

143 **Computation time comparison.** Table 1 shows the comparison of the computation time and memory requirement of BigFLICA with the original FLICA in the UKB dataset. All code was implemented in
 144 Python 2.7, and both BigFLICA and FLICA were run using 24 cores on a single compute node with Intel
 145 Xeon CPU E7-8857 v2 @ 3.00GHz CPU and 2048 GB RAM. The computation time includes: (1) Prepro-
 146 cessing of data using mMIGP and DicL (BigFLICA only); (2) Initialization of FLICA parameters; (3) FLICA
 147 VB parameter updates. For the 100,000-subjects data, BigFLICA greatly decreases the computation time
 148 and memory usage from an unrealistic amount to a modest configuration for a modern HPC cluster,
 149 which therefore allows for the possibility of data-driven population phenotype discovery.
 150

151 **Real data: Comparing BigFLICA with the original FLICA based on the prediction accuracy of nIDPs.**
 152 As there is no ground truth available, we tested modes of BigFLICA have a similar prediction accuracy
 153 of nIDPs compared with the original FLICA, using data from the HCP, and a subset of 1,036 subjects
 154 from the UKB. Elastic-net regression with nested 5-fold cross-validation was used to predict each of
 155 the nIDPs. This approach is widely-used and has been shown to achieve a robust and state-of-the-art
 156 performance in many neuroimaging studies^{24,25}. Pearson correlation between each of the predicted
 157 and the true nIDPs in the outer test fold is used to quantify accuracy. The statistical significance of
 158 differences of prediction accuracy between two approaches are estimated by a weighted paired t-test
 159 approach. (**Methods**).

160 **Fig. 3** shows the Bland-Altman plots comparing the prediction accuracy of nIDPs between original
 161 FLICA and BigFLICA with mMIGP preprocessing only (**Fig. 3a**), and with DicL preprocessing only (**Fig.**
 162 **3b**), and with both data reduction approaches (**Fig. 3c**), in the UKB and HCP datasets. In these compar-
 163 isons, mMIGP reduced the data to approximately 1/10 to 1/2 of the original data size, and DicL reduced
 164 data to approximately 1/75 of the original data size. Overall, BigFLICA can estimate similar sets of modes
 165 with comparable prediction accuracy in real multimodal neuroimaging data, i.e., the difference of the
 166 correlation between two methods is centered around zero across a wide range of mean correlation val-
 167 ues (which are also reflected in the insignificant p-values of weighted paired t-test), which demonstrates
 168 that the mMIGP and DicL approaches are effective to reduce data and preserve key information in the
 169 data.

170 **Comparing BigFLICA with multiple independent single-modality ICA decomposition.** We also com-
 171 pared BigFLICA outputs against features pooled across those from separate ICA processing of each
 172 modality. **Fig. 4a** shows that BigFLICA has a worse prediction performance than via running ICA sep-
 173 arately on each modality when the dimensionality L is low. This is because at low dimensional de-
 174 composition, single-modality ICA is most efficient because the constraints imposed on the degrees-of
 175 freedom implied in the FLICA model is insufficient to capture the important data variation into joint
 176 components. However, when L becomes large, the prediction accuracy becomes better than the single-
 177 modality ICA (e.g., ≥ 250 in UKB). This is because, at high dimensional decomposition, BigFLICA effec-

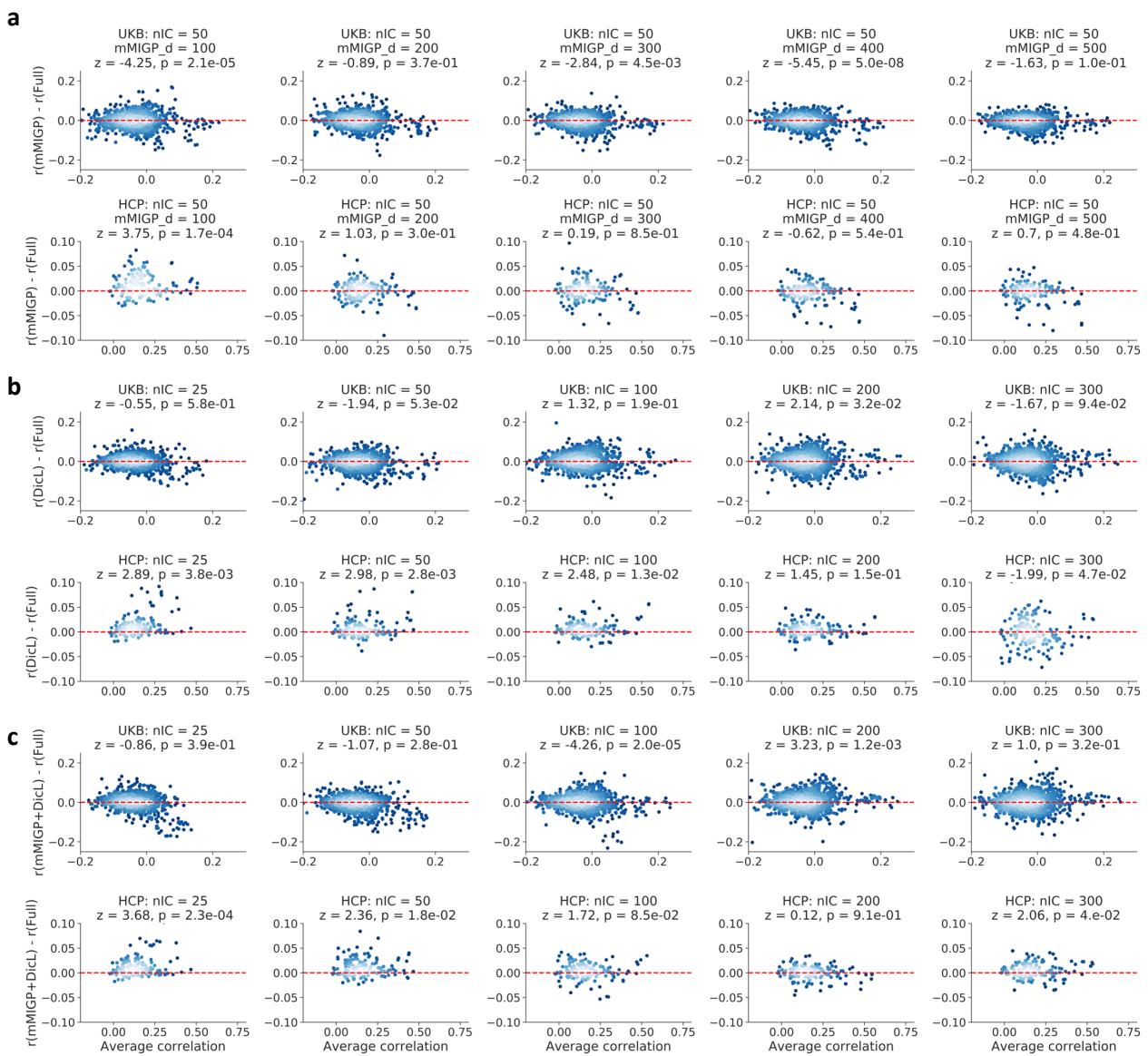


Figure 3: Comparison of prediction accuracy of nIDPs between BigFLICA and the original FLICA. Overall, for most of the comparisons, the differences of prediction accuracy are not significant. In each of the Bland–Altman plots, each point represents the prediction of one nIDP, where the x-axis is the average prediction correlation of the two approaches while the y-axis is the difference, i.e., BigFLICA - FLICA. The z- and p-values in the titles reflected the statistical significance of the differences. The Bonferroni correction 0.05 threshold corresponds to a raw p-value of 1.7e-3. a, Comparing FLICA with mMIGP preprocessing with the original FLICA. We used a subset of 1,036 subjects in the UKB dataset (top) and the HCP (bottom). The number of estimated FLICA components is set to 50, and mMIGP dimensions are set from 100 to 500. b, Comparing FLICA with DicL preprocessing with the original FLICA. We used a subset of 1,036 subjects in the UKB dataset (top) and the HCP (bottom). The dictionary dimension is set to a high value of 2000, and the sparsity parameter is set to $\lambda = 1$ for all modalities. The number of estimated FLICA components are set from 25 to 300. c, Comparing FLICA with both mMIGP and DicL preprocessing combined, with the original FLICA. The mMIGP dimension is set to 500, and other settings are the same as in b. We use only a subset of UKB here so that running the original FLICA is computationally feasible.

178 tively combines multimodal information by considering cross-modal correlation in the data decompo-
 179 sition stage. Although the cross-modal correlation is considered in the final prediction stage when using
 180 single-modality ICA, the fact that BigFLICA identifies and takes advantage of correlated information be-
 181 tween modalities at an earlier stage in feature generation helps improve the prediction performance.

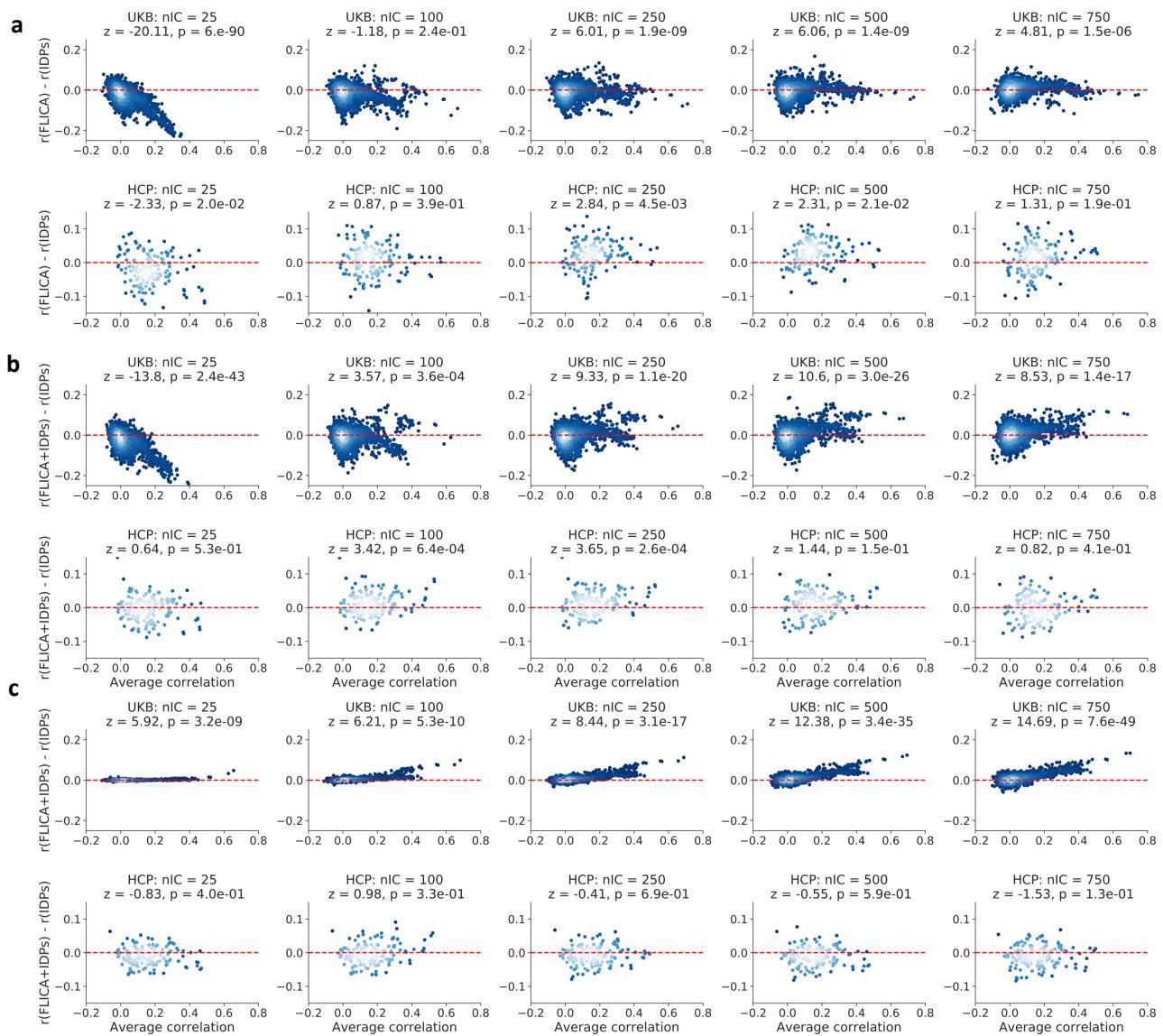


Figure 4: Comparison of prediction accuracy of nIDPs between BigFLICA against single-modality ICA and the IDPs. Overall, for high-dimensional BigFLICA decompositions in the UKB dataset, BigFLICA achieved statistical significant increases of prediction accuracy of nIDPs compared with single-modality ICA and IDPs. Combining BigFLICA and IDPs together future improves compared with IDPs alone. In each of the Bland–Altman plots, each point represents the prediction of an nIDP, where the x-axis is the average prediction correlation of the two approaches, while the y-axis is the difference. The z- and p-values in the titles reflected the statistical significance of the differences. The Bonferroni correction 0.05 threshold corresponds to a raw p-value of 1.7e-3. a, Comparing BigFLICA with the concatenation of single-modality ICA outputs. Top: UKB; Bottom: HCP. The number of FLICA components is set from 25 to 750. b, Comparing BigFLICA with IDPs. Top: UKB; Bottom: HCP. The number of IDPs is 3,913 in UKB and 5,812 in the HCP. c, Comparing the concatenation of BigFLICA and IDPs against IDPs only. Top: UKB; Bottom: HCP.

182 **Comparing BigFLICA with hand-curated imaging-derive phenotypes** We compared the predictive performance of BigFLICA with IDPs in both HCP and UKB datasets (Methods). Fig. 4b shows that, in the UKB data, when the number of modes is low, BigFLICA has a worse predictive power than the joint performance of 3,913 IDPs, due to the same insufficient degree-of-freedom reason as above. However, when the dimensionality becomes higher, BigFLICA is clearly outperforming the IDPs, owing to jointly fusing multimodal voxelwise data by considering cross-modality correlation. In the HCP data, the performance is overall similar. These results indicate that BigFLICA can potentially explain more pheno-

189 typic and behavioural variances than IDPs.

190 In more detail, **Tables S1** shows that, in the UKB dataset, the high-dimensional BigFLICA (nIC=750)
191 has improved prediction accuracy for many nIDPs that relate to *cognition phenotypes* and *health out-*
192 *comes* compared with IDPs. These tables do not include nIDPs where both methods have low predictive
193 power ($r < 0.1$). In the HCP dataset (**Table S2**), BigFLICA (nIC=100) also shows improved prediction
194 accuracy in many cognitive and health outcomes variables compared with using IDPs.

195 Further, when we concatenated the modes of BigFLICA and IDPs together to predict nIDPs, as
196 shown in **Fig. 4c**, the combined feature sets have a significant improvement of prediction accuracy than
197 the IDPs alone in the UKB data. There are almost no differences for the same comparison in the HCP
198 data. This suggests that BigFLICA and IDPs may contain some complementary information of nIDPs.

199 To investigate the relationships between BigFLICA and IDPs further, we built prediction models
200 that used modes of BigFLICA to predict each of the IDPs, to further characterise information overlap
201 and complementarity between the two approaches. As shown in **Figs. S2a** and **S2b**, different types of
202 IDPs can be predicted differently, and the resting-state functional connectivities always had the worst
203 accuracy in both the HCP and the UKB datasets, because they are (relatively) noisy. However, when using
204 BigFLICA modes to predict 6 new summary features of the connectivity matrices (derived by applying
205 ICA to the matrix of subjects by network matrix edges)⁵, the accuracy is very high (r range from 0.85
206 to 0.89 for a 100 dimensional BigFLICA decomposition). In addition, when we used IDPs to predict
207 modes of BigFLICA, as shown in **Figs. S2c** and **S2d**, the prediction correlation almost showed a bimodal
208 distribution, which means that some of the FLICA modes can be predicted by the IDPs (mean $r \approx 0.8$)
209 while others cannot (mean $r \approx 0.2$). These results further demonstrates that BigFLICA and IDPs span
210 significant complementary variance.

211 **BigFLICA comparison with mCCA and reproducibility** We next compared BigFLICA against mCCA
212 (eigendecomposition based modelling, which of course also would require similar advances to BigFLICA
213 in order to work on large data; see online Methods). Overall, BigFLICA had (very slightly) improved pre-
214 diction accuracy (**Fig. S3**), and with slightly more parsimonious modelling (**Fig. S4**). However, with
215 split-half (across subjects) reproducibility testing, BigFLICA components were considerably more re-
216 producible than those from mCCA (median BigFLICA correlation greater than 0.9 in all cases, while
217 many mCCA dimensionalities have median correlation less than 0.5) (**Fig. S5**).

218 **Examples of BigFLICA modes in the 14k UKB dataset** We now give four examples of significant asso-
219 ciations between BigFLICA modes and nIDPs, namely, *Fluid intelligence*, *Age started wearing glasses or*
220 *contact lenses*, *Handedness* and *hypertension*. In **Fig. 5**, we show the top four most strongly associated
221 modalities in FLICA modes that correlate with a given nIDP. **Fig. S6** shows the population cross-subject
222 mean maps for several task and rest fMRI modalities fed into FLICA. This helps give interpretive context
223 for the FLICA mode maps, which depict subject variability in the activity/connectivity relative to these
224 group mean maps.

225 For *Fluid intelligence*, using all modes (ICs) from the 750 dimensional BigFLICA decomposition
226 as features (predictors) in multivariate elastic net prediction, a cross-validated prediction correlation of
227 $r = 0.26$ is achieved. When we correlated each of the BigFLICA modes and IDPs with the fluid intel-
228 ligence score in the UKB, we found that several task-fMRI-related BigFLICA modes have the strongest
229 associations (**Fig. 5a**). The first (IC 25) involves task contrast "faces" and "faces>shapes" and the second
230 (IC 57) involves contrast "shapes" and "face" (see **Tables S5** for the full list of these modalities). As the
231 correlation of the mode IC 25 (i.e., its subject weights vector) with fluid intelligence is negative ($r=-0.14$),
232 this means that the negative-weights voxels (such as in the anterior insula) are positively correlated

233 with intelligence. The fMRI task (Hariri faces-shapes matching²⁹) has, as expected, the greatest population
234 average activation in sensory-motor areas (plus some amygdala involvement due to the emotionally
235 negative nature of the faces), as seen in **Fig. S6**. However, the main brain areas involved in these
236 modes are distinct, including anterior cingulate cortex, frontal pole, inferior frontal gyrus, and anterior
237 insula; it is therefore interesting that the areas found by BigFLICA to be modulated in these components
238 (and found to associate with intelligence) are more “frontal, cognitive” areas than the sensory-motor
239 areas primarily activated on average. The top associations between fluid intelligence and IDPs also involve
240 task-fMRI IDPs (**Tables S3**), but these were a factor of two weaker than associations with BigFLICA
241 modes.

242 For *Age started wearing glasses or contact lenses*, BigFLICA achieved a prediction correlation of
243 $r = 0.16$. Several resting-state connectivity and task modalities showed associations in primary visual
244 areas (**Fig. 5b**), which is consistent with the fact that this is a vision-related health variable. Lower age
245 of first wearing glasses is correlated with stronger activity in primary visual areas, and also with strength
246 of resting-fMRI connectivity (or functional coherence) within the relevant areas of group-average con-
247 nectivity; interestingly, in nearby distinct (but still primary visual) areas, there is reduction of correlation
248 (blue voxels), suggesting greater differentiation of primary visual areas.

249 For *Handedness*, BigFLICA achieved a prediction correlation of $r = 0.23$. BigFLICA identified sev-
250 eral multimodal, lateralized (or laterally asymmetric) modes, including resting-state mode 14 (left-lateralised
251 language network), task, surface area and white matter tracts (**Fig. 5c**). There are several resting-state
252 connectivity-related IDPs correlated with handedness (**Tables S3**), consistent with a recent study³⁰ that
253 also used UKB IDPs, while no IDPs related to other modalities are found significant; in both cases the
254 maximum IDP correlation only reached $r=0.12$, whereas the strongest association with BigFLICA modes
255 was almost double this.

256 For a health variable *hypertension* (**Fig. 5d**), BigFLICA achieved a prediction correlation of $r =$
257 0.22 . Several TBSS-related modalities showed consistent associations in the External Capsule tracts.
258 Meanwhile, white matter hyperintensity (T2-Lesion volume) in the corresponding areas is also higher
259 in people with hypertension. Several consistent findings have been reported in the literature³¹⁻³³.

260 3 Discussion

261 In this paper, we presented BigFLICA, a multimodal data fusion approach which is scalable and tuneable
262 to analyze the full UK-Biobank neuroimaging dataset, and other large-scale multimodal imaging stud-
263 ies. To the best of our knowledge, this is the first approach for data-driven (unsupervised) multimodal
264 analysis in a brain imaging dataset of this size and complexity. Building on the top of the powerful FLICA
265 model, we proposed a two-stage dimension-reduction approach that combines an incremental group-
266 PCA (mMIGP) and dictionary learning (DicL) to effectively preprocess the multimodal dataset and re-
267 duce the computational load of the final FLICA, while maintaining or even improving performance,
268 with as much as a 150-fold “intelligent” reduction in data size. We provide effective ways of choosing
269 the hyper-parameters of BigFLICA, so that it is free of tuning except for choosing the final number of
270 estimated components. Although this approach is motivated by the need for analyzing extremely big
271 neuroimaging data, it is also applicable to other kinds of data such as genetics and behavioural mea-
272 sures. An easy-to-use version of this software will be integrated into an upcoming version of the FSL
273 software package^{34,35}. BigFLICA results on UKB will also be released via the UKB database as new data-
274 driven IDPs (image features), for further epidemiological and neuroscientific research.

275 A strength of our work is that, unlike previous work that was limited to more moderate datasets
276 and a few phenotypic and behavioural variables^{8-11,36}, we used two of the largest, high-quality mul-

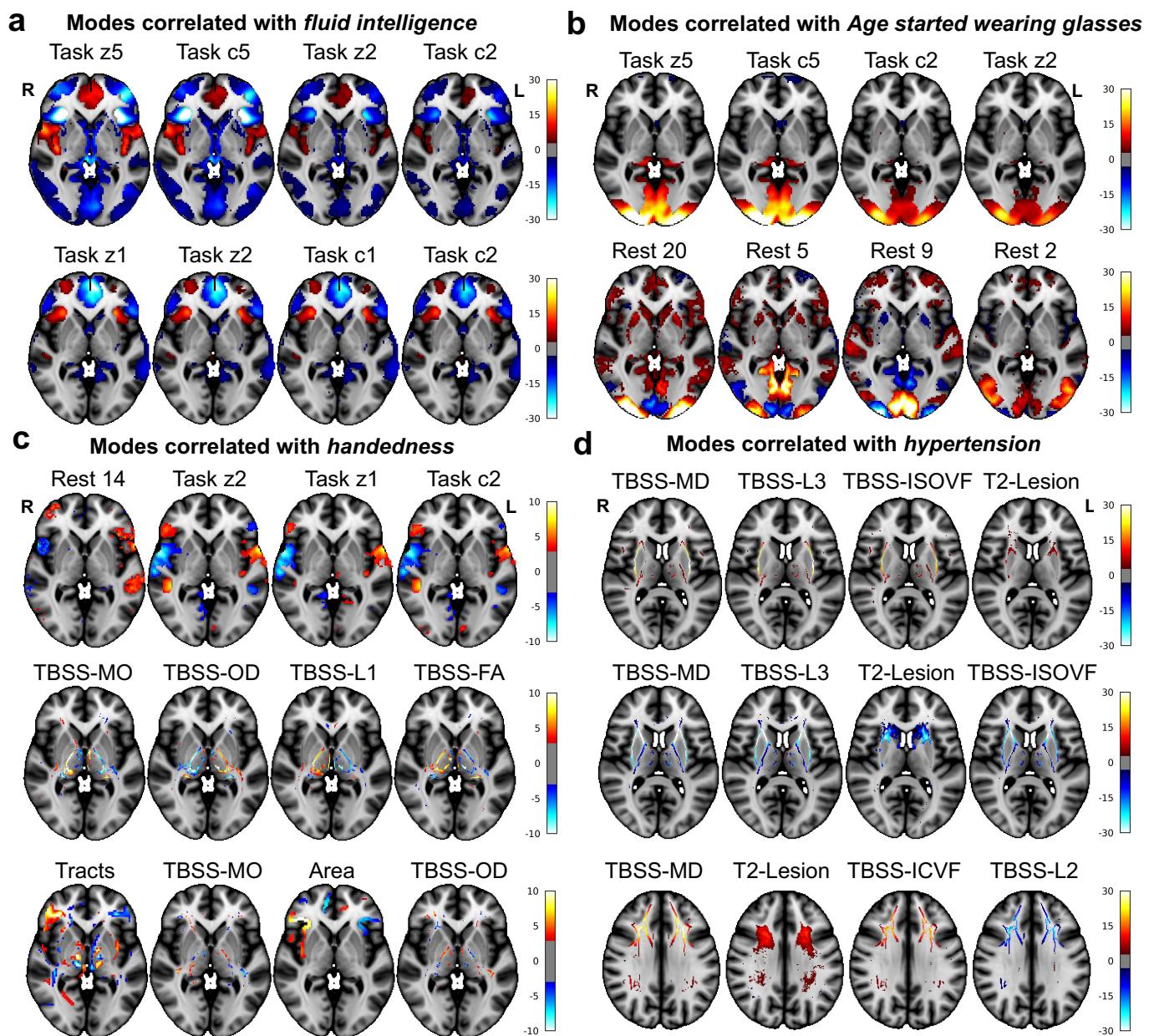


Figure 5: Examples of BigFLICA modes in the 14k UKB dataset. For each subfigure, each row shows one IC (BigFLICA mode or independent component) with top 4 most strongly associated modalities. **a**, Two BigFLICA modes that significantly correlate with *fluid intelligence* (IC25: $r = -0.14$; IC57: $r = -0.12$). **b**, Two BigFLICA modes that significantly correlate with *Age started wearing glasses or contact lenses* (IC164: $r = -0.10$; IC13: $r = -0.05$). **c**, Three BigFLICA modes that significantly correlate with *handedness* (IC235: $r = -0.23$; IC569: $r = 0.07$; IC232: $r = -0.04$). **d**, Three BigFLICA modes that significantly correlate with *hypertension* (IC259: $r = 0.12$; IC13: $r = -0.11$; IC319: $r = -0.09$). The Bonferroni corrected 0.05 threshold corresponds to an uncorrected p-value of 9.2×10^{-9} (corrected for number of components (750) and number of nIDPs (7245)). All of the above correlations passed the Bonferroni threshold except for IC232 with uncorrected $p = 2.1 \times 10^{-7}$.

277 timodal neuroimaging datasets, and thousands of phenotypic and behavioural variables to validate
 278 the proposed approach. We demonstrated that BigFLICA is not only much faster than the original
 279 FLICA (and can be run on very large data that is simply not analysable with FLICA or other existing
 280 methods), but also estimates similar modes with a comparable performance for predicting the non-
 281 imaging-derived phenotypes in real data (when tested on a large data subset that is just small enough
 282 to allow for comparison against FLICA). We provide insights into the advantages of data-driven multi-
 283 modal fusion in big datasets by quantitative analysis^{37,38}. First, when comparing BigFLICA with sim-

284 pler IDP-based approaches (and also single-modality ICA approaches), we demonstrated that a high-
285 dimensional BigFLICA has improved predictive power overall. We demonstrated the value of multi-
286 modal fusion instead of analyzing each modality separately. Second, when combining high-dimensional
287 BigFLICA-derived features with IDPs together, the predictive power increased further compared with us-
288 ing either method alone. In addition, when we used BigFLICA-derived features and manually created
289 (with expert knowledge) IDPs to predict each other, they cannot predict each other perfectly (although
290 they are derived from the same imaging data). This indicates that BigFLICA-derived features and IDPs
291 can be complementary to each other, both therefore providing potentially important imaging biomark-
292 ers that capture different signal in the imaging data. An interesting finding is that although a high-
293 dimensional BigFLICA has a much higher predictive power than a low dimensional decomposition, a
294 low dimensional decomposition can still explain more than 80% of the total variance of the high dimen-
295 sional decomposition. This suggests that some the phenotypic and behavioural variables are explained
296 by only small proportions of variance of imaging data. Finally, in addition to the value of using BigFLICA-
297 derived features for relating imaging to non-imaging data, BigFLICA components (particularly at lower
298 dimensionalities) may allow us to learn more about how the different brain imaging modalities (and
299 hence different spatial and biological aspects of the brain's structure and function) relate to each other.

300 We see opportunities to improve the current approach. First, BigFLICA is limited to linear feature
301 estimation, while the “ideal, true” information in imaging data may be highly nonlinear. Therefore, a
302 nonlinear extension of BigFLICA, which might be achieved with kernel methods or deep neural net-
303 works, is an important area of further research. Second, BigFLICA is an unsupervised dimension reduc-
304 tion and feature generation approach. However, integrating some supervision, i.e., the target variable
305 (such as disease outcomes), into the dimension reduction may boost the performance of the algorithm.
306 Additionally, because BigFLICA generates data-driven features, as opposed to expert-created IDPs, the
307 biological or anatomical interpretation of features is often likely not to be immediately obvious, requir-
308 ing potentially intensive expert study. Future work could attempt to automate this interpretation pro-
309 cess, for example by relating features to existing anatomical templates and atlases, and even by mining
310 imaging literature. Finally, BigFLICA, or extensions, may be an effective way of discovering imaging
311 confound factors³⁹ that cannot be found by traditional approaches.

312 **Acknowledgments.** We are grateful to UK Biobank and its participants (access application 8107). We thank the
313 WU-Minn HCP Consortium for their invaluable contributions in generating the publicly available HCP data and
314 implementing the procedures needed to acquire, analyze, visualize and share these datasets. Computation used
315 the Oxford Biomedical Research Computing (BMRC) facility, a joint development between the Wellcome Cen-
316 tre for Human Genetics and the Big Data Institute supported by Health Data Research UK and the NIHR Oxford
317 Biomedical Research Centre. Financial support was provided by the Wellcome Trust Core Award Grant Number
318 203141/Z/16/Z.

319 **Author contributions.** W.G, C.B and S.S proposed the study, formulated the model, analyzed the data and wrote
320 the manuscript.

321 **Competing interests.** The authors declare that they have no competing financial interests.

322 **Data availability.** BigFLICA will be released in an upcoming version of FSL. BigFLICA-derived features will be
323 available from the UK Biobank database. For UK Biobank, all source data (including raw and processed brain
324 imaging data, derived IDPs, and non-imaging measures) is available from UK Biobank via their standard data
325 access procedure (see <http://www.ukbiobank.ac.uk/register-apply>). For HCP, data can be down-
326 loaded via website (<http://humanconnectome.org/data>) and ConnectomeDB. Matlab software for per-
327 forming prediction using elastic-net regression is available at <https://github.com/vidaurre/NetsPredict>.

328 References

- 330 1. Miller, K. L. *et al.* Multimodal population brain imaging in the UK Biobank prospective epidemiological study. *Nature neuroscience* **19**, 1523–1536 (2016).
- 332 2. Van Essen, D. C. *et al.* The WU-Minn human connectome project: an overview. *Neuroimage* **80**, 62–79 (2013).
- 333 3. Jernigan, T. L., Brown, S. A. & Dowling, G. J. The adolescent brain cognitive development study (2018).
- 334 4. Smith, S. M. & Nichols, T. E. Statistical challenges in “big data” human neuroimaging. *Neuron* **97**, 263–268 (2018).
- 335 5. Elliott, L. T. *et al.* Genome-wide association studies of brain imaging phenotypes in UK Biobank. *Nature* **562**, 210 (2018).
- 336 6. Kettenring, J. R. Canonical analysis of several sets of variables. *Biometrika* **58**, 433–451 (1971).
- 337 7. Klami, A., Virtanen, S., Leppäaho, E. & Kaski, S. Group factor analysis. *IEEE transactions on neural networks and learning systems* **26**, 2136–2147 (2015).
- 339 8. Calhoun, V. D. *et al.* Method for multimodal analysis of independent source differences in schizophrenia: combining 340 gray matter structural and auditory oddball functional data. *Human brain mapping* **27**, 47–62 (2006).
- 341 9. Liu, J. *et al.* Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel 342 ica. *Human brain mapping* **30**, 241–255 (2009).
- 343 10. Beckmann, C. F. & Smith, S. M. Tensorial extensions of independent component analysis for multisubject fMRI analysis. 344 *Neuroimage* **25**, 294–311 (2005).
- 345 11. Groves, A. R., Beckmann, C. F., Smith, S. M. & Woolrich, M. W. Linked independent component analysis for multimodal 346 data fusion. *Neuroimage* **54**, 2198–2217 (2011).
- 347 12. Groves, A. R. *et al.* Benefits of multi-modal fusion analysis on a large-scale dataset: life-span patterns of inter-subject 348 variability in cortical morphometry and white matter microstructure. *Neuroimage* **63**, 365–380 (2012).
- 349 13. Douaud, G. *et al.* A common brain network links development, aging, and vulnerability to disease. *Proceedings of the 350 National Academy of Sciences* **111**, 17648–17653 (2014).
- 351 14. Ball, G. *et al.* Multimodal structural neuroimaging markers of brain development and adhd symptoms. *American Journal 352 of Psychiatry* **176**, 57–66 (2018).
- 353 15. Ball, G. *et al.* Multimodal image analysis of clinical influences on preterm brain development. *Annals of neurology* **82**, 354 233–246 (2017).
- 355 16. Alnæs, D. *et al.* Association of heritable cognitive ability and psychopathology with white matter properties in children 356 and adolescents. *JAMA psychiatry* **75**, 287–295 (2018).
- 357 17. Griffanti, L. *et al.* ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. 358 *Neuroimage* **95**, 232–247 (2014).
- 359 18. Smith, S. M., Hyvärinen, A., Varoquaux, G., Miller, K. L. & Beckmann, C. F. Group-PCA for very large fMRI datasets. 360 *Neuroimage* **101**, 738–749 (2014).
- 361 19. Mairal, J., Bach, F., Ponce, J. & Sapiro, G. Online learning for matrix factorization and sparse coding. *Journal of Machine 362 Learning Research* **11**, 19–60 (2010).
- 363 20. Liégeois, R. *et al.* Resting brain dynamics at different timescales capture distinct aspects of human behavior. *Nature 364 communications* **10**, 2317 (2019).
- 365 21. Kong, R. *et al.* Spatial topography of individual-specific cortical networks predicts human cognition, personality, and 366 emotion. *Cerebral Cortex* **29**, 2533–2551 (2018).
- 367 22. Hoyos-Idrobo, A., Varoquaux, G., Kahn, J. & Thirion, B. Recursive nearest agglomeration (ReNA): fast clustering for 368 approximation of structured signals. *IEEE transactions on pattern analysis and machine intelligence* **41**, 669–681 (2019).
- 369 23. Allen, G. I., Grosenick, L. & Taylor, J. A generalized least-square matrix decomposition. *Journal of the American Statistical 370 Association* **109**, 145–159 (2014).
- 371 24. Cui, Z. & Gong, G. The effect of machine learning regression algorithms and sample size on individualized behavioral 372 prediction with functional connectivity features. *Neuroimage* **178**, 622–637 (2018).
- 373 25. Jollans, L. *et al.* Quantifying performance of machine learning methods for neuroimaging data. *NeuroImage* (2019).
- 374 26. Kelly, S. *et al.* Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results 375 from the ENIGMA Schizophrenia DTI Working Group. *Molecular psychiatry* (2017).

376 27. Van Rooij, D. *et al.* Cortical and subcortical brain morphometry differences between patients with autism spectrum
377 disorder and healthy individuals across the lifespan: results from the ENIGMA ASD working group. *American Journal of*
378 *Psychiatry* **175**, 359–369 (2017).

379 28. Hibar, D. *et al.* Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar
380 Disorder Working Group. *Molecular psychiatry* **23**, 932 (2018).

381 29. Hariri, A. R., Tessitore, A., Mattay, V. S., Fera, F. & Weinberger, D. R. The amygdala response to emotional stimuli: a
382 comparison of faces and scenes. *Neuroimage* **17**, 317–323 (2002).

383 30. Wiberg, A. *et al.* Handedness, language areas and neuropsychiatric diseases: insights from brain imaging and genetics.
384 *Brain* (2019).

385 31. Moon, W.-J., Na, D. G., Kim, S. S., Ryoo, J. W. & Chung, E. C. Diffusion abnormality of deep gray matter in external
386 capsular hemorrhage. *American journal of neuroradiology* **26**, 229–235 (2005).

387 32. Allen, B., Muldoon, M. F., Gianaros, P. J. & Jennings, J. R. Higher blood pressure partially links greater adiposity to reduced
388 brain white matter integrity. *American journal of hypertension* **29**, 1029–1037 (2016).

389 33. Hannawi, Y. *et al.* Hypertension is associated with white matter disruption in apparently healthy middle-aged individuals.
390 *American Journal of Neuroradiology* **39**, 2243–2248 (2018).

391 34. Smith, S. M. *et al.* Advances in functional and structural mr image analysis and implementation as FSL. *Neuroimage* **23**,
392 S208–S219 (2004).

393 35. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. FSL. *Neuroimage* **62**, 782–790 (2012).

394 36. Sui, J., Adali, T., Yu, Q., Chen, J. & Calhoun, V. D. A review of multivariate methods for multimodal fusion of brain imaging
395 data. *Journal of neuroscience methods* **204**, 68–81 (2012).

396 37. Calhoun, V. D. & Sui, J. Multimodal fusion of brain imaging data: a key to finding the missing link (s) in complex mental
397 illness. *Biological psychiatry: cognitive neuroscience and neuroimaging* **1**, 230–244 (2016).

398 38. Uludağ, K. & Roebroeck, A. General overview on the merits of multimodal neuroimaging data fusion. *Neuroimage* **102**,
399 3–10 (2014).

400 39. Li, H. *et al.* Denoising scanner effects from multimodal mri data using linked independent component analysis. *NeuroImage* 116388 (2019).

401 40. Parra, L. C. Multi-set canonical correlation analysis simply explained. *arXiv preprint arXiv:1802.03759* (2018).

402 41. Glasser, M. F. *et al.* The minimal preprocessing pipelines for the human connectome project. *Neuroimage* **80**, 105–124
403 (2013).

404 42. Smith, S. M. *et al.* Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. *Neuroimage* **31**,
406 1487–1505 (2006).

407 43. Smith, S. M. *et al.* A positive-negative mode of population covariation links brain connectivity, demographics and be-
408 havior. *Nature neuroscience* **18**, 1565 (2015).

409 44. Fischl, B. Freesurfer. *Neuroimage* **62**, 774–781 (2012).

410 45. Alfaro-Almagro, F. *et al.* Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank.
411 *Neuroimage* **166**, 400–424 (2018).

412 46. Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. NODDI: practical in vivo neurite orientation dis-
413 persion and density imaging of the human brain. *Neuroimage* **61**, 1000–1016 (2012).

414 47. Griffanti, L. *et al.* BIANCA (brain intensity abnormality classification algorithm): a new tool for automated segmentation
415 of white matter hyperintensities. *NeuroImage* **141**, 191–205 (2016).

416 48. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. *Journal of the royal statistical society: series*
417 *B (statistical methodology)* **67**, 301–320 (2005).

418 49. Zeighami, Y. *et al.* Network structure of brain atrophy in de novo parkinson's disease. *Elife* **4**, e08440 (2015).

419 50. Li, Y.-O. *et al.* Independent component analysis of DTI reveals multivariate microstructural correlations of white matter
420 in the human brain. *Human brain mapping* **33**, 1431–1451 (2012).

421 51. Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. *IEEE transactions on Neural*
422 *Networks* **10**, 626–634 (1999).

423 52. Schaefer, A. *et al.* Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI.
424 *Cerebral Cortex* **28**, 3095–3114 (2017).

425 53. Smith, S. M. *et al.* Brain aging comprises many modes of structural and functional change with distinct genetic and
426 biophysical associations. *BioRxiv* 802686 (2020).

427 **Methods**

428 **FLICA model.** The input to FLICA is K modalities' data matrices $Y^{(k)}$ with each modality's dimensions
429 being $N \times P_k$, $k = 1, \dots, K$, where P_k is the number of features (e.g., voxels) in modality k and N is the
430 number of subjects. FLICA aims to find a joint L -dimensional decomposition of all $Y^{(k)}$:

$$Y^{(k)} = HW^{(k)}X^{(k)} + E^{(k)}, \quad k = 1, \dots, K \quad (1)$$

431 where $H_{(N \times L)}$ is the shared subject mode (mixing matrix) across modalities, so is a 'link' across different
432 modalities, $W_{(L \times L)}^{(k)}$ is a positive diagonal mode-weights matrix, $X_{(L \times P_k)}^{(k)}$ is the independent (spatial)
433 feature maps for the L components of modality k , and $E_{(N \times P_k)}^{(k)}$ is the Gaussian noise term.

434 **Multimodal extension of MELODIC's Incremental Group Principal component analysis for subject-
435 space dimension reduction.** We propose a multimodal extension of our previous MIGP approach¹⁸,
436 termed mMIGP, to reduce the subject dimension of multimodal data. MIGP has been extensively val-
437 idated in simulations and real neuroimaging data for finding an approximate PCA decomposition in a
438 time- and memory-efficient way¹⁸. Suppose that our multimodal data are K matrices $Y^{(k)}$, $k = 1, \dots, K$
439 with dimensions $N \times P_k$, where N is the number of subjects and P_k is the number of features (e.g. vox-
440 ells) in a modality. In mMIGP, each feature is z-score normalized first. Then, an MIGP is applied to each
441 modality separately to find an L^* -dimensional approximate PCA decomposition. Specifically, we want
442 to find an approximation of a singular value decomposition (SVD) of each $Y^{(k)}$:

$$Y^{(k)} = \tilde{U}^{(k)}\tilde{S}^{(k)}(\tilde{V}^{(k)})^\tau, \quad k = 1, \dots, K \quad (2)$$

443 where $\tilde{U}_{(N \times L^*)}^{(k)}$ and $\tilde{V}_{(P_k \times L^*)}^{(k)}$ are the left and right singular vectors, while $\tilde{S}_{(L^* \times L^*)}^{(k)}$ are the singular values.
444 A naive SVD on $Y^{(k)}$ scales quadratically with N , which is not efficient when N is large. To find the ap-
445 proximation, MIGP sequentially feed a subset of (columns of) $Y^{(k)}$ in to an SVD, so that these subsets
446 are reduced to a low-dimensional representation. The low-dimensional representation is then concate-
447 nated with another subset of (columns of) $Y^{(k)}$, and is fed into another SVD to find the low-dimensional
448 representation of them. The final SVD approximation is found after one pass of all data. The computa-
449 tional complexity of MIGP scales linearly with N . For a detailed description, please see Appendix A of
450 the MIGP paper¹⁸.

451 The third step is to concatenate all $\tilde{U}^{(k)}$ in the component dimension and apply another MIGP for
452 finding a L^* -dimensional approximate PCA decompositions U of size $N \times L^*$, which is a low-dimensional
453 representation of multimodal data in the analysis. Finally, the z-score normalized data $Y^{(k)}$ of each
454 modality is projected onto the U by:

$$V^{(k)} = U^\tau Y^{(k)}, \quad k = 1, 2, \dots, K \quad (3)$$

455 the $V^{(k)}$, $k = 1, 2, \dots, K$ are the inputs of subsequent FLICA algorithm. Therefore, the total size of data
456 output by this stage is $L^* \sum_{k=1}^K P_k$, which is smaller than the original input size $N \sum_{k=1}^K P_k$. The fractional
457 reduced data size is L^*/N , and the L^* can be fixed when more subjects are introduced, so it is scalable in
458 the big-data analysis. In practice, we usually choose L^* based on the percentage of explained variance
459 of SVD in the third step.

460 If we feed $V^{(k)}$, $k = 1, 2, \dots, K$ into FLICA to estimate L^* FLICA modes, the output subject mode
461 matrix H^* is of the size $L^* \times L$, so we then simply multiply this by U to get the final subject-mode matrix:

$$H = UH^* \quad (4)$$

462 The mMIGP approach is equivalent to performing an approximate PCA on feature-concatenated
463 data. The advantage is that it does not need to fit all data into the memory, and even can be parallelized
464 across modalities¹⁸. This approach is also equivalent to applying mCCA across all modalities⁴⁰.

465 **Sparse dictionary learning for voxel-space dimension reduction.** If the resolution of the data is high
 466 and the number of modalities is large, applying just the mMIGP reduction still leaves FLICA as being
 467 memory and computationally expensive. Therefore, we propose a method that can effectively reduce
 468 the voxel dimension, and preserve the important spatial information for subsequent FLICA spatial mod-
 469 ellng. Although the most obvious ways of voxel subsampling are either to apply regular spatial down-
 470 sampling (similarly, local voxel clustering) or apply PCA *within each modality*, the former only focuses
 471 on the local patterns²² (and does not adapt downsampling to local variations in redundant information
 472 across voxels) while the later empirically finds more global and noise patterns in neuroimaging data,
 473 and does not work at all well empirically in this context (see also Allen, et al.²³ and references therein).

474 The method we used here is sparse Dictionary Learning (DicL)¹⁹, which effectively performs 'voxel
 475 grouping' in both local and global fashion. It can be used directly on each of the original z-score normal-
 476 ized modalities, i.e., $Y^{(k)}$, $k = 1, 2, \dots, K$, or on the mMIGP reduced data, i.e., $V^{(k)}$, $k = 1, 2, \dots, K$. Taking
 477 the former as an example, the sparse DicL is adopted here:

$$Y^{(k)} = A^{(k)} D^{(k)}, k = 1, 2, \dots, K \quad (5)$$

478 where $D^{(k)}$ is *sparse spatial dictionary basis*, and $A^{(k)}$ is the *feature loadings* with each column represent-
 479 ing a linear combination of information from a group of voxels which might either be a local cluster or
 480 spatially distributed network. By minimizing an l_1 -regularized sparse-coding objective function, a local
 481 optimal solution can be obtained:

$$\begin{aligned} l(A^{(k)}, D^{(k)}) &= \sum_{i=1}^{P_k} \|Y_i^{(k)} - A^{(k)} D_i^{(k)}\|_F^2 + \lambda \|D_i^{(k)}\|_1 \\ \text{s.t. } \mathcal{C} &= \{A^{(k)} \in \mathbb{R}^{N \times L^{**}} \text{ s.t. } \forall j = 1, \dots, L^{**}, (A_j^{(k)})^\top A_j^{(k)} \leq 1\} \end{aligned} \quad (6)$$

482 where subscript i represents the i -th column of the corresponding matrix, and λ is a regularization pa-
 483 rameter. The l_1 -regularization term enforces that the learned spatial loadings $D^{(k)}$ are sparse. The objec-
 484 tive function can be efficiently optimized by a block-coordinate descent optimizer with warm restarts.
 485 It has been implemented in the SPAMS package (<http://spams-devel.gforge.inria.fr/>).
 486 Compared with simply using PCA in this step, sparse DicL has three advantages: (1) the spatial loading
 487 matrix $D^{(k)}$ can be sparse, so a smaller number of voxels are involved in each column of the dictionary;
 488 (2) the columns of the dictionary do not need to be orthogonal to each other, which is more flexible;
 489 (3) an "overcomplete" dictionary is allowed, i.e., the number of dictionary basis vectors can exceed the
 490 minimum of N and P_k , which further increases the flexibility.

491 After the above modality-wise DicL, the final inputs to FLICA are the matrices $A^{(k)}$, $k = 1, 2, \dots, K$,
 492 of size $N \times L^{**}$ if we use $Y^{(k)}$, $k = 1, 2, \dots, K$, or $L^* \times L^{**}$ if we use $V^{(k)}$, $k = 1, 2, \dots, K$. Note that (unlike the
 493 typical approach of feeding spatial PCA eigenvectors into ICA) we are not feeding the spatial dictionary
 494 basis ($D^{(k)}$) into the FLICA core modelling, but the feature loadings ($A^{(k)}$). To get the spatial loading
 495 matrices from FLICA, we do voxel-wise multiple regression where the target variable is a voxel and the
 496 design matrix is the FLICA subject mode. We could change the order by applying DicL first and then
 497 mMIGP, but this empirically has a lower computation efficiency.

498 **Evaluation of BigFLICA in simulations.** We simulated 500 subjects, and each had two modalities, which
 499 were both $30 \times 30 \times 30$ images. We first simulated K ground-truth (independent) spatial maps X ; each of
 500 these was a $30 \times 30 \times 30$ image. The spatial maps were a weighted sum of two Gaussian white noise im-
 501 ages, where the first one was $30 \times 30 \times 30$ with weight 0.05, and the second was a $5 \times 5 \times 5$ cube randomly
 502 located in the full image with weight 0.95. Then, random positive component weights W , Gaussian ran-
 503 dom subject loadings H and Gaussian white noise terms E were simulated. Finally, after vectorizing
 504 each spatial map and noise term, the data for a single modality Y was generated as $Y = HWX + \sigma E$,

505 where σ was a parameter to control the signal-to-noise ratio (SNR). A small amount of spatial smoothing-
506 ing using a Gaussian kernel was applied to spatial maps X and noise terms E to mimic real image data.
507 Each of the two modalities also had 5 unique spatial maps that were not shared by each other. The voxels
508 were z-score normalized before feeding into the subsequent FLICA analysis. The SNR was defined as:
509 $var(vec(HWX))/var(vec(\sigma E))$.

510 Performance evaluation: When FLICA was applied to the simulated data, the number of indepen-
511 dent components was always set to the ground truth K . The performance was measured by the similarity
512 between estimated subject-mode matrix H^* and the ground truth H . The similarity was measured by
513 the greedy matching of the components based on maximum correlation and then estimating the mean
514 correlations across components.

515 Evaluation of mMIGP for subject-space dimension reduction: After generating simulated data, we
516 reduced the data to varying dimensions ($L^* = 50, 100, 200, 300, 400$) using mMIGP, and then fed the re-
517 duced data into FLICA. This was compared with the original FLICA. The number of ground-truth com-
518 ponents was set to 25, 35, 45 and the SNR was set to 4, 1, 0.25, 0.04. All simulations were repeated 50
519 times.

520 Evaluation of DicL for voxel-space dimension reduction: To evaluate the influence of the DicL
521 parameters on the subsequent FLICA results, we performed the DicL on simulated data using varying
522 parameter combinations ($\lambda = 0.1$ to 16 and $L^{**} = 100$ to 3000) followed by FLICA (nIC = 25, 50, 100). This
523 was compared with the original FLICA. The SNR was set to 4, 1, 0.25, 0.04, and the number of iterations
524 for the DicL was set to 50, because we empirically find that this number of iterations is sufficient for DicL
525 to converge to a stable result in simulation and real data. All simulations were repeated 50 times.

526 **HCP and UK Biobank data.** The voxel/vertex-wise neuroimaging data of 81 different modalities of 1,003
527 subjects from the HCP S1200 data release were used in this paper². The preprocessing was conducted by
528 the HCP team using an optimized pipeline⁴¹. The 81 modalities included (1) 25 resting-state ICA dual-
529 regression spatial maps (z-score normalized); (2) 47 unique task contrast maps as z-statistics from 7
530 different fMRI tasks; (3) 3 T1-image derived modalities (grey matter volume, surface area, surface thick-
531 ness); (4) 6 Tract-Based Spatial Statistics (TBSS) features from diffusion MRI (FA, L1, L2, L3, MD, MO)⁴².
532 In addition, 158 nIDPs were used here, which was the same as our previous study⁴³. Names of nIDPs are
533 in **Supplementary File 1**.

534 The UK Biobank imaging data were mainly preprocessed by FSL^{34,35} and FreeSurfer⁴⁴ following
535 an optimized pipeline⁴⁵ (<https://www.fmrib.ox.ac.uk/ukbiobank/>). The voxel-wise neu-
536 roimaging data of 47 modalities of 14,053 subjects were used in this paper, including: (1) 25 “modalities”
537 from the resting-state fMRI ICA dual-regression spatial maps (z-score normalized); (2) 6 modalities from
538 the emotion task fMRI: 3 contrasts (shapes, faces, faces>shapes) of z-statistics and 3 *contrasts of param-*
539 *eter estimate* maps; (3) 10 diffusion MRI derived modalities (9 TBSS features, including FA, MD, MO, L1,
540 L2, L3, OD, ICVF, ISOVF^{42,46} and a summed tractography map of 27 tracts from AutoPtx in FSL); (4) 4 T1-
541 MRI derived modalities (grey matter volume and Jacobian map (which shows expansion/contraction
542 generated by the nonlinear warp to standard space, and hence reflects local volume) in the volumetric
543 space, and cortical area and thickness in the Freesurfer’s fsaverage surface space); (5) 1 susceptibility-
544 weighted MRI map (T2-star); (6) 1 T2-FLAIR MRI derived modality (white matter hyperintensity map
545 estimated by BIANCA⁴⁷). A detailed description is in **Table. S5**. In addition, the 8,787 nIDPs were in-
546 cluded, but we retained the 7,245 of those, that have at least 1,000 non-missing values (subjects). Names
547 of nIDPs are in **Supplementary Files**. Group-level resting-state independent component spatial maps
548 and task activation z-statistic maps are in the **Supplementary Files**.

549 When carrying out nIDP prediction, a total of 13 and 54 confounding variables were regressed

550 out from nIDPs using linear regression in the HCP and the UKB datasets respectively (**Supplementary**
551 **Materials**). Subjects with a missing modality were imputed by the mean value of all other subjects. We
552 did not impute the missing nIDPs.

553 **Comparing BigFLICA with the original FLICA on real data.** On real data, we do not know the ground
554 truth components, and the data may not follow the assumptions of ICA. Therefore, we rely on the per-
555 formance of predicting nIDPs as a surrogate criterion to evaluate different methods. We applied the
556 proposed mMIGP approach to HCP data and a subset of 1,036 UKB subjects (so that the original FLICA
557 is computationally tractable). Elastic-net regression, from the `glmnet` package⁴⁸, was used to predict the
558 nIDPs using FLICA's subject modes as model regressors (features). This approach is widely-used and has
559 been shown to achieve a robust and state-of-the-art performance in many neuroimaging studies^{24,25}. To
560 evaluate the model performance, for each nIDP, we used 5-fold cross validation, and compute Pearson
561 correlation between the predicted and true values of each nIDP across the 5 test sets. As there are tuning
562 parameters within the Elastic-net regression, in each training set, we performed a nested 5-fold cross
563 validation to tune the model parameters, and used the best model selected in the nested 5-fold cross
564 validation to do the prediction in the test set. When comparing any two approaches, the same training-
565 validation-testing split was used. The prediction accuracy was quantified as the Pearson correlation
566 between predicted and the true values of each nIDP in the test sets.

567 To evaluate MIGP preprocessing, we reduced the dimension to varying L^* (from 100 to 500) using
568 MIGP first and then used FLICA to extract $L = 50$ components. The original FLICA was also applied to
569 extract 50 components. To evaluate DicL preprocessing, we used the DicL (dictionary dimension = 2000
570 and sparsity parameter $\lambda = 1$) to reduce the data dimension of each modality followed by the FLICA to
571 extract varying numbers of components (nIC= 25, 50, 100, 200, 300). The original FLICA was also applied
572 to extract the same numbers of components. The prediction accuracy of BigFLICA was compared with
573 the original FLICA applied on non-reduced data.

574 **Statistical significance of difference of prediction accuracy between two approaches.** To compare the
575 overall prediction accuracy of two approaches (e.g. BigFLICA with mMIGP preprocessing vs. the original
576 FLICA), we estimate the statistical significance of the difference between the prediction correlations
577 across nIDPs. Suppose that we have a total of p nIDPs, we first filter out a subset of nIDPs where both
578 methods have low prediction accuracy ($r < 0.1$ in our analysis), resulting in p_1 nIDPs. If we perform a
579 simple paired t-test, the correlation structures among nIDPs makes the samples dependent with each
580 other, so that the p-value is not valid. Based the fact that a paired t-test is a special case of general linear
581 model (where the y variable is the difference of the prediction accuracy, and the x variable is a column of
582 ones, and the statistical significance is the significance of the coefficient of x), we used a weighted least
583 square approach (by `lscov` function in Matlab) to get a reliable statistical significance estimation by taken
584 the covariance structures between nIDPs (which is estimated as the covariance of the nIDPs-by-subject
585 matrix) into account.

586 **Parameter settings of running BigFLICA in the full HCP and UKB datasets.** We applied BigFLICA ap-
587 proach to extract varying number of target components in two datasets. In HCP, we used FLICA with
588 DicL preprocessing only (dictionary dimension 2000 and $\lambda = 1$). In UKB, we used FLICA with both
589 mMIGP and DicL preprocessing (dictionary dimension 5000, $\lambda = 1$ and mMIGP dimension 1000 (>95%
590 explained variance)). The number of FLICA VB iterations is 1000.

591 **Comparing BigFLICA with multiple independent single-modality ICA decomposition.** ICA is a widely-
592 used approach for decomposing single-modality neuroimaging data, including functional MRI⁴³ but
593 also in structural MRI⁴⁹ and diffusion MRI⁵⁰. A natural question arises whether BigFLICA is able to com-
594 bine multimodal information more effectively than the single-modality approaches such as ICA (we
595 used the fastICA algorithm⁵¹), which ignores inter-modality relationships.

596 We first performed ICA on each modality of HCP and UKB data separately to extract 25,100, 250,
597 500 and 750 components. For a given component number, we built a prediction model using the con-
598 catenated ICA subject modes (across modalities) to predict each of the nIDPs. To be fair, for BigFLICA,
599 we extract the same number of ICs to build the prediction model. For example, in the UKB data and
600 a 25-dimensional decomposition, the predictor is a $\text{Subject} \times (25 \times 47)$ matrix for single-modality ICA,
601 where 25 is the number of components in each modality and 47 is the total number of modalities. For
602 BigFLICA, the predictor is a $\text{Subject} \times 25$ matrix. This is arguably a fair comparison because each of the
603 BigFLICA modes potentially contains information from all modalities. The method to build a predictive
604 model and evaluate this is the same as above, except that when we used the concatenated ICA subject
605 modes, we added a univariate screening step in the training set to select the top 300 most informative
606 features according to their correlation with an nIDP in the training set. This step, in general, boosts the
607 predictive accuracy because the dimensionality of concatenated ICA modes is usually very high, so that
608 many of the modes are pure noise with respect to any given nIDP. Therefore, the univariate screening
609 can help the elastic-net regression to filter out noisy features effectively. We did not perform univariate
610 screening when using the BigFLICA subject modes to predict nIDPs.

611 Besides the main results, in **Fig. S1**, we also compared, in the UKB data, the 750-dimensional
612 BigFLICA decomposition with the 25-dimensional ICA decomposition concatenated across modalities,
613 i.e., we have 25×47 features in the single-modality ICA. In this comparison, the number of features for
614 the two methods are almost the same, but we can see that BigFLICA clearly outperforms the single-
615 modality ICA.

616 **Comparing BigFLICA with hand-curated imaging-derived phenotypes.** A popular choice of data anal-
617 ysis strategy is to extract imaging features based on expert knowledge (e.g., regional volumes and thick-
618 ness, and resting-state functional connectivities between brain regions), often referred to as IDPs¹. Brain
619 IDPs have been shown to genetically correlate with many SNPs in our previous genome-wide association
620 study (GWAS) in UK Biobank⁵, and they have been shown to change in many psychiatric diseases²⁶⁻²⁸.

621 We extracted 5,812 IDPs from the HCP, including (1) 199 structural MRI features from Freesurfer as
622 provided by the HCP; (2) 4700 regional mean task activations from 47 independent task contrasts using a
623 100-dimensional parcellation atlas⁵²; (3) 625 functional connectivities (FCs) based on a 25-dimensional
624 ICA parcellation with partial correlation to estimate FCs; (4) 288 regional mean TBSS features (FA, L1,
625 L2, L3, MD, MO) using the Johns Hopkins University tract atlas. The names of these IDPs are given in
626 the **Supplementary File 3**.

627 We used 3,913 IDPs from UKB, including global and local features from the 6 imaging modalities
628 (T1, T2-FLAIR, swMRI, tfMRI, rfMRI, and dMRI)⁵³. The names of these IDPs are given in the **Supple-
629 mentary File 4**.

630 We built prediction models that use IDPs or BigFLICA modes to predict each of the nIDPs using
631 the same strategy as above. The FLICA dimension is set to 25, 100, 250, 500, 750. In addition, we also
632 concatenated IDPs and each of the BigFLICA subject modes together to predict the nIDPs, and the per-
633 formance is compared with using IDPs alone. We used a univariate screening step to select the top
634 300/500 most informative IDPs according to their correlation with an nIDP in the inner-fold (i.e., train-
635 ing set) of HCP/UKB. Finally, we also built models that use IDPs to predict each of the FLICA subject
636 modes and vice versa, aiming to evaluate the shared variances between features extracted by these two
637 different approaches in the same data.

638 **Reproducibility of BigFLICA.** To test whether BigFLICA's spatial independent components are esti-
639 mated reliably, the whole UKB dataset was divided into two parts: the first part contained 7,000 subjects
640 and the second part contained the remaining 7,503 subjects. We applied BigFLICA to the two parts sepa-

641 rately. After estimating the subject modes, we reconstructed the z-score normalized (voxel-wise) spatial
642 maps of each modality by regressing the subject mode against the mMIGP-reduced data. The spatial in-
643 dependent components of each modality were concatenated spatially and greedily paired, based on the
644 absolute correlation between two runs. When we computed the correlations, only voxels whose abso-
645 lute z-scores that are both larger than 3 in two runs were preserved (to reduce noise, given that there are
646 huge numbers of empty voxels across all modalities for a given FLICA component in general; this does
647 not bias the metric of reproducibility towards finding common similar patterns). **Fig. S5** (left) shows
648 that the FLICA components have very high reproducibility in the split-half test across a varying number
649 of components.

650 **Comparing BigFLICA with mCCA.** We tested whether BigFLICA (independent components-based spa-
651 tial modelling) was better than mCCA (eigendecomposition based modelling, which could be consid-
652 ered to be similar to the output of BigFLICA without running the final core FLICA unmixing - note that
653 to enable mCCA to run requires the same mMIGP initial processing that we have added in this work)
654 in three ways. The number of extracted components was the same when performing this compar-
655 ison. First, for the prediction accuracy of nIDPs, **Fig. S3** shows that, in the UKB data, BigFLICA has a
656 (very slightly) improved prediction accuracy compared with mCCA. Then, we proposed a hypothesis
657 that modes of BigFLICA are more parsimonious features of nIDPs compared with mCCA, or in other
658 word, a smaller number of modes of BigFLICA can predict the nIDPs. Results shown in **Fig. S4** vali-
659 date this hypothesis: for a given number of components and a given nIDP, BigFLICA modes have a (on
660 average) higher proportion of zero weights in the elastic-net predictions, when compared with mCCA
661 modes. The advantage is that a more parsimonious representation usually has a better biological inter-
662 pretability. Finally, we estimated and compared the split-half reproducibility of BigFLICA and mCCA. As
663 shown in **Fig. S5** (right), BigFLICA has a much higher between-subject reproducibility than mCCA.

664 **Contribution of different modalities in a BigFLICA decomposition.** Besides using BigFLICA for explor-
665 ing the relationships between imaging and non-imaging phenotypic and behavioural data, we can also
666 use it to investigate the relationship between different modalities. For each mode, BigFLICA estimates a
667 vector of positive numbers reflecting the contributions of different modalities (i.e., the diagonal of each
668 $W_{(k)}$, where the higher the number, the more important is one modality to a mode). We concatenated all
669 such vectors across all modes so that it is a mode-by-modality matrix W , and normalized each column
670 to sum to one. Six examples of such matrices are shown in **Fig. S7**, with different numbers of estimated
671 modes in the UKB dataset.

672 We then calculate each row's sum (across columns) in W , thereby reflecting the overall contribu-
673 tion of each modality in the BigFLICA decomposition. As shown in **Fig. S8**, across all FLICA dimen-
674 sionalities (numbers of estimated modes), each of the 25 resting-state fMRI dual-regression spatial maps
675 usually has a low overall contribution, followed by task fMRI maps, while modalities reflecting more
676 about structure of the brain (e.g., structural MRI and diffusion MRI) generally have high overall contri-
677 butions. The relative differences of modality contribution between functional MRI-related modalities
678 and structural/diffusion MRI-related modalities become larger with increasing number of estimated
679 modes. We further estimated the total shared variances between a lower dimensional BigFLICA decom-
680 position and a higher dimensional decomposition. **Table S4** shows that a higher dimensional decompo-
681 sition explains almost all variances of a lower dimensional decomposition (upper triangle of the table),
682 while a lower dimensional decomposition can explain a large proportion of the variances of a higher
683 dimensional decomposition.

684 **Relationship between different modalities in a BigFLICA decomposition.** We calculated the cosine
685 similarity between different columns of W (using the 750-dimensional BigFLICA decomposition), to
686 measure the similarity of different modalities in terms of their contribution to the BigFLICA decom-
687 position, i.e., the more similar information two modalities carry, the more likely they will have similar

688 contribution to a mode. **Fig. S9a** shows that the modality relationship matrix is clearly grouped into
689 three large clusters. The first is all resting-state modalities, while the second is the task fMRI maps, and
690 the third is the diffusion MRI, structural MRI-related modalities and swMRI. The white matter hyper-
691 intensity map (T2 lesions) forms a single cluster. As a comparison, we also performed a 50-dimensional
692 ICA decomposition within each modality, and calculated the shared variances between every pair of 50
693 ICs in two modalities using a simple multivariate regression model. As shown in **Fig. S9b**, we also ob-
694 served a similar pattern as **Fig. S9a**. The main difference is that in **Fig. S9a**, there are relatively stronger
695 correlations within resting-state modalities and between resting-state and other modalities, but weaker
696 correlations between task modalities and structural related modalities. These results reflect the fact that
697 the multimodal modelling effects of BigFLICA learn different inter-modality relationships compared
698 with single-modality ICA.

699 Supplementary Materials

700 **Confounding variables regressed out in our analysis** UKB dataset: age, age squared, age X sex, age
701 squared X sex, age (quantile normalised), age squared (quantile normalised), age X sex (quantile nor-
702 malised), age squared X sex (quantile normalised), rfMRI head motion, tfMRI head motion, head size
703 scaling, rfMRI head motion squared, tfMRI head motion squared, [4] confounds relating to bed posi-
704 tion in scanner (x), [4] confounds relating to bed position in scanner (y), [4] confounds relating to bed
705 position in scanner (z), [4] confounds relating to bed position in scanner (table), [4] confounds relating
706 to bed position in scanner (x) squared, [4] confounds relating to bed position in scanner (y) squared,
707 [4] confounds relating to bed position in scanner (z) squared, [4] confounds relating to bed position in
708 scanner (table) squared, [10] confounds modelling slow date-related drift 1, [10] confounds modelling
709 slow date-related drift 2, [10] confounds modelling slow date-related drift 3, [10] confounds modelling
710 slow date-related drift 4, [10] confounds modelling slow date-related drift 5, [10] confounds modelling
711 slow date-related drift 6, [10] confounds modelling slow date-related drift 7, [10] confounds modelling
712 slow date-related drift 8, [10] confounds modelling slow date-related drift 9, [10] confounds modelling
713 slow date-related drift 10, rfMRI head motion (quantile normalised), tfMRI head motion (quantile nor-
714 malised), head size scaling (quantile normalised), [4] confounds relating to bed position in scanner (x)
715 (quantile normalised), [4] confounds relating to bed position in scanner (y) (quantile normalised), [4]
716 confounds relating to bed position in scanner (z) (quantile normalised), [4] confounds relating to bed
717 position in scanner (table) (quantile normalised), [4] confounds relating to bed position in scanner (x)
718 squared (quantile normalised), [4] confounds relating to bed position in scanner (y) squared (quantile
719 normalised), [4] confounds relating to bed position in scanner (z) squared (quantile normalised), [4]
720 confounds relating to bed position in scanner (table) squared (quantile normalised), [10] confounds modell-
721 ing slow date-related drift 1 (quantile normalised), [10] confounds modelling slow date-related
722 drift 2 (quantile normalised), [10] confounds modelling slow date-related drift 3 (quantile normalised),
723 [10] confounds modelling slow date-related drift 4 (quantile normalised), [10] confounds modelling slow
724 date-related drift 5 (quantile normalised), [10] confounds modelling slow date-related drift 6 (quantile
725 normalised), [10] confounds modelling slow date-related drift 7 (quantile normalised), [10] confounds
726 modelling slow date-related drift 8 (quantile normalised), [10] confounds modelling slow date-related
727 drift 9 (quantile normalised), [10] confounds modelling slow date-related drift 10 (quantile normalised),
728 imaging centre, sex.

729 HCP dataset: image reconstruction version, age, age squared, sex, age X sex, age squared X sex,
730 race, ethnicity, rfMRI motion, Height, Weight, FS_IntraCranial_Vol, FS_BrainSeg_Vol.

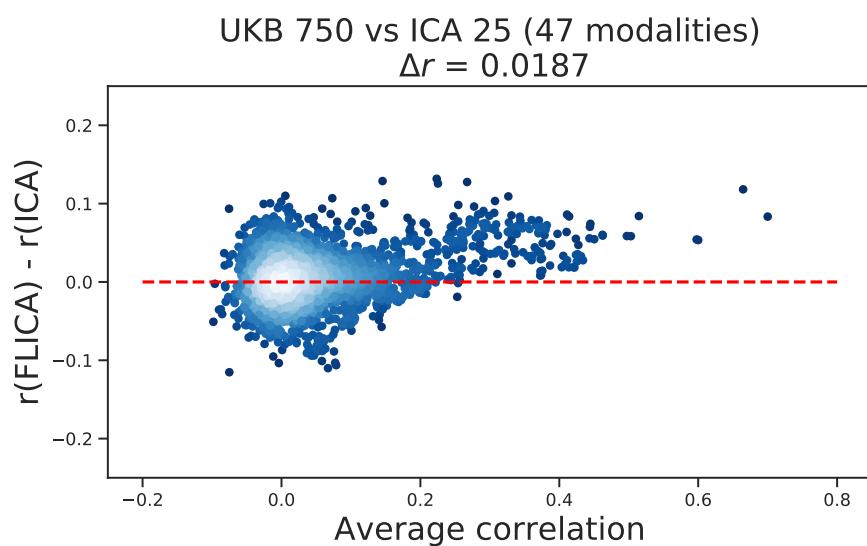


Figure S1: Comparing the prediction performance of the 750-dimensional FLICA with the 25-dimensional single-modality ICA concatenated across 47 modalities in the UKB data.

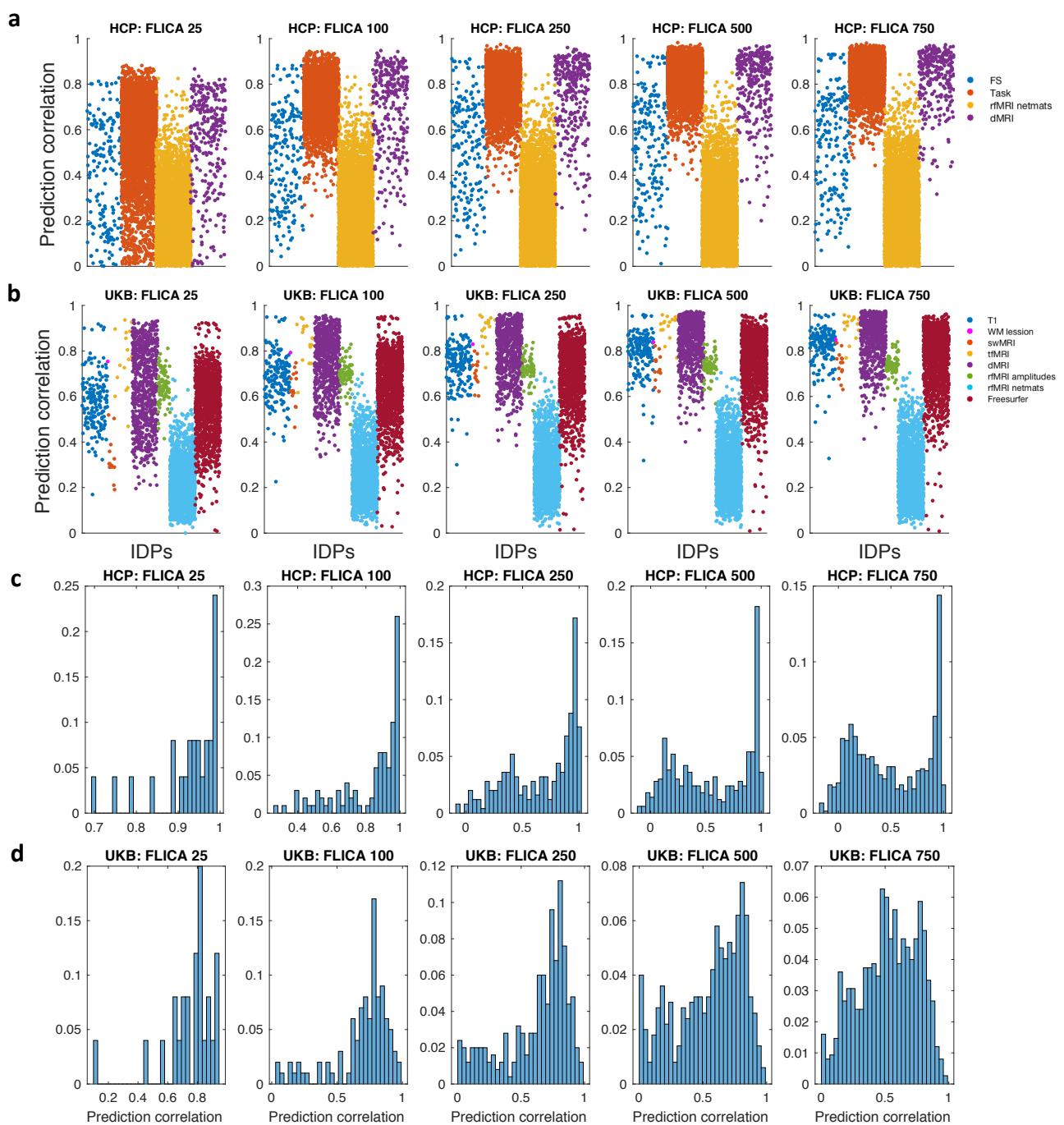


Figure S2: Relationships between FLICA and IDPs. **(a,b)** The plots show the results of predicting each IDP using BigFLICA modes in **a** the HCP and **b** the UKB dataset. The IDPs are appearing in order along the x axis, and are grouped and coloured by modality types. **(a,b)** The histograms of predicting BigFLICA modes using all IDPs in **c** the HCP and **d** the UKB dataset.

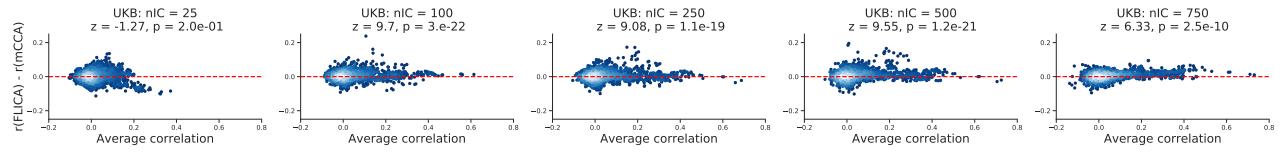


Figure S3: Comparing FLICA and mCCA in the UKB data. Comparing the predictive performance of FLICA with mCCA (or equivalently the subject-by-component matrix obtained in the mMIGP step) across different numbers of extracted components in the UKB dataset. The FLICA and mCCA dimensions are the same in each figure.

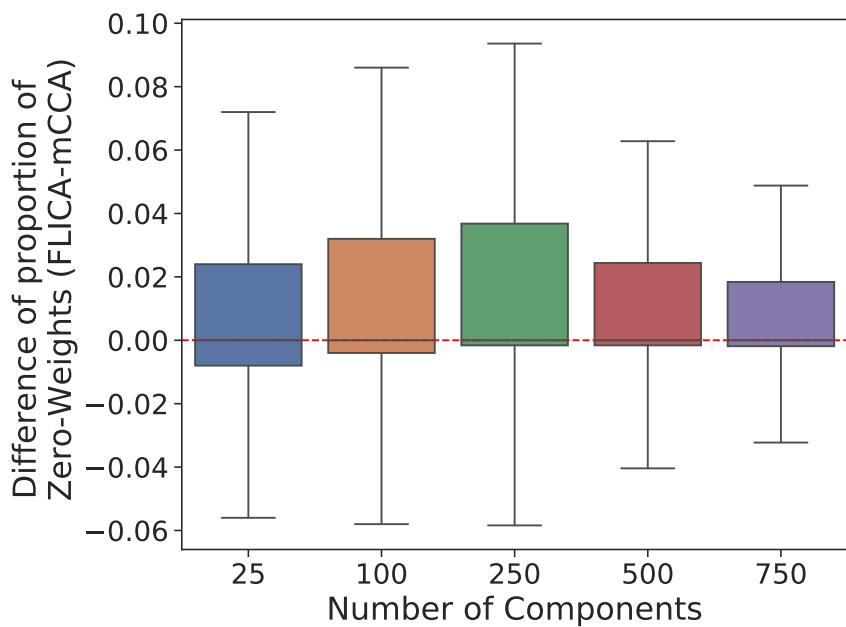


Figure S4: The difference of the proportion of zeros weights (BigFLICA-mCCA) in predicting nIDPs across 5 dimensions of decomposition in the UKB data.

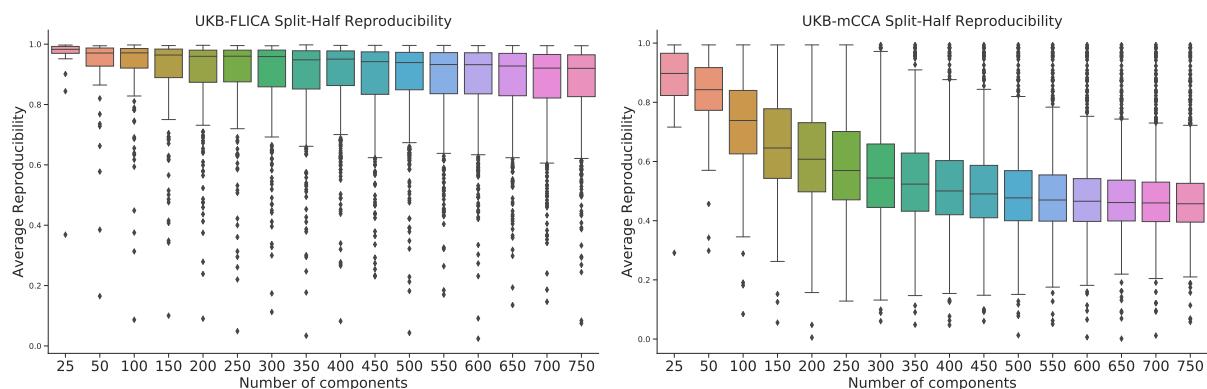


Figure S5: Split-half reproducibility of FLICA and mCCA spatial maps in the UKB dataset. The split-half reproducibility of BigFLICA and mCCA in the UKB dataset by first computing the correlation between modality-wise concatenated spatial maps after eliminating low-weight voxels and then greedy matching.

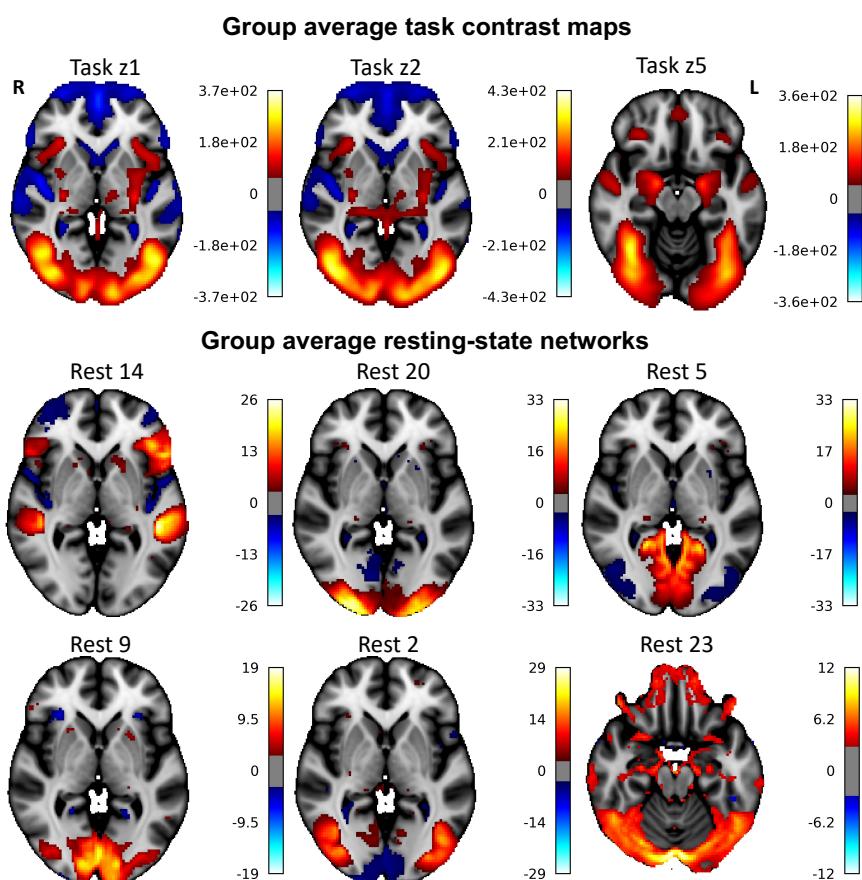


Figure S6: Group average maps of task activations and resting-state networks in the UKB dataset. These are provided to help interpret the population variability maps (modulations of these maps) shown in **Fig. 5**. Top: group average of emotion task activation z-statistic maps (task z1: “shapes”, task z2: “face”, task z5: “faces>shapes”). Group average task contrast (effect size) maps c1, c2 and c5 are highly similar to z-stat maps so that they are not shown. Bottom: group average resting-state networks from a 25-dimensional ICA parcellation in the UKB data. The six maps shown here are the networks from **Fig. 5**.

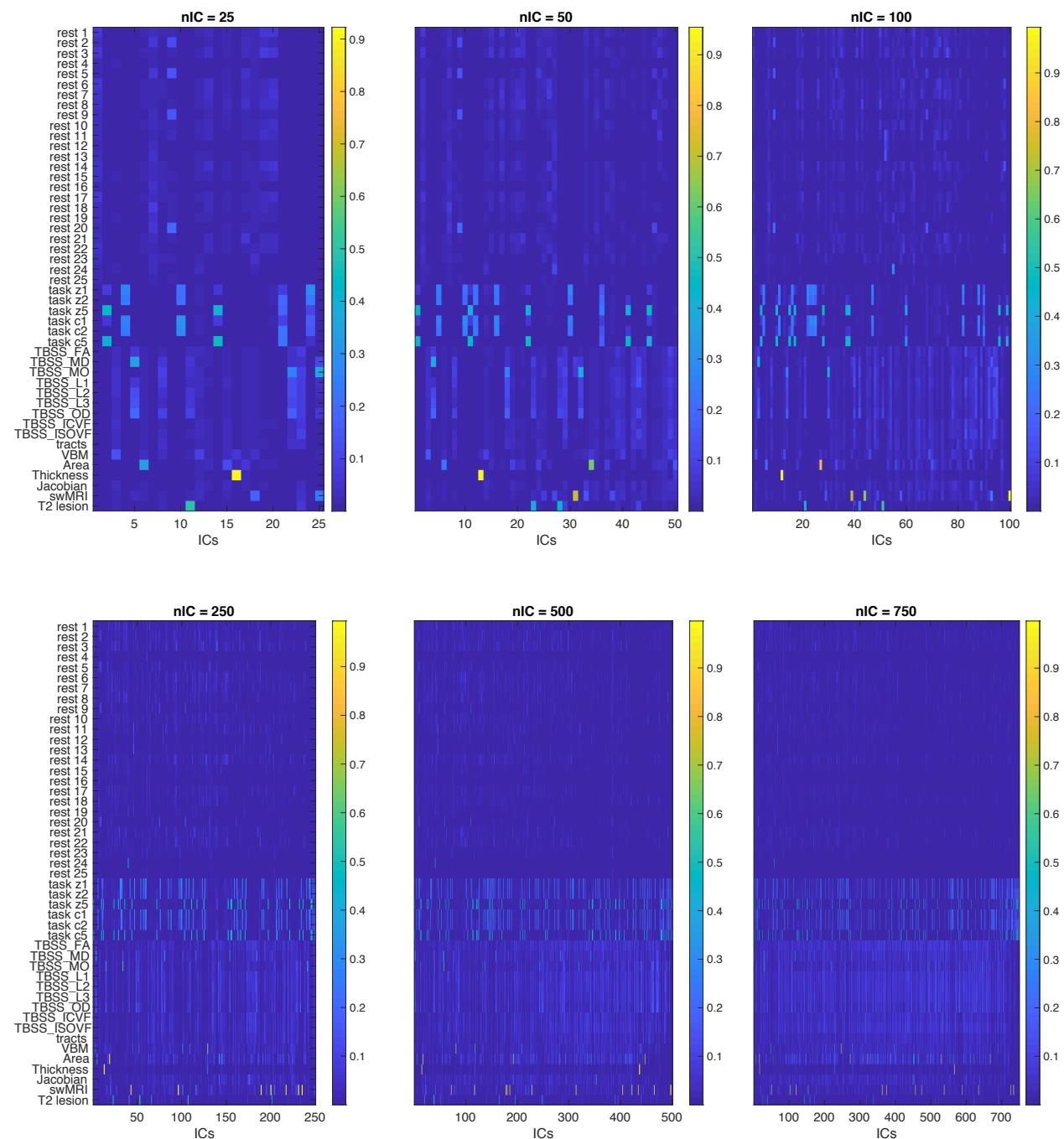


Figure S7: The contribution of each modality in each BigFLICA mode (independent component).

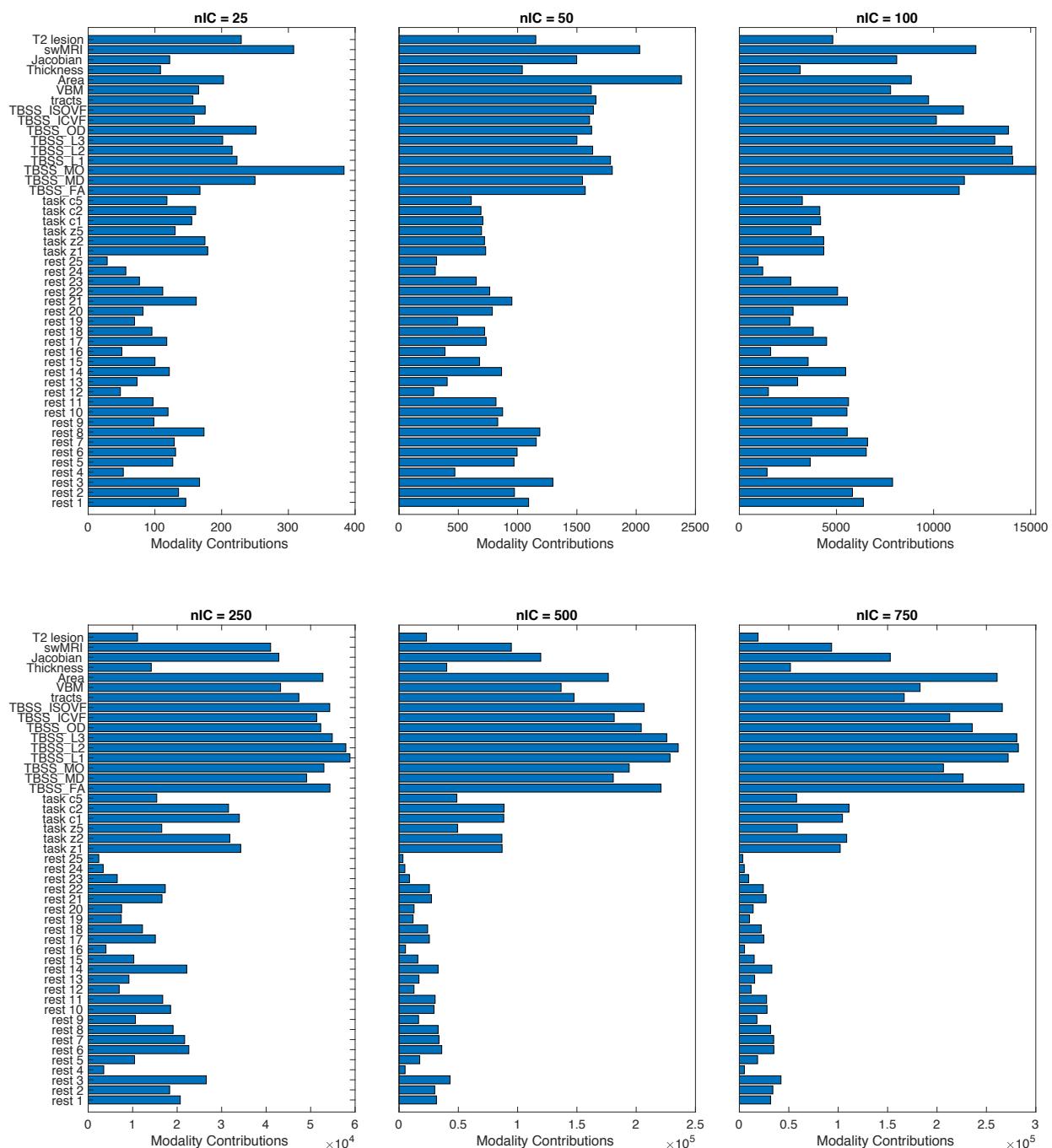
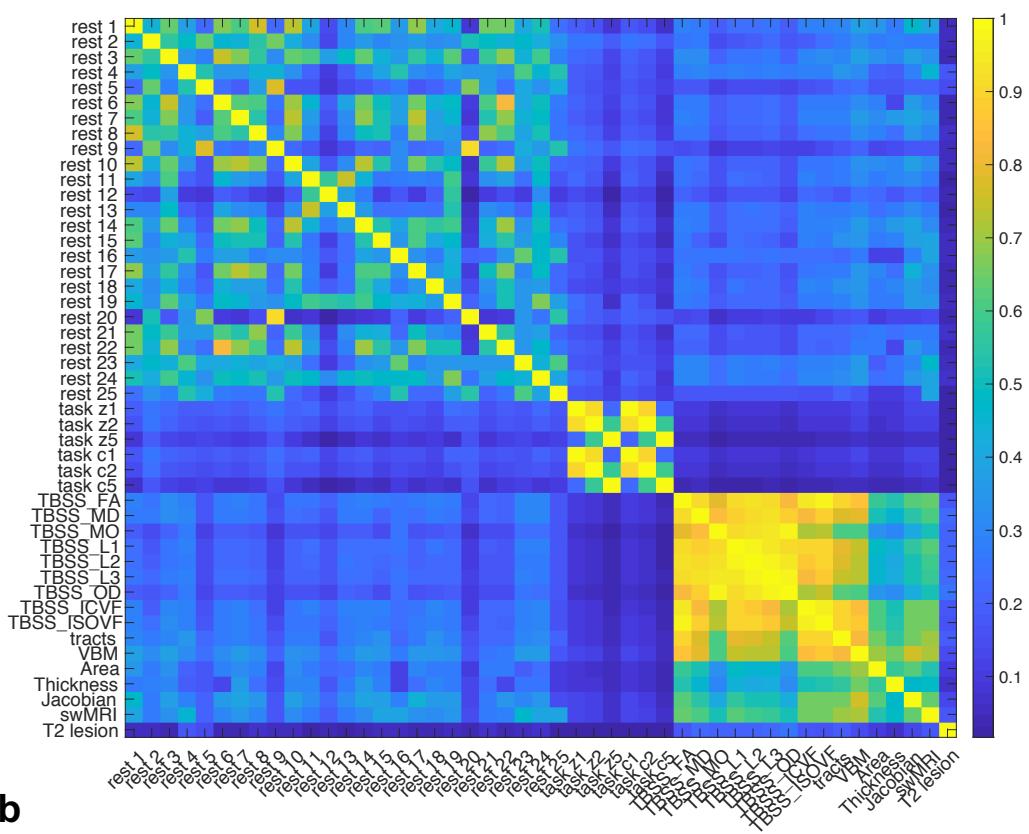


Figure S8: The relative contribution of different modalities of a BigFLICA decomposition (nIC=25-750) in the UKB data. For each modality, we take the sum of its overall contribution (estimated by BigFLICA) across all components.

a



b

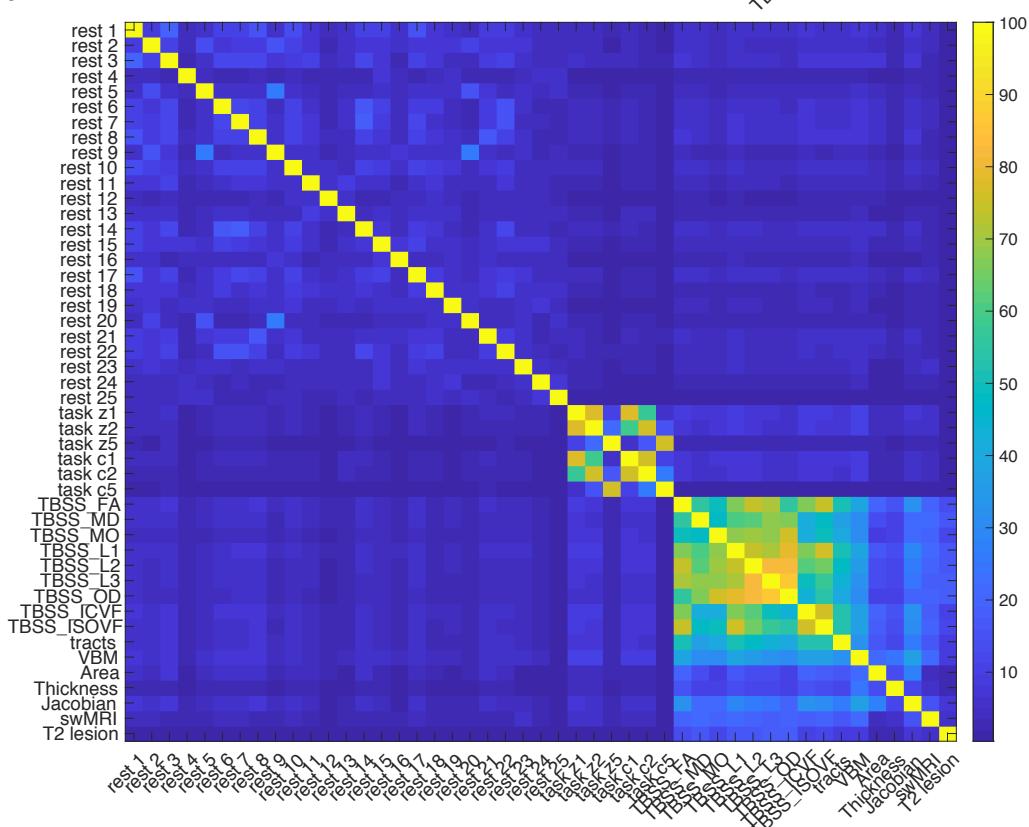


Figure S9: The relationships between different modalities in the UKB data. a). The cosine similarity of modality contributions across 750 components (estimated by BigFLICA) between every pair of modalities. b). The amount of shared variance between two 50-dimensional single-modality ICA decompositions in each pair of modalities.

Table S1: Comparison of prediction performance of **Cognitive Phenotypes** and **Health and Medical History Health Outcomes** between BigFLICA (nIC=750) and 3,913 IDPs in the UKB dataset. We excluded an nIDP if both methods have prediction r-value < 0.1.

Variable Names	r-value FLICA	-log10(p) FLICA	r-value IDPs	-log10(p) IDPs	Percent Improvement	Sample size
cognitive phenotypes						
Digits entered correctly (0.1)	0.104	3.6	0.003	0.3	3141.6	1126
Time to complete round (1.2)	0.108	11.7	0.073	5.9	47.4	4119
Number of fluid intelligence questions attempted within time limit (1.0)	0.107	11.6	0.078	6.6	37.6	4116
Duration to first press of snap-button in each round (2.7)	0.11	37.6	0.081	21.1	35.1	13749
Mean time to correctly identify matches (0.0)	0.108	38.6	0.083	23.1	30.6	14471
Duration screen displayed (2.0)	0.103	33.6	0.079	20.3	30.2	13809
Duration to first press of snap-button in each round (2.10)	0.104	33.7	0.08	20.3	30.1	13751
Duration to complete alphanumeric path (trail #2) (0.0)	0.145	33.7	0.113	20.8	28.7	6966
Time to complete round (0.2)	0.113	41	0.088	25.5	27.8	14115
Number of symbol digit matches made correctly (0.0)	0.156	43.5	0.122	27	27.7	7862
Number of symbol digit matches attempted (0.0)	0.167	49.8	0.132	31.4	26.6	7862
Number of fluid intelligence questions attempted within time limit (2.0)	0.151	68.4	0.122	44.9	23.8	13362
Duration to first press of snap-button in each round (2.11)	0.1	31.6	0.082	21.3	22.9	13741
Time to complete round (0.1)	0.143	36	0.117	24.4	22.5	7670
Time to complete round (2.2)	0.114	39.4	0.093	26.8	22.1	13394
Mean time to correctly identify matches (2.0)	0.141	61.6	0.116	42	21.6	13768
Maximum digits remembered correctly (0.0)	0.15	38.2	0.129	28.7	15.9	7465
Fluid intelligence score (2.0)	0.256	198.7	0.232	162.6	10.3	13362
Fluid intelligence score (0.0)	0.199	47.8	0.183	40.5	8.8	5266
Touchscreen duration (2.0)	0.127	52.5	0.121	48	4.7	14412
Fluid intelligence score (1.0)	0.18	31	0.188	33.5	-3.9	4116
Number of fluid intelligence questions attempted within time limit (0.0)	0.098	12.4	0.103	13.4	-4	5266
Fluid intelligence score (0.0)	0.198	72.1	0.209	80.5	-5.3	8090
Touchscreen duration (1.0)	0.103	10.8	0.127	16	-19.2	4134
Health and Medical History Health Outcomes						
Age asthma diagnosed (0.0)	0.122	5.6	0.051	1.5	139.4	1397
Interpolated Age of participant when non-cancer illness first diagnosed (0.3)	0.102	5.1	0.072	2.9	42.7	1794
Interpolated Year when non-cancer illness first diagnosed (0.3)	0.104	5.3	0.074	3	41.5	1794
Medication for cholesterol, blood pressure, diabetes, or take exogenous hormones (2.0)	0.153	40.4	0.113	22.2	36.4	7507
Treatment/medication code (1140884600 - metformin)	0.121	48.1	0.092	28.1	32	14503
Number of treatments/medications taken (0.0)	0.13	55.6	0.099	32.4	31.8	14503
Age started wearing glasses or contact lenses (2.0)	0.158	73.8	0.124	45.8	27.3	13129
Number of self-reported non-cancer illnesses (0.0)	0.115	43.7	0.093	28.6	24.4	14503
Number of treatments/medications taken (1.0)	0.13	16.7	0.107	11.7	21.4	4134
Age started wearing glasses or contact lenses (0.0)	0.149	61.6	0.124	43.2	19.8	12321
Number of treatments/medications taken (2.0)	0.188	114.4	0.157	80.2	19.4	14435
Treatment/medication code (1140879802 - amlodipine)	0.113	41.9	0.096	30.5	17.8	14503
Medication for cholesterol, blood pressure or diabetes (0.0)	0.15	35.1	0.131	26.7	15.1	6756
Diabetes diagnosed by doctor (2.0)	0.124	49.6	0.108	38.3	14.2	14379
Non-cancer illness code, self-reported (1220 - diabetes)	0.109	39.1	0.098	31.8	11.1	14503
Diagnoses - secondary ICD10 (I10 - I10 Essential (primary) hypertension)	0.146	69.8	0.135	59.5	8.4	14503
Overall health rating (0.0)	0.113	41.6	0.104	35.7	8.1	14477
Non-cancer illness code, self-reported (1065 - hypertension)	0.218	155.7	0.203	133.6	7.9	14503
Medication for cholesterol, blood pressure or diabetes (2.0)	0.145	33.2	0.136	29.3	6.7	6829
Overall health rating (2.0)	0.11	39.5	0.113	41.7	-2.8	14388
Non-cancer illness code, self-reported (1261 - multiple sclerosis)	0.111	40.2	0.118	46	-6.6	14503

Table S2: Comparison of prediction performance of 158 nIDPs between FLICA (nIC=100) and 5,812 IDPs in the HCP dataset. We excluded an nIDP if both methods have prediction r-value < 0.1. The meanings of each variables can be found at HCP wiki: <https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public--+Updated+for+the+1200+Subject+Release>

Variable Names	r FLICA	-log10(p)	r IDPs	-log10(p)	Improvement (%)	nSub	Variable Names	r FLICA	-log10(p)	r IDPs	-log10(p)	Improvement (%)	nSub
Odor_AgeAdj	0.108	3.5	0.036	0.9	197.4	1001	ASR_Thot_Pct	0.216	11.6	0.206	10.6	4.9	1000
FamHist_Fath_DrgAlc	0.158	6.6	0.065	1.7	144.1	999	PicSeq_AgeAdj	0.301	22	0.29	20.4	3.9	1003
NEOFAC_C	0.176	8	0.084	2.4	110	1001	Avg_Weekend_Beer_Wine_Cooler_7days	0.307	22.5	0.296	20.9	3.8	985
ASR_Soma_Pct	0.124	4.4	0.074	2	66.3	1000	DSM_Somp_Pct	0.12	4.1	0.115	3.9	3.6	1000
ASR_Soma_Raw	0.162	6.9	0.101	3.2	60.7	1000	PicSeq_Unadj	0.293	20.9	0.284	19.6	3.2	1003
VSPLIT_CRTTE	0.13	4.7	0.085	2.4	53.2	1000	ASR_Oth_Raw	0.168	7.3	0.163	7	2.7	1000
ASR_Intr_Raw	0.101	3.2	0.067	1.8	51.4	1000	ASR_Thot_Raw	0.231	13.2	0.226	12.6	2.4	1000
DSM_Inat_Raw	0.161	6.8	0.109	3.5	48.3	1000	VSPLIT_OFF	0.417	42.8	0.407	40.8	2.3	1000
SSAGA_Alc_D4_Dp_Sx	0.204	10.4	0.139	5.3	46.6	1002	SSAGA_Alc_Hvy_Frq_Drk	0.244	13.9	0.239	13.4	2	951
AngHostil_Unadj	0.103	3.2	0.072	2	42	1002	Avg_Weekend_Cigarettes_7days	0.181	8.3	0.178	8	1.9	985
ProcSpeed_AgeAdj	0.24	14.2	0.175	7.9	37.2	1003	SSAGA_Alc_Hvy_Max_Drinks	0.466	52	0.459	50.3	1.5	951
DSM_Depr_Raw	0.118	4.1	0.087	2.5	36.7	1000	ASR_Extn_T	0.186	8.8	0.183	8.6	1.4	1000
Times_Used_Any_Tobacco_Today	0.157	6.5	0.117	3.9	34.8	985	NEOFAC_N	0.159	6.6	0.157	6.5	0.9	1001
ProcSpeed_Unadj	0.268	17.6	0.201	10.2	33.5	1003	ASR_Rule_Raw	0.285	19.7	0.283	19.4	0.6	1000
ASR_Intr_Raw	0.189	9.1	0.143	5.5	32.3	1000	ER40SAD	0.117	4	0.117	4	0.6	1000
SSAGA_Mj_Ab_Dep	0.127	4.5	0.097	3	31.2	1002	SSAGA_Alc_Hvy_Frq_5plus	0.3	20.8	0.299	20.6	0.5	951
SSAGA_Alc_D4_Ab_Sx	0.153	6.3	0.119	4.1	29.4	1002	ListSort_Unadj	0.397	38.7	0.4	39.3	-0.7	1003
NEOFAC_O	0.253	15.6	0.195	9.6	29.2	1001	AngAggr_Unadj	0.28	19	0.283	19.4	-1.1	1002
Flanker_AgeAdj	0.181	8.4	0.142	5.5	27.5	1003	VSPLIT_TC	0.361	31.8	0.367	32.9	-1.7	1000
ASR_Intr_Pct	0.161	6.8	0.127	4.5	26.8	1000	FearAffect_Unadj	0.118	4.1	0.12	4.2	-1.9	1002
DDisc_AUC_40K	0.341	28.3	0.277	18.7	23	1000	Total_Drinks_7days	0.28	18.7	0.286	19.5	-2.1	985
SSAGA_Alc_12_Drinks_Per_Day	0.336	26	0.277	17.7	21.3	950	NEOFAC_A	0.223	12.4	0.229	12.9	-2.3	1001
Flanker_Unadj	0.239	14	0.197	9.8	20.9	1003	Total_Cigarettes_7days	0.174	7.7	0.178	8	-2.4	985
SSAGA_Times_Used_Stimulants	0.117	4	0.098	3	19.9	1002	ListSort_AgeAdj	0.393	38.1	0.406	40.6	-3	1003
ASR_Wtd_Raw	0.23	13	0.192	9.3	19.5	1000	DSM_Hyper_Raw	0.163	6.9	0.17	7.5	-4	1000
PicVocab_Unadj	0.572	87.7	0.487	60.5	17.4	1003	Avg_Weekday_Any_Tobacco_7days	0.183	8.5	0.191	9.1	-4.3	985
ER40ANG	0.102	3.2	0.087	2.5	16.9	1000	Avg_Weekend_Drinks_7days	0.265	16.8	0.278	18.5	-4.8	985
Avg_Weekday_Drinks_7days	0.197	9.7	0.169	7.3	16.8	985	SSAGA_Alc_12_Frq	0.228	12.3	0.24	13.5	-4.8	951
EmotSupp_Unadj	0.128	4.6	0.11	3.6	16.5	1002	ASR_Rule_Pct	0.185	8.7	0.194	9.5	-5	1000
Dexterity_AgeAdj	0.316	24.3	0.271	18	16.5	1003	ASR_Agg_Raw	0.103	3.2	0.109	3.5	-5.3	1000
SSAGA_Alc_Hvy_Drinks_Per_Day	0.335	25.9	0.288	19.1	16.3	950	THC	0.264	17	0.281	19.2	-6	1003
CardSort_AgeAdj	0.345	28.9	0.297	21.4	16	1001	Total_Any_Tobacco_7days	0.192	9.2	0.205	10.4	-6.2	985
PicVocab_AgeAdj	0.57	87	0.492	61.9	15.8	1003	Avg_Weekday_Cigarettes_7days	0.167	7.2	0.178	8.1	-6.3	985
Taste_AgeAdj	0.186	8.8	0.161	6.8	15.6	998	SSAGA_Times_Used_Illicit	0.147	5.8	0.158	6.6	-6.5	1002
DSM_Antis_Pct	0.168	7.3	0.146	5.7	15.4	1000	PercStress_Unadj	0.165	7.1	0.177	8.1	-6.7	1002
SSAGA_Times_Used_Hallucinogens	0.163	7	0.143	5.6	14.1	1002	SSAGA_Alc_12_Frq_5plus	0.324	24.3	0.349	28.1	-7.1	951
DSM_Adh_Pct	0.219	11.9	0.192	9.3	14.1	1000	ASR_Crit_Raw	0.185	8.7	0.2	10.1	-7.5	1000
Taste_Unadj	0.188	9	0.165	7.1	13.9	998	MMSE_Score	0.175	7.9	0.189	9.1	-7.6	1003
ASR_Attn_Raw	0.147	5.8	0.129	4.7	13.8	1000	Num_Days_Used_Any_Tobacco_7days	0.218	11.8	0.238	14	-8.7	1000
Dexterity_Unadj	0.302	22.2	0.266	17.3	13.5	1003	PercHostil_Unadj	0.107	3.4	0.117	4	-8.8	1002
SSAGA_Alc_12_Max_Drinks	0.409	39.2	0.36	30.1	13.5	951	SCPT_SPEC	0.185	8.7	0.204	10.5	-9.7	1000
DDisc_AUC_200	0.295	21.2	0.26	16.5	13.4	1000	ER40_CK	0.158	6.6	0.176	8	-10.4	1000
DSM_Depr_Pct	0.119	4.1	0.105	3.4	13.4	1000	ASR_Totp_Raw	0.151	6.1	0.171	7.6	-11.8	1000
SSAGA_ChildhoodConduct	0.192	9.4	0.169	7.5	13.4	1002	SSAGA_TB_Smoking_History	0.148	5.9	0.168	7.4	-11.8	1002
ASR_Wtd_Pct	0.151	6.1	0.134	4.9	13.1	1000	IWRD_TOT	0.174	7.8	0.198	9.9	-12.1	1000
CardSort_Unadj	0.36	31.6	0.319	24.7	12.9	1001	ASR_TAO_Sum	0.169	7.5	0.195	9.6	-13.1	1000
SSAGA_Alc_Hvy_Frq	0.254	15.1	0.226	12.1	12.5	951	Num_Days_Drank_7days	0.183	8.6	0.211	11.1	-13.3	1000
PMAT24_A_CR	0.512	67.4	0.456	51.9	12.3	999	Avg_Weekend_Any_Tobacco_7days	0.193	9.3	0.224	12.2	-13.6	985
LifeSatisf_Unadj	0.208	10.8	0.186	8.8	11.8	1002	FearSomat_Unadj	0.106	3.4	0.125	4.4	-15.1	1002
DSM_Somp_Raw	0.154	6.3	0.138	5.2	11.3	1000	ASR_Totp_T	0.153	6.2	0.183	8.5	-16.1	1000
DSM_Adh_Raw	0.182	8.5	0.165	7.1	10.4	1000	DSM_Anxi_Raw	0.143	5.6	0.174	7.8	-17.6	1000
Avg_Weekday_Beer_Wine_Cooler_7days	0.286	19.6	0.26	16.3	10	985	SSAGA_TB_Still_Smoking	0.181	8.4	0.225	12.5	-19.5	1002
PSQI_Score	0.168	7.4	0.153	6.3	9.9	1003	SCPT_SEN	0.083	2.4	0.106	3.4	-21.2	1000
Total_Beer_Wine_Cooler_7days	0.36	31.1	0.329	25.9	9.5	985	SSAGA_Mj_Times_Used	0.172	7.7	0.221	12.1	-21.9	1002
ASR_Attn_Pct	0.188	9	0.173	7.7	8.8	1000	MeanPurp_Unadj	0.085	2.4	0.11	3.6	-22.8	1002
SSAGA_Alc_12_Frq_Drk	0.275	17.5	0.257	15.3	7.1	951	PercReject_Unadj	0.083	2.4	0.108	3.5	-23.4	1002
Reading_AgeAdj	0.494	62.3	0.464	54.4	6.3	1003	NEOFAC_E	0.102	3.2	0.139	5.3	-26.8	1001
DSM_Antis_Raw	0.244	14.5	0.229	13	6.2	1000	DSM_Anxi_Pct	0.088	2.6	0.122	4.3	-27.7	1000
ASR_Extn_Raw	0.203	10.3	0.191	9.3	6	1000	Avg_Weekend_Hard_Liquor_7days	0.074	2	0.106	3.4	-29.8	985
ASR_Agg_Pct	0.119	4.1	0.113	3.7	5.6	1000	SSAGA_Alc_Age_1st_Use	0.136	4.9	0.202	9.8	-32.8	951
ReadEng_Unadj	0.487	60.4	0.464	54.2	5	1003	Total_Hard_Liquor_7days	0.07	1.9	0.135	4.9	-47.9	985

Table S3: Three examples of top 10 most significant correlations of BigFLICA modes (left) and IDPs (right) with nIDPs in UKB dataset.

BigFLICA modes	r-value	p-value	IDP names	r-value	p-value
Top 10 modes/IDPs correlate with <i>fluid intelligence</i>					
IC25	-0.146	6.54E-65	IDP_tfMRI_90th-percentile_BOLD_shapes	-0.074	1.05E-15
IC57	-0.122	3.49E-45	IDP_tfMRI_median_BOLD_shapes	-0.069	1.28E-13
IC332	-0.081	7.26E-21	IDP_tfMRI_90th-percentile_zstat_faces-shapes_amygda	0.068	1.48E-13
IC484	-0.072	9.87E-17	rfMRI amplitudes (ICA25 node 6)	0.066	2.75E-13
IC4	-0.069	1.18E-15	rfMRI connectivity (ICA100: IC13-IC32)	-0.065	3.82E-13
IC27	0.064	1.98E-13	IDP_tfMRI_90th-percentile_zstat_shapes	-0.063	7.95E-12
IC188	-0.058	2.80E-11	IDP_tfMRI_median_zstat_faces-shapes	0.063	1.20E-11
IC708	-0.055	1.51E-10	IDP_tfMRI_median_zstat_faces-shapes_amygda	0.062	1.51E-11
IC164	0.055	1.68E-10	rfMRI connectivity (ICA100: IC11-IC19)	0.056	3.94E-10
IC47	-0.054	3.40E-10	IDP_tfMRI_median_BOLD_faces-shapes	0.057	5.16E-10
Top 10 modes/IDPs correlate with <i>Age started wearing glasses or contact lenses</i>					
IC164	0.101	2.74E-31	IDP_tfMRI_90th-percentile_BOLD_faces-shapes	0.081	5.38E-18
IC25	0.067	1.63E-14	IDP_tfMRI_median_BOLD_faces-shapes	0.064	7.16E-12
IC249	0.057	5.65E-11	IDP_tfMRI_median_zstat_faces-shapes	0.064	1.01E-11
IC13	0.054	7.68E-10	rfMRI connectivity (ICA100: IC4-IC40)	-0.061	1.81E-11
IC138	0.041	2.33E-06	rfMRI connectivity (ICA100: IC17-IC42)	-0.060	4.34E-11
IC190	0.038	1.65E-05	IDP_tfMRI_90th-percentile_zstat_faces-shapes	0.061	9.88E-11
IC563	-0.037	1.84E-05	rfMRI amplitudes (ICA25 node 19)	0.056	8.97E-10
IC656	0.037	1.98E-05	rfMRI amplitudes (ICA100 node 16)	0.054	3.08E-09
IC297	-0.037	2.32E-05	rfMRI connectivity (ICA100: IC15-IC43)	-0.050	3.14E-08
IC580	0.037	2.53E-05	rfMRI connectivity (ICA100: IC21-IC28)	0.049	6.90E-08
Top 10 modes/IDPs correlate with <i>hypertension</i>					
IC259	0.121	2.95E-48	IDP_dMRI_TBSS_MD_External_capsule_L	0.135	4.17E-53
IC38	-0.111	3.09E-41	IDP_dMRI_TBSS_MD_External_capsule_R	0.132	6.44E-51
IC319	0.094	5.98E-30	IDP_dMRI_TBSS_L1_External_capsule_L	0.130	2.29E-49
IC29	0.091	5.82E-28	IDP_dMRI_TBSS_L3_External_capsule_R	0.126	6.51E-47
IC40	0.088	2.82E-26	IDP_dMRI_TBSS_L3_External_capsule_L	0.126	1.70E-46
IC1	-0.083	1.57E-23	IDP_dMRI_TBSS_L3_Anterior_limb_of_internal_capsule_L	0.122	4.64E-44
IC171	-0.073	1.00E-18	IDP_dMRI_TBSS_L1_External_capsule_R	0.122	5.37E-44
IC26	-0.067	6.73E-16	IDP_dMRI_TBSS_ISOVF_External_capsule_L	0.122	7.49E-44
IC176	-0.062	6.75E-14	IDP_dMRI_TBSS_L2_Anterior_limb_of_internal_capsule_L	0.120	2.60E-42
IC84	0.057	9.14E-12	IDP_dMRI_TBSS_MD_Anterior_limb_of_internal_capsule_L	0.118	2.91E-41
Top 10 modes/IDPs correlate with <i>handedness</i>					
IC235	-0.226	5.71E-168	rfMRI connectivity (ICA100: IC29-IC34)	0.115	1.30E-40
IC408	-0.079	1.76E-21	rfMRI connectivity (ICA25: IC1-IC6)	0.095	6.93E-28
IC569	0.066	1.90E-15	rfMRI connectivity (ICA100: IC10-IC34)	0.095	7.70E-28
IC382	0.051	8.40E-10	rfMRI connectivity (ICA25: IC14-IC22)	0.085	7.43E-23
IC251	0.047	1.13E-08	rfMRI connectivity (ICA100: IC3-IC19)	0.085	8.01E-23
IC232	0.043	2.12E-07	rfMRI connectivity (ICA100: IC14-IC34)	0.081	7.28E-21
IC742	0.042	4.41E-07	rfMRI connectivity (ICA25: IC1-IC22)	0.080	2.93E-20
IC643	-0.039	2.39E-06	rfMRI connectivity (ICA100: IC30-IC34)	-0.074	1.46E-17
IC419	0.036	1.66E-05	rfMRI connectivity (ICA100: IC27-IC52)	0.073	3.07E-17
IC332	0.036	1.76E-05	rfMRI connectivity (ICA100: IC6-IC13)	0.071	3.39E-16

Table S4: Percent of shared variance (%) of BigFLICA decomposition across a range of dimensionalities in the UKB data. Upper triangle: the explained variance of a lower-dimensional decomposition by a higher-dimensional decomposition. Lower triangle: the explained variance of a higher-dimensional decomposition by a lower-dimensional decomposition.

	IC25	IC100	IC250	IC500	IC750
IC25	100.00	99.98	99.99	99.99	99.99
IC100	88.57	100.00	99.97	99.98	99.99
IC250	86.38	96.99	100.00	99.98	99.99
IC500	87.77	95.45	96.79	100.00	99.97
IC750	85.33	95.31	96.91	99.65	100.00

Table S5: A description of 47 Modalities of UKB dataset used in this paper.

Abbreviation	full description
rest k (k=1-25)	Dual regression between IC k of 25 dimensional decomposition of rsfMRI and the whole brain
task z1	Z-statistics of emotion task contrast "shapes"
task z2	Z-statistics of emotion task contrast "face"
task z5	Z-statistics of emotion task contrast "faces>shapes"
task c1	Contrasts of parameter estimate of emotion task contrast "shapes"
task c2	Contrasts of parameter estimate of emotion task contrast "face"
task c5	Contrasts of parameter estimate of emotion task contrast "faces>shapes"
TBSS-FA	Tract-Based Spatial Statistics - fractional anisotropy
TBSS-MD	Tract-Based Spatial Statistics - mean diffusivity
TBSS-MO	Tract-Based Spatial Statistics - tensor mode
TBSS-L1	Tract-Based Spatial Statistics - amount of diffusion along the principal directions 1
TBSS-L2	Tract-Based Spatial Statistics - amount of diffusion along the principal directions 2
TBSS-L3	Tract-Based Spatial Statistics - amount of diffusion along the principal directions 3
TBSS-OD	Tract-Based Spatial Statistics - orientation dispersion index
TBSS-ICVF	Tract-Based Spatial Statistics - intra-cellular volume fraction
TBSS-ISOVF	Tract-Based Spatial Statistics - isotropic or free water volume fraction
tracts	summed tractography map of 27 tracts from AutoPtx in FSL
VBM	voxel-based morphometry
Area	Cortical surface area from Freesurfer
Thickness	Cortical surface thickness from Freesurfer
Jacobian	Jacobian map of nonlinear registration of T1 image to MNI152 standard space
swMRI	T2* image derived from swMRI
T2 lesion	White matter hyperintensity map estimated by BIANCA