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Phenotype Discovery from Population Brain Imaging
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Netherlands. *

Neuroimaging allows for the non-invasive study of the brain in rich detail. Data-driven discovery of
patterns of population variability in the brain has the potential to be extremely valuable for early dis-
ease diagnosis and understanding the brain. The resulting patterns can be used as imaging-derived
phenotypes (IDPs), and may complement existing expert-curated IDPs. However, population datasets,
comprising many different structural and functional imaging modalities from thousands of subjects,
provide a computational challenge not previously addressed. Here, for the first time, a multimodal
independent component analysis approach is presented that is scalable for data fusion of voxel-level
neuroimaging data in the full UK Biobank (UKB) dataset, that will soon reach 100,000 imaged sub-
jects. This new computational approach can estimate modes of population variability that enhance
the ability to predict thousands of phenotypic and behavioural variables using data from UKB and
the Human Connectome Project. A high-dimensional decomposition achieved improved predictive
power compared with widely-used analysis strategies, single-modality decompositions and existing
IDPs. In UKB data (14,503 subjects with 47 different data modalities), many interpretable associa-
tions with non-imaging phenotypes were identified, including multimodal spatial maps related to
fluid intelligence, handedness and disease, in some cases where IDP-based approaches failed.

1 Introduction

Large-scale multimodal brain imaging has enormous potential for boosting epidemiological and neu-
roscientific studies, generating markers for early disease diagnosis and prediction of disease progres-
sion, and the understanding of human cognition, by means of linking to clinical or behavioural vari-
ables. Recent major studies have been acquiring brain magnetic resonance imaging (MRI), genetics and
demographic/behavioural data from large cohorts. Examples are the UK Biobank (UKB)!, the Human
Connectome Project (HCP)? and the Adolescent Brain Cognitive Development (ABCD) study®. These
studies involve multimodal data, meaning that several distinct types of MRI data are acquired, mapping
activity, functional networks, structural connectivity, white matter microstructure, and organisation and
volumes of different brain tissues and sub-structures'. However, the multimodal, high-dimensional and
noisy nature of such big datasets makes many existing analytical approaches for extracting interpretable
information impractical®.

Traditionally, large-scale neuroimaging studies first summarize the imaging data into interpretable
image-derived phenotypes (IDPs)"°, which are scalar quantities derived from raw imaging data (e.g.,
regional volumes from structural MRI, mean task activations from task MRI, resting-state functional
connectivities between brain parcels). This knowledge-based approach is simple and efficient, and ef-
fectively reduces the high-dimensional data into interpretable, compact, convenient features. However,
there may well be a large loss of information, due to such "expert-hand-designed" features not cap-
turing important sources of subject variability (or even just losing sensitivity by the pre-defined spatial
sub-areas being suboptimal), as well as ignoring cross-modality relationships. Further, such uni-modal
compartmentalised analyses do not utilise the fact that for many biological effects of interest we expect
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there to be biological convergence across different data modalities, ié; changes in the underlying bio-
logical phenotype likely manifest themselves across multiple quantitative phenotypes, so that a joint
analysis effectively increases both the power of detecting such effects and the interpretability of the
findings.

In contrast to such uni-modal analyses, data-driven multivariate approaches (i.e., unsupervised
machine learning) have been proposed, which perform simultaneous decomposition of voxel-level data
directly, generally representing data as the summation of a number of "components" or "modes". Each
mode is formed as the outer product of two vectors: one is a vector of subject weights (describing the rel-
ative strength of expression of that mode in each subject), and a vector of voxel weights (in effect a spatial
map for each data modality, describing the spatial localisation of the mode). The subject weight vectors
(one per mode) can be considered "features" (similar to IDPs, but being data-driven) for use in further
modelling, such as for the prediction of non-imaging variables. They are often either based on eigen-
decomposition, such as multi-set canonical correlation analysis (mCCA)®’, or based on variations of
independent component analysis (ICA)*'!. Among them, FMRIB’s Linked ICA (FLICA)" is an efficient
approach which has been successfully applied to identify brain systems that are involved in lifespan
development and diseases' '3, attention deficit hyperactivity disorder'*, preterm brain development'®
and cognition and psychopathology'®. FLICA has advantages compared with uni-modal analysis on
IDPs, including: (1) It leverages the cross-modality information of multimodal data, so has the potential
to detect patterns that are not discoverable in any single modality; (2) It is a data-driven objective ap-
proach which automatically discovers meaningful patterns in voxel-level multimodal data by searching
for spatial non-Gaussian sources that have been shown to likely reflect real structured features in neu-
roimaging data'’. While this approach has been applied successfully to medium-sized cohort data'*~'6,
the original algorithms for carrying out FLICA do not scale well with increasing data size, and are unable
to analyze large datasets such as UKB, where dozens of different modalities over tens of thousands of
subjects are available. Importantly, because the core FLICA algorithms are multivariate, acting in a com-
plex way simultaneously across all subjects, modalities and voxels using Variational Bayesian updates of
parameters, this problem cannot be solved through simple parallelisation or other algorithmically sim-
ple methods for distributing computations across a large cluster, and so cannot be addressed simply by
increasing the number of processors or memory available.

To tackle this problem, we propose an approach that embeds advanced data compression tech-
niques across the different data dimensions into the FLICA approach. We use a multimodal extension
of MELODIC's Incremental Group Principal component analysis'® (mMIGP, applied across modalities)
and online dictionary learning'® (DicL, applied within-modalities) to efficiently reduce the size of multi-
modal neuroimaging data. The reduced data are then characterised through FLICA in terms of underly-
ing modality-specifc maps and subject loading vectors. Here we refer to this combination of techniques
as Big-data FLICA, or BigFLICA for short). Two important advantages of the proposed approach are: (1)
Preserving key information in original data but also reducing the effects of stochastic domain-specific
noise; (2) Increasing the computational efficiency of the FLICA algorithm for extremely large population
datasets. BigFLICA is scalable for simultaneously analyzing all the multimodal data of the full 100,000-
subjects UKB dataset using only a modest computing cluster (Fig. 1).

We first demonstrate the effectiveness of our approach through extensive simulations. Then, in
real data, we quantify performance in terms of the prediction accuracy of non-imaging-derived phe-
notypes (nIDPs)?*?!, such as health outcome measures. Using voxel-level imaging data of 81 modali-
ties from 1,003 subjects in the HCP and 47 modalities from 14,053 subjects in the UKB, we show that
BigFLICA can perform comparably with original FLICA" in terms of the prediction accuracy for nIDPs
(158 in HCP and 8,787 in UKB). Most importantly, we systematically investigated whether there are
benefits to jointly fusing multimodal data together, instead of analysing them separately. We show
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UK-Biobank dataset: ~800 GB raw data!

>150k voxels per modality
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Figure 1: Overview of the proposed approach for jointly analyzing a biobank-scale multimodal neuroimag-
ing dataset. Currently for the UKB dataset (voxel-level data, 14503 subjects, 47 modalities), the total data size is
approximately 800 GB, and if we directly feed these data into FLICA and extract 750 components, we will need
approximately 1066 GB CPU memory and 1680 hours computation time. Our new approach, BigFLICA, used mul-
timodal MIGP and dictionary learning to preprocess the multimodal data; this is efficient and memory friendly,
and much of this preprocessing can be easily parallelized. BigFLICA only used 50 GB memory and 73 hours to
analyze the same dataset using a 24-core compute server.

that significant improvements in the prediction accuracy of nIDPs are found when comparing a high-
dimensional BigFLICA with other widely-used data analysis strategies: (1) doing single-modality ICA
and concatenating the results across modalities and (2) using existing IDPs (5,812 in HCP and 3,913 in
UKB). In particular, the improvements in prediction of many health outcome and cognitive variables
are large, more than doubling prediction accuracy for some variables. Furthermore, we investigate the
relationship between modes derived by BigFLICA and IDPs. We find that although the modes were esti-
mated from the same set of voxel-level data, they have complementary information which can be com-
bined together to further increase the prediction accuracy of nIDPs. Finally, we applied BigFLICA to
analyze the UKB data and extracted 750 components. Existing multimodal ICA cannot estimate this
many modes from this many subjects. We found several interpretable associations between modes of
BigFLICA and nIDPs, including modes that relate to fluid intelligence, handedness, age started wearing
glasses or contact lenses and hypertension. In many cases BigFLICA can find associations with nIDPs with
greater statistical sensitivity than was possible with IDPs. Overall, BigFLICA demonstrated the advan-
tages of data-driven joint multimodal modelling in the analysis of biobank-scale multimodal datasets.

2 Results

Brief overview of the proposed approach: BigFLICA. FLICA" is a Bayesian ICA approach for multi-
modal data fusion. The input of FLICA is K modalities’ data matrices Y %) with dimensions N x Py, k=
1,..., K, where Py is the number of features (e.g., voxels) and N is the number of subjects. FLICA aims to
find a joint L-dimensional decomposition ofall Y ®: y® = Fw® x® 4 E® \where H(y« ) is the shared
subject mode (mixing matrix) across modalities (a vector of subject weights for each mode), so is a ‘link’
across different modalities, WX s a positive diagonal mode-weights matrix (one overall weight per

(LxL)
modality per mode), X ((fl Py is the independent (spatial) feature maps for the L components of a modal-
ity (one map per modality per mode), and E (k) is the modality-specific Gaussian noise term (Fig. 1).

(NxPy)
We propose two efficient approaches that can either be used separately or combined together to reduce
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the size of the original data matrices, and therefore reduce the computational load of the original FLICA.
An overview of BigFLICA is shown in Fig. 1.

The first approach, termed multimodal extension of MELODIC’s Incremental Group Principal
component analysis'® (mMIGP), aims to reduce the subject dimension to a linear combination of the
original subjects. mMIGP is a time- and memory-efficient approximation of principal component anal-
ysis (PCA) on feature-concatenated multimodal data. To this end, if we aim to get a L* decomposition,
we first apply MIGP'® separately within each modality to estimate ﬁg}?x 1+ Which is an approximation
of an L*-dimensional PCA decomposition of one modality Y ¥, This step can be done in parallel across
modalities. Then, we concatenate all U® in the component dimension and apply another MIGP to get
Unxr*), which is an L*-dimensional approximate PCA decomposition of all modalities together. Fi-
nally, we project the original data of each modality Y © to the PCA-reduced space using U. If no further
reduction (e.g., dictionary learning as below) is to be applied, the data that could then be fed into the
core FLICA would be the K component-by-feature matrices V¥ of size L* x Py, and FLICA would then
extract L (L < L*) components from these (Methods). This step almost adds little computational cost
compared with the original FLICA, because a similar PCA step is needed to initialize the parameters of
the original FLICA, but this approach is feasible for large numbers of subjects and modalities. Although
different modalities usually have different overall signal-to-noise ratios (SNR), which is largely ignored
by this mMIGP step, the subsequent FLICA can take this into account by the modality-specific noise
terms, and a high-dimensional mMIGP is used to capture modes with even small variations in each
modality.

It is known that voxels are correlated in both a local fashion (local spatial autocorrelation) and
across brain networks (long range correlation); hence, effective feature subsampling could hope to cap-
ture all important information in the data but also reduce the cost of spatial modelling in FLICA®?.
Therefore, we incorporate an approach, termed sparse online Dictionary Learning'® (DicL), to reduce
the dimension of feature (e.g., voxel) space that can capture both local and distant spatial correlation
structure. Specifically, for each modality, we use DicL to model the V& asa sparse linear combination
of L** basis elements: V® = A®D® where DW is the sparse spatial dictionary basis, and A® is the
feature loadings. By minimizing the reconstruction error, and enforcing sparsity in the dictionary basis
D™ we aim to achieve an optimal subsampling of feature space. The inputs of FLICA are then K smaller
matrices AX), which are only of dimension L* x L**, and FLICA then extracts L (L < min(L*, L**)) com-
ponents from these (Methods). Compared with doing FLICA with the original K large N x P, matrices,
using the DicL preprocessed data can greatly reduce the computation load of FLICA. DicL can easily be
parallelized across modalities and is memory friendly, which further increases efficiency (Fig. 1).

Evaluation of BigFLICA in simulations. We first applied BigFLICA on simulated data to evaluate the
performance of mMIGP and DicL as data preprocessing approaches under different parameter settings
and data signal-to-noise ratios. The mean correlation of extracted components with simulated ground
truth was compared with the corresponding result from the original FLICA (Methods).

For mMIGP Fig. 2a shows that, in most of the situations, the BigFLICA with mMIGP preprocessing
gave similar results to the original FLICA, and both FLICA and BigFLICA accurately find the underlying
ground truth in most cases. This is in agreement with results of simulations in the MIGP paper'® that it
can accurately approximate a full-data PCA in different situations. The optimal dimension of mMIGP is
different among simulations; sometimes a relative low dimension can achieve an accurate estimation of
components (e.g. Fig. 2a first three columns), while in other cases a high dimension is needed (e.g. Fig.
2a the fourth column).

For DicL, Fig. 2b shows that in almost all circumstances: (1) increasing the dictionary dimensions
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Figure 2: Evaluation of multimodal extension of MIGP (mMIGP) and dictionary learning (DicL) as the data
preprocessing steps for the FLICA using simulations. BigFLICA achieves similar performance as compared with
original FLICA that uses the full data. a, Evaluation of mMIGP preprocessing. We compared the correlations
(Z-transformed) of extracted components with ground truth across 50 simulations using the original FLICA (the
left column of each figure) and the mMIGP preprocessed FLICA (other columns). The mMIGP dimensions vary
between 50 and 400; the SNRs are between 4 and 0.04 (left to right), and the number of FLICA and ground truth
components are 25, 35, 45 (top to bottom). As there are 500 subjects, the reduction factor is from 10 to 1.25. b,
Evaluation of DicL preprocessing. We compared the the correlations of extracted components with ground truth
using the original FLICA (FLICA results given in the titles of each figure) and the DicL preprocessed FLICA with
different sparsity parameters and dictionary dimensions (cells of the heatmaps). The SNRs are between 4 and 0.04
(left to right), and the number of FLICA and ground truth components are 25, 50, 100 (top to bottom). As there are
27,000 original features per modality, the reduction factor is from 270 to 9.

will boost the performance of subsequent FLICA analysis; (2) the optimal sparsity parameters are usually
between A = 0.5 to 2, and they have similar performance; (3) In most cases the optimal performance
given by DicL matches that of non-reduced analysis (noted in figure legends). Therefore, in the real data
analysis, when using the DicL approach, we always use a very high dimensional DicL decomposition
and fix the sparsity parameter to A = 1.
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Table 1: Comparison of computation time and amount of RAM usage of BigFLICA with the original FLICA in the
UKB dataset (14,503 subjects, 47 different modalities). BigFLICA greatly increases computational efficiency in
different settings. Both BigFLICA and FLICA were run on the same computer using all 24 cores in all computation
stages with Intel Xeon CPU E7-8857 v2 @ 3.00GHz and 2TB RAM.

\ Number of components \ 100K subjects
Approaches ‘ nIC=25 nIC=100 nIC=250 nIC=500 nIC=750 ‘ 750 components (estimated)

The original FLICA 160 h 300 h 580 h 1,020h  1,680h 12,000 h
Computation Time (hours) | BigFLICA (mMIGP preprocessing) 23h 54h 135h 315h 565h 630h
BigFLICA (mMIGP+DicL preprocessing) 52h 53h 58 h 65h 73h 120 h

The original FLICA 801GB 821GB 879GB  963GB 1,066 GB 6,000 GB

Peak RAM (GB) BigFLICA (mMIGP preprocessing) 66 GB 88 GB 136GB  215GB  297GB 297 GB
BigFLICA (mMIGP+DicL preprocessing) | 50 GB 50 GB 50 GB 50 GB 50 GB 50 GB

Computation time comparison. Table 1 shows the comparison of the computation time and mem-
ory requirement of BigFLICA with the original FLICA in the UKB dataset. All code was implemented in
Python 2.7, and both BigFLICA and FLICA were run using 24 cores on a single compute node with Intel
Xeon CPU E7-8857 v2 @ 3.00GHz CPU and 2048 GB RAM. The computation time includes: (1) Prepro-
cessing of data using mMIGP and DicL (BigFLICA only); (2) Initialization of FLICA parameters; (3) FLICA
VB parameter updates. For the 100,000-subjects data, BigFLICA greatly decreases the computation time
and memory usage from an unrealistic amount to a modest configuration for a modern HPC cluster,
which therefore allows for the possibility of data-driven population phenotype discovery.

Real data: Comparing BigFLICA with the original FLICA based on the prediction accuracy of nIDPs.
As there is no ground truth available, we tested modes of BigFLICA have a similar prediction accuracy
of nIDPs compared with the original FLICA, using data from the HCP, and a subset of 1,036 subjects
from the UKB. Elastic-net regression with nested 5-fold cross-validation was used to predict each of
the nIDPs. This approach is widely-used and has been shown to achieve a robust and state-of-the-art
performance in many neuroimaging studies®*?*. Pearson correlation between each of the predicted
and the true nIDPs in the outer test fold is used to quantify accuracy. The statistical significance of
differences of prediction accuracy between two approaches are estimated by a weighted paired t-test
approach. (Methods).

Fig. 3 shows the Bland-Altman plots comparing the prediction accuracy of nIDPs between original
FLICA and BigFLICA with mMIGP preprocessing only (Fig. 3a), and with DicL preprocessing only (Fig.
3b), and with both data reduction approaches (Fig. 3c), in the UKB and HCP datasets. In these compar-
isons, mMIGP reduced the data to approximately 1/10 to 1/2 of the original data size, and DicL reduced
data to approximately 1/75 of the original data size. Overall, BigFLICA can estimate similar sets of modes
with comparable prediction accuracy in real multimodal neuroimaging data, i.e., the difference of the
correlation between two methods is centered around zero across a wide range of mean correlation val-
ues (which are also reflected in the insignificant p-values of weighted paired t-test), which demonstrates
that the mMIGP and DicL approaches are effective to reduce data and preserve key information in the
data.

Comparing BigFLICA with multiple independent single-modality ICA decomposition. We also com-
pared BigFLICA outputs against features pooled across those from separate ICA processing of each
modality. Fig. 4a shows that BigFLICA has a worse prediction performance than via running ICA sep-
arately on each modality when the dimensionality L is low. This is because at low dimensional de-
composition, single-modality ICA is most efficient because the constraints imposed on the degrees-of
freedom implied in the FLICA model is insufficient to capture the important data variation into joint
components. However, when L becomes large, the prediction accuracy becomes better than the single-
modality ICA (e.g., > 250 in UKB). This is because, at high dimensional decomposition, BigFLICA effec-
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Figure 3: Comparison of prediction accuracy of nIDPs between BigFLICA and the original FLICA. Overall, for
most of the comparisons, the differences of prediction accuracy are not significant. In each of the Bland-Altman
plots, each point represents the prediction of one nIDP, where the x-axis is the average prediction correlation of
the two approaches while the y-axis is the difference, i.e., BigFLICA - FLICA. The z- and p-values in the titles re-
flected the statistical significance of the differences. The Bonferroni correction 0.05 threshold corresponds to a
raw p-value of 1.7e-3. a, Comparing FLICA with mMIGP preprocessing with the original FLICA. We used a subset
of 1,036 subjects in the UKB dataset (top) and the HCP (bottom). The number of estimated FLICA components is
set to 50, and mMIGP dimensions are set from 100 to 500. b, Comparing FLICA with DicL preprocessing with the
original FLICA. We used a subset of 1,036 subjects in the UKB dataset (top) and the HCP (bottom). The dictionary
dimension is set to a high value of 2000, and the sparsity parameter is set to A = 1 for all modalities. The number
of estimated FLICA components are set from 25 to 300. ¢, Comparing FLICA with both mMIGP and DicL prepro-
cessing combined, with the original FLICA. The mMIGP dimension is set to 500, and other settings are the same
as in b. We use only a subset of UKB here so that running the original FLICA is computationally feasible.

tively combines multimodal information by considering cross-modal correlation in the data decompo-
sition stage. Although the cross-modal correlation is considered in the final prediction stage when using
single-modality ICA, the fact that BigFLICA identifies and takes advantage of correlated information be-
tween modalities at an earlier stage in feature generation helps improve the prediction performance.
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Figure 4: Comparison of prediction accuracy of nIDPs between BigFLICA against single-modality ICA and the
IDPs. Overall, for high-dimensional BigFLICA decompositions in the UKB dataset, BigFLICA achieved statistical
significant increases of prediction accuracy of nIDPs compared with single-modality ICA and IDPs. Combining
BigFLICA and IDPs together future improves compared with IDPs alone. In each of the Bland-Altman plots, each
point represents the prediction of an nIDP, where the x-axis is the average prediction correlation of the two ap-
proaches, while the y-axis is the difference. The z- and p-values in the titles reflected the statistical significance of
the differences. The Bonferroni correction 0.05 threshold corresponds to a raw p-value of 1.7e-3. a, Comparing
BigFLICA with the concatenation of single-modality ICA outputs. Top: UKB; Bottom: HCP. The number of FLICA
components is set from 25 to 750. b, Comparing BigFLICA with IDPs. Top: UKB; Bottom: HCP. The number of
IDPs is 3,913 in UKB and 5,812 in the HCP. ¢, Comparing the concatenation of BigFLICA and IDPs against IDPs
only. Top: UKB; Bottom: HCP.

Comparing BigFLICA with hand-curated imaging-derive phenotypes We compared the predictive per-
formance of BigFLICA with IDPs in both HCP and UKB datasets (Methods). Fig. 4b shows that, in the
UKB data, when the number of modes is low, BigFLICA has a worse predictive power than the joint
performance of 3,913 IDPs, due to the same insufficient degree-of-freedom reason as above. However,
when the dimensionality becomes higher, BigFLICA is clearly outperforming the IDPs, owing to jointly
fusing multimodal voxelwise data by considering cross-modality correlation. In the HCP data, the per-
formance is overall similar. These results indicate that BigFLICA can potentially explain more pheno-
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typic and behavioural variances than IDPs.

In more detail, Tables S1 shows that, in the UKB dataset, the high-dimensional BigFLICA (nIC=750)
has improved prediction accuracy for many nIDPs that relate to cognition phenotypes and health out-
comes compared with IDPs. These tables do not include nIDPs where both methods have low predictive
power (r < 0.1). In the HCP dataset (Table S2), BigFLICA (nIC=100) also shows improved prediction
accuracy in many cognitive and health outcomes variables compared with using IDPs.

Further, when we concatenated the modes of BigFLICA and IDPs together to predict nIDPs, as
shown in Fig. 4c, the combined feature sets have a significant improvement of prediction accuracy than
the IDPs alone in the UKB data. There are almost no differences for the same comparison in the HCP
data. This suggests that BigFLICA and IDPs may contain some complementary information of nIDPs.

To investigate the relationships between BigFLICA and IDPs further, we built prediction models
that used modes of BigFLICA to predict each of the IDPs, to further characterise information overlap
and complementarity between the two approaches. As shown in Figs. S2a and S2b, different types of
IDPs can be predicted differently, and the resting-state functional connectivities always had the worst
accuracy in both the HCP and the UKB datasets, because they are (relatively) noisy. However, when using
BigFLICA modes to predict 6 new summary features of the connectivity matrices (derived by applying
ICA to the matrix of subjects by network matrix edges)’, the accuracy is very high (r range from 0.85
to 0.89 for a 100 dimensional BigFLICA decomposition). In addition, when we used IDPs to predict
modes of BigFLICA, as shown in Figs. S2c and S2d, the prediction correlation almost showed a bimodal
distribution, which means that some of the FLICA modes can be predicted by the IDPs (mean r = 0.8)
while others cannot (mean r = 0.2). These results further demonstrates that BigFLICA and IDPs span
significant complementary variance.

BigFLICA comparison with mCCA and reproducibility We next compared BigFLICA against mCCA
(eigendecomposition based modelling, which of course also would require similar advances to BigFLICA
in order to work on large data; see online Methods). Overall, BigFLICA had (very slightly) improved pre-
diction accuracy (Fig. S3), and with slightly more parsimonious modelling (Fig. S4). However, with
split-half (across subjects) reproducibility testing, BigFLICA components were considerably more re-
producible than those from mCCA (median BigFLICA correlation greater than 0.9 in all cases, while
many mCCA dimensionalities have median correlation less than 0.5) (Fig. S5).

Examples of BigFLICA modes in the 14k UKB dataset We now give four examples of significant asso-
ciations between BigFLICA modes and nIDPs, namely, Fluid intelligence, Age started wearing glasses or
contact lenses, Handedness and hypertension. In Fig. 5, we show the top four most strongly associated
modalities in FLICA modes that correlate with a given nIDP. Fig. S6 shows the population cross-subject
mean maps for several task and rest fMRI modalities fed into FLICA. This helps give interpretive context
for the FLICA mode maps, which depict subject variability in the activity/connectivity relative to these
group mean maps.

For Fluid intelligence, using all modes (ICs) from the 750 dimensional BigFLICA decomposition
as features (predictors) in multivariate elastic net prediction, a cross-validated prediction correlation of
r = 0.26 is achieved. When we correlated each of the BigFLICA modes and IDPs with the fluid intel-
ligence score in the UKB, we found that several task-fMRI-related BigFLICA modes have the strongest
associations (Fig. 5a). The first (IC 25) involves task contrast "faces" and "faces>shapes" and the second
(IC 57) involves contrast "shapes" and "face" (see Tables S5 for the full list of these modalities). As the
correlation of the mode IC 25 (i.e., its subject weights vector) with fluid intelligence is negative (r=-0.14),
this means that the negative-weights voxels (such as in the anterior insula) are positively correlated
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233 with intelligence. The fMRI task (Hariri faces-shapes matching?) has, as expected, the greatest popula-
23¢ tion average activation in sensory-motor areas (plus some amygdala involvement due to the emotion-
255 ally negative nature of the faces), as seen in Fig. S6. However, the main brain areas involved in these
236 modes are distinct, including anterior cingulate cortex, frontal pole, inferior frontal gyrus, and anterior
237 insula; it is therefore interesting that the areas found by BigFLICA to be modulated in these components
233 (and found to associate with intelligence) are more “frontal, cognitive” areas than the sensory-motor
239 areas primarily activated on average. The top associations between fluid intelligence and IDPs also in-
200 volve task-fMRI IDPs (Tables S3), but these were a factor of two weaker than associations with BigFLICA
241 modes.

242 For Age started wearing glasses or contact lenses, BigFLICA achieved a prediction correlation of
23 1 = 0.16. Several resting-state connectivty and task modalities showed associations in primary visual
s« areas (Fig. 5b), which is consistent with the fact that this is a vision-related health variable. Lower age
25 of first wearing glasses is correlated with stronger activity in primary visual areas, and also with strength
246 Of resting-fMRI connectivity (or functional coherence) within the relevant areas of group-average con-
247 nectivity; interestingly, in nearby distinct (but still primary visual) areas, there is reduction of correlation
28 (blue voxels), suggesting greater differentiation of primary visual areas.

249 For Handedness, BigFLICA achieved a prediction correlation of r = 0.23. BigFLICA identified sev-

250 eral multimodal, lateralized (or laterally asymmetric) modes, including resting-state mode 14 (left-lateralised
251 language network), task, surface area and white matter tracts (Fig. 5c). There are several resting-state

22 connectivity-related IDPs correlated with handedness (Tables S3), consistent with a recent study® that

253 also used UKB IDPs, while no IDPs related to other modalities are found significant; in both cases the

25« maximum IDP correlation only reached r=0.12, whereas the strongest association with BigFLICA modes

255 was almost double this.

256 For a health variable hypertension (Fig. 5d), BigFLICA achieved a prediction correlation of r =
257 0.22. Several TBSS-related modalities showed consistent associations in the External Capsule tracts.
255 Meanwhile, white matter hyperintensity (T2-Lesion volume) in the corresponding areas is also higher
259 in people with hypertension. Several consistent findings have been reported in the literature® =3,

220 3 Discussion

261 In this paper, we presented BigFLICA, a multimodal data fusion approach which is scalable and tuneable
22 to analyze the full UK-Biobank neuroimaging dataset, and other large-scale multimodal imaging stud-
263 ies. To the best of our knowledge, this is the first approach for data-driven (unsupervised) multimodal
26+ analysis in a brain imaging dataset of this size and complexity. Building on the top of the powerful FLICA
265 model, we proposed a two-stage dimension-reduction approach that combines an incremental group-
266 PCA (mMIGP) and dictionary learning (DicL) to effectively preprocess the multimodal dataset and re-
267 duce the computational load of the final FLICA, while maintaining or even improving performance,
26s with as much as a 150-fold “intelligent” reduction in data size. We provide effective ways of choosing
269 the hyper-parameters of BigFLICA, so that it is free of tuning except for choosing the final number of
270 estimated components. Although this approach is motivated by the need for analyzing extremely big
271 neuroimaging data, it is also applicable to other kinds of data such as genetics and behavioural mea-
272 sures. An easy-to-use version of this software will be integrated into an upcoming version of the FSL
273 software package®*°. BigFLICA results on UKB will also be released via the UKB database as new data-
274 driven IDPs (image features), for further epidemiological and neuroscientific research.

275 A strength of our work is that, unlike previous work that was limited to more moderate datasets
27s and a few phenotypic and behavioural variables® "% we used two of the largest, high-quality mul-
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Figure 5: Examples of BigFLICA modes in the 14k UKB dataset. For each subfigure, each row shows one IC
(BigFLICA mode or independent component) with top 4 most strongly associated modalities. a, Two BigFLICA
modes that significantly correlate with fluid intelligence (1C25: r = —0.14; IC57: r = —0.12). b, Two BigFLICA
modes that significantly correlate with Age started wearing glasses or contact lenses (IC164: r = —0.10; IC13: r =
—0.05). ¢, Three BigFLICA modes that significantly correlate with handedness (1C235: r = —0.23; IC569: r = 0.07;
IC232: r = —0.04). d, Three BigFLICA modes that significantly correlate with hypertension (1C259: r = 0.12; IC13:
r =—0.11; IC319: r = —0.09). The Bonferroni corrected 0.05 threshold corresponds to an uncorrected p-value of
9.2 x 1079 (corrected for number of components (750) and number of nIDPs (7245)). All of the above correlations
passed the Bonferroni threshold except for IC232 with uncorrected p = 2.1 x 1077,

timodal neuroimaging datasets, and thousands of phenotypic and behavioural variables to validate
the proposed approach. We demonstrated that BigFLICA is not only much faster than the original
FLICA (and can be run on very large data that is simply not analysable with FLICA or other existing
methods), but also estimates similar modes with a comparable performance for predicting the non-
imaging-derived phenotypes in real data (when tested on a large data subset that is just small enough
to allow for comparison against FLICA). We provide insights into the advantages of data-driven multi-
modal fusion in big datasets by quantitative analysis®”*®. First, when comparing BigFLICA with sim-
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234« pler IDP-based approaches (and also single-modality ICA approaches), we demonstrated that a high-
255 dimensional BigFLICA has improved predictive power overall. We demonstrated the value of multi-
256 modal fusion instead of analyzing each modality separately. Second, when combining high-dimensional
257 BigFLICA-derived features with IDPs together, the predictive power increased further compared with us-
288 ing either method alone. In addition, when we used BigFLICA-derived features and manually created
289 (with expert knowledge) IDPs to predict each other, they cannot predict each other perfectly (although
200 they are derived from the same imaging data). This indicates that BigFLICA-derived features and IDPs
201 can be complementary to each other, both therefore providing potentially important imaging biomark-
202 ers that capture different signal in the imaging data. An interesting finding is that although a high-
203 dimensional BigFLICA has a much higher predictive power than a low dimensional decomposition, a
204« low dimensional decomposition can still explain more than 80% of the total variance of the high dimen-
295 sional decomposition. This suggests that some the phenotypic and behavioural variables are explained
206 by only small proportions of variance of imaging data. Finally, in addition to the value of using BigFLICA-
207 derived features for relating imaging to non-imaging data, BigFLICA components (particularly at lower
208 dimensionalities) may allow us to learn more about how the different brain imaging modalities (and
209 hence different spatial and biological aspects of the brain’s structure and function) relate to each other.

300 We see opportunities to improve the current approach. First, BigFLICA is limited to linear feature
31 estimation, while the “ideal, true” information in imaging data may be highly nonlinear. Therefore, a
a2 nonlinear extension of BigFLICA, which might be achieved with kernel methods or deep neural net-
33 works, is an important area of further research. Second, BigFLICA is an unsupervised dimension reduc-
s+ tion and feature generation approach. However, integrating some supervision, i.e., the target variable
a5 (such as disease outcomes), into the dimension reduction may boost the performance of the algorithm.
s Additionally, because BigFLICA generates data-driven features, as opposed to expert-created IDPs, the
a7 biological or anatomical interpretation of features is often likely not to be immediately obvious, requir-
ss ing potentially intensive expert study. Future work could attempt to automate this interpretation pro-
a9 cess, for example by relating features to existing anatomical templates and atlases, and even by mining
a0 imaging literature. Finally, BigFLICA, or extensions, may be an effective way of discovering imaging
s confound factors® that cannot be found by traditional approaches.
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326 loaded via website (http://humanconnectome.org/data) and ConnectomeDB. Matlab software for per-
sz forming prediction using elastic-net regression is availableatht tps://github.com/vidaurre/NetsPredict.
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Methods

FLICA model. The input to FLICA is K modalities’ data matrices Y * with each modality’s dimensions
being N x Py, k =1,...,K, where Pj is the number of features (e.g., voxels) in modality k and N is the
number of subjects. FLICA aims to find a joint L-dimensional decomposition of all Y ¥:

y® = WP x® 4 g0 =1, K )

where H(y«p) is the shared subject mode (mixing matrix) across modalities, so is a ‘link’ across differ-

ent modalities, W((Lki 0 is a positive diagonal mode-weights matrix, X((I]fl Py is the independent (spatial)
(k)

feature maps for the L components of modality k, and ENwp,) 18 the Gaussian noise term.
k)

Multimodal extension of MELODIC’s Incremental Group Principal component analysis for subject-
space dimension reduction. We propose a multimodal extension of our previous MIGP approach'®,
termed mMIGP, to reduce the subject dimension of multimodal data. MIGP has been extensively val-
idated in simulations and real neuroimaging data for finding an approximate PCA decomposition in a
time- and memory-efficient way'®. Suppose that our multimodal data are K matrices Y® k=1,....K
with dimensions N x Py, where N is the number of subjects and Py is the number of features (e.g. vox-
els) in a modality. In mMIGB each feature is z-score normalized first. Then, an MIGP is applied to each
modality separately to find an L*-dimensional approximate PCA decomposition. Specifically, we want
to find an approximation of a singular value decomposition (SVD) of each Y ®:

y® =g®sOwr) k=1,..,K 2)

where ﬁgfl)x %) and \7((;2 L) are the left and right singular vectors, while §§’L€)* L1 are the singular values.
A naive SVD on Y® scales quadratically with N, which is not efficient when N is large. To find the ap-
proximation, MIGP sequentially feed a subset of (columns of) Y® in to an SVD, so that these subsets
are reduced to a low-dimensional representation. The low-dimensional representation is then concate-
nated with another subset of (columns of) Y®, and is fed into another SVD to find the low-dimensional
representation of them. The final SVD approximation is found after one pass of all data. The computa-
tional complexity of MIPG scales linearly with N. For a detailed description, please see Appendix A of

the MIGP paper'®.

The third step is to concatenate all U® in the component dimension and apply another MIGP for
findinga L*-dimensional approximate PCA decompositions U of size N x L*, which is a low-dimensional
representation of multimodal data in the analysis. Finally, the z-score normalized data Y® of each
modality is projected onto the U by:

vO -y y® k=12 K (3)

the V® k =1,2,...,K are the inputs of subsequent FLICA algorithm. Therefore, the total size of data
output by this stage is L* 2115:1 Py, which is smaller than the original input size N 2115:1 Py. The fractional
reduced data size is L*/ N, and the L* can be fixed when more subjects are introduced, so it is scalable in
the big-data analysis. In practice, we usually choose L* based on the percentage of explained variance
of SVD in the third step.

If we feed V%®, k = 1,2,...,K into FLICA to estimate L* FLICA modes, the output subject mode
matrix H* is of the size L* x L, so we then simply multiply this by U to get the final subject-mode matrix:

H=UH" 4)

The mMIGP approach is equivalent to performing an approximate PCA on feature-concatenated
data. The advantage is that it does not need to fit all data into the memory, and even can be parallelized
across modalities'®. This approach is also equivalent to applying mCCA across all modalities *°.
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Sparse dictionary learning for voxel-space dimension reduction. If the resolution of the data is high
and the number of modalities is large, applying just the mMIGP reduction still leaves FLICA as being
memory and computationally expensive. Therefore, we propose a method that can effectively reduce
the voxel dimension, and preserve the important spatial information for subsequent FLICA spatial mod-
elling. Although the most obvious ways of voxel subsampling are either to apply regular spatial down-
sampling (similarly, local voxel clustering) or apply PCA within each modality, the former only focuses
on the local patterns®* (and does not adapt downsampling to local variations in redundant information
across voxels) while the later empirically finds more global and noise patterns in neuroimaging data,
and does not work at all well empirically in this context (see also Allen, et al.>® and references therein).

The method we used here is sparse Dictionary Learning (DicL)"?, which effectively performs ‘voxel
grouping’ in both local and global fashion. It can be used directly on each of the original z-score normal-
ized modalities, i.e., Y® k =1,2,...,K, or on the mMIGP reduced data, i.e., V¥, k = 1,2,..., K. Taking
the former as an example, the sparse DicL is adopted here:

YO - pgpk p—12 K ©)

where DW is sparse spatial dictionary basis, and A® is the feature loadings with each column represent-
ing a linear combination of information from a group of voxels which might either be a local cluster or
spatially distributed network. By minimizing an /, -regularized sparse-coding objective function, a local
optimal solution can be obtained:

Py
AR, D®) =3 1y - APDE IR+ D (6)
i=1

s.t. € ={AW e RV s v j=1,..., L%, (Ag.’“))TA;’C) <1

where subscript i represents the i-th column of the corresponding matrix, and A is a regularization pa-
rameter. The /;-regularization term enforces that the learned spatial loadings D'® are sparse. The objec-
tive function can be efficiently optimized by a block-coordinate descent optimizer with warm restarts.
It has been implemented in the SPAMS package (http://spams—-devel.gforge.inria.fr/).
Compared with simply using PCA in this step, sparse DicL has three advantages: (1) the spatial loading
matrix D®) can be sparse, so a smaller number of voxels are involved in each column of the dictionary;
(2) the columns of the dictionary do not need to be orthogonal to each other, which is more flexible;
(3) an "overcomplete" dictionary is allowed, i.e., the number of dictionary basis vectors can exceed the
minimum of N and Py, which further increases the flexibility.

After the above modality-wise DicL, the final inputs to FLICA are the matrices A®, k = 1,2,...,K,
of size Nx L** ifweuse Y k=1,2,...,K,or L* x L** ifweuse V¥ k=1,2,..., K. Note that (unlike the
typical approach of feeding spatial PCA eigenvectors into ICA) we are not feeding the spatial dictionary
basis (D) into the FLICA core modelling, but the feature loadings (A®). To get the spatial loading
matrices from FLICA, we do voxel-wise multiple regression where the target variable is a voxel and the
design matrix is the FLICA subject mode. We could change the order by applying DicL first and then
mMIGBP but this empirically has a lower computation efficiency.

Evaluation of BigFLICA in simulations. We simulated 500 subjects, and each had two modalities, which
were both 30 x 30 x 30 images. We first simulated K ground-truth (independent) spatial maps X; each of
these was a 30 x 30 x 30 image. The spatial maps were a weighted sum of two Gaussian white noise im-
ages, where the first one was 30 x 30 x 30 with weight 0.05, and the second was a 5 x 5 x 5 cube randomly
located in the full image with weight 0.95. Then, random positive component weights W, Gaussian ran-
dom subject loadings H and Gaussian white noise terms E were simulated. Finally, after vectorizing
each spatial map and noise term, the data for a single modality Y was generated as Y = HWX + 0E,
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where o was a parameter to control the signal-to-noise ratio (SNR). A small amount of spatial smooth-
ing using a Gaussian kernel was applied to spatial maps X and noise terms E to mimic real image data.
Each of the two modalities also had 5 unique spatial maps that were not shared by each other. The voxels
were z-score normalized before feeding into the subsequent FLICA analysis. The SNR was defined as:
var(vec(HWX))/var(vec(oE)).

Performance evaluation: When FLICA was applied to the simulated data, the number of indepen-
dent components was always set to the ground truth K. The performance was measured by the similarity
between estimated subject-mode matrix H* and the ground truth H. The similarity was measured by
the greedy matching of the components based on maximum correlation and then estimating the mean
correlations across components.

Evaluation of mMIGP for subject-space dimension reduction: After generating simulated data, we
reduced the data to varying dimensions (L* = 50,100,200, 300, 400) using mMIGP, and then fed the re-
duced data into FLICA. This was compared with the original FLICA. The number of ground-truth com-
ponents was set to 25,35,45 and the SNR was set to 4,1,0.25,0.04. All simulations were repeated 50
times.

Evaluation of DicL for voxel-space dimension reduction: To evaluate the influence of the DicL
parameters on the subsequent FLICA results, we performed the DicL on simulated data using varying
parameter combinations (A = 0.1 to 16 and L** = 100 to 3000) followed by FLICA (nIC = 25,50, 100). This
was compared with the original FLICA. The SNR was set to 4,1,0.25,0.04, and the number of iterations
for the DicL was set to 50, because we empirically find that this number of iterations is sufficient for DicL
to converge to a stable result in simulation and real data. All simulations were repeated 50 times.

HCP and UK Biobank data. The voxel/vertex-wise neuroimaging data of 81 different modalities of 1,003
subjects from the HCP S1200 data release were used in this paper®. The preprocessing was conducted by
the HCP team using an optimized pipeline*'. The 81 modalities included (1) 25 resting-state ICA dual-
regression spatial maps (z-score normalized); (2) 47 unique task contrast maps as z-statistics from 7
different fMRI tasks; (3) 3 T1-image derived modalities (grey matter volume, surface area, surface thick-
ness); (4) 6 Tract-Based Spatial Statistics (TBSS) features from diffusion MRI (FA, L1, L2, L3, MD, MO)*2.
In addition, 158 nIDPs were used here, which was the same as our previous study*®. Names of nIDPs are
in Supplementary File 1.

The UK Biobank imaging data were mainly preprocessed by FSL*** and FreeSurfer** following
an optimized pipeline® (https://www.fmrib.ox.ac.uk/ukbiobank/). The voxel-wise neu-
roimaging data of 47 modalities of 14,053 subjects were used in this paper, including: (1) 25 “modalities”
from the resting-state fMRI ICA dual-regression spatial maps (z-score normalized); (2) 6 modalities from
the emotion task fMRI: 3 contrasts (shapes, faces, faces>shapes) of z-statistics and 3 contrasts of param-
eter estimate maps; (3) 10 diffusion MRI derived modalities (9 TBSS features, including FA, MD, MO, L1,
L2, L3, OD, ICVE ISOVF**%% and a summed tractography map of 27 tracts from AutoPtx in FSL); (4) 4 T1-
MRI derived modalities (grey matter volume and Jacobian map (which shows expansion/contraction
generated by the nonlinear warp to standard space, and hence reflects local volume) in the volumetric
space, and cortical area and thickness in the Freesurfer’s fsaverage surface space); (5) 1 susceptibility-
weighted MRI map (T2-star); (6) 1 T2-FLAIR MRI derived modality (white matter hyperintensity map
estimated by BIANCA*"). A detailed description is in Table. S5. In addition, the 8,787 nIDPs were in-
cluded, but we retained the 7,245 of those, that have at least 1,000 non-missing values (subjects). Names
of nIDPs are in Supplementary Files. Group-level resting-state independent component spatial maps
and task activation z-statistic maps are in the Supplementary Files.

When carrying out nIDP prediction, a total of 13 and 54 confounding variables were regressed
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out from nIDPs using linear regression in the HCP and the UKB datasets respectively (Supplementary
Materials). Subjects with a missing modality were imputed by the mean value of all other subjects. We
did not impute the missing nIDPs.

Comparing BigFLICA with the original FLICA on real data. On real data, we do not know the ground
truth components, and the data may not follow the assumptions of ICA. Therefore, we rely on the per-
formance of predicting nIDPs as a surrogate criterion to evaluate different methods. We applied the
proposed mMIGP approach to HCP data and a subset of 1,036 UKB subjects (so that the original FLICA
is computationally tractable). Elastic-net regression, from the glmnet package*®, was used to predict the
nIDPs using FLICA’s subject modes as model regressors (features). This approach is widely-used and has
been shown to achieve a robust and state-of-the-art performance in many neuroimaging studies***. To
evaluate the model performance, for each nIDP, we used 5-fold cross validation, and compute Pearson
correlation between the predicted and true values of each nIDP across the 5 test sets. As there are tuning
parameters within the Elastic-net regression, in each training set, we performed a nested 5-fold cross
validation to tune the model parameters, and used the best model selected in the nested 5-fold cross
validation to do the prediction in the test set. When comparing any two approaches, the same training-
validation-testing split was used. The prediction accuracy was quantified as the Pearson correlation
between predicted and the true values of each nIDP in the test sets.

To evaluate MIGP preprocessing, we reduced the dimension to varying L* (from 100 to 500) using
MIGP first and then used FLICA to extract L = 50 components. The original FLICA was also applied to
extract 50 components. To evaluate DicL preprocessing, we used the DicL (dictionary dimension = 2000
and sparsity parameter A = 1) to reduce the data dimension of each modality followed by the FLICA to
extract varying numbers of components (nIC= 25, 50,100,200, 300). The original FLICA was also applied
to extract the same numbers of components. The prediction accuracy of BigFLICA was compared with
the original FLICA applied on non-reduced data.

Statistical significance of difference of prediction accuracy between two approaches. To compare the
overall prediction accuracy of two approaches (e.g. BigFLICA with mMIGP preprocessing vs. the original
FLICA), we estimate the statistical significance of the difference between the prediction correlations
across nIDPs. Suppose that we have a total of p nIDPs, we first filter out a subset of nIDPs where both
methods have low prediction accuracy (r < 0.1 in our analysis), resulting in p; nIDPs. If we perform a
simple paired t-test, the correlation structures among nIDPs makes the samples dependent with each
other, so that the p-value is not valid. Based the fact that a paired t-test is a special case of general linear
model (where the y variable is the difference of the prediction accuracy, and the x variable is a column of
ones, and the statistical significance is the significance of the coefficient of x), we used a weighted least
square approach (by Iscov function in Matlab) to get areliable statistical significance estimation by taken
the covariance structures between nIDPs (which is estimated as the covariance of the nIDPs-by-subject
matrix) into account.

Parameter settings of running BigFLICA in the full HCP and UKB datasets. We applied BigFLICA ap-
proach to extract varying number of target components in two datasets. In HCP, we used FLICA with
DicL preprocessing only (dictionary dimension 2000 and A = 1). In UKB, we used FLICA with both
mMIGP and DicL preprocessing (dictionary dimension 5000, A = 1 and mMIGP dimension 1000 (>95%
explained variance)). The number of FLICA VB iterations is 1000.

Comparing BigFLICA with multiple independent single-modality ICA decomposition. ICA is a widely-
used approach for decomposing single-modality neuroimaging data, including functional MRI** but
also in structural MRI*® and diffusion MRI*". A natural question arises whether BigFLICA is able to com-
bine multimodal information more effectively than the single-modality approaches such as ICA (we
used the fastICA algorithm®'), which ignores inter-modality relationships.
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We first performed ICA on each modality of HCP and UKB data separately to extract 25,100, 250,
500 and 750 components. For a given component number, we built a prediction model using the con-
catenated ICA subject modes (across modalities) to predict each of the nIDPs. To be fair, for BigFLICA,
we extract the same number of ICs to build the prediction model. For example, in the UKB data and
a 25-dimensional decomposition, the predictor is a Subjectx (25 x 47) matrix for single-modality ICA,
where 25 is the number of components in each modality and 47 is the total number of modalities. For
BigFLICA, the predictor is a Subjectx25 matrix. This is arguably a fair comparison because each of the
BigFLICA modes potentially contains information from all modalities. The method to build a predictive
model and evaluate this is the same as above, except that when we used the concatenated ICA subject
modes, we added a univariate screening step in the training set to select the top 300 most informative
features according to their correlation with an nIDP in the training set. This step, in general, boosts the
predictive accuracy because the dimensionality of concatenated ICA modes is usually very high, so that
many of the modes are pure noise with respect to any given nIDP. Therefore, the univariate screening
can help the elastic-net regression to filter out noisy features effectively. We did not perform univariate
screening when using the BigFLICA subject modes to predict nIDPs.

Besides the main results, in Fig. S1, we also compared, in the UKB data, the 750-dimensional
BigFLICA decomposition with the 25-dimensional ICA decomposition concatenated across modalities,
i.e., we have 25 x 47 features in the single-modality ICA. In this comparison, the number of features for
the two methods are almost the same, but we can see that BigFLICA clearly outperforms the single-
modality ICA.

Comparing BigFLICA with hand-curated imaging-derived phenotypes. A popular choice of data anal-
ysis strategy is to extract imaging features based on expert knowledge (e.g., regional volumes and thick-
ness, and resting-state functional connectivities between brain regions), often referred to as IDPs'. Brain
IDPs have been shown to genetically correlate with many SNPs in our previous genome-wide association
study (GWAS) in UK Biobank®, and they have been shown to change in many psychiatric diseases®*2%.

We extracted 5,812 IDPs from the HCP, including (1) 199 structural MRI features from Freesurfer as
provided by the HCP; (2) 4700 regional mean task activations from 47 independent task contrasts using a
100-dimensional parcellation atlas®?; (3) 625 functional connectivities (FCs) based on a 25-dimensional
ICA parcellation with partial correlation to estimate FCs; (4) 288 regional mean TBSS features (FA, L1,
L2, L3, MD, MO) using the Johns Hopkins University tract atlas. The names of these IDPs are given in
the Supplementary File 3.

We used 3,913 IDPs from UKB, including global and local features from the 6 imaging modalities
(T1, T2-FLAIR, swMRI, tfMRI, rfMRI, and dMRI)>®>. The names of these IDPs are given in the Supple-
mentary File 4.

We built prediction models that use IDPs or BigFLICA modes to predict each of the nIDPs using
the same strategy as above. The FLICA dimension is set to 25, 100, 250, 500, 750. In addition, we also
concatenated IDPs and each of the BigFLICA subject modes together to predict the nIDPs, and the per-
formance is compared with using IDPs alone. We used a univariate screening step to select the top
300/500 most informative IDPs according to their correlation with an nIDP in the inner-fold (i.e., train-
ing set) of HCP/UKB. Finally, we also built models that use IDPs to predict each of the FLICA subject
modes and vice versa, aiming to evaluate the shared variances between features extracted by these two
different approaches in the same data.

Reproducibility of BigFLICA. To test whether BigFLICA's spatial independent components are esti-
mated reliably, the whole UKB dataset was divided into two parts: the first part contained 7,000 subjects
and the second part contained the remaining 7,503 subjects. We applied BigFLICA to the two parts sepa-
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rately. After estimating the subject modes, we reconstructed the z-score normalized (voxel-wise) spatial
maps of each modality by regressing the subject mode against the mMIGP-reduced data. The spatial in-
dependent components of each modality were concatenated spatially and greedily paired, based on the
absolute correlation between two runs. When we computed the correlations, only voxels whose abso-
lute z-scores that are both larger than 3 in two runs were preserved (to reduce noise, given that there are
huge numbers of empty voxels across all modalities for a given FLICA component in general; this does
not bias the metric of reproducibility towards finding common similar patterns). Fig. S5 (left) shows
that the FLICA components have very high reproducibility in the split-half test across a varying number
of components.

Comparing BigFLICA with mCCA. We tested whether BigFLICA (independent components-based spa-
tial modelling) was better than mCCA (eigendecomposition based modelling, which could be consid-
ered to be similar to the output of BigFLICA without running the final core FLICA unmixing - note that
to enable mCCA to run requires the same mMIGP initial processing that we have added in this work)
in three ways. The number of extracted components was the same when performing this compari-
son. First, for the prediction accuracy of nIDPs, Fig. S3 shows that, in the UKB data, BigFLICA has a
(very slightly) improved prediction accuracy compared with mCCA. Then, we proposed a hypothesis
that modes of BigFLICA are more parsimonious features of nIDPs compared with mCCA, or in other
word, a smaller number of modes of BigFLICA can predict the nIDPs. Results shown in Fig. S$4 vali-
date this hypothesis: for a given number of components and a given nIDP, BigFLICA modes have a (on
average) higher proportion of zero weights in the elastic-net predictions, when compared with mCCA
modes. The advantage is that a more parsimonious representation usually has a better biological inter-
pretability. Finally, we estimated and compared the split-half reproducibility of BigFLICA and mCCA. As
shown in Fig. S5 (right), BigFLICA has a much higher between-subject reproducibility than mCCA.

Contribution of different modalities in a BigFLICA decomposition. Besides using BigFLICA for explor-
ing the relationships between imaging and non-imaging phenotypic and behavioural data, we can also
use it to investigate the relationship between different modalities. For each mode, BigFLICA estimates a
vector of positive numbers reflecting the contributions of different modalities (i.e., the diagonal of each
W), where the higher the number, the more important is one modality to a mode). We concatenated all
such vectors across all modes so that it is a mode-by-modality matrix W, and normalized each column
to sum to one. Six examples of such matrices are shown in Fig. §7, with different numbers of estimated
modes in the UKB dataset.

We then calculate each row’s sum (across columns) in W, thereby reflecting the overall contribu-
tion of each modality in the BigFLICA decomposition. As shown in Fig. §8, across all FLICA dimension-
alities (numbers of estimated modes), each of the 25 resting-state fMRI dual-regression spatial maps
usually has a low overall contribution, followed by task fMRI maps, while modalities reflecting more
about structure of the brain (e.g., structural MRI and diffusion MRI) generally have high overall contri-
butions. The relative differences of modality contribution between functional MRI-related modalities
and structural/diffusion MRI-related modalities become larger with increasing number of estimated
modes. We further estimated the total shared variances between a lower dimensional BigFLICA decom-
position and a higher dimensional decomposition. Table S4 shows that a higher dimensional decompo-
sition explains almost all variances of a lower dimensional decomposition (upper triangle of the table),
while a lower dimensional decomposition can explain a large proportion of the variances of a higher
dimensional decomposition.

Relationship between different modalities in a BigFLICA decomposition. We calculated the cosine
similarity between different columns of W (using the 750-dimensional BigFLICA decomposition), to
measure the similarity of different modalities in terms of their contribution to the BigFLICA decom-
position, i.e., the more similar information two modalities carry, the more likely they will have similar
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contribution to a mode. Fig. S9a shows that the modality relationship matrix is clearly grouped into
three large clusters. The first is all resting-state modalities, while the second is the task fMRI maps, and
the third is the diffusion MRI, structural MRI-related modalities and swMRI. The white matter hyper-
intensity map (T2 lesions) forms a single cluster. As a comparison, we also performed a 50-dimensional
ICA decomposition within each modality, and calculated the shared variances between every pair of 50
ICs in two modalities using a simple multivariate regression model. As shown in Fig. S9b, we also ob-
served a similar pattern as Fig. S9a. The main difference is that in Fig. S9a, there are relatively stronger
correlations within resting-state modalities and between resting-state and other modalities, but weaker
correlations between task modalities and structural related modalities. These results reflect the fact that
the multimodal modelling effects of BigFLICA learn different inter-modality relationships compared
with single-modality ICA.
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Supplementary Materials

Confounding variables regressed out in our analysis UKB dataset: age, age squared, age X sex, age
squared X sex, age (quantile normalised), age squared (quantile normalised), age X sex (quantile nor-
malised), age squared X sex (quantile normalised), rffMRI head motion, tfMRI head motion, head size
scaling, rfMRI head motion squared, tftMRI head motion squared, [4] confounds relating to bed posi-
tion in scanner (x), [4] confounds relating to bed position in scanner (y), [4] confounds relating to bed
position in scanner (z), [4] confounds relating to bed position in scanner (table), [4] confounds relating
to bed position in scanner (x) squared, [4] confounds relating to bed position in scanner (y) squared,
[4] confounds relating to bed position in scanner (z) squared, [4] confounds relating to bed position in
scanner (table) squared, [10] confounds modelling slow date-related drift 1, [10] confounds modelling
slow date-related drift 2, [10] confounds modelling slow date-related drift 3, [10] confounds modelling
slow date-related drift 4, [10] confounds modelling slow date-related drift 5, [10] confounds modelling
slow date-related drift 6, [10] confounds modelling slow date-related drift 7, [10] confounds modelling
slow date-related drift 8, [10] confounds modelling slow date-related drift 9, [10] confounds modelling
slow date-related drift 10, rfMRI head motion (quantile normalised), tfMRI head motion (quantile nor-
malised), head size scaling (quantile normalised), [4] confounds relating to bed position in scanner (x)
(quantile normalised), [4] confounds relating to bed position in scanner (y) (quantile normalised), [4]
confounds relating to bed position in scanner (z) (quantile normalised), [4] confounds relating to bed
position in scanner (table) (quantile normalised), [4] confounds relating to bed position in scanner (x)
squared (quantile normalised), [4] confounds relating to bed position in scanner (y) squared (quantile
normalised), [4] confounds relating to bed position in scanner (z) squared (quantile normalised), [4]
confounds relating to bed position in scanner (table) squared (quantile normalised), [10] confounds
modelling slow date-related drift 1 (quantile normalised), [10] confounds modelling slow date-related
drift 2 (quantile normalised), [10] confounds modelling slow date-related drift 3 (quantile normalised),
[10] confounds modelling slow date-related drift 4 (quantile normalised), [10] confounds modelling slow
date-related drift 5 (quantile normalised), [10] confounds modelling slow date-related drift 6 (quantile
normalised), [10] confounds modelling slow date-related drift 7 (quantile normalised), [10] confounds
modelling slow date-related drift 8 (quantile normalised), [10] confounds modelling slow date-related
drift 9 (quantile normalised), [10] confounds modelling slow date-related drift 10 (quantile normalised),
imaging centre, sex.

HCP dataset: image reconstruction version, age, age squared, sex, age X sex, age squared X sex,
race, ethnicity, rfMRI motion, Height, Weight, FS_IntraCranial_Vol, FS_BrainSeg_Vol.
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UKB 750 vs ICA 25 (47 modalities)
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Figure S1: Comparing the prediction performance of the 750-dimensional FLICA with the 25-dimensional single-
modality ICA concatenated across 47 modalities in the UKB data.
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Figure S2: Relationships between FLICA and IDPs. (a,b) The plots show the results of predicting each IDP using
BigFLICA modes in a the HCP and b the UKB dataset. The IDPs are appearing in order along the x axis, and are
grouped and coloured by modality types. (a,b) The histograms of predicting BigFLICA modes using all IDPs in ¢
the HCP and d the UKB dataset.
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Figure S3: Comparing FLICA and mCCA in the UKB data. Comparing the predictive performance of FLICA with
mCCA (or equivalently the subject-by-component matrix obtained in the mMIGP step) across different numbers
of extracted components in the UKB dataset. The FLICA and mCCA dimensions are the same in each figure.
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Figure S4: The difference of the proportion of zeros weights (BigFLICA-mCCA) in predicting nIDPs across 5 di-
mensions of decomposition in the UKB data.
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Figure S5: Split-half reproducibility of FLICA and mCCA spatial maps in the UKB dataset. The split-half repro-
ducibility of BigFLICA and mCCA in the UKB dataset by first computing the correlation between modality-wise
concatenated spatial maps after eliminating low-weight voxels and then greedy matching.
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Figure S6: Group average maps of task activations and resting-state networks in the UKB dataset. These are pro-
vided to help interpret the population variability maps (modulations of these maps) shown in Fig. 5. Top: group
average of emotion task activation z-statistic maps (task z1: “shapes”, task z2: “face”, task z5: “faces>shapes”).
Group average task contrast (effect size) maps c1, c2 and c5 are highly similar to z-stat maps so that they are not

shown. Bottom: group average resting-state networks from a 25-dimensional ICA parcellation in the UKB data.
The six maps shown here are the networks from Fig. 5.
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Figure S7: The contribution of each modality in each BigFLICA mode (independent component).
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Figure S8: The relative contribution of different modalities of a BigFLICA decomposition (nIC=25-750) in the
UKB data. For each modality, we take the sum of its overall contribution (estimated by BigFLICA) across all com-
ponents.
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Figure S9: The relationships between different modalities in the UKB data. a). The cosine similarity of modality
contributions across 750 components (estimated by BigFLICA) between every pair of modalities. b). The amount
of shared variance between two 50-dimensional single-modality ICA decompositions in each pair of modalities.
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Table S1: Comparison of prediction performance of Cognitive Phenotypes and Health and Medical History
Health Outcomes between BigFLICA (nIC=750) and 3,913 IDPs in the UKB dataset. We excluded an nIDP if both
methods have prediction r-value< 0.1.

Variable Names r-value FLICA -logl0(p) FLICA r-value IDPs -logl0(p) IDPs Percent Improvement Sample size
cognitive phenotypes
Digits entered correctly (0.1) 0.104 3.6 0.003 0.3 3141.6 1126
Time to complete round (1.2) 0.108 11.7 0.073 5.9 47.4 4119
Number of fluid intelligence questions attempted within time limit (1.0) 0.107 11.6 0.078 6.6 37.6 4116
Duration to first press of snap-button in each round (2.7) 0.11 37.6 0.081 21.1 35.1 13749
Mean time to correctly identify matches (0.0) 0.108 38.6 0.083 23.1 30.6 14471
Duration screen displayed (2.0) 0.103 33.6 0.079 20.3 30.2 13809
Duration to first press of snap-button in each round (2.10) 0.104 33.7 0.08 20.3 30.1 13751
Duration to complete alphanumeric path (trail #2) (0.0) 0.145 33.7 0.113 20.8 28.7 6966
Time to complete round (0.2) 0.113 41 0.088 25.5 27.8 14115
Number of symbol digit matches made correctly (0.0) 0.156 43.5 0.122 27 27.7 7862
Number of symbol digit matches attempted (0.0) 0.167 49.8 0.132 31.4 26.6 7862
Number of fluid intelligence questions attempted within time limit (2.0) 0.151 68.4 0.122 44.9 23.8 13362
Duration to first press of snap-button in each round (2.11) 0.1 31.6 0.082 21.3 22.9 13741
Time to complete round (0.1) 0.143 36 0.117 24.4 22.5 7670
Time to complete round (2.2) 0.114 39.4 0.093 26.8 221 13394
Mean time to correctly identify matches (2.0) 0.141 61.6 0.116 42 21.6 13768
Maximum digits remembered correctly (0.0) 0.15 38.2 0.129 28.7 15.9 7465
Fluid intelligence score (2.0) 0.256 198.7 0.232 162.6 10.3 13362
Fluid intelligence score (0.0) 0.199 47.8 0.183 40.5 8.8 5266
Touchscreen duration (2.0) 0.127 52.5 0.121 48 4.7 14412
Fluid intelligence score (1.0) 0.18 31 0.188 33.5 -39 4116
Number of fluid intelligence questions attempted within time limit (0.0) 0.098 12.4 0.103 13.4 -4 5266
Fluid intelligence score (0.0) 0.198 72.1 0.209 80.5 -5.3 8090
Touchscreen duration (1.0) 0.103 10.8 0.127 16 -19.2 4134
Health and Medical History Health Outcomes
Age asthma diagnosed (0.0) 0.122 5.6 0.051 1.5 139.4 1397
Interpolated Age of participant when non-cancer illness first diagnosed (0.3) 0.102 5.1 0.072 2.9 4.7 1794
Interpolated Year when non-cancer illness first diagnosed (0.3) 0.104 53 0.074 3 41.5 1794
Medication for cholesterol, blood pressure, diabetes, or take exogenous hormones (2.0) 0.153 40.4 0.113 22.2 36.4 7507
Treatment/medication code (1140884600 - metformin) 0.121 48.1 0.092 28.1 32 14503
Number of treatments/medications taken (0.0) 0.13 55.6 0.099 32.4 31.8 14503
Age started wearing glasses or contact lenses (2.0) 0.158 73.8 0.124 45.8 27.3 13129
Number of self-reported non-cancer illnesses (0.0) 0.115 43.7 0.093 28.6 24.4 14503
Number of treatments/medications taken (1.0) 0.13 16.7 0.107 11.7 21.4 4134
Age started wearing glasses or contact lenses (0.0) 0.149 61.6 0.124 43.2 19.8 12321
Number of treatments/medications taken (2.0) 0.188 114.4 0.157 80.2 19.4 14435
Treatment/medication code (1140879802 - amlodipine) 0.113 41.9 0.096 30.5 17.8 14503
Medication for cholesterol, blood pressure or diabetes (0.0) 0.15 35.1 0.131 26.7 15.1 6756
Diabetes diagnosed by doctor (2.0) 0.124 49.6 0.108 383 14.2 14379
Non-cancer illness code, self-reported (1220 - diabetes) 0.109 39.1 0.098 31.8 11.1 14503
Diagnoses - secondary ICD10 (110 - 110 Essential (primary) hypertension) 0.146 69.8 0.135 59.5 8.4 14503
Overall health rating (0.0) 0.113 41.6 0.104 35.7 8.1 14477
Non-cancer illness code, self-reported (1065 - hypertension) 0.218 155.7 0.203 133.6 7.9 14503
Medication for cholesterol, blood pressure or diabetes (2.0) 0.145 33.2 0.136 29.3 6.7 6829
Overall health rating (2.0) 0.11 39.5 0.113 41.7 -2.8 14388
Non-cancer illness code, self-reported (1261 - multiple sclerosis) 0.111 40.2 0.118 46 -6.6 14503
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Table S2: Comparison of prediction performance of 158 nIDPs between FLICA (nIC=100) and 5,812 IDPs in the
HCP dataset. We excluded an nIDP if both methods have prediction r-value< 0.1. The meanings of each vari-
ables can be found at HCP wiki: https://wiki.humanconnectome.org/display/PublicData/HCP+
DatatDictionary+Public—+Updated+tfor+the+1200+Subject+Release

Variable Names rFLICA -loglO(p) rIDPs -loglO(p) Improvement (%) nSubj ‘ Variable Names rFLICA -loglO(p) rIDPs -loglO(p) Improvement (%) nSubj
Odor_AgeAdj 0.108 3.5 0.036 0.9 197.4 1001 | ASR_Thot_Pct 0.216 11.6 0.206 10.6 4.9 1000
FamHist_Fath_DrgAlc 0.158 6.6 0.065 1.7 144.1 999 | PicSeq_AgeAdj 0.301 22 0.29 20.4 3.9 1003
NEOFAC_C 0.176 8 0.084 2.4 110 1001 | Avg Weekend_Beer_Wine_Cooler_7days  0.307 225 0.296 209 3.8 985
ASR_Soma_Pct 0.124 4.4 0.074 2 66.3 1000 | DSM_Somp_Pct 0.12 4.1 0.115 3.9 3.6 1000
ASR_Soma_Raw 0.162 6.9 0.101 3.2 60.7 1000 | PicSeq_Unadj 0.293 20.9 0.284 19.6 3.2 1003
VSPLOT_CRTE 0.13 4.7 0.085 2.4 53.2 1000 | ASR_Oth_Raw 0.168 7.3 0.163 7 2.7 1000
ASR_Intn_Raw 0.101 3.2 0.067 1.8 51.4 1000 | ASR_Thot_Raw 0.231 13.2 0.226 12.6 24 1000
DSM_Inat_Raw 0.161 6.8 0.109 3.5 48.3 1000 | VSPLOT_OFF 0.417 42.8 0.407 40.8 23 1000
SSAGA_Alc_D4_Dp_Sx 0.204 10.4 0.139 53 46.6 1002 | SSAGA_Alc_Hvy_Frq_Drk 0.244 13.9 0.239 13.4 2 951
AngHostil_Unadj 0.103 3.2 0.072 2 42 1002 | Avg Weekend_Cigarettes_7days 0.181 8.3 0.178 8 19 985
ProcSpeed_AgeAdj 0.24 14.2 0.175 79 372 1003 | SSAGA_Alc_Hvy_Max_Drinks 0.466 52 0.459 50.3 1.5 951
DSM_Depr_Raw 0.118 4.1 0.087 25 36.7 1000 | ASR_Extn_T 0.186 8.8 0.183 8.6 1.4 1000
Times_Used_Any_Tobacco_Today 0.157 6.5 0.117 3.9 34.8 985 | NEOFAC_N 0.159 6.6 0.157 6.5 0.9 1001
ProcSpeed_Unadj 0.268 17.6 0.201 10.2 335 1003 | ASR_Rule_Raw 0.285 19.7 0.283 19.4 0.6 1000
ASR_Intr_Raw 0.189 9.1 0.143 5.5 323 1000 | ER40SAD 0.117 4 0.117 4 0.6 1000
SSAGA_Mj_Ab_Dep 0.127 4.5 0.097 3 31.2 1002 | SSAGA_Alc_Hvy_Frq_5plus 03 20.8 0.299 20.6 0.5 951
SSAGA_Alc_D4_Ab_Sx 0.153 6.3 0.119 4.1 29.4 1002 | ListSort_Unadj 0.397 38.7 0.4 39.3 -0.7 1003
NEOFAC_O 0.253 15.6 0.195 9.6 29.2 1001 | AngAggr_Unadj 0.28 19 0.283 19.4 -L1 1002
Flanker_AgeAdj 0.181 8.4 0.142 5.5 275 1003 | VSPLOT_TC 0.361 31.8 0.367 32.9 -1.7 1000
ASR_Intr_Pct 0.161 6.8 0.127 4.5 26.8 1000 | FearAffect_Unadj 0.118 4.1 0.12 4.2 -1.9 1002
DDisc_AUC_40K 0.341 28.3 0.277 18.7 23 1000 | Total_Drinks_7days 0.28 18.7 0.286 19.5 -2.1 985
SSAGA_Alc_12_Drinks_Per_Day 0.336 26 0.277 17.7 21.3 950 | NEOFAC_A 0.223 12.4 0.229 12.9 -2.3 1001
Flanker_Unadj 0.239 14 0.197 9.8 20.9 1003 | Total_Cigarettes_7days 0.174 7.7 0.178 8 -2.4 985
SSAGA_Times_Used_Stimulants 0.117 4 0.098 3 19.9 1002 | ListSort_AgeAdj 0.393 38.1 0.406 40.6 -3 1003
ASR_Witd_Raw 0.23 13 0.192 9.3 19.5 1000 | DSM_Hype_Raw 0.163 6.9 0.17 7.5 -4 1000
PicVocab_Unadj 0.572 87.7 0.487 60.5 17.4 1003 | Avg Weekday_Any_Tobacco_7days 0.183 8.5 0.191 9.1 -4.3 985
ER40ANG 0.102 3.2 0.087 2.5 16.9 1000 | Avg Weekend_Drinks_7days 0.265 16.8 0.278 18.5 -4.8 985
Avg_Weekday_Drinks_7days 0.197 9.7 0.169 73 16.8 985 | SSAGA_Alc_12_Frq 0.228 12.3 0.24 13.5 -4.8 951
EmotSupp_Unadj 0.128 4.6 0.11 3.6 16.5 1002 | ASR_Rule_Pct 0.185 8.7 0.194 9.5 -5 1000
Dexterity_AgeAdj 0.316 243 0.271 18 16.5 1003 | ASR_Aggr_Raw 0.103 3.2 0.109 3.5 -5.3 1000
SSAGA_Alc_Hvy_Drinks_Per_Day 0.335 25.9 0.288 19.1 16.3 950 | THC 0.264 17 0.281 19.2 -6 1003
CardSort_AgeAdj 0.345 28.9 0.297 21.4 16 1001 | Total_Any_Tobacco_7days 0.192 9.2 0.205 10.4 -6.2 985
PicVocab_AgeAdj 0.57 87 0.492 61.9 15.8 1003 | Avg_Weekday_Cigarettes_7days 0.167 7.2 0.178 8.1 -6.3 985
Taste_AgeAdj 0.186 8.8 0.161 6.8 15.6 998 | SSAGA_Times_Used_lIllicits 0.147 5.8 0.158 6.6 -6.5 1002
DSM_Antis_Pct 0.168 73 0.146 5.7 15.4 1000 | PercStress_Unadj 0.165 7.1 0.177 8.1 -6.7 1002
SSAGA_Times_Used_Hallucinogens 0.163 7 0.143 5.6 14.1 1002 | SSAGA_Alc_12_Frq_5plus 0.324 243 0.349 28.1 -7.1 951
DSM_Adh_Pct 0.219 11.9 0.192 9.3 14.1 1000 | ASR_Crit_Raw 0.185 8.7 0.2 10.1 -7.5 1000
Taste_Unadj 0.188 9 0.165 7.1 13.9 998 | MMSE_Score 0.175 7.9 0.189 9.1 -7.6 1003
ASR_Attn_Raw 0.147 5.8 0.129 4.7 13.8 1000 | Num_Days_Used_Any_Tobacco_7days 0.218 11.8 0.238 14 -8.7 1000
Dexterity_Unadj 0.302 222 0.266 173 13.5 1003 | PercHostil_Unadj 0.107 3.4 0.117 4 -8.8 1002
SSAGA_Alc_12_Max_Drinks 0.409 39.2 0.36 30.1 13.5 951 SCPT_SPEC 0.185 8.7 0.204 10.5 -9.7 1000
DDisc_AUC_200 0.295 21.2 0.26 16.5 13.4 1000 | ER40_CR 0.158 6.6 0.176 8 -10.4 1000
DSM_Depr_Pct 0.119 4.1 0.105 3.4 13.4 1000 | ASR_Totp_Raw 0.151 6.1 0.171 7.6 -11.8 1000
SSAGA_ChildhoodConduct 0.192 9.4 0.169 75 13.4 1002 | SSAGA_TB_Smoking_History 0.148 5.9 0.168 74 -11.8 1002
ASR_Witd_Pct 0.151 6.1 0.134 4.9 13.1 1000 | IWRD_TOT 0.174 78 0.198 9.9 1000
CardSort_Unadj 0.36 31.6 0.319 24.7 12.9 1001 | ASR_TAO_Sum 0.169 75 0.195 9.6 . 1000
SSAGA_Alc_Hvy_Frq 0.254 15.1 0.226 12.1 12.5 951 Num_Days_Drank_7days 0.183 8.6 0.211 11.1 3.3 1000
PMAT24_A_CR 0.512 67.4 0.456 51.9 12.3 999 | Avg Weekend_Any_Tobacco_7days 0.193 9.3 0.224 12.2 -13.6 985
LifeSatisf_Unadj 0.208 10.8 0.186 8.8 11.8 1002 | FearSomat_Unadj 0.106 3.4 0.125 4.4 -15.1 1002
DSM_Somp_Raw 0.154 6.3 0.138 52 11.3 1000 | ASR_Totp_T 0.153 6.2 0.183 8.5 -16.1 1000
DSM_Adh_Raw 0.182 8.5 0.165 71 10.4 1000 | DSM_Anxi_Raw 0.143 5.6 0.174 7.8 -17.6 1000
Avg Weekday_Beer_Wine_Cooler_7days  0.286 19.6 0.26 16.3 10 985 | SSAGA_TB_Still_Smoking 0.181 8.4 0.225 125 -19.5 1002
PSQI_Score 0.168 7.4 0.153 6.3 9.9 1003 | SCPT_SEN 0.083 2.4 0.106 3.4 -21.2 1000
Total_Beer_Wine_Cooler_7days 0.36 31.1 0.329 259 9.5 985 | SSAGA_Mj_Times_Used 0.172 7.7 0.221 12.1 -21.9 1002
ASR_Attn_Pct 0.188 9 0.173 77 8.8 1000 | MeanPurp_Unadj 0.085 2.4 0.11 3.6 -22.8 1002
SSAGA_Alc_12_Frq_Drk 0.275 17.5 0.257 153 7.1 951 PercReject_Unadj 0.083 2.4 0.108 3.5 -23.4 1002
ReadEng_AgeAdj 0.494 62.3 0.464 54.4 6.3 1003 | NEOFAC_E 0.102 3.2 0.139 53 -26.8 1001
DSM_Antis_Raw 0.244 14.5 0.229 13 6.2 1000 | DSM_Anxi_Pct 0.088 2.6 0.122 4.3 -27.7 1000
ASR_Extn_Raw 0.203 10.3 0.191 9.3 6 1000 | Avg Weekend_Hard_Liquor_7days 0.074 2 0.106 3.4 -29.8 985
ASR_Aggr_Pct 0.119 4.1 0.113 3.7 5.6 1000 | SSAGA_Alc_Age_lst_Use 0.136 4.9 0.202 9.8 -32.8 951
ReadEng_Unadj 0.487 60.4 0.464 54.2 5 1003 | Total_Hard_Liquor_7days 0.07 1.9 0.135 4.9 -47.9 985
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Table S3: Three examples of top 10 most significant correlations of BigFLICA modes (left) and IDPs (right) with
nIDPs in UKB dataset.

BigFLICA modes r-value p-value ‘ IDP names r-value p-value
Top 10 modes/IDPs correlate with fluid intelligence
1C25 -0.146  6.54E-65 | IDP_tfMRI_90th-percentile_BOLD_shapes -0.074 1.05E-15
1C57 -0.122  3.49E-45 | IDP_tfMRI_median_BOLD_shapes -0.069 1.28E-13
1C332 -0.081 7.26E-21 | IDP_tfMRI_90th-percentile_zstat_faces-shapes_amygdala 0.068 1.48E-13
1C484 -0.072  9.87E-17 | rfMRI amplitudes (ICA25 node 6) 0.066  2.75E-13
1C4 -0.069  1.18E-15 | rfMRI connectivity (ICA100: IC13-IC32) -0.065 3.82E-13
1C27 0.064 1.98E-13 | IDP_tfMRI_90th-percentile_zstat_shapes -0.063  7.95E-12
1C188 -0.058  2.80E-11 | IDP_tfMRI_median_zstat_faces-shapes 0.063  1.20E-11
1C708 -0.055  1.51E-10 | IDP_tfMRI_median_zstat_faces-shapes_amygdala 0.062  1.51E-11
1C164 0.055 1.68E-10 | rfMRI connectivity (ICA100: IC11-IC19) 0.056  3.94E-10
1C47 -0.054  3.40E-10 | IDP_tfMRI_median_BOLD_faces-shapes 0.057 5.16E-10
Top 10 modes/IDPs correlate with Age started wearing glasses or contact lenses
1C164 0.101  2.74E-31 | IDP_tfMRI_90th-percentile_BOLD_faces-shapes 0.081 5.38E-18
1C25 0.067 1.63E-14 | IDP_tfMRI_median_BOLD_faces-shapes 0.064 7.16E-12
1C249 0.057  5.65E-11 | IDP_tfMRI_median_zstat_faces-shapes 0.064 1.01E-11
IC13 0.054  7.68E-10 | rfMRI connectivity (ICA100: IC4-1C40) -0.061 1.81E-11
1C138 0.041 2.33E-06 | rfMRI connectivity (ICA100: IC17-1C42) -0.060 4.34E-11
1C190 0.038 1.65E-05 | IDP_tfMRI_90th-percentile_zstat_faces-shapes 0.061  9.88E-11
1C563 -0.037 1.84E-05 | rfMRI amplitudes (ICA25 node 19) 0.056 8.97E-10
1C656 0.037 1.98E-05 | rfMRI amplitudes (ICA100 node 16) 0.054 3.08E-09
1C297 -0.037  2.32E-05 | rfMRI connectivity (ICA100: IC15-1C43) -0.050 3.14E-08
1C580 0.037 2.53E-05 | rfMRI connectivity (ICA100: IC21-1C28) 0.049 6.90E-08
Top 10 modes/IDPs correlate with hypertension
1C259 0.121 2.95E-48 | IDP_dMRI_TBSS_MD_External_capsule_L 0.135 4.17E-53
1C38 -0.111  3.09E-41 | IDP_dMRI_TBSS_MD_External_capsule_R 0.132  6.44E-51
1C319 0.094 5.98E-30 | IDP_dMRI_TBSS_L1_External capsule_L 0.130 2.29E-49
1C29 0.091 5.82E-28 | IDP_dMRI_TBSS_L3_External_capsule_R 0.126  6.51E-47
1C40 0.088  2.82E-26 | IDP_dMRI_TBSS_L3_External_capsule_L 0.126  1.70E-46
IC1 -0.083 1.57E-23 | IDP_dMRI_TBSS_L3_Anterior_limb_of_internal_capsule_L 0.122  4.64E-44
IC171 -0.073 1.00E-18 | IDP_dMRI_TBSS_L1_External_capsule_R 0.122  5.37E-44
1C26 -0.067  6.73E-16 | IDP_dMRI_TBSS_ISOVF_External_capsule_L 0.122  7.49E-44
1C176 -0.062  6.75E-14 | IDP_dMRI_TBSS_L2_Anterior_limb_of_internal_capsule_L 0.120  2.60E-42
1C84 0.057  9.14E-12 | IDP_dMRI_TBSS_MD_Anterior_limb_of_internal_capsule_L ~ 0.118 2.91E-41
Top 10 modes/IDPs correlate with handedness

1C235 -0.226  5.71E-168 | rfMRI connectivity (ICA100: IC29-1C34) 0.115 1.30E-40
1C408 -0.079  1.76E-21 | rfMRI connectivity (ICA25: IC1-IC6) 0.095 6.93E-28
1C569 0.066 1.90E-15 | rfMRI connectivity (ICA100: IC10-IC34) 0.095 7.70E-28
1C382 0.051 8.40E-10 | rfMRI connectivity (ICA25: IC14-1C22) 0.085  7.43E-23
1C251 0.047 1.13E-08 | rfMRI connectivity (ICA100: IC3-IC19) 0.085 8.01E-23
1C232 0.043 2.12E-07 | rfMRI connectivity (ICA100: IC14-1C34) 0.081  7.28E-21
1C742 0.042 4.41E-07 | rfMRI connectivity (ICA25: IC1-1C22) 0.080  2.93E-20
1C643 -0.039  2.39E-06 | rfMRI connectivity (ICA100: IC30-1C34) -0.074 1.46E-17
1C419 0.036 1.66E-05 | rfMRI connectivity (ICA100: IC27-1C52) 0.073  3.07E-17
1C332 0.036 1.76E-05 | rfMRI connectivity (ICA100: IC6-IC13) 0.071  3.39E-16
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Table S4: Percent of shared variance (%) of BigFLICA decomposition across a range of dimensionalities in the
UKB data. Upper triangle: the explained variance of a lower-dimensional decomposition by a higher-dimensional

decomposition. Lower triangle: the explained variance of a higher-dimensional decomposition by a lower-
dimensional decomposition.

IC25 1IC100 1IC250 IC500 IC750

IC25 | 100.00 99.98 99.99 99.99 99.99
IC100 | 88.57 100.00 99.97 99.98 99.99
IC250 | 86.38 96.99 100.00 99.98 99.99
IC500 | 87.77 9545 96.79 100.00 99.97
IC750 | 85.33 9531 9691 99.65 100.00
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Table S5: A description of 47 Modalities of UKB dataset used in this paper.

Abbreviation

full description

rest k (k=1-25)
task z1
task z2
task z5
task cl
task c2
task c5
TBSS-FA
TBSS-MD
TBSS-MO
TBSS-L1
TBSS-1L.2
TBSS-L3
TBSS-OD
TBSS-ICVF
TBSS-ISOVF
tracts
VBM

Area
Thickness
Jacobian
swMRI

T2 lesion

Dual regression between IC k of 25 dimensional decomposition of rsfMRI and the whole brain

Z-statistics of emotion task contrast "shapes"

Z-statistics of emotion task contrast "face"

Z-statistics of emotion task contrast "faces>shapes"

Contrasts of parameter estimate of emotion task contrast "shapes"

Contrasts of parameter estimate of emotion task contrast "face"
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