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Abstract: Engineered RNA elements are programmable tools capable of detecting small
molecules, proteins, and nucleic acids. Predicting the behavior of these tools remains a
challenge, a situation that could be addressed through enhanced pattern recognition from deep
learning. Thus, we investigate Deep Neural Networks (DNN) to predict toehold switch function
as a canonical riboswitch model in synthetic biology. To facilitate DNN training, we synthesized
and characterized in vivo a dataset of 91,534 toehold switches spanning 23 viral genomes and
906 human transcription factors. DNNis trained on nucleotide sequences outperformed (R*=0.43-
0.70) previous state-of-the-art thermodynamic and kinetic models (R*=0.04-0.15) and allowed
for human-understandable attention-visualizations (VIS4Map) to identify success and failure
modes. This deep learning approach constitutes a major step forward in engineering and
understanding of RNA synthetic biology.

One Sentence Summary: Deep neural networks are used to improve functionality prediction
and provide insights on toehold switches as a model for RNA synthetic biology tools.
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Main Text:

Engineered ribonucleic acid (RNA) molecules with targeted biological functions play an
important role in synthetic biology (/), particularly as programmable response elements for small
molecules, proteins, and nucleic acids. Examples include riboswitches, riboregulators, and
ribozymes, many of which hold great promise for a variety of in vitro and in vivo applications (/,
2). Despite their appeal, the design and validation of this emerging class of synthetic biology
modules have proven challenging due to variability in function that remains difficult to predict
(2-9). Current efforts aiming to unveil fundamental relationships between RNA sequence,
structure, and behavior focus mostly on mechanistic thermodynamic modeling and low-
throughput experimentation, which often fail to deliver sufficiently predictive and actionable
information to aid in the design of complex RNA tools (2-9). Deep learning, by contrast,
constitutes a set of computational techniques well suited for feature recognition in complex and
highly combinatorial biological problems (/0-14), such as the sequence design space of synthetic
RNA tools. However, the application of deep learning to predicting function in RNA synthetic
biology has been limited by a notable scarcity of datasets large enough to effectively train deep
neural networks. Toehold switches, in particular, represent a benchmark RNA element in
synthetic biology that could greatly benefit from deep learning approaches to better predict
function and elucidate useful design rules.

Toehold switches are a class of versatile prokaryotic riboregulators inducible by the presence of
a fully programmable trans-RNA trigger sequence (2-6, 15, 16). These RNA synthetic biology
modules have displayed impressive dynamic range and orthogonality when used both in vivo as
genetic circuit components (2, 5, 6), and in vitro as nucleic acid diagnostic tools using cell-free
protein synthesis (CFPS) systems (3, 4, 15, 16). Similar to other RNA synthetic biology tools, a
substantial fraction of toehold switches show poor to no measurable function when tested
experimentally, and while efforts have been made to establish rational, mechanistic rules for
improved performance based on low-throughput datasets (2-9, 15, 16), the practical utility of
these approaches remains inconclusive. Thus, considering the wide applicability and general
challenges of toehold switch design, our objective in this study was to develop a deep learning
platform to predict toehold switch function as a canonical RNA switch model in synthetic
biology.

To achieve our goal, we first aimed to expand the size of available toehold datasets using a high-
throughput DNA synthesis and sequencing pipeline to characterize over 10° new toehold
switches. We then used this comprehensive new dataset to demonstrate that deep neural
networks trained directly on switch RNA sequences can outperform rational thermodynamic and
kinetic analyses to predict toehold switch function. Furthermore, we enhanced the transparency
of our deep learning approach by utilizing a nucleotide complementarity matrix input
representation to visualize important learned secondary structure patterns in selected models.
This attention-visualization technique, which we term VIS4Map (Visualizing Secondary
Structure Saliency Maps), allowed us to identify RNA module success and failure modes by
discovering secondary structures that our deep learning model used to accurately predict toehold
switch function. The resulting dataset, models, and visualization analysis (Fig. 1) represent a
substantial step forward for the validation and interpretability of high-throughput approaches to
designing RNA synthetic biology tools, surpassing the limits of current mechanistic RNA
secondary structure modeling.
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Library synthesis, characterization, and validation

A fundamental hurdle in applying deep learning techniques to RNA synthetic biology systems is
the limited size of currently published datasets, which are notably smaller than typical dataset
sizes required for the training of deep network architectures in other fields (10, 17-21). For
example, to date, less than 1000 total toehold switches have been designed and tested (2-6, 9, 15,
16), a situation that currently limits the synthetic biology community’s ability to analyze this
type of response molecule using deep learning techniques. Towards improving our understanding
and ability to predict new functional RNA-based response elements, we synthesized and
characterized an extensive in vivo library of toehold switches using a high-throughput flow-seq
pipeline (22) for subsequent exploration using various machine learning and deep learning
architectures.

Our toehold switch library was designed and synthesized based on a large collection (244,000) of
putative trigger sequences, spanning the complete genomes of 23 pathogenic viruses, the entire
coding regions of 906 human transcription factors, and ~10,000 random sequences. From a
synthesized oligo pool, we generated two construct libraries, for ON and OFF states, which were
subsequently transformed into BL21 Escherichia coli (Fig. 1, STA,B). The first library contained
OFF toehold switch constructs that lacked a trigger, while the second library of ON constructs
contained the same toeholds with complementary triggers fused to their corresponding switches.
The two libraries were then sorted on a fluorescence-activated cell sorter (FACS) using four bins
(Fig. 1, S2), and the toehold switch variants contained in each bin were quantified using next-
generation sequencing (NGS) to recover their individual fluorescence distributions from raw
read counts (Fig. 1). After quality control (Table S1), the toehold switch library contained
109,067 ON state measurements (Fig. 2A), 163,967 OFF state measurements (Fig. 2B), and
91,534 ON/OFF paired ratios (Fig. 2C), where both ON and OFF states were characterized for a
given switch (Fig. 2E,F). ON and OFF data were normalized from 0 to 1, resulting in an
ON/OFF ratio normalized from -1 to 1 (see Supplementary methods section).

Since RNA synthetic biology tools such as toehold switches are often used within in vitro cell-
free systems (3, 4, 15, 16), we validated our in vivo ON/OFF measurements in an in vitro setting
to ensure they were reasonable indicators of switch performance in a CFPS system. To achieve
this, we selected eight high-performance switches and eight low-performance switches, and
individually cloned and characterized them in a PURExpress CFPS (Fig. 1D, S5 & Table S2).
All low-performance switches showed no induction, while the high-performance switches
showed a spread of ON/OFF ratios between 2 and 10 (p<0.0001 between high and low switches,
two-tailed t-test). These results confirm that while the performance of toehold switches in vivo
and in vitro may differ, in vivo measurements can still be used to classify categorically whether a
switch will function in vitro.

Rational analysis using thermodynamic RNA secondary structure models

Before initiating the exploration of deep learning models to predict function in our large-scale
toehold switch library, we sought to determine whether traditional tools for analyzing synthetic
RNA modules could be used to accurately predict toehold switch behavior, including k-mer
searches and mechanistic modeling using thermodynamic and kinetic parameters. K-mer
searches of biological sequence data are often used to discover motifs, and while certain
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overrepresented motifs were found in our dataset (Fig. 3A & Table S3), utilization of these did
not significantly improve functional predictions of switch behavior. Other current state-of-the-art
approaches for designing RNA synthetic biology tools primarily analyze secondary structure
using thermodynamic principles (23-25). Following such prior works, we used NUPACK (23)
and ViennaRNA (25) software packages to calculate a total of 30 rational features for our entire
library, including the minimum free energy (MFE), ideal ensemble defect (IED), and native
ensemble defect (NED) of the entire toehold switch library as well as various sub-segments in
each sequence (Table S4). A number of these parameters had previously been reported to
correlate with experimental toehold switch ON/OFF measurements for smaller datasets (2), and
NUPACK’s design algorithm, in particular, is set to optimize IED when proposing target RNA
secondary structures (3, 4, 15, 23). However, when analyzing these rational features with our
larger dataset, we found them to be poor predictors of toehold switch function (Fig. 3B, S6). In
modest agreement with the findings of Green et al. (2), the MFE of the RBS-linker region
showed the highest correlation of this feature set for ON/OFF (RZ: ON=0.14, OFF=0.06,
ON/OFF=0.04), with NUPACK s IED also showing above-average correlation (R*: ON=0.07,
OFF=0.02, ON/OFF=0.03). While measurable, these correlation metrics were far too weak for
practical use in computer-aided design of this specific RNA synthetic biology tool (3, 4, 135, 23).

We next explored the use of more complex thermodynamic models that take into account well-
established hypotheses for translation initiation and the ribosome docking mechanism in
combination with multiple thermodynamic features to improve their predictions (26-37). One of
the most developed of these models is the Ribosome Binding Site (RBS) calculator (v2.1; Salis
Lab); a comprehensive regression model parameterized on thousands of curated RBS variants
(26-29). We used the RBS calculator to predict the ON and OFF translation initiation rates for
our toehold switches, but also found low predictive performance comparable to other rational
features (Fig. 3B) when tested on our database (R*: ON=0.09, OFF=0.05, ON/OFF=0.0001).

One potential explanation for the limited predictive power of current thermodynamic models for
RNA folding tasks concerns the influence of kinetically stable secondary structure intermediates
that may compete with thermodynamic equilibrium states (29, 32). To determine whether a
kinetic analysis of toehold switch folding dynamics could help explain our experimental results,
we calculated four additional features based on kinetic trajectories using the Kinfold package
(33) (Fig. S7). As with predictions obtained using other thermodynamic models, these kinetic
features showed poor correlations (R2 : ON=0.04, OFF=0.04, ON/OFF=0.001 for the best
feature) to our empirical dataset (Fig. S7E). Considering these results, the cause of limited
functional predictions from thermodynamic and kinetic RNA secondary structure models
remains unclear but may stem from the use of potentially incomplete energetic models, incorrect
mechanistic hypotheses, or interference from the in vivo context of the bacterial cell. Regardless
of the source of error, we sought to explore deep learning as a machine learning paradigm to
develop models with higher predictive abilities than previously reported, with the hope of
allowing useful computer-aided systems for the design of RNA synthetic biology tools.

Improved prediction using sequence-based multilayer perceptron models

Given that simple regression models based on previous state-of-the-art RNA thermodynamic and
kinetic calculations were ineffective at predicting toehold switch performance, we next tested the
use of feed-forward neural networks, also known as multilayer perceptron (MLP) models, as a
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baseline architecture for our investigation (Fig. 3C). We first trained a three-layer MLP model on
our dataset with an input consisting of the 30 previously calculated thermodynamic rational
features (see Methods section for further detail). When trained in regression mode, this MLP
model was able to deliver better predictions than any of the individual rational features or the
RBS calculator based on R? and mean absolute error (MAE) (R*: ON=0.35, OFF=0.25,
ON/OFF=0.20) (Fig. 3D, E). Similarly, when this model was trained in classification mode
(ON/OFF: binarized at +/- 0.7), as seen in Fig. S8, it achieved a 0.76 area under the receiver-
operator curve (AUROC) and 0.18 area under the precision-recall curve (AUPRC), as seen in
Fig. 3F. The MLP model slightly outperformed a logistic regressor trained on the same rational
features (Fig. 3D,E,F), suggesting that the MLP architecture was able to abstract higher-order
patterns from these features as compared to simpler non-hierarchical models.

While these results already constitute an improvement compared to the current state-of-the-art
analysis of RNA synthetic biology tools, we hypothesized that the use of pre-computed rational
features as network input led to information loss that could inherently limit the predictive power
of these models. Considering that possibility, we trained an MLP model solely on one-hot
encoded sequence representations of our toehold switches, eliminating potential bias introduced
by a priori mechanistic modeling. We found that this sequence-based MLP delivered improved
functional predictions based on R* and MAE metrics (R*: ON=0.70, OFF=0.53, ON/OFF=0.43)
(Fig. 3D, E, S9). These values represent a doubling of R* performance as compared to the MLP
trained on rational features and a ten-fold improvement in ON/OFF R” over the best individual
rational feature used for previous linear models. When training for classification, our one-hot
sequence MLP produced similarly improved AUROCs and AUPRCs of 0.87 and 0.36,
respectively (Fig. 3F).

The improvement in performance when training on sequence-only inputs compared to rational
features suggests that significant information loss occurs when performing thermodynamic
calculations on toehold switch sequences, a problem that may extend to other RNA synthetic
biology tools in use today. The sequence-only MLP model dramatically outperformed a logistic
regressor model trained on the same one-hot sequence input (Fig. 3D,E,F), further supporting the
hypothesis that improved accuracy of our sequence-based MLP arises from learned hierarchical
non-linear features extracted directly from RNA sequences. Concatenating both the rational
features and the one-hot representation into a combined input gave a small but significant
improvement in regression mode (AR =~ 0.025 and AMAE = -0.0025, p<0.05 for all six
comparisons, two-tailed t-test), but no significant improvement for AUROC or AUPRC when in
classification mode (Fig. 3D,E,F). These results suggest that while the use of rational features
may facilitate the abstraction of potentially relevant information of toehold switch function, the
one-hot sequence-only MLP model can recover such information without a priori hypothesis-
driven assumptions built into the model if given sufficient training data.

In order to evaluate the degree of biological generalization in our sequence-only MLP model, we
performed two additional rounds of validation. First, we iteratively withheld each of the 23 tiled
viral genomes in the dataset during training and predicted their function as test sets, resulting in a
0.82-0.98 AUROC range (average 0.87, Fig. S10), similar to previous results from our sequence-
only MLP. We then carried out an external validation on unseen data from a previously
published dataset of 168 characterized toehold switches (2) that had been collected under
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different experimental conditions. Our MLP models achieved an AUROC of 0.70, 0.81, and
0.79, when trained on rational features, one-hot sequence, and concatenated inputs, respectively
(Fig. 3G). The improved performance observed when training the models directly on nucleotide
sequence rather than thermodynamic features, even for an external dataset, suggest a competent
degree of biological generalization and supports the value of modeling RNA synthetic biology
tools using deep learning and high-throughput datasets, removing the current assumptions of
mechanistic rational parameters.

Predictive performance of higher-capacity deep learning models

Having explored a baseline deep learning architecture, we next sought to determine whether
training our dataset on higher-capacity convolutional neural networks (CNN) and long short-
term memory (LSTM) recurrent neural networks could increase our predictive ability. CNN and
LSTM models have been applied to a variety of biological datasets in recent years, and have
been cited as being particularly adept at recognizing motifs and long-range interactions in
nucleotide sequence data (10, 17-20, 34-38). We trained a CNN on a one-hot sequence input, an
LSTM on a one-hot sequence input, and a CNN on a two-dimensional (2D), one-hot
complementarity map representation input (see Methods for complete descriptions of all
models). Upon evaluating both the R* and MAE in regression mode and the AUROC and
AUPRC in classification mode for these models (Fig. 4A,B,C,D), we concluded that these neural
network architectures did not lead to superior predictive models, as compared to the sequence-
based, three-layer MLP described previously. In these cases increased model capacity led to
under- or over-fitting, requiring additional training examples or improved fine-tuning to
accelerate effective training.

Visualizing learned RNA secondary structure motifs with VIS4Map

One significant drawback of using deep learning to predict biological function is the inherent
difficulty in understanding learned patterns in a way that helps researchers to elucidate biological
mechanisms underlying model predictions. By contrast, mechanistic hypothesis-driven models
can more directly inform which aspects of a biological theory best explain the observations.
Various methods have been established to address this limitation, including alternative network
architectures (39), and the use of saliency maps (40, 41), which reveal the regions of an input
that deep learning models weigh most heavily and therefore pay the most attention to when
making predictions. While saliency maps have been previously used to visualize model attention
in one-hot representations of sequence data (10, 17, 18, 20, 40), such implementations focus only
on the primary sequence and have not been developed to identify secondary structure
interactions, which are especially relevant in the operation of RNA synthetic biology elements.
In the few cases where secondary structure has been investigated, input representations have
been constrained to predetermined structures based on the predictions of thermodynamic models
(37, 38) whose abstractions we have found cause significant information loss.

We sought to visualize RNA secondary structures learned by our neural networks in a manner
unconstrained by thermodynamic modeling. To achieve this, we trained a CNN on a two-
dimensional nucleotide complementarity map representation (Fig. SA) to allow for attention
pattern visualization in this secondary structure space. Each position in this complementarity
map corresponds to the potential pair between two nucleotides, indicating its identity with a one-
hot encoding (G-C, C-G, A-U, U-A, G-U, U-G, or an unproductive pair). We hypothesized that

6
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by training deep networks on such a representation of RNA sequences, it would be possible for
generated saliency maps to reveal learned secondary structures as visually intuitive diagonal
features. Importantly, because the complementarity map is unconstrained by a priori hypotheses
of RNA folding (similarly to our sequence-based MLP models), we anticipated this approach to
be able to identify secondary structures that might be overlooked by commonly used
thermodynamic and kinetic algorithms, such as NUPACK and Kinfold.

To validate the feasibility of our visualization approach, we first pre-trained a CNN to predict
NUPACK MFE values from complementarity map representations of a randomly selected in
silico RNA sequence dataset. Because MFE is directly determined by RNA secondary structure,
we anticipated that a CNN undergoing this pre-training would likely pay attention to secondary
structure features, a situation that was confirmed through visualization of individual attention
maps (Fig. 5B,C). Additionally, we found that the use of a complementarity map input improved
the CNN’s predictions of MFE from R*=0.6 to R?=0.74 compared with a one-hot sequence input
(Fig. S11). Indeed, the saliency maps generated from a CNN trained on a complementarity map
input contained primarily diagonal features that showed a statistically significant degree of
agreement with the MFE structures from which NUPACK based its MFE calculations (Fig.
5B,C, S11). Hence without prior knowledge of the algorithm or parameters NUPACK uses to
calculate MFE, our CNN was able to learn similar abstractions as NUPACK, which we then used
to intuitively visualize underlying relevant RNA secondary structures utilizing our
complementarity map input representation. We named this approach for interpreting RNA deep
learning models Visualizing Secondary Structure Saliency Maps or VIS4Map.

Encouraged by our CNN’s ability to elucidate RNA secondary structure features directly from
training data, we applied VIS4Map to our entire toechold switch dataset. When trained on a
complementarity map representation (Fig. SD) both in regression mode and classification mode,
VIS4Map significantly outperformed an MLP trained on rational thermodynamic features;
however, VIS4Map did not significantly outperform our MLP trained on one-hot inputs, similar
to the case of our other higher capacity models (Fig. 4A,B,C,D). Encouragingly, nonetheless, we
found that saliency maps produced by this CNN model displayed clear diagonal secondary
structure features (Fig. 5D). These structures appear to span from hybridization between the
toehold and the ascending stem, to hybridization between the descending stem and the
downstream linker. We confirmed the biological relevance of these features by averaging
saliency maps and finding that the shared structures corresponded to the designed on-target
structure of the switch hairpin (Fig. SE). We further analyzed learned features outside of the
designed equilibrium structure by sorting saliency maps using the toehold switch OFF signal
(Fig. 5F, S12). We found that for leakier (high OFF) switches, the CNN identified a high degree
of salient off-target secondary structures that could compete with the main hairpin stem and
thereby exposed the RBS, whereas for tight (low OFF) switches the CNN identified fewer
competing off-target secondary structures. In the context of general riboregulator behavior, these
findings support the hypothesis that leaky expression from an RBS repressed by secondary
structures can be caused by the misfolding of the repressive structure into less stable kinetic
intermediate conformations (29, 32) (Fig. SF, right).

The fact that VIS4Map was able to identify both equilibrium and kinetically stable RNA
secondary structures indicates a remarkable ability to uncover biologically relevant information,
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which in this case supports currently postulated hypotheses on prokaryotic translation initiation.
Importantly, the identified secondary structure features could not have been visualized using the
one-hot sequence representation commonly associated with saliency maps (10, 17, 18, 20). These
findings compound to the advantage of using sequence-only deep learning approaches for
analyzing RNA synthetic biology tools. Outside of toehold switches and other synthetic RNA
systems, we anticipate VIS4Map will be broadly useful for the discovery of previously unknown
equilibrium or kinetically stable structures contributing to RNA biology, that are not predicted by
current mechanistic RNA structure models.

Discussion

Here we presented a high-throughput DNA synthesis, sequencing, and deep learning pipeline for
the design and analysis of a synthetic system in RNA biology. Having produced a toehold switch
dataset ~100-fold larger than previously published as a model system for investigating synthetic
RNA response elements (2-6, 15, 16), we demonstrated the benefits of using deep learning
methods that directly analyze sequence rather than relying on calculations from mechanistic
thermodynamic and kinetic models. This approach resulted in a tenfold improvement in
functional prediction R* over an ensemble of commonly used thermodynamic and kinetic
features. Moreover, the validation of our deep learning models on an external previously
characterized dataset, as well as the holdout prediction of every individual viral genome in our
dataset, further demonstrated the robust biological generalization of our models.

As with most work in RNA synthetic biology, all previous attempts to improve toehold switch
functionality have relied on the guidance of mechanistic thermodynamic modeling and low-
throughput datasets (2-8, 15, 16). Too frequently, rational design rules fail to give meaningful
predictions of function for RNA-based synthetic systems. The results presented here suggest that
the biological processes underlying RNA biology may be more complex than current state-of-
the-art analyses take into account and that high-throughput DNA synthesis, sequencing, and deep
learning pipelines can be more effective for modeling said complexity. Combining improved
predictions with enhanced understanding, our novel VIS4Map method further allowed us to
visualize the equilibrium and kinetic secondary structure features that our deep learning models
identified as important to the leakage of the switch OFF state. While secondary structures
identified by NUPACK, Kinfold, and other rational mechanistic models are limited by
predefined abstractions, which may cause significant information loss, our approach explored
sequence space in an unrestricted manner and analyzed all possible RNA secondary structures.
VIS4Map could prove useful for identifying complex secondary structure information that might
otherwise be ignored by simplified physical energetic models of RNA folding.

The dataset reported here also represents an extensive repository of characterized toehold
switches, which could be used to accelerate the development of future cell-free diagnostics (3, 4,
15, 16). These switches tile the entire genomes of 23 pathogenic viruses of high clinical
importance, as well as tiling hundreds of human transcripts, including many that are
differentially expressed in cancerous phenotypes (42, 43). The total cost of our flow-seq pipeline
equates to ~$0.08 per measurement, suggesting that the benefits of high-throughput design and
assaying of RNA synthetic biology tools could be made widely accessible. We hope that this
work will encourage the use of high-throughput data collection for the training of deep learning
systems, paired with more interpretable neural network architectures unrestricted by
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thermodynamic or kinetic secondary structure models for improved prediction and insight
generation in RNA synthetic biology.
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Fig.1. Deep learning for RNA synthetic biology pipeline. RNA tool selection is followed by
library synthesis and characterization with analysis using deep neural networks (DNN) to
provide functionality predictions and design insight. We used a high-throughput toehold switch
library as a canonical model for the general investigation of RNA synthetic biology tools. The
original toehold switch architecture from Green et al. (2) was used, containing a 12-nucleotide
toehold (a/a’) and an 18-nucleotide stem (b/b’) fully unwound by the trigger (left-bottom). We
selected to fuse the RNA trigger to the 5’ end of the switch by an unstructured linker to facilitate
library synthesis. Then, a flow-sequence (seq) pipeline was used to characterize the fluorescence
signal of individual toehold switches in a pooled sequential assay, including pooled induction,
FACS sorting, next-generation sequencing (NGS) and count frequency analysis. Finally, various
DNN architectures were used to predict data outputs, while features contributing to DNN
predictions were intuitively visualized to elucidate biological insights.
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Fig.2. Flow-seq toehold switch library characterization and trigger ontology. The
distribution of recovered toeholds for (A) ON-state signals, (B) OFF-state signals, and (C)
calculated ON/OFF ratios are shown (selected from quality control process #3, QC3 in Fig. S13
and Table S1). (D) Validation results for toehold switches expressed in a PURExpress cell-free
system with un-fused trigger RNA, including eight low-performing (poor, ON/OFF<0.05) and
eight high-performing (good, ON/OFF>0.97) samples. Obtained in vivo flow-seq data show
competency in classifying switch performance for this in vitro cell-free biological context. (E)
Tested switch/trigger variants from each origin category, including randomly generated
sequences, 906 human transcription factor transcripts, and 23 pathogenic viral genomes. (F)
Experimental ON/OFF ratios for all triggers tiled across the transcripts of two clinically relevant
human transcription factors (stat3 and kmt2a) upregulated in cancerous phenotypes (42, 43), as
well as all triggers tiled across the genomes of two pathogenic viruses: West Nile Virus (WNV)
and Human Immunodeficiency Virus (HIV). GFP= Green Fluorescent Protein; Seq=Sequence;
HPV=Human Papillomavirus.
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Figure 3. Analysis of toehold switch performance using sequence k-mers, rational
thermodynamic features, and sequence-based multilayer perceptron (MLP) models. (A)
Sequence logos for k-mer motifs discovered to be disproportionately represented in weakly
induced switches (low ON) and leaky switches (high OFF), functional proportions, and E-values.
(B) The Pearson correlation (left, [max|=0.4) and R* metric (right, |max|=0.16) for thirty state-of-
the-art thermodynamic features and obtained RBS Calculator v2.1 outputs. (C) Base architecture
of investigated MLP models, featuring three fully connected layers. For training in regression-
mode, three different outputs were predicted (ON, OFF, ON/OFF), whereas for classification
training only a single binary output based on ON/OFF (threshold at 0.7) was predicted. (D) Box
and whisker plots for R* between experimental and regression-based predictions for best
performing rational features, logistic regression models and MLPs. (E) Mean absolute error
(MAE) between experimental and predicted values for these same models. (F) Box and whisker
plots for area under the curve (AUC) of the receiver-operator curve (ROC) and the precision-
recall curve (P-R) in classification-mode predictions compared to experimental values. In both
regression and classification, the one-hot encoded sequence MLP delivered top-in-class
performance without using pre-computed thermodynamic or kinetic metrics. (G) ROC curves of
pre-trained MLP classification models validated with an unseen 168-sequence external dataset
from Green et al. (2).
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Figure 4. Evaluation of neural network architectures with increased capacity. Performance
metrics for convolutional neural networks (CNN) and long short-term memory (LSTM)
networks trained on one-hot encoded toehold sequences, as well as a CNN trained on a two-
dimensional, one-hot encoded sequence complementarity map. All models are compared to the
previously reported MLPs trained on the 30 pre-calculated thermodynamic features and one-hot
toehold sequences. For regression-based predictions (A) shows box and whisker plots for R
metric, while (B) shows mean absolute error (MAE) for all models. In the case of classification-
based predictions (C) shows box and whisker plots of the area under the curve (AUC) of the
receiver-operator curve (ROC) and the precision-recall curve (P-R) for all tested models. In both
regression and classification, the one-hot encoded sequence MLP delivered top-in-class
performance as compared to higher capacity deep learning models. (D) ROC curves of pre-
trained higher-capacity classification models validated with an unseen 168-sequence external
dataset from Green et al. (2).

12


https://doi.org/10.1101/872077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/872077; this version posted December 11, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Prediction B C VIS4Map MFE Structure
One-Hot Encoded # (CNN 2D Saliency) (NUPACK's RP)
RNA Complementarity Map o 0 @ Output 100
O O O (e.g. OFF)
PMEIRE °
75
& O o o § I Matched
1 k= o o0 3 Il Random
2D Convolutions 1 w Dense Layers 8
& Max Pools El_)
<]
9]
Attention Map £
(CEUELY) : =]
sy \. : : {. z
GC CG AU UA GU UG No \. . -
Ri= Y sreie 0 15 30 45
Explanation ' Tiawj .
Low mm— —- p ! ' Attention Map / MFE Overlap(%)

E Full Toehold Libral
Representative Individual Toehold Switch Saliency Maps Averaged Saliency ,alap

Learned Feature Diversity

Full Toehold Library
Averaged MFE Structures

(Learned Features)

v

F Averaged Toehold Switch Saliency Maps by Functional Score

Equilibrium
Structure

Kinetic\—>

Intermediates |

o
!
hl

i

Tight OFF < » Leaky OFF

Figure 5. VIS4Map: Visualizing secondary structure features using saliency maps of a
sequence-based complementarity matrix input. (A) A simplified schematic of the CNN-based
5 architecture used to generate toehold functional predictions with network attention

visualizations. The system receives a one-hot encoded, two-dimensional (2D) sequence
complementarity map as input, followed by three 2D convolutional/max-pooling layers, a
flattening step, and finally a set of dense layers. After output generation (e.g., OFF), a gradient-
weighted activation mapping is performed to visualize activation maximization regions

10 responsible for delivered predictions (VIS4Map). (B) Histograms of the percentage overlap
between VIS4Maps generated from a CNN pre-trained to predict minimum free energy (MFE)
using 120-nt RNA sequences and MFE maps generated by NUPACK. When analyzed using 500
random test set sequences, the distributions of correctly matched and randomly assigned maps
are distinct with increased percentage overlap from matched samples as compared to unmatched.

15 (C) Examples of saliency VIS4Maps compared with their corresponding MFE structures as
predicted by NUPACK for three randomly selected 60-nt RNA sequences. See Fig. SI1A for
additional examples with 120-nt RNA sequences. (D) Four representative VIS4Map examples of
randomly selected 118-nt RNA toehold switch sequences from an OFF-predictive CNN model.
(E) Averaged VIS4Maps of 10,125 randomly selected toehold switch RNA sequences from our

20 library test-set processed with our OFF-predicting CNN model (left) and compared their
corresponding averaged MFE maps obtained using NUPACK (right). (F) Averaged VIS4Maps
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of the 10% most accurately predicted switches sorted by quartile from lowest OFF (tight) to
highest OFF (leaky), inset for the toehold and the hairpin stem. After contrast enhancement of
averaged VIS4Maps to visualize sparsely distributed secondary structures, a noticeable increase
in structures outside of the prominent equilibrium-designed switch hairpin structure appears to
correlate with increased toehold leakiness. A toehold switch schematic (right) is shown to denote
how incorrectly folded and potentially weaker kinetically stable intermediate structures might
compete with the correctly folded structure that is designed to be reached at equilibrium.
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