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23 Abstract

24 The current study was conducted to investigate the effects of cLFchimera, a recombinant 

25 antimicrobial peptide (AMP), on various productive performance and gut health attributes of 

26 broilers experimentally challenged with Clostridium perfringens (Cp). Three hundred and sixty 1-

27 day-old chickens were randomly allocated to 4 treatments of 6 replicates as follows: T1) 

28 unchallenged group fed with corn-soybean meal (CSM) without Cp challenge and additives; T2) 

29 challenge group fed with CSM and challenged with Cp without any additives; T3) peptide group 

30 challenged with NE supplemented with 20 mg cLF36/kg diet (AMP); T4) antibiotic group 

31 challenged with NE and supplemented with 45 mg antibiotic (bacitracin methylene disalicylate)/kg 

32 diet (antibiotic). Birds had free access to feed and water, sampling for villi morphology and ileal 

33 microbiota were performed on days 10 and 22, while jejunal section was sampled for gene 

34 expression of cytokines, tight junctions proteins, and mucin only on day 22. Results showed that 

35 AMP ameliorated NE-related lesion in the jejunum and ileum and reduced mortality in challenged 

36 birds compared to challenge group with Cp without any additives. Also, supplementing challenged 

37 birds with AMP improved growth performance and reconstructed villi morphology. While 

38 antibiotic non-selectively reduced the count of bacteria, AMP positively restored ileal microflora 

39 in favor of good bacteria (i.e. Bifidobacteria spp. and Lactobacillus spp.). AMP beneficially 

40 regulated the expression of cytokines, junctional proteins, and mucin in the jejunum of challenged 

41 birds with Cp. Since cLFchimera ameliorated NE lesion score, reduced mortality, improved 

42 productive performance and gut health attributes in chickens compared to challenged group and 

43 also were mostly similar with those of antibiotics and therefore, it could be concluded that this 

44 chimeric peptide can be a worthy candidate to substitute growth promoter antibiotics, while more 

45 research is required to unveil the exact mode of action of this synthetic peptide. 
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46

47 Author summary

48 Necrotic enteritis (NE) is a detrimental enteric disease in the poultry industry worldwide. The 

49 etiological factor of this disease is Clostridium perfringens, which is gram-positive anaerobic 

50 bacterium. This bacterium is common inhabitant of the intestine in lower counts (105), but it 

51 becomes pathogenic in higher counts and can secrete NetB toxin, which is the main cause of 

52 inducing NE in broilers. Due to the emergence of antibiotic-resistant bacteria, new generation of 

53 antimicrobial additives such as antimicrobial peptides (AMPs) has been introduced to the poultry 

54 industry. AMPs are small molecules with 12-50 amino acids having antibacterial activity. 

55 Recently, we extracted new AMP from camel milk, expressed in E. coli, refined and lyophilized 

56 to produce purified peptides. The current study investigated the effects of this peptide on 

57 prevention of NE in broilers. Results showed that AMP ameliorated lesion scores in the intestine 

58 and reduced mortality in challenged birds. AMP improved growth performance and reconstructed 

59 villi morphology in NE-challenged broilers. While antibiotic non-selectively reduced the count of 

60 bacteria, AMP positively restored ileal microflora. AMP beneficially regulated the expression of 

61 cytokines, junctional proteins, and mucin in the jejunum of NE-challenged birds.

62

63 Introduction

64 Necrotic enteritis (NE) is well-known as a detrimental disease in the poultry industry, which results 

65 in production losses, increased mortality, reduced welfare of birds, and also increased risk of 

66 contamination of poultry products for human consumption [1]. The etiologic cause of NE is 

67 Clostridium perfringens (C. perfringens), a spore-forming Gram-positive bacterium, which is 

68 naturally inhabitant of farm animals gastrointestinal tract [2]. Antibiotics have been widely used 
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69 to control NE in poultry farms, while the administration of growth-promoting antibiotics was 

70 extensively forbidden due to the rapid spread of antibiotic resistance as the main concern in human 

71 health [3]. The prohibition of using antibiotics in livestock industry has inspired researchers to 

72 search for safe substitutions for antibiotics and several additives have been introduced to the 

73 market, such as pro and prebiotics, essential oils, acidifiers, and antimicrobial peptides [4]. 

74 Antimicrobial peptides (AMPs) are endo-exogenous polypeptides comprised of less than 50 amino 

75 acids, characterized by cationic amphipathic properties, and produced by host defense systems or 

76 synthetically supplied to the diet in order to protect a host from pathogenic microbes [5,  6]. AMPs 

77 show broad-spectrum antimicrobial activities against various microorganisms, including Gram-

78 positive and Gram-negative bacteria, fungi, and viruses [5]. These peptides are well-known for 

79 their roles as competent alternatives for antibiotics in farm animal production [7, 8, 9, 10, and 11]. 

80 The results of these studies demonstrated that AMPs could improve growth performance, nutrient 

81 digestibility and gut health, positively alter intestinal microbiota, and enhance immune function in 

82 pigs and broilers. 

83 cLFchimera is a heterodimeric peptide designed to mimic two antimicrobial domains, 

84 Lactoferricin (LFcin) and Lactoferrampin (LFampin), which are present in the N1-domain of 

85 camel lactoferrin (cLF) [12]. More recently, the recombinant form of cLFchimera has been cloned 

86 and expressed in E. coli [12] and L. lactic [13] in our lab. The results of in vitro studies showed 

87 that cLF36 has antibacterial [12, 13 and 14] antiviral [15], and anticancer [16] properties. 

88 Furthermore, the results of an in vivo experiment showed that supplementing E. coli challenged 

89 broilers with cLFchimera improved villi morphology in the jejunum, restored microbial balance 

90 in the ileum, and improved gene expression of cytokines and tight junctions in the jejunum of 

91 challenged broiler chickens [17]. Therefore, the objective of the present study was to evaluate the 
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92 effectiveness of cLFchimera as an alternative to growth enhancer antibiotics on performance and 

93 intestinal morphology, microflora, and gene expression of immune cells and junctional proteins in 

94 broiler chickens challenged with C. perfringens, as an animal model for infectious disease.

95

96 Materials and Methods

97 Ethics statement

98 All animal experiments conducted in the present study were in compliance with Iranian 

99 legislations in Agricultural Ministry, Deputy of Livestock and Veterinary Affairs (National 

100 Veterinary Organization, Iran). The ethic committee of Animal Care and Use of Ferdowsi 

101 University of Mashhad reviewed and approved the animal study protocols (Number 3/42449).

102

103 Birds, treatments, and experimental design

104 A total of 360 1-day-old male chicks (Cobb 500) were purchased from a local hatchery, weighed 

105 and randomly assigned to 4 treatments with six replicates containing 15 birds in each replicate. 

106 Treatments were as follow: 1) unchallenged birds received a corn-soybean meal basal diet without 

107 AMPs, antibiotic, and Cp challenge; 2) challenge birds experimentally challenged with Cp; 3) 

108 birds experimentally challenged with Cp and supplemented with 20 mg peptide/kg diet (AMP); 4) 

109 birds experimentally challenged with Cp and supplemented with 45 mg antibiotic (bacitracin 

110 methylene disalicylate)/kg diet (antibiotic). All diets were in mash form and formulated to meet or 

111 exceed the minimum requirements of Cobb 500 (Table 1). Feed and water and were provided ad 

112 libitum. Chicks were reared in floor pens (1.1m × 1.3m) covered with wood shavings. Temperature 

113 and lighting programs were adjusted based on the guidelines of the Cobb 500 strain.
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114

115 AMP production

116 The AMP used in the present study was derived from camel lactoferrin (cLF) consisting of 42 

117 amino acids, which were recently generated in our lab recently (for more details regarding the 

118 peptide cLF chimera production, please review previous papers [12, 13 and 14]. Briefly, 

119 preparation of recombinant plasmid vector was conducted through transforming recombinant 

120 expression vector harboring synthetic cLFchimera into DH5α bacterium [12, 13 and 14]. Next, the 

121 latter bacterial colonies were cultured to harvest plasmid extraction. Then, the recombinant vector 

122 was transferred into E. coli BL21 (DE3) as an expression host and cultured in 2 mL Luria-Bertani 

123 broth (LB) medium for overnight according to standard protocol [18]. In the next step, cultured 

124 materials were inoculated in 50 mL LB and incubated at 37°C with shaking at 200 rpm. Then, 

125 isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a final concentration of 1 mM and 

126 incubated at 37°C for 6 h after IPTG induction. Periplasmic protein was collected at different times 

127 after IPTG induction (2, 4, and 6 h) according to the method described by de Souza Cândido et al. 

128 [19] and analyzed on 12% SDS-PAGE. To purify expressed peptide, Ni-NTA agarose column was 

129 used based on manufacturer's instruction (Thermo, USA). The quality of purified recombinant 

130 peptide was assessed on a 12% SDS-PAGE gel electrophoresis, while the Bradford method was 

131 used to analyze the quantity of recombinant peptide. More recently, an E. coli expression system 

132 was developed in our laboratory that is able to produce 0.42 g/L of recombinant peptide. In the 

133 current study, 4 g peptide previously obtained from the recombinant E. coli were purified, 

134 lyophilized, and thoroughly mixed with 1 kg soybean meal and then supplemented to the relevant 

135 experimental diets. 

136
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137 C. perfringens challenge

138 The method of Cp challenge was according to the method described in detail elsewhere [20], with 

139 some modifications. Briefly, on day 16, chicks in unchallenged groups were administered a single 

140 1 mL oral dose of sterile phosphate-buffered saline (PBS) (uninfected) as a sham control, while 

141 challenged, peptide and antibiotic groups were orally challenged with 5,000 attenuated vaccine 

142 strain sporulated oocysts each of E. maxima, E. acervulina, and E. tenella (Livacox T, Biopharm 

143 Co., Prague, Czech Republic) in 1 mL of 1% (w/v) sterile saline. On days 20 and 21, birds in the 

144 challenge groups were orally inoculated with 1 mL per os the culture of C. perfringens (isolated 

145 from broilers meat [21], CIP (60.61) containing 107cfu/mL in thioglycollate (Thermo-Fisher 

146 Scientific Oxoid Ltd, Basingstoke, UK) broth supplemented with peptone and starch. PCR analysis 

147 of inoculated C. perfringens in the current study was performed to confirm the presence of netB 

148 gene required for inducing NE in broilers according to Razmyar et al. [22]. The unchallenged 

149 groups received the same dose of sterilized broth. 

150

151 Growth performance

152 On days 10 and 22, body weight (BW) and feed refusal remaining feed of each pen were weighed 

153 to calculate the average daily gain (ADG), average daily feed intake (ADFI), and feed conversion 

154 ratio (FCR) over the specific and entire periods of experiment (0-10, 11-22, and 0-22 days of age). 

155 The feed conversion ratio for each period was readjusted based on the mortality data per pen per 

156 day, if any.

157

158 Sample collection and lesion score
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159 On days 10 and 22, 2 birds from each pen (12 birds/treatment) were randomly selected, euthanized 

160 by cervical dislocation, the viscera was excised, the intestine was discreetly separated from the 

161 whole viscera, and the adherent materials were precisely removed. The ileum was gently pressed 

162 to aseptically collect ileal content into sterile tubes for microbiological analysis. A section (about 

163 5cm) from mid-jejunal tissues was meticulously separated for morphological analysis. A 2cm 

164 section from the mid-jejunum was detached, rinsed in cold phosphate-buffered saline (PBS), 

165 immediately immersed in RNAlater (Qiagen, Germantown, MD), and stored at −20°C for 

166 subsequent gene expression determination. On day 22, NE lesions of duodenum, jejunum, and 

167 ileum from 2 birds per pen were scored on a scale of 0 (none) to 6 (high) as described previously 

168 [23].

169

170 Intestinal morphology

171 The method used to prepare samples for morphometry analysis was already explained by 

172 Daneshmand et al. [24]. Briefly, jejunal samples were stored in a 10% formaldehyde phosphate 

173 buffer for 48 h. Next, the samples were processed on a tissue processor (Excelsior™ AS, Thermo 

174 Fisher Scientific, Loughborough, UK), fixed in paraffin using an embedder (Thermo Fisher Histo 

175 Star Embedder, Loughborough, UK), and cut with a microtome (Leica HI1210, Leica 

176 Microsystems Ltd., Wetzlar, Germany) to a slice of 3cm. Then, the slices were placed on a slide 

177 and dehydrated on a hotplate (Leica ASP300S, Leica Microsystems Ltd., Wetzlar, Germany), and 

178 dyed the samples with hematoxylin and eosin. Finally, the dyed slices of jejunal were examined 

179 under a microscope (Olympus BX41, Olympus Corporation, Tokyo, Japan). A total of 8 slides 

180 were prepared from the jejunal segment per bird, and ten individual well-oriented villi were 

181 measured per slide (80 villi/bird). The average of slide measurements per sample was reported as 
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182 a mean for each bird. Villus width (VW) was measured at the base of each villus; villus height 

183 (VH) from the top of the villus to the villus-crypt junction, crypt depth (CD) from the base of the 

184 adjacent villus to the sub-mucosa, the ratio of VH/CD and villus surface area were calculated. 

185

186 Microbial count

187 The methods used to count the populations of E. coli, Clostridium spp., Lactobacillus spp., and 

188 Bifidobacterium spp. in the ileal content were described elsewhere [25]. In summary, the ileal 

189 contents of a sample were thoroughly mixed, serially diluted 10-fold from 10−1 to 10−7 with sterile 

190 PBS, and homogenized for 3 minutes. Next, dilutions were plated on different agar mediums. 

191 Regarding the enumeration of bacteria, Lactobacillus spp. and Clostridium spp. dilutions were 

192 plated on MRS agar (Difco, Laboratories, Detroit, MI) and SPS agar (Sigma, Germany) and 

193 anaerobically cultured at 37°C for 48 h and 24 h, respectively. Black colonies of Clostridium spp. 

194 on SPS agar were counted. MacConkey agar (Difco Laboratories, Detroit, MI) and BSM agar 

195 (Sigma-Aldrich, Germany) were used to cultivate E. coli and Bifidobacterium spp. respectively, 

196 and incubated at 37°C for 24 h. All microbiological analyses were performed in triplicate, and 

197 average values were used for statistical analyses and results were expressed in colony-forming 

198 units (Log10 cfu/g of ileal content).

199

200 RNA extraction and gene expression

201 The procedure of RNA extraction and gene expression was explained previously [26]. In summary, 

202 total RNA was extracted from chicken jejunum sampled on day 22 using the total RNA extraction 

203 kit (Pars Tous, Iran) following the manufacturer’s instructions. The purity and quality of extracted 

204 RNA were evaluated using an Epoch microplate spectrophotometer (BioTek, USA) based on 
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205 260/230 and 260/280 wavelength ratios, respectively. Genomic DNA was removed using DNase 

206 I (Thermo Fisher Scientific, Austin, TX, USA). The complementary DNA (cDNA) was 

207 synthesized from 1 µg of total RNA using the Easy cDNA synthesis kit (Pars Tous, Iran) following 

208 the manufacturer’s protocol.

209 Gene expression of two references (GAPDH and β-actin) and five targets (Interleukin-1 [IL-1], 

210 IL-6, mucin2 [MUC2], Claudin-1 [CLDN1], and Occludin [OCLN]) genes were determined by 

211 quantitative real-time PCR (qPCR) based on MIQE guidelines [27]. Each reaction was performed 

212 in a total volume of 20 μl in duplicate using an ABI 7300 system (Applied Biosystems, Foster 

213 City, CA) and 2× SYBR Green Real Time-PCR master mix (Pars Tous, Iran). Primer details are 

214 shown in Table 2. All primers were designed according to MIQE criteria [27] regarding 

215 amplification length and intron spanning. All efficiencies were between 90 and 110% and 

216 calculated R2 was 0.99 for all reactions. The method 2−ΔΔCt Ct [28] was used to calculate relative 

217 gene expression in relation to the reference genes (GAPDH and β-actin).

218

219 Statistical analysis

220 Data were statistically analyzed in a completely randomized design by ANOVA using the General 

221 Linear Model (GLM) procedure of SAS (SAS Inst., Inc., Cary, NC). Tukey’s test was used to 

222 compare differences among means of treatments, and P values < 0.05 were considered to be 

223 significant.

224

225 Results

226 Lesion score and mortality

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/871467doi: bioRxiv preprint 

https://doi.org/10.1101/871467
http://creativecommons.org/licenses/by/4.0/


227 Table 3 shows the effects of experimental treatments on NE-inducing lesion scores in different 

228 segments of the intestine and mortality rate of broiler chickens. Results showed that duodenum 

229 was mildly affected by NE, while additives had no significant effects on the recovery of this section 

230 from NE lesion. The results of lesion scores in the jejunum and ileum showed that the method of 

231 inducing NE was applied correctly. Peptide decreased (P < 0.05) lesions in the jejunum and ileum 

232 of birds compared to challenged group, while antibiotic intended (P > 0.05) to decrease lesions in 

233 the lower sections of the intestine. Birds fed antibiotic and peptide showed lower (P < 0.05) 

234 mortality rate compared to challenge group, while peptide group had no significant difference in 

235 comparison to unchallenged birds.

236

237 Broiler performance

238 Table 4 represents the effects of experimental diets on growth performance of broilers. Antibiotic 

239 fed birds showed higher (P < 0.05) ADG compared to challenged and unchallenged groups. 

240 Peptide also increased (P < 0.05) ADG when compared to the other group. However, its difference 

241 with unchallenged group was not significant. At d 22, additives decreased (P < 0.05) feed intake 

242 compared to challenged group, while their differences with unchallenged group were not 

243 significant. Interestingly, supplementing challenged chickens with peptide improved (P < 0.05) 

244 FCR compared to both challenged and unchallenged group at the end of the experiment (d 22), 

245 while birds received antibiotic showed better (P < 0.05) FCR compared to challenged group, but 

246 similar effect with those of unchallenged group.

247

248 Jejunal villi morphology
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249 The effects of treatments on jejunal morphology are shown in Table 5. On day 10, experimental 

250 diets had no significant effects on the morphometry of the intestine. Birds fed AMP and antibiotic 

251 had higher (P< 0.05) VH compared to non-challenged birds, while AMP had similar effect to that 

252 of non-challenged birds at 22 days of age. AMP enhanced (P < 0.05) villus surface area (VSA) 

253 compared to challenged and had similar effect in comparison to non-challenged group at 22 days 

254 of age, while antibiotic increased (P < 0.05) VSA compared to challenge group. Experimental diets 

255 had no significant effects on CD and VH/CD at 22 days of age.

256

257 Bacterial colonization

258 Table 6 summarizes the effects of experimental diets on ileal bacterial populations. At d 10, 

259 antibiotic decreased (P < 0.05) the population of all bacteria compared to challenge and non-

260 challenged groups, while AMP had similar effects to those of other treatments. Birds supplemented 

261 with antibiotic had the lowest (P < 0.05) population of all cultured ileal bacteria compared to both 

262 challenged and non-challenged groups at 22 days of age. Interestingly, AMP increased (P < 0.05) 

263 the population of Lactobacillus spp. and Bifidobacterium spp. and decreased (P < 0.05) the 

264 colonization of E. coli and Clostridium spp. in the ileum of chickens compared to challenge birds, 

265 while AMP had similar effects compared to non-challenged group at 22 days of age.

266

267 Gene expression of immune cells and tight junction proteins

268 The effects of treatments on the expression level of immune cells and tight junction proteins are 

269 presented in Figure 1. While C. perfringens challenge increased (P < 0.05) TRAF3 and ANXA1 

270 expressions, adding antibiotic and AMP to the diet reduced (P < 0.05) expression of these immune 

271 cells compared to challenged group and had similar effects to those of non-challenged birds.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/871467doi: bioRxiv preprint 

https://doi.org/10.1101/871467
http://creativecommons.org/licenses/by/4.0/


272 Antibiotic and AMP increased (P < 0.05) the expression level of MUC2 compared to the 

273 challenged group. While antibiotic had higher (P < 0.05) expression of MUC2 compared non-

274 challenge birds, AMP had similar expression levels when compared to non-challenged groups. 

275 Antibiotic did not significantly affect gene expression of jejunal junctional proteins compared to 

276 non-challenged group and had similar effects to those of challenged birds. AMP improved (P < 

277 0.05) expression patterns of CLDN1 and OCLN in the jejunum compared to challenged group.

278

279 Discussion

280 Necrotic enteritis is still a global concern with drastic losses in poultry farms, mainly due to 

281 retarded growth performance, increased mortality, and veterinary costs [23]. The outbreak of 

282 disease and consequently economic losses have been more prominent in post-antibiotic era [23]. 

283 While the use of antibiotics has been banned in many parts of the world, such European Union, 

284 due to health concerns related to emerging antibiotic-resistance pathogens and also drug residues 

285 in poultry products, researchers have investigated for alternative additives to restrain NE. Recently, 

286 more attentions have inclined to AMPs due to their beneficial roles on health attributes and to 

287 prophylactic effects against pathogenic invasion [12, 13 and 17]. Therefore, the principal objective 

288 of the current study was to investigate the effects of antimicrobial peptide, cLFchimera, on various 

289 productive and health parameters in chickens experimentally challenged with NE. 

290 Results of the current study showed that AMP decreased gut lesion and mortality induced by NE 

291 and also improved growth attributes in challenged chickens similar to antibiotic fed birds, which 

292 is in agreement with previous results [9, 10]. While most of the previous researches have studied 

293 the effects of AMPs in chickens in normal conditions, Hu et al. [29] demonstrated that 

294 supplementing broilers diet with AMP improved their weight gain and FCR under heat stress, 
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295 which is in agreement with the current results. In another challenge study, Wu et al. [30] challenged 

296 weanling pigs with E. coli and supplemented the diet with AMP. They reported that AMP reduced 

297 the incidence of diarrhea post-challenge and improved weight gain and FCR compared to 

298 challenged group, which is similar to the present findings regarding the reduction in gut lesion and 

299 improvement in performance. Previous studies attributed the beneficial effects of AMPs on growth 

300 performance of chickens to their fundamental roles in maintaining microbial balance in the gut 

301 and consequently improvement in the intestinal morphometry [9, 10].

302 It has been well-documented that the villi play the critical roles in absorbing nutrients from the 

303 intestinal tract, which subsequently the morphometry of these villi can drastically affect the host’s 

304 performance and health [31]. In the present study, AMP significantly improved morphometry of 

305 villi in the jejunum of challenged chickens, similar to that of unchallenged group, which is in 

306 agreement with previous studies [9, 10]. It has been reported that AMPs extracted from pig 

307 intestine [32] and rabbit sacculus rotundus [33] enhanced jejunal villi characteristics in broiler 

308 chickens, which is consistent with the present results. Generally, in healthy conditions, provision 

309 of essential nutrients and microbial balance are two crucial factors affecting villi morphology [34]. 

310 On the other hands, in an infectious disease like NE, the most critical strategy in maintaining villi 

311 structure is the removal or leastwise elimination of the pathogens through providing antimicrobial 

312 additives and manipulating the intestinal microbiome [35]. Previous studies showed that antibiotic 

313 and AMPs could improve villi morphology and nutrient absorption and consequently increase 

314 growth performance in chickens under healthy and/or disease conditions by manipulating the 

315 intestinal microflora [9, 10 and 17].

316 The intestinal commensal microbiome interacts with the host through different processes, 

317 including nutrients absorption, villi morphology, intestinal pH, and mucosal immunity [36, 37]. In 
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318 the current study, antibiotic reduced the colonization of all bacteria, while AMP significantly 

319 enhanced the beneficial bacterial populations (i.e. Lactobacillus spp. and Bifidobacterium spp.) 

320 and decreased the proliferation of opportunistic pathogen populations (i.e. E. coli and C. 

321 perfringens) in the ileum. In agreement with the present study, Tang et al. [7] and Ohh et al. [38] 

322 reported that AMPs significantly enhanced the population of beneficial bacteria and decreased the 

323 colonization of harmful ones in the ileum of piglets and broilers, respectively. The antimicrobial 

324 action of Bacitracin Methylene Disalicylate (BMD) involves blocking the bacterial ribosome 

325 subunits and subsequently impeding protein synthesis, which finally reduces the colonization of 

326 microbial community in the intestine [39]. Unfortunately, this antibiotic does not differentiate 

327 between beneficial vs. pathogenic bacteria and may perturb microbial balance in the intestine and 

328 deprive the host of benefits of microbes’ roles and products [40, 39]. There is no consensus on the 

329 mechanism by which AMPs influence bacterial colonization in the intestine, while two direct and 

330 indirect mechanisms have been proposed based on the physiological properties of peptides. The 

331 direct antimicrobial effect of AMPs has been attributed to different surface charges of peptides 

332 and pathogens [41]. In other words, AMPs possess positive charge contributing to electrostatically 

333 adhere to negatively charged bacterial membranes [42, 41]. This attachment can either destroy the 

334 bacterial membranes through physical disruption or penetrate the bacterial cytoplasm without 

335 exerting any damage to the lipid layer [43, 41]. Imported AMPs may interfere with intracellular 

336 signaling pathways like nucleic acids synthesis, enzyme activity, and protein biosynthesis [42, 43]. 

337 In the indirect mode, AMPs might manipulate the microbial community of the intestine in favor 

338 of the colonization of beneficial bacteria (e.g. Lactobacillus spp. and Bifidobacterium spp.) and 

339 beneficially affect the host health through various physiological mechanisms (e.g. competitive 

340 exclusion, secretion of short-chain fatty acids, activation of intestinal immune system, etc.) [42]. 
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341 Previous findings suggested that cLF36 could attach to the bacterial membrane through 

342 electrostatic interactions and physically disrupt bacterial bilayer membranes [12, 13 and 14]. In 

343 line with the previous reports [44], the current results demonstrate that AMP can selectively 

344 prevent the bacterial growth in the intestine of C. perfringens challenged chickens, which may 

345 prove the competitive advantage of cLchimera compared to antibiotics. Furthermore, previous 

346 research reported that the antimicrobial activities of AMPs against pathogens in the intestine might 

347 alert host immune system to fight against invading agents [45, 46].

348 Mucosal immunity plays an important role in host defense against pathogens [47]. At the intestinal 

349 level, epithelial cells express pattern recognition receptors (PRRs), which can recognize molecular 

350 origins found on most classes of microbes called microbe-associated molecular patterns (MAMP). 

351 The recognition of MAMP by PRRs would lead to the stimulation of immune systems [48, 49]. 

352 Toll-like receptors (TLRs) are considered the most important PRRs which can recognize MAMP 

353 and facilitate the initiation of immune response against pathogen invasion [50, 51]. Furthermore, 

354 host immune system hires both pro- and anti-inflammatory cytokines to fight against invading 

355 pathogens and restore mucosal homeostasis [52, 53, and 54].

356 Pro-inflammatory cytokines like IL-1β, TNF-α, and IL-12 stimulate the body's defense through 

357 immune cell differentiation, proliferation, apoptosis, and NO production [55]. In broiler chickens, 

358 when TLR4 engages to MAMP, it transmits the information to the cytoplasm of the phagocytes, 

359 which in turn leads to expression of cytokines [56, 57]. The controversial results have been 

360 reported by different research groups regarding the effects of C. perfringens challenge on gene 

361 expression of TLR4 in the intestine of broiler chickens. For instance, while some researchers 

362 reported that C. perfringens upregulated the TLR4 gene expression in the intestine of chickens 

363 [58, 59], other investigators reported no apparent alteration of the TLR4 gene expression in C. 
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364 perfringens challenged chickens [60]. Therefore, in the current study, we decided to analyze the 

365 gene expression of TRAF3, which is one step ahead of TLR4 activation in order to overcome the 

366 possible interference of other immune cells [61]. TRAF3 is a cytoplasmic protein that controls 

367 signal transduction from different receptor families, especially TLRs [61]. Following the activation 

368 of TLR4 with pathogen attachment, TRAF3 is recruited into signaling complexes, and its 

369 activation increases vital pro-inflammatory cytokines production [62, 63]. Results of the present 

370 study showed that while C. perfringens challenged upregulated the expression of TRAF3 in the 

371 jejunum of chickens, antibiotic and AMP significantly decreased the expression of this cytokine 

372 in the challenged birds. To the best of our knowledge, this is the first experiment that reports the 

373 expression of TRAF3 under AMP and antibiotic treatments in C. perfringens challenged chickens, 

374 while there is consistency between the current results and previous ones regarding the effects of 

375 C. perfringens challenge on TRAF3 expression [62, 64].  

376 On the other hand, excessive and long-term production of pro-inflammatory cytokines might result 

377 in the gut damage and high energy demand [55]. To prevent the adverse effects of extra pro-

378 inflammatory cells, pro-resolving mediators such as ANXA1 are released into the epithelial 

379 environment to orchestrate clearance of inflammation and restoration of mucosal homeostasis  [65 

380 52). ANXA1 is a 37 kDa calcium- and phospholipid-binding protein expressed in the apical and 

381 lateral plasma membrane in the intestinal enterocytes that facilitates resolution of inflammation 

382 and repair [66]. ANXA1 applies several mechanisms to induce anti-inflammatory effects. Primary 

383 mechanism include suppressing the release of pro-inflammatory cytokines like IL-1β and TNF-α 

384 in the intestinal mucosa, inhibiting leukocyte migration and monocyte adhesion to vascular 

385 endothelium, impairing neutrophil, and eventually promoting apoptosis of inflammatory cells [67, 

386 68, 69]. In the current study, C. perfringens upregulated the expression of ANXA1 in the jejunum 
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387 of challenged chickens, which is in agreement with previous report [62], while antibiotic and AMP 

388 significantly decreased the gene expression of this cytokine, which is firstly reported herein. While 

389 there is no well-documented evidence to explain the results of cytokines expression, it could be 

390 inferred that antimicrobial activities of antibiotic and AMP in the current study resulted in the 

391 reduction of invading pathogens (based on abovementioned microbial results) in the intestine of 

392 challenged birds and possibly downregulating the expression of cytokine-producing immune cells 

393 and finally a decrease in pro- and anti-inflammatory cytokines. While the same mechanisms have 

394 been proposed separately for the effects of BMD [70] and other AMPs [11] on cytokines 

395 expression in C. perfringens challenged chickens, no comprehensive mechanism has been reported 

396 by the time of preparing this paper. Along with the crucial roles in immune system, it has been 

397 shown that cytokines can affect junctional proteins and intestinal leakage [71].

398 The epithelial barrier consists of tight junction proteins forming the primary lines of defence 

399 against wide range of stimuli from feed allergens to commensal and pathogenic bacteria [72, 73]. 

400 The disruption of these proteins may result in increasing the intestinal permeability to luminal 

401 pathogens [72, 73]. Previous studies showed that C. perfringens might attach to the junctional 

402 proteins in order to form gaps between the epithelial cells and disrupt the intestinal integrity [73; 

403 74]. In the present study, NE challenge reduced the jejunal gene expression of OCLN and CLDN1, 

404 which is in agreement with previous studies [74, 75], while AMP significantly upregulated the 

405 expression of these genes in the challenged birds, and antibiotic had no significant effect on the 

406 gene expression of junctional proteins. In agreement with the current findings, previous reports 

407 demonstrated that AMPs could increase the expression of junctional proteins in different challenge 

408 conditions [76, 17]. Previous studies showed that tight junction proteins, especially CLDN1 and 

409 OCLN, have a specific region (i.e. ECS2) containing a toxin-binding motif, NP (V/L)(V/L)(P/A), 
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410 that is responsible for binding to C. perfringens [77, 73]. Following attachment to junctional 

411 proteins, C. perfringens could digest these proteins [78] and open the intracellular connection 

412 between adjacent epithelial cells resulting in more penetration of pathogens to deeper layers of 

413 lamina propria and transmitting to other organs [79 73]. While no exact mechanism has been 

414 recognized for the inhibitory effects of AMPs on C. perfringens regarding junctional proteins, two 

415 acceptable theories have been suggested. In the first theory, it has been suggested that AMPs could 

416 directly switch on the expression of regulatory proteins (i.e. Rho family) in the intestine of 

417 challenged mice that consequently upregulated the expression of tight junction proteins and 

418 ameliorated leaky gut [80, 76]. The second theory attributed the beneficial effects of AMPs on 

419 tight junctions to their indirect roles in manipulating microflora populations in the intestine. In 

420 detail, previous studies showed that the intestinal commensal bacteria like Bifidobacteria and 

421 Lactobacilli secrete butyric acid that regulates epithelial O2 consumption and stabilization of 

422 hypoxia-inducible factor, a transcription factor protecting the epithelial barrier against pathogens, 

423 resulting in higher expression of junctional proteins [81, 82]. As previously discussed in the current 

424 study, cLFchimera decreased the number of C. perfringens and increased the population of 

425 Bifidobacteria and Lactobacilli in the intestine. Therefore, it can be hypothesized that AMP in the 

426 current study upregulated the expression of junctional proteins through both reducing the number 

427 of C. perfringens and inhibiting proteins disruption by bacterial toxins, and increasing the 

428 concentration of butyric acid by increasing the count of butyrate-producing bacteria like 

429 Bifidobacteria and Lactobacilli. Surprisingly, antibiotic did not change the expression of CLDN1 

430 and OCLN in the jejunum of challenged chickens, while it could be expected that antibiotic 

431 upregulated the junctional proteins due to the antibacterial nature of antibiotics. In line with the 

432 current results, Yi et al. [76] reported that antibiotics might not affect the gene expression of 
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433 junctional proteins of the epithelial cells after pathogen removal, maybe because of controlling the 

434 microbial balance in the intestine. 

435 Along with junctional proteins, the luminal mucus layer comprising of mucins plays a defensive 

436 role against invasive pathogens [83]. MUC2 widely expresses in goblet cells and secretes into the 

437 intestinal lumen to stabilize mucosal layer [83, 84]. Any damage to the mucosal layer and/or the 

438 interaction between MAMPs and PRRs stimulates the expression of MUC2 to secrete more mucin 

439 and prevent further destruction [84, 85]. In the current study, C. perfringens challenged 

440 significantly increased the expression of MUC2 in the jejunum, which is in agreement with the 

441 results of previous studies [86, 87]. On the other hand, antibiotic and AMP significantly 

442 downregulated the expression of this gene, while the results for AMP was similar to those of 

443 unchallenged group. According to the bacterial results in the present study, it could be inferred 

444 that the inhibitory effects of AMP on the population of C. perfringens and E. coli might reduce the 

445 colonization of these bacteria in the intestine, decrease the destruction of mucosal layer, and 

446 subsequently lessen the expression of MUC2, while the exact mechanism has not been revealed 

447 yet. 

448 In conclusion, results of the current study propose that cLFchimera, an antimicrobial peptide 

449 originated from camel milk, could reduce mortality and attenuate NE-induced lesions resulted in 

450 better growth performance, recovery of villi morphology in the jejunum, and restoration of the 

451 ileal microflora in NE-imposed chickens. Furthermore, supplementing C. perfringens challenged 

452 birds with cLFchimera beneficially regulated the gene expression of cytokines to boost the immune 

453 system against co-inocculation of Eimeria spp. and C. perfringens in NE challenge model. 

454 Eventually, cLFchimera significantly repaired the intestinal mucosal layer and barrier functions in 

455 C. perfringens challenged chickens through positively manipulating the expression of MUC2 and 
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456 tight junctional proteins. Therefore, according to the desired results obtained in the present study, 

457 cLFchimera can be nominated as a candidate for replacing growth promoter antibiotics against NE 

458 in chickens, while further studies may find other favourable effects of this AMP.

459
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Table 1. Composition of experimental diets.

Ingredient (%)1 Starter (0-10 days) Grower (11-22 days)
Corn 56.81 58.16
Soybean meal (44.0 %) 36.01 34.80
Soybean oil 3.18 3.40
Dicalcium phosphate 1.79 1.65
Limestone 0.97 0.93
Salt 0.35 0.30
Mineral-vitamin premix2 0.50 0.50
DL-Methionine 0.17 0.15
L-Lysine HCl 0.22 0.12

Calculated nutrients 
AME (kcal/kg) 3000.00 3080.00
Crude protein (%) 21.00 19.00
Calcium (%) 0.90 0.84
Available phosphorus (%) 0.45 0.42
Sodium (%) 0.16 0.16
Methionine (%) 0.50 0.47
Methionine + cystene (%) 0.98 0.86
Lysine (%) 1.32 1.18

1Antibiotic (45 mg bacitracin methylene disalicylate/kg diet) and peptide (20 
mg/kg diet) were added on top and thoroughly mixed.
2 Added per kg of feed: vitamin A, 7,500 UI; vitamin D3 2100 UI; vitamin E, 280 
UI; vitamin K3, 2 mg; thiamine, 2 mg; riboflavin, 6 mg; pyridoxine, 2.5 mg; 
cyanocobalamin, 0.012 mg, pantothenic acid, 15 mg; niacin, 35 mg; folic acid, 1 
mg; biotin, 0.08 mg; iron, 40 mg; zinc, 80 mg; manganese, 80 mg; copper, 10 mg; 
iodine, 0.7 mg; selenium, 0.3 mg.
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Table 2. Sequences of primer pairs used for amplification of target and reference genes.1

Gene2 Strand Sequence (5´→ 3´) Ta Product size (bp) GenBank Accession No.

Forward CTGCCTGACTGCCCTTGTGAANXA1
Reverse GTTTGTGTCGTGTTCCACTCCC

63 98 NM_206906.1

Forward CTGAGAAAAGATTTGCCAGACCATRAF3
Reverse CATGAAACCATGACACACGGG

63 101 XM_421378

Forward ATGCGATGTTAACACAGGACTCMUC2
Reverse GTGGAGCACAGCAGACTTTG

60 110 BX930545

Forward CATACTCCTGGGTCTGGTTGGTCLDN1
Reverse GACAGCCATCCGCATCTTCT

60 100 NM_001013611.2

Forward CGCAGTCCAGCGGTTACTAOCLDN
Reverse AGGATGACGATGAGGAACCCA

58 178 NM_205128.1

Forward TTGTCTCCTGTGACTTCAATGGTGGAPDH
Reverse ACGGTTGCTGTATCCAAACTCAT

63 128 NM_204305

Forward CCTGGCACCTAGCACAATGAAβ-Actin
Reverse GGTTTAGAAGCATTTGCGGTG

63 175 NM_205518.1

1For each gene the primer sequence for forward and reverse (5´→ 3´), the product size (bp), and the annealing temperature (Ta) 
in °C are shown.
2 ANXA1, annexin A1; TRAF3, tumor necrosis factor receptor associated factor 3; MUC2, mucin2; CLDN1, claudin1; 
OCLDN, occludin; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase.
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Table 3. Effects of treatments on necrotic enteritis lesion scores in broilers at 22 days of age.

Day 22

Treatments Duodenum Jejunum Ileum
Mortality2 (%)

NC1 0.000 c 0.000c 0.000c 0.000c

PC 0.187 a 1.131a 0.944a 8.17a

AMP 0.093 b 0.769b 0.621b 2.53bc

Antibiotic 0.148 ab 0.955ab 0.783ab 3.44b

SEM3 0.119 0.285 0.373 0.819
P-value 0.034 0.001 0.013 0.001
a-c Values within a column with different letters differ significantly (P< 0.05).
1 NC: negative control group received corn-soybean meal diet without challenge and additives; 
PC: positive control group received NC diet experimentally challenged with necrotic enteritis; 
AMP: PC received group supplemented with 20 mg antimicrobial peptide/ kg diet; Antibiotic: 
PC received group supplemented with 45 mg antibiotic (bacitracin methylene disalicylate)/ kg 
diet.
2 Only mortalities shown necrotic enteritis symptoms.
3SEM: standard error of means (results are given as means (n = 12) for each treatment).
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Table 4. Effects of treatments on growth performance of broiler chickens from 0-22 days of age.

ADG2 (g) ADFI (g) FCR (g/g)
Treatments 0-10 11-22 0-22 0-10 11-22 0-22 0-10 11-22 0-22

NC1 26.25b 58.95b 85.20b 24.93a 74.79b 99.37b 0.950a 1.269b 1.170b

PC 26.15b 55.91c 82.06c 23.77ab 88.18a 111.95a 0.909a 1.578a 1.364a

AMP 27.05ab 60.29ab 87.34ab 22.61b 72.23b 94.85b 0.836b 1.199b 1.086c

Antibiotic 27.78a 61.94a 89.72a 24.64a 75.26b 99.90b 0.888ab 1.215b 1.113bc

SEM3 0.318 0.446 0.644 0.422 1.401 1.577 0.0164 0.0257 0.0181

P-value 0.007 0.001 0.001 0.005 0.001 0.001 0.001 0.001 0.001

a-c Values within a column with different letters differ significantly (P< 0.05).
1 NC: negative control group received corn-soybean meal diet without challenge and additives; PC: positive control group 
received NC diet experimentally challenged with necrotic enteritis; AMP: PC received group supplemented with 20 mg 
antimicrobial peptide/ kg diet; Antibiotic: PC received group supplemented with 45 mg antibiotic (bacitracin methylene 
disalicylate)/ kg diet.
2ADG: average daily gain; ADFI: average daily feed intake; FCR: feed conversion ratio.
3SEM: standard error of means (results are given as means of 6 pens of 15 birds/treatment).
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Table 5. Effects of treatments on villi morphology (µm) in the jejunum of broiler chickens at 10 and 22 days of age. 

Day 10 Day 22

Treatment VH2 VW CD VH/CD VSA (µm2) VH VW CD VH/CD VSA (µm2)

NC1 621 188 144 3.29 367.7 1175a 186a 187 5.69 688.8a

PC 592 192 125 3.09 356.6 827c 153b 201 5.04 396.9c

AMP 681 194 138 3.52 414.2 1140ab 187a 171 6.06 671.5a

Antibiotic 641 197 121 3.26 396.9 1017b 174a 180 6.50 557.0b

SEM3 26.4 3.5 13.7 0.164 16.42 35.4 5.1 22.8 0.632 25.78
P-value 0.167 0.401 0.610 0.348 0.102 0.001 0.001 0.816 0.447 0.001
a-c Values within a column with different letters differ significantly (P< 0.05).
1 NC: negative control group received corn-soybean meal diet without challenge and additives; PC: positive control group received 
NC diet experimentally challenged with necrotic enteritis; AMP: PC received group supplemented with 20 mg antimicrobial peptide/ 
kg diet; Antibiotic: PC received group supplemented with 45 mg antibiotic (bacitracin methylene disalicylate)/ kg diet.
2VH: villus height; VW: villus width; CD: crypt depth; VH/CD: the ratio of VH to CD; VSA: villus surface area.
3SEM: standard error of means (results are given as means (n = 12) for each treatment).
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Table 6. Effects of treatments on ileal microflora (log10 CFU g-1) in broilers at 10 and 22 days of age.

Day 10 Day 22

Treatments E. coli Lactobacillus spp. Bifidobacterium spp. Clostridium spp. E. coli Lactobacillus spp. Bifidobacterium spp. Clostridium spp.

NC1 3.03a 5.69a 6.17a 1.62a 4.09b 7.36a 6.41a 2.74c

PC 3.35a 5.39a 6.49a 1.66a 5.11a 5.21b 4.32b 5.45a

AMP 2.31ab 5.31a 6.47a 1.48ab 3.72bc 6.69a 5.86a 4.68b

Antibiotic 1.87b 3.83b 4.73b 1.31b 2.80c 5.37b 4.54b 4.38b

SEM2 0.263 0.267 0.328 0.062 0.233 0.311 0.241 0.074

P-value 0.007 0.002 0.007 0.008 0.001 0.009 0.001 0.001
a-c Values within a column with different letters differ significantly (P< 0.05).
1 NC: negative control group received corn-soybean meal diet without challenge and additives; PC: positive control group received NC diet experimentally 
challenged with necrotic enteritis; AMP: PC received group supplemented with 20 mg antimicrobial peptide/ kg diet; Antibiotic: PC received group 
supplemented with 45 mg antibiotic (bacitracin methylene disalicylate)/ kg diet.
2SEM: standard error of means (results are given as means (n = 12) for each treatment).
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Figure 1.

Effects of treatments on the expression of different genes in the jejunum of broiler chickens on 

day 22. Samples were analyzed using qPCR, and GAPDH and β-actin were used as the 

reference genes. Abbreviations as follows: ANXA1, annexin A1; TRAF3, tumor necrosis 

factor receptor associated factor 3; MUC2, mucin2; unchallenge, control birds received a corn-

soybean meal basal diet without AMPs, antibiotic and necrotic enteritis (NE) challenge; 

challenge, control birds experimentally challenged with NE; peptide, birds experimentally 

challenged with NE and supplemented with 20 mg peptide/kg diet; Antibiotic, birds 

experimentally challenged with NE and supplemented with 45 mg antibiotic (bacitracin 

methylene disalicylate)/kg diet; The letters on the bar mean show significant difference (P < 

0.05).
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