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; Abstract

o Models of political-ecological systems can inform policies for managing ecosystems that
10 contain endangered species. One way to increase the credibility of these models is to
u subject them to a rigorous suite of data-based statistical assessments. Doing so involves
12 statistically estimating the model’s parameters, computing confidence intervals for these
13 parameters, determining the model’s prediction error rate, and assessing its sensitivity to
1 parameter misspecification.

15 Here, these statistical algorithms along with a method for constructing politically fea-
16 sible policies from a statistically fitted model, are coded as JavaSpaces™ programs that
17 run as compute jobs on either supercomputers or a collection of in-house workstations.
18 Several new algorithms for implementing such jobs in distributed computing environments
19 are described.

20 This downloadable code is used to compute each job’s output for the management
2 challenge of conserving the East African cheetah (Acinonyz jubatus). This case study shows
» that the proposed suite of statistical tools can be run on a supercomputer to establish the
23 credibility of a managerially-relevant model of a political-ecological system that contains
2 one or more endangered species. This demonstration means that the new standard of
s credibility that any political-ecological model needs to meet before being used to inform

%6 ecosystem management decisions, is the one given herein.
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2 high performance computing; sensitivity analysis; statistical estimation of large models

» 1 Introduction

a1 There is a need to acknowledge the complexity of political-ecological systems and the signif-
» icant challenges to building theories of them [1]. Such systems lie at the interface between
13 social/political science and ecology. The complexity of each of these fields coupled with an
s additional layer of complexity introduced by the interactions between sociological /political
55 systems and natural systems can result in highly complex system dynamics, i.e., ones that
s are stiff, nonlinear, and possess feedback loops. For example, Schoon and Van der Leeuw [2]
s note that systems composed of interacting sociological and ecological subsystems are quick
;s to change and rarely stay in equilibrium for long. Further, many state variables are needed
3 to describe both the decision making processes of the relevant social groups, and the func-
» tioning of the involved ecosystem. A political-ecological system is also referred to as a
a  socio-ecological system or social-ecological system (e.g., see [3]). The former term is em-
»2 phasized herein because those political actions and processes that drive social movements
s are often initiated by groups seeking to gain increased political power [4]. Building such
s models is more than an academic exercise. Indeed, the alarming decline in the planet’s
s biodiversity [5], creates a crucial need for credible political-ecological theory to guide the
s development of sustainable biodiversity conservation policies. In this article, biodiversity

« (a shortening of the two words “biological” and “diversity”) is

48 an attribute of a site or area that consists of the variety within and among
490 biotic communities, whether influenced by humans or not, at any spatial scale
50 from microsites and habitat patches to the entire biosphere [6].

51 In addition to the challenge of building political-ecological theory, there is a deeper

s problem with using such models to guide ecosystem management policy: Unless such a
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53 model is shown to be credible using in-part, appropriate statistical methods, any policy
s« recommendations based on output from the model may receive only mixed acceptance
s by those affected. As argued in [7, p. 181], there is need for a common model credibility
ss standard to be met before the output of a model of a political-ecological system is deemed to
57 be policy-relevant. This is because there may be skepticism towards large scientific models
ss that have not had their parameters statistically estimated nor their parameter sensitivities
so assessed [8], [9]. These skeptics may be unwilling to cooperate with efforts to implement
s ecosystem management policies that are based in-part on output from these unassessed
61 models.

62 But what is a credible model? Patterson and Whelan [10] state that “Model credibility
&3 is about the willingness of people to make decisions based on the predictions from the
s« model.” In other words, a model is credible when a decision maker places enough trust
s in its predictions to use those predictions to select management actions. Call the model’s
ss behavior, functioning, relationships, and systems of equations, its collective mechanism.
o Patterson and Whelan [10] believe the decision maker’s trust is won if (a) the model’s
¢ mechanism is based on known principles that govern the phenomenon being modeled; (b)
o all aspects of the model’s mechanism are testable, i.e., there are observable variables in the
7 model on which data may be collected and used to conduct statistical hypothesis tests of
7 the presence of these behaviors in the real world; and (c¢) the out-of-sample prediction error
72 of the model’s predictions is below the decision maker’s threshold.

73 To make the assessment of a political-ecological model’s credibility easier to perform,
7 the present article develops and demonstrates an integrated suite of statistical methods
75 for assessing model credibility components (b) and (c), above. Some of the hypotheses of
7 component (b) may concern the sensitivity of the model to perturbations to its parameters.
77 The testing of such hypotheses is typically referred to as performing a sensitivity analysis.
78 For the remainder of this article, the term “model validation” will not be used because

70 in this author’s opinion, it is too ambiguous a term to support a consensus about whether
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s a valid model can be established at all, let alone how it might be quantitatively assessed
s (see [11] and [12]).
8 An agent-based model consists of a collection of entities that make a sequence of decisions

&3 through time based on their goals and inputs from other agents. As described by Bonabeau

s [13],

8 In agent-based modeling (ABM), a system is modeled as a collection of au-
86 tonomous decision-making entities called agents. Each agent individually as-
87 sesses its situation and makes decisions on the basis of a set of rules. Agents
88 may execute various behaviors appropriate for the system they represent — for
89 example, producing, consuming, or selling.

o An ABM is often built to model a social system that is too complex to represent using
o mathematical or statistical models (Bruch and Atwell 2015). In ecology, the word “agent”
o is often replaced with the word “individual” to emphasize that the entities are individual
o3 flora or fauna whose behavior is more genetically defined rather than being based on a belief
s system such as utility maximization. As the authors of [14] state, individual-based models
s (IBMs) “explicitly represent discrete individuals within an (ecological) population and their
o individual life cycles.” Grimm and Railsback [15] give a comprehensive treatment of this
o7 class of models as used to model natural, nonanthropogenic populations, e.g. trees, insects,
e plants, fish, or terrestrial mammals. One approach to modeling a political-ecological system
o is with a combination of an ABM to capture the system’s anthropogenic actions, and an
wo IBM to capture the dynamics of the affected ecosystem. These two submodels interact
w1 with each other in order to capture the effects of actions taken by groups of humans that
102 affect the ecosystem — and the feedback effects from the ecosystem back to those groups.

103 For example, Haas and Ferreira [16] build an economic-ecological model of the rhinoceros
e (Ceratotherium simum) horn trafficking system. This model contains submodels (agents)
105 of rhino horn consumers, rhino poachers, and those antipoaching units attempting to stop

s the poachers from poaching. These latter two submodels interact with an IBM of the rhino

4
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07 population being illegally harvested. Haas and Ferreira [17] extend the poachers group
s submodel of this ABM-IBM model by adding a mechanism that explains how these indi-
1w viduals weigh the risk of being prosecuted for poaching against its profit potential. These
o authors then use this submodel to evaluate the practicality of policies aimed at providing
m  employment opportunities for rhino poachers versus policies that intensify the enforcement

2 of anti-poaching laws. This ABM-IBM model contains several hundred parameters.

1 1.1 Related work

s 1.1.1  Socio-ecological modelling

us  In a highly cited article, Macy and Willer [18] discuss how ABMs can advance sociological
us theory. Conte and Paolucci [19] note the potential that ABMs have for social science theory
uz construction but express concern that current models are delivering over-simplified models
us of cognitive processes. These authors believe ABMs have the potential to deliver much
e more cognitively realistic models of their agents. Bruch and Atwell [20] explain how ABMs
120 can help develop policy-relevant social science theory, and then review how to validate such
121 models against sociological data sets.

122 Within environmental modelling, the authors of [21] build a political-ecological model
123 of land developer agents, homeowner agents, and government agents coupled to a natural
12« model that consists of its own, interacting submodels of land-cover transition, hydrology,
s and wildlife habitat. Developers seek to develop land parcels, homeowners may decide to
126 protest such development decisions, and government agents work to enforce environmental
17 standards. Another example of a political-ecological model is given in [22]. These authors
s develop land manager agents who make decisions to buy or sell portions of their land in
129 response to changes in the profitability of the land that, in-turn, is influenced by the land’s
130 species richness, and governmental incentives or rules. A patch-based dynamic model of
1 species presence and absence forms the natural system submodel. Each of these models

12 have at least ten parameters. Neither model is assessed against observations from the real
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133 world.
1 1.1.2  Socio-ecological model parameter estimation

135 A literature search uncovered only two articles describing the statistical estimation of a
136 socio-ecological model’s parameters, namely, [23], and [17]. Several articles, however, were
17 found on the estimation of either strictly social models or strictly ecological models. A
138 Markov Chain Monte-Carlo (MCMC)-based method is developed in [24] for finding max-
1o imum likelihood parameter estimates of a deterministic model of wildlife population dy-
o namics. A three-step method is given in [25] for finding the maximum likelihood parameter
w1 estimates of a deterministic model of bacterial population growth. Step 1 consists of trans-
12 lating the differential equation system into a randomized mazimum a-posteriori (tMAP)
w3 form, Step 2 consists of discretizing this function, and Step 3 involves maximizing the
s likelihood function via an interior point solver. In [26], the parameters of a determinis-
us tic model of phytoplankton growth are estimated with least squares and several heuristic
us optimization algorithms.

147 There are considerably fewer statistical methods in the literature for estimating the
us parameters of a stochastic ecosystem model such as the stochastic population dynamics
1o model of a terrestrial species studied in this article. One family of frequentist parameter
10 estimators that can be applied to this problem are minimum simulated distance estimators
151 (MSDEs). The word “distance” in MSDE refers to that between two probability distribu-
152 tions, typically one that is strictly data-derived, and one that is generated by a model. This
153 distance can be quantified. One way to do so is to set it equal to the Hellinger distance.
15« For example, in [23], a Hellinger distance-based MSDE is used to estimate the parame-
155 ters of a stochastic, dynamic model of a political-ecological system. Within biokinetics,
155 Poovathingal and Gunawan [27] use an MSDE to estimate the parameters of a stochastic
157 biochemical model. Within economics, Grazzini and Richiardi [28] use MSDE to fit the
155 parameters of an ABM of stock market traders, and an ABM of consumers adopting a new

159 product. They find their parameter estimates to be minimally biased.
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o 1.1.3 Socio-ecological model sensitivity analysis

11 A model is sensitive to a set of parameters if small perturbations to their values significantly
162 affects the model’s outputs. Helton and Davis [29] review probabilistic sensitivity analysis.
165 The authors of [30] perform a probabilistic sensitivity analysis of a complex salmon popu-
16« lation dynamics model. In [31], a probabilistic sensitivity analysis of an agricultural model
165 is performed in order to assess the sensitivity of its output (net present value (NPV)) to
166 misspecified inputs (price, cost, and yield). This author employs high performance comput-
67 1ng (HPC) to complete the lengthy computations. Based on this experience, this author
168 calls for such HPC to be employed to calibrate model parameters — similar to the statistical

1o estimation of parameter values discussed herein.
w 1.1.4 Integrated statistical assessment of a socio-ecological model’s credibility

i A literature search uncovered no articles describing an integrated statistical assessment
2 of a socio-ecological model’s credibility. One article, however, did give a specific suite
173 of activities to statistically assess an ecosystem model’s credibility. Focusing on linear
e regression-based forest growth models, Vanclay and Skovsgaard [32] believe the evaluation
s of an ecosystem model should include (1) an interrogation of the model’s logic to deter-
s mine whether it is parsimonious and biologically realistic; (2) a statistical estimate of its
177 parameters; (3) point and interval estimates of its prediction accuracy; (4) computation of
s statistical goodness-of-fit tests; and (5) a probabilistic sensitivity analysis. These authors
w9 believe statistical resampling methods have a potential use in their third and fourth recom-
180 mendations. These authors, however, do not apply their recommendations to a case study,
111 nor implement them in a software package.

182 Johnson and Omland [33] highlight the distinction between model goodness of fit (GOF)
183 and model selection and note that GOF diagnostics ignore model complexity (number of
s parameters) and focus exclusively on the model’s fit to data. Yarkoni and Westfall [34]

15 call for a shift in focus from building models that pass in-sample GOF tests towards the
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185 building of models that have low prediction error rates (out-of-sample performance). This is
17 particularly true for models that are used to guide decisions aimed at changing the future
188 behavior of a system (out-of-sample). A political-ecological system is, in-part, a model
189 of how humans behave and hence, the focus on prediction for psychological models as
w0 advocated by Yarkoni and Westfall applies to political-ecological models. As Yarkoni and
11 Westfall state, “What we will hopefully then be left with are models that can demonstrably

12 do something foundational to the study of psychology: reliably predict human behavior.”

ws 1.2 Simulating a political-ecological system

e Definition 1.1. A political-ecological system simulator (hereafter simulator) is an exe-
15 cutable computer program capable of approximating the outputs of a stochastic model of

ws a political-ecological system.

107 Haas [7, p. 5] describes such a stochastic model:

108 As a step towards meeting this need, this book describes an Ecosystem Manage-
109 ment Tool (EMT) that links political processes and political goals to ecosystem
200 processes and ecosystem health goals. Because of this effort to incorporate
201 the effects of politics on ecosystem management decision making, the EMT
202 described in this book is referred to as a politically realistic EMT or simply
203 the EMT. This tool can help managers identify ecosystem management policies
204 that have a realistic chance of being accepted by all involved groups and that
205 are the most beneficial to the ecosystem. Haas (2001) gives one way of defining
206 the main components, workings, and delivery of an EMT (referred to there as
207 an Ecosystem Management System). The central component of this EMT is a
208 quantitative, stochastic and causal model of the ecosystem being managed and
200 the social groups involved with this management.

2

=

o In this simulator, influence diagrams (IDs) (see [35, p. 125]) are used to implement sub-

o models for group decision making, and ecosystem functioning. An ID is a bayesian belief

-
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212 network with deterministic input nodes. For instance, the political-ecological system mod-
23 els of Haas and Ferreira ( [16], [36], and [17]) are computationally implemented through
214 their attendant simulators.

215 The central argument of this article is that for simulators to effectively contribute to
a6 the development of political-ecological theory and ecosystem management policies, the
27 following three activities need to be performed in sequence: (1) statistically fitting the
28 simulator’s parameters to data sets of political-ecological actions [37], (2) assessing the
20 credibility of this fitted simulator, and (3) running computations on this (now) credible
20 simulator to find politically feasible and sustainable ecosystem management policies.

21 The first of these activities is fundamental to the success of the subsequent two. As
222 an example of the superiority of statistical estimation of a simulator’s parameters relative
23 to other ways of assigning them, the authors of [38] find that an ABM fitted with the
24 statistical method of maximum likelihood estimation produces a model that outperforms
»s the same model calibrated to minimize its root mean squared error (RMSE). Performance
26 18 defined therein to be the fitted model’s ability to forecast homeowner adoption of rooftop

27 solar panels.

» 1.3 EMT procedure

29 The above-mentioned three activities form part of a step-by-step procedure given in [7,

20 pp. 77-78] for using an EMT. A new version of this procedure follows.

o Step 1: Identify the boundaries of the ecosystem to be managed. Typically, this ecosystem

23 will host one or more endangered species.

23 Step 2: Identify those political groups that directly or indirectly affect this ecosystem.

234 Construct submodels of these groups. Cast these submodels as IDs and express them
235 in the id language. This language is part of the id software system (see [39]). Use
236 theories of cognitive processing to assign hypothesis values to the parameters of these
237 group submodels. Load these values into hypothesis parameter files — one file for each
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238 group. It is assumed that individuals trained in the cognition of decision making will

230 be involved in constructing these submodels.

a0 Step 3: Construct a population dynamics submodel of all species identified in Step 1.

201 Cast this submodel as an ID and express it in the id language. Use ecological theory
242 to identify hypothesis values for the parameters of this ecosystem submodel. Load
243 these values into a hypothesis parameter file. It is assumed that individuals trained
244 in ecology will be involved in constructing this submodel.

25 Step 4: Using all of the above files, create a master file that defines the political-ecological
246 system simulator composed of these interacting group submodels and ecosystem sub-

247 model.

x5 Step 5: Acquire a data set of political-ecological actions made by some of the groups

249 modeled in Step 2, and the ecosystem modeled in Step 3. The ecological component
250 of this data set might consist of observations on the spatio-temporal abundance of
251 several species.

s Step 6: Use id to statistically fit some subset of the simulator’s parameters to this data

253 set using consistency analysis. This statistical estimator (see [23], and [7, pp. 46-52])
254 delivers parameter estimates that result in the simulator’s probability distributions
255 on its output variables being as similar as possible to empirical distributions derived
256 from data while at the same time being as close as possible to those derived from
257 political-ecological theory.

s Step 7: Use id to compute jackknife confidence intervals for the parameters estimated in

250 Step 6.

20 Step 8: Conduct an analysis of the simulator’s credibility (see [7, pp. 179-198]) by using

261 id to perform the two separate jobs of (a) estimating the simulator’s prediction error

10
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262 rate through computation of its one-step-ahead prediction error rates; and (b) per-
263 forming a deterministic sensitivity analysis using thresholds defined by the parameter
264 confidence intervals found in Step 7. If the simulator displays error rates that are no
265 better than blind guessing (all options in each group submodel are equally likely),
266 or it displays unacceptable sensitivity to some of its parameters, re-formulate one or
267 more of the simulator’s submodels and go back to Step 6. Continue in this manner
268 until the simulator is credible.

20 Step 9: Use id to run a job with this (now) credible simulator to construct the most

270 practical ecosystem management plan (MPEMP) (see [7, pp. 52-53]).
on Step 10: Implement this MPEMP in the real world.
a2 Step 11: As new data becomes available, repeat Steps 6 through 10.

2z 1.4 Addressing the computational challenge

o Call one execution of the id statistical estimation command, a batch job or simply, a job
25 (see [40], and [41]). In general, let a simulator job refer to one execution of the compu-
x6  tations needed to either (1) statistically estimate the parameters of a political-ecological
a7 system simulator; (2) compute parameter confidence intervals; (3) compute a measure of
zs a simulator’s prediction error rate; (4) perform a deterministic sensitivity analysis; or (5)
o9 find, using the simulator, a politically feasible ecosystem management policy. Note that
20 these five simulator jobs are integrated in that the first two jobs share the same estimator,
21 the fourth job needs the confidence intervals found in the second job, and the fifth job uses
22 the fitted model that was found by the first job.

283 Each of these simulator jobs involves many different algorithms and sub-computations
24 to execute those algorithms. Execution of these sub-computations collectively, results in
s the job’s final set of outputs. Call each of these sub-computations, a task.

286 Simulator jobs can require large amounts of computer time — orders of magnitude more

11
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257 time than for example, the fitting of a wildlife capture-recapture model with the statistical
28 method of maximum likelihood. The need for large amounts of computer time can become
20 a challenge for those scientists, government agencies, and NGOs needing to run such com-
20 putations. Hereafter, call these groups and individuals who are involved in biodiversity
201 protection, ecosystem managers. The handicap these managers face is that funding to sup-
20 port the active management of ecosystems can be uneven. For example, circa 2017-2019,
203 the United States Environmental Protection Agency (USEPA) is being down-sized by Pres-
200 ident Trump’s administration [42]. But managing an ecosystem with the goal of conserving
205 its biodiversity requires an on-going analysis of monitoring data as it arrives in real-time
206 in order to guide the development of management actions that, when implemented, result
207 in successful biodiversity outcomes. This means that ecosystem managers need to have
208 alternative computing options should they be temporarily unable to afford supercomputer
200 time from an external HPC provider.

300 This article argues that a practical way to meet this computational challenge is to
;0 implement these jobs as many-task computing (MTC) applications. The authors of [43]

w2 state that many-task jobs are

303 loosely coupled that are communication-intensive but not naturally expressed
304 using standard message passing interface commonly found in high performance
305 computing, drawing attention to the many computations that are heterogeneous
306 but not “happily” parallel.

so7 In other words, jobs that could benefit from distributed computing but, due to their many
w8 complex and inter-dependent tasks, existing parallelization tools are difficult to apply. As
w0 explained and shown below, JavaSpaces™ technology (see [44]) is a free and easy-to-learn
s way to program MTC applications that can be run on the computers of an external HPC
su provider or, if necessary, on a grassroots distributed computing environment formed by a

sz collection of in-house computers.

12
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s 1.5 Article contributions
su This article makes three crucial contributions to the development of political-ecological

a5 theory and the use of such theory in the formation of politically-feasible ecosystem man-

sis agement policies. These contributions are

317 1. the first integrated suite of statistical measures for performing parameter estimation
318 and credibility assessment of a political-ecological model and its attendant simulator,
310 2. a new method for constructing politically feasible and sustainable ecosystem man-
320 agement policies, and

321 3. downloadable software for implementing these methods as MTC applications via
322 JavaSpaces technology.

» 2 Materials and Methods

;24 First, the statistical theory underpinning each simulator job is given. The Section continues
s with a review of how a JavaSpaces program can be used to code an MTC application. The
»s  Section concludes with algorithms and runtime issues particular to the casting of simulator

37 jobs as MTC applications.

2 2.1 Statistical estimation of simulator parameters

»9  Consistency analysis is a frequentist parameter estimator that is related to MSDE. Hence,

;0 Hellinger distance is reviewed first before consistency analysis is described.
s 2.1.1 Hellinger distance

s Following [23, Appendix], and [17, Appendix S3|, one way to define the distance between
;3 two multivariate probability distributions is as follows. Partition a vector of p random
s variables, U into U@ and U@ — the vectors of discrete and absolutely continuous ran-

15 dom variables, respectively. Absolute continuity can be thought of as a strong version of

13
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16 continuity (see [45, p. 210]). Say there are d discrete members of U, and ¢ continuous

s members. Hence, p = d + ¢. Let the probability density probability function (PDPF) be

0

S MUY =, U <), (1)

pfu(u) =

13 Let U|B notate the random vector whose PDPF is parameterized by the components of
30 (3. For example, an ID might be composed of U; ~ Bernoulli(f;) and Uy ~ Normal(f3, +
a0 uif3, B4). The graph of this ID appears in Figure 1, and its parameter vector, 8 =

(B1, Ba, B3, Ba) -

Fig. 1 The graph of the ID wherein U; influences Us and both of these nodes are stochastic
(indicated by circles).

341

342 In terms of the PDPF, the Hellinger distance between two probability distributions is

2680 =5 | [ (ofg,(w) ~ \fofp, () au] " 2)

1; and is bounded between 0 and 1 ( [46]).

s 2.1.2  Consistency analysis

1s Haas and Ferreira [17] give a description of consistency analysis before applying it to a
s model the political-ecological system of rhino horn trafficking. An abbreviated version of

a7 this description appears here.

us  Definitions

s Let m be the number of interacting IDs in a political-ecological simulator. Let U; be the
0 vector that contains all of the chance nodes that make up the st 1D (either one of the group
351 submodels or the ecosystem submodel). Let Ul ,B(ij ) be the it TD’s multivariate probability

ith set of conditioning (input)

2 distribution parameterized by the entries in B under the J
3 node values. Each parameter in the ID is assigned a point value a-priori that is derived
4 from either expert opinion, subject matter theory, or the results of a previous consistency

35 analysis. Collect all of these hypothesis values into the hypothesis parameter vector, ng ),
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56 Note that this vector holds the ecosystem manager’s prior beliefs about the point values of
7 the model’s parameters.

358 Let [; be the number of belief networks formed by conditioning the i** ID on all possible
30 combinations of its input nodes. There are m — 1 group submodels, and one ecosystem

0 submodel. Define

/

B = (B(’"’”',...,mm,zm)’)/, and

’

B = (B(GTp)l7 B(Eco)’) 7

B(GrP)

1 1.e., those parameters that identify all of the group submodels, those that identify the
w2 ecosystem submodel, and the collection of all of the model’s parameters, respectively.

363 As in [7, pp. 17-18], for group submodels, let an in-combination be a set of values on
s« the input nodes {time, input action, actor, subject}. Let an out-combination be a set of
s values on the input nodes {output action, target (of that action)}. A group ID selects
w6 an out-combination by computing the expected value of its terminal node, Overall Goal
37 Attainment under the received (given) in-combination — and each possible combination
ss  Of values on the two input nodes of Out-Action and Target. The out-combination that
0 maximizes this expected value is selected for output.

370 Let an in-out pair consist of an in-combination — out-combination pair. Let T" be the
s number of time points at which out-combinations are observed, and {i1, ..., i, } (mo < m)
sz be the set of indices of those group submodels for which at least one out-combination is
s observed over the observation time interval: [tq,t7].

374 Each of the e output nodes of the ecosystem submodel is stochastic and corresponds to
ss  an observable ecosystem metric. A run of the simulator produces a set of simulated values
s on each output node at each time point. The mean of these values is an estimate of that
sz node’s expected value at that time point.

3

J

8 Let gs(B) € (0,1) be a goodness-of-fit statistic that measures the agreement of a se-
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w quence of out-combinations and/or mean values of ecosystem metrics produced by a sim-
0 ulator and those of a political-ecological actions data set, S of observed output actions
31 and/or observations on the ecosystem submodel’s metrics. Larger values of gg(B) indicate
32 better agreement. Let gy(B) € (0,1) be a measure of agreement between the multivari-
;3 ate probability distribution on the model’s vector of output nodes that is identified by B,
s and that identified by By. Again, larger values of gy (B) indicate better agreement. Note
35 that gg(B) is the agreement between a sample and a stochastic model, while gy (3) is the

s agreement between two stochastic models.

;7 Parameter estimator and agreement functions

18 A consistency analysis is executed with the following four steps.

389 1. Specify the values for By.

300 2. Initialize the model’s parameter values by modifying By to form B;,isia-

301 3. Maximize the agreement function, gca(B) (“CA” for “consistency analysis”) by
392 modifying the values of B, to form the vector of consistent parameter values, B¢.
303 4. Analyze the differences in parameter values between those in By, and those in Be.

s The estimator’s name comes from this final step: analyze the model’s parameters by scru-
35 tinizing areas of the subject matter theory that had been used to justify those hypothesis
36 parameter values that, surprisingly, have been found to be very different from their consis-
s07  tent values. This idea of “surprise” is related to the non-bayesian approach to belief revision
s of ranking theory (see [47]). In ranking theory, the model takes the form of a set of proposi-
30 tions and hence, broadly speaking, the value of one of the model’s parameters corresponds
wo to a proposition. These propositions are ranked by the ecosystem manager from completely
s believable (rank 0) to very unbelievable (rank — 00), i.e., a very “surprising” proposition.
w2 There are several updating rules in ranking theory. These rules do not depend on the size of

w3 the data set (the new information), do not require probability distributions on the model’s
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ws  parameters, and do not involve the calculation of a conditional probability distribution.
ws Belief revision within ranking theory proceeds by computing rank-shifts between the old
ws rankings and the new rankings. These shifts are determined by min{.} operators on these
w7 two sets of rankings. The new rankings are assigned based on a subjective interpretation
w8 of the new information.

409 The Maximize step of consistency analysis consists of solving
Be = argénax {9ca(B)} (3)

a0 where goa(B) = (1 — cg)gs(B) + cggu(B), and ¢y € (0,1) is the ecosystem manager’s
an  priority of having the estimated distribution agree with the hypothesis distribution as op-
a2 posed to agreeing with the empirical (data-derived) distribution. Haas [23, Appendix] gives
a3 suggestions for assigning a value to cy. In particular, setting ¢y to zero turns consistency
a2 analysis into an MSDE. The subjective assignment of ¢y in consistency analysis coupled
a5 with its role in the solution of (3) is how consistency analysis represents the reliability of
sne the new data — similar to the device used in ranking theory of subjectively re-assigning
a7 proposition ranks in the light of new information.

a18 The agreement between the simulator’s hypothesis distributions and the distributions

a0 defined by B is gy(B) = 2>, gg)(B) where

m

7

i 1 A ij ij
B =1-23 A(87.84). (4)
(2 1

1=

20 and the estimated Hellinger distance between U|3) and U|3 is

n 27 1/2
5. Bi) = [Z Viug, (W) = iTupw)] ] . 5

a1 In this estimator, values of the PDPF under an ID’s hypothesis distribution, U|8, and
w2 its U|B distribution are approximated by first drawing a size-n sample of design points
w3 from a multivariate uniform distribution on the ID’s chance nodes: uy,...,u,; and then
w24 approximating p fU‘ ﬁ(ul) at each of these points with a k nearest-neighbor, nonparametric

w5 density estimator.
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426 The agreement between observed output actions and those generated by the simulator

a7 1S
mo T

. 1
géG 7 (B) = moT Z Z I{dikj:yikj}(dikj) (6)
k=1 j=1

w28 where y;, ; is the observed action of group i, at time j, and d;,; is the submodel-computed

no action of group iy at time j. Let S; = {z;,..., 2} be the T observations on the ith
a0 ecosystem metric. The agreement between observed outputs of the ecosystem and those

a1 generated by the ecosystem submodel is

(Eco) — 1 _ i M
a2 where R; = max(S;) —min(.S;). These latter two agreement functions form the overall data

s agreement function: gg(B) = |¢'C™" (B) + ggECO)(B)} /2.

sa Algorithm for the Initialize step of consistency analysis

a5 The Initialize step of consistency analysis is nontrivial due to the discrete nature of the
a6 function that counts the number of in-out pairs matched between the data and the sim-
s7 ulator’s output. For many different in-combinations, a group may need to select an out-
.33 combination that simultaneously maximizes the values of several objectives. The states
a0 of these objectives in the group’s present situation is represented in the group’s 1D with
a0 situation state nodes. The perceived states of these objectives upon implementation of a
a1 particular out-combination is represented with scenario state nodes. Two objectives that
w2 are important to several of the groups studied herein are economic objectives, and militaris-
w3 tic objectives. Let situation state, and scenario state nodes take on the values of negligible
ws  (neglig), inadequate (inadeq), and adequate (adequa). Also, let a goal node take on the
ws  values unattained (unatta), middling (middli), and attained (attain). A group implements
us a decision option that maximizes the expected value of their overall goal attainment
s (OGA) node.

as8 Based on the decision making theory developed in [7, pp. 83-92], perceived causality in

uo each group submodel is such that situation state nodes are influenced by the input action
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o node; and scenario state nodes are influenced by both the corresponding situation state
1 node and the output action node. In other words, the perceived status of an objective in
s2 & scenario is dependent upon its status in the present and the impact of the contemplated
ss3 output action in the future.

454 The heuristic: “raise the worst-off objective one level” leads to nine causal sequences

455 (Table 1) .

In-Comb. SE SM  Output SCE SCM SCEG SCMG SUM

Pattern Action
1 inadeq inadeq 1 neglig  inadeq middli unatta 3
2 inadeq  mneglig 2 neglig  meglig middli middli 4
3 inadeq adequa 3 neglig  adequa middli  attain 5
4 neglig  inadeq 4 neglig  meglig middli middli 4
5 neglig  neglig 5 adequa  neglig  attain  middli 5
6 neglig  adequa 6 adequa adequa  attain  attain 6
7 adequa  inadeq 7 adequa  neglig  attain  maddl 5
8 adequa  neglig 8 adequa adequa attain  attain 6
9 adequa  adequa 9 adequa  adequa  attain  attain 6

Table 1 Patterns of situation state through scenario goal node values used in the Initialize
step of consistency analysis. SE is situation economic state, SM is situation military state, SC* is
scenario * state, and SC*G is scenario * goal where * is either economic or military. For goal nodes
only, let unatta correspond to a value of 1.0, middli to a value of 2.0, and attain to a value of 3.0.
The SUM column adds these SCEG and SCMG values to produce an illustrative approximation
of the expected value of the OGA node.

456 Haas [7, pp. 166-169] gives an algorithm to initialize the parameters of each group
7 submodel so that the simulator, when run over the time interval of the observed actions
w8 history (the sample), produces an actions history that matches as many of the observed

w0 actions as possible. A new version of this algorithm proceeds as follows.

460 1. Modify the conditional probability tables (CPTs) of situation state nodes
461 and their parents so that the first nine, most-frequent, different patterns of
462 observed in-combinations (see Table 1) generate nine different patterns of
463 marginal distributions on the economic, and militaristic situation state nodes.
464 Two patterns are different if their modal values are different.

465 2. Set the CPTs of all scenario state nodes so that the value inadequate has the
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466 highest value under any combination of the ID’s situation state, and output
a67 action nodes.

468 3. Modify only those CPT entries that carry an output action pattern number
469 given in Table 1 so that they deliver high probabilities on the scenario goal
470 nodes.

an Steps 2 and 3 above guarantee that only the output action that is assigned to an in-
a2 combination pattern produces a high expected value of the OGA node — and hence enjoys
a3 the highest chance of being selected. This algorithm makes no attempt to maintain agree-
aa ment with the simulator’s set of hypothesis distributions. Such agreement is maximized
a5 within constraints during execution of the Maximize step of consistency analysis.

476 The data preparation algorithm forms observed in-out pairs by assuming that a group’s
a7 action is a reaction to the immediately-preceding action. This may result in the political-
as ecological actions data set containing instances where a group is observed to react differently
ao to the same input action on different occasions. Group submodels, however, act as deter-
w0 Ministic input-output functions during the execution of the Initialize step of consistency
w1 analysis. These two characteristics can result in the fraction of matches with the observed

a2 in-out pairs being less than one.

e 2.2 Delete-d jackknife confidence intervals

ss The deterministic sensitivity analysis described in the next Section assumes that confidence
«5  intervals for each parameter in B are available. One way to find these confidence intervals
a5 18 to compute delete-d jackknife confidence intervals (see [48]). Haas [49, pp. 111-112] gives
w7 an algorithm for computing a delete-d jackknife confidence interval for a parameter of a

a8 stochastic model. This algorithm proceeds as follows.

489 1. Resample r = n%97 observations from the observed sample. In other words,
490 temporarily delete d = n — r observations from the observed sample. Politis
491 and Romano [50] show that confidence intervals based on delete-d subsamples
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492 are consistent if, as r — oo, r/n — 0. One way to meet these conditions is
493 to have r = n” where 7 € (0, 1).

494 2. With this r-size subsample, compute 37, the consistency analysis estimate of
405 the parameter, .

496 3. Repeat Steps 1 and 2 njqq; times to obtain 37, ..., 5r*zjack'

a07 4. Form a 100(1 — a)% confidence interval for 8 by finding the shortest interval
498 that contains (1 — a)njqex of these §; values.

w 2.3 Prediction Error Rates

so0 'The simulator’s group submodels produce nominally-valued output in the form of out-
so0 combinations. The ecosystem submodel on the other hand, can produce continuously-
sz valued output, e.g. wildlife abundance values. Two different measures of prediction error
s3 rate then, are needed. Here, these are the predicted actions error rate () for action-target
soe output, and the root mean squared prediction error rate (¢€;) for the ith continuously-valued

sos ecosystem metric [7, pp. 186-188].
s 2.3.1 Predicted actions error rate

sor  Consider a large but finite number of sequential time points, ¢, ..., t7. At each of these time

so8  points, one or more of the simulator’s group submodels posts one or more out-combinations.

so0 Let
1 T-1 n(match)
_1_ i+1
C =1 T -1 Z n(obs) (8)
=1 i+1

s.0 where nﬁ_’ff h) is the number of simulator-predicted out-combinations at time point #;,

) is the number of these

su that match observed out-combinations at that time point, and nl(ibf
si2 observed out-combinations. It is assumed that the simulator’s parameters have been refitted
s13 to the political-ecological actions data set using data observed earlier than time point ¢;, .

su ' The justification for this assumption is that an ecosystem manager would want to refit the
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si5 simulator as new actions and/or values on ecosystem metrics are observed before using the
si6 - simulator to predict future group actions and/or future values of ecosystem metrics.

517 Say that a group submodel has K possible out-combinations. In the worst case, one of
si8 these out-combinations has a high probability of being chosen at each time point no matter
s9 - what the input action is. Blind guessing, i.e., assuming all out-combinations are equally
s20 likely, would predict this out-combination with probability 1/K at each time point resulting
s in an error rate of about 1 — 1/K. An ecosystem manager would prefer the simulator’s

s» predictions over predictions based on blind guessing whenever ( < 1 —1/K.
523 2.3.2 Root mean squared prediction error rate
54 Let

T_1 ) 1/2
obs (pred
71 2 (= - An) ] (9)

J=1

(obs)

i j+1 is the observed value of the " continuously-valued ecosystem metric at time

(pr

55 where z;

“D is the simulator’s predicted value of this metric at time point ¢;;

s point ¢;11, and 2,7,

sz where the ecosystem submodel has been fitted to data earlier than time point ¢;,;. Define

s an alternative predictor, namely the naive forecast to be zl]JVJ)rl = z((;bs) (see [51]). And let

s20  0; be the RMSE of the naive forecast errors.
s0 2.3.3  Error rate estimation

sn. To estimate these error rates, begin at time point ¢, s > 0. Then, perform the following

s2  two computations at each of the time points t;, tsiv, tsi20,..., tj, ..., ¢ where v > 0

Npred

s is the refit interval, npeqa = [(Ip — 1 —s)/v] + 1, t < Tp, and Tp is the most recent

Npred

s time point in the data set.

535 1. Re-fit the simulator with consistency analysis using all observed out-combinations up
536 through time ¢;.

537 2. Run this refitted simulator from the first time point in the data set up through time
538 point t;41 to compute predicted values of all output nodes.
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53 With these predictions in-hand, compute an estimate of { with

1 Npred (match)

s j+1

(=- - (10)
pred j=s anrl

s«  Estimate ¢;, and §; with

Npred

Npred 1/2
é — [ ( obs) (pred)) ] : (11)

j=s

541 and
1/2

Npred 2
[ ( (obs . ) ) ] : ( 1 2)
npred -

Jj=s

sz Tespectively.

543 Note that the simulator is refitted every v time units. Typically, time is measured in
saa - years. An ecosystem manager would be constrained by analyst time, computer availability,
ses and data acquisition frequency. A typical refit time interval might be every quarter (three
s¢s months), i.e., v = (4 x 3)/52 = 0.2308.

547 If €; is greater than &, the naive forecast is preferred over the model’s predictions. In
s this case, the ecosystem manager would be advised to work on refining and/or modifying

se0 the model and/or simulator until €; is less than 5Z

s 2.4 Deterministic sensitivity analysis

ss1 Determanistic sensitivity analysis as opposed to probabilistic sensitivity analysis, assesses
ss2  the sensitivity of a model’s outputs to externally-generated, fixed values of the model’s
53 inputs (see [52]). Haas [7, pp. 182-183] gives an algorithm for studying a simulator’s

s« deterministic sensitivity. A new version of this algorithm is presented next.
5 2.4.1 Conditions and responses

sss  Input for this algorithm consists of a set of DSA conditions, cpga (“DSA” for “deterministic
ss7  sensitivity analysis”), and a set of DSA responses, rpsa. Each of these sets contains values
58 on simulator submodel output nodes. These values can be those of nominally-valued output

ss0 action nodes, or those of continuously-valued ecosystem submodel nodes. A particular
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soo  pair of these sets embodies a counter-example to the types of simulator outputs that the
se1  ecosystem manager is hoping to achieve. Typically, a critic or skeptic of the simulator

ss2 - would specify cpsa and rpga.

s 2.4.2  Algorithm

564 1. Update By to the most recent value of B¢.

565 2. Specify cpsa, and rpsa and set the simulator’s time interval accordingly.
566 Place all actions contained in either c¢pga or rpgy into a file of “observed”
567 actions, and all ecosystem responses contained in rpg 4 into a file of “observed”
568 ecosystem outputs.

569 For political actions in either of these sets, initialize B°™ so that the associ-
570 ated group submodels produce them. And, for any actions in either of these
571 set that are to not happen (referred to here as complement actions), initialize
572 BE"P) 50 that they are not produced by the responsible submodel under any
573 combination of its inputs.

574 3. Perform the consistency analysis Maximize step (see (3)) with this skeptic-
575 postulated actions history (composed of postulated group actions and postu-
576 lated ecosystem responses). In general, cpsa and/or rpss may contain some
577 mixture of political and/or ecological actions. To ensure a solution is found
578 that results in a close match to all such “observed” group actions and/or
579 ecosystem variables, set cy to the small value of 0.1 so that the algorithm
580 focuses on matching this skeptic-generated “data” rather than staying true
581 to the hypothesis distributions.

582 4. Find the parameter in Bpg4 that is the least changed from its value in By
583 relative to its range of scientifically plausible values. Say that it turns out
584 to be the [th parameter. Then $® is the most sensitive parameter, and the
585 difference, 55? — Bg)s 4| is the accuracy to which this parameter needs to be
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586 known. If B](:l))s , 1s inside the 95% confidence interval for BW (see Section

587 1.3, Step 7), or 51(31)5  is a scientifically plausible value for 3¢ conclude that

588 this analysis supports skeptic’s concerns about the simulator’s sensitivity to

589 parameter misspecification.

590 The idea of this algorithm is to search for a set of parameter values that is as close to By

so1 as possible but causes the simulator’s outputs to change by an amount that is scientifically
se2  significant. If the values in Bpg4 are not statistically different from their consistent coun-
se3  terparts or, are scientifically plausible, then the model’s outputs are excessively sensitive
s to parameter misspecification. This sensitivity in-turn, reduces the credibility of policy
sos recommendations derived from the model’s outputs.

596 When specifying the condition and response sets with the intention of assessing the
so7  sensitivity of group ¢’s submodel, the set cpga may contain values on output nodes of
se¢ submodels other than group ¢ while the set rpg4 will be populated exclusively with values
se0 on submodel 7’s output nodes. This is because the simulator may contain submodels whose
0 parameters are sensitive to actions from other groups and/or patterns of ecosystem metric

s1  values.

o 2.5 Kcosystem management policymaking

o3 Computing the MPEMP is one way to construct an ecosystem management policy. The
s algorithm described and demonstrated herein is new. Its development was motivated by
s0s earlier algorithms given in [7, pp. 52-53], and [17, Appendix S5]. The idea is to find a
s0s set of minimal changes in the beliefs held by ecosystem-affecting groups (relative to their
607 B;?rp ) values) so that these groups change their behaviors enough to cause the ecosystem to
o8 respond in a desired manner. In other words, the MPEMP is the ecosystem management
00 policy that emerges by finding group submodel parameter values that bring the predicted

s10 ecosystem state close to the desired ecosystem state while deviating minimally from BSLIGTP ).
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1 2.5.1 Definitions

sz Let Q(B) be a random vector composed of a number of the simulator’s ecosystem metrics.
a3 For example, Q(.) might consist of cheetah abundance, and herbivore abundance in the
s1a  year 2030. Assume that an ecosystem manager desires the ecosystem to be in a particular
15 state at a particular future time point. This manager expresses this desired state through
a6 a set of expected values for Q(B). Call this set of desired values, qq4. For example, say that
17 it is desired to have 10,000 herbivores and 1,000 cheetah in East Africa in the year 2030.

sis  This desired ecosystem state is expressed by specifying
qq = (Herbivores = 10000, Cheetahs = 1000) . (13)

619 Next, identify those actions that, if taken, would contribute the most towards the
s20 ecosystem submodel producing the values in qg. And, identify those actions that, if ceased,
21 would raise the likelihood of the ecosystem submodel producing the values in q4. Collect
22 all of these desirable and undesirable actions into a set called cy;pgyp. For example, to
23 achieve these desired values, it is believed that more land should be set aside for wildlife

s reserves, and poaching should cease. In this case,

CMPEMP =

{action(kep) = {create a new national park} ,

(krr

action®*T) = {poach for food, poach for cash, poach for protection}c} . (14)

o5 where kep, and krr are the Kenya environmental protection agency, and Kenya rural

s residents groups, respectively.

]

o7 2.5.2 MPEMP algorithm

628 1. Update By to the most recent B¢.
620 2. Compute qy = F [Q(Bg)].
630 3. Specify qQd and CMPEMP-
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631 4. Compute initial values for B with the Initialize algorithm of consistency
632 analysis (see Section 2.2.3).
633 5. Compute

E _
BE™ ||QIH - Qd||

634 under the set of constraints specified by cyperp.

35 Note that during the search in Step 5, ngco) is unchanged. This algorithm implements one

36 way to quantify the concept of a practical ecosystem management policy: associate political
ey et . Gr Gr .

37 feasibility with the value of gy <B§\/[PP)EMP) where Bi\/[Pp)EMP contains the parameters of

s the decision making submodels whose values have been modified from those in B(;Tp ) in

30 such a way that now, the sequence of output actions taken by the different groups in the

ss0  simulator cause a desired ecosystem state at a designated future time point.

641 A measure of a plan’s political practicality can be defined as
Gr Gr
v =gy (Byprmp)/ 9 (Bi). (16)

s2 A plan having a value of ¥ close to 0.0 will face significant political resistance to its
s3 implementation because significant changes to the belief systems of one or more groups

ssa  Teeds to happen, while one with a value close to 1.0 should not face such stiff resistance.

o5 2.6 Coding simulator jobs as MTC applications

sas ' The five simulator jobs described above can be computationally expensive. These jobs,
s however, are not easily organized into parallel, independent tasks but rather, can only be
ss partially parallelized by breaking each of them into sets of dependent tasks that engage in
s0  various amounts of data transfer between themselves. For example, a complex task such as
ss0 function optimization is not easily programmed to run on graphics processing units (GPUs)
1 that can process only independent sequences of pipelined floating point operations. Such

sz a set of complex, inter-dependent tasks fits the definition of an MTC application.
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653 But what is the most efficient and cost-effective way to execute MTC applications?
s« One way is to run them on cluster computers. This option is motivated by the work of
ess Raicu and his coworkers [43] who find that an MTC application can be efficiently run on a
ess cluster computer. The authors of [53] assess how efficiently MTC applications run on other
57 computer architectures. A cluster computer consists of a large number of so-called personal
ess computers (PCs) that are connected to each other through high speed interconnects. It is
50 run by an operating system that can assign tasks to one or more of these PCs. An individual
so  PC in the cluster is called a compute node. A compute node may possess multiple processors
61 (also known as cores). Cluster computing is the dominant architecture of HPC machines.
2 For example, the authors of [54] study Big Data analytics on HPC architectures. All of the
e3 architectures considered therein are cluster-based.

664 As Raicu and his coworkers [43] note, there are many advantages to running MTC
s applications on a cluster computer as opposed to running in the Cloud or on a heterogeneous

66 collection of PCs. These include

667 1. I/O systems on cluster computers can be much faster than on other hardware con-
668 figurations.

669 2. A core-hour on a cluster computer is often less expensive than many alternatives.

670 3. Cloud systems and heterogeneous collections of PCs are typically not as reliable as
671 cluster computers.

672 4. Cluster computers are often fast enough to produce results in a useful period of time.
673 In order to actually run the five simulator jobs, computer programs need to be written,

s« compiled, and executed on computer hardware. Translating the mathematical expressions
s of Sections 2.1-2.5 into a programming language is performed by writing code within an
o6 application program interface (API) that is designed to support the development of task-
sz based parallel programs. A runtime system is invoked to execute such programs on com-

es  puter hardware. This runtime system delivers data and instructions to individual compute
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eo  nodes, starts these compute nodes, collects output and delivers it to a pre-programmed
0 recipient. The runtime system also detects faults on compute nodes and within compute
se1 node processes and delivers the consequential fault information to preprogrammed recipi-
2 ents. Indeed, the action of starting a job on a compute node is a small part of the suite of
3 inter-connected instructions and events that is needed to execute an MTC application.

684 Many programs written for cluster computers use the message passing interface (MPI)
sss  (see [55]) to communicate between compute nodes. But, as Dursi [56] notes, MPI is a 25
sss year old API and, unfortunately for modern MTC applications, operates at too low of a
7 level. This is because its basic abstraction level is that of a message and hence remains
s ...essentially at the transport layer, with sends and receives and gets and puts operating
se0 on strings of data of uniform types.” Dursi [56] reviews the consequences of this low level

e0 Of abstraction:

601 Programming at the transport layer, where every exchange of data has to be
692 implemented with lovingly hand-crafted sends and receives or gets and puts,
693 is an incredibly awkward fit for numerical application developers, who want to
604 think in terms of distributed arrays, data frames, trees, or hash tables. In-
695 stead, with MPI, the researcher/developer needs to manually decompose these
696 common data structures across processors, and every update of the data struc-
607 ture needs to be recast into a flurry of messages, synchronizations, and data
698 exchange. And heaven forbid the developer thinks of a new, better way of de-
699 composing the data in parallel once the program is already written. Because in
700 that case, since a new decomposition changes which processors have to commu-
701 nicate and what data they have to send, every relevant line of MPI code needs
702 to be completely rewritten. This does more than simply slow down develop-
703 ment; the huge costs of restructuring parallel software puts up a huge barrier
704 to improvement once a code is mostly working.

705 For complex computations such as the ones described herein, a higher level of abstraction
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s is needed such as that of a task. The authors of [57] review APIs and runtime systems that
707 are designed to support MTC applications. These authors refer to a particular combination
708 of an API and a runtime system as a task-based parallelism technology and note that HPC is
700 moving away from the message passing paradigm to such technologies. In order to illustrate
70 why such a move is needed to make progress in HPC, Dursi [58] gives a detailed comparison
m  between MPI programs and those written in other, more modern task-based parallelism
72 technologies.

713 As identified in [57], an ideal API would have the ability to partition, synchronize,
7 and cancel tasks; specify compute nodes for workers to run on; start/stop workers; receive
715 task or process fault information; and checkpoint a job should a nonrecoverable fault occur.
76 'These authors also believe that an ideal runtime system would automatically distribute data
77 and code to workers; schedule workers; and deliver fault information to the master compute
7e node. In addition, the present author believes that in order to bring many-task computing
79 within reach of ecosystem managers possessing only minimal programming skill, the API
720 needs to be easy-to-learn, and use operators whose syntax and semantics are independent

721 of specific runtime systems and computer hardware configurations.
22 2.6.1 JavaSpaces programs

723 One way to implement an MTC application is through the JavaSpaces task-based paral-
74 lelism technology [59]. A JavaSpaces program can support the master-worker architecture
725 wherein a master program runs on one compute node having a unique Internet Protocol
26 (IP) address along with ny, workers who run on other, internet-accessible compute nodes
72z and busy themselves by executing tasks that have been posted by the master on a JavaS-
728 pace bulletin board. An application is solved via the bag of tasks model wherein tasks are
720 distributed by the master across available workers. The master does this by posting tasks
720 on a space, and collecting completed tasks from that space. Batheja and Parashar [60] note

731 that
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732 This approach supports coarse-grained applications that can be partitioned into
733 relatively independent tasks. It offers two key advantages: (1) The model is
734 naturally load-balanced. Load distribution in this model is worker driven. As
735 long as there is work to be done, and the worker is available to do work, it can
736 keep busy. (2) The model is naturally scalable. Since the tasks are relatively
737 independent, as long as there are a sufficient number of tasks, adding workers
738 improves performance.

720 And, Noble and Zlateva [61] find that “The simplicity and clean semantics of tuplespaces
o allow natural expressions of problems awkward or difficult to parallelize in other mod-
1 els [62].” Further, Batheja and Parashar [60] address the runtime system component of

2 JavaSpaces:

743 A JavaSpace program provides associative lookup of persistent objects. It also
744 addresses fault-tolerance and data integrity through transactions. All access op-
745 erations to objects in the space such as read/write/take can be executed within
746 a transaction. In event of a partial failure, the transaction either completes suc-
747 cessfully or does not execute at all. Using a JavaSpaces-based implementation
748 allows transacting executable content across the network. The local instances
749 of the Java objects retrieved from the space are active, i.e. their methods can be
750 invoked and attributes modified. JavaSpaces provides mechanisms for decou-
751 pling the semantics of distributed computing from the semantics of the problem
752 domain. This separation of concerns allows the two elements to be managed
753 and developed independently [19]. For example, the application designer does
754 not have to worry about issues such as multithreaded server implementation,
755 low level synchronization, or network communication protocols.

756 In sum, the advantages of a JavaSpaces task-based parallelism technology are:

757 1. A high level of abstraction: The future of computing lies with clusters of cluster
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758 computers. These computing environments will be fully utilized when scientists can
759 write programs that can call other large programs without regard as to how these
760 other programs perform their tasks.

761 2. Asynchronous, high-level coordination of simultaneous tasks.

762 3. Communication protocol is outside of the application code so that scientists need not
763 spend time learning and programming inter-processor communications.

764 4. Internet-aware: Tasks may be executed by any worker that is reachable through a
765 Universal Resource Locator (URL).

766 5. Fault-tolerant: Dursi [56] shows that processor failure is almost certain during a job
767 that employs thousands of processors. The authors of [63] and [59] both argue that
768 this feature makes JavaSpaces a very attractive tool for HPC applications.

769 6. Scalable: Only one code need be written and maintained to run jobs on hardware
770 ranging from laptop computers to cluster computers. This natural adaptability of
m JavaSpaces programs to heterogenous computing platforms was recognized shortly
772 after JavaSpaces was announced [64]. These authors also note that an additional
773 advantage of JavaSpaces is that its learning curve is not high — and that this ad-
774 vantage is often overlooked in evaluation exercises that are solely focused on runtime
775 performance.

776 Gigaspaces is a particularly simple and efficient implementation of JavaSpaces tech-

77 nology. Specifically, the authors of [65] find that Gigaspaces programs exhibit less inter-
s compute node communication latency than do JavaSpaces programs executed within other
779 runtime systems. The primary operations on a Gigspaces space are write, read, change,
70 take, and aggregation [66], [67]. Note that although a JavaSpaces program can support

71 communication between specific workers independent of the master [44, pp. 108-116], such
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72 a program would not have high fault tolerance because the recipient compute node of such
783 a message may become unavailable just after the message is sent.

784 In summary, the JavaSpaces task-based parallelism technology is much more than sim-
75 ply a way to start a Java program. Rather, it is an inter-task communication protocol that
78 1s asynchronous and anonymous. A JavaSpaces program starts workers, collects worker out-
77 puts, adjusts for faults, partitions tasks, and synthesizes the results of completed tasks. All
7ss  of these activities can be programmed without the need to learn a language for the micro-
70 management of memory and/or task execution. S1 Appendix A contains shell scripts that
790 start and run a JavaSpaces program on a cluster computer. And S1 Appendix B contains

71 practical guidance for running a JavaSpaces program on a shared cluster computer.

72 Optimization with JavaSpaces

73 Optimization of stochastic functions under nonlinear constraints can be implemented in a
794 JavaSpaces program via the multiple dimensions ahead search (MDAS) algorithm of Haas
95 [7, pp. 219-225]. This algorithm is a parallel version of a nonlinear, constrained optimization
6 algorithm, namely the classic Hooke and Jeeves coordinate search algorithm [68].

797 MDAS executes by having the master assign each worker a vector of parameter values
79 with which to compute the value of the objective function. These vectors are chosen such
70 that the next M parameters are searched simultaneously for a minimum. Each worker
g0 computes the objective function value at its assigned set of parameter values. Once all
so1  of the workers have returned their function evaluation values to the master, the master
s checks these values for a new minimum (called an improvement). If found, the master
03  stores this new best solution. This parallel search is repeated on these dimensions until no
sos improvements are found. Then, the algorithm moves on to the next M dimensions. For
ss M =1, MDAS is equivalent to the (sequential) Hooke and Jeeves algorithm.

806 Running MDAS with ny = 8 workers (M = 2) gives worst-case, a four-times speedup

g7  of an optimization job relative to running the algorithm with only one worker. This is
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g8 because the sequential version’s inner for loop may need to perform up to 2K function
s0o evaluations before an improvement is found. For M = 3, MDAS amounts to an evaluation
g0 of all possible visited locations for the next three dimensions in the inner for loop of the
s sequential version. This requires 2+ (3 x 2) + (3 x 3 x 2) = 3% — 1 = 26 parallel evaluations
si2 of the objective function. When there are at least ny = 26 workers available to perform
s13 these tasks in parallel, MDAS delivers a six times speed-up over the worst-case of sequential
s Hooke and Jeeves search when K, the number of parameters to be fitted, is a multiple of
s1s  three. In general, to produce a 2M speed up over worst-case sequential Hooke and Jeeves,
s.s MDAS needs to be run on a cluster computer having ny = 3 — 1 workers. For example,
sz running with ny = 242 workers (M = 4) gives worst-case, an order of magnitude speedup
ss — and to achieve a 20-fold worst-case speedup (M = 5), ny = 59048 workers are needed.
si9 As these speedup values suggest, a guaranteed way to speedup MDAS is by increasing
g0 the number of compute nodes that the optimization job can access. Put another way, the
g1 inefficient use of a geometrically increasing number of workers is traded for guaranteed
22 worst-case reductions in runtime.

823 The MDAS algorithm requires master-worker communication at every step (through
22 the collection of results, identifying the new best-solution, and posting of new points at
&5 which to evaluate the objective function). Therefore, MDAS is not an embarrassingly
226 parallel algorithm. An embarrassingly parallel job (in the sense of “an embarrassment of
sz riches,” see [69]) consists of a set of tasks that can be executed in parallel with no inter-
228 task communication. Also, the objective function evaluation tasks are complex involving
g0 for example, the running of a political-ecological simulator many times to support the
g0 computation of the consistency analysis objective function. This complexity is qualitatively
ea1  higher than sending messages to update particular memory locations as is typical in an
s MPI-based parallel program.

833 There are of course, other algorithms for performing function optimization on a cluster

g2« computer. MDAS is used here, however, because its worst-case speedup characteristics are

34


https://doi.org/10.1101/871434
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/871434; this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

35 known; it is scalable; and, because it only requires solution vectors to be sent out to workers
36 but not sent back, it has reduced inter-compute node communication overhead relative to
ss7  other parallel optimization algorithms such as the simulated annealing-based algorithms
s developed in [70] and [71]. Further, unlike algorithms such as simulated annealing, it always
g0 makes small steps from a feasible starting point and hence is less prone to becoming trapped
g0 in an infeasible region. This latter property is crucial when working with a function that
s has a complicated feasible region boundary. Here, such boundaries typically arise during
s> the optimization of (a) the consistency analysis objective function, (b) the deterministic

sa3 sensitivity analysis objective function, or (¢) the MPEMP objective function.
sas 2.6.2 Simulator job-specific algorithms and runtime issues

a5 Algorithmic details for how each simulator job is converted to an MTC application follow.

sss  Consistency analysis

sar  Consistency analysis is run as an MTC application on a cluster computer by performing its
ss  Maximize step with the MDAS algorithm wherein each worker runs on its own compute
g0 node. This makes consistency analysis a straightforward MTC application as it requires
sso  simply one cluster computer running one JavaSpaces program. In order to both speedup
es1  evaluation of the objective function and to improve the optimization run’s convergence be-
ss2 havior, smooth objective functions are employed in-lieu of those based on the approximate
53 negative Hellinger distance for gl(qGrp ), and ggﬂco) (see (4)). These functions are the negative

ssa  Of the Euclidean distance between the parameters at their hypothesis values and those at

s a particular trial point in the optimization run. Call these Euclidean agreement measures

(Grp) 0)

g6 €y, and egfc , respectively. Although maximizing these Euclidean agreement measures
7 does not guarantee that a point will be found that solves (3), experience described next

sss  suggests that a point close to this maximal point can indeed be found.
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o Jackknifing

soo Jackknifing involves executing consistency analysis on each of nj,q; separate delete-d sub-
ssr samples. It can be implemented as an MTC application by performing all of these 141
s2 consistency analysis tasks simultaneously. These njq consistency analysis tasks are in-
g3  dependent of each other and hence may be computed in parallel with no inter-task com-
s« Munication, i.e., this algorithm is embarrassingly parallel. Call this set of tasks the job’s
s outer loop. Nevertheless, the computational expense is high as now, the 7. consistency
ss analysis tasks require njack(3M — 1) workers.

867 Running simultaneous optimization tasks is accomplished by running nj4. separate
ss MDAS algorithms in parallel. This is done by adding an inner loop to the MDAS algorithm
g0 S0 that for a given set of M dimensions, the objective function is independently evaluated for

sro - each jackknife subsample at each solution point that is called for at this set of dimensions.

sn Prediction error rate
sz Converting this simulator job to an MTC application involves running a consistency analysis
ez task on each of n,..q subsamples (see Section 2.3.1). This is accomplished the same way

gza  that the jackknife subsamples are processed.

srs Deterministic sensitivity analysis
s7s The computational demands of a deterministic sensitivity analysis accrue from the consis-
g7 tency analysis performed in its Step 3 (see Section 2.1.2). See above for how consistency

ers  analysis is implemented as an MTC application.

s MPEMP computation

g0 ' The computational demands of an MPEMP simulator job accrue from the optimization
ss1 problem solved in the MPEMP algorithm’s Step 5 (see Section 2.5.2). Hence, as with
sz consistency analysis, an MPEMP job is implemented as an MTC application by performing

g3 this optimization with MDAS wherein each worker runs on its own compute node.
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e 2.7 Case study description

sss ' The following Results section contains a case study that applies the five simulator jobs to
sss the credibility assessment and MPEMP computation of an EMT for the conservation of
s cheetah in East Africa. All input files for this simulator are available at [72]. Hereafter,

sss  this simulator is referred to as the cheetah EMT simulator.
e 2.7.1 Overview of the Cheetah EMT simulator

g0 Haas [7, pp. 97-121] builds a simulator of the interactions between cheetah and humans in
g1 the East African countries of Kenya, Tanzania, and Uganda. The model consists of group
s> submodels for each country’s presidential office (kpr, tpr, upr), environmental/wildlife
g3 protection agency (kep, tep, uep), non-pastoralist, rural residents (krr, trr, urr), and
sos pastoralists (kpa, tpa, upa). In addition, a submodel is built to represent the group of
sos conservation NGOs who have operations in at least one of these countries (ngo). All of
sos  these group submodels can interact with each other. And, each country’s environmental
sor protection agency, rural residents, and pastoralists submodels can directly interact with
s a submodel of the ecosystem that spans these three countries (ecosys). This ecosystem
oo hosts populations of cheetah and their herbivore prey. This model is formally documented
oo in S1 Appendix C.

901 An automatic data acquisition system has been gathering data since January, 2007 on
o2 this political-ecological system (see [37]). This data set contains 1555 actions observed
o3 from the year 2002 to 2019. S2 Data contains this data set. A portion of this data reveals
o4 a complex pattern of group actions followed by reactions from other groups (Figure 2).

o5 Cheetah abundance data is taken from [73], [74], and [75].

Fig. 2 Observed actions history from East African online news stories for the period from January
2007 through June 2019. The symbol “p” indicates an action taken by a presidential office, “a” an
action taken by an EPA, “r” an action taken by rural residents, “s” an action taken by pastoralists,
and “n” an action taken by an NGO. Selected out-combinations only are labeled. The bottom

plot is observed cheetah abundance.
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3 Results

3.1 Consistency analysis

Consistency analysis was used to estimate the parameters of the node: scenario imminent
interaction with police within the Kenyan rural residents group submodel. A time
step of 13 days results in each time interval containing about five actions. The Initialize
step of consistency analysis (see Section 2.2.3) was run to produce a set of initial parameter
values. For this run, each belief network was simulated with 2000 Monte Carlo realizations.
Finding the best set of in-out pairs required 4.74 hours on a single PC.

The initial match fraction (the ratio of the number of observed actions matched by the
simulator’s output to the number of observed actions) is 0.646. The fraction of actions
matched regardless of whether the target was matched, is 0.772, and the corresponding

target match fraction is 0.870. See Table 2 for individual submodel match fractions.

Submodel nps  Mmaten  Match  ngematen Action  nggimaren Target

fraction match match
fraction fraction

kpr 1 0 0 0 0 0 0
kep 142 90 0.633 90 0.633 141 0.992
krr 1 0 0 0 0 1 1.000
kpa 0 0 0 0 0 0 0
tpr 0 0 0 0 0 0 0
tep 27 15 0.555 15 0.555 27 1.000
trr 0 0 0 0 0 0 0
tpa 0 0 0 0 0 0 0
upr 0 0 0 0 0 0 0
uep 24 15 0.625 15 0.625 24 1.000
urr 0 0 0 0 0 0 0
upa 0 0 0 0 0 0 0
ngo 131 90 0.687 131 1.000 90 0.687
ecosys 0 0 0 0 0 0 0

Table 2 Match fractions from the Initialize step of consistency analysis for the cheetah EMT
simulator.

Next, the Maximize step of consistency analysis was run on the Triton Shared Com-

puting Cluster (TSCC) at the San Diego Supercomputer Center [76]. For this run, ¢y was
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a0 set to 0.99, and each belief network was simulated with 1000 Monte Carlo realizations.
o1 Nine compute nodes were employed and the maximum number of function evaluations was
o2 set to 1200. Only those parameters having an initial value different from their hypothesis
o3 value were modified. This resulted in only 40 of the 459 parameters being active during
o4 the optimization run — a significant reduction in the problem’s dimensionality. Initial and
s final values under the stochastic agreement measure for gg(.) (4) were computed using 5000
o Monte Carlo realizations for each belief network.

027 Under this configuration, the simulator job’s wall clock time was 4.42 hours. The
2  solution achieved a 25.5% increase in goa(B) (Table 3). Further, the device of maximizing
o9 a Euclidean distance-based measure of agreement between the hypothesis and consistent
a0 probability distributions did indeed result in an increase in the Hellinger distance-based

o1 measure of agreement (Table 3).

Agreement Initial Value Final Value

Measure

géarpxl?) 0.6308 0.6000

P(B) 416800  -29.4314

g9 (B) 0.8468 0.8888
goa(B) 111394 -0.8483

Table 3 Consistency analysis agreement measures for the cheetah EMT simulator.

w 3.2 Delete-d jackknife confidence intervals

o33 Jackknife confidence intervals were computed for the parameters that define the scenario
o4 imminent interaction with police node in the Kenya rural residents submodel of the
o5 cheetah EMT simulator. The jackknife subsample size is = 546°°7 = 451, and nj,e = 5.
a6 These five subsamples were used to compute 50% confidence intervals. Nine compute
o7 nodes ran for 4.85 wall clock hours to complete the job. All parameters are significantly
o3 different than zero. The five widest confidence intervals (Table 4) indicate that estimates of

a0 the group’s beliefs about being prosecuted for actions they might take are not excessively
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uo affected by sampling variability.

Parameter Lower Boundary Upper Boundary Width

168 0.110 0.362 0.252
165 0.161 0.412 0.251
171 0.211 0.462 0.251
174 0.111 0.262 0.151
183 0.111 0.262 0.151

Table 4 The five widest confidence intervals of parameters defining the node scenario imminent
interaction with police in the Kenya rural residents submodel. These parameters are condi-
tional probability values and hence take values on the unit interval.

w 3.3 Prediction error rates

w2 Prediction error rate was estimated by computing one-step-ahead predictions of actions,
a3 and cheetah abundance from 2016.9 through 2018. This run required 3.25 wall clock hours
ss on the TSCC running nine compute nodes. The run produced 57 predictions resulting in
05 é = 0.4667, and € = 140.0 for the cheetah abundance metric. The simulator was refitted

as  to data five times.

w7 3.4 Deterministic sensitivity analysis

us  Say that the ecosystem manager wishes to use the simulator’s outputs to justify his/her
ao position that reducing poaching would slow or reverse the decline in cheetah abundance.
o A skeptic, however, believes that scientifically plausible parameter values in the cheetah
ss1  submodel can be found such that when the model is run from 2019 through 2025 under the
ss2 restriction of no poaching actions, cheetah abundance in the year 2025 will be insignificantly
o3 different than that produced by the simulator when run under the assumption that current
s poaching rates continue into the future. If such parameter values can be found, the skeptic
s would argue that the model is unable to inform management action selection because
s the model can be calibrated to either recommend increased antipoaching effort or not

57 recommend increased antipoaching effort.
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058 To represent this skeptic’s belief, cpga consists of the single constraint: no poaching

w0 actions occur from the present through the year 2025, i.e.,
Cpsa = {action(krr) = {poach for food, poach for cash, poach for pmtection}c} . (A7)

wo  And, rpga is populated with predictions of expected cheetah abundance in the year 2025
o1 across several regions in Kenya (Table 5). These predicted values are found by running the
sz simulator out to the year 2025 under the consistent parameter values found in Section 6.2.
w3 It is the use of these consistent values that forces poaching rates from 2019 through 2025

to be equal to current poaching rates.

Region Abundance

Laikipia 200
Samburu 200
Tsavo 145
Marsabit 200
Turkana 40

Table 5 Cheetah abundance predictions in five regions of Kenya for the year 2025 computed
under consistent parameter values. These values make up the set rpga.

964

965 The mathematical programming problem (3) with variables consisting of the ecosystem
ss submodel’s parameters was solved over the interval 2019 through 2025 and required one
o7 hour of wall clock time on the TSCC utilizing eight worker nodes. Initial parameter values

KIT) ere adjusted as necessary so that

ws were set to By with the exception that values in B(
w0 any contemplated poaching action produced a small value of F[OGA]. Doing so caused
s the Kenya rural residents group to avoid poaching actions during the optimization.

o1 If a solution to (3) were found such that all values in Bpga were scientifically plausible,
o2 then the skeptic’s position would be supported. As Table 6 indicates, however, the skeptic’s
o3 position is not supported because the value for the initial death rate, 7y (see S1 Appendix

o C) needed to respect the conditions in cpg4 and the responses in rpga, is unrealistically

o5 high (0.510) under minor poaching pressure.
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Parameter Hypothesis value DSA value
minor poaching pressure

ro 0.043 0.510
Q 0.000 0.000
Br 0.001 0.001
moderate poaching pressure

o 0.400 0.220
Qp 0.000 0.000
Br 0.001 0.001

severe poaching pressure
ro 0.600 0.600
Q 0.010 0.010
Br 0.001 0.001

Table 6 Results for the deterministic sensitivity analysis of the ecosystem submodel.

o 3.5 Overall credibility assessment of the Cheetah EMT simulator

o7 The cheetah EMT model’s mechanism reflects principles of how political-ecological systems
os function [7, chs. 6-8]. Hence, component (a) of the Patterson and Whelan [10] criteria (see
oo Section 1) is satisfied. Statistical estimation of the model’s parameters is the foundational
s step for establishing components (b) and (c). The model’s confidence intervals indicate
se1 that a selection of the model’s parameters cannot be ignored and can be estimated without
s2  excessive uncertainty. The model’s prediction error rates, however, are high. Finally, the
se3 model is resistant to a skeptic-created scenario engineered to show the model being unable

ses to inform management action selection.

o 3.6 Finding the MPEMP

s Say that it is desired to have 5,000 herbivores and 500 cheetah in East Africa in the year

o7 2030. These target values are expressed by specifying

qq¢ = (HrbvrNm(2025) = 3000, ChthNm(2025) = 200,

HrbvrNm(2030) = 5000, ChthNm(2030) = 500) (18)
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ss 'To achieve this ecosystem state, more land needs to be set aside for wildlife reserves, and

so poaching needs to cease. These conditions are expressed by setting

CMPEMP =

(kenepa

{action ) = {create a new national park}} :

C
action®enrr) _ {poach for food, poach for cash, poach for protection} } . (19)

wo  Group beliefs that are to be changed are those of the imminent interaction with police
o1 node of the Kenya rural resident group.

992 The simulator job for finding the MPEMP formed a 108-dimensional optimization prob-
o3 lem. When run with eight worker nodes on the TSCC, this simulator job required 2.97
9s  wall clock hours to complete. Initial and final values of gg{rr)(B) (4) were computed using
s 5,000 Monte Carlo realizations for each belief network. The MPEMP actions history (Fig-
ws ure 3) is such that Kenyan rural residents substitute the action verbally protest national
sz park boundaries for poaching actions. In spite of this behavioral change, however, cheetah

ws abundance does not attain the desired level by the year 2030.

Fig. 3 The cheetah EMT simulator’s actions history under the MPEMP. See Figure 2 for symbol
legend. Lines connect action-reaction sequences. For example, one frequent action sequence in
Tanzania is poaching, followed by a negative ecosystem status report, followed by a land gift to
the poor.

999 This plan’s ¢ value is 0.845 meaning that this plan is not expected to face severe

w0 Tresistance to its implementation.

o 4 Discussion

w2 A model has been described of the political and ecological processes at play that characterize
ws  the dynamics of an ecosystem being impacted by and impacting several different groups
w4 of humans. An integrated suite of statistical methods has been presented for assessing

wos its credibility, and computing politically feasible ecosystem management plans with it.
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ws Free software has been demonstrated that implements these methods on high performance
wr  computing platforms as one cost-effective way to support the lengthy computations that
ws  these methods entail. These contributions for the first time, enable ecosystem managers
ws  to develop credible models with which to manage an ecosystem that contains endangered
o species. Given the unprecedented decline in the earth’s biodiversity, the potential impact
i1 of this contribution is difficult to overstate.

1012 The EMT procedure given in this article can be used to build political-ecological models
w3 for other ecosystem management challenges such as air quality, freshwater pollution, soil
4 contamination, and waste management. But, as indicated by the consistency analysis of
ws  the cheetah EMT simulator, current computing resources can support the simultaneous

e  fitting of only a modest fraction of the parameters of a large, policy-relevant simulator.

w7 4.1  Other statistical procedures for credibility assessment

s The first four simulator jobs described herein do not support in-sample GOF tests nor model
o selection statistics. A Monte Carlo hypothesis test of a model’s GOF, however, could be
w0 found by first building a contingency table whose columns partition the action history’s
w2 time interval into 10 or so subintervals, and whose rows index unique out-combinations in
02 the actions history. Each cell in this table holds the observed number of out-combinations
023 in its time subinterval along with the number of out-combinations generated by the model
w24 over this time subinterval. The observed chi-squared test statistic for this table would
s be computed. A Monte Carlo technique would be used to find the p-value for this GOF
126 hypothesis test because there are dependencies across the time subintervals (see [77, pp. 20-
w2z 22]). This would be done by simulating a large number of Monte Carlo action histories
w2 using the estimated model and computing the chi-squared test statistic for each. Finally,
w20 the p-value would be found as the fraction of these test statistic values that exceed the
10w observed test statistic value. See [78] for a discussion of this technique.

1031 In agreement with Yarkoni and Westfall [34], however, the present author believes that
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02 the final arbitrar of a good model ought to be its out-of-sample prediction error rate. Note
033 that the prediction error rate estimator of Section 2.3.1 is an out-of-sample estimator.

1034 To address the model parsimoniousness goal of model selection procedures, a model
w3 of a political-ecological system whose simulator exhibits low prediction error rate, might
w6 be made more parsimonious by first setting those parameters whose confidence intervals
07 include zero to very small, fixed values — and then re-computing the model’s prediction
w3 error rate to verify that this now more parsimonious model continues to perform at the
00 desired level. See [79] for the reason why confidence intervals may be used to conduct

w0 hypothesis tests.

wa 4.2 Automatic data streams

w2 As exemplified by the modest cheetah abundance sample size reported in Section 3.1, a
w43 limiting factor for applying the suite of statistical methods described herein is the contin-
s uous availability of observations on many ecosystem metrics. In other words, to keep a
w45 political-ecological simulator relevant for policymaking, the simulator should be regularly
ws  refitted to data as new political-ecological is acquired. This regular activity is made more
w7 convenient if automatically-acquired streams of political-ecological data are continuously

s available. See [37] for techniques to create and read such streams.

wo 4.3 Funding cluster computer time

w0 HPC providers that offer their compute cycles on the open market include (a) the SDSC [76],
st (b) Ohio State University’s Supercomputer Center [80], and (c) the private firm, Sabalcore
102 Computing Inc. [81]. Some of these providers allow users to purchase one or more compute
1053 nodes for their own, dedicated use. But investing in these so-called “condominium compute
ws«  nodes” does little to help a user gain access to large numbers of compute nodes.

1055 Until cluster computers become affordable for ecosystem managers, these managers
s can meet their computing requirements in the face of uneven funding via a JavaSpaces

107 program running on their in-house family of workstations. There is no setup or special
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0ss  software needed other than assigning an IP address to each workstation and installing (free)
w9 JAVA and (free) GigaSpaces [66] on each workstation. An important characteristic of this
weo approach is that computing costs are now part of the agency’s office computer budget, i.e.,
we1  capital expenditures rather than the agency’s budget for services, e.g. consultant fees. As
w2 mentioned in Section 2.5, however, a cluster of workstations may not be as reliable nor as

wes fast as a cluster computer.

w 9  Conclusions

wes Lhe five simulator jobs developed and demonstrated herein show that models of political-
wes ecological systems can be built, statistically estimated, and subjected to rigorous credibility
ez assessment. They can also be used to form ecosystem management policies. But running
wes these jobs can require large amounts of computation. Coding and running them as MTC
weo applications is one way to make them maintainable, financially feasible, and timely. The
wo  mathematics and computer code needed to perform such computations have been presented
wn and demonstrated herein. All of this code may be downloaded from [39].

1072 The future of ecosystem management lies in finding workable policies that address not
w3 only what needs to be done to conserve ecosystems under anthropogenic pressure, but
s also the needs and aspirations of those humans who interact with such ecosystems. Build-
wrs  ing models of these political-ecological systems can help address these challenges but new
we  computational approaches are needed to discover effective and politically implementable

w7 management actions from these models. This article provides one such new approach.

« References

e [1] Bassett TJ, Peimer AW. Political ecological perspectives on socioecological relations.

1080 Natures Sciences Sociétés. 2015;23: 157-165.

46


https://doi.org/10.1101/871434
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/871434; this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

st [2] Schoon M, Van der Leeuw S. The shift toward social-ecological systems perspectives:
1082 Insights into the human-nature relationship. Natures Sciences Sociétés. 2015;23(2):

1083 ].66— 1 74:

s [3] Virapongse A, Brooks S, Metcalf EC, Zedalis M, Gosz, J, Klisky A, Alessa L. A social-
1085 ecological systems approach for environmental management. Journal of Environmental

1086 Management. 2016;178, 83-91.

wsr  [4] Guinote A. How power affects people: Activating, wanting, and goal seeking. Annual

1088 Review of Psychology. 2017;68: 353-381.

g [5] Ceballos G, Ehrlich PR, Barnosky AD. Garcia A, Pringle RM, Palmer TM. Accelerated
1090 modern human-induced species losses: Entering the sixth mass extinction. Science

1001 Advances. 2015;1(5): €1400253. doi: 10.1126/sciadv.1400253.

we  [6] DeLong, Jr DC. Defining biodiversity. Wildlife Society Bulletin (1973-2006).

1003 1996;24(4): 738-749. Available from: https://jstor.org/stable/3783168

wi  [7] Haas TC. Improving natural resource management: Ecological and political models.

1005 Chichester, U.K.: Wiley-Blackwell; 2011.

s [8] Saltelli A, Funtowicz S. When all models are wrong. Issues in Science and Technology.

1007 2014;30(2): Winter. Available from: http://issues.org/30-2/andrea/

wee  [9] Saltelli A, Stark PB, Becker W, Stano P. Climate models as economic guides: Scientific

1099 challenge or quixotic quest? Issues in Science and Technology. 2015;31(3): Spring.
1100 Available from: http://issues.org/31-3/climate-models-as-economic-guides-
1101 scientific-challenge-or-quixotic-quest/

uee  [10] Patterson EA, Whelan MP. A framework to establish credibility of computational
1103 models in biology. Progress in Biophysics and Molecular Biology. 2017;129: 13-19. doi:
1104 10.1016/j.pbiomolbio.2016.08.007.

47


https://doi.org/10.1101/871434
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/871434; this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

uos  [11] Oreskes N, Shrader-Frechette K, Belitz K. Verification, validation, and confirmation

1106 of numerical models in the earth sciences. Science. 1994;263: 641-646.

uoer  [12] Rykiel, Jr, EJ. Testing ecological models: The meaning of validation. Ecological Mod-
1108 elling. 1996;90: 229-244.

oo [13] Bonabeau E. Agent-based modeling: methods and techniques for simulating human
1110 systems. Proceedings of the National Academy of Sciences of the United States of

1111 America. 2002;99 (suppl 3): 7280-7287. doi: 10.1073/pnas.082080899.

u  [14] Stillman RA, Railsback SF, Giske J, Berger U, Grimm, V. Making predictions in
1113 a changing world: The benefits of individual based ecology. BioScience. 2015;65(2):
1114 140-150. doi: 10.1093/biosci/biul92.

s [15] Grimm V, Railsback SF. Individual-based modeling and ecology. Princeton, NJ.:

1116 Princeton University Press; 2005.

urr [16] Haas TC, Ferreira SM. Conservation risks: When will rhinos be extinct? IEEE Trans-

1118 actions on Cybernetics. 2016;46(8): 1721-1734. Special issue on Risk Analysis in Big
1119 Data Era. Available from: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&
1120 arnumber=7236914

ua [17] Haas TC, Ferreira SM. Finding politically feasible conservation strategies: The case

122 of wildlife trafficking. Ecological Applications. 2018;28(20): 473-494.

u2s [18] Macy MW, Willer R. From factors to actors: Computational sociology and agent-based

124 modeling. Annual Review of Sociology. 2002;28: 143-166.

s [19] Conte R, Paolucci M. On agent-based modeling and computational social science.

1126 Frontiers in Psychology. 2014;5: Article 668. doi: 10.3389/fpsyg.2014.00668.

127 [20] Bruch E, Atwell J. Agent-based models in empirical social research. Sociological Meth-
1128 ods & Research. 2015;44(2): 186-221.

48


https://doi.org/10.1101/871434
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/871434; this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

2 [21] Monticino M, Acevedo M, Callicott B, Cogdill T, Lindquist C. Coupled human and
1130 natural systems: A multi-agent-based approach. Environmental Modelling and Soft-

1131 ware. 2007;222 656-663.

uz  [22] Polhill JG, Gimona A, Gotts NM. Nonlinearities in biodiversity incentive schemes:
133 A study using an integrated agent-based and metacommunity model. Environmental

1134 modelling and software. 2013;45: 74-91.

uss  [23] Haas TC. A web-based system for public-private sector collaborative ecosystem man-
1136 agement. Stochastic Environmental Research and Risk Assessment. 2001;15(2): 101-
1137 131.

uss  [24] Lele SR, Dennis B, Lutscher F. Data cloning: Easy maximum likelihood estimation for
1139 complex ecological models using bayesian markov chain monte carlo methods. Ecology

1140 Letters. 2007;10: 551-563. doi: 10.1111/j.1461-0248.2007.01047 .x.

ua [25] Shin S, Venturelli OS, Zavala VM. Scalable nonlinear programming framework for
1142 parameter estimation in dynamic biological system models. PLoS Computational Bi-

1143 ology. 2019;15(3): €1006828. doi: 10.1371/journal.pcbi.1006828.

us  [26] Tashkova K, Sile J, Atanasova N, Dzeroski S. Parameter estimation in a nonlinear
1145 dynamic model of an aquatic ecosystem with meta-heuristic optimization. Ecological

1146 Modelling. 2012;226: 36-61.

uer  [27] Poovathingal SK, Gunawan R. Global parameter estimation methods for stochastic
1148 biochemical systems. BMC Bioinformatics. 2010;11: 414, 12 pages. doi: 10.1186/1471-

1149 2105-11-414.

uso  [28] Grazzini J, Richiardi M, Estimation of ergodic agent-based models by simulated min-

1151 imum distance. Journal of Economic Dynamics & Control. 2015;51: 148-165.

49


https://doi.org/10.1101/871434
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/871434; this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

us2  [29] Helton JC, Davis FJ. Sampling-based methods. In: Saltelli A, Chan K, Scott EM,

1153 editors. Sensitivity Analysis. New York: Wiley; 2000. pp. 77-77.

use  [30] McElhany P, Steel EA, Avery K, Yoder N, Busack C, Thompson, B. Dealing with
1155 uncertainty in ecosystem models: Lessons from a complex salmon model. Ecological

1156 Applications. 2010;20(20): 465-482.

us7 [31] Bryan BA. 2013. High-performance computing tools for the integrated assessment
1158 and modeling of social-ecological systems. Environmental Modelling and Software, 39:

1150 295-303.

e [32] Vanclay JK, Skovsgaard JP. Evaluating forest growth models. Ecological Modelling.
1161 1997:98(1): 1-12. doi: 10.1016/S0304-3800(96)01932-1.

us2  [33] Johnson JB, Omland KS. Model selection in ecology and evolution. TRENDS in Ecol-
1163 ogy and Evolution. 2004;19(2): 101-108.

uss  [34] Yarkoni T, Westfall J. Choosing prediction over explanation in psychology: Lessons
1165 from machine learning. Perspectives on Psychological Science. 2017;1-23. doi:

1166 10.1177/1745691617693393.

uer  [35] Pearl J. Probabilistic reasoning in intelligent systems, San Mateo, California: Morgan

1168 Kaufmann; 1988.

ueo  [36] Haas TC, Ferreira SM. Combating rhino horn trafficking: The need to disrupt

1170 criminal networks. Supporting Information: S4 Text. Sensitivity analysis of the
1un economic-ecological model. PLoS ONE. 2016;11(11): e0167040. doi: 10.1371/jour-
1172 nal.pone.016704().

urs [37] Haas TC. Automatic acquisition and sustainable use of political-ecological data. Data

174 Science Journal. 2018;17. doi: 10.5334/dsj-2018-017.

20


https://doi.org/10.1101/871434
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/871434; this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

urs  [38] Zhang H, Vorobeychik Y, Letchford J, Lakkaraju K. Data-driven agent-based model-
1176 ing, with application to rooftop solar adoption. Autonomous Agents and Multi-Agent

1177 SySteIIlS. 2016;301 1023-1049.

uzs  [39] Haas TC. Rhino ecosystem management tool. 2018. Online resource [Internet]. Avail-

1179 able from: www4.uwm.edu/people/haas/rhino_emt

uso  [40] Baraglia R, Capannini G, Dazzi P, Pagano, G. A multi-criteria job scheduling frame-
1181 work for large computing farms. Journal of Computer and System Sciences. 2013;79:

1182 230-244.

uss  [41] Fang X, Luo J, Gao H, Wu W, Li Y. Scheduling multi-task jobs with extra util-
1184 ity in data centers. EURASIP Journal on Wireless Communication and Networking.

1185 2017;200. doi: 10.1186/s13638-017-0986-0.

uss  [42] Dillon L, Sellers C, Underhill V, Shapiro N, Ohayon JL, Sullivan M, Brown P, Harri-

1187 son J, Wylie S. The Environmental Protection Agency in the early Trump administra-
1188 tion: Prelude to regulatory capture. American Journal of Public Health, 2018;April,
1189 108(Supplement 2): S89-594. doi: 10.2105/AJPH.2018.304360.

uoo  [43] Raicu I, Foster IT, Zhao Y. Many-task computing for grids and supercomputers.
1101 2008 Workshop on Many-Task Computing on Grids and Supercomputers. 2008. doi:
1102 10.1109/MTAGS.2008.4777912.

ues  [44] Freeman E, Hupfer S, Arnold K. JavaSpaces: Principles, patterns, and practice. New
1194 York: Addison-Wesley; 1999.

ues  [45] Ash RB. Real analysis and probability. New York: Academic Press; 1972.

nes  [46] Garba MK, Nye TM, Boys RJ. Probabilistic distances between trees. Systematic Bi-
1100 ology. 2018;March 67(2): 320-327.

o1


https://doi.org/10.1101/871434
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/871434; this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

ues  [47] Huber F. Belief revision II: Ranking theory. Philosophy Compass. 2013;8/7: 613-621.
1109 doi: 10.1111/phc3.12047.

00 [48] Busing FMTA| Meijer E, Van Der Leeden R. Delete-m jackknife for unequal m. Statis-

1201 tics and Computing. 1999;9: 3-8.

e [49] Haas TC. Introduction to probability and statistics for ecosystem managers: Simula-

1203 tion and resampling. “Statistics in Practice” volume. Oxford, U.K.: Wiley; 2013.

o [50] Politis DN, Romano JP. Large sample confidence regions based on subsamples under

1205 minimal assumptions. The Annals of Statistics. 1994;22(4): 2031-2050.

s [51] Allen PG. Economic forecasting in agriculture. International Journal of Forecasting.

1207 1994;10(1): 81-135. doi: 10.1016/0169-2070(94)90052-3.

s [52] Marchand E,; Clément F, Roberts JE, Pépin G. Deterministic sensitivity analysis for

1209 a model for flow in porous media. Advances in Water Resources. 2008;31: 1025-1037.

o [53] Valero-Lara P, Nookala P, Pelayo FL, Jansson J, Dimitropoulos D, Raicu I. Many-task
1211 computing on many-core architectures. Scalable Computing: Practice and Experience.

212 2016;17(1): 33-46.

i3 [54] Xenopoulos P, Daniel J, Matheson M, Sukumar S. Big data analytics on HPC

1214 architectures: Performance and cost. 2016 IEEE International Conference on Big
1215 Data (Big Data). Washington, D.C.: December 5-8; 2016. Available from: https:
1216 //ieeexplore.ieee.org/stamp/stamp. jsp?tp=&arnumber=7840861

7 [55] Gropp W, Hoefler T, Thakur R, Lusk E. Using advanced MPI: Modern features of the

1218 Message-Passing Interface. Cambridge, Massachusetts: The MIT Press; 2014.

219 [56] Dursi J. HPC is dying and MPI is killing it. 2019. In: Dursi Blogs [Internet]. Available

1220 from: https://www.dursi.ca/post/hpc-is-dying-and-mpi-is-killing-it.html

52


https://doi.org/10.1101/871434
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/871434; this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

21 [57] Thoman P, Dichev K, Heller T, Takymchuk R, Aguilar X, Hasanov K, Gschwandtner P,

1222 Lemarinier P, Markidis S, Jordan H, Fahringer T, Katrinis K, Laure E, Nikolopoulos
1223 DS. A taxonomy of task-based parallel programming technologies for high-performance
1224 computing. Journal of Supercomputing. 2018;74: 1422-1434. doi: 10.1007/s11227-018-
1225 2238-4.

126 [58] Dursi J. How can MPI fit into today’s Big Computing? Invited presentation at
1227 EuroMPI2016. 2016;25-28 September, Edinburgh. Available from: https://github.

1228 com/1jdursi/EuroMPI2016.

1220 [59] Mocanu EM, Galtier V, Tapus N. Generic and fault-tolerant bag-of-tasks framework
1230 based on JavaSpace technology. IEEE International Systems Conference SysCon. 2012
1231 March 19-22. doi: 10.1109/SysCon.2012.6189511.

e [60] Batheja J, Parashar M. A framework for adaptive cluster computing using JavaSpaces.

1233 Cluster Computing. 2003;6: 201-213.

1w [61] Noble MS, Zlateva S. Scientific computation with JavaSpaces. In: Hertzberger B,

1235 Hoekstra, A, Williams R, editors. High Performance Computing and Networking: 9th
1236 International Conference Proceedings / HPCN Europe 2001. Amsterdam: June 25-27;
1237 2001. PP- 657-666.

s [62] Carriero N, Gelernter D. How to write parallel programs: A guide to the perplexed.

1239 ACM Computing Surveys. 1989;21: 3, September.

20 [63] Galtier V, Makassikis C, Vialle S. A Javaspace-based framework for efficient

1241 fault-tolerant master-worker distributed applications. 19th International Euromi-
1242 cro Conference on Parallel, Distributed and Network-Based Processing. 2011. doi:
1243 10.1109/PDP.2011.82.

as [64] Noble MS, Zlateva S. Distributed scientific computation with JavaSpaces? 2001. doi:

1245 10.1.1.28.934.

93


https://doi.org/10.1101/871434
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/871434; this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

[65]

[66]

under aCC-BY 4.0 International license.

Buravlev V, De Nicola R, Mezzina CA. Tuple spaces implementations and their effi-

ciency. Arxiv. 2016. Available from: https://arxiv.org/pdf/1612.02979.pdf

GigaSpaces. GigaSpaces XAP product overview. 2019. Available from: https://docs.

gigaspaces.com/product_overview/overview.html

GigaSpaces. The Space interface. 2019. Available from: https://docs.gigaspaces.

com/latest/dev-java/the-gigaspace-interface-overview.html

Hooke R, Jeeves TA. Direct search solution of numerical and statistical problems.

Journal of the ACM. 1961;8: 212-229.

Malapert A, Régin JC, Rezgui M. Embarrassingly parallel search in constraint pro-
gramming. Journal of Artificial Intelligence Research. 2016;57, 421-464.

Lou Z, Reinitz J. Parallel simulated annealing using an adaptive resampling interval.

Parallel Computing. 2016;53: 23-31.

Shao W, Guo G. Multiple-try simulated annealing algorithm for global optimiza-
tion. Mathematical Problems in Engineering. 2018;Article ID 9248318. 11 pages. doi:
10.1155/2018/9248318.

Haas, TC. Cheetah ecosystem management tool. 2019. Online resource [Internet].

Available from: www4.uwm.edu/people/haas/cheetah_emt

Durant SM, et al. The global decline of cheetah Acinonyx jubatus and what it means for

conservation. Proceedings of the National Academy of Science. 2017;114(3), 528-533.

[UCN/SSC. Regional conservation strategy for the cheetah and African wild dog in

Eastern Africa. Gland, Switzerland: TUCN Species Survival Commission; 2007.

TMAP (Tanzania Mammal Atlas Project). Arusha, Tanzania: Part of the Tanzania
Mammal Conservation Progam maintained by the Tanzania Wildlife Research In-

stitute. 2008. Available from: http://www.darwininitiative.org.uk/documents/

o4


https://doi.org/10.1101/871434
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/871434; this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

under aCC-BY 4.0 International license.

14055/18260/14-055\%20FR\%20Ann11.4\%20Mammals\%20Newsbites\%20Issue\

%204 . pdf

[76] SDSC. Accounts & allocations. San Diego Supercomputer Center. 2018. Available

from: http://www.sdsc.edu/support/accounts_allocations.html

[77] Agresti A. Categorical data analysis, 3rd ed. Hoboken, New Jersey: John Wiley and
Sons, Inc.; 2013.

[78] Waller LA, Smith D, Childs JE, Real LA. Monte carlo assessments of goodness-of-fit

for ecological simulation models. Ecological Modeling. 2003;164: 49-63.

[79] Sacha V, Panagiotakos DB. Insights in hypothesis testing and making decisions in
biomedical research. The Open Cardiovascular Medicine Journal. 2016;10: 196-200.

doi: 10.2174/1874192401610010196.

[80] Ohio Supercomputer Center. Get an Ohio Supercomputer Center account. Ohio Su-
percomputer Center, Ohio State University. 2018. Available from: https://www.osc.

edu/supercomputing/accounts

[81] Sabalcore. Sabalcore HPC cloud for academics. 2018. Available from: http://www.

sabalcore.com/hpc-in-the-cloud-for-academics/

Supporting information captions

S1 Appendix. File name: s1.pdf. Shell scripts, guidance, and model documentation.

S2 Data. File name: s2.txt. Observed actions history for the Cheetah EMT simulator.
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