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Abstract8

Models of political-ecological systems can inform policies for managing ecosystems that9

contain endangered species. One way to increase the credibility of these models is to10

subject them to a rigorous suite of data-based statistical assessments. Doing so involves11

statistically estimating the model’s parameters, computing confidence intervals for these12

parameters, determining the model’s prediction error rate, and assessing its sensitivity to13

parameter misspecification.14

Here, these statistical algorithms along with a method for constructing politically fea-15

sible policies from a statistically fitted model, are coded as JavaSpacesTM programs that16

run as compute jobs on either supercomputers or a collection of in-house workstations.17

Several new algorithms for implementing such jobs in distributed computing environments18

are described.19

This downloadable code is used to compute each job’s output for the management20

challenge of conserving the East African cheetah (Acinonyx jubatus). This case study shows21

that the proposed suite of statistical tools can be run on a supercomputer to establish the22

credibility of a managerially-relevant model of a political-ecological system that contains23

one or more endangered species. This demonstration means that the new standard of24

credibility that any political-ecological model needs to meet before being used to inform25

ecosystem management decisions, is the one given herein.26
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1 Introduction30

There is a need to acknowledge the complexity of political-ecological systems and the signif-31

icant challenges to building theories of them [1]. Such systems lie at the interface between32

social/political science and ecology. The complexity of each of these fields coupled with an33

additional layer of complexity introduced by the interactions between sociological/political34

systems and natural systems can result in highly complex system dynamics, i.e., ones that35

are stiff, nonlinear, and possess feedback loops. For example, Schoon and Van der Leeuw [2]36

note that systems composed of interacting sociological and ecological subsystems are quick37

to change and rarely stay in equilibrium for long. Further, many state variables are needed38

to describe both the decision making processes of the relevant social groups, and the func-39

tioning of the involved ecosystem. A political-ecological system is also referred to as a40

socio-ecological system or social-ecological system (e.g., see [3]). The former term is em-41

phasized herein because those political actions and processes that drive social movements42

are often initiated by groups seeking to gain increased political power [4]. Building such43

models is more than an academic exercise. Indeed, the alarming decline in the planet’s44

biodiversity [5], creates a crucial need for credible political-ecological theory to guide the45

development of sustainable biodiversity conservation policies. In this article, biodiversity46

(a shortening of the two words “biological” and “diversity”) is47

an attribute of a site or area that consists of the variety within and among48

biotic communities, whether influenced by humans or not, at any spatial scale49

from microsites and habitat patches to the entire biosphere [6].50

In addition to the challenge of building political-ecological theory, there is a deeper51

problem with using such models to guide ecosystem management policy: Unless such a52
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model is shown to be credible using in-part, appropriate statistical methods, any policy53

recommendations based on output from the model may receive only mixed acceptance54

by those affected. As argued in [7, p. 181], there is need for a common model credibility55

standard to be met before the output of a model of a political-ecological system is deemed to56

be policy-relevant. This is because there may be skepticism towards large scientific models57

that have not had their parameters statistically estimated nor their parameter sensitivities58

assessed [8], [9]. These skeptics may be unwilling to cooperate with efforts to implement59

ecosystem management policies that are based in-part on output from these unassessed60

models.61

But what is a credible model? Patterson and Whelan [10] state that “Model credibility62

is about the willingness of people to make decisions based on the predictions from the63

model.” In other words, a model is credible when a decision maker places enough trust64

in its predictions to use those predictions to select management actions. Call the model’s65

behavior, functioning, relationships, and systems of equations, its collective mechanism.66

Patterson and Whelan [10] believe the decision maker’s trust is won if (a) the model’s67

mechanism is based on known principles that govern the phenomenon being modeled; (b)68

all aspects of the model’s mechanism are testable, i.e., there are observable variables in the69

model on which data may be collected and used to conduct statistical hypothesis tests of70

the presence of these behaviors in the real world; and (c) the out-of-sample prediction error71

of the model’s predictions is below the decision maker’s threshold.72

To make the assessment of a political-ecological model’s credibility easier to perform,73

the present article develops and demonstrates an integrated suite of statistical methods74

for assessing model credibility components (b) and (c), above. Some of the hypotheses of75

component (b) may concern the sensitivity of the model to perturbations to its parameters.76

The testing of such hypotheses is typically referred to as performing a sensitivity analysis.77

For the remainder of this article, the term “model validation” will not be used because78

in this author’s opinion, it is too ambiguous a term to support a consensus about whether79
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a valid model can be established at all, let alone how it might be quantitatively assessed80

(see [11] and [12]).81

An agent-based model consists of a collection of entities that make a sequence of decisions82

through time based on their goals and inputs from other agents. As described by Bonabeau83

[13],84

In agent-based modeling (ABM), a system is modeled as a collection of au-85

tonomous decision-making entities called agents. Each agent individually as-86

sesses its situation and makes decisions on the basis of a set of rules. Agents87

may execute various behaviors appropriate for the system they represent – for88

example, producing, consuming, or selling.89

An ABM is often built to model a social system that is too complex to represent using90

mathematical or statistical models (Bruch and Atwell 2015). In ecology, the word “agent”91

is often replaced with the word “individual” to emphasize that the entities are individual92

flora or fauna whose behavior is more genetically defined rather than being based on a belief93

system such as utility maximization. As the authors of [14] state, individual-based models94

(IBMs) “explicitly represent discrete individuals within an (ecological) population and their95

individual life cycles.” Grimm and Railsback [15] give a comprehensive treatment of this96

class of models as used to model natural, nonanthropogenic populations, e.g. trees, insects,97

plants, fish, or terrestrial mammals. One approach to modeling a political-ecological system98

is with a combination of an ABM to capture the system’s anthropogenic actions, and an99

IBM to capture the dynamics of the affected ecosystem. These two submodels interact100

with each other in order to capture the effects of actions taken by groups of humans that101

affect the ecosystem – and the feedback effects from the ecosystem back to those groups.102

For example, Haas and Ferreira [16] build an economic-ecological model of the rhinoceros103

(Ceratotherium simum) horn trafficking system. This model contains submodels (agents)104

of rhino horn consumers, rhino poachers, and those antipoaching units attempting to stop105

the poachers from poaching. These latter two submodels interact with an IBM of the rhino106
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population being illegally harvested. Haas and Ferreira [17] extend the poachers group107

submodel of this ABM-IBM model by adding a mechanism that explains how these indi-108

viduals weigh the risk of being prosecuted for poaching against its profit potential. These109

authors then use this submodel to evaluate the practicality of policies aimed at providing110

employment opportunities for rhino poachers versus policies that intensify the enforcement111

of anti-poaching laws. This ABM-IBM model contains several hundred parameters.112

1.1 Related work113

1.1.1 Socio-ecological modelling114

In a highly cited article, Macy and Willer [18] discuss how ABMs can advance sociological115

theory. Conte and Paolucci [19] note the potential that ABMs have for social science theory116

construction but express concern that current models are delivering over-simplified models117

of cognitive processes. These authors believe ABMs have the potential to deliver much118

more cognitively realistic models of their agents. Bruch and Atwell [20] explain how ABMs119

can help develop policy-relevant social science theory, and then review how to validate such120

models against sociological data sets.121

Within environmental modelling, the authors of [21] build a political-ecological model122

of land developer agents, homeowner agents, and government agents coupled to a natural123

model that consists of its own, interacting submodels of land-cover transition, hydrology,124

and wildlife habitat. Developers seek to develop land parcels, homeowners may decide to125

protest such development decisions, and government agents work to enforce environmental126

standards. Another example of a political-ecological model is given in [22]. These authors127

develop land manager agents who make decisions to buy or sell portions of their land in128

response to changes in the profitability of the land that, in-turn, is influenced by the land’s129

species richness, and governmental incentives or rules. A patch-based dynamic model of130

species presence and absence forms the natural system submodel. Each of these models131

have at least ten parameters. Neither model is assessed against observations from the real132
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world.133

1.1.2 Socio-ecological model parameter estimation134

A literature search uncovered only two articles describing the statistical estimation of a135

socio-ecological model’s parameters, namely, [23], and [17]. Several articles, however, were136

found on the estimation of either strictly social models or strictly ecological models. A137

Markov Chain Monte-Carlo (MCMC)-based method is developed in [24] for finding max-138

imum likelihood parameter estimates of a deterministic model of wildlife population dy-139

namics. A three-step method is given in [25] for finding the maximum likelihood parameter140

estimates of a deterministic model of bacterial population growth. Step 1 consists of trans-141

lating the differential equation system into a randomized maximum a-posteriori (rMAP)142

form, Step 2 consists of discretizing this function, and Step 3 involves maximizing the143

likelihood function via an interior point solver. In [26], the parameters of a determinis-144

tic model of phytoplankton growth are estimated with least squares and several heuristic145

optimization algorithms.146

There are considerably fewer statistical methods in the literature for estimating the147

parameters of a stochastic ecosystem model such as the stochastic population dynamics148

model of a terrestrial species studied in this article. One family of frequentist parameter149

estimators that can be applied to this problem are minimum simulated distance estimators150

(MSDEs). The word “distance” in MSDE refers to that between two probability distribu-151

tions, typically one that is strictly data-derived, and one that is generated by a model. This152

distance can be quantified. One way to do so is to set it equal to the Hellinger distance.153

For example, in [23], a Hellinger distance-based MSDE is used to estimate the parame-154

ters of a stochastic, dynamic model of a political-ecological system. Within biokinetics,155

Poovathingal and Gunawan [27] use an MSDE to estimate the parameters of a stochastic156

biochemical model. Within economics, Grazzini and Richiardi [28] use MSDE to fit the157

parameters of an ABM of stock market traders, and an ABM of consumers adopting a new158

product. They find their parameter estimates to be minimally biased.159
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1.1.3 Socio-ecological model sensitivity analysis160

A model is sensitive to a set of parameters if small perturbations to their values significantly161

affects the model’s outputs. Helton and Davis [29] review probabilistic sensitivity analysis.162

The authors of [30] perform a probabilistic sensitivity analysis of a complex salmon popu-163

lation dynamics model. In [31], a probabilistic sensitivity analysis of an agricultural model164

is performed in order to assess the sensitivity of its output (net present value (NPV)) to165

misspecified inputs (price, cost, and yield). This author employs high performance comput-166

ing (HPC) to complete the lengthy computations. Based on this experience, this author167

calls for such HPC to be employed to calibrate model parameters – similar to the statistical168

estimation of parameter values discussed herein.169

1.1.4 Integrated statistical assessment of a socio-ecological model’s credibility170

A literature search uncovered no articles describing an integrated statistical assessment171

of a socio-ecological model’s credibility. One article, however, did give a specific suite172

of activities to statistically assess an ecosystem model’s credibility. Focusing on linear173

regression-based forest growth models, Vanclay and Skovsgaard [32] believe the evaluation174

of an ecosystem model should include (1) an interrogation of the model’s logic to deter-175

mine whether it is parsimonious and biologically realistic; (2) a statistical estimate of its176

parameters; (3) point and interval estimates of its prediction accuracy; (4) computation of177

statistical goodness-of-fit tests; and (5) a probabilistic sensitivity analysis. These authors178

believe statistical resampling methods have a potential use in their third and fourth recom-179

mendations. These authors, however, do not apply their recommendations to a case study,180

nor implement them in a software package.181

Johnson and Omland [33] highlight the distinction between model goodness of fit (GOF)182

and model selection and note that GOF diagnostics ignore model complexity (number of183

parameters) and focus exclusively on the model’s fit to data. Yarkoni and Westfall [34]184

call for a shift in focus from building models that pass in-sample GOF tests towards the185
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building of models that have low prediction error rates (out-of-sample performance). This is186

particularly true for models that are used to guide decisions aimed at changing the future187

behavior of a system (out-of-sample). A political-ecological system is, in-part, a model188

of how humans behave and hence, the focus on prediction for psychological models as189

advocated by Yarkoni and Westfall applies to political-ecological models. As Yarkoni and190

Westfall state,“What we will hopefully then be left with are models that can demonstrably191

do something foundational to the study of psychology: reliably predict human behavior.”192

1.2 Simulating a political-ecological system193

Definition 1.1. A political-ecological system simulator (hereafter simulator) is an exe-194

cutable computer program capable of approximating the outputs of a stochastic model of195

a political-ecological system.196

Haas [7, p. 5] describes such a stochastic model:197

As a step towards meeting this need, this book describes an Ecosystem Manage-198

ment Tool (EMT) that links political processes and political goals to ecosystem199

processes and ecosystem health goals. Because of this effort to incorporate200

the effects of politics on ecosystem management decision making, the EMT201

described in this book is referred to as a politically realistic EMT or simply202

the EMT. This tool can help managers identify ecosystem management policies203

that have a realistic chance of being accepted by all involved groups and that204

are the most beneficial to the ecosystem. Haas (2001) gives one way of defining205

the main components, workings, and delivery of an EMT (referred to there as206

an Ecosystem Management System). The central component of this EMT is a207

quantitative, stochastic and causal model of the ecosystem being managed and208

the social groups involved with this management.209

In this simulator, influence diagrams (IDs) (see [35, p. 125]) are used to implement sub-210

models for group decision making, and ecosystem functioning. An ID is a bayesian belief211
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network with deterministic input nodes. For instance, the political-ecological system mod-212

els of Haas and Ferreira ( [16], [36], and [17]) are computationally implemented through213

their attendant simulators.214

The central argument of this article is that for simulators to effectively contribute to215

the development of political-ecological theory and ecosystem management policies, the216

following three activities need to be performed in sequence: (1) statistically fitting the217

simulator’s parameters to data sets of political-ecological actions [37], (2) assessing the218

credibility of this fitted simulator, and (3) running computations on this (now) credible219

simulator to find politically feasible and sustainable ecosystem management policies.220

The first of these activities is fundamental to the success of the subsequent two. As221

an example of the superiority of statistical estimation of a simulator’s parameters relative222

to other ways of assigning them, the authors of [38] find that an ABM fitted with the223

statistical method of maximum likelihood estimation produces a model that outperforms224

the same model calibrated to minimize its root mean squared error (RMSE). Performance225

is defined therein to be the fitted model’s ability to forecast homeowner adoption of rooftop226

solar panels.227

1.3 EMT procedure228

The above-mentioned three activities form part of a step-by-step procedure given in [7,229

pp. 77-78] for using an EMT. A new version of this procedure follows.230

Step 1: Identify the boundaries of the ecosystem to be managed. Typically, this ecosystem231

will host one or more endangered species.232

Step 2: Identify those political groups that directly or indirectly affect this ecosystem.233

Construct submodels of these groups. Cast these submodels as IDs and express them234

in the id language. This language is part of the id software system (see [39]). Use235

theories of cognitive processing to assign hypothesis values to the parameters of these236

group submodels. Load these values into hypothesis parameter files – one file for each237
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group. It is assumed that individuals trained in the cognition of decision making will238

be involved in constructing these submodels.239

Step 3: Construct a population dynamics submodel of all species identified in Step 1.240

Cast this submodel as an ID and express it in the id language. Use ecological theory241

to identify hypothesis values for the parameters of this ecosystem submodel. Load242

these values into a hypothesis parameter file. It is assumed that individuals trained243

in ecology will be involved in constructing this submodel.244

Step 4: Using all of the above files, create a master file that defines the political-ecological245

system simulator composed of these interacting group submodels and ecosystem sub-246

model.247

Step 5: Acquire a data set of political-ecological actions made by some of the groups248

modeled in Step 2, and the ecosystem modeled in Step 3. The ecological component249

of this data set might consist of observations on the spatio-temporal abundance of250

several species.251

Step 6: Use id to statistically fit some subset of the simulator’s parameters to this data252

set using consistency analysis. This statistical estimator (see [23], and [7, pp. 46-52])253

delivers parameter estimates that result in the simulator’s probability distributions254

on its output variables being as similar as possible to empirical distributions derived255

from data while at the same time being as close as possible to those derived from256

political-ecological theory.257

Step 7: Use id to compute jackknife confidence intervals for the parameters estimated in258

Step 6.259

Step 8: Conduct an analysis of the simulator’s credibility (see [7, pp. 179-198]) by using260

id to perform the two separate jobs of (a) estimating the simulator’s prediction error261
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rate through computation of its one-step-ahead prediction error rates; and (b) per-262

forming a deterministic sensitivity analysis using thresholds defined by the parameter263

confidence intervals found in Step 7. If the simulator displays error rates that are no264

better than blind guessing (all options in each group submodel are equally likely),265

or it displays unacceptable sensitivity to some of its parameters, re-formulate one or266

more of the simulator’s submodels and go back to Step 6. Continue in this manner267

until the simulator is credible.268

Step 9: Use id to run a job with this (now) credible simulator to construct the most269

practical ecosystem management plan (MPEMP) (see [7, pp. 52-53]).270

Step 10: Implement this MPEMP in the real world.271

Step 11: As new data becomes available, repeat Steps 6 through 10.272

1.4 Addressing the computational challenge273

Call one execution of the id statistical estimation command, a batch job or simply, a job274

(see [40], and [41]). In general, let a simulator job refer to one execution of the compu-275

tations needed to either (1) statistically estimate the parameters of a political-ecological276

system simulator; (2) compute parameter confidence intervals; (3) compute a measure of277

a simulator’s prediction error rate; (4) perform a deterministic sensitivity analysis; or (5)278

find, using the simulator, a politically feasible ecosystem management policy. Note that279

these five simulator jobs are integrated in that the first two jobs share the same estimator,280

the fourth job needs the confidence intervals found in the second job, and the fifth job uses281

the fitted model that was found by the first job.282

Each of these simulator jobs involves many different algorithms and sub-computations283

to execute those algorithms. Execution of these sub-computations collectively, results in284

the job’s final set of outputs. Call each of these sub-computations, a task.285

Simulator jobs can require large amounts of computer time – orders of magnitude more286
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time than for example, the fitting of a wildlife capture-recapture model with the statistical287

method of maximum likelihood. The need for large amounts of computer time can become288

a challenge for those scientists, government agencies, and NGOs needing to run such com-289

putations. Hereafter, call these groups and individuals who are involved in biodiversity290

protection, ecosystem managers. The handicap these managers face is that funding to sup-291

port the active management of ecosystems can be uneven. For example, circa 2017-2019,292

the United States Environmental Protection Agency (USEPA) is being down-sized by Pres-293

ident Trump’s administration [42]. But managing an ecosystem with the goal of conserving294

its biodiversity requires an on-going analysis of monitoring data as it arrives in real-time295

in order to guide the development of management actions that, when implemented, result296

in successful biodiversity outcomes. This means that ecosystem managers need to have297

alternative computing options should they be temporarily unable to afford supercomputer298

time from an external HPC provider.299

This article argues that a practical way to meet this computational challenge is to300

implement these jobs as many-task computing (MTC) applications. The authors of [43]301

state that many-task jobs are302

loosely coupled that are communication-intensive but not naturally expressed303

using standard message passing interface commonly found in high performance304

computing, drawing attention to the many computations that are heterogeneous305

but not “happily” parallel.306

In other words, jobs that could benefit from distributed computing but, due to their many307

complex and inter-dependent tasks, existing parallelization tools are difficult to apply. As308

explained and shown below, JavaSpacesTM technology (see [44]) is a free and easy-to-learn309

way to program MTC applications that can be run on the computers of an external HPC310

provider or, if necessary, on a grassroots distributed computing environment formed by a311

collection of in-house computers.312
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1.5 Article contributions313

This article makes three crucial contributions to the development of political-ecological314

theory and the use of such theory in the formation of politically-feasible ecosystem man-315

agement policies. These contributions are316

1. the first integrated suite of statistical measures for performing parameter estimation317

and credibility assessment of a political-ecological model and its attendant simulator,318

2. a new method for constructing politically feasible and sustainable ecosystem man-319

agement policies, and320

3. downloadable software for implementing these methods as MTC applications via321

JavaSpaces technology.322

2 Materials and Methods323

First, the statistical theory underpinning each simulator job is given. The Section continues324

with a review of how a JavaSpaces program can be used to code an MTC application. The325

Section concludes with algorithms and runtime issues particular to the casting of simulator326

jobs as MTC applications.327

2.1 Statistical estimation of simulator parameters328

Consistency analysis is a frequentist parameter estimator that is related to MSDE. Hence,329

Hellinger distance is reviewed first before consistency analysis is described.330

2.1.1 Hellinger distance331

Following [23, Appendix], and [17, Appendix S3], one way to define the distance between332

two multivariate probability distributions is as follows. Partition a vector of p random333

variables, U into U(d), and U(ac) – the vectors of discrete and absolutely continuous ran-334

dom variables, respectively. Absolute continuity can be thought of as a strong version of335
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continuity (see [45, p. 210]). Say there are d discrete members of U, and c continuous336

members. Hence, p ≡ d+ c. Let the probability density probability function (PDPF) be337

pfU(u) ≡ ∂

∂U(ac)
P (U(d) = u(d), U(ac) ≤ u(ac)). (1)

Let U|β notate the random vector whose PDPF is parameterized by the components of338

β. For example, an ID might be composed of U1 ∼ Bernoulli(β1) and U2 ∼ Normal(β2 +339

u1β3, β4). The graph of this ID appears in Figure 1, and its parameter vector, β =340

(β1, β2, β3, β4)
′
.

Fig. 1 The graph of the ID wherein U1 influences U2 and both of these nodes are stochastic
(indicated by circles).

341

In terms of the PDPF, the Hellinger distance between two probability distributions is342

∆(β1,β2) ≡
1√
2

[∫
u

(√
pf

U|β1
(ui)−

√
pf

U|β2
(ui)

)2
du

]1/2
(2)

and is bounded between 0 and 1 ( [46]).343

2.1.2 Consistency analysis344

Haas and Ferreira [17] give a description of consistency analysis before applying it to a345

model the political-ecological system of rhino horn trafficking. An abbreviated version of346

this description appears here.347

Definitions348

Let m be the number of interacting IDs in a political-ecological simulator. Let Ui be the349

vector that contains all of the chance nodes that make up the ith ID (either one of the group350

submodels or the ecosystem submodel). Let U|β(ij) be the ith ID’s multivariate probability351

distribution parameterized by the entries in β(ij) under the jth set of conditioning (input)352

node values. Each parameter in the ID is assigned a point value a-priori that is derived353

from either expert opinion, subject matter theory, or the results of a previous consistency354

analysis. Collect all of these hypothesis values into the hypothesis parameter vector, β
(ij)
H .355
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Note that this vector holds the ecosystem manager’s prior beliefs about the point values of356

the model’s parameters.357

Let li be the number of belief networks formed by conditioning the ith ID on all possible358

combinations of its input nodes. There are m − 1 group submodels, and one ecosystem359

submodel. Define360

B(Grp) ≡
(
β(1,1)

′

, . . . ,β(1,l1)
′

, . . . ,β(m−1,1)′ , . . . ,β(m−1,lm−1)
′)′

,

B(Eco) ≡
(
β(m,1)

′

, . . . ,β(m,lm)
′)′

, and

B ≡
(
B(Grp)

′

, B(Eco)
′)′

,

i.e., those parameters that identify all of the group submodels, those that identify the361

ecosystem submodel, and the collection of all of the model’s parameters, respectively.362

As in [7, pp. 17-18], for group submodels, let an in-combination be a set of values on363

the input nodes {time, input action, actor, subject}. Let an out-combination be a set of364

values on the input nodes {output action, target (of that action)}. A group ID selects365

an out-combination by computing the expected value of its terminal node, Overall Goal366

Attainment under the received (given) in-combination – and each possible combination367

of values on the two input nodes of Out-Action and Target. The out-combination that368

maximizes this expected value is selected for output.369

Let an in-out pair consist of an in-combination – out-combination pair. Let T be the370

number of time points at which out-combinations are observed, and {i1, . . . , imO
} (mO ≤ m)371

be the set of indices of those group submodels for which at least one out-combination is372

observed over the observation time interval: [t1, tT ].373

Each of the e output nodes of the ecosystem submodel is stochastic and corresponds to374

an observable ecosystem metric. A run of the simulator produces a set of simulated values375

on each output node at each time point. The mean of these values is an estimate of that376

node’s expected value at that time point.377

Let gS(B) ∈ (0, 1) be a goodness-of-fit statistic that measures the agreement of a se-378
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quence of out-combinations and/or mean values of ecosystem metrics produced by a sim-379

ulator and those of a political-ecological actions data set, S of observed output actions380

and/or observations on the ecosystem submodel’s metrics. Larger values of gS(B) indicate381

better agreement. Let gH(B) ∈ (0, 1) be a measure of agreement between the multivari-382

ate probability distribution on the model’s vector of output nodes that is identified by B,383

and that identified by BH . Again, larger values of gH(B) indicate better agreement. Note384

that gS(B) is the agreement between a sample and a stochastic model, while gH(β) is the385

agreement between two stochastic models.386

Parameter estimator and agreement functions387

A consistency analysis is executed with the following four steps.388

1. Specify the values for BH .389

2. Initialize the model’s parameter values by modifying BH to form Binitial.390

3. Maximize the agreement function, gCA(B) (“CA” for “consistency analysis”) by391

modifying the values of Binitial to form the vector of consistent parameter values, BC .392

4. Analyze the differences in parameter values between those in BH , and those in BC .393

The estimator’s name comes from this final step: analyze the model’s parameters by scru-394

tinizing areas of the subject matter theory that had been used to justify those hypothesis395

parameter values that, surprisingly, have been found to be very different from their consis-396

tent values. This idea of “surprise” is related to the non-bayesian approach to belief revision397

of ranking theory (see [47]). In ranking theory, the model takes the form of a set of proposi-398

tions and hence, broadly speaking, the value of one of the model’s parameters corresponds399

to a proposition. These propositions are ranked by the ecosystem manager from completely400

believable (rank 0) to very unbelievable (rank →∞), i.e., a very “surprising” proposition.401

There are several updating rules in ranking theory. These rules do not depend on the size of402

the data set (the new information), do not require probability distributions on the model’s403
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parameters, and do not involve the calculation of a conditional probability distribution.404

Belief revision within ranking theory proceeds by computing rank-shifts between the old405

rankings and the new rankings. These shifts are determined by min{.} operators on these406

two sets of rankings. The new rankings are assigned based on a subjective interpretation407

of the new information.408

The Maximize step of consistency analysis consists of solving409

BC = arg max
B

{gCA(B)} (3)

where gCA(B) ≡ (1 − cH)gS(B) + cHgH(B), and cH ∈ (0, 1) is the ecosystem manager’s410

priority of having the estimated distribution agree with the hypothesis distribution as op-411

posed to agreeing with the empirical (data-derived) distribution. Haas [23, Appendix] gives412

suggestions for assigning a value to cH . In particular, setting cH to zero turns consistency413

analysis into an MSDE. The subjective assignment of cH in consistency analysis coupled414

with its role in the solution of (3) is how consistency analysis represents the reliability of415

the new data – similar to the device used in ranking theory of subjectively re-assigning416

proposition ranks in the light of new information.417

The agreement between the simulator’s hypothesis distributions and the distributions418

defined by B is gH(B) ≡ 1
m

∑m
i=1 g

(i)
H (B) where419

g
(i)
H (B) ≡ 1− 1

li

li∑
j=1

∆̂
(
β(ij),β

(ij)
H

)
, (4)

and the estimated Hellinger distance between U|βH and U|β is420

∆̂(β,βH) ≡ 1√
2

[
n∑
j=1

[√
p̂f

U|βH
(uj)−

√
p̂f

U|β(uj)

]2]1/2
. (5)

In this estimator, values of the PDPF under an ID’s hypothesis distribution, U|βH and421

its U|β distribution are approximated by first drawing a size-n sample of design points422

from a multivariate uniform distribution on the ID’s chance nodes: u1, . . . ,un; and then423

approximating pf
U|β(ui) at each of these points with a k nearest-neighbor, nonparametric424

density estimator.425
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The agreement between observed output actions and those generated by the simulator426

is427

g
(Grp)
S (B) ≡ 1

mOT

mO∑
k=1

T∑
j=1

I{dikj=yikj}(dikj) (6)

where yikj is the observed action of group ik at time j, and dikj is the submodel-computed428

action of group ik at time j. Let Si ≡ {zi1, . . . , ziT} be the T observations on the ith429

ecosystem metric. The agreement between observed outputs of the ecosystem and those430

generated by the ecosystem submodel is431

g
(Eco)
S (B) ≡ 1− 1

eT

e∑
i=1

T∑
j=1

|zij − ẑij|
Ri

(7)

where Ri ≡ max(Si)−min(Si). These latter two agreement functions form the overall data432

agreement function: gS(B) ≡
[
g
(Grp)
S (B) + g

(Eco)
S (B)

]
/2.433

Algorithm for the Initialize step of consistency analysis434

The Initialize step of consistency analysis is nontrivial due to the discrete nature of the435

function that counts the number of in-out pairs matched between the data and the sim-436

ulator’s output. For many different in-combinations, a group may need to select an out-437

combination that simultaneously maximizes the values of several objectives. The states438

of these objectives in the group’s present situation is represented in the group’s ID with439

situation state nodes. The perceived states of these objectives upon implementation of a440

particular out-combination is represented with scenario state nodes. Two objectives that441

are important to several of the groups studied herein are economic objectives, and militaris-442

tic objectives. Let situation state, and scenario state nodes take on the values of negligible443

(neglig), inadequate (inadeq), and adequate (adequa). Also, let a goal node take on the444

values unattained (unatta), middling (middli), and attained (attain). A group implements445

a decision option that maximizes the expected value of their overall goal attainment446

(OGA) node.447

Based on the decision making theory developed in [7, pp. 83-92], perceived causality in448

each group submodel is such that situation state nodes are influenced by the input action449
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node; and scenario state nodes are influenced by both the corresponding situation state450

node and the output action node. In other words, the perceived status of an objective in451

a scenario is dependent upon its status in the present and the impact of the contemplated452

output action in the future.453

The heuristic: “raise the worst-off objective one level” leads to nine causal sequences454

(Table 1).455

In-Comb. SE SM Output SCE SCM SCEG SCMG SUM
Pattern Action

1 inadeq inadeq 1 neglig inadeq middli unatta 3

2 inadeq neglig 2 neglig neglig middli middli 4

3 inadeq adequa 3 neglig adequa middli attain 5

4 neglig inadeq 4 neglig neglig middli middli 4

5 neglig neglig 5 adequa neglig attain middli 5

6 neglig adequa 6 adequa adequa attain attain 6

7 adequa inadeq 7 adequa neglig attain middli 5

8 adequa neglig 8 adequa adequa attain attain 6

9 adequa adequa 9 adequa adequa attain attain 6

Table 1 Patterns of situation state through scenario goal node values used in the Initialize
step of consistency analysis. SE is situation economic state, SM is situation military state, SC* is
scenario * state, and SC*G is scenario * goal where * is either economic or military. For goal nodes
only, let unatta correspond to a value of 1.0, middli to a value of 2.0, and attain to a value of 3.0.
The SUM column adds these SCEG and SCMG values to produce an illustrative approximation
of the expected value of the OGA node.

Haas [7, pp. 166-169] gives an algorithm to initialize the parameters of each group456

submodel so that the simulator, when run over the time interval of the observed actions457

history (the sample), produces an actions history that matches as many of the observed458

actions as possible. A new version of this algorithm proceeds as follows.459

1. Modify the conditional probability tables (CPTs) of situation state nodes460

and their parents so that the first nine, most-frequent, different patterns of461

observed in-combinations (see Table 1) generate nine different patterns of462

marginal distributions on the economic, and militaristic situation state nodes.463

Two patterns are different if their modal values are different.464

2. Set the CPTs of all scenario state nodes so that the value inadequate has the465
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highest value under any combination of the ID’s situation state, and output466

action nodes.467

3. Modify only those CPT entries that carry an output action pattern number468

given in Table 1 so that they deliver high probabilities on the scenario goal469

nodes.470

Steps 2 and 3 above guarantee that only the output action that is assigned to an in-471

combination pattern produces a high expected value of the OGA node – and hence enjoys472

the highest chance of being selected. This algorithm makes no attempt to maintain agree-473

ment with the simulator’s set of hypothesis distributions. Such agreement is maximized474

within constraints during execution of the Maximize step of consistency analysis.475

The data preparation algorithm forms observed in-out pairs by assuming that a group’s476

action is a reaction to the immediately-preceding action. This may result in the political-477

ecological actions data set containing instances where a group is observed to react differently478

to the same input action on different occasions. Group submodels, however, act as deter-479

ministic input-output functions during the execution of the Initialize step of consistency480

analysis. These two characteristics can result in the fraction of matches with the observed481

in-out pairs being less than one.482

2.2 Delete-d jackknife confidence intervals483

The deterministic sensitivity analysis described in the next Section assumes that confidence484

intervals for each parameter in B are available. One way to find these confidence intervals485

is to compute delete-d jackknife confidence intervals (see [48]). Haas [49, pp. 111-112] gives486

an algorithm for computing a delete-d jackknife confidence interval for a parameter of a487

stochastic model. This algorithm proceeds as follows.488

1. Resample r = n0.97 observations from the observed sample. In other words,489

temporarily delete d ≡ n− r observations from the observed sample. Politis490

and Romano [50] show that confidence intervals based on delete-d subsamples491
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are consistent if, as r → ∞, r/n → 0. One way to meet these conditions is492

to have r = nτ where τ ∈ (0, 1).493

2. With this r-size subsample, compute β∗1 , the consistency analysis estimate of494

the parameter, β.495

3. Repeat Steps 1 and 2 njack times to obtain β∗1 , . . . , β
∗
njack

.496

4. Form a 100(1− α)% confidence interval for β by finding the shortest interval497

that contains (1− α)njack of these β∗i values.498

2.3 Prediction Error Rates499

The simulator’s group submodels produce nominally-valued output in the form of out-500

combinations. The ecosystem submodel on the other hand, can produce continuously-501

valued output, e.g. wildlife abundance values. Two different measures of prediction error502

rate then, are needed. Here, these are the predicted actions error rate (ζ) for action-target503

output, and the root mean squared prediction error rate (εi) for the ith continuously-valued504

ecosystem metric [7, pp. 186-188].505

2.3.1 Predicted actions error rate506

Consider a large but finite number of sequential time points, t1, . . . , tT . At each of these time507

points, one or more of the simulator’s group submodels posts one or more out-combinations.508

Let509

ζ ≡ 1− 1

T − 1

T−1∑
i=1

n
(match)
i+1

n
(obs)
i+1

(8)

where n
(match)
i+1 is the number of simulator-predicted out-combinations at time point ti+1510

that match observed out-combinations at that time point, and n
(obs)
i+1 is the number of these511

observed out-combinations. It is assumed that the simulator’s parameters have been refitted512

to the political-ecological actions data set using data observed earlier than time point ti+1.513

The justification for this assumption is that an ecosystem manager would want to refit the514
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simulator as new actions and/or values on ecosystem metrics are observed before using the515

simulator to predict future group actions and/or future values of ecosystem metrics.516

Say that a group submodel has K possible out-combinations. In the worst case, one of517

these out-combinations has a high probability of being chosen at each time point no matter518

what the input action is. Blind guessing, i.e., assuming all out-combinations are equally519

likely, would predict this out-combination with probability 1/K at each time point resulting520

in an error rate of about 1 − 1/K. An ecosystem manager would prefer the simulator’s521

predictions over predictions based on blind guessing whenever ζ < 1− 1/K.522

2.3.2 Root mean squared prediction error rate523

Let524

εi ≡

[
1

T − 1

T−1∑
j=1

(
z
(obs)
i,j+1 − z

(pred)
i,j+1

)2]1/2
(9)

where z
(obs)
i,j+1 is the observed value of the ith continuously-valued ecosystem metric at time525

point tj+1, and z
(pred)
i,j+1 is the simulator’s predicted value of this metric at time point tj+1526

where the ecosystem submodel has been fitted to data earlier than time point tj+1. Define527

an alternative predictor, namely the naive forecast to be z
(N)
i,j+1 ≡ z

(obs)
i,j (see [51]). And let528

δi be the RMSE of the naive forecast errors.529

2.3.3 Error rate estimation530

To estimate these error rates, begin at time point ts, s > 0. Then, perform the following531

two computations at each of the time points ts, ts+v, ts+2v, . . . , tj, . . . , tnpred
where v > 0532

is the refit interval, npred ≡ b(TD − 1 − s)/vc + 1, tnpred
< TD, and TD is the most recent533

time point in the data set.534

1. Re-fit the simulator with consistency analysis using all observed out-combinations up535

through time tj.536

2. Run this refitted simulator from the first time point in the data set up through time537

point tj+1 to compute predicted values of all output nodes.538
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With these predictions in-hand, compute an estimate of ζ with539

ζ̂ ≡ 1

npred

npred∑
j=s

1−
n
(match)
j+1

n
(obs)
j+1

. (10)

Estimate εi, and δi with540

ε̂i ≡

[
1

npred

npred∑
j=s

(
z
(obs)
i,j − z(pred)i,j

)2]1/2
, (11)

and541

δ̂i ≡

[
1

npred

npred∑
j=s

(
z
(obs)
i,j − z(N)

i,j

)2]1/2
, (12)

respectively.542

Note that the simulator is refitted every v time units. Typically, time is measured in543

years. An ecosystem manager would be constrained by analyst time, computer availability,544

and data acquisition frequency. A typical refit time interval might be every quarter (three545

months), i.e., v = (4× 3)/52 = 0.2308.546

If ε̂i is greater than δ̂i, the naive forecast is preferred over the model’s predictions. In547

this case, the ecosystem manager would be advised to work on refining and/or modifying548

the model and/or simulator until ε̂i is less than δ̂i.549

2.4 Deterministic sensitivity analysis550

Deterministic sensitivity analysis as opposed to probabilistic sensitivity analysis, assesses551

the sensitivity of a model’s outputs to externally-generated, fixed values of the model’s552

inputs (see [52]). Haas [7, pp. 182-183] gives an algorithm for studying a simulator’s553

deterministic sensitivity. A new version of this algorithm is presented next.554

2.4.1 Conditions and responses555

Input for this algorithm consists of a set of DSA conditions, cDSA (“DSA” for “deterministic556

sensitivity analysis”), and a set of DSA responses, rDSA. Each of these sets contains values557

on simulator submodel output nodes. These values can be those of nominally-valued output558

action nodes, or those of continuously-valued ecosystem submodel nodes. A particular559
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pair of these sets embodies a counter-example to the types of simulator outputs that the560

ecosystem manager is hoping to achieve. Typically, a critic or skeptic of the simulator561

would specify cDSA and rDSA.562

2.4.2 Algorithm563

1. Update BH to the most recent value of BC .564

2. Specify cDSA, and rDSA and set the simulator’s time interval accordingly.565

Place all actions contained in either cDSA or rDSA into a file of “observed”566

actions, and all ecosystem responses contained in rDSA into a file of “observed”567

ecosystem outputs.568

For political actions in either of these sets, initialize B(Grp) so that the associ-569

ated group submodels produce them. And, for any actions in either of these570

set that are to not happen (referred to here as complement actions), initialize571

B(Grp) so that they are not produced by the responsible submodel under any572

combination of its inputs.573

3. Perform the consistency analysis Maximize step (see (3)) with this skeptic-574

postulated actions history (composed of postulated group actions and postu-575

lated ecosystem responses). In general, cDSA and/or rDSA may contain some576

mixture of political and/or ecological actions. To ensure a solution is found577

that results in a close match to all such “observed” group actions and/or578

ecosystem variables, set cH to the small value of 0.1 so that the algorithm579

focuses on matching this skeptic-generated “data” rather than staying true580

to the hypothesis distributions.581

4. Find the parameter in BDSA that is the least changed from its value in BH582

relative to its range of scientifically plausible values. Say that it turns out583

to be the lth parameter. Then β(l) is the most sensitive parameter, and the584

difference,
∣∣∣β(l)
H − β

(l)
DSA

∣∣∣ is the accuracy to which this parameter needs to be585
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known. If β
(l)
DSA is inside the 95% confidence interval for β(l) (see Section586

1.3, Step 7), or β
(l)
DSA is a scientifically plausible value for β(l), conclude that587

this analysis supports skeptic’s concerns about the simulator’s sensitivity to588

parameter misspecification.589

The idea of this algorithm is to search for a set of parameter values that is as close to BH590

as possible but causes the simulator’s outputs to change by an amount that is scientifically591

significant. If the values in BDSA are not statistically different from their consistent coun-592

terparts or, are scientifically plausible, then the model’s outputs are excessively sensitive593

to parameter misspecification. This sensitivity in-turn, reduces the credibility of policy594

recommendations derived from the model’s outputs.595

When specifying the condition and response sets with the intention of assessing the596

sensitivity of group i’s submodel, the set cDSA may contain values on output nodes of597

submodels other than group i while the set rDSA will be populated exclusively with values598

on submodel i’s output nodes. This is because the simulator may contain submodels whose599

parameters are sensitive to actions from other groups and/or patterns of ecosystem metric600

values.601

2.5 Ecosystem management policymaking602

Computing the MPEMP is one way to construct an ecosystem management policy. The603

algorithm described and demonstrated herein is new. Its development was motivated by604

earlier algorithms given in [7, pp. 52-53], and [17, Appendix S5]. The idea is to find a605

set of minimal changes in the beliefs held by ecosystem-affecting groups (relative to their606

B(Grp)
H values) so that these groups change their behaviors enough to cause the ecosystem to607

respond in a desired manner. In other words, the MPEMP is the ecosystem management608

policy that emerges by finding group submodel parameter values that bring the predicted609

ecosystem state close to the desired ecosystem state while deviating minimally from B(Grp)
H .610
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2.5.1 Definitions611

Let Q(B) be a random vector composed of a number of the simulator’s ecosystem metrics.612

For example, Q(.) might consist of cheetah abundance, and herbivore abundance in the613

year 2030. Assume that an ecosystem manager desires the ecosystem to be in a particular614

state at a particular future time point. This manager expresses this desired state through615

a set of expected values for Q(B). Call this set of desired values, qd. For example, say that616

it is desired to have 10,000 herbivores and 1,000 cheetah in East Africa in the year 2030.617

This desired ecosystem state is expressed by specifying618

qd = (Herbivores = 10000, Cheetahs = 1000)
′
. (13)

Next, identify those actions that, if taken, would contribute the most towards the619

ecosystem submodel producing the values in qd. And, identify those actions that, if ceased,620

would raise the likelihood of the ecosystem submodel producing the values in qd. Collect621

all of these desirable and undesirable actions into a set called cMPEMP . For example, to622

achieve these desired values, it is believed that more land should be set aside for wildlife623

reserves, and poaching should cease. In this case,624

cMPEMP ={
action(kep) = {create a new national park} ,

action(krr) = {poach for food, poach for cash, poach for protection}C
}
. (14)

where kep, and krr are the Kenya environmental protection agency, and Kenya rural625

residents groups, respectively.626

2.5.2 MPEMP algorithm627

1. Update BH to the most recent BC .628

2. Compute qH ≡ E [Q(BH)].629

3. Specify qd and cMPEMP .630
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4. Compute initial values for B(Grp) with the Initialize algorithm of consistency631

analysis (see Section 2.2.3).632

5. Compute633

BMPEMP = arg max
B(Grp)

{
gH

(
B(Grp)

)
− ||E[Q(B)]− qd||

||qH − qd||

}
(15)

under the set of constraints specified by cMPEMP .634

Note that during the search in Step 5, β
(Eco)
H is unchanged. This algorithm implements one635

way to quantify the concept of a practical ecosystem management policy: associate political636

feasibility with the value of gH

(
B(Grp)

MPEMP

)
where B(Grp)

MPEMP contains the parameters of637

the decision making submodels whose values have been modified from those in B(Grp)
H in638

such a way that now, the sequence of output actions taken by the different groups in the639

simulator cause a desired ecosystem state at a designated future time point.640

A measure of a plan’s political practicality can be defined as641

ψ ≡ g
(Grp)
H (BMPEMP)/g

(Grp)
H (BH). (16)

A plan having a value of ψ close to 0.0 will face significant political resistance to its642

implementation because significant changes to the belief systems of one or more groups643

needs to happen, while one with a value close to 1.0 should not face such stiff resistance.644

2.6 Coding simulator jobs as MTC applications645

The five simulator jobs described above can be computationally expensive. These jobs,646

however, are not easily organized into parallel, independent tasks but rather, can only be647

partially parallelized by breaking each of them into sets of dependent tasks that engage in648

various amounts of data transfer between themselves. For example, a complex task such as649

function optimization is not easily programmed to run on graphics processing units (GPUs)650

that can process only independent sequences of pipelined floating point operations. Such651

a set of complex, inter-dependent tasks fits the definition of an MTC application.652
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But what is the most efficient and cost-effective way to execute MTC applications?653

One way is to run them on cluster computers. This option is motivated by the work of654

Raicu and his coworkers [43] who find that an MTC application can be efficiently run on a655

cluster computer. The authors of [53] assess how efficiently MTC applications run on other656

computer architectures. A cluster computer consists of a large number of so-called personal657

computers (PCs) that are connected to each other through high speed interconnects. It is658

run by an operating system that can assign tasks to one or more of these PCs. An individual659

PC in the cluster is called a compute node. A compute node may possess multiple processors660

(also known as cores). Cluster computing is the dominant architecture of HPC machines.661

For example, the authors of [54] study Big Data analytics on HPC architectures. All of the662

architectures considered therein are cluster-based.663

As Raicu and his coworkers [43] note, there are many advantages to running MTC664

applications on a cluster computer as opposed to running in the Cloud or on a heterogeneous665

collection of PCs. These include666

1. I/O systems on cluster computers can be much faster than on other hardware con-667

figurations.668

2. A core-hour on a cluster computer is often less expensive than many alternatives.669

3. Cloud systems and heterogeneous collections of PCs are typically not as reliable as670

cluster computers.671

4. Cluster computers are often fast enough to produce results in a useful period of time.672

In order to actually run the five simulator jobs, computer programs need to be written,673

compiled, and executed on computer hardware. Translating the mathematical expressions674

of Sections 2.1-2.5 into a programming language is performed by writing code within an675

application program interface (API) that is designed to support the development of task-676

based parallel programs. A runtime system is invoked to execute such programs on com-677

puter hardware. This runtime system delivers data and instructions to individual compute678

28

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/871434doi: bioRxiv preprint 

https://doi.org/10.1101/871434
http://creativecommons.org/licenses/by/4.0/


nodes, starts these compute nodes, collects output and delivers it to a pre-programmed679

recipient. The runtime system also detects faults on compute nodes and within compute680

node processes and delivers the consequential fault information to preprogrammed recipi-681

ents. Indeed, the action of starting a job on a compute node is a small part of the suite of682

inter-connected instructions and events that is needed to execute an MTC application.683

Many programs written for cluster computers use the message passing interface (MPI)684

(see [55]) to communicate between compute nodes. But, as Dursi [56] notes, MPI is a 25685

year old API and, unfortunately for modern MTC applications, operates at too low of a686

level. This is because its basic abstraction level is that of a message and hence remains687

“...essentially at the transport layer, with sends and receives and gets and puts operating688

on strings of data of uniform types.” Dursi [56] reviews the consequences of this low level689

of abstraction:690

Programming at the transport layer, where every exchange of data has to be691

implemented with lovingly hand-crafted sends and receives or gets and puts,692

is an incredibly awkward fit for numerical application developers, who want to693

think in terms of distributed arrays, data frames, trees, or hash tables. In-694

stead, with MPI, the researcher/developer needs to manually decompose these695

common data structures across processors, and every update of the data struc-696

ture needs to be recast into a flurry of messages, synchronizations, and data697

exchange. And heaven forbid the developer thinks of a new, better way of de-698

composing the data in parallel once the program is already written. Because in699

that case, since a new decomposition changes which processors have to commu-700

nicate and what data they have to send, every relevant line of MPI code needs701

to be completely rewritten. This does more than simply slow down develop-702

ment; the huge costs of restructuring parallel software puts up a huge barrier703

to improvement once a code is mostly working.704

For complex computations such as the ones described herein, a higher level of abstraction705
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is needed such as that of a task. The authors of [57] review APIs and runtime systems that706

are designed to support MTC applications. These authors refer to a particular combination707

of an API and a runtime system as a task-based parallelism technology and note that HPC is708

moving away from the message passing paradigm to such technologies. In order to illustrate709

why such a move is needed to make progress in HPC, Dursi [58] gives a detailed comparison710

between MPI programs and those written in other, more modern task-based parallelism711

technologies.712

As identified in [57], an ideal API would have the ability to partition, synchronize,713

and cancel tasks; specify compute nodes for workers to run on; start/stop workers; receive714

task or process fault information; and checkpoint a job should a nonrecoverable fault occur.715

These authors also believe that an ideal runtime system would automatically distribute data716

and code to workers; schedule workers; and deliver fault information to the master compute717

node. In addition, the present author believes that in order to bring many-task computing718

within reach of ecosystem managers possessing only minimal programming skill, the API719

needs to be easy-to-learn, and use operators whose syntax and semantics are independent720

of specific runtime systems and computer hardware configurations.721

2.6.1 JavaSpaces programs722

One way to implement an MTC application is through the JavaSpaces task-based paral-723

lelism technology [59]. A JavaSpaces program can support the master-worker architecture724

wherein a master program runs on one compute node having a unique Internet Protocol725

(IP) address along with nW workers who run on other, internet-accessible compute nodes726

and busy themselves by executing tasks that have been posted by the master on a JavaS-727

pace bulletin board. An application is solved via the bag of tasks model wherein tasks are728

distributed by the master across available workers. The master does this by posting tasks729

on a space, and collecting completed tasks from that space. Batheja and Parashar [60] note730

that731
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This approach supports coarse-grained applications that can be partitioned into732

relatively independent tasks. It offers two key advantages: (1) The model is733

naturally load-balanced. Load distribution in this model is worker driven. As734

long as there is work to be done, and the worker is available to do work, it can735

keep busy. (2) The model is naturally scalable. Since the tasks are relatively736

independent, as long as there are a sufficient number of tasks, adding workers737

improves performance.738

And, Noble and Zlateva [61] find that “The simplicity and clean semantics of tuplespaces739

allow natural expressions of problems awkward or difficult to parallelize in other mod-740

els [62].” Further, Batheja and Parashar [60] address the runtime system component of741

JavaSpaces:742

A JavaSpace program provides associative lookup of persistent objects. It also743

addresses fault-tolerance and data integrity through transactions. All access op-744

erations to objects in the space such as read/write/take can be executed within745

a transaction. In event of a partial failure, the transaction either completes suc-746

cessfully or does not execute at all. Using a JavaSpaces-based implementation747

allows transacting executable content across the network. The local instances748

of the Java objects retrieved from the space are active, i.e. their methods can be749

invoked and attributes modified. JavaSpaces provides mechanisms for decou-750

pling the semantics of distributed computing from the semantics of the problem751

domain. This separation of concerns allows the two elements to be managed752

and developed independently [19]. For example, the application designer does753

not have to worry about issues such as multithreaded server implementation,754

low level synchronization, or network communication protocols.755

In sum, the advantages of a JavaSpaces task-based parallelism technology are:756

1. A high level of abstraction: The future of computing lies with clusters of cluster757
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computers. These computing environments will be fully utilized when scientists can758

write programs that can call other large programs without regard as to how these759

other programs perform their tasks.760

2. Asynchronous, high-level coordination of simultaneous tasks.761

3. Communication protocol is outside of the application code so that scientists need not762

spend time learning and programming inter-processor communications.763

4. Internet-aware: Tasks may be executed by any worker that is reachable through a764

Universal Resource Locator (URL).765

5. Fault-tolerant: Dursi [56] shows that processor failure is almost certain during a job766

that employs thousands of processors. The authors of [63] and [59] both argue that767

this feature makes JavaSpaces a very attractive tool for HPC applications.768

6. Scalable: Only one code need be written and maintained to run jobs on hardware769

ranging from laptop computers to cluster computers. This natural adaptability of770

JavaSpaces programs to heterogenous computing platforms was recognized shortly771

after JavaSpaces was announced [64]. These authors also note that an additional772

advantage of JavaSpaces is that its learning curve is not high – and that this ad-773

vantage is often overlooked in evaluation exercises that are solely focused on runtime774

performance.775

Gigaspaces is a particularly simple and efficient implementation of JavaSpaces tech-776

nology. Specifically, the authors of [65] find that Gigaspaces programs exhibit less inter-777

compute node communication latency than do JavaSpaces programs executed within other778

runtime systems. The primary operations on a Gigspaces space are write, read, change,779

take, and aggregation [66], [67]. Note that although a JavaSpaces program can support780

communication between specific workers independent of the master [44, pp. 108-116], such781
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a program would not have high fault tolerance because the recipient compute node of such782

a message may become unavailable just after the message is sent.783

In summary, the JavaSpaces task-based parallelism technology is much more than sim-784

ply a way to start a Java program. Rather, it is an inter-task communication protocol that785

is asynchronous and anonymous. A JavaSpaces program starts workers, collects worker out-786

puts, adjusts for faults, partitions tasks, and synthesizes the results of completed tasks. All787

of these activities can be programmed without the need to learn a language for the micro-788

management of memory and/or task execution. S1 Appendix A contains shell scripts that789

start and run a JavaSpaces program on a cluster computer. And S1 Appendix B contains790

practical guidance for running a JavaSpaces program on a shared cluster computer.791

Optimization with JavaSpaces792

Optimization of stochastic functions under nonlinear constraints can be implemented in a793

JavaSpaces program via the multiple dimensions ahead search (MDAS) algorithm of Haas794

[7, pp. 219-225]. This algorithm is a parallel version of a nonlinear, constrained optimization795

algorithm, namely the classic Hooke and Jeeves coordinate search algorithm [68].796

MDAS executes by having the master assign each worker a vector of parameter values797

with which to compute the value of the objective function. These vectors are chosen such798

that the next M parameters are searched simultaneously for a minimum. Each worker799

computes the objective function value at its assigned set of parameter values. Once all800

of the workers have returned their function evaluation values to the master, the master801

checks these values for a new minimum (called an improvement). If found, the master802

stores this new best solution. This parallel search is repeated on these dimensions until no803

improvements are found. Then, the algorithm moves on to the next M dimensions. For804

M = 1, MDAS is equivalent to the (sequential) Hooke and Jeeves algorithm.805

Running MDAS with nW = 8 workers (M = 2) gives worst-case, a four-times speedup806

of an optimization job relative to running the algorithm with only one worker. This is807

33

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/871434doi: bioRxiv preprint 

https://doi.org/10.1101/871434
http://creativecommons.org/licenses/by/4.0/


because the sequential version’s inner for loop may need to perform up to 2K function808

evaluations before an improvement is found. For M = 3, MDAS amounts to an evaluation809

of all possible visited locations for the next three dimensions in the inner for loop of the810

sequential version. This requires 2 + (3× 2) + (3× 3× 2) = 33− 1 = 26 parallel evaluations811

of the objective function. When there are at least nW = 26 workers available to perform812

these tasks in parallel, MDAS delivers a six times speed-up over the worst-case of sequential813

Hooke and Jeeves search when K, the number of parameters to be fitted, is a multiple of814

three. In general, to produce a 2M speed up over worst-case sequential Hooke and Jeeves,815

MDAS needs to be run on a cluster computer having nW = 3M − 1 workers. For example,816

running with nW = 242 workers (M = 4) gives worst-case, an order of magnitude speedup817

– and to achieve a 20-fold worst-case speedup (M = 5), nW = 59048 workers are needed.818

As these speedup values suggest, a guaranteed way to speedup MDAS is by increasing819

the number of compute nodes that the optimization job can access. Put another way, the820

inefficient use of a geometrically increasing number of workers is traded for guaranteed821

worst-case reductions in runtime.822

The MDAS algorithm requires master-worker communication at every step (through823

the collection of results, identifying the new best-solution, and posting of new points at824

which to evaluate the objective function). Therefore, MDAS is not an embarrassingly825

parallel algorithm. An embarrassingly parallel job (in the sense of “an embarrassment of826

riches,” see [69]) consists of a set of tasks that can be executed in parallel with no inter-827

task communication. Also, the objective function evaluation tasks are complex involving828

for example, the running of a political-ecological simulator many times to support the829

computation of the consistency analysis objective function. This complexity is qualitatively830

higher than sending messages to update particular memory locations as is typical in an831

MPI-based parallel program.832

There are of course, other algorithms for performing function optimization on a cluster833

computer. MDAS is used here, however, because its worst-case speedup characteristics are834
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known; it is scalable; and, because it only requires solution vectors to be sent out to workers835

but not sent back, it has reduced inter-compute node communication overhead relative to836

other parallel optimization algorithms such as the simulated annealing-based algorithms837

developed in [70] and [71]. Further, unlike algorithms such as simulated annealing, it always838

makes small steps from a feasible starting point and hence is less prone to becoming trapped839

in an infeasible region. This latter property is crucial when working with a function that840

has a complicated feasible region boundary. Here, such boundaries typically arise during841

the optimization of (a) the consistency analysis objective function, (b) the deterministic842

sensitivity analysis objective function, or (c) the MPEMP objective function.843

2.6.2 Simulator job-specific algorithms and runtime issues844

Algorithmic details for how each simulator job is converted to an MTC application follow.845

Consistency analysis846

Consistency analysis is run as an MTC application on a cluster computer by performing its847

Maximize step with the MDAS algorithm wherein each worker runs on its own compute848

node. This makes consistency analysis a straightforward MTC application as it requires849

simply one cluster computer running one JavaSpaces program. In order to both speedup850

evaluation of the objective function and to improve the optimization run’s convergence be-851

havior, smooth objective functions are employed in-lieu of those based on the approximate852

negative Hellinger distance for g
(Grp)
H , and g

(Eco)
H (see (4)). These functions are the negative853

of the Euclidean distance between the parameters at their hypothesis values and those at854

a particular trial point in the optimization run. Call these Euclidean agreement measures855

e
(Grp)
H , and e

(Eco)
H , respectively. Although maximizing these Euclidean agreement measures856

does not guarantee that a point will be found that solves (3), experience described next857

suggests that a point close to this maximal point can indeed be found.858
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Jackknifing859

Jackknifing involves executing consistency analysis on each of njack separate delete-d sub-860

samples. It can be implemented as an MTC application by performing all of these njack861

consistency analysis tasks simultaneously. These njack consistency analysis tasks are in-862

dependent of each other and hence may be computed in parallel with no inter-task com-863

munication, i.e., this algorithm is embarrassingly parallel. Call this set of tasks the job’s864

outer loop. Nevertheless, the computational expense is high as now, the njack consistency865

analysis tasks require njack(3
M − 1) workers.866

Running simultaneous optimization tasks is accomplished by running njack separate867

MDAS algorithms in parallel. This is done by adding an inner loop to the MDAS algorithm868

so that for a given set ofM dimensions, the objective function is independently evaluated for869

each jackknife subsample at each solution point that is called for at this set of dimensions.870

Prediction error rate871

Converting this simulator job to an MTC application involves running a consistency analysis872

task on each of npred subsamples (see Section 2.3.1). This is accomplished the same way873

that the jackknife subsamples are processed.874

Deterministic sensitivity analysis875

The computational demands of a deterministic sensitivity analysis accrue from the consis-876

tency analysis performed in its Step 3 (see Section 2.1.2). See above for how consistency877

analysis is implemented as an MTC application.878

MPEMP computation879

The computational demands of an MPEMP simulator job accrue from the optimization880

problem solved in the MPEMP algorithm’s Step 5 (see Section 2.5.2). Hence, as with881

consistency analysis, an MPEMP job is implemented as an MTC application by performing882

this optimization with MDAS wherein each worker runs on its own compute node.883
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2.7 Case study description884

The following Results section contains a case study that applies the five simulator jobs to885

the credibility assessment and MPEMP computation of an EMT for the conservation of886

cheetah in East Africa. All input files for this simulator are available at [72]. Hereafter,887

this simulator is referred to as the cheetah EMT simulator.888

2.7.1 Overview of the Cheetah EMT simulator889

Haas [7, pp. 97-121] builds a simulator of the interactions between cheetah and humans in890

the East African countries of Kenya, Tanzania, and Uganda. The model consists of group891

submodels for each country’s presidential office (kpr, tpr, upr), environmental/wildlife892

protection agency (kep, tep, uep), non-pastoralist, rural residents (krr, trr, urr), and893

pastoralists (kpa, tpa, upa). In addition, a submodel is built to represent the group of894

conservation NGOs who have operations in at least one of these countries (ngo). All of895

these group submodels can interact with each other. And, each country’s environmental896

protection agency, rural residents, and pastoralists submodels can directly interact with897

a submodel of the ecosystem that spans these three countries (ecosys). This ecosystem898

hosts populations of cheetah and their herbivore prey. This model is formally documented899

in S1 Appendix C.900

An automatic data acquisition system has been gathering data since January, 2007 on901

this political-ecological system (see [37]). This data set contains 1555 actions observed902

from the year 2002 to 2019. S2 Data contains this data set. A portion of this data reveals903

a complex pattern of group actions followed by reactions from other groups (Figure 2).904

Cheetah abundance data is taken from [73], [74], and [75].905

Fig. 2 Observed actions history from East African online news stories for the period from January
2007 through June 2019. The symbol “p” indicates an action taken by a presidential office, “a” an
action taken by an EPA, “r” an action taken by rural residents, “s” an action taken by pastoralists,
and “n” an action taken by an NGO. Selected out-combinations only are labeled. The bottom
plot is observed cheetah abundance.
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3 Results906

3.1 Consistency analysis907

Consistency analysis was used to estimate the parameters of the node: scenario imminent908

interaction with police within the Kenyan rural residents group submodel. A time909

step of 13 days results in each time interval containing about five actions. The Initialize910

step of consistency analysis (see Section 2.2.3) was run to produce a set of initial parameter911

values. For this run, each belief network was simulated with 2000 Monte Carlo realizations.912

Finding the best set of in-out pairs required 4.74 hours on a single PC.913

The initial match fraction (the ratio of the number of observed actions matched by the914

simulator’s output to the number of observed actions) is 0.646. The fraction of actions915

matched regardless of whether the target was matched, is 0.772, and the corresponding916

target match fraction is 0.870. See Table 2 for individual submodel match fractions.917

Submodel nobs nmatch Match nactmatch Action ntrgtmatch Target
fraction match match

fraction fraction

kpr 1 0 0 0 0 0 0
kep 142 90 0.633 90 0.633 141 0.992
krr 1 0 0 0 0 1 1.000
kpa 0 0 0 0 0 0 0
tpr 0 0 0 0 0 0 0
tep 27 15 0.555 15 0.555 27 1.000
trr 0 0 0 0 0 0 0
tpa 0 0 0 0 0 0 0
upr 0 0 0 0 0 0 0
uep 24 15 0.625 15 0.625 24 1.000
urr 0 0 0 0 0 0 0
upa 0 0 0 0 0 0 0
ngo 131 90 0.687 131 1.000 90 0.687
ecosys 0 0 0 0 0 0 0

Table 2 Match fractions from the Initialize step of consistency analysis for the cheetah EMT
simulator.

Next, the Maximize step of consistency analysis was run on the Triton Shared Com-918

puting Cluster (TSCC) at the San Diego Supercomputer Center [76]. For this run, cH was919
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set to 0.99, and each belief network was simulated with 1000 Monte Carlo realizations.920

Nine compute nodes were employed and the maximum number of function evaluations was921

set to 1200. Only those parameters having an initial value different from their hypothesis922

value were modified. This resulted in only 40 of the 459 parameters being active during923

the optimization run – a significant reduction in the problem’s dimensionality. Initial and924

final values under the stochastic agreement measure for gH(.) (4) were computed using 5000925

Monte Carlo realizations for each belief network.926

Under this configuration, the simulator job’s wall clock time was 4.42 hours. The927

solution achieved a 25.5% increase in gCA(B) (Table 3). Further, the device of maximizing928

a Euclidean distance-based measure of agreement between the hypothesis and consistent929

probability distributions did indeed result in an increase in the Hellinger distance-based930

measure of agreement (Table 3).931

Agreement Initial Value Final Value
Measure

g
(Grp)(B)
S 0.6308 0.6000

e
(Grp)
H (B) -41.6800 -29.4314

g
(Grp)
H (B) 0.8468 0.8888

gCA(B) -1.1394 -0.8483

Table 3 Consistency analysis agreement measures for the cheetah EMT simulator.

3.2 Delete-d jackknife confidence intervals932

Jackknife confidence intervals were computed for the parameters that define the scenario933

imminent interaction with police node in the Kenya rural residents submodel of the934

cheetah EMT simulator. The jackknife subsample size is r = 5460.97 = 451, and njack = 5.935

These five subsamples were used to compute 50% confidence intervals. Nine compute936

nodes ran for 4.85 wall clock hours to complete the job. All parameters are significantly937

different than zero. The five widest confidence intervals (Table 4) indicate that estimates of938

the group’s beliefs about being prosecuted for actions they might take are not excessively939
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affected by sampling variability.940

Parameter Lower Boundary Upper Boundary Width

168 0.110 0.362 0.252
165 0.161 0.412 0.251
171 0.211 0.462 0.251
174 0.111 0.262 0.151
183 0.111 0.262 0.151

Table 4 The five widest confidence intervals of parameters defining the node scenario imminent

interaction with police in the Kenya rural residents submodel. These parameters are condi-
tional probability values and hence take values on the unit interval.

3.3 Prediction error rates941

Prediction error rate was estimated by computing one-step-ahead predictions of actions,942

and cheetah abundance from 2016.9 through 2018. This run required 3.25 wall clock hours943

on the TSCC running nine compute nodes. The run produced 57 predictions resulting in944

ζ̂ = 0.4667, and ε̂ = 140.0 for the cheetah abundance metric. The simulator was refitted945

to data five times.946

3.4 Deterministic sensitivity analysis947

Say that the ecosystem manager wishes to use the simulator’s outputs to justify his/her948

position that reducing poaching would slow or reverse the decline in cheetah abundance.949

A skeptic, however, believes that scientifically plausible parameter values in the cheetah950

submodel can be found such that when the model is run from 2019 through 2025 under the951

restriction of no poaching actions, cheetah abundance in the year 2025 will be insignificantly952

different than that produced by the simulator when run under the assumption that current953

poaching rates continue into the future. If such parameter values can be found, the skeptic954

would argue that the model is unable to inform management action selection because955

the model can be calibrated to either recommend increased antipoaching effort or not956

recommend increased antipoaching effort.957
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To represent this skeptic’s belief, cDSA consists of the single constraint: no poaching958

actions occur from the present through the year 2025, i.e.,959

cDSA =
{
action(krr) = {poach for food, poach for cash, poach for protection}C

}
. (17)

And, rDSA is populated with predictions of expected cheetah abundance in the year 2025960

across several regions in Kenya (Table 5). These predicted values are found by running the961

simulator out to the year 2025 under the consistent parameter values found in Section 6.2.962

It is the use of these consistent values that forces poaching rates from 2019 through 2025963

to be equal to current poaching rates.

Region Abundance
Laikipia 200
Samburu 200
Tsavo 145
Marsabit 200
Turkana 40

Table 5 Cheetah abundance predictions in five regions of Kenya for the year 2025 computed
under consistent parameter values. These values make up the set rDSA.

964

The mathematical programming problem (3) with variables consisting of the ecosystem965

submodel’s parameters was solved over the interval 2019 through 2025 and required one966

hour of wall clock time on the TSCC utilizing eight worker nodes. Initial parameter values967

were set to BH with the exception that values in β(krr) were adjusted as necessary so that968

any contemplated poaching action produced a small value of E[OGA]. Doing so caused969

the Kenya rural residents group to avoid poaching actions during the optimization.970

If a solution to (3) were found such that all values in BDSA were scientifically plausible,971

then the skeptic’s position would be supported. As Table 6 indicates, however, the skeptic’s972

position is not supported because the value for the initial death rate, r0 (see S1 Appendix973

C) needed to respect the conditions in cDSA and the responses in rDSA, is unrealistically974

high (0.510) under minor poaching pressure.975
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Parameter Hypothesis value DSA value

minor poaching pressure
r0 0.043 0.510
αr 0.000 0.000
βr 0.001 0.001

moderate poaching pressure
r0 0.400 0.220
αr 0.000 0.000
βr 0.001 0.001

severe poaching pressure
r0 0.600 0.600
αr 0.010 0.010
βr 0.001 0.001

Table 6 Results for the deterministic sensitivity analysis of the ecosystem submodel.

3.5 Overall credibility assessment of the Cheetah EMT simulator976

The cheetah EMT model’s mechanism reflects principles of how political-ecological systems977

function [7, chs. 6-8]. Hence, component (a) of the Patterson and Whelan [10] criteria (see978

Section 1) is satisfied. Statistical estimation of the model’s parameters is the foundational979

step for establishing components (b) and (c). The model’s confidence intervals indicate980

that a selection of the model’s parameters cannot be ignored and can be estimated without981

excessive uncertainty. The model’s prediction error rates, however, are high. Finally, the982

model is resistant to a skeptic-created scenario engineered to show the model being unable983

to inform management action selection.984

3.6 Finding the MPEMP985

Say that it is desired to have 5,000 herbivores and 500 cheetah in East Africa in the year986

2030. These target values are expressed by specifying987

qd = (HrbvrNm(2025) = 3000, ChthNm(2025) = 200,

HrbvrNm(2030) = 5000, ChthNm(2030) = 500)
′
. (18)
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To achieve this ecosystem state, more land needs to be set aside for wildlife reserves, and988

poaching needs to cease. These conditions are expressed by setting989

cMPEMP ={
action(kenepa) = {create a new national park}

}
,

action(kenrr) =
{

poach for food, poach for cash, poach for protection
}C}

. (19)

Group beliefs that are to be changed are those of the imminent interaction with police990

node of the Kenya rural resident group.991

The simulator job for finding the MPEMP formed a 108-dimensional optimization prob-992

lem. When run with eight worker nodes on the TSCC, this simulator job required 2.97993

wall clock hours to complete. Initial and final values of g
(krr)
H (B) (4) were computed using994

5,000 Monte Carlo realizations for each belief network. The MPEMP actions history (Fig-995

ure 3) is such that Kenyan rural residents substitute the action verbally protest national996

park boundaries for poaching actions. In spite of this behavioral change, however, cheetah997

abundance does not attain the desired level by the year 2030.998

Fig. 3 The cheetah EMT simulator’s actions history under the MPEMP. See Figure 2 for symbol
legend. Lines connect action-reaction sequences. For example, one frequent action sequence in
Tanzania is poaching, followed by a negative ecosystem status report, followed by a land gift to
the poor.

This plan’s ψ value is 0.845 meaning that this plan is not expected to face severe999

resistance to its implementation.1000

4 Discussion1001

A model has been described of the political and ecological processes at play that characterize1002

the dynamics of an ecosystem being impacted by and impacting several different groups1003

of humans. An integrated suite of statistical methods has been presented for assessing1004

its credibility, and computing politically feasible ecosystem management plans with it.1005

43

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/871434doi: bioRxiv preprint 

https://doi.org/10.1101/871434
http://creativecommons.org/licenses/by/4.0/


Free software has been demonstrated that implements these methods on high performance1006

computing platforms as one cost-effective way to support the lengthy computations that1007

these methods entail. These contributions for the first time, enable ecosystem managers1008

to develop credible models with which to manage an ecosystem that contains endangered1009

species. Given the unprecedented decline in the earth’s biodiversity, the potential impact1010

of this contribution is difficult to overstate.1011

The EMT procedure given in this article can be used to build political-ecological models1012

for other ecosystem management challenges such as air quality, freshwater pollution, soil1013

contamination, and waste management. But, as indicated by the consistency analysis of1014

the cheetah EMT simulator, current computing resources can support the simultaneous1015

fitting of only a modest fraction of the parameters of a large, policy-relevant simulator.1016

4.1 Other statistical procedures for credibility assessment1017

The first four simulator jobs described herein do not support in-sample GOF tests nor model1018

selection statistics. A Monte Carlo hypothesis test of a model’s GOF, however, could be1019

found by first building a contingency table whose columns partition the action history’s1020

time interval into 10 or so subintervals, and whose rows index unique out-combinations in1021

the actions history. Each cell in this table holds the observed number of out-combinations1022

in its time subinterval along with the number of out-combinations generated by the model1023

over this time subinterval. The observed chi-squared test statistic for this table would1024

be computed. A Monte Carlo technique would be used to find the p-value for this GOF1025

hypothesis test because there are dependencies across the time subintervals (see [77, pp. 20-1026

22]). This would be done by simulating a large number of Monte Carlo action histories1027

using the estimated model and computing the chi-squared test statistic for each. Finally,1028

the p-value would be found as the fraction of these test statistic values that exceed the1029

observed test statistic value. See [78] for a discussion of this technique.1030

In agreement with Yarkoni and Westfall [34], however, the present author believes that1031
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the final arbitrar of a good model ought to be its out-of-sample prediction error rate. Note1032

that the prediction error rate estimator of Section 2.3.1 is an out-of-sample estimator.1033

To address the model parsimoniousness goal of model selection procedures, a model1034

of a political-ecological system whose simulator exhibits low prediction error rate, might1035

be made more parsimonious by first setting those parameters whose confidence intervals1036

include zero to very small, fixed values – and then re-computing the model’s prediction1037

error rate to verify that this now more parsimonious model continues to perform at the1038

desired level. See [79] for the reason why confidence intervals may be used to conduct1039

hypothesis tests.1040

4.2 Automatic data streams1041

As exemplified by the modest cheetah abundance sample size reported in Section 3.1, a1042

limiting factor for applying the suite of statistical methods described herein is the contin-1043

uous availability of observations on many ecosystem metrics. In other words, to keep a1044

political-ecological simulator relevant for policymaking, the simulator should be regularly1045

refitted to data as new political-ecological is acquired. This regular activity is made more1046

convenient if automatically-acquired streams of political-ecological data are continuously1047

available. See [37] for techniques to create and read such streams.1048

4.3 Funding cluster computer time1049

HPC providers that offer their compute cycles on the open market include (a) the SDSC [76],1050

(b) Ohio State University’s Supercomputer Center [80], and (c) the private firm, Sabalcore1051

Computing Inc. [81]. Some of these providers allow users to purchase one or more compute1052

nodes for their own, dedicated use. But investing in these so-called “condominium compute1053

nodes” does little to help a user gain access to large numbers of compute nodes.1054

Until cluster computers become affordable for ecosystem managers, these managers1055

can meet their computing requirements in the face of uneven funding via a JavaSpaces1056

program running on their in-house family of workstations. There is no setup or special1057
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software needed other than assigning an IP address to each workstation and installing (free)1058

JAVA and (free) GigaSpaces [66] on each workstation. An important characteristic of this1059

approach is that computing costs are now part of the agency’s office computer budget, i.e.,1060

capital expenditures rather than the agency’s budget for services, e.g. consultant fees. As1061

mentioned in Section 2.5, however, a cluster of workstations may not be as reliable nor as1062

fast as a cluster computer.1063

5 Conclusions1064

The five simulator jobs developed and demonstrated herein show that models of political-1065

ecological systems can be built, statistically estimated, and subjected to rigorous credibility1066

assessment. They can also be used to form ecosystem management policies. But running1067

these jobs can require large amounts of computation. Coding and running them as MTC1068

applications is one way to make them maintainable, financially feasible, and timely. The1069

mathematics and computer code needed to perform such computations have been presented1070

and demonstrated herein. All of this code may be downloaded from [39].1071

The future of ecosystem management lies in finding workable policies that address not1072

only what needs to be done to conserve ecosystems under anthropogenic pressure, but1073

also the needs and aspirations of those humans who interact with such ecosystems. Build-1074

ing models of these political-ecological systems can help address these challenges but new1075

computational approaches are needed to discover effective and politically implementable1076

management actions from these models. This article provides one such new approach.1077
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