

1

2 Optimizing an eDNA protocol for monitoring endangered
3 Chinook Salmon in the San Francisco Estuary: balancing
4 sensitivity, cost and time.

5

6 Thiago M. Sanches^{1*}, Andrea M. Schreier¹

7

8 Animal Sciences, University of California-Davis, Davis, California, US

9

10 *Corresponding Author

11 E-mail: tmsanches@ucdavis.edu

12

13 **Abstract**

14 Environmental DNA (eDNA) analysis has gained traction as a precise and cost effective method
15 for species and waterways management. To date, publications on eDNA protocol optimization have
16 focused primarily on DNA yield. Therefore, it has not been possible to evaluate the cost and speed of
17 specific components of the eDNA protocol, such as water filtration and DNA extraction method when
18 designing or choosing an eDNA pipeline. At the same time, these two parameters are essential for the
19 experimental design of a project. Here we evaluate and rank different eDNA protocols in the context of
20 Chinook salmon (*Oncorhynchus tshawytscha*) eDNA detection in an aquatic environment, the San
21 Francisco Estuary. We present a comprehensive evaluation of multiple eDNA protocol parameters,
22 balancing time, cost and DNA yield. For estuarine waters, which are challenging for eDNA studies due to

23 high turbidity, variable salinity, and the presence of PCR inhibitors, we find that a protocol combining glass
24 filters and magnetic beads, along with an extra step for PCR inhibitor removal, is the method that best
25 balances time, cost, and yield. In addition, we provide a generalized decision tree for determining the
26 optimal eDNA protocol for other studies on aquatic systems. Our findings should be applicable to most
27 aquatic environments and provide a clear guide for determining which eDNA pipeline should be used for
28 a given environmental condition.

29

30 **Author Summary**

31 The use of environmental DNA (eDNA) analysis for monitoring wildlife has steadily grown in recent
32 years. Though, due to differences in the ecology of the environment studied and the novelty of the
33 technique, eDNA currently shows a lack of standards compared to other fields. Here we take a deep look
34 into each step of an eDNA assay, looking at common protocols and comparing their efficiencies in terms
35 of time to process the samples, cost and how much DNA is recovered. We then analyze the data to provide
36 a concise interpretation of best practices given different project constraints. For the conditions of the San
37 Francisco Estuary we suggest the use of glass fiber filtration, the use of paramagnetic beads for DNA
38 extraction and the use of a secondary inhibitor removal. We expect our findings to provide better support
39 for managers to decide their standards ahead of project submission not only for estuarine conditions but
40 for other waterine conditions alike.

41

42 **Introduction**

43 Environmental management policies rely heavily on measurements of the spatial distribution of
44 habitat occupancy of species. In the past decade, environmental DNA (eDNA) has gained traction as one
45 of the most sensitive and cost effective monitoring methods [1], allowing researchers to better estimate
46 species occupancy rates in a given habitat. Due to high variability in the studied environments, currently,

47 there are no clear guidelines to assist investigators in choosing an optimal protocol for their particular
48 eDNA monitoring studies.

49 In this study, we separate and optimize four important steps for eDNA biomonitoring of delta estuarine
50 waters, which are characterized by elevated concentrations of solid suspended particles and fluctuating
51 levels of salinity [2]. We comment on the specifics of each step for eDNA biomonitoring and develop a
52 concise guideline to help determine which approach is most suitable for a set of scenarios. To lessen the
53 burden of comparing DNA isolation methods on future investigators, we provide a framework that should
54 help make more informed decisions, taking into account the specifics of their study requirements.

55

56 **The four main steps of an eDNA pipeline**

57 The protocol to isolate environmental DNA from water samples can be described in four steps:
58 filtration, DNA extraction, inhibitor removal and DNA amplification in order to estimate the initial
59 concentration of eDNA [3]. In the filtration step, the water samples, with preferred volumes ranging from
60 50 mL to 1 liter in previous studies, are pressure-pumped through a membrane filter which captures the
61 free DNA as well as tissue and cells suspended in the water. The next step is to extract DNA from the
62 filter using conventional extraction methods, which were developed to isolate large nuclear DNA fragments
63 from tissue. However, in the case of eDNA, it is preferable to target small fragments of mitochondrial
64 genes as they have a higher copy number per cell compared to nuclear DNA. Then, as the filter may also
65 capture high concentrations of PCR inhibitors, it is often necessary to use a secondary inhibitor removal
66 step to further isolate the DNA from contaminants [4]. Last, the isolated DNA is amplified using quantitative
67 PCR (qPCR) with primers specific to the target species, and the initial amount of the target eDNA is
68 determined based on the Cq method. Although it is possible to use conventional PCR, this method
69 significantly underperforms compared to qPCR in terms of sensitivity, and even when DNA is successfully
70 amplified it provides less informative data [5].

71

72 PCR inhibitors

73 PCR inhibitors are a group of substances that can inhibit PCR amplification. Their inhibiting
74 mechanism varies between affecting the template DNA, the polymerase or other reagents necessary for
75 the reaction. PCR inhibitors can be catalytic (e.g. proteases degrading proteins and phenol degrading
76 DNA) or work through competitive binding (e.g. melanin forming a complex with the polymerase and humic
77 acid interacting with the DNA template) [6]. Humic matter and proteases are typical PCR inhibitors present
78 in high concentrations in turbid waters and other environmental samples [6,7].

79

80 Estuarine waters and fish detection

81 In this study we optimize eDNA biomonitoring for estuarine waters, as this habitat is essential for
82 the early developmental stages of several anadromous species, including our target species, Chinook
83 salmon (*Oncorhynchus tshawytscha*). The estuarine environment provides a challenge for eDNA
84 biomonitoring as the elevated density of solid particles, measured by turbidity levels, can bind to the DNA
85 and clog the pores of the filters, limiting the volume of water that might be filtered. Also, estuaries have
86 been shown to have elevated levels of PCR inhibitors [8,9]. Therefore, we assume that if our DNA
87 amplification-based experiments work in these complex conditions, the same approach could also be
88 applied to less turbid freshwater and marine conditions.

89

90 Chinook Salmon as a target

91 We targeted Chinook Salmon in our experiments for a variety of reasons. First, as a widespread
92 species in the North American Pacific Northwest, it has invaluable importance for the stability of the marine
93 ecosystem of the region [10] and at the same time, provides a critical source of income for historic fishing
94 communities [11,12]. In California, the Central Valley Spring-run, Fall-run and Winter-run Chinook salmon
95 are listed as vulnerable while the Sacramento River winter-run and Central Valley late Fall-run are listed

96 as endangered [13]. Little is yet known about the spatio-temporal distribution and estuarine habitat usage
97 of pre-smolt juvenile Chinooks during their annual out migration to the ocean. In this life-stage, juvenile
98 Chinook salmons runs blend together and use this period to grow before leaving the estuarine
99 environment. Larval survival in this stage has major implications to the population size of the species [14].
100 Conventional survey methods have encountered numerous difficulties to sample the rare juvenile Chinook
101 in the marshland conditions of the SFE. Developing a high precision, high throughput eDNA protocol
102 optimized for estuarine waters will allow managers to have a better understanding of the habitats used by
103 Chinook in their early life-stages.

104

105 **Accounting for cost and time in experimental design**

106 To decide on the most practical estuarine eDNA protocol, we first need to determine what it means
107 for a protocol to be efficient. In our case we listed our priorities in the following order: 1) The eDNA yield
108 must be adequately sensitive in realistic scenarios; 2) The protocol must be fast and scalable, and 3) The
109 protocol must be cost effective, considering that reagent cost is the main driver of cost per sample. This
110 order of priorities is influenced by several factors that include species abundance and costs. If the target
111 species is ubiquitous and present at high densities, the DNA yield constraint can be loosened, allowing
112 the use of faster and more cost-conscious protocols. If labor cost is inexpensive, choosing a more time
113 intensive yet cheaper protocol will maximize the number of sampling points. On the other hand, in
114 situations where labor accounts for much of the costs, choosing less time intensive protocols will allow
115 more sampling points for the project.

116

117 **Results and Discussion**

118

119 **Interference between filter type and extraction method is**
120 **negligible**

121

122 We first examined different methods for the initial two steps of an eDNA pipeline, filtration and DNA
123 extraction, and tested for interference between these steps. In general, when optimizing a protocol
124 consisting of several steps, it is important to identify if previous steps interfere with the effectiveness of
125 subsequent steps. In our case the main possible interference is between the filter used and the extraction
126 method. The yield percentage of a certain extraction method could change depending on which filter was
127 used. Possible reasons for interference between filter and extraction method include different particles
128 binding differentially to filters and extraction methods not isolating DNA from all types of particles at the
129 same yield percentage. The models that we tested are the following:

130

131 Model with interference:

$$132 Y \sim Y_f(Y_e - \text{interference}(E|F)) - I_f I_e * \begin{cases} 0, & \text{if secondary inhibitor removal is used} \\ 1, & \text{otherwise} \end{cases} \quad (1)$$

133

134 Model without interference:

$$135 Y \sim Y_f Y_e - I_f I_e * \begin{cases} 0, & \text{if secondary inhibitor removal is used} \\ 1, & \text{otherwise} \end{cases} \quad (2)$$

136

137 For both widely-applicable information criterion (WAIC) and Leave-one-out cross validation (LOO) the
138 model without interference was selected with a weight of 1 in both cases [17,20]. One form of visualizing
139 the absence of interactions is that the ranking order of filter yield (1st *Cellulose nitrate* - 2nd *Glass fiber* -
140 3rd *Filter paper N1*) does not change independently of which extraction method is chosen (Fig 1A).
141 Similarly, the yield ranking for extraction methods is not affected by filter choice. (Fig 1B). Only the NaOH

142 method breaks the independence rule for the nitrocellulose filter. In this case, target DNA could not be
143 amplified from NaOH extractions without secondary inhibitor removal, resulting in an upwards skewed
144 average of the DNA yield as the samples without secondary inhibitor removal were not taken into account.

145

146 **Figure 1: Relationship between total DNA yield and filtration and extraction protocols.** (A) No
147 crossing between lines indicates that on average, DNA yield ranking for the filters is independent of the
148 extraction protocol. Error bars represent the 95% confidence intervals. The combination of Whatman filter
149 and NaOH extraction wasn't able to amplify the target Chinook DNA. (B) No crossing between lines
150 indicates that on average, DNA yield ranking for the extraction method is independent of the filter type.
151 The NaOH extraction protocol is the only case where the ranking order is not maintained and can be
152 explained by the added effects of carry-on inhibitors.

153

154 The lack of interference between steps shows that for future optimization tests, it is not necessary to test
155 all the possible combinations of filters and extraction methods at the same time. Instead one might test
156 each section of the protocol independently and converge on the optimal method. Therefore, it is possible
157 to test more methods for each step and increase the number of replicates for each test in future
158 optimization experiments.

159

160 **The nitrocellulose filter can retain the most DNA per volume while**
161 **the glass filter is the most resilient to high levels of turbidity**

162 Next, we compared DNA yields from three different filters. The nitrocellulose filter outperformed
163 the glass fiber filter in terms of DNA yield by 1.6 times and the Whatman n°1 filter by 3.75 times on average
164 (Fig 2). In other words, 1.6L and 3.75L of water would need to be filtered through a glass fiber filter or
165 Whatman n°1 filter respectively to isolate the same amount of DNA as filtering 1L of water through a
166 nitrocellulose filter. However, the glass filter outperforms the nitrocellulose and Whatman filters in terms

167 of filtration time, with the glass filter not only being drastically faster but also more consistent and resilient
168 to variations in turbidity (Fig 3). Therefore, we can conclude that for the context of estuarine waters, the
169 glass filter is optimal in terms of DNA yield, speed, and cost.

170

171 **Figure 2: Distribution of DNA capture ratio for each filter type from the Automatic Differentiation
172 Variational Inference model.** The broadness of the curve shows the variability of the ratio of the input
173 DNA that binds to the filter. The peak of each distribution is the mean yield ratio of DNA recovery for that
174 filter type. The nitrocellulose filter yielded the highest recovery ratio with little efficiency overlap
175 compared to glass and Whatman filters.

176 **Figure 3: Percentiles and medium filtration time in order to filter 1L of estuarine water for each
177 filtration method.** The glass filter outperforms nitrocellulose and Whatman by a significant margin in
178 terms of average filtering time and consistency in the filtering time. Dots are filtration events while the
179 black line represents the median value filtering time. Boxes indicate 10% quantiles.

180

181 **QIAGEN DNA extraction is the most sensitive and reliable, paper
182 extraction is the fastest and most cost effective, and magnetic
183 beads is the most balanced method.**

184 All extraction methods could yield enough eDNA to be detectable by qPCR amplification. The
185 Qiagen DNEasy kit had the highest DNA yield, outperforming NaOH by 1.7 times, magnetic beads by 2.26
186 times, direct to qPCR dipsticks by 9.71 times and regular dipsticks by 358 times (Fig 4). At the same time,
187 the Qiagen kit is by a considerable margin the most time-consuming method, requiring 77 minutes to
188 process 18 samples. In contrast, the direct to qPCR dipstick approach was the fastest and most cost-
189 efficient method by a wide margin. Currently, the major bottleneck of our experiments is the time required
190 to process the samples. Yet, subsequent tests have shown that the use direct dipstick extraction drastically

191 lower the probability of amplification in cases where the species of interest is rare. Therefore, we consider
192 the magnetic beads to be the optimal method for estuarine waters.

193 We estimated our costs for the most-used DNA extraction kits. Alternative kits might be used in order to
194 reduce costs. As an example, Ampure XP is 100 times more expensive than making a magnetic beads
195 solution in-house [21], though this cost reduction is at the expense of lower reproducibility and therefore
196 not optimal for certain projects. Buying in bulk is also other alternative to reduce costs, though that might
197 be limited to initial funding of the project.

198

199 **Figure 4: Modelled distribution of percentage yield for each extraction protocol.** The width of each
200 of the curves shows the variability in modelled yield. The peak of the distribution is the mean yield per
201 extraction type. QIAGEN DNeasy yields the best yield with little overlap with other methods. Meanwhile
202 magnetic beads and NaOH have shown similar distributions with significant overlap, while both dipstick
203 methods underperform the other methods. It is important to note that this plot does not take into account
204 PCR inhibitor carryover, which might vary significantly between methods.

205

206 Yield is mostly dependent on extraction method

207

208 The extraction method was shown to be the most influential factor for the eDNA yield from the
209 random forest aggressor analysis (Fig 5). Therefore, further optimization experiments should focus on this
210 step, experimenting with different protocols to extract the eDNA in order to maximize protocol eDNA yield.
211 Meanwhile, in the context of our experiments, the removal of inhibitors was shown to have little impact to
212 the total DNA yield estimated by qPCR, although published data [4] have shown that inhibitor removal
213 highly influences the amplification probability of the qPCR reaction.

214

215 **Figure 5: Influence of each eDNA protocol segment to total eDNA yield ratio estimate.** The extraction
216 method was the factor that had the highest influence on the total eDNA yield of the total protocol, while
217 inhibitors didn't have a significant impact compared to the other sections of the total protocol.

218

219 Our experiments have shown comparatively little influence of the use of secondary inhibitor removal to
220 the total eDNA yield. Though this result contradicts at some degree our pilot study for estuarine juvenile
221 chinook as well as other published data. Causes for this discrepancy might be resultant of several
222 nonexclusive factors. First inhibitors in general work by binding to DNA strands and not as catalysts,
223 therefore if the ratio between eDNA:inhibitors is significantly elevated, as we would expect in tank
224 experiments, we would expect minimal effects of the inhibitors. Another possibility is that at the sampling
225 location, on the sampling date and time, there were fewer inhibitors than usually observed in estuaries.
226 Another possible explanation is that the yield variance between the extraction methods and filters surpass
227 the yield variance due to the inhibitor removal step, which doesn't mean this step won't significantly
228 influence the DNA yield of the experiment. Last, PCR inhibitors might not affect the eDNA retrieval but
229 only the probability of amplification. This last observation might also explain why the probability of
230 amplification and DNA yield aren't always fully correlated. Therefore, considering this experiment results
231 and previous findings we consider that secondary inhibitor removal is advised if possible as it improves
232 the DNA yield and amplification probability in the context of estuarine samples.

233

234 **Effects of secondary inhibitor removal varies between filters and**
235 **extraction method**

236

237 We observed that the secondary inhibitor removal step always outperformed skipping this step.
238 Regressions from Figs 6A and 6C were always positive and the distributions from Figs 6B and 6D were
239 always greater than zero. The nitrocellulose filter and the NaOH extraction were the methods that carried

240 the most PCR inhibitors, while the other methods for each step showed a high overlap of their carryover
241 inhibitor distributions. Secondary inhibitor removal was essential to observe any amplification using the
242 NaOH extraction method, which also suggested that this method is inefficient at removing PCR inhibitors.

243

244 **Figure 6: Effects of adding a secondary inhibitor removal step to the eDNA estimation protocol.**
245 (A-B) DNA yield variation of using a OneStep PCR Inhibitor Removal[®]. The nitrocellulose filter produced
246 the highest inhibitor carryover levels at the same time it captured the highest percentage of free eDNA.
247 This suggested that the nitrocellulose filter captured particulates with indiscriminately with high efficiency
248 (C-D) Estimated distributions for inhibitor carryover for filter and extraction method. Aside from NaOH
249 extraction, other methods had similar distributions of carryover PCR inhibitors with high overlap.
250 Therefore, NaOH extraction, even if it has an elevated eDNA yield, doesn't properly address the high
251 levels of PCR inhibitors commonly encountered in environmental samples.

252

253 In most cases, using a glass fiber filter and magnetic beads would be the most practical method
254 to generate the maximum amount of information obtained about fish distribution given the constraints of
255 our study. Our experiment suggests that DNA extraction from the filters is the most time-consuming step
256 and most variable in terms of efficiency; therefore, this is the step which should be decided with utmost
257 care in order to maintain the high-throughput and useful detection limit of the desired methodology. For
258 this reason, magnetic beads DNA extraction is a promising alternative to silica column extraction, as this
259 method strikes the balance between yield, amplification probability, carryover PCR inhibitors and time to
260 process samples. Meanwhile the cost of using magnetic beads can be mitigated by developing the
261 necessary reagents in-house. Though in specific cases different pipelines might yield better results. For
262 those scenarios, we constructed a simple decision tree for choosing the best methodology various
263 possible study for each scenario (Fig 7). We also ranked the pipelines, sorting them by DNA yield, which
264 should be the main parameter for the pipeline selection. Then, once established which pipelines have a
265 DNA yield that fits the project, balancing time and cost of the pipelines (Fig 8).

266

267 **Figure 7: Decision tree for choosing the protocol which will yield the most information given**
268 **research constraints.** A glass filter is recommended in most cases, as long as the focus isn't maximizing
269 DNA yield with no time or cost constraints. Magnetic beads also are advised in general for its balance
270 between DNA yield and time to process the samples, while cost can be mitigated by producing magnetic
271 beads solution in-house (~\$0.55/mL) instead of buying Ampure XP (\$15–\$70/mL) [21].

272 **Figure 8: Comparison between eDNA protocols for DNA yield, cost and time to process 96**
273 **samples.** Methods were sorted by yield and shown in \log_{10} scale.

274

275 **Methods**

276

277 **Ethics statement**

278 We sampled water in accordance with the University of California Davis Institutional Animal Care and Use
279 Committee (USDA registration: 93-R-0433, PHS Animal Assurance A3433-01) under the protocol number
280 #20608.

281

282 **Experimental Design**

283 We tested three biological replicates for every combination of filter, extraction method and inhibitor
284 removal and measured the amount of recovered eDNA using qPCR Cq values and a DNA standard curve,
285 obtained from a fin clip serial dilution on the same plate (Fig 1). Input DNA estimation is described in the
286 methods section. We defined an equation that describes how the efficiency of each step influences the
287 total amount of recovered eDNA:

288

289
$$Y \sim Y_f Y_e(E|F) - I_f I_e * \begin{cases} 0, & \text{if secondary inhibitor removal is used} \\ 1, & \text{otherwise} \end{cases} \quad (3)$$

290 where:

291 Y :ratio of input eDNA that was amplified by the qPCR

292 Y_f :ratio of input eDNA that binds to filter

293 $Y_e(E|F)$:ratio of eDNA bound to the filter that is isolated by the extraction method

294 I_f :filter inhibitor carryover

295 I_e :extraction method inhibitor carryover

296 $I_f I_e$:ratio of input eDNA not available to amplification due to inhibitors

297

298 **Figure 9: Scheme of steps for an eDNA protocol with tested methods for each step.** Cost and
299 processing times (in minutes) of each method are shown next to the method name. Number of samples
300 for the measured times varies as the number of samples that can be run in parallel varies between steps.
301 Costs are estimated per sample.

302

303 Then, based on this equation we used Automatic Differentiation Variational Inference (ADVI) [15] to
304 estimate the distribution of the parameters that maximize the likelihood of the observed yields.

305

306 **Sampling**

307 To replicate realistic water conditions in terms of salinity, temperature and turbidity while also
308 controlling the presence and amount of Chinook DNA, we combined water samples from a tank containing
309 a high density of juvenile Chinook with an estuarine water sample from a representative location of pre-
310 smolt Chinook habitat in the San Francisco Estuary. The estuarine water biological replicates consisted
311 of 500mL of surface water taken with a 1L measuring cup (sterilized by rinsing in 20% bleach solution and
312 then rinsing in DI water) from Suisun Bay, California (38°11'16.7"N 121°58'34.5"W) and collected in a 1L

313 Nalgene bottle. Next, using another sterile measuring cup, we added 500ml of tank water known to hold
314 Chinook salmon DNA to each estuarine water biological replicate. The 680L tank contained 906 Chinook
315 salmon of approximately 11 cm in length. This mixture allowed us to both control Chinook density and
316 observe similar PCR inhibitor levels as those observed in the estuary. In total, we produced 85 samples,
317 which including a deionized water sample control, a tank water only control and a Suisun Bay water
318 control.

319

320 **Estimation of average input eDNA**

321 To estimate the average input DNA from the tank water we spiked 10 samples of 1L surface water
322 from the Suisun Bay, California (38°11'16.7"N 121°58'34.5"W) with varying concentrations of isolated
323 Chinook and green sturgeon (*Acipenser medirostris*) DNA totaling 3 samples with 1ng/L, 3 samples with
324 0.1ng/L and 3 samples with 0.01ng/L for the Chinook salmon samples and 3 samples with 10ng/L, 3
325 samples with 1ng/L and 3 samples with 0.1ng/L for green sturgeon. We tested for green sturgeon
326 concomitantly to validate the protocol in a multispecies manner and verify that probe specificity and
327 detection limit doesn't affect the DNA yield of the protocol. The last sample was not spiked and used as a
328 negative control. Then we filtered the samples using a glass filter, extracted the DNA using the Qiagen
329 DNeasy Blood & Tissue Kit (Cat No./ID: 69504) and removed PCR inhibitors using Zymo OneStep™ (Cat
330 No./ID: D6030). Our serial dilution consisted of the same extracted DNA solution used to spike the
331 samples. We estimated the average yield in percentage for this protocol by qPCR amplification. From the
332 Qiagen protocol average yield we could estimate the average input DNA from the tank water. We also
333 estimated that pipelines DNA yield percentage is mildly inverse correlated (p -value = 0.0023) to the initial
334 DNA concentration (Fig S1), while the probability of amplification is logistically correlated to the $\text{Log}_{10}(\text{initial}$
335 DNA concentration) (Fig S2).

336

337 **Filtration**

338 We filtered the samples one day after sampling to simulate real conditions, where it is not always
339 possible to complete filtration on the same day as sampling. In each filtration run, 4 samples of 1L were
340 filtered in parallel at the speed of 310rpm on a peristaltic pump and we timed each filtration event. Filters
341 were folded in half 3 times and stored in a 2mL microcentrifuge tube and stored at -20°C. Between runs,
342 tubing and casing were sterilized using a bath of 20% bleach [16], rinsed twice using DI water to remove
343 any remaining bleach and dried.

344

345 **Extractions**

346 For all DNA extraction protocols except the dipstick-based ones, we added 180µL of ATL buffer
347 and 20µL of 5U Proteinase K to the microcentrifuge tube and incubated at 56°C overnight using a
348 rotisserie attachment for 2mL microcentrifuge tubes. As the incubation time step doesn't require labor, we
349 didn't add it to the total time of the protocol. Next, the filter was compressed inside of the microcentrifuge
350 tube using a pipette tip and the supernatant was transferred to a clean 0.5mL (NaOH extraction) or 1.5
351 mL microcentrifuge tube (magnetic beads and Qlagen).

352

353 **NaOH-based extraction**

354 For each 100uL of supernatant we added 5.26µL of 1M NaOH. In a benchtop thermocycler, we
355 incubated the samples at 95°C for 20min and ramped down the temperature at a pace of 0.7°C/min until
356 reaching 4°C. Next, we added 10% of the total volume of 1M Tris-HCL. Samples were vortexed and
357 centrifuged for 15min at 4680rpm. Without disturbing the pellet, 100µL of the supernatant was extracted
358 and transferred to a new 1.5mL microcentrifuge tube and stored at -20°C.

359

360 **Magnetic Beads**

361 For each sample, 180µL of Agencourt AMPure XP (Beckman Coulter™; Cat No./ID: A63881) was
362 added to the solution and incubated at room temperature for five minutes. Then the microcentrifuge tubes

363 were placed onto the magnetic plate (DynaMag™-2; Cat No./ID: 123.21D) for 2 minutes. We removed the
364 supernatant and washed the magnetic beads twice using 200µL of a freshly made 70% ethanol solution
365 with an incubation time of 30s in the magnetic plate. We then air dried the beads for 3minutes. A total of
366 100µL of TE solution was used to resuspend the particles and elute the DNA. The solution was incubated
367 for 1minute at room temperature before pulling down the magnetic beads with the plate for 2minutes.
368 Lastly, the supernatant was transferred to clean 1.5mL microcentrifuge tubes.

369

370 **QIAGEN DNeasy cell and tissue**

371 The QIAGEN DNeasy extraction was performed following the manufacturer's recommendations. A
372 total of 200µL of AL buffer was added and the samples were incubated at 56°C for 10minutes. We added
373 200µL of ethanol to each sample and the solution was transferred to the column and centrifuged at
374 8000rpm for 3minutes. Then the column was washed using 500µL of Wash Solution N°1 and centrifuged
375 at 6000rpm for 1minute. Then the column was washed again with Wash Solution N°2 and centrifuged for
376 3minutes at 1400rpm. Next 100µL of AE solution was added and incubated for 20minutes before
377 centrifuging at 8000rpm for one minute. The flowthrough was then stored at -20°C

378

379 **Whatman paper dipstick**

380 Dipsticks were made following the protocol described in [17]. We used the qualitative Whatman
381 filter n°1 to make our dipsticks and used an effective surface area of 8mm² (2mm width and 4mm height).
382 We added 200µL of lysis buffer and ground the filter using a pipette tip until the filter was dissolved. Then
383 we dipped the dipstick in the lysis buffer solution (20mM Tris [pH 8.0], 25mM NaCl, 2.5mM EDTA, 0.05%
384 SDS) 3 times, then dipped 3 times in 100µL of wash solution (10mM Tris [pH 8.0], 0.1% Tween-20), and
385 3 times in a final solution of nuclease free water which then was stored at -20°C. In the case of "straight
386 to qPCR" dipstick extraction, we directly dipped the dipstick after the wash step into the qPCR reaction.

387

388 Secondary Inhibitor removal

389 Zymo OneStep™ PCR Inhibitor Removal Kit (Zymo Research; Cat No./ID: D6030) was used
390 following the manufacturer's protocol in order to remove any carryover PCR inhibitors from previous steps.
391 We added 600µL of Prep-solution to the column and centrifuged at 8000g for 3 minutes, the flow through
392 was discarded, then 50µL of DNA elute from previous steps were added to the column and centrifuged at
393 16000g. The flowthrough was then stored at -20°C.

394

395 qPCR amplification oligos

396 Quantitative PCR detection for Chinook was developed by adapting the protocol from [18]Reaction
397 solution totaling 20µL was composed of 1× TaqMan™ Environmental Master Mix 2.0 (ThermoFisher
398 Scientific; Cat No./ID: 4396838), 0.9µM concentration of each primer, and 0.7µM of the Taqman probe,
399 and 6µL isolated DNA extract from previous steps. Thermocycling was performed on a Bio-Rad CFX96
400 real-time detector using the following profile: 10 min at 95°C, 40 cycles of 15s denaturation at 95°C and 1
401 min annealing–extension at 60°C.

402

403 **Table 1: List of used DNA oligonucleotides.**

Oligonucleotide	Sequence
Probe sequence	FAM-5'-AGCACCCCTCTAACATTCAG-3' ZEN / Iowa Black FQ
Forward primer	5'-CCTAAAAATCGCTAATGACGCACTA-3'
Reverse primer	5'-GGAGTGAGCCAAAGTTTCATCAG-3'
Gblock sequence	5'-ACCATCGTTATTCAACTACAAGAACCT

	AATGGCCAACCTCCGAAAAACCCATCCTCT CCTAAAAATCGCTAATGACGCAGTAGTCGA CCTCCCAGCACCCCTAACATTAGTCTG ATGAAACTTGCTCACTCCTAGGCCTATG TTTAGCCACCCAAATTCTTACCGGGCTCTT CTTAGCCATACACTATAACCT-3'
--	---

404 Primers were used for DNA amplification. Probe was used for the qPCR step for DNA quantification.

405 Gblock was used for creating a standard ladder for the qPCR reaction and made possible the

406 conversion from initial DNA concentration to copy number.

407

408 Data analysis

409 Data analysis was performed in Python 3.7 and is available on
410 <https://github.com/sanchestm/eDNA-Protocol-Optimization>. We measured interference between filter
411 type and extraction method using two competing models, one that includes the interference effect and
412 one that does not. Using ADVI inference we fitted the data to the models [15]. From the ADVI fitting for
413 the best model we estimated the distribution of filter eDNA yield percentage (Fig 2), extraction eDNA yield
414 percentage (Fig 4) and PCR inhibitor carryover for filtration and extraction (Fig 6). To estimate which step
415 of an eDNA experiment has the most variance between methods, and therefore can lead to the most
416 significant gains when optimized, we trained a random forest regressor [19] with the collected data and
417 estimated importance of each step of the experiment.

418

419

420

[PHS/NIH Assurance \(A3433-01\)](#)

421

422

423 **References**

- 424 1. Kelly RP, Port JA, Yamahara KM, Martone RG, Lowell N, Thomsen PF, et al. Environmental
425 monitoring. Harnessing DNA to improve environmental management. *Science*. 2014;344:
426 1455–1456.
- 427 2. Schoellhamer DH. Influence of salinity, bottom topography, and tides on locations of estuarine
428 turbidity maxima in northern San Francisco Bay. *Proceedings in Marine Science*. 2000. pp.
429 343–357.
- 430 3. Hunter ME, Oyler-McCance SJ, Dorazio RM, Fike JA, Smith BJ, Hunter CT, et al.
431 Environmental DNA (eDNA) sampling improves occurrence and detection estimates of
432 invasive burmese pythons. *PLoS One*. 2015;10: e0121655.
- 433 4. Williams KE, Huyvaert KP, Piaggio AJ. Clearing muddied waters: Capture of environmental
434 DNA from turbid waters. *PLoS One*. 2017;12: e0179282.
- 435 5. Piggott MP. Evaluating the effects of laboratory protocols on eDNA detection probability for an
436 endangered freshwater fish. *Ecol Evol*. 2016;6: 2739–2750.
- 437 6. Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors - occurrence, properties and
438 removal. *J Appl Microbiol*. 2012;113: 1014–1026.
- 439 7. Gregory JB, Litaker RW, Noble RT. Rapid one-step quantitative reverse transcriptase PCR
440 assay with competitive internal positive control for detection of enteroviruses in environmental
441 samples. *Appl Environ Microbiol*. 2006;72: 3960–3967.
- 442 8. Nielsen KM, Calamai L, Pietramellara G. Stabilization of Extracellular DNA and Proteins by
443 Transient Binding to Various Soil Components. *Soil Biology*. pp. 141–157.
- 444 9. Matheson CD, Gurney C, Esau N, Lehto R. Assessing PCR Inhibition from Humic
445 Substances. *Open Enzym Inhib J*. 2014;3: 46–52.
- 446 10. Vélez-Espino LA, Antonio Vélez-Espino L, Ford JKB, Andres Araujo H, Ellis G, Parken CK, et

- 447 al. Relative importance of chinook salmon abundance on resident killer whale population
448 growth and viability. *Aquat Conserv.* 2014;25: 756–780.
- 449 11. Yoshiyama RM, Fisher FW, Moyle PB. Historical Abundance and Decline of Chinook Salmon
450 in the Central Valley Region of California. *N Am J Fish Manage.* 1998;18: 487–521.
- 451 12. Yoshiyama RM. A History of Salmon and People in the Central Valley Region of California.
452 *Rev Fish Sci.* 1999;7: 197–239.
- 453 13. Katz J, Moyle PB, Quiñones RM, Israel J, Purdy S. Impending extinction of salmon,
454 steelhead, and trout (Salmonidae) in California. *Environ Biol Fishes.* 2012;96: 1169–1186.
- 455 14. Helfman G, Collette B, Facey D. *The Diversity of Fishes.* Wiley-Blackwell; 1997.
- 456 15. Salvatier J, Wiecki TV, Fonnesbeck C. Probabilistic programming in Python using PyMC3
457 [Internet]. 2016. doi:10.7287/peerj.preprints.1686
- 458 16. Wilcox TM, McKelvey KS, Young MK, Sepulveda AJ, Shepard BB, Jane SF, et al.
459 Understanding environmental DNA detection probabilities: A case study using a stream-
460 dwelling char *Salvelinus fontinalis*. *Biol Conserv.* 2016;194: 209–216.
- 461 17. Zou Y, Mason MG, Wang Y, Wee E, Turni C, Blackall PJ, et al. Nucleic acid purification from
462 plants, animals and microbes in under 30 seconds. *PLoS Biol.* 2017;15: e2003916.
- 463 18. Brandl S, Schumer G, Schreier BM, Conrad JL, May B, Baerwald MR. Ten real-time PCR
464 assays for detection of fish predation at the community level in the San Francisco Estuary-
465 Delta. *Mol Ecol Resour.* 2015;15: 278–284.
- 466 19. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. *Mach Learn.* 2006;63: 3–42.
- 467 20. Vehtari A, Gelman A, Gabry J. Practical Bayesian model evaluation using leave-one-out
468 cross-validation and WAIC. *Stat Comput.* 2016;27: 1413–1432.
- 469 21. DeAngelis MM, Wang DG, Hawkins TL. Solid-phase reversible immobilization for the isolation
470 of PCR products. *Nucleic Acids Res.* 1995;23: 4742–4743.
- 471 22. *Anaconda Software Distribution.* Computer software. Vers. 2-2.4.0. Anaconda, Nov. 2016.
472 Web. <<https://anaconda.com>>.

473

474 **Supporting information**

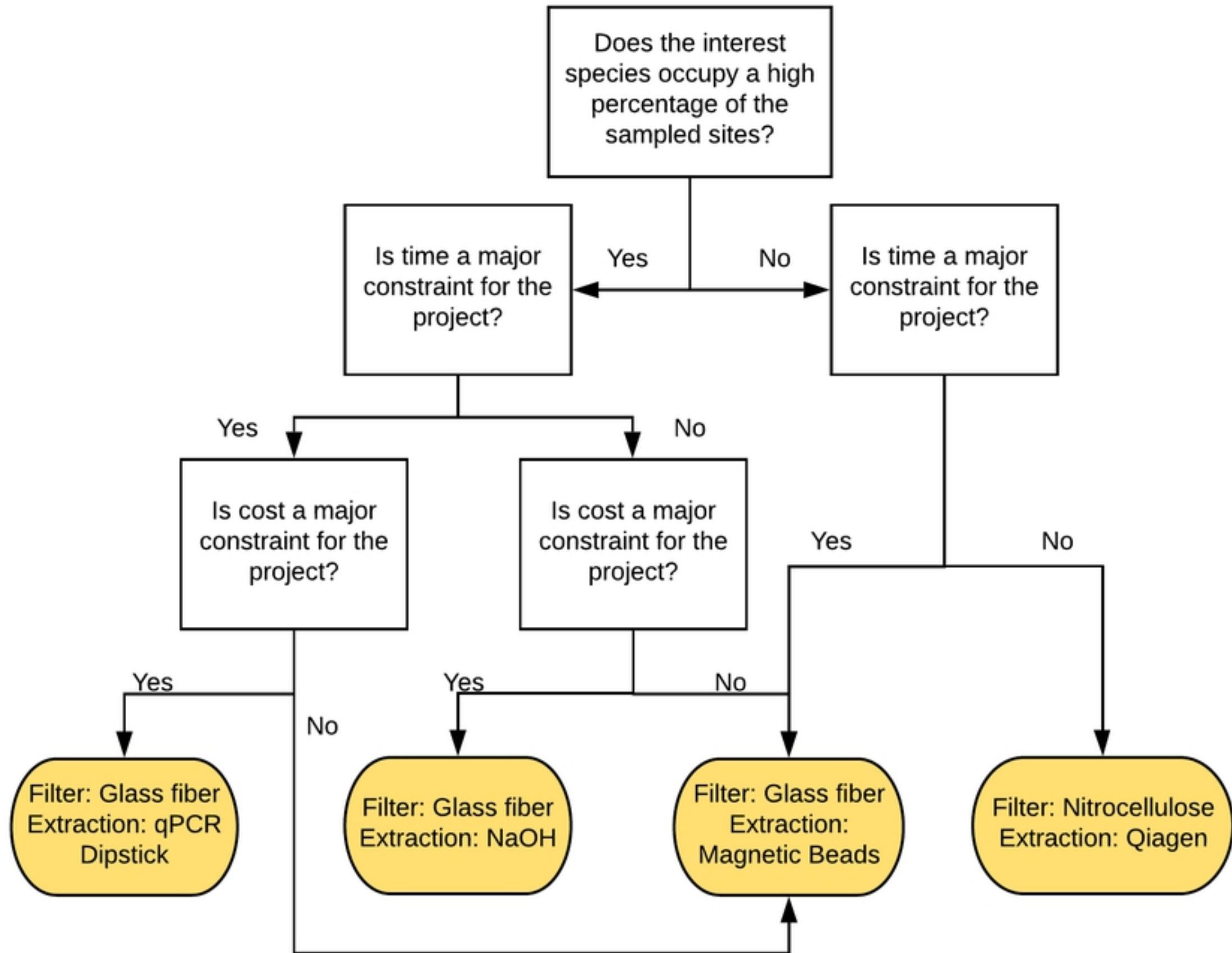
475 **Figure S1: Correlation between DNA yield and initial eDNA concentration.** Blue dots -
476 median value; vertical lines - 95% CI; horizontal line - linear regression between protocol DNA
477 yield and input DNA, with both axes being represented in \log_{10} scale. P(amp) - probability of
478 amplification.

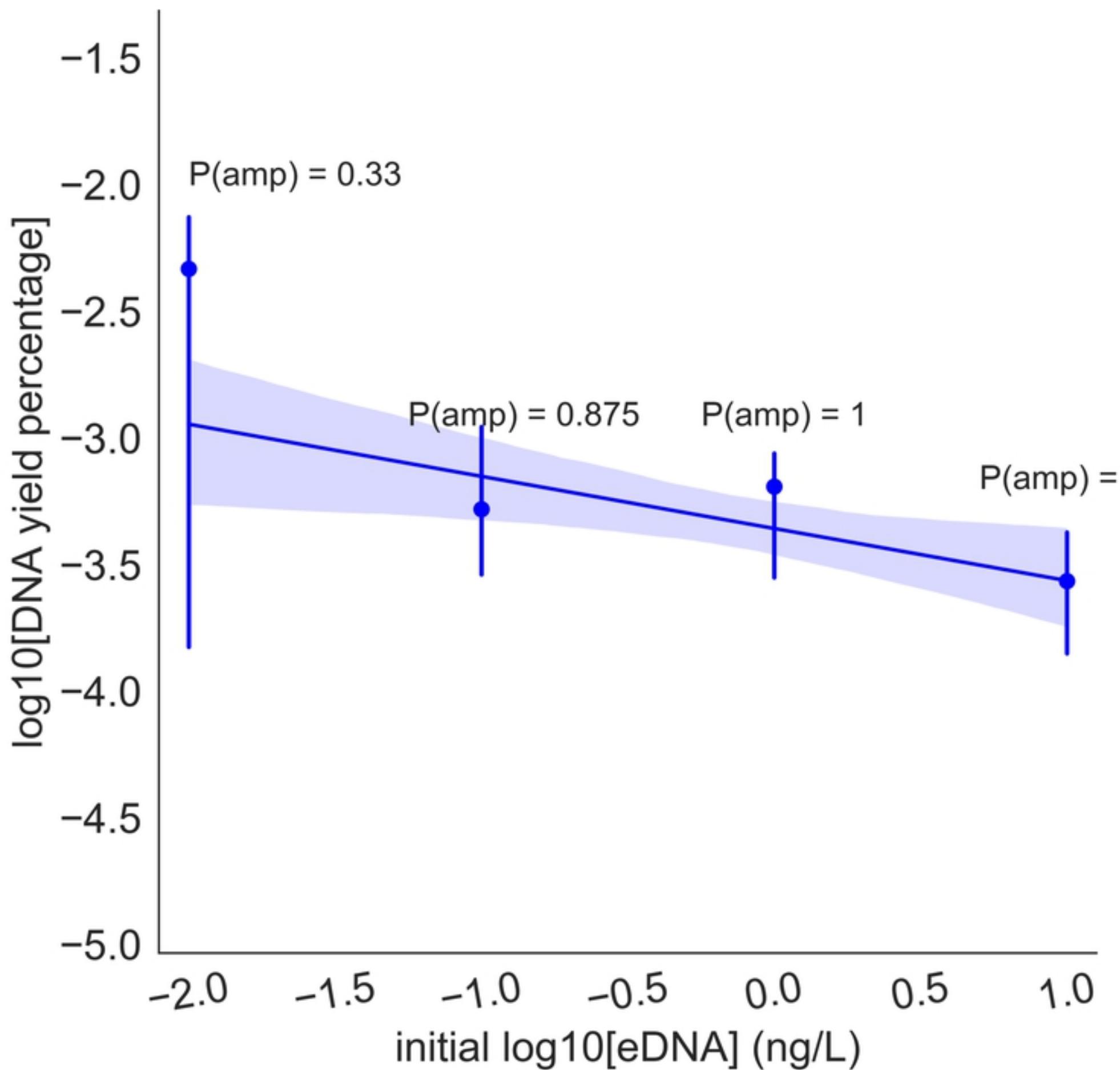
479 **Figure S2: Probability of amplification as a function of the input DNA concentration.** Dots -
480 probability of amplification from DNA spiking experiment; line - logistic fit to data points.

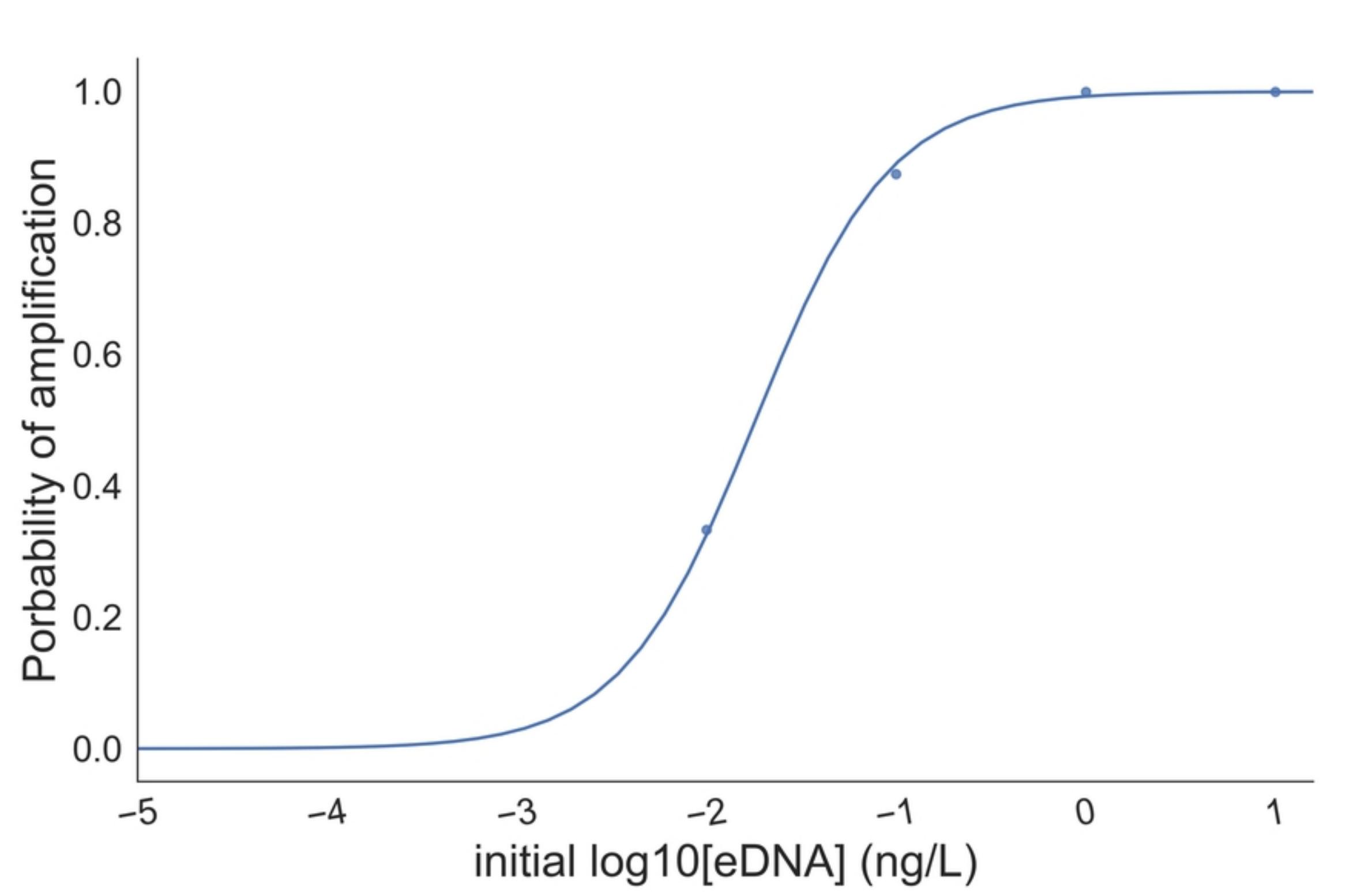
Filtration

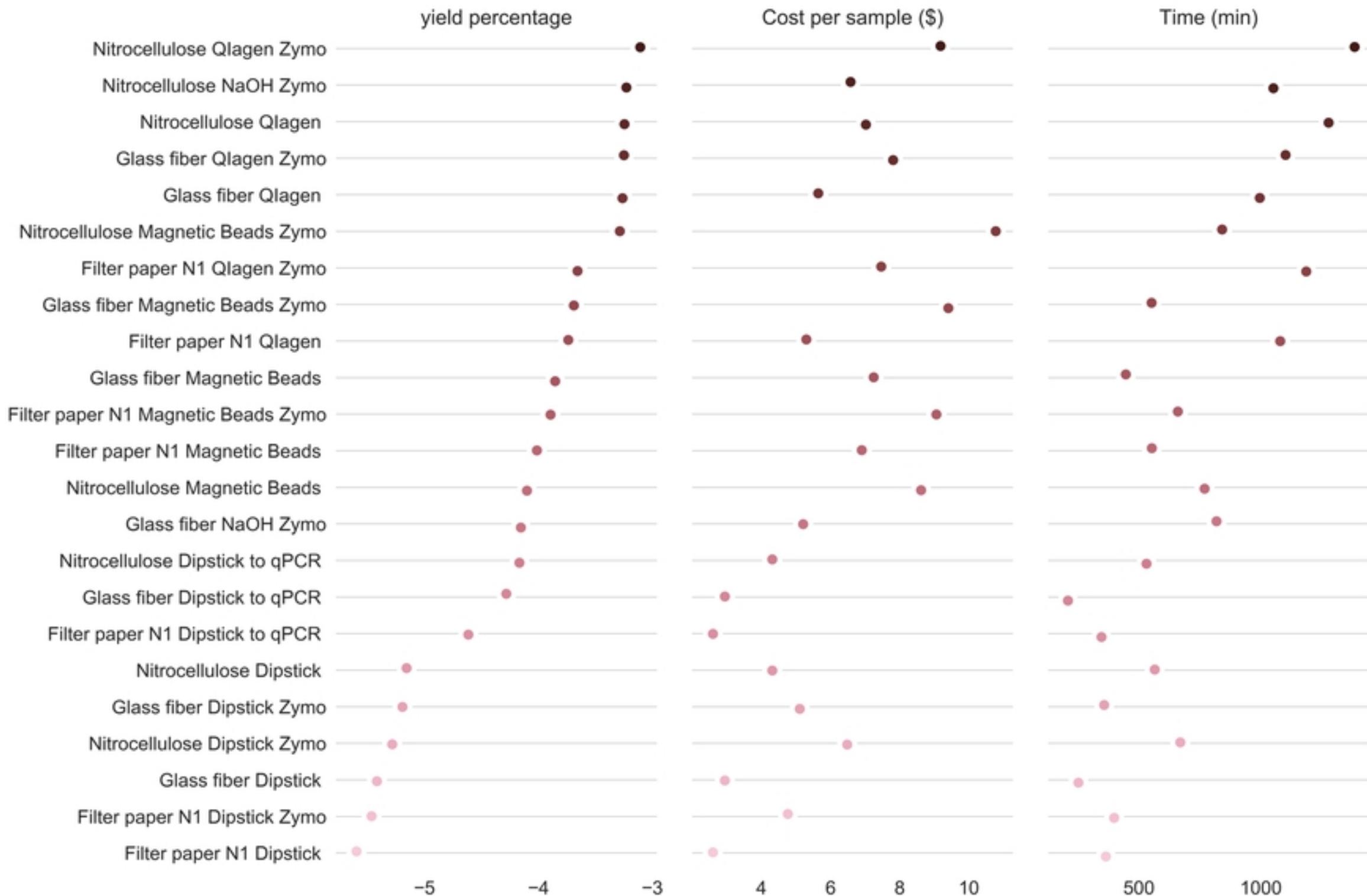
Glass fiber	\$0.44 2m20s
Nitrocellulose	\$1.80 14m30s
Whatman Paper n°1	\$0.10 5m50s

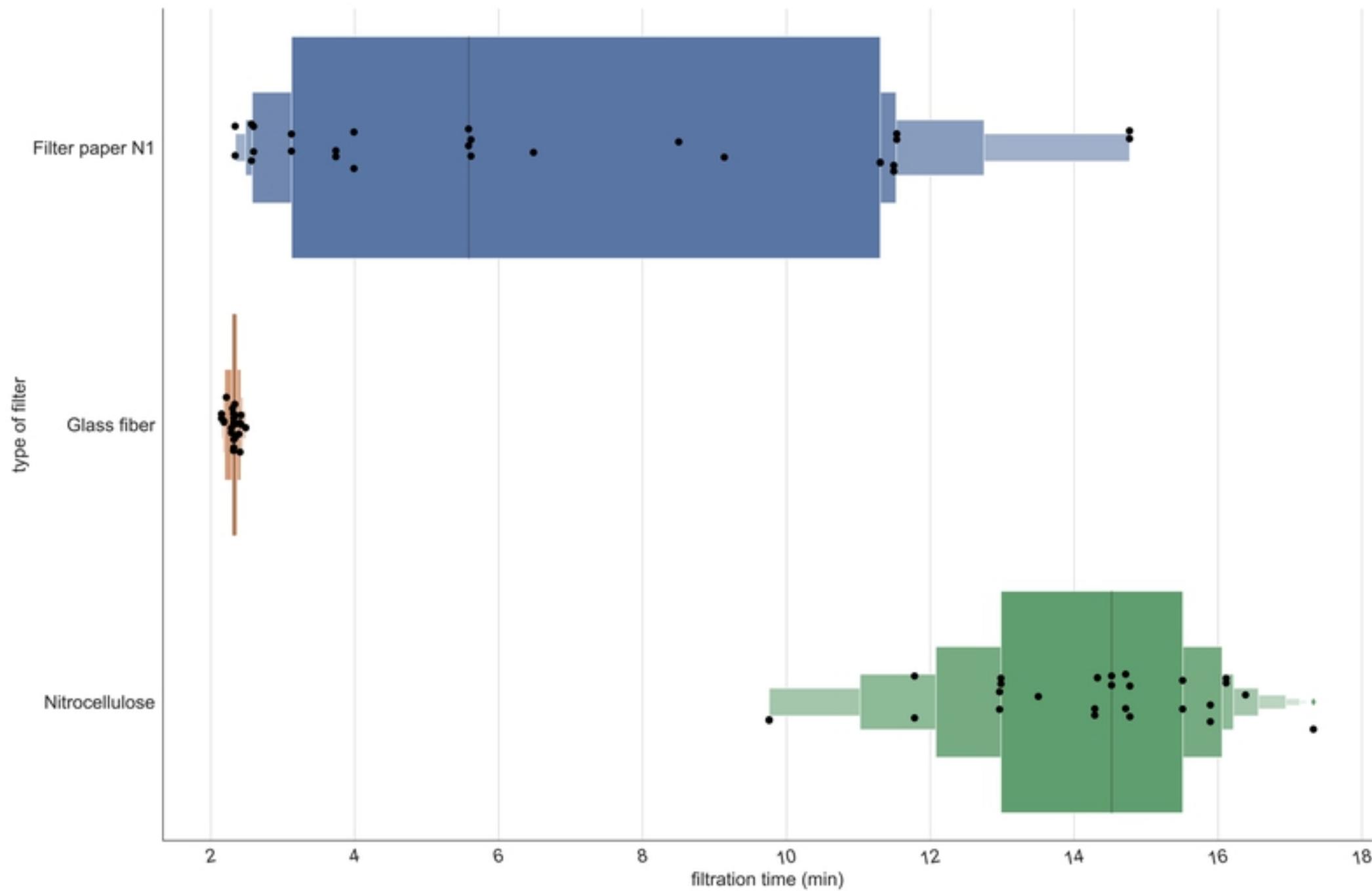
Extraction

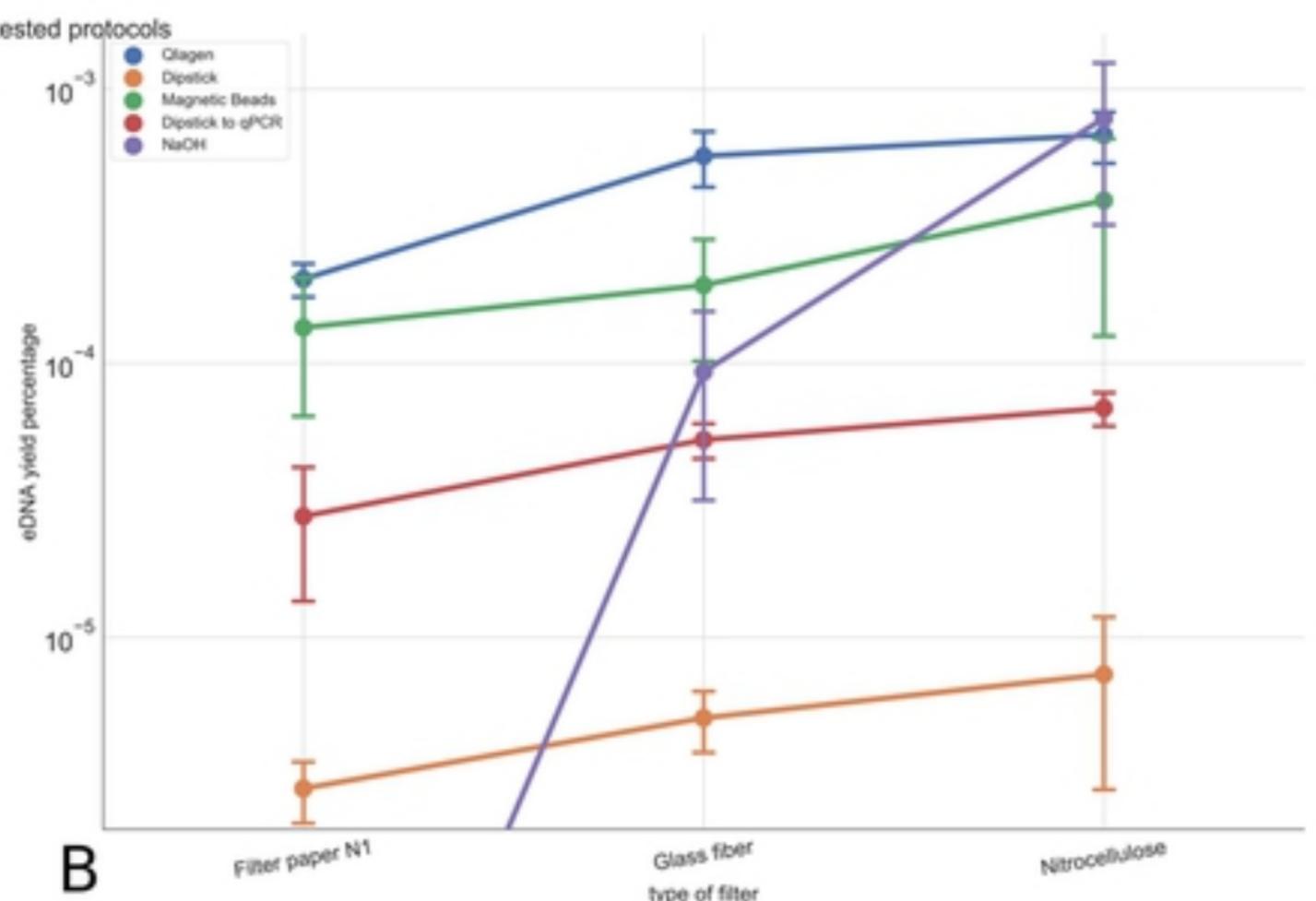
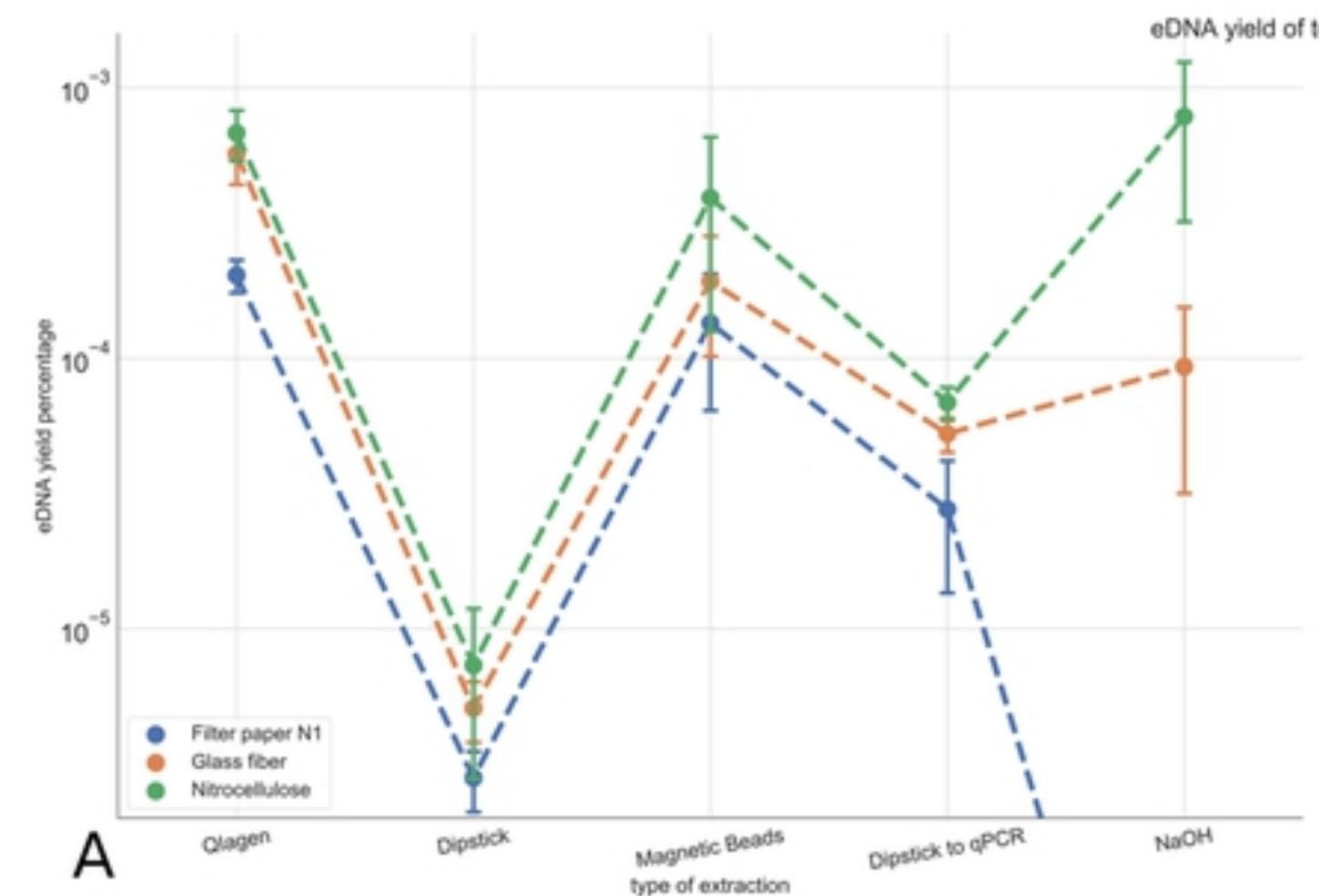

Magnetic beads	\$0.10 25min
Qlagen DNeasy	\$2.80 77min
NaOH	\$0.05 50min

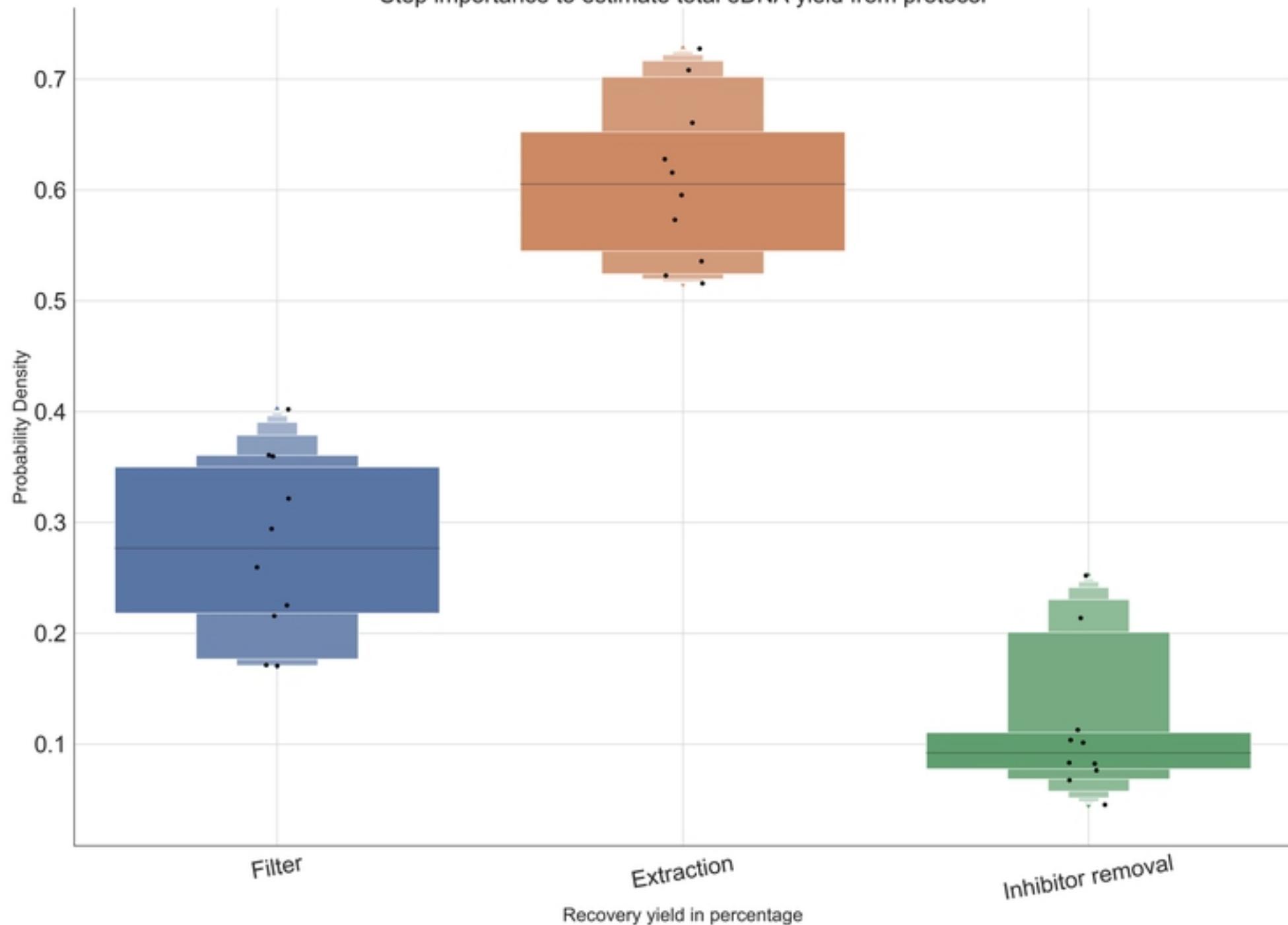

Inhibitor Removal

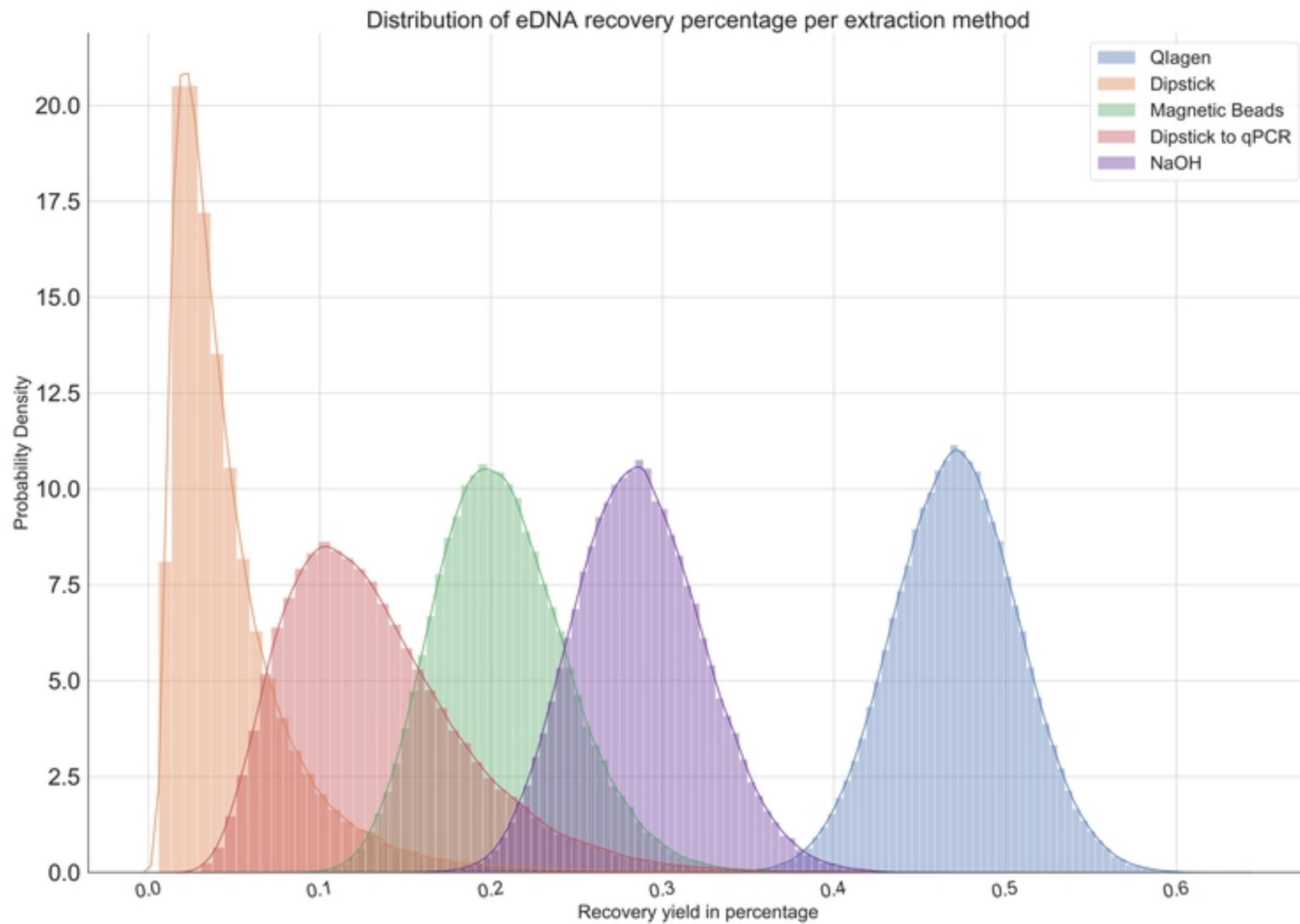

OneStep PCR Inhibitor Removal	\$2.16 106min
None	\$0 0min

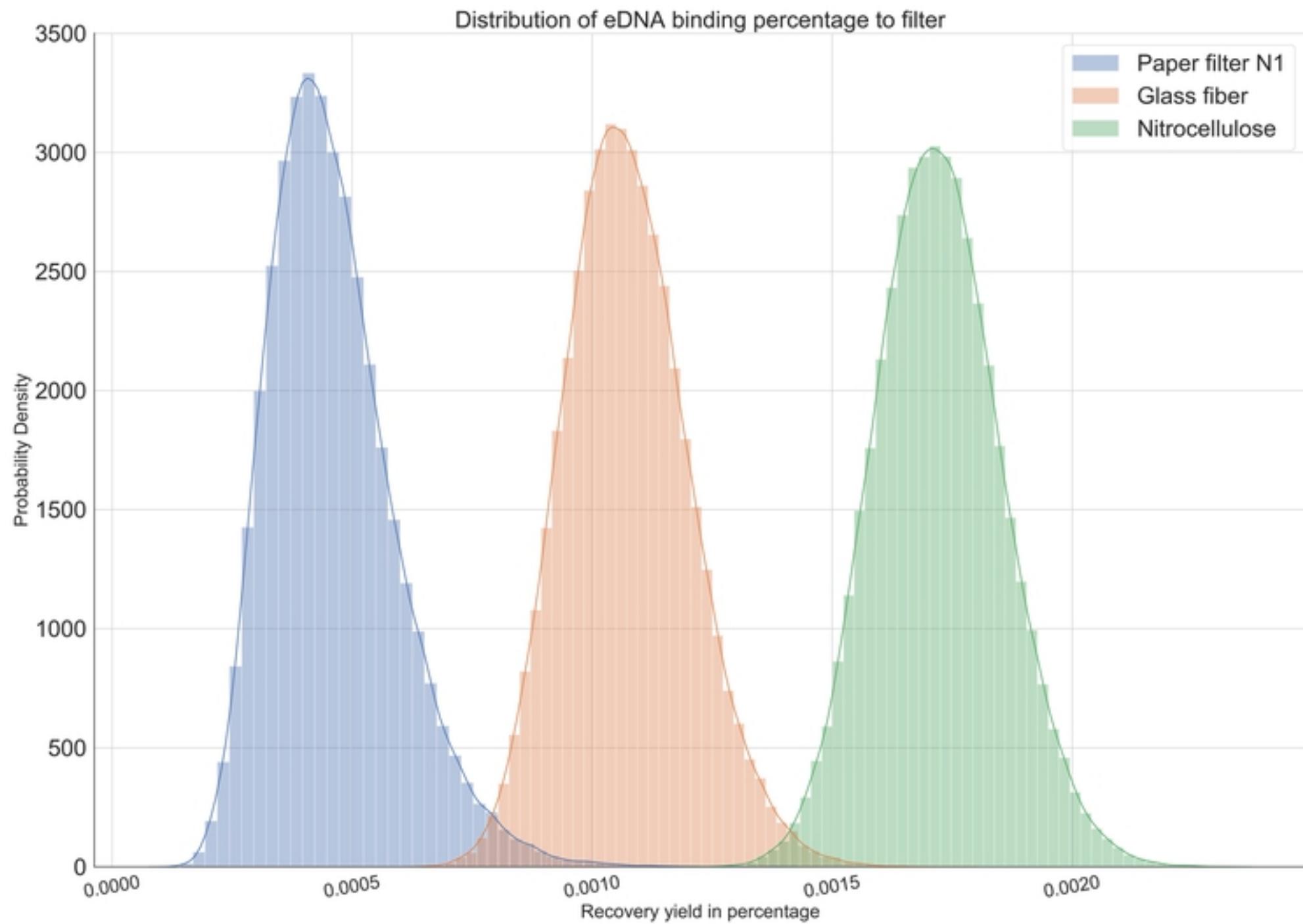

Amplification

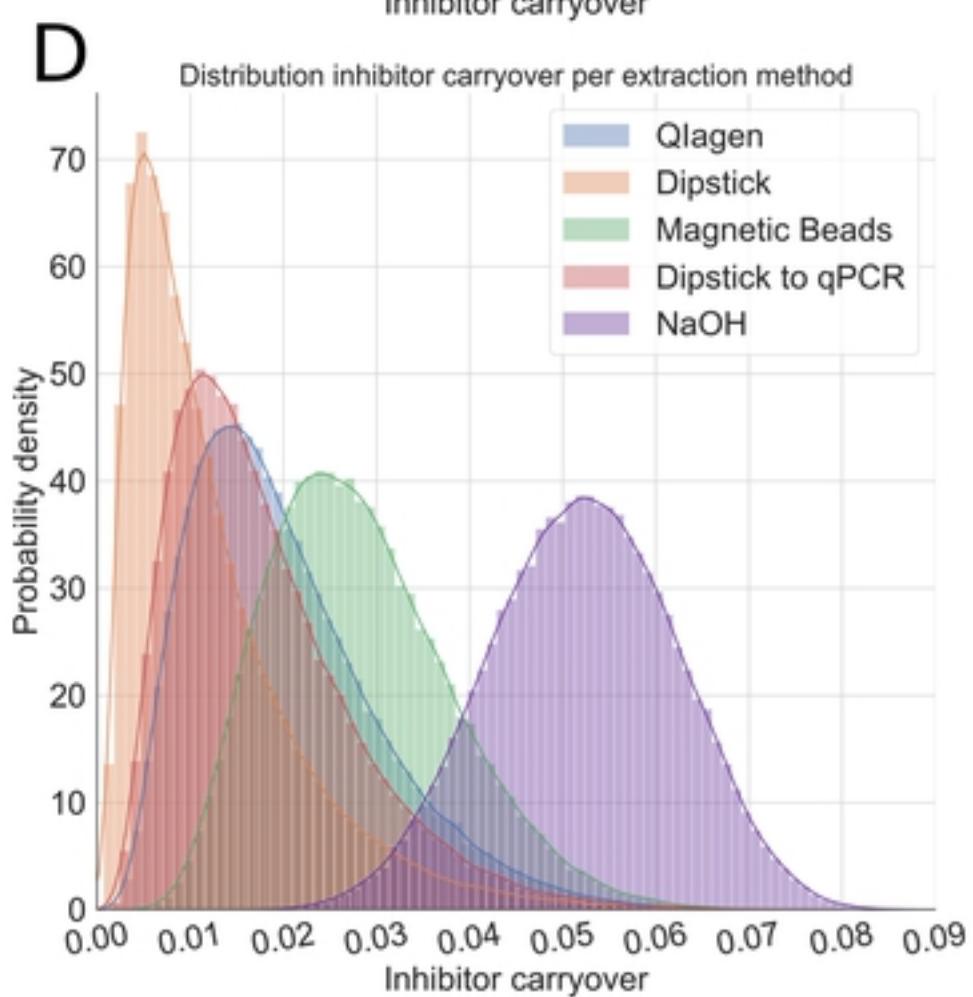
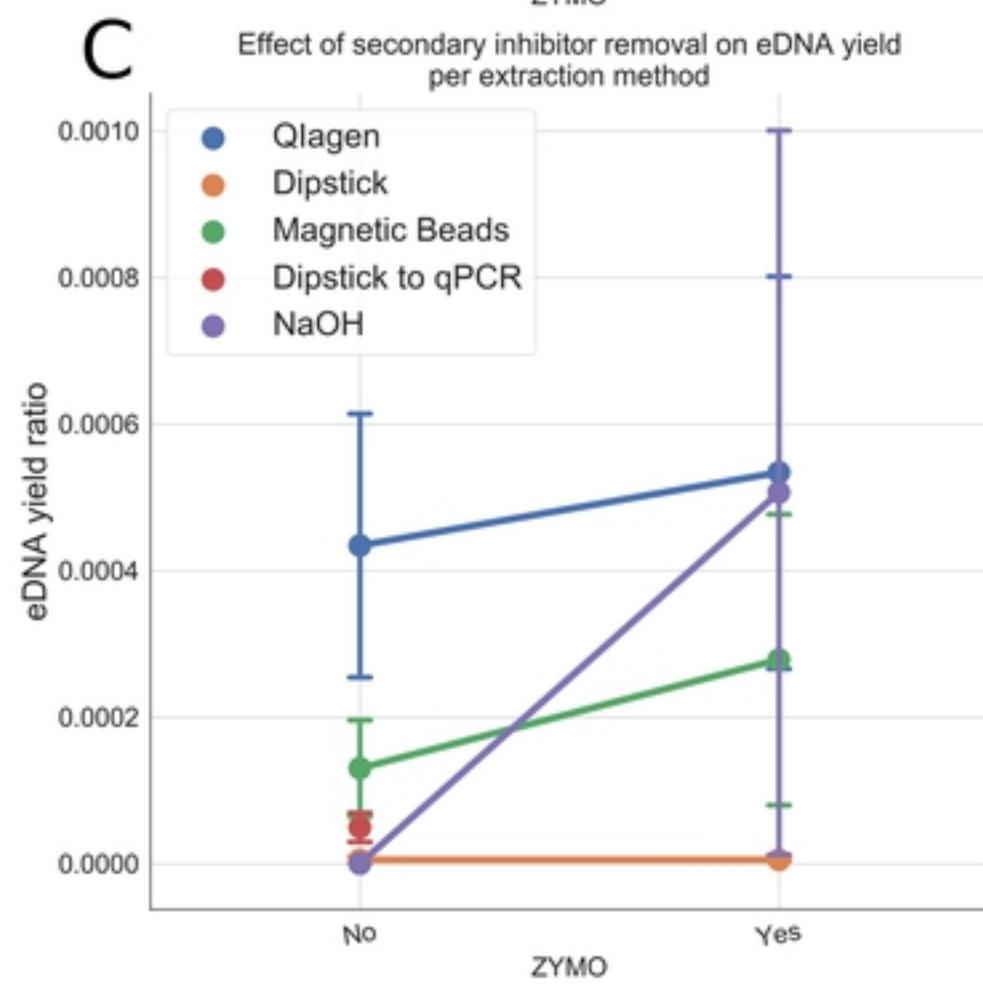
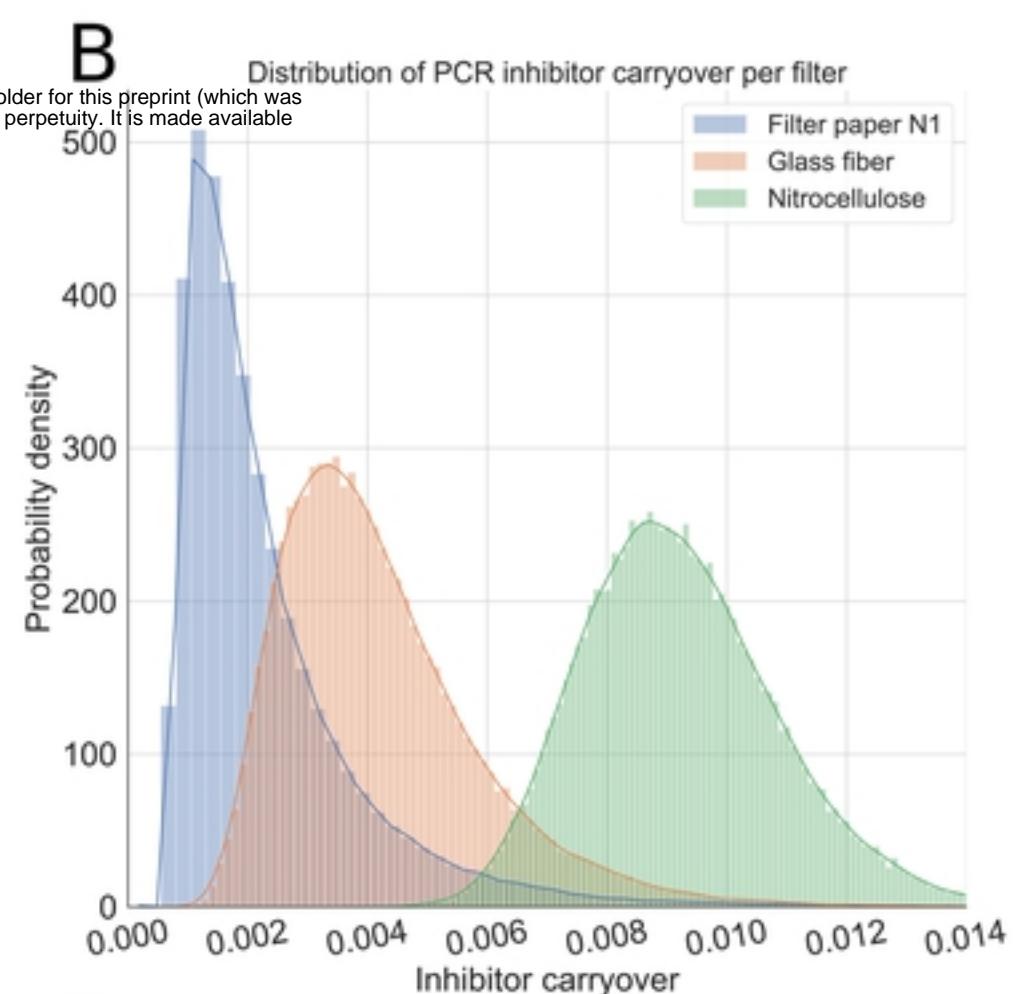
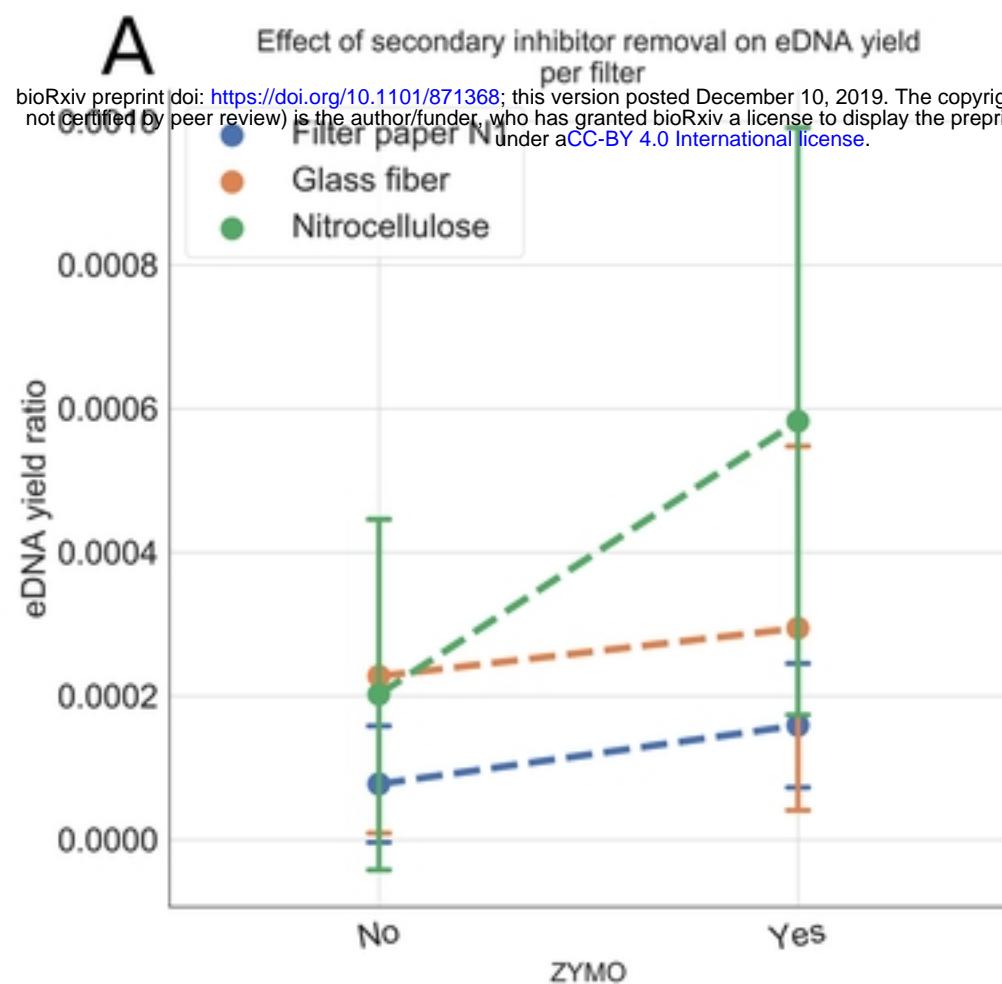

TaqMan Env. Mastermix 2.0	\$2.40 180min
------------------------------	------------------







Step importance to estimate total eDNA yield from protocol

