

1 **OVEREXPRESSION OF MIG-6 IN LIMB MESENCHYME LEADS TO**
2 **ACCELERATED OSTEOARTHRITIS IN MICE**

5 Bellini, Melina Rodrigues^{1,2}, Pest, Michael Andrew^{1,2}, Jae-Wook Jeong⁴, Beier, Frank^{1,2,3}

7 ¹ Department of Physiology and Pharmacology, Western University, London, ON, Canada

8 ² Western University Bone and Joint Institute, London, ON, Canada

9 ³ Children's Health Research Institute, London, ON, Canada

10 ⁴ Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University

11 College of Human Medicine, Grand Rapids, Michigan.

13 **Corresponding author:** Dr. Frank Beier, Department of Physiology and Pharmacology,
14 Western University, London, ON, Canada; Phone 519-661-2111 ext 85344; email:
15 fbeier@uwo.ca

17 The authors have no conflicts of interest to declare.

34

35 **ABSTRACT**

36

37 **Background:** Mitogen-inducible gene 6 (Mig-6) is a tumour suppressor gene that is also
38 associated with the development of osteoarthritis (OA)-like disorder. Recent evidence from our
39 lab and others showed that cartilage-specific Mig-6 knockout (KO) mice develop chondro-
40 osseous nodules, along with increased articular cartilage thickness and enhanced EGFR signaling
41 in the articular cartilage. Here, we evaluate the phenotype of mice with skeletal-specific
42 overexpression of Mig-6.

43

44 **Methods:** Synovial joint tissues of the knee were assessed in 12 and 36 weeks-old skeleton-
45 specific *Mig-6* overexpressing (*Mig-6*^{over/over}) and control animals using histological stains,
46 immunohistochemistry, semi-quantitative OARSI scoring, and microCT for skeletal
47 morphometry. Measurement of articular cartilage and subchondral bone thickness were also
48 performed using histomorphometry.

49

50 **Results:** Our results show only subtle developmental effects of Mig-6 overexpression. However,
51 male *Mig-6*^{over/over} mice show accelerated cartilage degeneration at 36 weeks of age, in both
52 medial and lateral compartments of the knee. Immunohistochemistry for SOX9 and PRG4
53 showed decreased staining in *Mig-6*^{over/over} mice relative to controls, providing potential
54 molecular mechanisms for the observed effects.

55 **Conclusion:** Overexpression of *Mig-6* in articular cartilage causes no major developmental
56 phenotype but results in accelerated development of OA during aging. These data demonstrate
57 that precise regulation of the Mig-6/EGFR pathway is critical for joint homeostasis.

58

59

60

61

62 INTRODUCTION

63 Osteoarthritis (OA) is a failure of joint homeostasis and results in the whole-joint tissue
64 degeneration (1). In fact, OA is a multifactorial disease affecting 630 million individuals
65 worldwide, and the economic impact of OA treatment is estimated at 190 billion dollars in direct
66 and indirect health care costs in North America annually (2,3). OA patients experience limits in
67 daily activities and often suffer from co-morbidities including mental health disorders (4).
68 Treatment for pain and inflammation (analgesics, non-steroidal anti-inflammatory drugs
69 (NSAIDS) and targeted physiotherapy (5) are commonly used to address patients' symptoms, but
70 no effective pharmacological therapy is currently available to delay disease progression. Future
71 directions for effective OA management rely on better understanding of joint physiology and
72 pathophysiological mechanism to develop disease-modifying therapies for OA patients.

73 Risk factors including aging, genetics, obesity, and trauma contribute to the dysfunction
74 of joint structures in OA. During the early stages of OA, alteration in chondrocyte physiology
75 including cluster formation and changes in the composition of extracellular matrix (ECM) lead to
76 altered cartilage function (6–8). Gradual degeneration of the articular cartilage, subchondral bone
77 sclerosis, osteophyte development, and synovial inflammation/hyperplasia all contribute to joint
78 degeneration in OA (9–11). Expression of matrix metalloproteinases (MMPs) (i.e., MMP-1 and
79 MMP-13) and aggrecanases (disintegrin and metalloproteinase with a thrombospondin type 1
80 motif (ADAMTS) (i.e., ADAMTS 1,4,5) is up-regulated in response to inflammatory factors
81 and other signals (12–14). Importantly, the tissues of the whole joint work together to maintain
82 joint homeostasis. Therefore, failure in one joint structure might lead to failure of the whole
83 organ, such as the knee joint (15).

84 Over the past two decades, epidermal growth factor receptor (EGFR) signaling has been
85 studied in several stages of cartilage development and homeostasis. These studies demonstrate
86 both degenerative and protective roles of this pathway (16), with potential therapeutic
87 implications for OA (17–26). EGFR signaling modulates many canonical signaling pathways
88 including MEK/ERK that have been implicated in cellular proliferation and growth in cartilage
89 and bone, as well as Jun N-terminal kinases (JNKs), PLC-PKC signaling and others (24,27,28).
90 Mitogen inducible gene 6 (Mig-6) is well-known as a negative regulator for EGFR signaling
91 (29). Two different mouse strains with global deletion of *Mig-6* demonstrated bone erosion and
92 spontaneous development of OA-like phenotypes (30,31). Cartilage-specific Mig-6 KO mice
93 display normal early bone development, but show anabolic buildup of articular cartilage, and

94 formation of chondro-osseous nodules at 12 and 36 weeks of age (32) . Another study using limb
95 mesenchyme-specific deletion of *Mig-6* in mice (using the *Prx1-cre* driver line) demonstrated
96 similar phenotypes as those observed in cartilage-specific knockout mice (33). Our laboratory
97 has shown that cartilage-specific *Mig-6* overexpression in mice results in no major
98 developmental abnormalities in articular cartilage, however, during aging (12 and 18 months)
99 *Mig-6*^{over/over} mice show accelerated cartilage degeneration (34). To evaluate the contribution of
100 *Mig-6* in multiple joint tissues to joint homeostasis and OA pathogenesis, we used *Prx1*
101 promoter-driven Cre recombinase to selectively overexpress *Mig-6* in all mesenchymal limb
102 tissues in mice.

103

104 **Materials and Methods**

105 **Animals**

106 All animals and procedures were approved by the Council for Animal Care (CCAC) at Western
107 University-Canada (Animal use permit:2015-031). *Mig-6* overexpression animals with the
108 overexpression targeted to the Rosa26 locus (35) were backcrossed for 10 generations into a
109 C57Bl/6 background. In these mice, transcription of *Mig-6* is under the control of a ubiquitously
110 expressed chicken beta actin-cytomegalovirus hybrid (CAGGS) promoter, but blocked by a
111 “Stop Cassette” flanked by LoxP sites (LSL) (35). *Mig-6* overexpression mice were bred to mice
112 carrying the Cre recombinase gene under the control of the *Prx1*-Cre transgene (36) to induce
113 recombination and removal of the Stop Cassette specifically in early limb bud mesenchyme.
114 Animals with overexpression of *Mig-6* from both alleles are termed *Mig-6*^{over/over} (*Mig-6*
115 *over/over**Prx1-Cre*⁺⁻), while control mice are identical but without the Cre gene (denoted “control”
116 for simplicity). Mice were group housed (2 or 4 mice per cage of littermate matched control and
117 overexpression animals), on a standard 12 hour light/dark cycle, and with free access to mouse
118 chow and water. Genotyping and assessment of genomic recombination was performed on DNA
119 samples from ear tissue from mice surviving to at least 21 days of age. Standard polymerase
120 chain reaction (PCR) was performed using primer set P1 and P2 can amplify a 300 bp fragment
121 from the wild-type allele, whereas P1 and P3 can amplify a 450 bp fragment from the targeted
122 ROSA26 locus allele (35).

123

124 **Histologic Assessment**

125 The knee joints of mice were dissected and fixed in 4% paraformaldehyde in phosphate

126 buffered saline (PBS, pH 7.0) for 24 hours at room temperature. The intact joints were then
127 decalcified in 5% ethylenediaminetetraacetic acid (EDTA) in phosphate buffered saline (PBS),
128 pH 7.0 for 10 – 12 days at room temperature. All joints were processed and embedded in paraffin
129 in sagittal or frontal orientation, with serial sections taken at a thickness of 5 μ m. Sections were
130 stained with Toluidine Blue (0.04% toluidine blue in 0.2M acetate buffer, pH 4.0, for 10
131 minutes) for glycosaminoglycan content and general evaluation of articular cartilage.

132 Immunohistochemistry was performed on frontal sections of paraffin embedded knee
133 joints as previously described (32,37). Primary antibodies against SOX9 (R&D Systems,
134 AF3075), MMP13 (Protein Tech, Chicago, IL, USA, 18165-1-AP), and lubricin (Abcam,
135 ab28484) were used and slides without primary antibody were used as control. Sections were
136 incubated with primary antibody overnight at 4°C. After washing, sections were incubated with
137 horseradish peroxidase (HRP)-conjugated donkey anti-goat or goat anti-rabbit secondary
138 antibody (R&D system and Santa Cruz), before incubation with diaminobenzidine substrate as a
139 chromogen (Dako, Canada). Finally, sections were counterstained with 0.5% methyl green
140 (Sigma) and dehydrated in graded series of 70-100% ethanol in water, followed by 100% xylene,
141 and mounted using xylene-based mounting media. All images were taken using a Leica DM1000
142 microscope with attached Leica DFC295 digital camera.

143 **Histologic evaluation of articular cartilage and histopathology scoring**

144 Articular cartilage thickness was determined from toluidine blue-stained frontal sections
145 of knee joints by a blinded observer with regard to the tissue source. ImageJ Software (v.1.51)
146 (38) was used to measure the cartilage thickness separately for the non-calcified articular
147 cartilage (measured from the superficial tangential zone to the tidemark) and the calcified
148 articular cartilage (measured from the subchondral bone to the tidemark) across three evenly
149 spaced points from all four quadrants of the joint (medial/lateral tibia and femur), in 4 sections
150 spanning at least 500 μ m. For OARSI scoring, Toluidine blue-stained sections were evaluated by
151 one to two blinded observers (MB, MAP) on the four quadrants of the knee: lateral femoral
152 condyle (LFC), lateral tibial plateau (LTP), medial femoral condyle (MFC), and medial tibial
153 plateau (MTP), according to the Osteoarthritis Research Society International (OARSI)
154 histopathologic scale (39). Subchondral bone area from the tibial plateau was traced by one
155 observer (MB) using the Osteomeasure analysis software (OsteoMetrics, Decatur, GA, USA) for
156 histomorphometry measurements using three sections spanning at least 500 μ m from each

157 animal.

158

159 **Visualization of collagen fiber content**

160 In order to analyze the collagen fibril content and network, Picosirius Red Staining
161 (0.1% Sirius red in saturated picric acid solution for 60 minutes, with 0.5% acetic acid washes)
162 was performed (32). Stains were imaged under polarized light microscopy to visualize the
163 organization and size of collagen fibrils. Light intensity and tissue angle (45°) relative to
164 polarizing filter (Leica no. 11505087) and analyzer (Leica no. 11555045) were kept identical
165 between samples as per (32).

166 **Micro-Computerized Tomography (μCT)**

167 Mice were euthanized and imaged using General Electric (GE) SpeCZT microCT
168 machine (40) at a resolution of 50 μ m/voxel or 100 μ m/voxel in 12 and 36 week-old control and
169 *Mig-6* *over/over* male and female mice. GE Healthcare MicroView software (v2.2) was used to
170 generate 2D maximum intensity projection and 3D isosurface images to evaluate skeletal
171 morphology (32,41). MicroView was used to create a line measurement tool in order to calculate
172 the bone lengths; femurs lengths were calculated from the proximal point of the greater
173 trochanter to the base of the lateral femoral condyle. Tibiae lengths were measured from the
174 midpoint medial plateau to the medial malleolus. Humerus lengths were measured from the
175 midpoint of the greater tubercle to the center of the olecranon fossa.

176

177 **Statistical Analysis**

178 All statistical analyses were performed using GraphPad Prism (v6.0). Differences
179 between two groups were evaluated using Student's *t*-test, and Two-Way ANOVA was used to
180 compare 4 groups followed by a Bonferroni multiple comparisons test. All *n* values represent the
181 number of mice used in each group/genotyping.

182

183 **RESULTS**

184 **Overexpression of Mig-6 has minor effects on body weight during development**

185 Mice with alleles for conditional overexpression of Mig-6 (35) were bred to mice
186 expressing Cre recombinase under control of the Prx1 promoter, which is active in the
187 mesenchyme of developing limb buds. Homozygote mice overexpressing Mig-6 in mesenchymal
188 limb tissue from both Rosa26 alleles are referred to as *Mig-6*^{over/over} from here on. Control mice
189 do not express Cre recombinase. Overexpressing mice were obtained at the expected Mendelian
190 ratios (data not shown). Animal weights were significantly lower at 7, 12, and 13 weeks after
191 birth in male mutant mice compared to control mice (Fig. 1A), while female *Mig-6*^{over/over} mice
192 had similar weights as control mice (Fig. 1B). However, at 36 weeks of age mice there were no
193 differences in weights of either male nor female mutant mice compared to the control group (Fig.
194 1 C, D).

195

196 **Mig-6 overexpressing mice show no differences in bone length**

197 Micro computed tomography (microCT) was used to investigate skeletal morphology and
198 bone length. Whole body microCT scans of *Mig-6*^{over/over} male mice and their controls were
199 taken post-mortem at 12 and 36 weeks of age to generate 3D isosurface reconstructions of
200 50µm/voxel uCT scans, in order to measure long bones lengths (femurs, humeri, and tibiae) in
201 GE MicroView v2.2 software. Mutant male mice at 12 and 36 weeks did not show any difference
202 in bone length compared to controls (Fig. 2A-B). Moreover, no differences in gross skeletal
203 morphology were detected (Fig. 2C).

204

205 **Specific overexpression of Mig-6 in limbs display healthy articular cartilage at skeletal
206 maturity**

207 Histologically analysis of knee sections was performed on 12 week-old mutant and
208 control male mice using toluidine blue stained paraffin frontal knee sections (Fig. 3A-B). No
209 major differences in tissue architecture were seen between genotypes. However, the thickness of
210 the calcified articular cartilage in the medial femoral condyle (MFC) and medial tibial plateau
211 (MTP) of male *Mig-6*^{over/over} mice was statistically significant lower than in controls. Uncalcified
212 cartilage did not show any differences between genotypes.

213

214 **Mig-6 overexpressing male mice display articular cartilage damage at 36 weeks of age**

215 We evaluated the knee joints of 36 weeks-old control and *Mig-6* ^{over/over} male mice using
216 toluidine blue staining and OARSI grading method (39). At this age, control mice exhibited little
217 to no damage of articular cartilage (Fig. 4A). Conversely, three of seven *Mig-6* ^{over/over} mice
218 exhibited cartilage damage and erosion with significantly elevated scores in the medial
219 compartment of the knee. Moreover, all seven *Mig-6* ^{over/over} mice had OA in the lateral
220 compartment of the knee (Fig. 4B), with fibrillation and fissure formation. Furthermore, two of
221 six *Mig-6* ^{over/over} female mice showed mild cartilage degeneration of the medial compartment
222 (Fig. 5B), in contrast to the control group where no cartilage damage was observed (Fig. 5A).

223 **Specific overexpression of Mig-6 results in normal bone area**

224 Bone structural alteration is related to knee osteoarthritis as an adaptive response to the
225 loading distribution across joints (42). Measurement of the subchondral bone area from *Mig-6*
226 ^{over/over} and controls male mice at 36 weeks-old across the entire joint did not reveal any
227 significant differences between genotypes (Fig. 6A-B). Specific measurements of the lateral and
228 medial tibia plateau did not show any significant differences either (data not shown).

229 **Mig-6 overexpressing mice display altered collagen fiber organization in articular cartilage**

230 Frontal sections from 36 weeks-old male mice were stained with Picosirius red to
231 visualize the collagen network under polarized light microscope. In the control male mice, the
232 collagen fibers in the articular cartilage exhibit greenish/yellow birefringence in the superficial
233 and transitional zones, resulting from thin collagen fibers in these regions. In the deep and
234 calcified cartilage, and in bone, red birefringent fibers are visualized, indicating larger fiber
235 diameter in these regions. The articular cartilage of *Mig-6* ^{over/over} showed fewer green collagen
236 fibers in the medial compartment of the knee, indicating a loss of normal collagen fibers (Fig.
237 7A-B).

238 **Overexpression of *Mig-6* decreases *Sox9* expression**

239 Studies have shown that expression of the transcription factor SRY (sex determining
240 region Y)-box 9 [SOX9] was increased in articular cartilage upon both *Prx1-Cre 1*(43) and *Col2a1-Cre*
241 driven deletion of *Mig-6* (32). SOX9 is an essential regulator of chondrogenesis and the
242 maintenance of a chondrocyte-like phenotype (44). Frontal sections of paraffin embedded knees
243 from 12 and 36 week-old male mice were used for SOX9 immunostaining. In 12 weeks-old

244 control mice, nuclear SOX9 was abundantly present in the articular cartilage of the knee joints in
245 all four quadrants. In contrast, *Mig-6*^{over/over} mice appear to have fewer cells staining positive in
246 both lateral and medial compartments (Fig. 8A,B). 36 week-old *Mig-6*^{over/over} mice showed a
247 further reduction in SOX9 immunostaining in the lateral quadrant, while the loss of cartilage in
248 the medial compartment led to an absence of SOX9 staining (Fig. 9A,B). For both ages,
249 negative controls did not show staining in chondrocytes (data not shown).

250

251 **Lubricin/PGR4 is slightly decreased upon *Mig-6* overexpression**

252 Lubricin/proteoglycan 4 plays an important role as joint boundary lubricant and is
253 produced by synoviocytes as well as superficial zone chondrocytes (45,46). In 12 week-old *Mig-*
254 *6*^{over/over} mice, lubricin was observed in superficial zone (SZ) and middle zone (MZ)
255 chondrocytes, in a similar pattern as control mice, although intensity appeared reduced in
256 overexpressors (Fig. 10 A-C). 36 weeks-old control male mice show lubricin immunostaining in
257 the SZ and MZ, however, less lubricin immunostaining is present in the SZ of the medial side of
258 *Mig-6*^{over/over} mice. Negative controls did not show staining in chondrocytes or articular cartilage
259 at either age (Fig. 11 A-C).

260

261 **MMP13 immunostaining is increased in *Mig-6*-overexpressing compared to control mice**

262 Previous studies have shown that matrix metalloproteinase (MMP) 13 is the main
263 collagenase associated with type II collagen destruction in OA. Frontal sections of knees from 36
264 week-old control and *Mig-6*^{over/over} male mice were used for MMP13 immunohistochemistry.
265 While some staining was seen in control mice, intensity of staining was increased in areas of
266 damage on the medial side of *Mig-6*^{over/over} mice. Negative controls did not show staining in
267 cartilage or subchondral bone (Fig. 12 A,B and C).

268

269

270

271

272

273

274

275

276

277

278 **Discussion**

279 Mig-6 has been studied in a variety of human diseases, including cancer and more
280 recently OA progression(16,31–33,47). Many studies, including from our lab, also identified
281 TGF α /EGFR signaling as a regulator of OA progression and cartilage homeostasis (21,24,48).
282 Interestingly, cartilage-specific (Col2-Cre) deletion of *Mig-6* (Mig-6 KO) (32) results in
283 increased proliferation of chondrocytes and a thicker layer of cartilage while skeletal-specific
284 (Prx1-Cre) deletion of *Mig-6* results in transient anabolic buildup of cartilage followed by
285 catabolic events such as cartilage degeneration at 16 weeks of age (33). In fact, global deletion of
286 *Mig-6* in mice results in a complex set of phenotypes, including joint damage at relatively early
287 time-points in a surgical mouse model (31,49,50). Previous research demonstrates that Mig-6
288 acts as a negative feedback inhibitor of EGFR signaling (51). Thus, Mig-6 has been suggested as
289 a potential tumor suppressor, as a suppressor of EGFR signaling in human carcinomas (35,52–
290 55). Recent work has revealed that overexpression of Mig-6 acts as a negative regulator of
291 EGFR-ERK signalling in mouse uterus (35). In our study, we set out to evaluate the role of *Mig-6*
292 in joint physiology by using skeletal-specific constitutive overexpression of *Mig-6*. In this
293 study, we show no major effects of Mig-6 overexpression on bone length at the ages of 12 or 36
294 weeks. While male *Mig-6*^{over/over} mice did show slightly reduced body weight up to 12 weeks
295 after birth, these differences were no longer present at 36 weeks of age.

296 Our results show that *Mig-6*^{over/over} (Prx1-Cre) male mice developed cartilage lesions at
297 36 weeks of age, where control mice show healthy cartilage. OARSI scores of *Mig-6*^{over/over} mice
298 reveal significantly increased cartilage degeneration compared to control group. Surprisingly, it
299 appeared that cartilage degeneration in *Mig-6*^{over/over} mice was not accompanied by any obvious
300 changes in subchondral bone. However, the thickness of the calcified articular cartilage in *Mig-6*
301 ^{over/over} was significantly decreased at the 12-week time-point, at least in the medial
302 compartment. It is currently unclear whether and how this is related to the subsequent
303 degeneration of articular cartilage in these mice.

304 SOX9 is a transcription factor that is necessary for the formation of mesenchymal
305 condensations as well as chondrocyte differentiation and proliferation (56,57). Our data suggest a
306 lower number of SOX9-positive cells at the 12-week time point in mutant mice, preceding
307 cartilage damage. The number of SOX9-expressing cells is further reduced in 36 week-old

308 mutant mice, although this is partially due to the loss of cartilage and chondrocytes. In agreement
309 with these data, mice with cartilage- or limb mesenchyme-specific deletion of *Mig-6* showed
310 increased expression of SOX9 in the articular cartilage (32,33).

311 Lubricin/PRG4 is necessary for joint lubrication and to maintain healthy cartilage
312 (58,59).

313 Our results suggest a slight decrease in lubricin staining in 12 weeks-old male *Mig-6* ^{over/over}
314 mice, compared to the control group. We also observed the same trend towards decreased
315 staining in 36 weeks-old male *Mig-6* over/over mice. Together, these data suggest that the
316 decreased of SOX9 and lubricin in the articular cartilage could contribute to cartilage
317 degeneration in our mutant mice.

318 We recently described mice with cartilage-specific (Col2-Cre-driven) overexpression of
319 *Mig-6* (34). Despite the differences in recombination patterns conferred by the two different Cre
320 drivers, overall the phenotypes observed upon *Mig-6* overexpression are quite similar. Both are
321 characterized by no or only subtle developmental defects, followed by reduced SOX9 and
322 lubricin expression, followed by cartilage degeneration. One unique feature of the *Prx1*-driven
323 *Mig6*-overexpression described here is the stronger OA phenotype in the lateral compartment of
324 36 week-old mutant male mice. Future studies will need to investigate the underlying causes.

325 While *Mig-6* had been identified as a negative regulator of EGFR signaling, it also
326 interacts with a number of other potential candidate proteins that may contribute to the
327 phenotype described here, such as *Cdc42* (60), *c-Abl* (61), and the hepatocyte growth factor
328 receptor *c-Met* (62). Therefore, additional work is necessary to elucidate the potential role of
329 these proteins in the phenotype presented. In conclusion, in this study using limb mesenchyme-
330 specific *Mig-6* overexpression we show a reduction of SOX9 and PRG4 expression, and
331 accelerated cartilage damage. The data highlights the importance of more studies on the specific
332 role of *Mig-6* signaling in joint homeostasis and OA development.

333

334

335

336

337

338

339

340 **Acknowledgements**

341 We would like to thank Julia Bowering for performing joint sectioning. We thank all
342 members of the Beier lab for discussions and help. M.B. was supported by a fellowship from
343 CNPq/Brazil. Work in the lab of F.B. is supported by a grant from the Canadian Institutes of
344 Health Research (Grant #332438). F.B. holds the Canada Research Chair in Musculoskeletal
345 Research.

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370
371
372

373 **References**

- 374 1. Nuki, G. Osteoarthritis: a problem of joint failure. *Z. Rheumatol.* **58**, 142–7 (1999).
- 375 2. Badley, E. M. The effect of osteoarthritis on disability and health care use in Canada. *J. Rheumatol. Suppl.* **43**, 19–22 (1995).
- 376 3. Kotlarz, H., Gunnarsson, C. L., Fang, H. & Rizzo, J. A. Insurer and out-of-pocket costs of
377 osteoarthritis in the US: Evidence from national survey data. *Arthritis Rheum.* **60**, 3546–
378 3553 (2009).
- 379 4. Nazarinasab, M., Motamedfar, A. & Moqadam, A. E. Investigating mental health in
380 patients with osteoarthritis and its relationship with some clinical and demographic
381 factors. *Reumatologia* **55**, 183–188 (2017).
- 382 5. Berenbaum, F. New horizons and perspectives in the treatment of osteoarthritis. *Arthritis
383 Res. Ther.* **10**, S1 (2008).
- 384 6. Carballo, C. B., Nakagawa, Y., Sekiya, I. & Rodeo, S. A. Basic Science of Articular
385 Cartilage. *Clin. Sports Med.* **36**, 413–425 (2017).
- 386 7. Nam, J. *et al.* Sequential Alterations in Catabolic and Anabolic Gene Expression Parallel
387 Pathological Changes during Progression of Monoiodoacetate-Induced Arthritis. *PLoS
388 One* **6**, e24320 (2011).
- 389 8. Lorenzo, P., Bayliss, M. T. & Heinegård, D. Altered patterns and synthesis of
390 extracellular matrix macromolecules in early osteoarthritis. *Matrix Biol.* **23**, 381–391
391 (2004).
- 392 9. Bush, J. R. & Beier, F. TGF- β and osteoarthritis—the good and the bad. *Nat. Med.* **19**,
393 667–669 (2013).
- 394 10. Blaney Davidson, E. N. *et al.* Inducible chondrocyte-specific overexpression of BMP2 in
395 young mice results in severe aggravation of osteophyte formation in experimental OA
396 without altering cartilage damage. *Ann. Rheum. Dis.* **74**, 1257–1264 (2015).
- 397 11. Goldring, M. B. *et al.* Cartilage homeostasis in health and rheumatic diseases. *Arthritis
398 Res. Ther.* **11**, 224 (2009).
- 399 12. Kaspiris, A. *et al.* Subchondral cyst development and MMP-1 expression during
400 progression of osteoarthritis: An immunohistochemical study. *Orthop. Traumatol. Surg.*

402 *Res.* **99**, 523–529 (2013).

403 13. Liacini, A. *et al.* Induction of matrix metalloproteinase-13 gene expression by TNF-alpha
404 is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular
405 chondrocytes. *Exp. Cell Res.* **288**, 208–17 (2003).

406 14. Song, R.-H. *et al.* Aggrecan degradation in human articular cartilage explants is mediated
407 by both ADAMTS-4 and ADAMTS-5. *Arthritis Rheum.* **56**, 575–585 (2007).

408 15. Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J.-P. & Fahmi, H. Role of
409 proinflammatory cytokines in the pathophysiology of osteoarthritis. *Nat. Rev. Rheumatol.*
410 **7**, 33–42 (2011).

411 16. Qin, L. & Beier, F. EGFR Signaling: Friend or Foe for Cartilage? *JBMR Plus* **3**, e10177
412 (2019).

413 17. Appleton, C. T. G., Pitelka, V., Henry, J. & Beier, F. Global analyses of gene expression
414 in early experimental osteoarthritis. *Arthritis Rheum.* **56**, 1854–1868 (2007).

415 18. Appleton, C. T. G., Usmani, S. E., Bernier, S. M., Aigner, T. & Beier, F. Transforming
416 growth factor α suppression of articular chondrocyte phenotype and Sox9 expression in a
417 rat model of osteoarthritis. *Arthritis Rheum.* **56**, 3693–3705 (2007).

418 19. Usmani, S. E. *et al.* Transforming growth factor alpha controls the transition from
419 hypertrophic cartilage to bone during endochondral bone growth. *Bone* **51**, 131–141
420 (2012).

421 20. Appleton, C. T. G. *et al.* Reduction in disease progression by inhibition of transforming
422 growth factor α -CCL2 signaling in experimental posttraumatic osteoarthritis. *Arthritis*
423 *Rheumatol. (Hoboken, N.J.)* **67**, 2691–701 (2015).

424 21. Usmani, S. E. *et al.* Context-specific protection of TGF α null mice from osteoarthritis. *Sci.*
425 *Rep.* **6**, 30434 (2016).

426 22. Cui, G. *et al.* Association of Common Variants in TGFA with Increased Risk of Knee
427 Osteoarthritis Susceptibility. *Genet. Test. Mol. Biomarkers* **gtmb.2017.0045** (2017).
428 doi:10.1089/gtmb.2017.0045

429 23. Zengini, E. *et al.* Genome-wide analyses using UK Biobank data provide insights into the
430 genetic architecture of osteoarthritis. *Nat. Genet.* **2018** 1 (2018). doi:10.1038/s41588-018-
431 0079-y

432 24. Appleton, C. T. G., Usmani, S. E., Mort, J. S. & Beier, F. Rho/ROCK and MEK/ERK
433 activation by transforming growth factor-alpha induces articular cartilage degradation.

434 25. *Lab. Invest.* **90**, 20–30 (2010).

435 25. Wang, K., Yamamoto, H., Chin, J. R., Werb, Z. & Vu, T. H. Epidermal growth factor
436 receptor-deficient mice have delayed primary endochondral ossification because of
437 defective osteoclast recruitment. *J. Biol. Chem.* **279**, 53848–56 (2004).

438 26. Jia, H. *et al.* EGFR signaling is critical for maintaining the superficial layer of articular
439 cartilage and preventing osteoarthritis initiation. *Proc. Natl. Acad. Sci. U. S. A.* 201608938
440 (2016). doi:10.1073/pnas.1608938113

441 27. Schneider, M. R., Sibilia, M. & Erben, R. G. The EGFR network in bone biology and
442 pathology. *Trends Endocrinol. Metab.* **20**, 517–524 (2009).

443 28. Mariani, E., Pulsatelli, L. & Facchini, A. Signaling pathways in cartilage repair. *Int. J.*
444 *Mol. Sci.* **15**, 8667–98 (2014).

445 29. Frosi, Y. *et al.* A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase
446 suppression and receptor degradation. *J. Cell Biol.* **189**, 557–71 (2010).

447 30. Ferby, I. *et al.* Mig6 is a negative regulator of EGF receptor-mediated skin morphogenesis
448 and tumor formation. *Nat. Med.* **12**, 568–573 (2006).

449 31. Joiner, D. M. *et al.* Accelerated and increased joint damage in young mice with global
450 inactivation of mitogen-inducible gene 6 after ligament and meniscus injury. *Arthritis Res.*
451 *Ther.* **16**, R81 (2014).

452 32. Pest, M. A., Russell, B. A., Zhang, Y.-W., Jeong, J.-W. & Beier, F. Disturbed cartilage
453 and joint homeostasis resulting from a loss of mitogen-inducible gene 6 in a mouse model
454 of joint dysfunction. *Arthritis Rheumatol. (Hoboken, N.J.)* **66**, 2816–27 (2014).

455 33. Shepard, J. B., Jeong, J.-W., Maihle, N. J., O'Brien, S. & Dealy, C. N. Transient anabolic
456 effects accompany epidermal growth factor receptor signal activation in articular cartilage
457 in vivo. *Arthritis Res. Ther.* **15**, R60 (2013).

458 34. Bellini, M., Pest, M. A., Miranda-Rodrigues, M., Jeong, J. & Beier, F. Overexpression of
459 mig-6 in cartilage induces an osteoarthritis-like phenotype in mice. *bioRxiv* 764142
460 (2019). doi:10.1101/764142

461 35. Kim, T. H. *et al.* Mig-6 suppresses endometrial cancer associated with pten deficiency and
462 ERK activation. *Cancer Res.* **74**, 7371–7382 (2014).

463 36. Logan, M. *et al.* Expression of Cre recombinase in the developing mouse limb bud driven
464 by aPrxl enhancer. *genesis* **33**, 77–80 (2002).

465 37. Ratneswaran, A. *et al.* Peroxisome proliferator-activated receptor δ promotes the

466 progression of posttraumatic osteoarthritis in a mouse model. *Arthritis Rheumatol.*
467 (*Hoboken, N.J.*) **67**, 454–64 (2015).

468 38. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of
469 image analysis. *Nat. Methods* **9**, 671–675 (2012).

470 39. Glasson, S. S., Chambers, M. G., Van Den Berg, W. B. & Little, C. B. The OARSI
471 histopathology initiative – recommendations for histological assessments of osteoarthritis
472 in the mouse. *Osteoarthr. Cartil.* **18**, S17–S23 (2010).

473 40. Beaucage, K. L., Pollmann, S. I., Sims, S. M., Dixon, S. J. & Holdsworth, D. W.
474 Quantitative in vivo micro-computed tomography for assessment of age-dependent
475 changes in murine whole-body composition. *Bone Reports* **5**, 70–80 (2016).

476 41. Dupuis, H. *et al.* Exposure to the RXR agonist SR11237 in early life causes disturbed
477 skeletal morphogenesis in a rat model. *bioRxiv* 774851 (2019). doi:10.1101/774851

478 42. Lowitz, T. *et al.* Characterization of knee osteoarthritis-related changes in trabecular bone
479 using texture parameters at various levels of spatial resolution-a simulation study. *Bonekey
480 Rep.* **3**, 615 (2014).

481 43. Shepard, J. B., Jeong, J.-W., Maihle, N. J., O'Brien, S. & Dealy, C. N. Transient anabolic
482 effects accompany epidermal growth factor receptor signal activation in articular cartilage
483 in vivo. *Arthritis Res. Ther.* **15**, R60 (2013).

484 44. Akiyama, H., Chaboissier, M.-C., Martin, J. F., Schedl, A. & de Crombrugge, B. The
485 transcription factor Sox9 has essential roles in successive steps of the chondrocyte
486 differentiation pathway and is required for expression of Sox5 and Sox6. *Genes Dev.* **16**,
487 2813–28 (2002).

488 45. Coles, J. M. *et al.* Loss of cartilage structure, stiffness, and frictional properties in mice
489 lacking PRG4. *Arthritis Rheum.* **62**, 1666–1674 (2010).

490 46. Iqbal, S. M. *et al.* Lubricin/Proteoglycan 4 binds to and regulates the activity of Toll-Like
491 Receptors In Vitro. *Sci. Rep.* **6**, 18910 (2016).

492 47. Zhang, Y.-W. & Vande Woude, G. F. Mig-6, Signal Transduction, Stress Response and
493 Cancer. *Cell Cycle* **6**, 507–513 (2007).

494 48. Usmani, S. E., Appleton, C. T. G. & Beier, F. Transforming growth factor-alpha induces
495 endothelin receptor A expression in osteoarthritis. *J. Orthop. Res.* **30**, 1391–7 (2012).

496 49. Zhang, Y.-W. *et al.* Targeted disruption of Mig-6 in the mouse genome leads to early
497 onset degenerative joint disease. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 11740–5 (2005).

498 50. Jin, N., Gilbert, J. L., Broaddus, R. R., Demayo, F. J. & Jeong, J.-W. Generation of a Mig-
499 6 conditional null allele. *Genesis* **45**, 716–21 (2007).

500 51. Hackel, P. O., Gishizky, M. & Ullrich, A. Mig-6 Is a Negative Regulator of the Epidermal
501 Growth Factor Receptor Signal. *Biol. Chem.* **382**, (2001).

502 52. Maity, T. K. *et al.* Loss of MIG6 Accelerates Initiation and Progression of Mutant
503 Epidermal Growth Factor Receptor-Driven Lung Adenocarcinoma. *Cancer Discov.* **5**,
504 534–49 (2015).

505 53. Li, Z. *et al.* Downregulation of Mig-6 in nonsmall-cell lung cancer is associated with
506 EGFR signaling. *Mol. Carcinog.* **51**, 522–34 (2012).

507 54. Zhang, Y.-W. *et al.* Evidence that MIG-6 is a tumor-suppressor gene. *Oncogene* **26**, 269–
508 276 (2007).

509 55. Sasaki, M., Terabayashi, T., Weiss, S. M. & Ferby, I. The Tumor Suppressor MIG6
510 Controls Mitotic Progression and the G2/M DNA Damage Checkpoint by Stabilizing the
511 WEE1 Kinase. *Cell Rep.* **24**, 1278–1289 (2018).

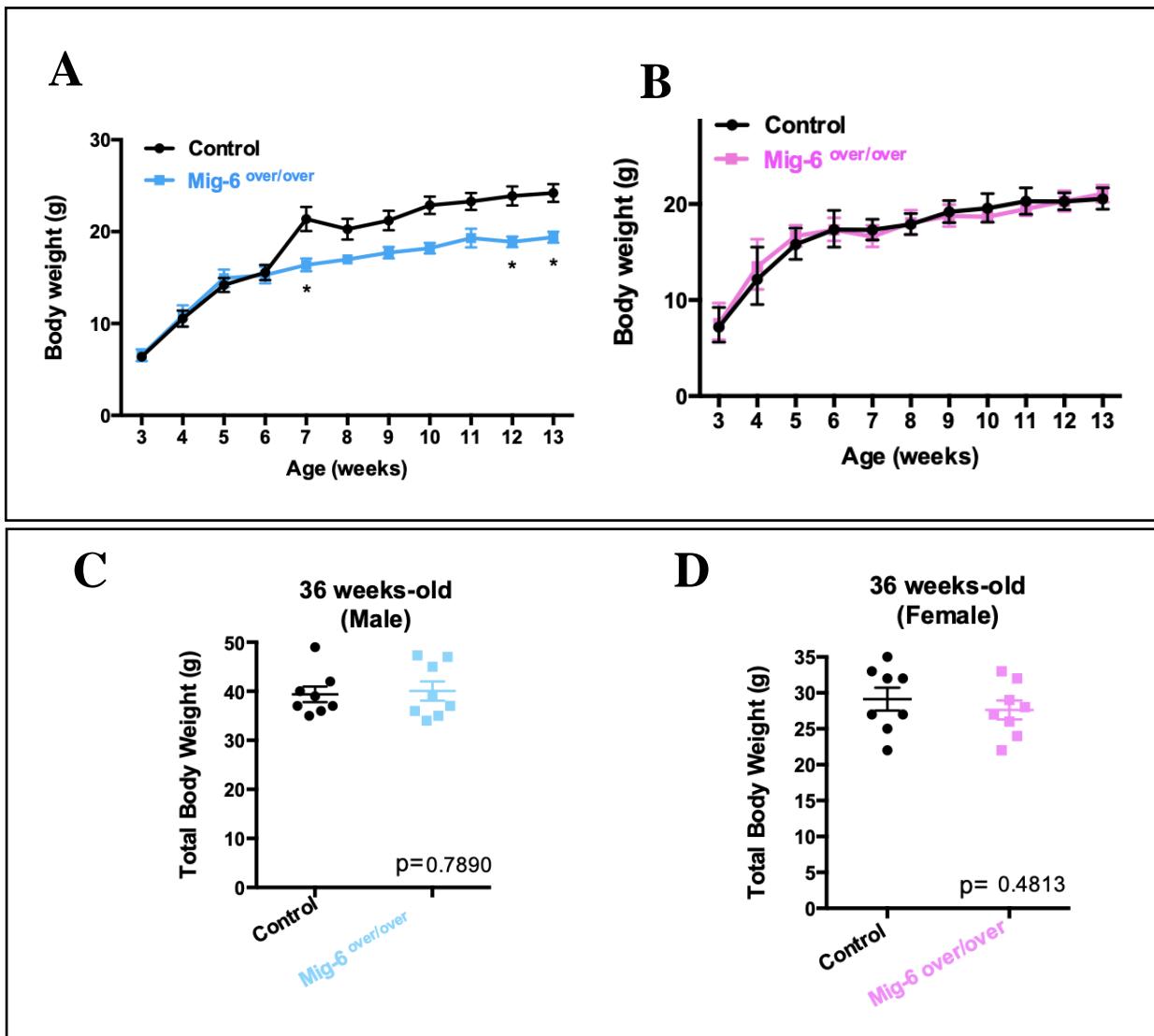
512 56. Kobayashi, T. & Kronenberg, H. Minireview: Transcriptional Regulation in Development
513 of Bone. *Endocrinology* **146**, 1012–1017 (2005).

514 57. Akiyama, H. The transcription factor Sox9 has essential roles in successive steps of the
515 chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6.
516 *Genes Dev.* **16**, 2813–2828 (2002).

517 58. Flannery, C. R. *et al.* Prevention of cartilage degeneration in a rat model of osteoarthritis
518 by intraarticular treatment with recombinant lubricin. *Arthritis Rheum.* **60**, 840–847
519 (2009).

520 59. Ruan, M. Z. C. *et al.* Proteoglycan 4 Expression Protects Against the Development of
521 Osteoarthritis. *Sci. Transl. Med.* **5**, 176ra34-176ra34 (2013).

522 60. Jiang, X. *et al.* Inhibition of Cdc42 is essential for Mig-6 suppression of cell migration
523 induced by EGF. *Oncotarget* (2016). doi:10.18632/oncotarget.10205


524 61. Hopkins, S. *et al.* Mig6 is a sensor of EGF receptor inactivation that directly activates c-
525 Abl to induce apoptosis during epithelial homeostasis. *Dev. Cell* **23**, 547–59 (2012).

526 62. Pante, G. *et al.* Mitogen-inducible gene 6 is an endogenous inhibitor of HGF/Met-induced
527 cell migration and neurite growth. *J. Cell Biol.* **171**, 337–48 (2005).

530

531

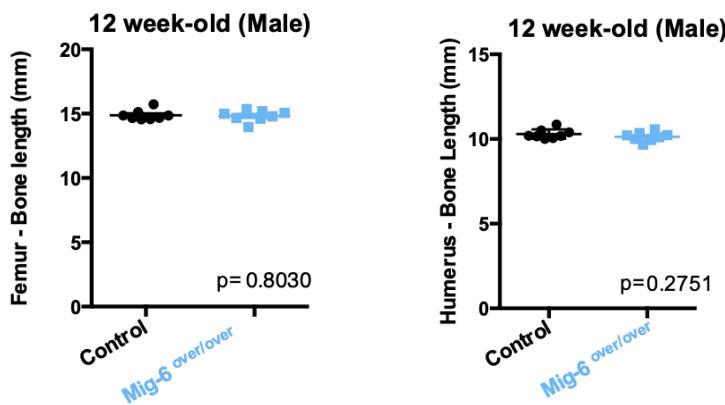
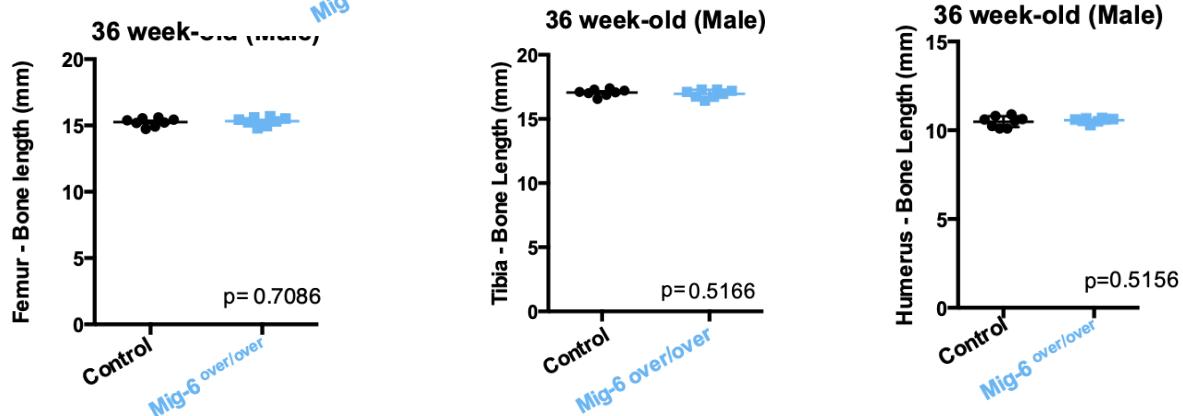
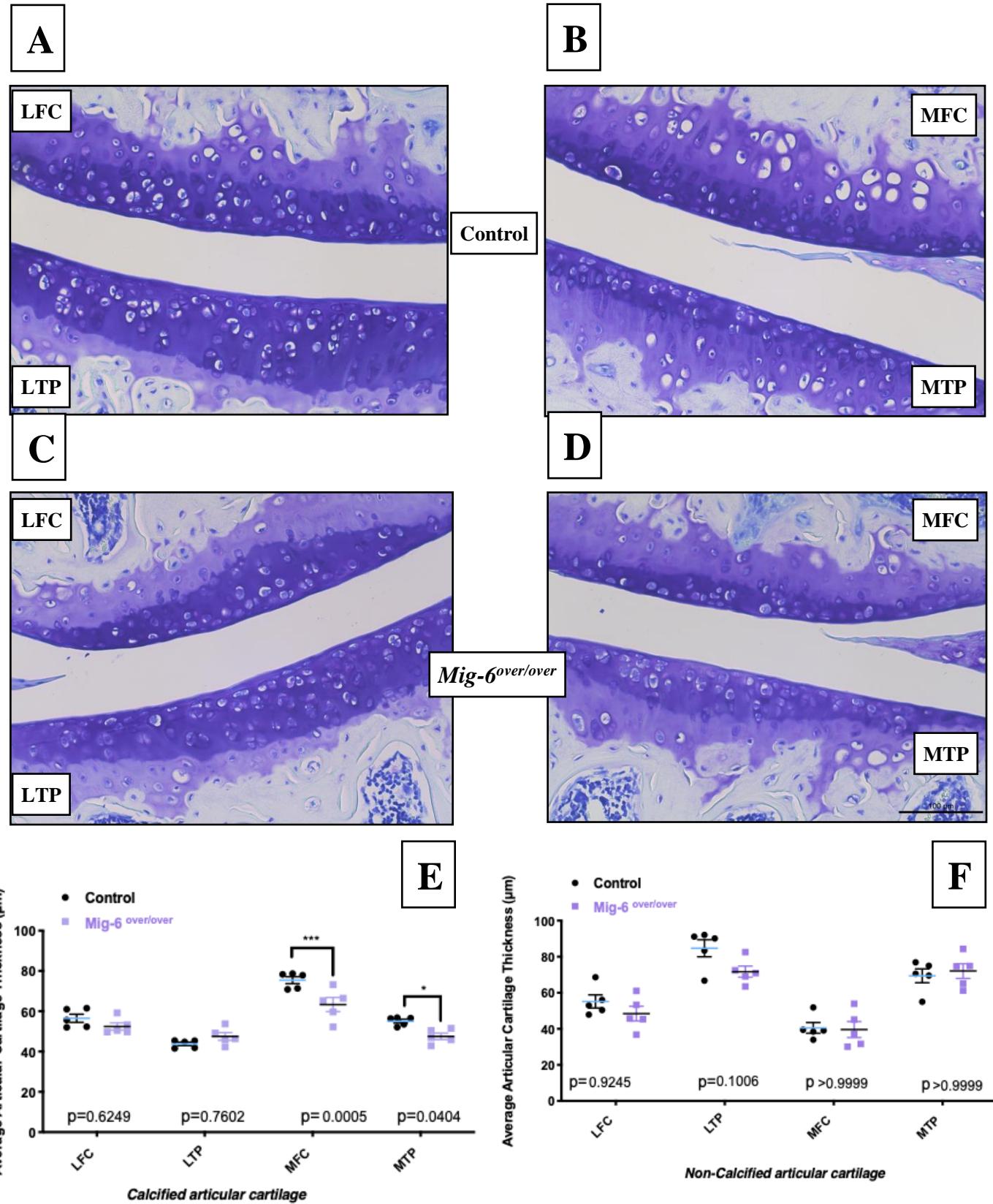

532

Figure 1: Total body weight of male and female control and *Mig-6*^{over/over} mice.

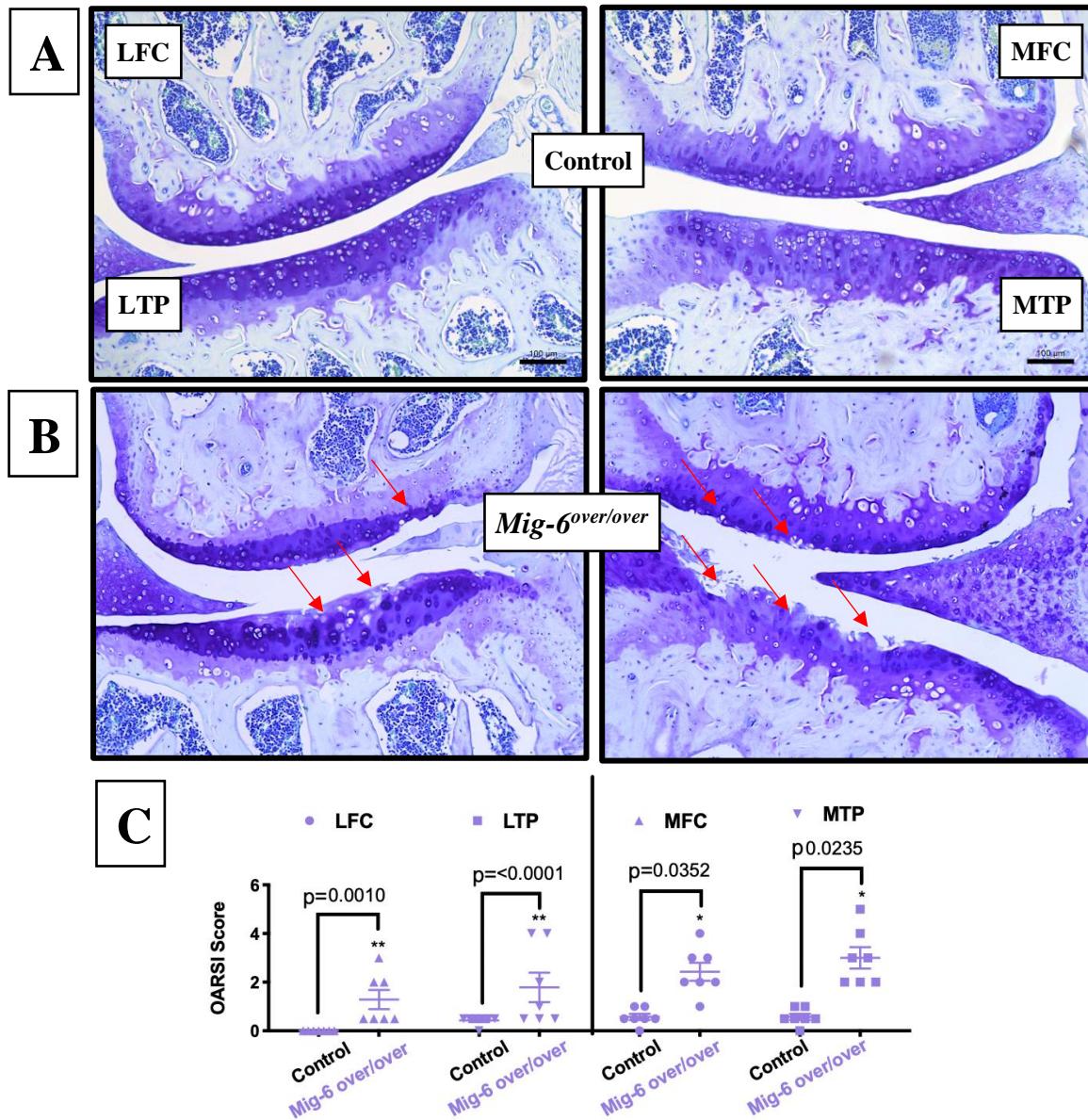
Body weight of male *Mig-6* overexpressing mice did is significantly lower than control at 7w, 12w and 13w of age (A). Female *Mig-6* overexpression mice did not show any statistically significant differences compared to control (B). Two-Way ANOVA was used with Bonferroni post hoc analysis (n=5/genotyping). Data are presented with mean and error \pm SEM ($P < 0.05$). Total body weights of 36 week-old male (C) and female (D) *Mig-6*^{over/over} mice and controls did not show any statistically significant differences. Individual data points are presented with mean \pm SEM ($P < 0.05$). Data were analyzed by two tailed student t-tests from 8-10 mice per group (age/genotyping).


A

C



B


Figure 2: Mig-6 overexpression does not affect bone length.

The lengths of right femora, tibiae and humeri were measured on microCT scans of mice at 12 (**A**) and 36 (**B**) weeks of age using GE MicroView software. There were no statistically significant differences in any bones at either age. Individual data points are presented with mean \pm SEM ($P < 0.05$). Data were analyzed by two tailed student t-tests from 8 mice per group (age/gender). (**C**) shows a representative 3D isosurface reconstruction of a 100 μ m/voxel μ CT scan.

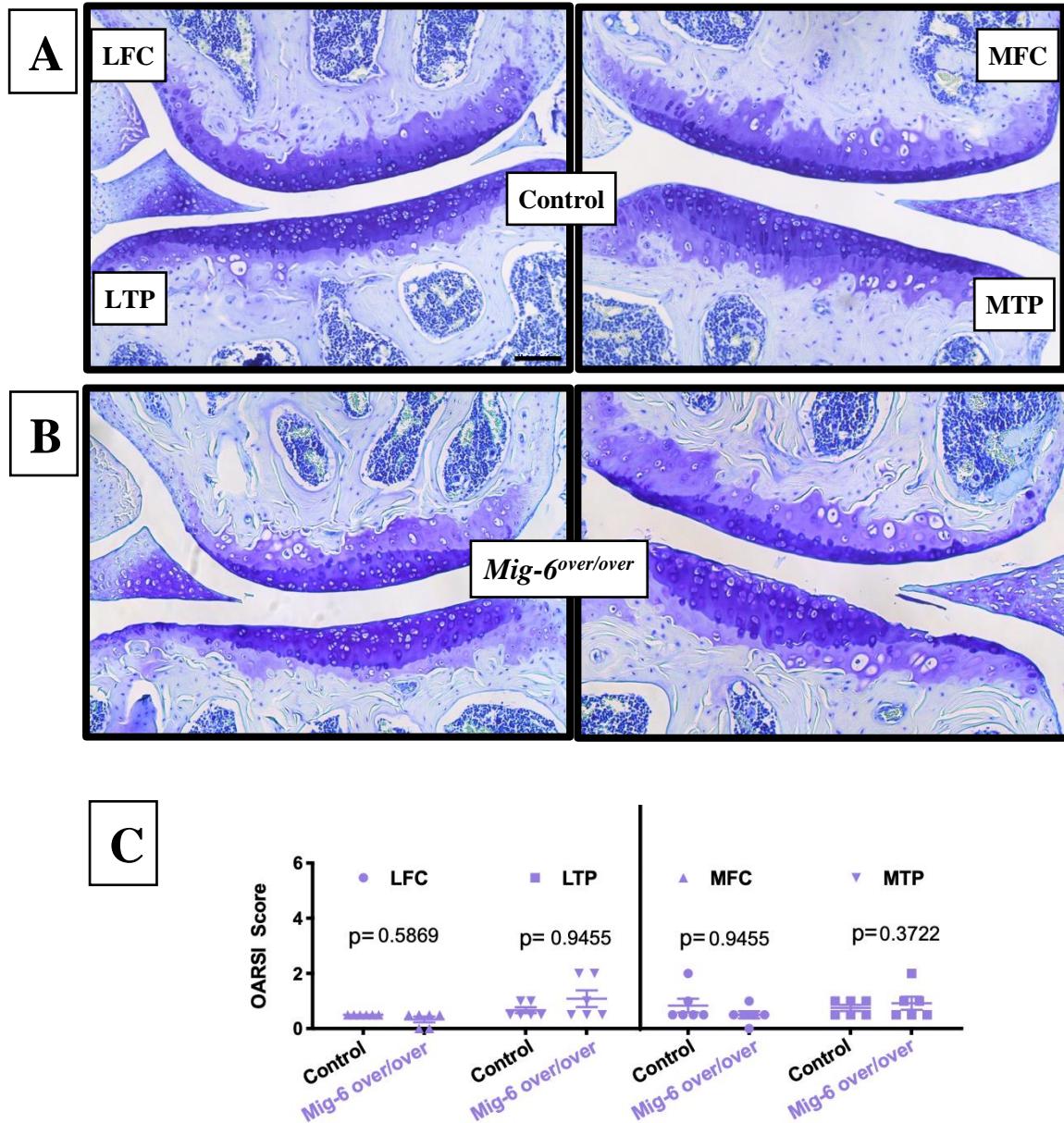
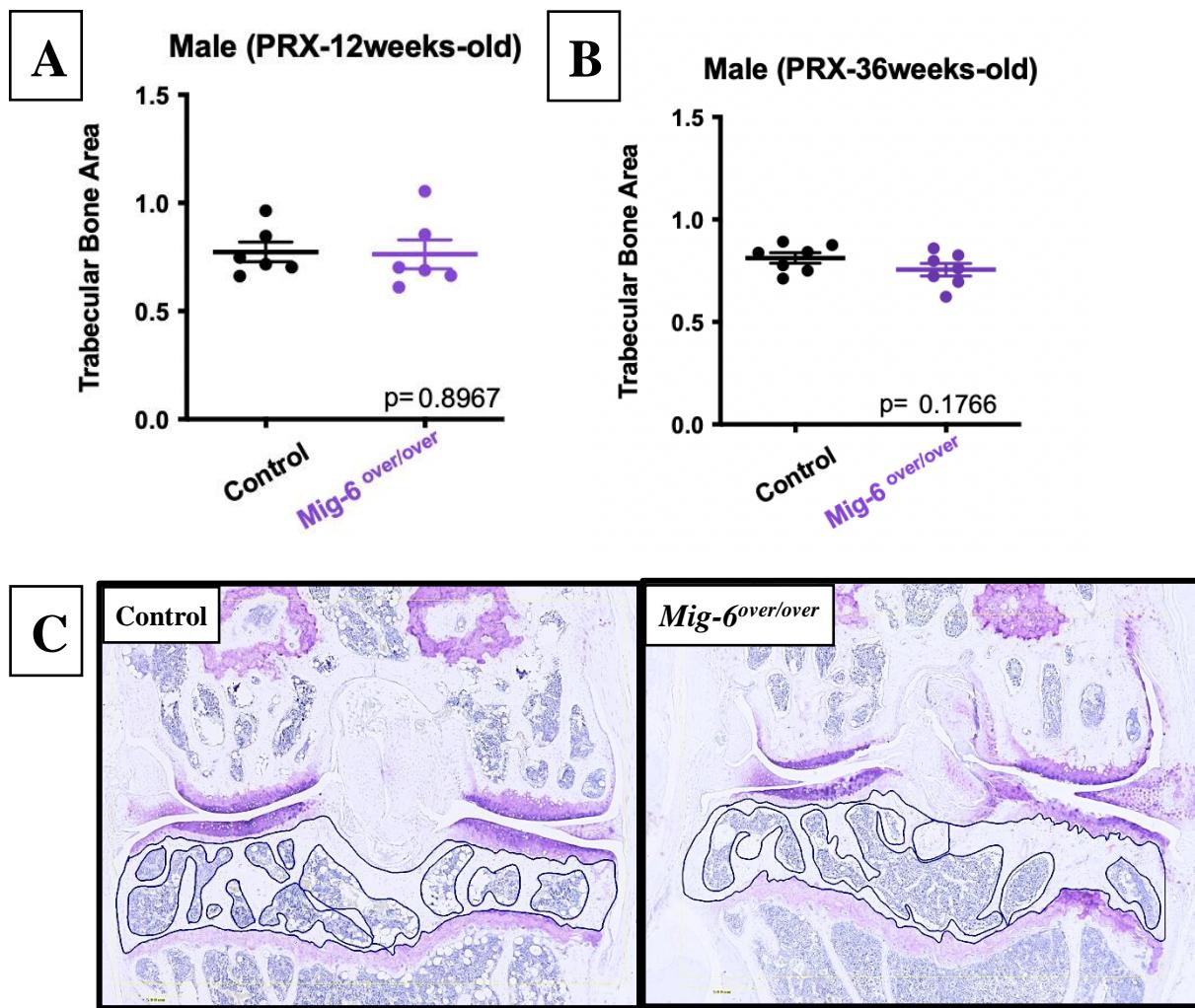


Figure 3: 12 week-old *Mig-6*^{over/over} male mice show healthy articular cartilage.


Representative (n=5) toluidine blue-stained frontal sections of knee joints from 12-week-old control (**A,B**) and *Mig-6*^{over/over} (**C,D**) mice showed no apparent damage. *Mig-6* overexpressing mice did show statistically significant differences in thickness of the calcified articular cartilage on the medial femoral condyle (MFC) and medial tibial plateau (MTP) (**E**) when compared to controls. However, no statistically significant differences were seen in the non-calcified articular cartilage (**F**). The lateral femoral condyle (LFC) and lateral tibial plateau (LTP) did not show any significant differences. Individual data points are presented with mean \pm SEM. Data were analyzed by two-way ANOVA (95% CI) with Bonferroni post-hoc test. Scale bar = 100 μ m.

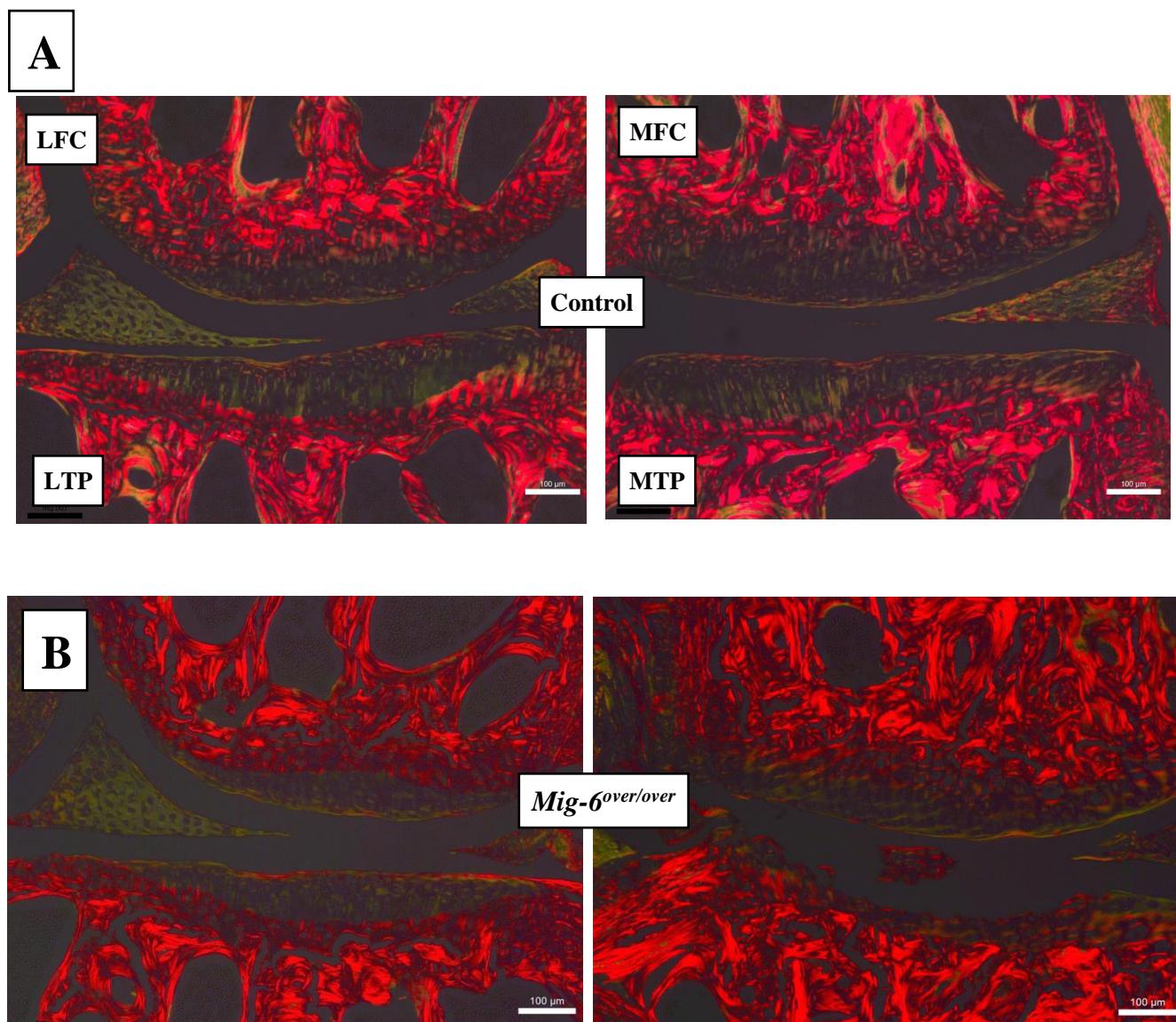

Figure 4: Cartilage damage in knee joints of 36 week-old male Mig-6 overexpressing mice. Toluidine blue staining demonstrated healthy knee joints and articular cartilage in all 36 week-old male control mice (A), while many Mig-6-overexpressing mice showed clear damage to the articular surface (B). OARSI histopathology scoring demonstrated that cartilage degeneration scores significantly increased in the MFC, MTP, LFC and LTP of Mig-6 overexpressing mice. (C) Data were analyzed by two-way ANOVA with Bonferroni's multiple comparisons test. Individual data points are presented with mean \pm SEM. All scale bars =100 μ m. N = 7 mice/group.

Figure 5: Minor damage in articular cartilage of 36 week-old female Mig-6 overexpressing mice. (A) Paraffin sections of knee joints from 36 week-old female control (A) and Mig-6 overexpressing (B) mice demonstrated healthy joints in controls and minor cartilage damage in some mutant mice, which was confirmed by OARSI histopathology scoring (C). Data were analyzed by two-way ANOVA with Bonferroni's multiple comparisons test. Individual data points are presented with mean \pm SEM. All scale bars =100 μ m. N = 7 mice/group.

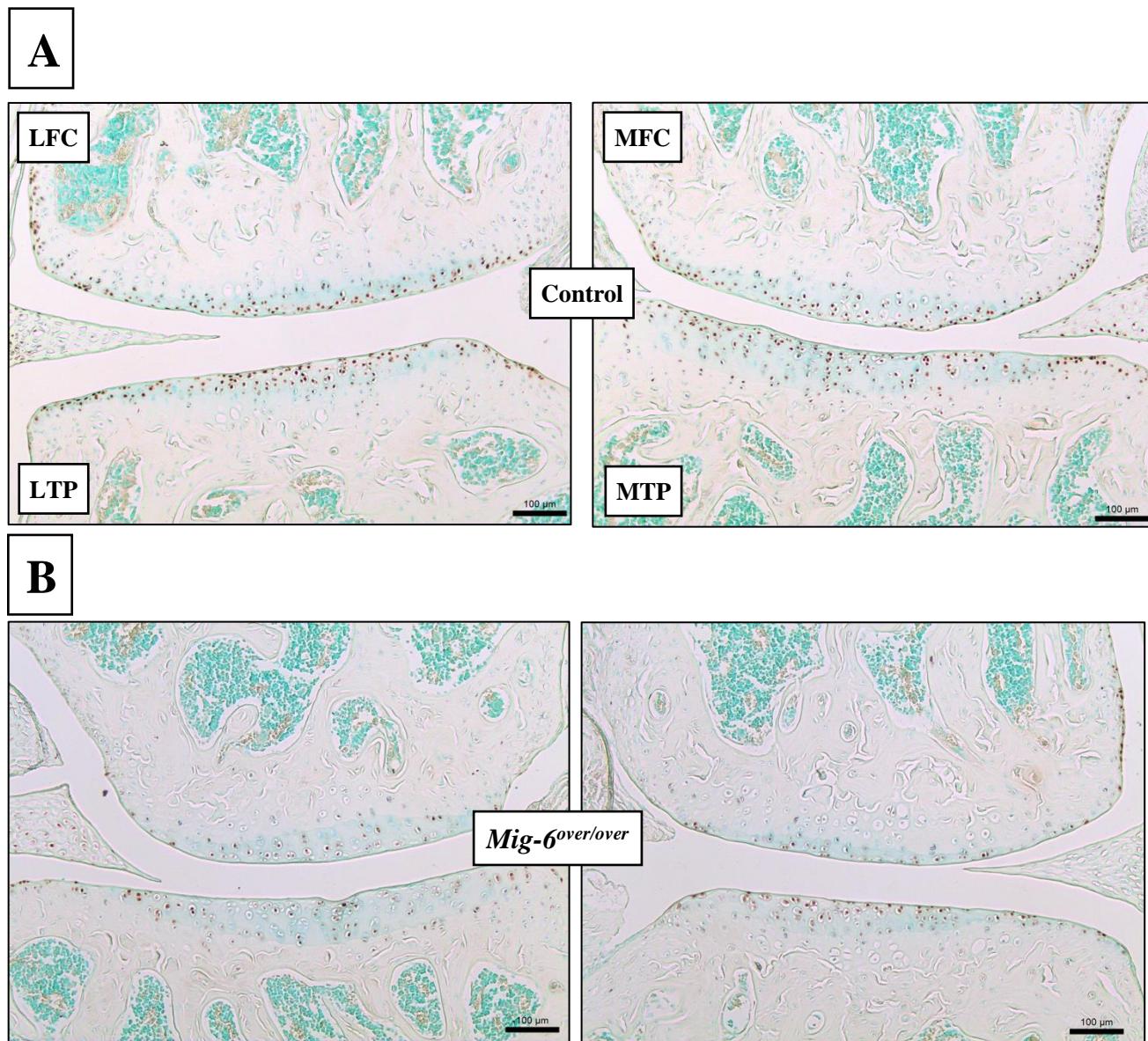
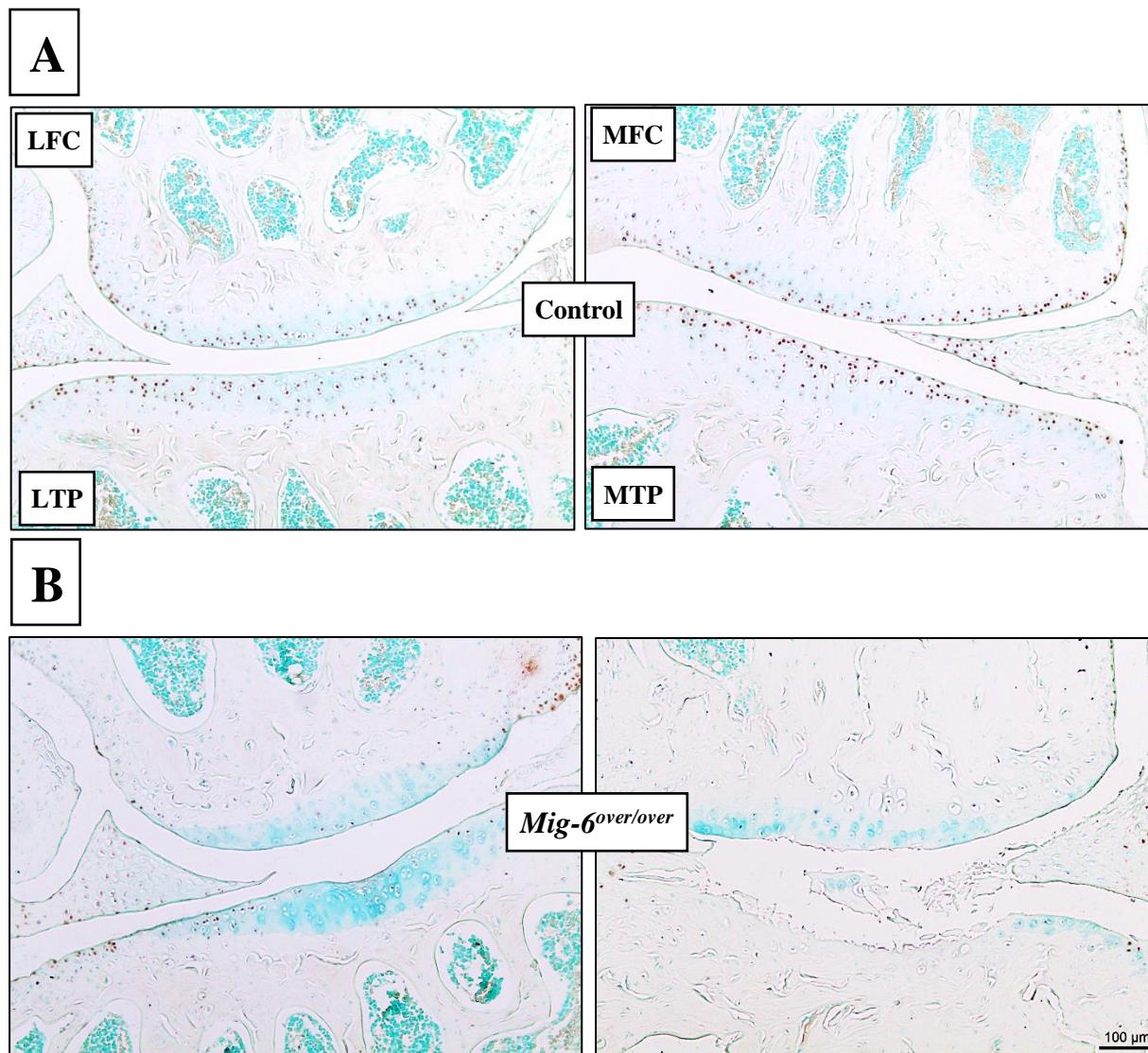
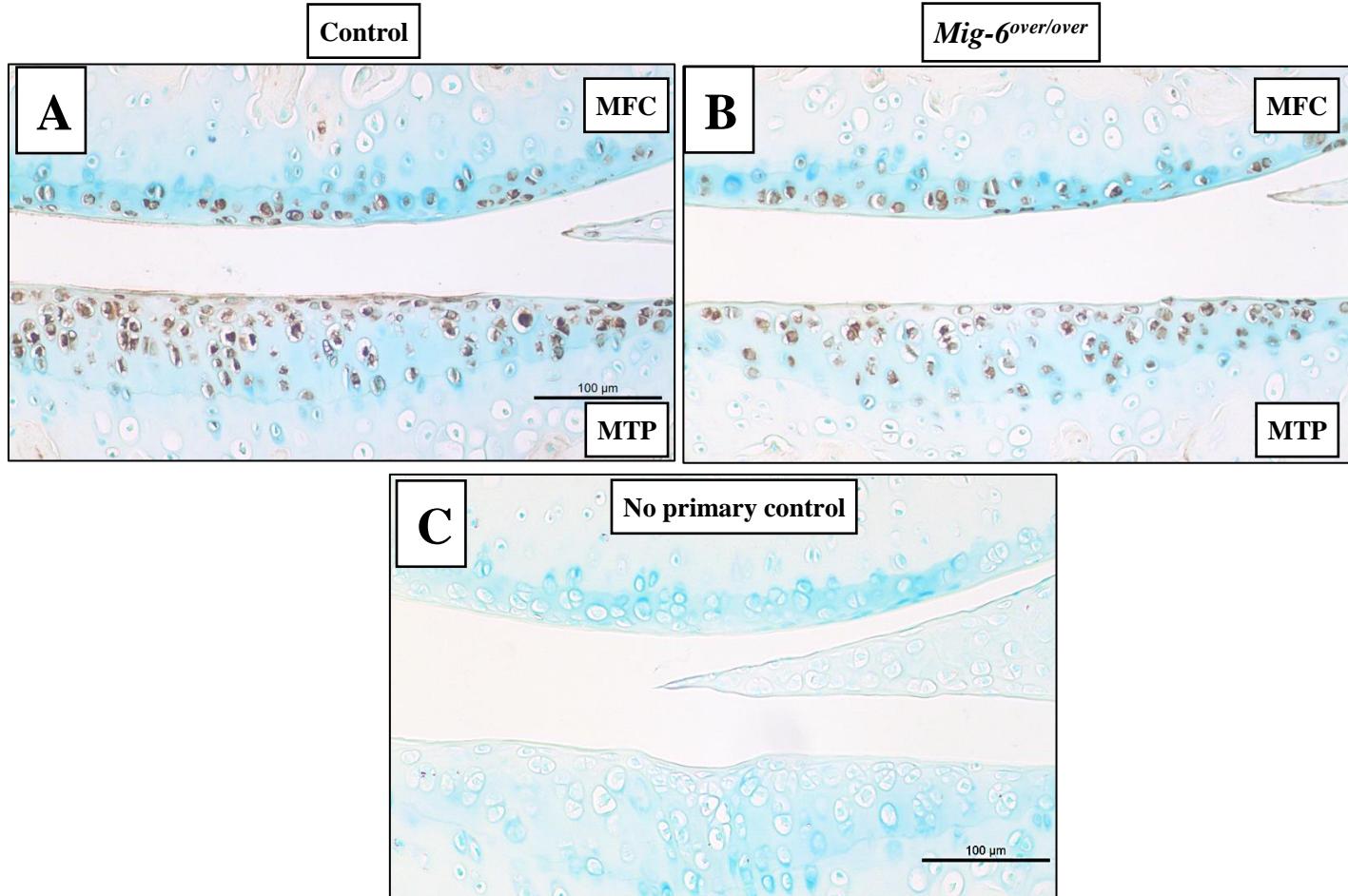


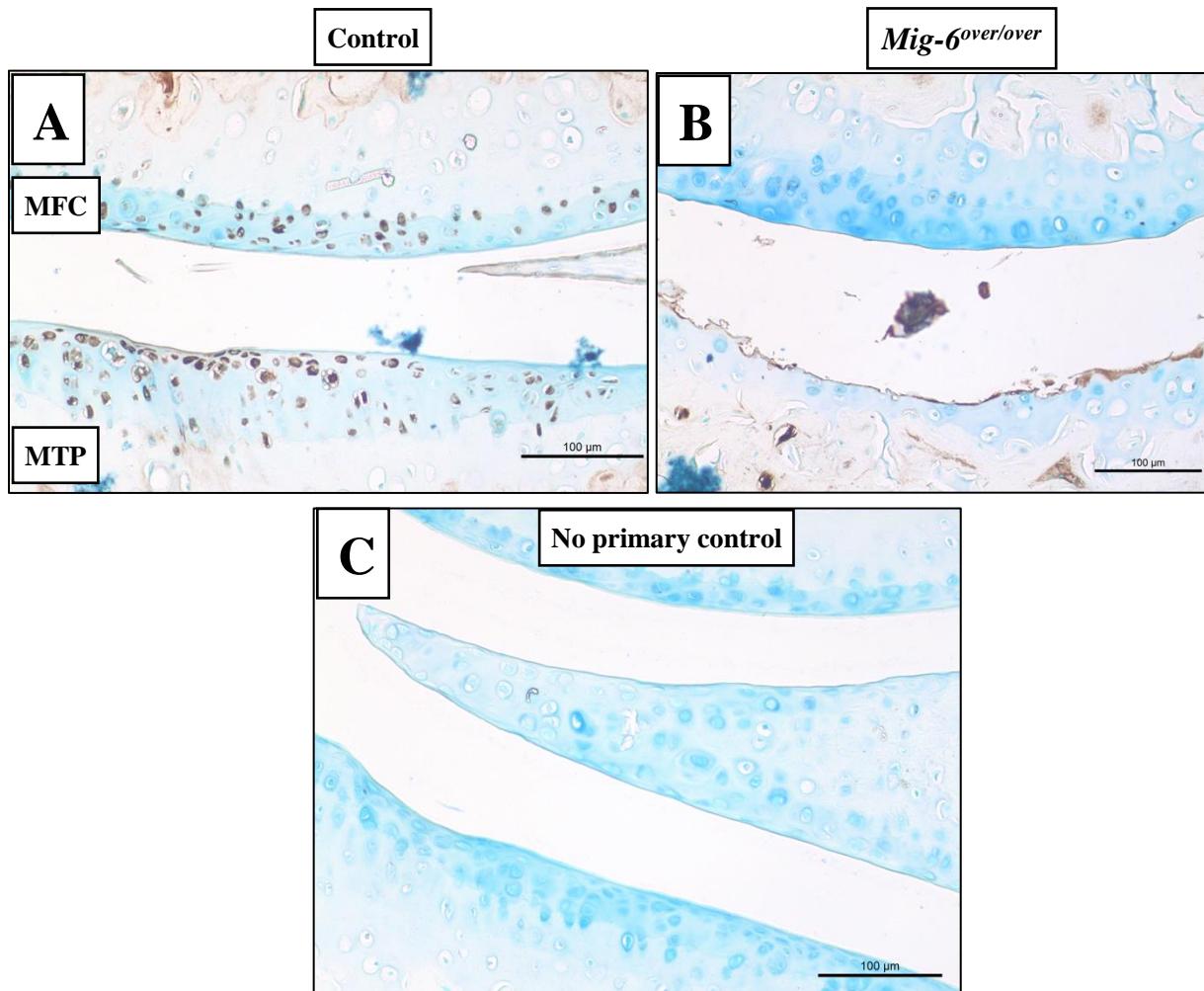
Figure 6: No differences in the subchondral bone area upon overexpression of Mig-6. The subchondral bone area from 12 week-old male control and *Mig-6* overexpressing (A) or 36 week-old male control and *Mig-6* overexpressing (B) mice are shown. Representative images of the subchondral area selected using the OsteoMeasure bone histomorphometry system are shown in (C). Individual data points are presented with mean \pm SEM. Data were analyzed by one observer (MB). All scale bars =100 μ m. N = 6-7 mice/group.


Figure 7: Picosirius Red Staining of control and Mig-6 overexpressing mice.

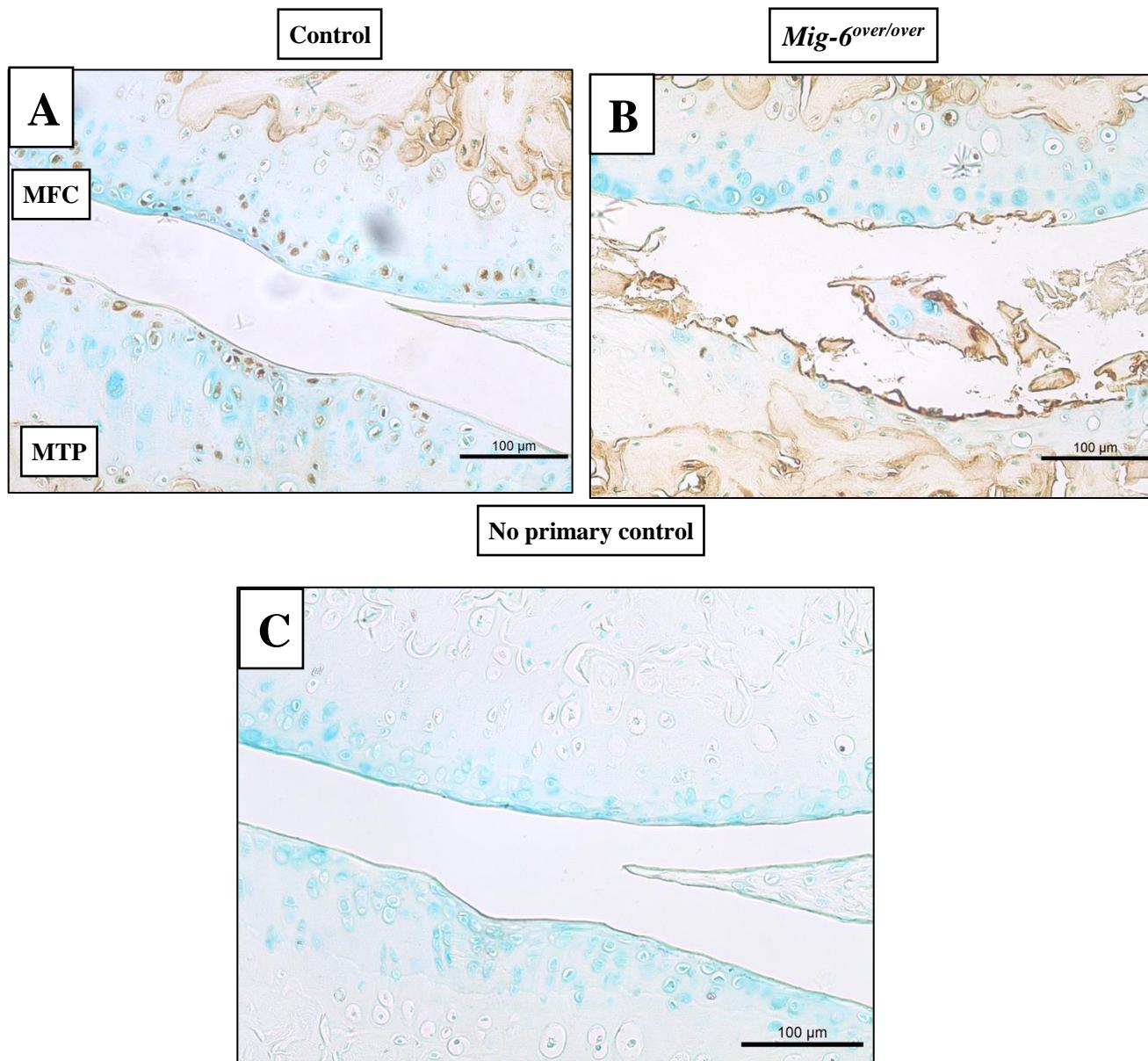
Representative paraffin sections of the medial and lateral compartment in 36 week-old male control (**A**) and *Mig-6* overexpressing mice (**B**) were stained with picrosirius red (fibrillar collagen) and analyzed under polarized light to evaluate the collagen tissue organization and orientation in the articular cartilage. Cartilage in the medial compartment of *Mig-6*^{over/over} mice shows reduced collagen staining. N=5 mice/group; LFC = lateral femoral condyle, LTP = lateral tibial plateau, MFC = medial femoral condyle and MTP = medial tibial plateau. Scale bar = 100μm.


Figure 8: Lower numbers of SOX9-positive cells in 12-week old male Mig-6 overexpressing mice.

Representative SOX9 immunostaining in knee joints of 12 week-old male control (A) or Mig-6 overexpressing (B) mice (n=5 mice/group). Overexpressing mice showed reduced numbers of positive cells in the medial and lateral compartments. LFC = lateral femoral condyle, LTP = lateral tibial plateau, MFC = medial femoral condyle and MTP = medial tibial plateau. Scale bar = 100 μ m.


Figure 9: Lower numbers of SOX9-positive cells in 36-week old male Mig-6 overexpressing mice.

Representative SOX9 immunostaining in knee joints of 36 week-old male control (A) or Mig-6 overexpressing (B) mice (n=5 mice/group). Overexpressing mice showed reduced numbers of positive cells in the medial and lateral compartments. LFC = lateral femoral condyle, LTP = lateral tibial plateau, MFC = medial femoral condyle and MTP = medial tibial plateau. Scale bar = 100μm.


Figure 10: Lubricin immunostaining is slightly decreased in the articular cartilage of Mig-6 overexpressing mice at 12 weeks of age.

Immunostaining of sections of the knee joint indicate the presence of Lubricin (*PRG4*) in the superficial zone chondrocytes of 12 week-old male control mice (A), with apparently reduced staining in Mig-6 overexpressing mice (B). Frontal sections of articular cartilage with no primary antibody as negative control exhibited no staining (C). N=5 mice/genotyping. MFC = medial femoral condyle and MTP = medial tibial plateau. Scale bar = 100μm.

Figure 11: Lubricin immunostaining is decreased in the articular cartilage of Mig-6 overexpressing mice at 36 weeks of age.

Immunostaining of sections of the knee joints of 36 week-old male mice indicate the presence of Lubricin (*PRG4*) in the superficial zone of control mice (A), with markedly reduced signal in Mig-6 overexpressing mice (B). Frontal sections of mice articular cartilage with no primary antibody as negative control exhibited no staining (C). N=5 mice/genotyping. MFC = medial femoral condyle and MTP = medial tibial plateau. Scale bar = 100 μm.

Figure 12: 36 week-old *Mig-6* overexpressing mice show increased MMP13 staining in cartilage.

Representative immunohistochemistry of matrix metalloproteinase 13 (MMP13) in 36 week-old control (A) and *Mig-6* overexpressing (B) mice show increased staining in the degrading cartilage of overexpressors. No primary antibody control is shown in (C). N=5 mice/genotyping. LFC = lateral femoral condyle, LTP = lateral tibial plateau, MFC = medial femoral condyle and MTP = medial tibial plateau. Scale bar = 100 μm.