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Abstract 1

Understanding how the epigenome deteriorates with age and subsequently impacts on biological function may 2

bring unique insights to ageing-related disease mechanisms. As a central cellular apparatus, tRNAs are 3

fundamental to the information flow from DNA to proteins. Whilst only being transcribed from ˜46kb (<0.002%) 4

of the human genome, their transcripts are the second most abundant in the cell. Furthermore, it is now 5

increasingly recognised that tRNAs and their fragments also have complex regulatory functions. In both their 6

core translational and additional regulatory roles, tRNAs are intimately involved in the control of metabolic 7

processes known to affect ageing. Experimentally DNA methylation can alter tRNA expression, but little is 8

known about the genomic DNA methylation state of tRNAs. 9

Here, we find that the human genomic tRNA loci (610 tRNA genes termed the tRNAome) are enriched for 10

ageing-related DNA hypermethylation. We initially identified DNA hypermethylation of 44 and 21 specific tRNA 11

genes, at study-wide (p < 4.34× 10−9) and genome-wide (p < 4.34× 10−9) significance, respectively, in 4,350 12

MeDIP-seq peripheral blood DNA methylomes (16 - 82 years). This starkly contrasted with 0 hypomethylated at 13

both these significance levels. Further analysing the 21 genome-wide results, we found 3 of these tRNAs to be 14

independent of major changes in cell-type composition (tRNA-iMet-CAT-1-4, tRNA-Ser-AGA-2-6, 15

tRNA-Ile-AAT-4-1). We also excluded the ageing-related changes being due to the inherent CpG density of the 16

tRNAome by permutation analysis (1,000x, Empirical p-value < 1× 10−3). We additionally explored 79 tRNA 17

loci in an independent cohort using Fluidigm deep targeted bisulfite-sequencing of pooled DNA (n=190) across a 18

range of 4 timepoints (aged ˜4, ˜28, ˜63, ˜78 years). This revealed these ageing changes to be specific to 19

particular isodecoder copies of these tRNA (tRNAs coding for the same amino acid but with sequence body 20

differences) and included replication of 2 of the 3 genome-wide tRNAs. Additionally, this isodecoder-specificity 21

may indicate the potential for regulatory fragment changes with age. 22

In this study we provide the first comprehensive evaluation at the genomic DNA methylation state of the 23

human tRNAome, revealing a discreet and strongly directional hypermethylation with advancing age. 24
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Introduction 25

Ageing is implicated as a risk factor in multiple chronic diseases [1]. Understanding how the ageing process leads 26

to deteriorating biological function is now a major research focus, with hopes to increase the human ‘healthspan’ 27

and ameliorate the extensive physical, social and economic costs of these ageing-related disorders [2]. Epigenetic 28

processes, which influence or can inform us about cell-type specific gene expression, are altered with age and are, 29

furthermore, one of the fundamental hallmarks of this progression [3,4]. 30

DNA methylation (DNAm) is the most common epigenetic modification of DNA and age-associated changes 31

in this mark in mammalian tissues have been recognised for decades [5]. In fact, these alterations in DNAm with 32

age are extensive with thousands of loci across the genome affected. Many represent ‘drift’ arising from the 33

imperfect maintenance of the epigenetic state [6]. However, specific genomic regions show distinct directional 34

changes, with loss of DNA methylation in repetitive or transposable elements [7], as well as gains in certain 35

promoters, including the targets of polycomb repressor complex [8] and bivalent domains [9]. These observations 36

with the advent of high-throughput DNAm arrays also permitted the identification of individual CpG sites that 37

exhibit consistent changes with age, enabling the construction of predictors of chronological age known as 38

epigenetic or DNAm ‘clocks’ [10–13]. Additionally, it was observed that ‘acceleration’ of this DNAm-derived 39

measure is a biomarker of ‘biological’ ageing due to associations with morbidity and mortality (Reviewed in [14] 40

& [15]). In a previous investigation of ageing-related DNAm changes within common disease-associated GWAS 41

regions, we identified hypermethylation of the specific transfer RNA gene, tRNA-iMet-CAT-1-4 [16]. The 42

initiator methionine tRNA possesses certain unique properties, including its capacity to be rate limiting for 43

translation [17], association with the translation initiation factor eIF2 [18], and ability to impact the expression 44

of other tRNA genes [19]. 45

tRNAs are evolutionarily ancient [20] and fundamental in the translation process for all domains of life. This 46

translation machinery and the regulation of protein synthesis are controlled by conserved signalling pathways 47

shown to be modifiable in longevity and ageing interventions [21]. Additionally, beyond their core role in the 48

information flow from DNA to protein sequence, tRNAs can fragment into numerous tRNA-derived small RNAs 49

(tsRNAs) [22] with signalling and regulatory functions [23–26]. tsRNA abundance has been linked to locus 50

specific tRNA gene expression, in some cases independent of mature tRNA levels [27]. 51

The 610 annotated tRNA genes of the human tRNAome (gtRNAdb [28]) cover <46 kb (including introns) 52

which represents <0.002% of the human genome [29]. Yet these genes produce the second most abundant RNA 53

species next to ribosomal RNA [30] and are required for the production of all proteins. tRNA genes are 54

transcribed by RNA polymerase III (polIII) [31] and have internal type II polIII promoters [32]. DNAm is able to 55
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repress the expression of tRNA genes experimentally [33] but may also represent co-ordination with the local 56

repressive chromatin state [34]. Transcription is also repressed by the highly conserved polIII specific 57

transcription factor Maf1 [35,36], who’s activity is modulated by the Target of Rapamycin Kinase Complex 1 58

(TORC1) [37]. TORC1 is a highly conserved hub for signals that modulate ageing [38]. 59

tRNAs as well as tsRNAs are integral to the regulation of protein synthesis and stress response, two processes 60

known to be major modulators of ageing. Metabolic processes are also recognised to modulate the age estimates 61

of DNAm clocks [39]. Partial inhibition of translation increases lifespan in multiple model organisms [40] and 62

PolIII inhibition increases longevity acting downstream of TORC1 [41]. Furthermore, certain tsRNAs circulating 63

in serum can be modulated by ageing and caloric restriction [42]. 64

We directly investigated ageing-related changes in the epigenetic DNA methylation state of the entire 65

tRNAome, facilitated by the availability of a large-scale MeDIP-seq dataset. Arrays poorly cover this portion of 66

genome, with even the latest EPIC (850k) arrays only covering <15% of the tRNA genes, with robust probes, and 67

in total only ˜4.7% of all the tRNAome CpGs [43]. tRNA genes sit at the heart not only of the core biological 68

process of translation but at a nexus of signalling networks operating in several different paradigms, from small 69

RNA signalling to large scale chromatin organisation [44]. In summary, tRNA biology, protein synthesis, nutrient 70

sensing, stress response and ageing are all intimately interlinked. In this study, we have identified tRNAome 71

DNA hypermethylation and independently replicated this newly described ageing-related observation. 72
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Results 73

DNA Methylation of Specific tRNA Gene Loci Changes with Age 74

Due to tRNAs critical role in translation and evidence of their modulation in ageing and longevity-related 75

pathways, we interrogated these genes for evidence of ageing-related epigenetic changes. Our discovery set was a 76

large-scale peripheral blood-derived DNA methylome dataset comprising of 4350 samples (see Figure 1). This 77

sequencing-based dataset had been generated by Methylated DNA Immunoprecipitation (MeDIP-seq) [45], which 78

relies on the enrichment of methylated fragments of 200-500 bp to give a regional DNAm assessment (500 bp 79

semi-overlapping windows, see Methods). In total the human tRNAome is comprised of 610 tRNAs 80

(gtRNAdb)(see Figure 2), though only 492 are autosomal and do not reside in blacklisted regions of the genome 81

[46]. Due to the small size of these tRNAs (60-86bp, median 73bp, excluding introns which are present in ˜30 82

tRNAs with sizes from 10-99bp, median 19bp), this fragment-based method enabled a robust examination of the 83

epigenetic state of these highly similar sequences. This was supported by a mappability assessment. The median 84

mappability score density for the tRNAome was 0.90 for 50mers when considering tRNA genes ±500bp reflecting 85

the regional nature of the MeDIP-seq assay. In contrast the 50mer mappability density is 0.68 for tRNA genes 86

alone representative of the mappability of reads generated using a technique such as whole-genome bisulfite 87

sequencing (see Figures S1 & S2). 88

We identified 21 genome-wide significant and 44 study-wide significant results (p < 4.34× 10−9 and 89

8.36× 10−5, respectively, via linear regression see Methods (batch corrected n=4350). Study-wide significance 90

was calculated conservatively for all 598 autosomal tRNAs. There was a strong directional trend with all results 91

at both significance levels being due to increases in DNA methylation. Age-related changes in cell type 92

proportion are strong in heterogeneous peripheral blood, and include a myeloid skew, loss of naive T cells and 93

increases in senescent cells [47]. A subset of 3 genome-wide and 16 study-wide significant hypermethylation 94

results remained significant even after correcting for potential cell-type changes by including lymphocytes, 95

monocytes, neutrophils and eosinophil cell count data (n=3001, Listed in Table 1, Red in Figure 5). 96

tRNA-iMet-CAT-1-4 is located on chromosome 6. tRNA-Ile-AAT-4-1 and tRNA-Ser-AGA-2-6 are neighbours 97

and are located on chromosome 17 within the 3’ UTR of CTC1 (CST Telomere Replication Complex Component 98

1). Going forward we refer to these most robustly corrected sets of 3 and 16 tRNA genes as the genome-wide and 99

study-wide significant tRNA genes respectively. 100

Due to the related nature of these twin samples, we also analysed these data in two subsets of n=1198 & 1206 101

by selecting one twin from each pair into the seperate sets. This analysis also included correction for Batch and 102

Blood Cell counts. Whilst in these smaller datasets no tRNAs were genome-wide significant, 5 and 7 tRNA genes, 103

December 9, 2019 5/48

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/870352doi: bioRxiv preprint 

https://doi.org/10.1101/870352
http://creativecommons.org/licenses/by/4.0/


respectively, reached study-wide significance. In these sets 5/5 and 6/7 of these were present in 16 study-wide 104

significant tRNA genes. 105

Furthermore, we examined a subset of samples with longitudinal data (n=658 methylomes from 329 106

individuals, median age difference 7.6 yrs). At the nominal significance threshold (p < 0.05) this yielded a split 107

of 41 hypermethylating tRNA genes and 22 hypomethylating tRNA genes. Of these hypermethylated tRNAs, 2 108

are in the previously identified genome-wide significant set of 3 (with tRNA-iMet-CAT-1-4 ranked 3rd by p-value) 109

and 9 are in the study-wide significant set of 16. 110

Fig 1. Study Structure. tRNAs differentially methylated with age initially identified in MeDIP-seq, validated
(where covered in 450k array) and replicated in targeted bisulfite sequencing of pooled samples. Tissue specificity
of these effects was explored in TCGA and foetal tissue data.
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Fig 2. The genetic code as represented in the human tRNAome. The triplet genetic code leads to the
incorporation of specific amino acids into an elongating protein via corresponding tRNAs. n is the number of
tRNA genes which encode a given amino acid, the number in parentheses is how many of those may be
pseudogenes based on their tRNAscan score [48], and the number in square braces is the number in blacklisted
regions [46]. There are a total of 610 tRNAs in GtRNAdb [28], 116 of which are potential pseudogenes, and 107
are in blacklisted regions [46]. Notably 7 of the 61 non-STOP codons are missing from the human tRNAome
therefore these codons are handled by wobble base matching (e.g. GCG Arg, ACC Gly). Also of note are the
suppressor and selenocysteine tRNAs. The 20 methionine tRNAs are split equally between initiator methionine
and internally incorporating methionine tRNAs, which are structurally distinct. There are also 23 nuclear
encoded mitochondrial tRNAs.

tRNA Genes are Enriched for Age Related DNA Hypermethylation 111

Whilst ageing changes are pervasive throughout the DNA methylome, we identified a strong enrichment for this 112

to occur within the discrete tRNAome (Fisher’s Exact Test p = 1.05× 10−27) (see Figure 3). This is still 113

significant if the 6 of the study-wide significant 16 tRNAs that overlap polycomb or bivalent regions are excluded 114

(p = 4.66× 10−15) 115
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Fig 3. Age-related DNA hypermethylation Genomic Region Enrichment. (n = 3001, tRNAs are enriched
compared to the genomic background, Fisher’s Exact Test p < 1.05× 10−27, Blood cell-type and batch corrected).

CpG density itself is known to have a clear impact on the potential for variability of the DNA methylome as 116

well as ageing-related changes [49,50]. To assess whether this hypermethylation finding was being merely driven 117

by the inherent CpG density of the tRNAome, we performed a CpG density matched permutation analysis 118

(1,000X, see Methods). This supported the specific nature of these age-related DNAm changes within the 119

functional tRNAome (Empirical p-value < 1.0× 10−3, Figure 4). As a point of comparison for this genomic 120

functional unit, we also performed the same permutations for the known age-related changes in the promoters of 121

genes that are polycomb group targets [8] and those with a bivalent chromatin state [9]. We were able to 122

reproduce the enrichment of the polycomb group targets and bivalent regions (Empirical p-value < 1.0× 10−3) in 123

our dataset. 124
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Table 1. Significantly Hypermethylating tRNAs in blood cell-type and batch corrected model MeDIP-seq.
‘Slope’ corresponds to the beta value for methylation in the linear model.

tRNA Location MeDIP-seq p-value BiS-seq p-value BiS-seq slope

tRNA-iMet-CAT-1-4 chr6 2.83e-11 9.35e-04 4.54
tRNA-Ile-AAT-4-1 chr17 3.03e-10 6.88e-04 -0.745
tRNA-Ser-AGA-2-6 chr17 1.16e-10 4.28e-2 0.623

Fig 4. CpG Density Genome-wide Permutation Analysis. Each permutation represented a random set of
windows matching the CpG density of the functional unit (bivalent domains, polycomb group target promoters &
the tRNAome). These are subsequently assessed for signficant age-related DNAm changes (see Methods). The
red line is the observed number of significant loci.
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Fig 5. Human tRNAome overview. From the outside in: Chromosome ideograms scaled by the number of tRNA
genes (total = 598), as excludes chromosome X (10), Y (0) and contig chr1 gl000192 random (2; see Methods).
tRNA genes within 20kbp of one another are grouped with breaks inserted between these clusters. Radial grey
lines represent the location of tRNA genes in the genome. −log10(p− value) for the blood cell-type and batch
corrected age model are shown for each window overlapping a tRNA gene in green. Mean methylation across all
samples (n=3001) in RPM (reads per million base pairs) is shown in blue. Genome-wide significant cell-type &
batch corrected (p < 4.34× 10−9) tRNAs show in red. The 158 Loci covered by 213 probes on the 450k array
which directly overlap a tRNA gene are shown with green triangles. The 84 loci targeted for bisulfite sequencing
in this study are indicated in magenta. Mappability score density is computed as the area under the encode
mappability tracks [51] over the length of the region.
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Age-related tRNAome DNA Hypermethylation is even observed in one Newborn versus one 125

Centenarian 126

We examined an available Whole Genome Bisulphite sequencing (WGBS) dataset from Heyn et al. [52] (see 127

Methods) These data consisted of blood-derived DNA WGBS in one newborn child and one 26 year old, and 128

centenarian (103 years). In their analysis, the centenarian was found to have more hypomethylated CpGs than 129

the neonate across all genomic compartments, including promoters, exonic, intronic, and intergenic regions. 130

However, even in this examination of 3 individuals of 3 different age in the 55% of tRNA that possessed coverage, 131

we observed DNA hypermethylation with age among the study-wide significant tRNA hypermethylators. The 132

centenarian was significantly more methylated in this set of tRNAs than the neonate (Wilcoxon rank sum test, 133

6.14% increase (95% CI -Inf - 4.31), W = 717, p = 6.14× 10−4, see Figure 6). 134

Fig 6. Whole Genome Bisulfite Sequencing Data in a newborn, as adult and a centenarian. Each point
represents the methylation level at an individual CpG within a tRNA gene. Numbers in parentheses indicate the
number of tRNA genes for which methylation data is shown. SWS: Available study-wide significant tRNA genes.

Age-related Changes Independently Replicated with Targeted Bisulfite Sequencing 135

In order to further robustly support these-ageing related changes, we attempted to replicate these findings 136

ourselves in an independent ageing dataset. Furthermore, we employed a different technology Targeted bisulfite 137

(BiS) sequencing to also further validate the MeDIP-seq-derived results. These data provide individual CpG 138

resolution to identify what may be driving the regional DNAm changes observed. 139

We performed this targeted BiS-seq in blood-derived DNA from 8 pools of age-matched individuals at 4 140

time-points (˜4, ˜28, ˜63, ˜78 years) from a total of 190 individuals, as detailed in Table 2. A total of 79 tRNA 141
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loci generated reliable results post-QC (see Methods). These tRNAs covered a total of 458 CpGs with a median 142

of 6 CpGs per tRNA (range 1-9). Median Coverage per site across pools, technical replicates and batches was 679 143

reads (mean 5902). 144

Firstly, we ran the 8 Pooled samples on the Illumina EPIC (850k) array to confirm that our pooling approach 145

was applicable for DNAm ageing-related evaluation. This showed an R2 = 0.98 between pool mean chronological 146

age and Horvath clock DNAm predicted age [11](see Figure 7). Therefore, this confirmed the utility of this novel 147

pooling approach. We also used these array derived data to estimate the major blood cell proportions for each of 148

these pools with the Houseman algorithm [53]. 149

Fig 7. Chronological Age compared with DNAm Age estimated with Horvath’s 2013 multi-tissue clock [11]
based on EPIC array data for the 8 pooled samples used in the Targeted Bisulfite sequencing (See Table 2 for
pool details).

We noted that individual tRNA loci exhibiting age-related changes in DNAm had duplicate or isodecoder 150

(same anticodon but body sequence variation) sequences in the genome, which despite exact or near sequence 151

identity did not show similar changes. tRNA-iMet-CAT-1-4 for instance is 1 of 8 identical copies in the genome 152

and was the only locus that showed significant changes. The results of pairwise differential methylation tests 153

between age groups for the 6 top tRNAs from the MeDIP-seq models are listed in Table 3. 154

Of the 3 top hits in MeDIP-seq, tRNA-iMet-CAT-1-4 (Figure 9c) and tRNA-Ser-AGA-2-6 (Figure 9i) 155
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exceeded nominal significance (p-values = 9.35× 10−4 & 4.28× 10−2 , respectively). However, tRNA-Ile-AAT-4-1 156

(Figure 9n) showed a nominal decrease in DNAm with age. tRNA tRNA-Leu-TAG-2-1 from the study-wide 157

significant set also showed nominally significant hypermethylation with age (Figure 9u). Also, four of the 158

individual CpGs in tRNA-iMet-CAT-1-4 exhibited nominally significant increases in DNAm with Age (Figure 8). 159

Fig 8. Individual CpG methylation increases (nominally significant p < 0.05) in tRNA-iMet-CAT-1-4.
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Table 2. Summary information on participants in each pool.

Pool Mean Age Sex Min Age Max Age n

Pool 1 4.07 Male 3.99 4.38 20
Pool 2 4.09 Female 3.99 4.36 20
Pool 3 28.07 Female 25.87 29.80 25
Pool 4 28.23 Female 26.05 30.01 25
Pool 5 63.40 Female 62.80 63.80 25
Pool 6 63.26 Female 62.70 63.70 25
Pool 7 77.96 Female 75.50 80.50 25
Pool 8 77.22 Female 74.40 80.10 25

Table 3. Pairwise Differences in Methylation between Age groups by tRNA. p-values are for pairwise
methylation differences (see Methods)[54].

tRNA num. CpGs comparison p-value delta

4 vs. 28 1.518e-01 -0.2
4 vs. 63 1.774e-01 -0.234
4 vs. 78 3.060e-01 0.0113
28 vs. 63 7.152e-01 -0.0334
28 vs. 78 1.553e-01 0.212

tRNA-Ile-AAT-4-1 8

63 vs. 78 2.057e-01 0.245

4 vs. 28 8.403e-02 0.0116
4 vs. 63 1.716e-01 0.0125
4 vs. 78 1.997e-04* 0.0368
28 vs. 63 3.943e-01 0.000869
28 vs. 78 1.724e-02* 0.0252

tRNA-iMet-CAT-1-4 5

63 vs. 78 6.224e-02 0.0243

4 vs. 28 4.222e-01 0.0573
4 vs. 63 3.968e-01 0.0274
4 vs. 78 4.651e-01 0.0423
28 vs. 63 1.095e-01 -0.0299
28 vs. 78 2.126e-01 -0.015

tRNA-Ser-AGA-2-6 9

63 vs. 78 2.201e-01 0.0149

Select Duplicates & Isodecoders of Hypermethylating tRNA loci remain unchanged We targeted 160

a selection of these duplicate and isodecoder loci for bisulfite sequencing in order to confirm that the identified 161

DNAm changes are specific to a given locus and not general to related tRNAs. Examining the tRNA-iMet-CAT-1 162

family, only the previously identified 1-4 version confirmed significant hypermethylation (not 1-2, 1-3 or 163

1-5)(Figure 9a-e). Likewise the tRNA-Ser-AGA-2-6 version was supported compared to 2-1,2-4 and 2-5(Figure 164

9f-j)). 165
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Fig 9. (A-Q) Mean methylation across replicates at each CpG in each pool for select tRNAs. Ideograms show
the locations of all tRNAs with the same anticodon, with those featured in the scatter plots highlighted in red
and placed above the ideogram. (R-V) Except for leucine isoacceptors tRNAs are not all of the same codon and
only tRNAs on the same chromosome as those plotted are labelled on the ideograms. (experiment-wide
Bonferroni p = 6.41× 10−4).

DNA methylation 450k Array Data Validates the MeDIP-seq Results 166

Although DNA methylation array poorly cover the tRNAome, we wished to attempt to see if this BiS-based but 167

differing and well-established technology was supportive at all of our DNA hypermethylation findings. TwinsUK 168
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had available 450k array on 587 individuals, and this platform includes 143 probes, covering 103 tRNAs. All the 169

3 top tRNAs in the MeDIP-seq results were covered by this data set, and 7 of the 16 study-wide significant set. 9 170

tRNAs show significant (p < 4.58× 10−4) increases in DNA methylation with age in models corrected for blood 171

cell counts including all 3 of the 3 tRNAs identified in the MeDIP-seq as genome-wide significant and 5 of the 7 172

study-wide significant set present on the array (Figure 10). Although it should be noted that 56 of these 143 173

probes are within the non-robust set of Zhou et al. [43], including 1 of the genome-wide, and 1 of the study-wide 174

results (covering tRNA-Ile-AAT-4-1 & tRNA-Val-AAC-4-1), respectively. 175

Fig 10. Volcano-like plot. tRNAs are labelled if they are significant here or were in the MeDIP-seq data (Red).
Model slope: the model coefficient for the methylation values. Unfilled circles indicate those probes in the
general mask generated by Zhou et al. [43]. Significance threshold: 0.05/103 ≈ 4.58× 10−4 (the number of tRNA
genes examined).
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Ageing-Related tRNA Loci show increased Enhancer-Related Chromatin Signatures 176

We further explored the activity of the tRNAome in public Chromatin segmentation data in blood (Epilogos 177

Blood & T-cells set) [55]. This shows proportionally more Enhancer-related (Enh, EnhBiv & EnhG) chromatin 178

states at tRNA genes hypermethylating with age than the stronger Promoter-related (TSS) in other tRNAs. 179

(Figure 11). Whereas these characteristics are less frequently predominant in the rest of the tRNAs (Figure 11). 180

Age-hypermethylating tRNA are enriched for enhancer chromatin states compared to the rest of the tRNAome 181

(Fisher’s Exact test p = 0.01). 182

Fig 11. Chromatin segmentation data from the Epilogos [55] ‘Blood & T-cell’ 15 State model (tRNA genes +/-
200bp). Frequency with which a model state was the predominant state at a given tRNA. Proportions of
predominant tRNA state for the 14 study-wide significant age-hypermethylating tRNAs covered compared to
other 371 available tRNAs.

Age Hypermethylating tRNAs are more methylated in Lymphoid than Myeloid cells 183

Three tRNA genes remained genome-wide significant and 16 study-wide significant following correction for major 184

cell-type fraction. This is suggestive of either cell-type independent change or, presumably less likely, a very large 185

effect in a minor cell-type fraction. tRNAs have exhibited tissue-specific expression [56–58] and blood cell-type 186

populations change with age. Specifically, there is shift to favour the production of cells in the myeloid lineage 187

[47]. These points lead us to examine tRNA gene DNAm in sorted cell populations. We used a publically 188

available 450k array dataset [59]) that has been used in the construction of cell-type specific DNAm references for 189

cell-type fraction prediction using the Houseman algorithm [53] (see Methods). This consists of data from 6 190
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individuals (aged 38± 13.6/yrs) from seven isolated cell populations (CD4+ T cells, CD8+ T cells, CD56+ NK 191

cells, CD19+ B cells, CD14+ monocytes, neutrophils, and eosinophils). We found that tRNA gene DNAm could 192

separate myeloid from lymphoid lineages (Figures 12 & S4). 193

Of the eight study-wide significant tRNAs with array coverage, we identified that collectively these eight are 194

significantly more methylated in the lymphoid than the myeloid lineage (1.1% difference, Wilcoxon rank sum test 195

p = 1.50× 10−6 95% CI 0.7%-∞). Thus, any age related increases in myeloid cell proportion would be expected 196

to dampen rather than exaggerate the age-related hypermethylation signal that we observed. In addition 197

tRNA-Ile-AAT-4-1 and tRNA-Ser-AGA-2-6 have the highest variance in their DNAm of all 129 tRNAs covered in 198

this dataset. This could represent ageing-related changes as these samples range across almost 3 decades. 199

Another possibly may be that these loci as well as hypermethylating are also increasing their variability with age 200

in a similar fashion to those identified by Slieker et al. [60]. In that study they identified that those loci accruing 201

methylomic variability were associated with fundamental ageing mechanisms. 202

Fig 12. Heatmap [61] of mean methylation of probes covering each tRNA in 7 cell-type fractions from 6 Male
individuals. Data from GSE35069 [59]. Of the 16 study-wide significant hypermethylating tRNAs, 8 are covered
by this dataset.
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tRNA Gene DNA Methylation in Other Tissues 203

Some tRNA gene expression has been shown to be highly tissue specific [56–58]. It follows that our observations 204

of changes in DNAm with age in blood might be specific to that tissue. We used a mix of 450k and 27k array 205

data from ‘solid tissue normal’ samples made available by TCGA (The Cancer Genome Atlas) and data from 206

foetal tissue [62,63] downloaded from GEO (see Methods). The samples from TCGA range in age from 15-90 (n 207

= 733). Only 43 tRNA genes had adequate data to compare across tissues in this dataset and 115 in the foetal 208

tissue data. 209

tRNA Genes also Hypermethylate with Age in Solid Tissue 210

Only 2 of the 3 tRNA genes we identified as genome-wide significant and a further 1 of the study-wide significant 211

tRNA genes are present in the set of 45 tRNA genes in the TCGA data, thus limiting our ability to draw 212

conclusions about the tissue specificity of our results. Solid tissue samples have a strong preponderance for low 213

levels of methylation consistent with the active transcription of many tRNA genes and show slight increasing 214

methylation with age but age accounts for very little of the variance (linear regression slope estimate = 1.52; 215

R2 = 0.0002; p-value 1.34× 10−3 (Figure S5d). In a pan-tissue analysis we found that 10 tRNA genes showed 216

changes in DNAm with age, 9 of which were hypermethylation (p-value < 1.1× 10−3). One of these tRNA genes, 217

tRNA-Ser-TGA-2-1 was also present in study-wide significant set of tRNA genes. Figures S6 & S7 illustrate 218

minimal tissue specific differences. Interestingly, however, tRNA-iMet-CAT-1-4 and tRNA-Ser-AGA-2-6 219

appeared more variable in methylation state than many other tRNAs in the TCGA normal tissue samples 220

(Figure S6) and indeed have the highest variance in DNA methylation across tissues (Figure S5c). 221

Expression of tRNAs in Blood with Age 222

Having observed specific tRNA gene isodecoders hypermethylating with age we explored the expression of tsRNA 223

in blood cell-types. We devised a bioinformatic approach to attempt to assay tRNA transcription in order to use 224

standard publicly available small RNA-seq datasets. We created customised MINTmap [64] reference designed to 225

include only fragments which unambiguously map to a single tRNA gene locus and which overlap the 5’ or 3’ end 226

of the genomic tRNA sequence by at least one base with no mismatches. This reference is intended to capture 227

pre-tRNAs prior to processing and CCA addition operating under the assumption that the levels of pre-tRNAs 228

will be informative about the amount of transcription taking place at the tRNA loci (see Methods). Our custom 229

MINTmap reference build yielded 383 fragments mapping to 92 distinct tRNA loci in this data. The lack of 230

coverage of age hypermethylating tRNAs by uniquely attributable RNA-seq reads prevented us from drawing any 231
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strong conclusions about the relationship between DNAm changes and changes in tRNA transcription. 232

Using the original MINTmap reference optimised to detect tRNA fragments derived from mature tRNAs 233

there were 5384 unique fragments derived from as many as 417 tRNA loci. However, the mapping between 234

fragments and loci in this reference is many to many, with each tRNA gene able to give rise to many fragments 235

and each fragment attributable to at least 1 and usually many tRNA genes. We limited our examination of these 236

fragments to those with a length of greater than or equal to 40nt to capture reads more likely to be derived from 237

mature tRNAs rather than tRFs or tRNA halves (Figure S8). We identified 48 tsRNAs with nominally 238

significant expression changes (p < 0.05), 8 increased and 40 decreased in abundance with age. For example 5 of 239

6 fragments showing significant age-related expression changes derived from the Gln-CTG family of tRNAs are 240

decreasing with age (Figure 13). This is suggestive that expression of some tRNA genes may decline with age but 241

this possibility is in need of additional tRNA expression data before it can be asserted with confidence. 242

Fig 13. tRNA fragments derived from the Gln-CTG family of tRNAs, selected as tRNA-Gln-CTG-7-1 is one of
the 16 study-wide significant age-hypermethylating tRNA genes. Pane titles contain the MINTbase Plates,
unique identifiers of the tRNA fragments [22].

Mice also show age-related tRNA gene DNA hypermethylation 243

We examined the DNA methylation of the mouse tRNAome in using data from a reduced representation bisulfite 244

sequencing (RRBS) experiment performed by Petkovich et al. [65]. These data from 152 mice covered 51 tRNA 245
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genes and 385 CpGs after QC (see Methods), representing ˜11% of the mouse tRNAome. The mice ranged in age 246

from 0.67-35 months. 247

Three of the 51 tRNAs showed Bonferroni significant DNA methylation changes with age (p-value < 248

1.08× 10−4) and all were in the hypermethylation direction. These three are tRNA-Asp-GTC-1-12, 249

tRNA-Ile-AAT-1-4, tRNA-Glu-TTC-1-3 (Figure 14). 250

Fig 14. DNA methylation of CpGs in 3 tRNA which significantly hypermethylate with age in mice. 6 CpGs
reach bonferroni significance and 7 show nominally significant increases.
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Discussion 251

Our work has identified a previously unknown enrichment for age-related epigenetic changes within the tRNA 252

genes of the human genome. This observation was strongly directional with increasing DNA methylation with 253

age [66]. 254

The MeDIP-seq dataset employed brought advantages in exploring this undefined terrain of the tRNAome. 255

Firstly, being genome-wide it provides much increased access, as these regions are poorly covered by current 256

arrays. Secondly, being a fragment-based regional assessment of DNA methylation, the individual but highly 257

similar small tRNA genes can be surrounded by unique sequence. 258

We determined by genome-wide permutation that this strong hypermethylation signal was specific to the 259

tRNAome, and not merely driven by the underlying CpG density of these loci. A targeted BiS-seq experiment 260

validated the defined nature of the tRNA change in an independent dataset, with a successful pooling approach, 261

which may also be useful for other ageing-related targeted DNA methylome evaluations. Additionally, we gained 262

support for our results from limited DNA methylation array data. 263

We subsequently explored further what was driving this age-related phenomenon and its possible biological 264

implications. As this result was observed in peripheral blood, we were well aware that we were examining DNA 265

derived from a heterogeneous cell type population [67]. Moreover, that there are well known age-related 266

proportional changes in peripheral blood cell composition [47]. The TwinsUK MeDIP-seq and 450k array DNA 267

methylation data included measured haematological values. Therefore, we adjusted for major cell type effects, 268

such as a myeloid skew, and distinct tRNAs were still significant. Although, a caveat to our study is that this 269

can not exclude changes in minor specific sub-cell fractions types. However, that these age-related effects were 270

strong enough to be observed in both a regional MEDIP-seq assessment and a pooled sequencing approach, 271

implies that they not extremely subtle. We examined age-related tRNA gene DNA methylation changes in the 272

limited subset of mouse tRNA genes covered in publicly available RRBS data (˜13%) and were able to identify 273

tRNAs exhibiting DNA hypermethylation with age in this set. This suggests that age-related tRNA gene 274

hypermethylation may not be unique to humans, but at least observed across mammals. 275

Due to the high number of hypermethylating tRNA prior to cell-type correction, we were also curious whether 276

the epigenetic state of this small tRNAome fraction of genome could capture and in fact be a defined fingerprint 277

of cell type. We found that tRNA gene DNA methylation could separate myeloid from lymphoid lineages. There 278

also was some suggestion of more fine-grained blood cell-type signatures in tRNA DNAm, such as the separation 279

of CD19+ B cells from CD4/8+ T cells. Ageing is also known to lead to an increase in senescent cells (e.g. CD8+ 280

CD28- cells). Whether these epigenetic changes in the tRNAome uniquely represent these cell-types will require 281
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technical advances to enable future single cell DNA methylome analysis to accurately assess these regions. If 282

further supported, the epigenetic state of these loci may aid the taxonomy of cell-type definition. 283

This signal within the tRNA families was observed to occur at specific Isodecoders. After correcting for major 284

cell types, we identified 2 tRNA genes tRNA-iMet-CAT-1-4 and tRNA-Ser-AGA-2-6 which had the most 285

consistent hypermethylation across 3 different assays. Isodecoders expand in number with organismal complexity 286

and the high prevalence in mammals has been suggested due to their additional regulatory functionality [68,69]. 287

They also have distinct translational efficiency [70], which can also have consequences in human disease [71]. 288

Furthermore, there is great complexity to the fragmentation of tRNA [23], with physiological processes such as 289

stress shown to induce fragment production [72]. These resultant tsRNAs can feedback on protein synthesis by 290

regulating ribosome biogenesis [73] and others have diverse regulatory functions such as targeting transposable 291

element transcripts [74]. They are also observed to circulate in the blood in a cell-free fashion, and fragment levels 292

can be modulated by ageing and calorie restriction [42]. The isodecoder specific nature of our findings frame a 293

possible hypothesis for regulatory change with age and future work will be required to unravel this potential. 294

Whilst, the expression of the tRNA genes has long been simplified as ‘constitutive’, some observations have 295

indicated that many tRNA genes are expressed in a tissue-specific fashion in diverse organisms [57,58]. Although 296

others have found the majority of isodecoders are transcribed in different cell types [29]. Several transcription 297

factors acting via TFIIIB [75] have a negative (the tumour suppressors p53 [76] and Rb [77]) or positive (the 298

proto-oncogene c-Myc) influence [75]. Regulatory sequence in the flanking or the internal regions of tRNA genes 299

do not explain tRNA expression variation [78]. Whilst DNAm is able to repress the expression of tRNA genes 300

[33], the broader chromatin environment also affects tRNA transcription. Due to the co-ordinated nature of 301

epigenomic modifications, it may also be revealing to evaluate ageing-related histone modification in these tRNA 302

loci. 303

Changes in the epigenetic state of specific tRNA could be modulating transcription efficiency or even codon 304

availability in the ageing cell. tRNA gene dosage is quite closely matched to amino acid usage frequency in the 305

human exome. However, the transcriptome codon usage frequency and tRNA gene expression have been claimed 306

to vary with the replicative state of cells, separating differentiated from replicating cells [79]. Others have argued 307

that these differences are substantially explained by variation in GC content [80] and that codon usage 308

frequencies are observed to be mostly invariant in the transcriptomes of a wide range of tissues, as well as across 309

developmental time [78]. Although, experimental stress-related states have revealed changes with an 310

over-representation of codons that are translated by rare tRNAs [81]. 311

tRNA sequences themselves are under strong structural (both secondary and tertiary) [68] as well as 312

functional constraint, which leads to an order of magnitude reduction in variation compared the background 313
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genomic mutation rate [29]. However, polymorphic tRNA could be another potential caveat to our work. 314

Although, there is no significant population variation in, for example, tRNA iMet sequences in 1,000 Genomes 315

data. Indeed, there are only 11 new isodecoder sequences with high confidence (tRNAscan scores ≥ 50) at >1% 316

population frequency [29]. There is also some evidence for tRNA copy number variation at specific loci, although 317

this remains under-characterised [82,83]. Another potential cause we considered was whether age-related somatic 318

copy number increases could be occurring in these loci. Population or somatic copy number expansions could 319

lead to increased methylated reads in MeDIP-seq without any epigenetic state change. However, this would not 320

be consistent with the targeted and array BiS conversion methodologies, where the proportion of methylated to 321

unmethylated reads would still be constant. 322

It is worth noting the parallels with known cancer and ageing epigenetic changes, and that tRNAs are also 323

dysregulated in cancer [84], with proposed utility as prognostic markers [85]. Furthermore, the early replicating 324

state of tRNA loci, potentially associated with high expression [86], may make them prone to hypermethylate, as 325

is observed in early replicating loci in both cancer [87] and senescent cells [88]. Interestingly, tRNA gene loci may 326

also play a role in local as well as large scale genome organisation [44]. tRNA gene clusters act as insulators [89] 327

and have extensive long-range chromatin interactions with other tRNA gene loci [44]. The coordinated 328

transcription of tRNAs at subnuclear foci and the B-box sequence elements bound by TFIIIC and not PolIII may 329

represent an organising principle for 3D-chromatin by providing spatial constraints [90]. Therefore, these tRNA 330

epigenetic changes could contribute to the structural changes that are also observed in ageing [91]. 331

In conclusion, due to the unique challenges that make the tRNAome difficult to examine it has remained 332

epigenetically under-characterised despite its critical importance for cell function. We directly interrogated the 333

epigenetic DNA methylation state of the functionally important tRNAome, across the age spectrum in a range of 334

datasets as well as methodologies and identified an enrichment for age-related DNA hypermethylation in the 335

human tRNA genes. 336
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Methods 337

Participants 338

Participants in the ‘EpiTwins’ study are adult volunteers from the TwinsUK Register. The participants were 339

aged between 16 and 82 years, with a median of ˜55 years (cohort profile [92]). Ethics for the collection of these 340

data were approved by Guy’s & St Thomas’ NHS Foundation Trust Ethics Committee (EC04/015—15-Mar-04) 341

and written informed consent was obtained from all participants. 342

Participants for our targeted bisulfite sequencing of select tRNA loci were drawn from two studies. Samples 343

from participants aged 4 and 28 years are from the MAVIDOS [93] study and participants aged 63 and 78 years 344

are from the Hertfordshire cohort study [94]. Due to a limited number of available samples, the two 4 year old 345

pools contained DNA from 20 individuals each, with all other pools having 25 contributing individuals. Pool 1, 346

the first 4 year old pool used DNA from all male samples, with all other pools using all female samples. Thus, 347

the total number of participants was 190 (see Table 2). Samples from the 28 year old time point are all from 348

pregnant women at ˜11 weeks gestation. 349

tRNA annotation information 350

Genomic coordinates of the tRNA genes were downloaded from GtRNAdb [28]. The 2 tRNAs located in 351

chr1 gl000192 random are tRNA-Gly-CCC-8-1 & tRNA-Asn-ATT-1-2 (Supplementary File S1). Stem/loop 352

structure annotations were inferred from output of tRNAscan [48] with a custom perl6 script. The 213 probes 353

overlapping tRNA genes were derived from intersecting the tRNA gene annotation data from gtRNAdb with the 354

Illumina 450k array manifest annotation for the hg19 genome build using bedtools v2.17.0 [95]. We excluded 107 355

tRNAs from blacklisted regions of hg19 [46]. 356

DNA methylome data 357

TwinsUK MeDIP-seq methylomes 358

The Methylated DNA Immunoprecipitation sequencing (MeDIP-seq) data was processed as previously described 359

[16,96]. These processed data are available from the European Genome-phenome Archive (EGA) 360

(https://www.ebi.ac.uk/ega) under study number EGAS00001001910 and dataset EGAD00010000983. The 361

dataset used in this work consists of 4350 whole blood methylomes with age data. 4054 are female and 270 male. 362

3001 have full blood counts. There are 3652 individuals in this data set. These individuals originate from 1933 363

unique families. There are 1234 monozygotic (MZ) twin pairs (2468 individuals), and 458 dizygotic (DZ) twin 364
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pairs (916 individuals). 365

MeDIP-seq used a monoclonal anti-5mC antibody to bind denatured fragmented genomic DNA at methylated 366

CpG sites. This antibody-bound fraction of DNA was isolated and sequenced [45]. MeDIP-seq 50-bp single-end 367

sequencing reads were aligned to the hg19/GRCh37 assembly of the human genome and duplicates were removed. 368

MEDIPS (v1.0) was used for the MeDIP-seq specific analysis [97]. This produced reads per million base pairs 369

(RPM) values binned into 500bp windows with a 250bp slide in the BED format, resulting in ˜12.8 million 370

windows on the genome. MeDIP-seq data from regions of interest was extracted using Bedtools v2.17.0 [95]. 371

Analysis of DNA methylome data for Significant Ageing-related changes 372

All analysis was performed in R/3.5.2. Linear models were fitted to age using the MeDIP-seq DNA methylome 373

data, as quantile normalised RPM scores at each 500bp window. Models were fitted with: 1. No covariates; 2. 374

Batch information as a fixed effect; 3. Blood cell-type counts for neutrophils, monocytes, eosinophils, and 375

lymphocytes as fixed effects; and 4. Batch and Blood Cell counts as fixed effects. Model 1 & 2 were fitted on the 376

full set of 4350 as batch information was available for all samples but blood cell count data was only available for 377

a subset of 3001 methylomes. Models 1 & 2 fitted in the n=3001 subset were similar to those fitted in the 378

complete set of 4350. Models 3 & 4 were fitted in the n=3001 subset with full covariate information and sets of 379

significant tRNAs identified at study-wide and genone wide levels in model 4 were used in subsequent analyses. 380

Models were also fitted for two unrelated subsets created by selecting one twin from each pair (Monozygotic or 381

Dizygotic), yeilding sets with n = 1198 & 1206 DNA methylomes. One additional model was fitted for 382

longitudinal analysis, samples were selected by identifying individuals with a DNA methylome at more than one 383

time point and filtering for only those with a minimum of 5 years between samples. This yielded 658 methylomes 384

from 329 individuals with age differences of 5-16.1 yrs, median 7.6 yrs. Models for this set included participant 385

identifier as a fixed effect in addition to blood cell counts and batch information. 386

Permutation Analysis for Enrichment with Age-related Changes 387

We performed a permutation analysis to determine whether the CpG distribution of sets of the tRNAome was 388

the principle driver of the ageing-related changes observed. Windows overlapping tRNAs have a higher 389

proportion of windows with a greater CpG density than their surrounding sequences (see supplementary Figure 390

S3). CpGs residing within moderate CpG density loci are the most dynamic in the genome [49] and CpG dense 391

CpG island regions include specific ageing-related changes [8,9,16]. For comparison we also performed the 392

permuation in the CGI regions from the Polycomb group protein target promoters in Teschendorff et al. [8] and 393

bivalent loci from ENCODE ChromHmm ‘Poised Promoter’ classification in the GM12878 cell-line [98]. A 394
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random set of 500bp windows representing an equivalent CpG density distribution of the feature set in question 395

were selected from the genome-wide data. Above a certain CpG density there are insufficient windows to sample 396

without replacement within a permutation. Furthermore, above ˜≥ 18% CpG density CpG Islands become 397

consistently hypomethylated [99]. Therefore, all windows with a CpG density of ≥ 18% (45 CpGs per 500bp) 398

were grouped and sampled from the same pool. i.e. a window overlapping a tRNA gene which had a 20% density 399

could be represented in permutation by one with any density ≥ 18%. This permutation was performed 1,000 400

times to determine an Empirical p value by calculating the number of times the permutation result exceeded the 401

observed number of significant windows in the feature set. Empirical p− value = r+1
N+1 , where r is the sum of 402

significant windows in all permutations and N is number of permutations [100]. 403

Neonate and Centenarian Whole Genome Bisulfite Sequencing 404

DNA methylation calls were downloaded from GEO:GSE31263 and intersected with tRNA genes using bedtools 405

v2.17.0 [95]. 406

Sample pooling and EPIC array 407

We performed an Illumina Infinium DNA methylation EPIC array ((C) Illumina) and targeted bisulfite 408

sequencing of select tRNA gene loci. Here we used DNA extracted from whole blood and pooled into 8 samples 409

from unrelated individuals at 4 time-points with 2 pools at each time-point. The timepoints were 4, 28, 63, and 410

78 years. Using the EPIC array we were able to infer the DNAm age using the Horvath DNAm clock [11] and 411

blood cell-type composition of our samples using the Houseman algorithm [53]. 412

Targeted Bisulfite Sequencing 413

We selected tRNA loci for targeted sequencing in which have had observed changes and DNAm with age and 414

closely related tRNAs in which changes were not observed. Primer design was performed using ‘methPrimer’ 415

[101] (Supplementary File S2). A total of 84 tRNA loci were targeted and 79 subsequently generated reliable 416

results post-QC. The targeted tRNAs covered a total of 723 CpGs with a median of 8 CpGs per tRNA (range 417

1-13), data passing QC was generated for 458 CpGs, median 6 (range 1-9) per tRNA. 418

Quality was assessed before and after read trimming using fastqc [102] and multiqc [103] to visualise the 419

results. Targeting primers were trimmed with cutadapt [104] and a custom perl5 script. Quality trimming was 420

performed with trim galore [105]. Alignment and methylation calling was performed with Bismark (v0.20.0) 421

[106] making use of bowtie2 [107]. The alignment was performed against both the whole hg19 genome and just 422

the tRNAome +/- 100bp to assess the possible impact of off-target mapping. Mapping to the whole genome did 423
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produce purported methylation calls at a larger number of loci than mapping just to the tRNAome (683,783 vs 424

45,861 respectively). Introducing a minimum coverage threshold of 25 reads dramatically reduced this and 425

brought the number of sites into line with that in the tRNAome set (36,065 vs 33,664 respectively) suggesting a 426

small number of ambiguously mapping reads. All subsequent analysis was performed using the alignment to just 427

the tRNAome with a minimum coverage of 25 reads. 428

We performed pairwise differential methylation analysis of the tRNA genes at the different time points using 429

RnBeads [54] with limma [108] and a minimum coverage of 25 reads. We also performed linear regression 430

predicting age from DNA methylation at the targeted tRNA sites, permitting us to compare rates of increase 431

with age. For the linear regression, we used only CpG sites with more than 25 reads mapped to the regions of the 432

genome targeted for amplification. 433

TwinsUK Illumina 450k array methylomes 434

Illumina Infinium DNA methylation 450k arrays ((C) Illumina) were also performed on TwinsUK participants, in 435

770 Blood-derived DNA samples which had matched MeDIP-seq data. These data were preprocessed in the form 436

of methylation ‘beta’ values pre-processed as previously described [16,96]. Cell-type correction was performed 437

using cell-count data and the following model: lm(age ~ beta + eosinophils + lymphocytes + monocytes 438

+ neutrophils). 439

Chromatin Segmentation Data 440

Epilogos chromatin segmentation data [55] was downloaded for the tRNA gene regions +/- 200bp from 441

https://explore.altius.org/tabix/epilogos/hg19.15.Blood T-cell.KL.gz using the tabix utility. The data used was 442

the ‘Blood & T-cell’ 15 State model based on segmentation of 14 cell-types. This data was manipulated and 443

visualised with R and ggplot2. 444

Isolated Blood Cell Type Specific Data 445

Data from 7 cell-type fractions from 6 Male individuals was downloaded from GSE35069 [59] using GEOquery 446

[109]. Five of the 6 top age hypermethylating tRNAs are covered by this array dataset. 447

Cancer and Tissue Specific Methylation Data 448

Data was downloaded from the TCGA (The Cancer Genome Atlas) via the GDC (genomic data commons) data 449

portal [110] using the GenomicDataCommons R package. Data from foetal tissue [62,63] was downloaded from 450
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GEO (GSE72867, GSE30654). From the TCGA, we selected samples for which DNAm data was available from 451

both the primary site and normal solid tissue, and for which we could infer an approximate age (within one year). 452

We selected those probes overlapping tRNA genes yielding 73,403 data points across 19 tissues with an age range 453

of 15-90yrs (median 63.4) (Supplementary File S3) 454

Assaying tRNA expression in blood with MINTmap 455

We used small RNA-seq data from sorted blood cell fractions [111] (GSE100467) and the MINTmap [64] tRNA 456

fragment alignment tool. This dataset covered 42 individuals aged 21-63. We also created a customised 457

MINTmap reference designed to include only fragments which unambiguously map to a single tRNA gene locus 458

and which overlap the 5’ or 3’ end of the genomic tRNA sequence by at least one base with no mismatches. This 459

reference is intended to capture pre-tRNAs prior to processing and CCA addition operating under the 460

assumption that the levels of pre-tRNAs will be informative about the amount of transcription taking place at 461

the tRNA loci. This approach provides at most a many to one mapping of tRNA fragment to a tRNA gene. 462

Assaying the expression of tRNA genes presents numerous difficulties [27], and usually requires variants on 463

standard RNA-seq protocols. Our custom MINTmap reference build yielded 383 fragments mapping to 92 464

distinct tRNA loci in this data. To control quality only fragments with more than 20 total instances in the 465

dataset and present in more than 20 individuals were considered. 466

The maximum length of a fragment was limited to 50nt, due to the read length of the small RNA-seq data. 467

Mouse RRBS Analysis 468

We downloaded methylation calls and coverage information resulting from RRBS performed by Petkovich et al. 469

[65] from GEO using GEOquery [109] GSE80672. These data from 152 mice covered 68 tRNA and 436 CpGs after 470

QC requiring >50 reads per CpG and >10 data points per tRNA. We excluded 5 tRNAs from blacklisted regions 471

of mm10 [46]. After QC there were 58 tRNA genes and 385 CpGs. We performed simple linear modeling to 472

predict age from methylation level at each tRNA and each CpG. 473

Data availability 474

The MeDIP-seq data supporting the results of this article are available in the EMBL-EBI European 475

Genome-phenome Archive (EGA) under Data set Accession number EGAD00010000983 476

(https://www.ebi.ac.uk/ega/datasets/ EGAD00010000983). The targeted BiS-sequencing data will be available 477

on publication. 478
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Code availablity 479

Available at https://github.com/richardjacton 480
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Supplementary materials 776

Supplementary Figures 777

Fig S1. Example of mappability data from the encode mappability tracks [51] for the initiator methionine tRNA
genes.
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Fig S2. Mappability score density of the tRNAome increases with read length and is greater when flanking
regions (±500bp) are included. Mappability score density is computed as the area under the encode mappability
tracks [51] over the length of the region.
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Fig S3. CpG Density in windows overlapping tRNA genes compared to that of non-tRNA overlapping windows
in flanking sequences (+/-5kb)
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Fig S4. Heatmap Mean Methylation of probes covering each tRNA in 7 cell-type fractions from 6 Male
individuals. Showing all 150 tRNAs covered by 213 probes on the Illumina 450k array. Data from GSE35069 [59]
downloaded using GEOquery [109]. Generated with the ComplexHeatmap R package [61].
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Fig S5. Global properties of tRNA methylation data for 45 tRNA genes across 19 tissues with matched normal
and tumour samples from 733 cases in TCGA [62,63].
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Fig S6. Mean Methylation of 43 tRNAs in 19 tissues. Possible pseudogene (tRNA-Asn-ATT-1-1) is shown in a
separate cluster beneath the main heatmap [61].
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Fig S7. Mean Methylation of 115 tRNAs in 11 tissues. Possible pseudogenes are shown in a separate cluster
beneath the main heatmap [61].
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MINTmap reference Fragment distribution 778

In the original MINTmap reference (Figure S8b) there are peaks at around 18nt, 22nt and 32nt. This is consistent 779

with the expected tRNA fragment size distributions with ‘tRNA halves’ at 30-33nt and other tRFs at 18nt and 780

22nt. In our custom reference (Figure S8a) whilst there is still a peak at ˜18nt, with suggestions of peaks near 781

22nt and 32nt the tRNA fragment length distribution is somewhat different from that of the standard MINTmap 782

reference. There are larger peaks at ˜28 and ˜40nt consistent with the longer fragments expected given that this 783

reference aimed to target fragments derived from pre-tRNAs not tRFs derived from mature tRNAs. 784

Fig S8. Comparison of the fragment size distributions between our custom reference (A) and the original the
MINTmap reference (B).
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