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Abstract

Over the past two decades, measurements of carbon nanotube toxicity and biodistribution have yielded a wide
range of results. Properties such as nanotube type (single-walled vs. multi-walled), purity, length, aggregation
state, and functionalization, as well as route of administration, greatly affect both the biocompatibility and
biodistribution of carbon nanotubes. These differences suggest that generalizable conclusions may be elusive
and that studies must be material- and application-specific. Here, we assess the short- and long-term
biodistribution and biocompatibility of a single-chirality DNA-encapsulated single-walled carbon nanotube
complex upon intravenous administration that was previously shown to function as an in-vivo reporter of
endolysosomal lipid accumulation. Regarding biodistribution and fate, we found bulk specificity to the liver and
>90% signal attenuation by 14 days in mice. Using near-infrared hyperspectral microscopy to measure single
nanotubes, we found low-level, long-term persistence in organs such as the heart, liver, lung, kidney, and
spleen. Measurements of histology, animal weight, complete blood count, and biomarkers of organ function all
suggest short- and long-term biocompatibility. This work suggests that carbon nanotubes can be used as

preclinical research tools in-vivo without affecting acute or long-term health.

1. Introduction

The unique physical properties of carbon nanotubes have prompted interest in many fields and potential
applications in materials, electronics, biology, and medicine. Carbon nanotubes may exist as either single-

walled carbon nanotubes (SWCNTSs) or multi-walled carbon nanotubes (MWCNTs). SWCNTs are cylindrical
1
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graphene tubes with typical diameters of 0.5-2 nm and exhibit novel optical and electronic properties. These
properties are dependent on the roll-up angle and diameter of nanotubes, which are defined by the integers
(n,m), denoting SWCNT species/chirality!. MWCNTSs consist of multiple concentric layers of graphene

cylinders, and also exist as multiple chiralities exhibiting unique properties, with diameters that can range from

1-60 nm? 3.

The unique properties of carbon nanotubes and their potential applications has prompted many studies of the
toxicity and biological/ecological fate of these materials over the past two decades* > that has often resulted in
perceived general toxicity by many in the scientific community. Overall, however, the results of toxicology
studies on carbon nanotubes have been remarkably inconsistent*. One major conflating factor in determining the
biodistribution and toxicological profile of a nanotube sample is the type of nanotube under investigation.
Studies investigating the effects of MWCNTs, for instance, suggest that they cause asbestos-like effects in
mammals®, while recent investigations of SWCNTs found a protective effect against several disorders,
including neurodegenerative disease and stroke’. Studies also found differences between SWCNTs and
MWCNTs in both cell uptake and viability, with MWCNT preparations leading to a decrease in cell viability
that was not seen upon exposure with SWCNT preparations'®. Further investigation into these results reveals
that there are many factors related to carbon nanotube structure, size, preparation techniques, and route of
administration that affect the biodistribution and toxicological profile of a specific carbon nanotube

preparation’=?.

Studies focusing on SWCNTs report a large variety of findings ranging from harmful to beneficial effects
on cells or animals, depending on the preparation/derivatization. Recent work investigating the structure-
dependent biocompatibility of SWCNTs found that, while singly-dispersed SWCNTSs showed no significant
effects on mitochondrial function and hypoxia in vitro, negative effects were seen upon treatment with
aggregated SWCNTs which further depended on the structural integrity of the aggregated SWCNT

dispersions'!. Aggregated SWCNTSs were also found, however, to attenuate the effects of methamphetamine in
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mice®. Recent work also suggests that SWCNT treatment alleviates autophagic/lysosomal defects in primary
glia from a mouse model of Alzheimer’s disease’, while amine-modified SWCNTSs are neuroprotective in a
stroke model in rats®. Individually-dispersed SWCNTs functionalized with lipid-polyethylene glycol (PEG)
conjugates, injected intravenously into rodents, exhibited minimal effects on rodent blood chemistry!2, despite
their presence in the liver for up to four months. Such studies also highlight the effects of SWCNT
functionalization on long term biodistribution. While the non-covalently functionalized SWCNTSs persisted in
organs such as the liver and spleen for months!?, covalently functionalized SWCNTSs were shown to rapidly
clear the body via the urine!3. Investigators have studied SWCNT toxicity in animals following airway,
intravenous, intraperitoneal, subcutaneous, oral, and topical exposure, leading to varying degrees of
biocompatibility depending on the SWCNT preparation used>. Even when focusing on a single route of
administration, such as intravenous injection, it has been difficult to draw general conclusions about SWCNT
toxicity due to large differences in the quantity of SWCNTs injected as well as varying preparation techniques.
Injected quantities of SWCNTSs have ranged over three orders of magnitude. The large range of concentrations

and the diverse functionalization chemistries likely contribute to large differences in biodistribution and

biocompatibility!3-17

The diversity of results pertaining to carbon nanotube biodistribution and toxicity highlights the need for
specific studies for each type, functionalization, and application of carbon nanotubes. Here, we examine the
short and long-term biodistribution and toxicity of a single, purified SWCNT (n,m) species/chirality (the (9,4)
species) encapsulated with a specific single-stranded DNA sequence (ssCTTC;TTC; DNA-SWCNT). This
DNA-nanotube combination, when injected intravenously into mice, was recently found to function as a non-
invasive reporter of Kupffer cell endolysosomal lipid accumulation!”. Bulk measurements have shown that this
DNA-nanotube complex, ssCTTC;TTC-(9,4), localized predominantly to the liver, although single-particle
measurements found small quantities in other organs. Extensive histological examinations, complete blood
counts, and serum biomarker measurements results suggest that ssCTTC;TTC-(9,4) is sufficiently

biocompatible for preclinical applications, while more work is needed to assess its potential for use in humans.

3
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2. Experimental Section

2.1 Preparation of the purified DNA-nanotube complex, ssCTTC;TTC-(9,4)

1 mg/mL of raw EG 150X single walled carbon nanotubes purchased from Chasm Advanced Materials
(Norman, Oklahoma) were mixed with 2 mg/mL ssDNA in 0.1 M NaCl. SWCNTs were then wrapped in
ssDNA via probe tip ultrasonication (Sonics & Materials, Inc.) for 120 minutes at ~ 8 W. Dispersions were then
centrifuged (Eppendorf 5430 R) for 90 minutes at 17,000 x g. The top 85% of the resulting supernatant was

then collected and used for purification of the (9,4) chirality.

Purification of the (9,4) nanotube from the unsorted ssCTTC;TTC-SWCNT sample was performed using
the aqueous two-phase extraction method'®-20, In brief, ssCTTC;TTC-SWCNT was mixed with a solution
containing a final concentration of 7.76% polyethylene glycol (PEG, molecular weight 6 kDa, Alfa Aesar), and
15.0% polyacrylamide (PAM, molecular weight 10 kDa, Sigma Aldrich). Following an overnight incubation at
room temperature, the sample was vortexed and then centrifuged at 10,000 x g for 3 minutes. The top phase of
the resulting solution was then collected and added to blank “bottom phase,” which was produced by removing
the bottom phase of a 7.76 PEG, 15.0% PAM solution following centrifugation at 10,000 x g for 10 minutes.
The resulting solution was once again vortexed and centrifuged to produce a top phase enriched in
ssCTTC5TTC-(9,4) complexes. Following collection of the top phase NaSCN was added at a final concentration
of 0.5 M. This solution was then incubated overnight at 4 degrees Celsius to precipitate ssCTTC;TTC-(9,4).
The sample was then centrifuged at 17,000 x g for 20 minutes, causing ssCTTC;TTC-(9,4) to pellet. Following
removal of the supernatant, this pellet was then suspended in diH,O and stored with 0.1 mg/mL free

ssCTTC;TTC-(9,4).

2.2 Animal Studies

All animal studies were approved and carried out in accordance with the Memorial Sloan Kettering Cancer

Center Institutional Animal Care and Use Committee. All animals used in the study were male C57BL/6 mice at
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6-12 weeks of age. All control and experimental mice were age matched and housed in identical environments.
For the assessment of ssCTTC;TTC-(9,4) in vivo, mice were tail vein injected with 200 puL of 0.5mg/L
ssCTTC5TTC-(9,4) diluted in PBS. For all other experiments, mice were tail vein injected with 200 puL of 1.0
mg/L ssCTTC;TTC-(9,4) diluted in PBS. For in vivo spectroscopy, mice were anesthetized with 2% isoflurane

prior to data collection.

2.3 Near infrared in vivo spectroscopy

Spectra were acquired from rodents non-invasively in vivo using a custom-built reflectance probe-based
spectroscopy system!”-21-22. The excitation was provided by injection of a 730 nm diode laser (Frankfurt) into a
bifurcated fiber optic reflection probe bundle (Thorlabs). The sample leg of the bundle included one 200 pm,
0.22 NA fiber optic cable for sample excitation located in the center of six 200 um, 0.22 NA fiber optic cables
for collection of the emitted light. The exposure time for all acquired data was 5 seconds. Light below 1050 nm
was removed via long pass filters, and the emission was focused through a 410 um slit into a Czerny-Turner
spectrograph with 303 mm focal length (Shamrock 3031, Andor). The beam was dispersed by an 85 g/mm
grating with 1350 nm blaze wavelength and collected by an iDus InGaAs camera (Andor). After acquisition,
data was processed to apply spectral corrections for non-linearity of the InGaAs detector response, background
subtraction, and baseline subtraction via the use of OriginPro 9 software with a standard adjacent averaging

smoothing method and a spline interpolation method.

2.4 Tissue fixation and sectioning

Organs were fixed in 10% buffered formalin phosphate and paraffin embedded. 5 pm sections were then
placed on glass slides. Paraffin was removed and sections were either left unstained for near-infrared
hyperspectral microscopy or stained with haematoxylin and eosin (H&E) for basic histology at the Molecular

Cytology Core Facility of Memorial Sloan Kettering Cancer Center and Histowiz Inc. (Brooklyn, NY).

2.5 Near-Infrared hyperspectral microscopy
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Near-infrared hyperspectral microscopy was performed as previously described?. In brief, a continuous

wave 730 nm diode laser (output power = 2 W) was injected into a multimode fiber to provide an excitation
source. After passing through a beam shaping optics module to produce a top hat intensity profile (maximum
20% variation on the surface of the sample), the laser was reflected through an inverted microscope (with
internal optics modified for near-infrared transmission) equipped with a 100X (UAPON100XOTIRF, NA=1.49)
oil objective (Olympus, USA) via a longpass dichroic mirror with a cut-on wavelength of 880 nm. Spatially
resolved near-infrared emission was then passed twice through a turret-mounted volume Bragg grating (VBG)
which allowed the light to be spectrally resolved. The monochromatic beam with 3.7 nm FWHM was collected
by a 256 x 320 pixel InGaAs camera (Photon Etc) to result in an image. Spectrally-defined images were
collected with a 4 s integration time. The VBG was rotated in 4 nm steps between 1100-1200 nm (26 images in

total). Data rectification was conducted using PhySpec software (Photon Etc) to result in “hyperspectral cubes”

wherein every pixel of a near-infrared image was spectrally resolved?3.

2.6 Analysis and processing of hyperspectral data

Hyperspectral data was saved as 16 bit arrays (320 x 256 x 26) where the first two coordinates represent
the spatial location of a pixel and the last coordinate its position in wavelength space. Background subtraction
and intensity corrections to compensate for non-uniform excitation were applied via MATLAB code developed
in the authors’ lab. ROIs were then manually selected from images and spectra were obtained using the Time

Series Analyzer plugin for ImageJ.

3. Results

3.1 In vivo detection of ssCTTC;TTC-(9,4) DNA-nanotube complexes

The near-infrared signal from the purified DNA-nanotube complex was assessed transiently. Previous work
describes the isolation of the DNA-nanotube complex, ssCTTC;TTC-(9,4), consisting of the single-stranded
DNA sequence, CTTC;TTC, encapsulating the nanotube species (9,4), by aqueous two-phase extraction?’. The

6
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complexes were found to localize to the liver of mice following intravenous injection, where it was non-
invasively assessed via a fiber optic probe!”. Spectra of the nanotube photoluminescence in mice were acquired
using a fiber optic probe-coupled spectrometer and near-infrared camera (described in Methods). The

measurements found a sharp decrease in nantoube fluorescence intensity over two weeks after injection (Figure

1). This result suggests that nanotubes were either quenched or excreted from the liver over this time period.

Figure 1. Near-infrared spectroscopy of single-species DNA-nanotube complexes in vivo. A) Near-infrared
emission spectra of ssCTTC;TTC-(9,4) DNA-SWCNT complexes measured from the region of the mouse liver
in vivo using a fiber optic probe device following intravenous injection into a mouse. B) Normalized integrated
intensity of spectra depicted in (A). Error bars are standard deviation from N=5 mice. **=P<.01 as measured

with a Student’s t-test.

3.2 Microscopy and histology of SWCNTs in resected murine tissues

To further investigate the biodistribution of ssCTTC;TTC-(9,4) DNA-nanotube complexes following
intravenous injection, we examined tissue sections via near-infrared hyperspectral microscopy. This technique
can image single SWCNTSs?* in tissues even in the presence of normal tissue autofluorescence®2’. We resected
and paraffinized tissue sections of heart, liver, lung, kidney, spleen and brain 24 hours after administration of
SWCNTs and imaged using the near-infrared hyperspectral microscope at 100X magnification. Upon
investigation of the near-infrared data, individual ROIs, denoting ssCTTC;TTC-(9,4) complexes, could be
detected in liver, spleen, lung, kidney and heart, with highest prevalence in liver and spleen (Figure 2). The
same tissues were also processed via H&E staining (Figure 2). The stained tissues were assessed by a trained
pathologist; no signs of tissue injury or other abnormalities were found. No signal was detected in the brain via

in vivo measurements (Figure S1) or in tissue sections (Figure 2).
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We also assessed the long-term biodistribution of the nanotubes. Previous studies found the persistence of
non-covalently functionalized SWCNTs in organs, such as the liver and spleen, for several months'®. We used
near-infrared hyperspectral microscopy to assess the long term biodistribution of ssCTTC3TTC-(9,4) in heart,
liver, lung, kidney, and spleen tissue. One month following injection, nanotube emission could be seen in all
tissue sections (Figure 3). The nanotubes were sparsely distributed through lung, heart, and kidney tissue, and

more prevalent in the liver and spleen. Upon observation of the H&E stained tissue sections (Figure 3), no

abnormalities were noted by a trained pathologist.

Murine tissues were also assessed at three and five months after injection. No nanotubes were found in lung
tissue at the three-month timepoint (Figure 4), or in lung or heart tissue at five months (Figure 5), although they
were found in the liver, spleen, and kidneys at both timepoints. Despite chronic exposure to ssCTTC;TTC-(9,4)
in these organs, no tissue abnormalities were observed upon histological inspection of these tissues by a trained

pathologist (Figures 4-5).

Figure 2. Imaging carbon nanotubes in murine tissues 24 hours after injection. H&E stains (left) and
hyperspectral microscopy images (middle) of various organs 24 hours after intravenous injection with
ssCTTC;TTC-(9,4) complexes. Representative fluorescence spectra (right) of the denoted complexes are

shown.

Figure 3. Imaging carbon nanotubes in murine tissues one month after injection. H&E stains (left) and
hyperspectral microscopy images (middle) of various organs one month after intravenous injection with
ssCTTC;5TTC-(9,4) complexes. Representative fluorescence spectra (right) of the denoted complexes are

shown.
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Figure 4. Imaging carbon nanotubes in murine tissues three months after injection. H&E stains (left) and
hyperspectral microscopy images (middle) of various organs one month after intravenous injection with

ssCTTC5TTC-(9,4) complexes. Representative fluorescence spectra (right) of the denoted complexes are

shown.

Figure 5. Imaging carbon nanotubes in murine tissues five months after injection. H&E stains (left) and
hyperspectral microscopy images (middle) of various organs one month after intravenous injection with
ssCTTC;TTC-(9,4) complexes. Representative fluorescence spectra (right) of the denoted complexes are

shown.

3.3 Mouse weight measurements

Mouse weights were measured after injection of the nanotube complexes over a period of five months.
No significant difference was seen in weight changes 24 hours after injection with ssCTTC;TTC-(9,4)
complexes (Figure SA), consistent with previous results!’. Similarly, mouse growth was not affected over a

period of five months (Figure 5B).

Figure 6. Effects of nanotubes on mouse weight. A) Weight change in mice 24 hours after injection with
ssCTTC5TTC-(9,4) complexes or vehicle control (PBS). B) Weight change in mice followed 22 weeks after

injection with ssCTTC;TTC-(9,4) complexes or vehicle control (PBS).

3.4 Serum biomarker assessments

To further assess the effects of short and long-term exposure of the DNA-nanotube complexes, serum
biomarkers, and complete blood counts were measured 24 hours and five months after administration of the

nanotubes. Biomarkers of hepatic injury were measured 24 hours and 5 months after injection of
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209  ssCTTC;TTC-(9,4). Between nanotube and PBS injected mice, no statistically significant differences were
210  found for the biomarkers alanine aminotransferase (ALT), aspartate aminotransferase (AST), globulin (GLOB),
211 albumin (ALB), total protein, or TCO, (Figure S1). A small, statistically significant increase was apparent in
212 serum levels of serum alkaline phosphatase (Figure 7). However this slight difference is likely not biologically
213 significant, as the values seen for nanotube injected mice here are consistent with those seen in another study
214  that assessed ALP levels in similarly aged, male C57BL/6 mice injected with PBS!7. A statistically significant
215  difference is also apparent in the ALB:GLOB ratio in serum; this difference is slight and likely due to
216  instrument limitations, as inspection of the raw data reveals that limited resolution in ALB:GLOB

217  measurements is likely the cause for this significant difference (Figure 7). Despite the presence of nanotubes in

218  the liver 5 months after injection, no signs of liver injury were evident from hepatic biomarkers (Figure 8).

219

220  Figure 7. Serum chemistry measurements of biomarkers of hepatic injury in mice 24 hours after injection
221 of nanotubes. Samples were measured 24 hours after injection of PBS (control) or ssCTTC;TTC-(9,4) DNA-
222 nanotube complexes. A) Serum alanine transaminase concentrations (ALT) in mice. B) Serum aspartate

223 transaminase (AST) concentrations in mice. C) Serum alkaline phosphatase (ALP) concentrations in mice. D)
224 Serum carbon dioxide (TCO,) levels in mice. E) Serum albumin (ALB) levels in mice. F) Serum globulin

225  (GLOB) levels in mice. G) Serum ALB:GLOB ratio in mice. H) Serum total protein levels in mice. * = p <.05

226  as determined with a Student’s two way t-test. N=5 mice per group.

227

228  Figure 8. Serum chemistry measurements of biomarkers of hepatic injury in mice 5 months after

229  injection of nanotubes. Samples were measured 5 months after injection of PBS (control) or ssCTTC3;TTC-
230  (9,4) DNA-nanotube complexes. A) Serum alanine transaminase concentrations (ALT) in mice. B) Serum
231  aspartate transaminase (AST) concentrations in mice. C) Serum alkaline phosphatase (ALP) concentrations in

232 mice. D) Serum carbon dioxide (TCO,) levels in mice. E) Serum albumin (ALB) levels in mice. F) Serum
10
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globulin (GLOB) levels in mice. G) Serum ALB:GLOB ratio in mice. H) Serum total protein levels in mice.

Statistical significance was determined with a Student’s two way t-test. N=3 mice per group.

Serum biomarkers of renal function were assessed 24 hours and five months after injection of the
nanotube complexes. Between nanotube-injected and control mice after 24 hours, no statistically significant
differences were found for the biomarkers blood urea nitrogen (BUN), creatinine (CREA), BUN:CREA,
phosphate (P), sodium (Na), Na:K, and anion gap (Figure 9). While chloride levels were raised in nanotube-
injected mice, the increase was less than 2% (Figure 9). Potassium (K) levels were also different between the
two groups, although they were actually lower in nanotube injected mice (Figure 9) which is not a sign of renal
injury (an increase in K levels would be). Finally, a significant difference was seen in the Na:K ratio between
groups. A decrease in this ratio is indicative of liver/kidney stress, however, rather than the slight increase seen
herein (Figure 9). Overall, biomarkers of renal function at 24 hours suggest that the nanotubes did not cause any
injury. After five months, Both BUN, CREA, and measured anion gaps were slightly increased five months
after injection, with other renal biomarkers showing consistent, albeit slight (and statistically non-significant)
changes (Figure 10), suggesting that future work is needed to assess the effects of the long-term persistence of

ssCTTC5TTC-(9,4) on renal function.

Figure 9. Serum chemistry measurements of biomarkers of renal function in mice 24 hours after injection
of nanotubes. Samples were measured 24 hours after injection of PBS (control) or ssCTTC;TTC-(9,4) DNA-
nanotube complexes. A) Blood urea nitrogen (BUN) concentration in mice. B) Serum creatinine (CREA)
concentrations in mice. C) Serum BUN:CREA ratios in mice. D) Serum phosphate (P) concentration in mice.
E) Serum chloride (Cl) concentrations in mice. F) Serum sodium (Na) concentrations in mice. G) Serum
potassium (K) concentration in mice. H) Serum Na:K ratio in mice. I) Serum calcium (Ca) concentration in

mice. J) Serum anion gap in mice. * = p < .05 as determined with a Student’s two way t-test. N=5 mice per group.
11
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Figure 10 Serum chemistry measurements of biomarkers of renal function in mice 5 months after
injection of nanotubes. Samples were measured 5 months after injection of PBS (control) or ssCTTC;TTC-
(9,4) DNA-nanotube complexes. A) Blood urea nitrogen (BUN) concentration in mice. B) Serum creatinine
(CREA) concentrations in mice. C) Serum BUN:CREA ratios in mice. D) Serum phosphate (P) concentration in
mice. E) Serum chloride (Cl) concentrations in mice. F) Serum sodium (Na) concentrations in mice. G) Serum
potassium (K) concentration in mice. H) Serum Na:K ratio in mice. I) Serum calcium (Ca) concentration in

mice. J) Serum anioin gap in mice. * = p <.05 as determined with a Student’s two way t-test. N=3 mice per

group.

Complete blood counts (CBCs) were performed 24 hours and 5 months after injection with the nanotube
complexes. Counts of white blood cells (WBCs), lymphocytes, eosinophils, and basophils did not vary
significantly, while there was a slight decrease in neutrophil count 24 h after injection (Figure 11). The number
of monocytes increased slightly after 24 h, however the lack of a corresponding increase in neutrophils and
other inflammatory markers coupled with the normal tissue architecture observed suggests that this slight
difference is the result of normal biological variation and not likely due to the injection of nanotubes (Figures 2,
11). Blood counts associated with oxygen levels appeared normal; significant differences were not seen in red
blood cell (RBC) counts, hemoglobin levels, hematocrit percentage, mean corpuscular hemoglobin quantity or
concentration, or RBC distribution width (Figure 12). A slight, statically significant decrease was seen in
platelet count between groups. This difference was not apparent at 5 months after administration (Figure 13).
The complete blood count 5 months after injection with nanotubes, shows no significant differences between
control and nanotube-injected mice (Figure 14-15). Overall, the results suggest minimal effects of nanotubes on

any conditions measurable by CBC.
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Figure 11. Measurements of blood inflammatory markers in mice 24 hours after injection of nanotubes.
Samples were measured 24 hours after injection of PBS (control) or ssCTTC;TTC-(9,4) DNA-nanotube
complexes. A) White blood cell (WBC) concentration in mouse blood. B) Neutrophil concentration in mouse
blood. C) Lymphocyte concentration in mouse blood. D) Monocyte concentration in mouse blood. E)
Eosinophil concentrations in mouse blood. F) Neutrophil percentage in mouse blood. G) Lymphocyte

percentage in mouse blood. H) Monocyte percentage in mouse blood. I) Eosinophil percentage in mouse blood.

J) Basophil percentage in mouse blood. * =p < .05 as determined with a Student’s two way t-test. N=5 mice per

group.

Figure 12 Measurements of blood oxygenation markers in mice 24 hours after injection of nanotubes.
Samples were measured 24 hours after injection of PBS (control) or ssCTTC;TTC-(9,4) DNA-nanotube
complexes. A) Red blood cell (RBC) concentration in mouse blood. B) Hemoglobin concentration in mouse
blood. C) Hematocrit percentage in mouse blood. D) Mean corpuscular hemoglobin quantity in mouse blood.
E) Mean corpuscular hemoglobin concentration in mouse blood. F) Red blood cell (RBC) distribution width.

Statistical significance was determined with a Student’s two way t-test. N=5 mice per group.

Figure 13. Platelet counts in mice 24 hours and 5 months after injection of nanotubes. Platelet counts were

measured 24 hours (A) and 5 months (B) after injection of PBS (control) and ssCTTC;TTC-(9,4) complexes.

Figure 14. Measurements of blood inflammatory markers in mice 5 months after injection of nanotubes.
Samples were measured 5 months after injection of PBS (control) or ssCTTC;TTC-(9,4) DNA-nanotube
complexes. A) White blood cell (WBC) concentration in mouse blood. B) Neutrophil concentration in mouse

blood. C) Lymphocyte concentration in mouse blood. D) Monocyte concentration in mouse blood. E)
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Eosinophil concentrations in mouse blood. F) Neutrophil percentage in mouse blood. G) Lymphocyte
percentage in mouse blood. H) Monocyte percentage in mouse blood. I) Eosinophil percentage in mouse blood.

J) Basophil percentage in mouse blood. Statistical significance was determined with a Student’s two way t-test.

N=3 mice per group.

Figure 15: Measurement of blood oxygenation markers in mice S months after injection of nanotubes.
Samples were measured 5 months after injection of PBS (control) or ssCTTC;TTC-(9,4) DNA-nanotube
complexes. A) Red blood cell (RBC) concentration in mouse blood. B) Hemoglobin concentration in mouse
blood. C) Hematocrit percentage in mouse blood. D) Mean corpuscular hemoglobin quantity in mouse blood.
E) Mean corpuscular hemoglobin concentration in mouse blood. F) Red blood cell (RBC) distribution width.

Statistical significance was determined with a Student’s two way t-test. N=3 mice per group.

4. Conclusion

In this work, we investigated the short and long term biodistribution and biocompatibility of a purified
DNA-encapsulated single-walled carbon nanotube complex consisting of an individual nanotube chirality,
administered intravenously. Bulk biodistribution measurements in mice found that, consistent with previous
studies on similar complexes, the nanotubes localized predominantly to the liver. Using near-infrared
hyperspectral microscopy to image single nanotube complexes, nanotube complexes were found in other organs
such as the kidney, spleen, hearts, and lungs and persisted in some organs at for up to 5 months. The results
showed that this reporter was highly biocompatible overall, although future studies are warranted to more
carefully assess long-term impact on organ function. Tissue histology and mouse weight measurements showed
no differences upon administration of nanotubes. Measurements of serum biomarkers, including complete blood

count, renal biomarkers, and hepatic markers showed negligible changes by the presence of carbon nanotubes <
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4 months, and minor changes in renal markers at 5 months. These results indicate that carbon nanotubes, used in
preclinical studies under the preparation conditions and concentrations herein, do not cause any appreciable
signs of toxicities at time points less than 4 months. The work suggests that these materials are unlikely to cause
significant problems in applications such as preclinical research, drug screening, and drug development.
However, the long-term persistence of nanotubes in tissues suggests that additional assessments are warranted
to assess the potential for use in humans. In general, these studies also suggest, in light of previous works, that
carbon nanomaterial biodistribution and biocompatibility are specific to carbon nanotube type, purity,

functionalization, and route of administration. This issue has implications pertinent to the wider perception and

applicability of nanomaterials.
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Supplementary Figure:

Figure S1: Example near-infrared emission spectra of DNA-SWCNT complexes measured in vivo 24 h

following intravenous injection into a mouse, in brain and liver tissues.
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