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Abstract

Patients with dystonia caused by the mutated TOR1A gene exhibit a risk neutral behaviour
compared to controls who are risk averse in the same reinforcement learning task. We
hypothesised this increased risk taking could be reproduced by a reinforcement learning model
which included biologically realistic striatal plasticity learning rules. We aimed to test whether a
specific combination of cortico-striatal plasticity abnormalities at D1 and D2 receptors could explain
the abnormal behaviour. We found a model of cortico-striatal plasticity could generate simulated
behaviour indistinguishable from patients only when both D1 and D2 plasticity was abnormally
increased in opposite directions: specifically when D1 synaptic potentiation and D2 depotentiation
were both increased. This result is consistent with previous observations in rodent models of
cortico-striatal plasticity at D1 receptors, but contrasts with the pattern reported in vitro for D2
synapses. This suggests that additional factors in patients who manifest motor symptoms may lead

to divergent effects on D2 synaptic plasticity that are not apparent in rodent models of this disease.
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Introduction

Cortico-striatal plasticity has been implicated in the acquisition and extinction of learned actions
through positive (Reynolds et al., 2001) and negative reinforcement learning (Dalley et al., 2007) .
Optogenetic studies have confirmed a causal role for phasic dopamine in the form of the reward
prediction error signal in determining behavioural choices (Kravitz et al., 2012; Steinberg et al.,
2013; Chang et al., 2016). This has lead to the widely accepted view that dopamine modifies
behaviour by mediating its opposing effects on cortico-striatal synaptic strength via the two
subtypes of dopamine receptor (Shen et al., 2008). Within this framework, the positive-going
prediction error signal, which accompanies a rewarding outcome, strengthens cortico-striatal
synapse within the “direct” or striato-nigral pathway and increases the likelihood of this choice
being repeated. Conversely, the negative-going prediction error signal associated with an aversive
outcome leads to strengthening of the “indirect” or striato-pallidal pathway, which suppresses the
likelihood of choice repetition. Both of these signals rely upon the induction of cortico-striatal long-
term potentiation (LTP) to mediate their behavioural effect, albeit under opposite dopaminergic
conditions and via D1 and D2 receptors(Frank, 2005). Accordingly, in humans, individual sensitivity
to positive and negative feedback (via positive and negative going prediction error signals)
correlates with the extent of D1 or D2 receptor (D1R and D2R respectively) expression and genetic

influences on their variability (Cools et al., 2009; Frank et al., 2009; Cox et al., 2015)

The mutated TOR1A gene causes generalised dystonia (DYT1), a movement disorder
characterised by sustained or intermittent muscle contractions leading to abnormal repetitive
movements and postures (Ozelius et al., 1997). Brain slice recordings from rodents expressing the
human mutant gene exhibit abnormal cortico-striatal plasticity with a combination of abnormally
strong LTP; (Martella et al., 2009) and weak long-term depression, LTD; (Martella et al., 2009;
Grundmann et al., 2012). Subsequent studies have delineated a receptor specific post-synaptic
abnormality in D2R transmission as the principle cause for impaired LTD at the cortico-striatal
synapse (Napolitano et al., 2010). In view of the importance of cortico-striatal plasticity in

reinforcement learning, Arkadir et. al., proposed that patients with the TOR1A mutation should
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exhibit a learning strategy that is contingent with the abnormal plasticity seen in rodent models
(Arkadir et al., 2016). The patients in this study were found to be significantly more likely to make a
risky choice in a reinforcement learning task compared to controls. They concluded that this risk
taking behaviour was consistent with asymmetric integration of the positive and negative prediction
error signals as a consequence of maladaptive striatal plasticity. Given the distinct effects that
these signals mediate on the direct and indirect pathways, they proposed three candidate D1R and
D2R abnormalities that may lead to the pattern of behaviour observed: 1) An increased sensitivity
to a “win,” due to abnormally increased D1R mediated LTP with intact D2R signalling, 2) increased
sensitivity to a “win,” with blunted sensitivity to a “loss” both due to abnormally increased D1R -
LTP and D2R- LTD, 3) abnormally increased D1R- LTP and D2-LTP with blunted LTD at both
receptors. The third explanation was favoured as it was consistent with the pattern observed from
the rodent slice data. This pattern is nevertheless the most difficult of the three to reconcile with
increased risk taking behaviour. If this were indeed the underlying cause, any increased riskiness
mediated by pathological D1-LTP would be working in opposition to the risk aversive effects of
increased D2-LTP. In this scenario, increased risk taking could therefore only be conferred by a

D1 abnormality that was substantially greater than the D2 abnormality.

We wanted to address this conflict between the reported plasticity abnormalities demonstrated in
rodent models and the risk taking behaviour observed in patients using a model of cortico-striatal
plasticity (Gilbertson et al., 2019). In these simulations the model reproduced decision making in
the task whilst being forced to learn under the three proposed conditions of striatal plasticity. We
found the pattern of D1R/D2R abnormality from the rodent experiments was least robust at
reproducing actual experimental behaviour of patients. In contrast, the model generated simulated
behaviour that was statistically indistinguishable from that observed experimentally by patients,
only when learning under conditions where the opposite pattern of D2R abnormality (reduced LTP /
increased LTD) was present. We propose this abnormality is easily reconciled with current
understanding of the neurobiology of learning and increased risk taking. Notably, we suggest that
D2R dysfunction may fundamentally differ between dystonically manifest patients and non-

dystonically manifest animal models which share the TOR1A gene mutation.
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Methods

Subjects and behavioural paradigm

Behavioural data was from Arkadir et. al., (2016) which included 13 adult patients with DYT1
dystonia and 13 age and sex-matched controls. Further details regarding their medications and
clinical assessments are described in detail in the original manuscript. The trial-and-error
(reinforcement) learning task consisted of 326 trial presentations of four pseudo-letters which
served as cues (‘slot machines’). This included an initial familiarisation (training phase) of 26 trials.
Each cue was attributed a different reward schedule (sure 0¢, sure 5¢, sure 10¢, and the so-called
“risky” cue associated with 50:50% probabilities of 0¢ or 10¢ payoffs). The task consisted of
pseudo-randomised presentations of the cues in either “forced” or “choice” trials (Figure 1). Pay-
out feedback was presented either following a “forced,” trial when one of the four cues was
presented on its own and selected. During a “choice” trial, feedback was given following the
subject’s choice of one cue from a pair presented. One of five pairs of cue combinations were
presented during the “choice” trials. These included 0¢ versus 5¢, 5¢ versus 10¢, 0¢ versus 0/10¢,
5¢ versus 0/10¢ and 10¢ versus 0/10¢. The principle behavioural result reported by Arkadir et. al.,
was an increased tendency for patients to choose the risky cue when presented with the 5¢ versus
0/10¢ pairing. We therefore focused our re-analysis of their data on these “risk” choice trials
highlighted by Arkadir et. al. To ensure consistency with their analysis of the task behaviour, we
report in an identical fashion, the overall proportion of risky cue choice both across the task (n = 60

trials) as a whole (Figure 1A) and across four (n=15 trial) blocks (Figure 1B).

Model fitting

The behavioural data was fitted to the cortico-striatal plasticity (CSP) model described in detail in
Gilbertson et. al. (2019). This combines both traditional temporal difference (TD) models of
reinforcement learning with biologically plausible cortico-striatal synaptic weight changes based
upon in vitro data (Shen et al., 2008). At the core of this model are two striatal populations,

representing the D1R and D2R expressing direct and indirect pathways. The output of these are in
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turn a function of the interaction between the reward prediction error (RPE) signal

(R(t) — Q(A,t — 1)) in the equation;

QAN =QAt-D+aR®) - QA4 t-1) )

Where « is the learning rate, R; is the outcome (reward[1] or nothing[0]), and the striatal activity

S,,0f each population on trial t for action A was defined as:
Sp(4,t) =W, (4, t—1)-c 2

where W is the cortico-striatal synaptic weight and c is a constant input of 1. Here we assume two
striatal “populations” Sp; and Sp,; the D1 receptor expressing direct and D2 receptor expressing
indirect pathways respectively. Each population represents four actions (corresponding to the four
cue choices in the task). The cortico-striatal synaptic weights in each population are modified at the
synapse corresponding to the chosen action A;

Wo(At—1)+ AW, (4, t—1), if W4 t—1)+AW,(4t—1)>0

Wa(d, 1) = { 0, otherwise

. (3)

With the change in synaptic weight being the product of the striatal postsynaptic activity and the

influence of dopamine:

Here the magnitude Ad,, of dopamine's effect on synaptic plasticity is,

a,(DA(t) — 0),if DA(t) > 6

Ad,(¢) = { b, (DA(t) — 0), otherwise ©)
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where (a,,b,) are coefficients determining the dependence of synaptic plasticity on the current

trial's level of dopamine DA(t), and the constant 8 determines the baseline level of dopamine.

Equation 5 links the RPE from Equation 1 by;

(RPE(t)—RPEmin)DArange
RPErange

DA(t) = DAmin +

. (6)

where RPE(t) <0, DAp,ip = 0, DAygnge = 0, RPEp, = —1, RPE 4. = 1; otherwise DAy, = 0,

DArange = 1 — 6, RPEpin = 0, RPE gy 0 = 1.

For forced trials the striatal population’s weight I, (4, t) is updated for the forced action choice

only. During choice trials the models chosen action is determined by competition between the two
striatal pathways for control of the pallidal output. The striatal weights are then updated for the

action chosen from the pair of choices. Thus, for a choice trial with two actions(44, A,);

GPi(A,t) = (501(141» t) — Spa(4y, t))H(Sm(Ap t) — Spa(4y, t)) (7).

where H() is the Heaviside step function: H(x) = 0 if x < 0, and H(x) = 1 otherwise; and similarly for
action A,. In turn the probability of choosing action A; was determined by the softmax equation

with the basal ganglia’s output substituted for the value term:

¢ (GPi(A1,0)/B)

P(Ay,t) = 2(GPi(A1,0/B) 1 ¢(GPUAZD/P) (8)-

The CSP model requires estimation of six free parameters. This includes two relating to the phasic
dopamine (RPE) signal, namely the learning rate (a) and reward sensitivity or inverse temperature
parameter (8), and four parameters which govern the magnitude of D1 and D2 mediated CS

plasticity; a; (D1-LTD) b; (D1-LTP), a; (D2-LTP), b, (D2-LTD). Each of these parameters govern
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the gradient of the synaptic weight change function and its interaction with phasic dopamine.
Larger values of each parameter lead to more significant changes in synaptic weight across the
dynamic range of dopamine, as this is encoded in the positive and negative prediction error

signals.

Estimation of the 6 parameters (as, bs, a2, b2, a, B) was performed simultaneously using data from
the whole task including all trials of both types (forced and choice) and the initial training phase.
We optimised the model parameters by minimising the negative log likelihood of the data given
each parameter combination. This was done using the Matlab (Mathworks, NA) function fmincon.
The initial starting points of this function were estimated following a grid-search of the parameter
space. The bounds of both fmincon and the grid-search were defined as a: = [0,2.5]; b; = [0, 1.5];
a, = [-2.5,0], b2 = [-1.5,0], a = [0, 1], B = [0 ,2]. (The softmax equation in the CSP model divides by
beta hence the range here has low values relative to TD models where beta multiplies). The
intervals for the grid-search were 0.2, for the “a” parameters, 0.1 for the “b” parameters and 0.1

and 0.2 for a and B respectively due to allow for the differences in the ranges of their bounds.

Probability density functions for each of the four plasticity parameters were generated by fitting a
nonparametric kernel function to control subject’s estimates. These were used to determine the
parameter space bounds that defined “pathologically” high (>95%) or low (<5%) plasticity within the
model's parameter space. For hypotheses testing where the plasticity was considered to be within
the normal “physiological”’ range, the bounds were defined by the 5% and 95% confidence limits of
the control subject values. Fitting was then performed separately for each hypothesis (H1-H3) in
turn. For simplicity we label these as:- “H1" Increased D1-LTP & decreased D1-LTD, “H2"
Increased D1-LTP & decreased D1-LTD, Decreased D2-LTP & increased D2-LTD, “H3” Increased

D1-LTP & decreased D1-LTD, Increased D2-LTP & decreased D2-LTD.
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Results

Controls

To test the reliability of the final model fitting and its ability to capture healthy control behaviour,
experimental data sets (n=1000) were simulated, using the final parameter estimates (See Table 1
for values). These simulations were generated using the final individual subject parameters
incorporated into the CSP model re-performing the task with the original experimental cue
sequence. We compared the simulated model decisions to choose the risky cue to the choice
probabilities from the control subject’s experimental data, by performing a two-way ANOVA with
two independent variables: source of choices [e.g. simulation, experiment], block number [1-4].
There was no significant difference in the probability of choosing the risky cue in the experimental
behavioural data or the simulated behavioural data (ANOVA, F (1) = 0.01, p=0.91), or any
difference between the simulated or experimental risky choices across the four blocks of the tasks
(ANOVA [Source, Block], F (3) = 0.4. P = 0.75). For an illustrative comparison, the experimental
probabilities of choosing the risky cue are plotted in blue for the controls in Figure 2, with both
experimental and simulated choices overlaid in Figure 3. This analysis suggests that the average
choice behaviour between each block in the task could be simulated using the CSP model for

individual controls, and that this was statistically indistinguishable from that seen experimentally.

Patients

Re-analysing the experimental data of Arkadir et al., we found the same tendency for patients to
show significantly less risk aversion (Figure 2A), choosing the risky stimulus significantly more
often than controls (DYT 0.44 £ 0.04, CTL 0.26 £+ 0.05, Mann-Whitney z = 2.23, df = 24, P < 0.05).
Importantly, the patients increased risky decision taking continued throughout the four
experimental blocks (conducting a one-way ANOVA with task block as a single independent
variable, demonstrated no significant effect of block, F (1) =0.62, p=0.61). Recalling that the choice
of the risky cue led to a 50:50% probability of either O or 10$ outcome, this absence of any

modification of risk taking behaviour over time is despite receiving proportionately more 0% (losing)


https://doi.org/10.1101/869743
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/869743; this version posted December 9, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

outcomes (Figure 2B). Our aim of fitting the patient’s behaviour data was therefore to capture both
the overall level of riskiness across the task and this absence of risky cue devaluation between
blocks. We therefore re-fitted the patient’s behavioural data whilst constraining the bounds of the
fitting procedure to the parameter space defined by the three hypothesised plasticity combinations
(H1- H3: “H1" Increased D1-LTP & decreased D1-LTD, “H2” Increased D1-LTP & decreased D1-
LTD, Decreased D2-LTP & increased D2-LTD, “H3” Increased D1-LTP & decreased D1-LTD,
Increased D2-LTP & decreased D2-LTD). Comparing the individual negative log likelihoods of
each hypothesis demonstrated a trend towards H1 and H2 (10 subjects) explaining the behaviour
better than H3 (Fisher exact test x? (24)=11.1, p =0.05 Bonferroni corrected), but no overall single
wining hypothesis. Given the similarity of both the negative log likelihood values and the overlap
between the hypothetical plasticity abnormalities, we tested whether any one of the hypothesis
could recover the risky choice behaviour by comparing their simulated (generated) risk taking
behaviour. We generated simulated “experiments” (n=1000) using the individual patients
parameter estimates for each hypothesis fitted. The results are plotted alongside the simulated and
experimental control data in Figure 3. As illustrated (Figure 3B) the only hypothesis, which could
accurately recover the experimental behaviour, was H2 (Increased D1-LTP & decreased D1-LTD,
Decreased D2-LTP & increased D2-LTD). A feature of the alternative hypotheses (H1 & H3) was
their inability to capture the between-block risk taking behaviour of the patients which remained
relatively similar across the whole task (i.e. from blocks 1-4 the risky cue was chosen to a similar
degree). In contrast, when the model performed the task with the predefined plasticity
abnormalities associated with H1 & H3, the models choice probability of the risky cue substantially

reduced between the beginning (block 1) and end of the task (block 4).

A feature of the experimental patient’s behaviour was a combination of both a raised baseline level
of risky choice and an absence of any devaluation of the risky cue between blocks as the
experiment progressed. Only under the conditions of H2’s plasticity combination (increased D1
“go” & decreased D2-NoGo) could this more risky and non- devaluing between-block combination
of behaviours be reproduced by the model simulations. Statistically, this observation was reflected

by there being no discernible difference between the simulated model and the experimental
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patient’s risky cue choice probability. Conducting a two-way ANOVA with two independent
variables (source of choices [simulation or experiment], task block), there was no effect of the
source of the choice data (ANOVA, F (1) = 0.44, p=0.50) or any significant interaction between the
variables (ANOVA, F(3) = 1.48, p =0.21). Consistent with the experimental choice behaviour in the
patients, there was no statistically significant between-block differences in choice probability for the
simulations under H2's plasticity conditions (ANOVA, F(3)=1.99, p=0.12). In contrast, there was a
significant difference in the simulated decision making of the model under the plasticity conditions
of H1 and H3. For both hypotheses there was a significant interaction between the variables for H1
(ANOVA, F (3) =3.63, p=0.01) and H3, (ANOVA, F (3) = 32.12, p<0.001). Furthermore, there was
also an effect of block for both hypotheses, H1, (ANOVA, F(3) = 5.46, p<0.01), H3 (ANOVA, F(3) =
43.49, p<0.001). The choice probability across the task for both of these models therefore
contrasted with and did not capture, the experimental patient behaviour where no statistical
difference was detected between each block of the task (see above). In all, this analysis would
support the assertion that the only hypothesis that could accurately reproduce both the risk neutral
behaviour of the patients and their behaviour between blocks across the task, was the combined
increased D1-LTP to LTD and decreased D2-LTP to LTD. The reliability of the model under the
plasticity conditions of H2 to replicate the experimental behaviour is further illustrated in Figure 4A.
Here we plot a single simulated experiment and for illustrative proposes, a random sample of 100

(from the 1000 generated) simulated control and dystonia behavioural experiments.

Consistent with the constraints on the fitting procedure for H2, where all four parameters were in
the “pathological” range, the final plasticity parameters fitted to the patients (a:-b2) were all
significantly different to the healthy controls (Two-way ANOVA (F(3) = 30, p<0.001). In contrast,
there was no corresponding difference in the a (Mann-Whitney z (24) = 1.2, p=0.23) , or B terms
(Mann-Whitney z (24) = 1.2, p=0.22). The final dopamine weight change curve for patients (H2)
and controls illustrates the expected effects of dopamine in the presence of increased D1-LTP to
LTD and decreased D2-LTP to LTD (Figure 5). Relative to controls, patients significantly
strengthened the direct pathway (D1R expressing) and weakened the cortico-striatal synaptic

connection in the indirect pathway,(D2R expressing), in response to the positive prediction error
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(dopamine burst). Conversely, the negative prediction error following a loss (and corresponding dip

in dopamine) produced less D2-LTP and D1-LTD and overall less risk aversive choice behaviour.

To understand why the CSP model could only recover the behaviour of the patients when both
plasticity in the direct (D1) and indirect (D2) pathways were affected in opposite directions, we
examined the time course of changes in D1 and D2 synaptic plasticity in the model through the
task. These are illustrated for H1 & H2 in Figure 5A and B. As expected for a striatum where D1
plasticity is biased towards synaptic potentiation, the synaptic weight representing the risky cue in
the patients increases rapidly to strengths that significantly exceed those of the controls in both
models. In contrast, the D2 synaptic strength remains unchanged in the H2 model relative to the
controls. At first glance, this seems counter intuitive given that H2 includes impaired D2 plasticity
(increased LTD to LTP) however this lack of build-up of D2-Indirect pathway activity is pathological
and reflects the blunted plasticity response to the negative prediction error. This can be understood
when the D2 synaptic changes are compared between the H1 (Figure 6A) and H2 (Figure 6B)
models. Under “physiological” D2 plasticity, the H1 model generates a substantial increase in D2-
Indirect pathway activity which is proportionate to the increased risky choices and correspondingly
increased negative prediction error signals that this risky choice behaviour produces. In contrast, in
the presence of D2 synaptic plasticity, which is biased towards depotentiation under conditions of
H2, there is no corresponding increase in indirect pathways weights and at a behavioural level, no
time dependent devaluation of the risky cue. This difference between the two models suggests
that for the combination of both reduced risk aversion and reduced choice devaluation observed in
the DYTL1 patients, cortico-striatal plasticity needs to be abnormal in opposing directions in both D1

and D2 Direct and Indirect BG pathways simultaneously.

Discussion

The purpose of this report was to highlight a disparity between the risk taking behaviour of patients

with manifest signs of dystonia caused by the TOR1A mutation and increased cortico-striatal D2R-

LTP observed in vitro from rodent models of human dystonia which do not manifest dystonic signs.
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Increased risk taking is a behaviour that is most likely explained by a combination of either
impaired negative prediction error signalling (reduced D2R striato-pallidal LTP) or excess
sensitivity of the positive prediction error signal (increased D1R striato-nigral LTP). Both of these
lead to increased risk taking behaviour by making patients more likely to choose the “risky” cue
following a “win”, or less sensitive to negative feedback following a “losing” choice. Using a
simulation of cortico-striatal plasticity in the striatum, the risk taking performance levels of patients
were least likely to be reproduced when the model incorporated increased D2R-LTP as reported
from rodent experiments. The inferior performance of the model under these plasticity conditions
was entirely attributable to the absence of D2-LTD, as increased D1-LTP was a feature of all three
hypothetical plasticity abnormalities that were tested. When D2R plasticity was biased towards
excessive LTD, the behaviour of the computational model was statistically indistinguishable from
that observed experimentally by patients. This suggests the opposite pattern of D2R abnormalities
to that reported in animal model in vitro experiments explains reinforcement learning abnormalities

in patients observed by Arkadir et. al., (2016).

The reduced sensitivity to the negative prediction error signal in the DYT1 patients that contributes
to increased risk taking is analogous to the reduced D2-LTD that underpins the reversal learning
impairment seen in patients with cervical dystonia (Gilbertson et. al., 2019). These results support
a common mechanism of increased D2-LTD causing abnormal reinforcement learning that is
independent on the specifics of the task or clinical phenotype studied. As the density of D2R
correlates with the sensitivity to negative decision outcomes (Frank et al., 2009; Cox et al.,
2015)the loss of D2-LTP predicted by our model is also consistent with imaging studies

demonstrating reduced D2R in both forms of dystonia (Naumann et al., 1998; Carbon et al., 2009).

Our approach was not intended to question the robustness of the method or interpretation of
previous in vitro animal studies. It is important to emphasise that our opposing conclusions are not
a post-hoc re-interpretation of the in vitro data on the basis of the outcome of our computational
model simulations. Rather, the simulations provide evidence in support of our a priori hypothesis

that loss of D2R-LTD plasticity is difficult to reconcile with our existing knowledge of the role of
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cortico-striatal plasticity in reinforcement learning. This discrepancy between the human and rodent
D2R plasticity abnormalities have crucial implications for our understanding of DYT1 dystonia and
the development of new therapies for patients with this condition. In the first instance, they support
the idea that striatal neurochemistry is not in a state that is indifferent to dystonically manifest and
non-manifest behavioural states. Notably, although animals with the TOR1A mutation have
significant striatal neurochemical abnormalities, they exhibit little to no phenotypic resemblance of
a movement disorder. It is conceivable therefore, that a reason for our results supporting an
opposite pattern of D2R abnormal plasticity to that seen in vitro, reflects a difference between the
manifesting dystonic and non-manifesting state. This explanation is supported by observations
from previous studies. First, following the peripheral nerve injury necessary to induce dystonia-like
posturing in TOR1A mutant rodents, these are accompanied by significant increases in striatal
dopamine and decreases in D2R receptor expression (Ip et al., 2016).This fundamental shift in
dopaminergic neurochemistry has also been observed in recent post mortem studies comparing
manifesting and non-manifesting carriers of the TOR1A mutant gene (lacono et al., 2019). Second,
the study of Edwards et. al., (2006) emphasises the apparent paradox of how the same mutation
can lead to an opposite physiological response depending on the clinically manifest state (Edwards
et al., 2006). Here TOR1A mutation carriers were tested using transcranial magnetic simulation
protocols which induced LTD-like plasticity in healthy controls. These failed to induce any response
in non-manifesting carriers but produced an exaggerated LTD-like response in the manifesting

carriers.

Given this context it is unsurprising that our computational modelling of patient’s behaviour
converges on a conclusion opposite to that reported from experiments using animal models of
human DYT1 dystonia. Our results have crucial implications for the development of small
molecular therapies based on translational studies in rodents (Downs et al., 2019). We argue that
since performance on reinforcement learning tasks correlates with the severity of the movement
disorder in these patients, these tasks could be used to screen putative therapeutic agents based
upon their ability to modify reward learning. This would be a cost effective intermediate step prior to

formal clinical trial testing aimed to at the identification of novel agents.
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Figure Legend

Figure 1: Task. Examples of visual stimuli used in the reinforcement learning task by Arkadir et.
al., 2016. Trials were randomly presented as either single stimuli which required a forced choice
and corresponding outcome or as instrumental trials where subjects were instructed to choose one
of two of the stimuli. The risky cue choice trials were between the "risky cue" whose choice led to a
50% chance of 10¢ or 0¢ (highlighed here by the red circle) or the "sure cue" which had a 100%

chance of 5¢ payout.

Figure 2: Experimental risk taking behaviour in patients and controls. (A) Boxplots illustrate
the mean choice probability of the patients (red) and controls (blue) represented by the horizontal
lines across the task as a whole. Each individual subjects choice probabilities are superimposed.
The grey boxes represent the interquartile range. (B) The patients and controls average choice
probabilities across four 15 trial blocks over the course of the task. The error bars represent the

S.E.M. * Mann-Whitney z = 2.33, P < 0.05.

Figure 3: Simulated risk taking under each hypothetical plasticity abnormality. Each plot
from A-C illustrates the final average synaptic weight change curve for the patients under each
hypothetical plasticity condition (H1-H3). See text for details of the D1 and D2 receptor abnormality
for each hypothesis. The average simulated (n=1000 simulations) choice probability of the risky
cue for each block (1-4) in the task is represented by the dashed (--) lines with the patients in red
and controls in blue. The error bars represent the average standard error across the simulated
experiments. The solid lines (-) represent the average choice (+S.E.M) from the experimental data
of Arkadir et. al. (2016). Significant differences between the simulated and experimental mean
choice probability were present under plasticity conditions for H1 (*p=0.01) and H3 (**p<0.001) but

not for H2, consistent with the overlapping experimental and simulated choices for this hypothesis.
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Figure 4: Simulated choices under plasticity conditions for H2. Example of a single simulated
experiment using the final parameters estimates for the controls and patient estimates with H2 (A).
This captures both the experimental mean and individual variance in both groups and closely
replicates the experimental behaviour The CSP model was robust in replicating this behaviour
across multiple simulations (B). For illustrative purposes we plot the first 100 of the 1000 simulated
data sets from both the individual controls (blue) and patients (red). The mean choice of the risky
cue and interquartile range (average between simulation) are represented by the dashed blue and

solid red cross-hairs in the controls and patients respectively.

Figure 5: Final dopamine-synaptic weight change for patients and controls. Solid lines, D1,
dashed lines D2. Mean values + S.E.M represented by shaded area. Patients in red, controls in

blue.

Figure 6: Simulated striatal synaptic weight changes during the task for the risky cue.
Average simulated weights + S.E.M (between simulations) for the CSP model under plasticity
condictions of H1 (A) and H2 (B). Weights representing the risky cue are illustrated only. D2

weights, dashed lines (--) D1 weights, solid lines (-). Patients in red, controls in blue.
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