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ABSTRACT

Genomic selection increases the rate of genetic gain in breeding programmes, which results
in significant cumulative improvements in commercially important traits such as disease
resistance. Genomic selection currently relies on collecting genome-wide genotype data
accross a large number of individuals which requires substantial economic investment.
However, global aquaculture production predominantly occurs in small and medium sized
enterprises for whom this technology can be prohibitively expensive. For genomic selection
to benefit these aquaculture sectors more cost-efficient genotyping is necessary. In this study
the utility of low and medium density SNP panels (ranging from 100 to 9000 SNPs) to
accurate predict breeding values was tested and compared in four aquaculture datasets with
different characteristics (species, genome size, genotyping platform, family number and size,
total population size, and target trait). A consistent pattern of genomic prediction accuracy
was observed across species, with little or no reduction until SNP density was reduced below
1,000 SNPs. Below this SNP density, heritability estimates and genomic prediction
accuracies tended to be lower and more variable (93 % of maximum accuracy achieved with
1,000 SNPs, 89 % with 500 SNPs, and 70% with 100 SNPs). Now that a multitude of studies
have highlighted the benefits of genomic over pedigree-based prediction of breeding values
in aquaculture species, the results of the current study highlight that these benefits can be
achieved at lower SNP densities and at lower cost, raising the possibility of a broader
application of genetic improvement in smaller and more fragmented aquaculture settings.
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BACKGROUND

Aquaculture is the fastest growing food industry worldwide (FAO2018). While capture
fisheries production has stagnated since the late 90s, aquaculture production has been
consistently increasing 5.8 % per year since 2001 (FAO 2018), and this trend is expected to
continue in the coming years to cope with the food demands of a growing human population.
Nonetheless, aquaculture is still a relatively young industry, and although technological
advances have been rapidly implemented to improve production volume and efficiency for
some high-value species, these are slower to reach the lower-value, high-volume species that
underpin most of global production. This is typified by genetic improvement technologies,
where species such as Atlantic salmon have large and well-managed breeding programmes
akin to those for pigs and poultry, while most aquaculture species lag significantly behind. In
part, this is due to the wide diversity of aquaculture species, with the top 20 animal species
accounting for less than 80 % of the total production (FAO 2019) in contrast to terrestrial
livestock, where four species are the source of > 90 % of the world meat production. In
addition, the majority of aquaculture takes place in small to medium-sized farms, primarily
situated in low to medium income countries. This context hinders the implementation of
emerging technologies to help improve production, primarily due to their prohibitive cost.

One such technology is genomic selection, which utilises genetic markers to identify the
animals with the highest breeding values to select for producing the next generation
(Meuwissen et al. 2001). Selective breeding programmes are being increasingly utilised for
aquculture species, and have been shown to be highly effective in improving production
traits, especially growth (Gjedrem and Rye, 2018). Genomic selection consistently
outperforms family-based selection based on pedigree only (Zenger et al. 2018), leading to
cumulative genetic gains over generations that incrementaly enhance the performance of
farmed species. One of the main reasons underlying the slow uptake of genomic selection in
aquaculture is genotyping costs. Genotyping usually relies on high-density SNP array
platforms, which can be prohibitively expensive for routine application for most aquaculture
breeding programmes, due to the need to genotype thousands of performance tested fish (i.e.
the reference population) and the selection candidates. One avenue to democratise genomic
selection for smaller-scale, more fragemented aquaculture sectors is to exploit low-density
SNP panels for which per-sample genotyping costs can be a fraction of the cost of SNP
arrays.

However, it may be expected a priori that this cost-reduction due to reduced genotype
density comes at the expense of reduced prediction accuracy in a breeding programme. The
improved accuracy of genomic selection compared to pedigree-based approaches is primarily
derived from an improved estimation of the genomic similarity between each pair of
individuals. In most family-based aquaculture breeding programmes, a procedure known as
sib-testing (short for sibling testing) is performed, whereby trait records are obtained from
full siblings of the selection candidates — a process enabled by the high fecundity of
aquaculture species. With pedigree-based selection, the genomic similarity between full-sibs
is assumed to be 50 %, but the reality is that it can vary substantially around this value as a
consequence of Mendelian sampling and linkage disequilibrium (Hill and Weir, 2011). In
theory, the accuracy of estimating this genomic similarity should decrease as the density of
genetic markers employed reduces, which would have a negative impact on prediction
accuracy and consequently on genetic gain. However, in emperical studies of aquaculture
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82  species to date this decrease in accuracy seems to be relatively small and only observable
83  once SNP densities drop to a few hundred markers (e.g. Tsai et al. 2016; Correa et al. 2017;
84  Robledo et al. 2018; Yoshida et al. 2018; Vallejo et al. 2018; Gutierrez et al. 2018;
85  Palaiokostas et al. 2019; Tsairidou et al. 2019), which is likely a consequence of the large full
86  sibling family sizes, such that long haplotypes are shared between many individuals in the
87  reference and test population.

88  Therefore, low density genotyping appears to be a promising solution for enabling access to
89 the benefits of genomic selection to a broader range of aquaculture species and sectors.
90 However, the optimal SNP density to use is unclear, and may be expected to vary depending
91  on the species, population history and trait of interest. The goal of this study was to assess if
92  those variables affect the performance of low-density SNP panels, and to determine if an
93  optimal genotyping density can be identified as a practical, broad recommendation for
94  aquaculture breeding programmes. To do so, the performance of SNP panels of varying
95 densities in estimating genetic parameters and breeding values was tested using previously
96 published datasets for diverse aquaculture species, phenotyped for different traits and
97  genotyped with different platforms.

98
99 MATERIALS AND METHODS
100  Datasets and phenotypes

101  Genotypes and phenotypes were obtained from four previously published studies in four
102  different species, briefly: 1) Atlantic salmon (Salmo salar) challenged with amoebic gill
103  disease (AGD) were phenotyped for mean gill score (subjective 0 - 5 scoring system,
104 commonly used as a measure of gill damage) and amoebic load (real-time PCR), and
105  genotyped using a combined salmon-trout 17K SNP array (Robledo et al. 2018); i) Common
106  carp (Cyprinus carpio) were measured for growth traits (standard length and weight), and
107  genotyped using RAD sequencing for ~12K SNPs (Palaiokostas et al. 2018); ii1) Sea bream
108  (Sparus aurata) challenged with Photobacterium damselae (causative agent of pasteurellosis)
109  were measured for time to death, and genotyped using 2b-RAD sequencing for ~12K SNPs
110  (Palaiokostas et al. 2016); and iv) Pacific oyster (Crassostrea gigas) challenged with ostreid
111 herpesvirus (OsHV-1-pvar) were measured for time to death, and genotyped using a SNP
112 array with ~27K informative Pacific oyster SNPs (Gutiérrez et al. 2019).

113 Quality control and low density SNP panel design

114  Genotypes from the four datasets were filtered with PLINK v.1.9 (Purcell et al. 2007),
115  excluding individuals with > 20 % missing genotypes, and SNPs with > 10 % missing
116  genotypes, deviating significantly from Hardy-Weinberg (p-value < 10°) and with minor
117  allele frequencies < 0.05. A summary of the genetic marker and trait data used for the four
118  different datasets used in this study after quality control is shown in Table 1.

119  SNP panels of varying densities were tested by taking subsets of the full QC-filtered SNP
120  panel for each dataset. Panels of the following densities were tested in every species: 100,
121 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2250, 2500,
122 2750, 3000, 3500, 4000, 4500 and 5000. Additionally, 6,000, 7,000 and 9,000 SNP panels
123 were tested depending on the total number of SNPs remaining after quality control (carp
124 6,000 SNPs; sea bream 7,000 SNPs; salmon and oyster 7,000 and 9,000 SNPs). The SNPs
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125  for each panel were selected using two different strategies (R package CVrepGPAcalc v1.0,
126  https://github.com/SmaragdaT/CVrep/): 1) random selection of SNPs within each
127  chromosome (or linkage group for sea bream and oyster), where the number of SNPs selected
128  from each chromosome / linkage group was proportional to its length; and ii) random
129  selection of SNPs across the genome, where SNPs were randomly chosen irrespective of their
130  genomic position. For each SNP density, five different SNP panels were selected to account
131  for potential bias arising from SNP sub-set selection.

132 Estimation of genetic parameters

133 Heritabilities of the measured traits in each dataset were estimated using ASReml 3.0
134  (Gilmour et al. 2014) fitting the following linear mixed model:

135 y=pu+Xb+Zate
136

137  where y is a vector of observed phenotypes, p is the overall mean of phenotype records, b is
138 the vector of fixed effects, a is a vector of additive genetic effects distributed as ~N(0,Gc?,)
139  where 6% is the additive (genetic) variance and G is the genomic relationship matrix. X and
140  Z are the corresponding incidence matrices for fixed and additive effects, respectively, and e
141  is a vector of residuals. The identity-by-state genomic relationship matrix (G) was calculated
142 using the GenABEL R package (“gkins” function; Aulchenko et al. 2007) kinship matrix
143 (Amin et al., 2007), multiplied by two and inverted.

144  The different fixed effects included in the model for each species were 1) tank (2 levels) in
145  Atlantic salmon, i1) factorial-cross group (4 levels) in carp, iii) none in sea bream, and iv)
146  tank (2 levels) in oyster.

147  Genomic prediction

148  The accuracy of genomic prediction was estimated by ten replicates of fivefold cross-
149  validation analysis (training set 80 %, validation set 20 %; R package CVrepGPAcalc v1.0,
150  https://github.com/SmaragdaT/CVrep). The phenotypes recorded in the validation population
151  were masked, and genomic best linear unbiased prediction (GBLUP) was applied to predict
152  the breeding values of the validation sets in ASReml 3.0, using the linear mixed model
153  described above. Prediction accuracy was calculated as the correlation between the predicted
154  EBVs of the validation set and the actual phenotypes divided by the square root of the

155  heritability estimated from the full dataset [1(y1,y2) / Vh? .

156
157  RESULTS

158  Trait summary

159 In total six traits were studied. Two traits related to Atlantic salmon resistance to AGD were
160  used, gill score (subjective values 0 - 5) and amoebic load (QPCR, Ct values), with means of
161 2.79 £ 0.85 and 31.36 £ 3.24, respectively. The estimated genomic heritabilities values were
162  moderate for both phenotypes, 0.22 (= 0.04) for gill score and 0.24 (£ 0.04) for amoebic load.
163  Two growth traits were studied in carp, length and body weight, with means of 77.01 + 7.11
164 mm and 16.33 + 4.58 g respectively. Length showed a skewed distribution, deviating
165  significantly from normality, and therefore was log-transformed. The heritability estimates
166  were 0.27 (£ 0.04) for log-transformed length, and 0.19 (£ 0.04) for carp weight. Days to
167  death were measured in pasteurellosis infected sea bream. The mean and standard deviation
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168  of surviving days for sea bream was 10.40 + 4.08, and the heritability was 0.20 (£ 0.06). The
169  same trait, days to death, was measured in oyster infected with OsHV-1-pvar. Survivors were
170  assigned a value of 8 for the variable “days to death”. The mean for this trait was 6.76 = 1.91
171 days, and the heritability 0.49 (+0.05).

172

173 Table 1. Summary of the datasets.

Species Individuals before SNPs before Full-sib Phenotypes
and after QC and after QC families
Cyprinus 1,214 1,211 12,311 6,966 195 Log length,
carpio weight
Crassostrea 718 718 21,338 14,028 23 Days to death
gigas
Salmo salar 1,481 1,481 16,582 9,866 85 Gill score,
amoebic load
Sparus aurata 777 741 12,085 7,598 73 Days to death
174
175

176  Reduced SNP panel densities decrease the precision of genomic heritability estimates

177  Low-density panels were designed from the full set of SNPs that passed the QC filters in each
178  species using two different strategies: (i) randomly selected across the genome and (ii)
179  randomly selected within chromosome. The results obtained with both selection strategies
180  were similar, therefore only the results of the panels randomly selected across the genome are
181  shown.

182  Heritabilities for the six traits were re-calculated using the reduced density SNP panels
183  (Figure 1). In general, decreasing marker density led to progressively lower heritability
184  estimates, however a clear downwards trend is only observed ~1000 bp onwards. The
185  heritability estimates obtained for 100 SNPs decreased to 23 to 41 % of the values obtained
186  for the full density panel, while for 200 SNPs the decrease was on average ~50 %.

187

188  Figure 1. Heritability estimates using low-density panels. The heritability was calculated
189  using a linear mixed model with the genomic relationship matrix obtained with each low-
190  density panel. For each density we used five different low-density panels, and the average of
191  the heritabilities of the five panels is shown. The trend line was calculated using a Loess
192 regression (local polynomial regression, span = 0.75), and the shadow represents the
193  confidence intervals.
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196  Genomic prediction using reduced SNP panels

197  The accuracy of genomic selection was evaluated using ten replicates of five-fold cross-
198  validation (training set 80%, validation set 20%) for five different panels per SNP density
199  (Figure 2). Since the heritabilities decrease substantially with lower panel densities, the
200 accuracy of genomic selection for all cross-validation analyses was calculated using the
201 heritability obtained with the whole SNP panel, considered to be the most accurate
202  heritability for the trait. Genomic selection accuracy remained practically unchanged for
203  every dataset until marker density was reduced below ~ 2,000 SNPs, and a steep decrease
204  was observed only for <1,000 SNPs. The common trend observed accross the different
205  species, traits, and genotyping platforms is clearly observed by plotting the proportion of the
206  full SNP panel accuracy achieved with each low-density panel (Figure 3). Despite the
207  significant differences between datasets and traits, the genomic selection accuracies obtained
208  with low-density panels were remarkably similar. The average proportion of the full panel
209  accuracy achieved with 2,000 SNPs was 0.97, with 1,000 SNPs 0.93, and with 500 SNPs
210  0.89. With 100 SNPs the accuracy was reduced to 0.70 of that obtained with the whole
211 density panel.

212

213  Figure 2. Genomic selection accuracy using low-density panels. Mean accuracy and
214  standard deviation of genomic selection for five different SNP panels per density. The trend
215  line was calculated using Loess regression (local polynomial regression, span = 0.75), and the
216  shaded areas represent the confidence intervals.
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219  Figure 3. Proportion of genomic selection accuracy achieved with low-density panels.
220  The proportion of accuracy achieved by each SNP density was calculated by dividing the
221  mean accuracy at that density by the mean accuracy obtained using the full high density SNP
222 panels. The trend line was calculated using a Loess regression (local polynomial regression,
223 span = 0.75), and the shadow represents the confidence intervals.
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226  In addition, with decreasing SNP density the differences in prediction accuracy between
227  different replicates of SNP panels of the same density increased (Figure 4). Therefore, SNP
228  selection seems to be more relevant for the design of low-density panels than for higher
229  density panels. On average, the difference between the maximum and minimum accuracies
230 achieved by 100 density SNP panels was 0.11; salmon mean gill score showed the largest
231 difference (0.19) and carp Log standard length the lowest (0.05).
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232

233 Figure 4. Standard deviation of selection accuracy using low-density panels. Variation in
234  genomic selection accuracy across the different SNP panels of the same density. The trend
235  line was calculated using a Loess regression (local polynomial regression, span = (.75).

b
S 0.100 Oyster - Days to death
T
3 @ Carp - Log length
o
© o ® Carp - Weight
£ 0.075 -
° @ Salmon - Amoebic Load
)
% o Salmon - Gill score
E. 0.050 Sea bream - Days to death
e
o [
5 x
= 0.0254
5
>
2 . —9
T 0.0004
@
ke
c
©
n
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
SNP density
236
237

238 DISCUSSION

239  Genomic selection has clear potential for improving selection accuracy and genetic gain in
240  aquaculture breeding programmes, but the cost of genotyping can be prohibitive for many
241 species and sectors. Therefore, since the price of per sample genotyping is generally
242 associated with SNP density, knowledge of the lowest SNP density at which optimal genetic
243  parameter estimation and genomic prediction can be performed is valuable. It may be
244  expected that the optimal SNP density for genomic prediction would be species, traits, and
245  genotyping platform-specific. In the current study, genotype and trait datasets from four
246  diverse aquaculture species (Atlantic salmon, common carp, gilthead sea bream, and Pacific
247  oyster), genotyped using different genotyping platforms (SNP array and RAD sequencing)
248  were evaluated to search for common patterns of the impact of reducing SNP marker density
249  on genomic prediction accuracy. The results were consistent across the different datasets,
250  suggesting that a SNP panel between 1,000 and 2,000 SNPs would be sufficient for near-
251  maximal prediction accuracy for most polygenic traits in aquaculture populations. These
252 results and their consistency are encouraging for lower-cost genotyping, and therefore
253  improved affordability of genomic selection across different species and aquaculture sectors.

254  The uniformity of the results is relatively surprising considering the notable background
255  differences between the four datasets. The trait, genotyping platform, family structure,
256  population size or genome size seem to be relatively unimportant factors for the performance
257  of low density SNP panels, since genomic prediction accuracy trends were consistent across
258 the four species. The large family sizes observed in most aquaculture species might partially
259  explain these results. The genetic distance between training and validation populations has a
260 large impact on the efficacy of genomic selection (accuracy decreases with increasing genetic
261  distance; Scutari et al. 2016; Tsai et al. 2016; Tan et al. 2017; Palaiokostas et al. 2019). The
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262  underlying cause is that related individuals tend to share long haplotypes, which can be
263  accurately captured with relatively sparse numbers of SNPs; however as genetic distance
264  increases between training and validation populations haplotype length is reduced, and higher
265  density panels are required to accurately capture the genomic similarity between animals.
266  Most aquaculture species are highly fecund, and each pair of animals frequently produces
267  thousands of offspring, meaning that inclusion of multiple full and half siblings in training
268 and validation sets is common practice. Consequently, we consider that these results are
269  generally applicable to polygenic traits in most aquaculture breeding schemes where close
270  relatives of the selection candidates are routinely phenotyped.

271  Nonetheless, there will be situations where genomic prediction across generations or across
272 populations is necessary. In these scenarios the shared haplotypes between pairs of
273 individuals will be shorter, and therefore capturing genomic relatedness (if it exists; i.e.
274  relatedness between unrelated populations will be zero and therefore of no use for prediction)
275  is much more challenging and is likely to require higher SNP densities (Tsai et al. 2016). An
276  avenue to increase the accuracy of low-density panels across sets of distantly related
277  individuals could be the prioritization of variants that have a higher likelihood of directly
278  effecting the trait in question, rather than linked markers. For example, SNPs which fall in
279  genes or other genomic features with a direct biological effect on the trait of interest, and the
280 utilization of selection models that exploit biological priors (MacLeod et al. 2016). However,
281  establishing causal relations between genotypes and phenotypes is not trivial and will require
282  extensive efforts in functional annotation of genomes (e.g. Macqueen et al. 2017), and
283  collection of genotype and phenotype datasets across very large reference populations
284  (Hickey 2013). Consequently, low-density panels are not likely to be a feasible option for
285  prediction across datasets without a high degree of relationship, which would require a large
286  number of genome-wide distributed genetic markers. Nonetheless, this scenario is rare, and in
287  the ample majority of aquaculture breeding programmes full-sibs of the selection candidates
288  are routinely phenotyped.

289

290  SNP panels consisting of <1,000 SNPs show a steep decline in genomic prediction accuracy,
291  as does the estimated heritability, and the variation between replicate SNP panels of the same
292 density increases. This suggests that low density panels are not accurately capturing the
293  genetic relationship between animals, and that the performance of low-density SNP panels
294  could be highly dependent on SNP choice. While leveraging additional layers of information
295  might enable the design of high-performing low-density SNP panels, these would have to be
296 tailored to specific breeding programmes and might require substantial investment, i.e. an
297  initial large-scale genotyping effort and extensive time commitment to determine the best
298  panel, or potential functional experiments to establish marker function. Further, the
299  performance of extreme low-density panels could fluctuate across generations as allelic
300 frequencies vary. On the contrary, genotype imputation from very low-density panels (i.e.
301 100-200 SNPs) to medium density (i.e. 1 K - 5 K) might be a more generally applicable
302  strategy to achieve the optimal balance between economic cost and genetic gain. Previous
303 studies have shown the potential of imputation to achieve near-maximal accuracies in
304 aquaculture populations (Tsai et al. 2017; Yoshida et al. 2018); and a recent study by our
305 group reported that imputation from 200 (offspring) to 5,000 SNPs (parents) results in
306  selection accuracies similar to those obtained with 75K SNP panels for sea lice resistance in
307  Atlantic salmon (Tsairidou et al. 2019). In aquaculture, studies of imputation for genomic
308 selection have been limited to salmonid species to date, however it shows great potential and
309 s likely to be a staple component of modern aquaculture breeding programmes.
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310
311 CONCLUSIONS

312 The patterns of loss of genomic prediction accuracy with reduced density SNP panels are
313  strikingly consistent across datasets of different aquaculture species, despite their differences
314  in population and family structure, phenotype and trait definition, and genotyping platform.
315  These results suggest that SNP densities between 1,000 and 2,000 SNPs will frequently result
316 in selection accuracies very similar to those obtained with high-density genotyping,
317  irrespectively of the specifics of the breeding programme design or population structure,
318 assuming the presense of close relatives in the training and validation sets. Further, the higher
319  variance between SNP panel replicates observed with decreasing density suggests that non-
320 random SNP selection can increase the selection accuracy of low-density panels. In summary,
321  this study suggests that low-density SNP panels offer a cost-effective solution for broadening
322 the impact of genomic selection in aquaculture, leading to improved enhanced performace of
323  stocks and improved global food security.
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