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ABSTRACT 15 

Genomic selection increases the rate of genetic gain in breeding programmes, which results 16 

in significant cumulative improvements in commercially important traits such as disease 17 

resistance. Genomic selection currently relies on collecting genome-wide genotype data 18 

accross a large number of individuals which requires substantial economic investment. 19 

However, global aquaculture production predominantly occurs in small and medium sized 20 

enterprises for whom this technology can be prohibitively expensive. For genomic selection 21 

to benefit these aquaculture sectors more cost-efficient genotyping is necessary. In this study 22 

the utility of low and medium density SNP panels (ranging from 100 to 9000 SNPs) to 23 

accurate predict breeding values was tested and compared in four aquaculture datasets with 24 

different characteristics (species, genome size, genotyping platform, family number and size, 25 

total population size, and target trait). A consistent pattern of genomic prediction accuracy 26 

was observed across species, with little or no reduction until SNP density was reduced below 27 

1,000 SNPs. Below this SNP density, heritability estimates and genomic prediction 28 

accuracies tended to be lower and more variable (93 % of maximum accuracy achieved with 29 

1,000 SNPs, 89 % with 500 SNPs, and 70% with 100 SNPs). Now that a multitude of studies 30 

have highlighted the benefits of genomic over pedigree-based prediction of breeding values 31 

in aquaculture species, the results of the current study highlight that these benefits can be 32 

achieved at lower SNP densities and at lower cost, raising the possibility of a broader 33 

application of genetic improvement in smaller and more fragmented aquaculture settings. 34 
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BACKGROUND 37 

Aquaculture is the fastest growing food industry worldwide (FAO2018). While capture 38 

fisheries production has stagnated since the late 90s, aquaculture production has been 39 

consistently increasing 5.8 % per year since 2001 (FAO 2018), and this trend is expected to 40 

continue in the coming years to cope with the food demands of a growing human population. 41 

Nonetheless, aquaculture is still a relatively young industry, and although technological 42 

advances have been rapidly implemented to improve production volume and efficiency for 43 

some high-value species, these are slower to reach the lower-value, high-volume species that 44 

underpin most of global production. This is typified by genetic improvement technologies, 45 

where species such as Atlantic salmon have large and well-managed breeding programmes 46 

akin to those for pigs and poultry, while most aquaculture species lag significantly behind. In 47 

part, this is due to the wide diversity of aquaculture species, with the top 20 animal species 48 

accounting for less than 80 % of the total production (FAO 2019) in contrast to terrestrial 49 

livestock, where four species are the source of  > 90 % of the world meat production. In 50 

addition, the majority of aquaculture takes place in small to medium-sized farms, primarily 51 

situated in low to medium income countries. This context hinders the implementation of 52 

emerging technologies to help improve production, primarily due to their prohibitive cost. 53 

One such technology is genomic selection, which utilises genetic markers to identify the 54 

animals with the highest breeding values to select for producing the next generation 55 

(Meuwissen et al. 2001). Selective breeding programmes are being increasingly utilised for 56 

aquculture species, and have been shown to be highly effective in improving production 57 

traits, especially growth (Gjedrem and Rye, 2018). Genomic selection consistently 58 

outperforms family-based selection based on pedigree only (Zenger et al. 2018), leading to 59 

cumulative genetic gains over generations that incrementaly enhance the performance of 60 

farmed species. One of the main reasons underlying the slow uptake of genomic selection in 61 

aquaculture is genotyping costs. Genotyping usually relies on high-density SNP array 62 

platforms, which can be prohibitively expensive for routine application for most aquaculture 63 

breeding programmes, due to the need to genotype thousands of performance tested fish (i.e. 64 

the reference population) and the selection candidates. One avenue to democratise genomic 65 

selection for smaller-scale, more fragemented aquaculture sectors is to exploit low-density 66 

SNP panels for which per-sample genotyping costs can be a fraction of the cost of SNP 67 

arrays.  68 

However, it may be expected a priori that this cost-reduction due to reduced genotype 69 

density comes at the expense of reduced prediction accuracy in a breeding programme. The 70 

improved accuracy of genomic selection compared to pedigree-based approaches is primarily 71 

derived from an improved estimation of the genomic similarity between each pair of 72 

individuals. In most family-based aquaculture breeding programmes, a procedure known as 73 

sib-testing (short for sibling testing) is performed, whereby trait records are obtained from 74 

full siblings of the selection candidates – a process enabled by the high fecundity of 75 

aquaculture species. With pedigree-based selection, the genomic similarity between full-sibs 76 

is assumed to be 50 %, but the reality is that it can vary substantially around this value as a 77 

consequence of Mendelian sampling and linkage disequilibrium (Hill and Weir, 2011). In 78 

theory, the accuracy of estimating this genomic similarity should decrease as the density of 79 

genetic markers employed reduces, which would have a negative impact on prediction 80 

accuracy and consequently on genetic gain. However, in emperical studies of aquaculture 81 
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species to date this decrease in accuracy seems to be relatively small and only observable 82 

once SNP densities drop to a few hundred markers (e.g. Tsai et al. 2016; Correa et al. 2017; 83 

Robledo et al. 2018; Yoshida et al. 2018; Vallejo et al. 2018; Gutierrez et al. 2018; 84 

Palaiokostas et al. 2019; Tsairidou et al. 2019), which is likely a consequence of the large full 85 

sibling family sizes, such that long haplotypes are shared between many individuals in the 86 

reference and test population. 87 

Therefore, low density genotyping appears to be a promising solution for enabling access to 88 

the benefits of genomic selection to a broader range of  aquaculture species and sectors. 89 

However, the optimal SNP density to use is unclear, and may be expected to vary depending 90 

on the species, population history and trait of interest. The goal of this study was to assess if 91 

those variables affect the performance of low-density SNP panels, and to determine if an 92 

optimal genotyping density can be identified as a practical, broad recommendation for 93 

aquaculture breeding programmes. To do so, the performance of SNP panels of varying 94 

densities in estimating genetic parameters and breeding values was tested using previously 95 

published datasets for diverse aquaculture species, phenotyped for different traits and 96 

genotyped with different platforms.  97 

 98 

MATERIALS AND METHODS 99 

Datasets and phenotypes 100 

Genotypes and phenotypes were obtained from four previously published studies in four 101 

different species, briefly: i) Atlantic salmon (Salmo salar) challenged with amoebic gill 102 

disease (AGD) were phenotyped for mean gill score (subjective 0 - 5 scoring system, 103 

commonly used as a measure of gill damage) and amoebic load (real-time PCR), and 104 

genotyped using a combined salmon-trout 17K SNP array (Robledo et al. 2018); ii) Common 105 

carp (Cyprinus carpio) were measured for growth traits (standard length and weight), and 106 

genotyped using RAD sequencing for ~12K SNPs (Palaiokostas et al. 2018); iii) Sea bream 107 

(Sparus aurata) challenged with Photobacterium damselae (causative agent of pasteurellosis) 108 

were measured for time to death, and genotyped using 2b-RAD sequencing for ~12K SNPs 109 

(Palaiokostas et al. 2016); and iv) Pacific oyster (Crassostrea gigas) challenged with ostreid 110 

herpesvirus (OsHV-1-μvar) were measured for time to death, and genotyped using a SNP 111 

array with ~27K informative Pacific oyster SNPs (Gutiérrez et al. 2019).  112 

Quality control and low density SNP panel design 113 

Genotypes from the four datasets were filtered with PLINK v.1.9 (Purcell et al. 2007), 114 
excluding individuals with > 20 % missing genotypes, and SNPs with > 10 % missing 115 
genotypes, deviating significantly from Hardy-Weinberg (p-value < 10-6) and with minor 116 
allele frequencies < 0.05. A summary of the genetic marker and trait data used for the four 117 
different datasets used in this study after quality control is shown in Table 1. 118 

SNP panels of varying densities were tested by taking subsets of the full QC-filtered SNP 119 
panel for each dataset. Panels of the following densities were tested in every species: 100, 120 

200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2250, 2500, 121 
2750, 3000, 3500, 4000, 4500 and 5000. Additionally, 6,000, 7,000 and 9,000 SNP panels 122 

were tested depending on the total number of SNPs remaining after quality control (carp 123 
6,000 SNPs; sea bream 7,000 SNPs; salmon and oyster 7,000 and 9,000 SNPs).  The SNPs 124 
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for each panel were selected using two different strategies (R package CVrepGPAcalc v1.0, 125 
https://github.com/SmaragdaT/CVrep/): i) random selection of SNPs within each 126 
chromosome (or linkage group for sea bream and oyster), where the number of SNPs selected 127 
from each chromosome / linkage group was proportional to its length; and ii) random 128 
selection of SNPs across the genome, where SNPs were randomly chosen irrespective of their 129 

genomic position. For each SNP density, five different SNP panels were selected to account 130 
for potential bias arising from SNP sub-set selection. 131 

Estimation of genetic parameters 132 

Heritabilities of the measured traits in each dataset were estimated using ASReml 3.0 133 
(Gilmour et al. 2014) fitting the following linear mixed model: 134 

                                                          y = μ + Xb + Za + e 135 

 136 

where y is a vector of observed phenotypes, μ is the overall mean of phenotype records, b is 137 
the vector of fixed effects, a is a vector of additive genetic effects distributed as ~N(0,Gσ2

a) 138 
where σ2

a is the additive (genetic) variance and G is the genomic relationship matrix. X and 139 

Z are the corresponding incidence matrices for fixed and additive effects, respectively, and e 140 

is a vector of residuals. The identity-by-state genomic relationship matrix (G) was calculated 141 
using the GenABEL R package (“gkins” function; Aulchenko et al. 2007) kinship matrix 142 
(Amin et al., 2007), multiplied by two and inverted. 143 

The different fixed effects included in the model for each species were i) tank (2 levels) in 144 

Atlantic salmon, ii) factorial-cross group (4 levels) in carp, iii) none in sea bream, and iv) 145 

tank (2 levels) in oyster. 146 

Genomic prediction 147 

The accuracy of genomic prediction was estimated by ten replicates of fivefold cross-148 

validation analysis (training set 80 %, validation set 20 %; R package CVrepGPAcalc v1.0, 149 

https://github.com/SmaragdaT/CVrep). The phenotypes recorded in the validation population 150 

were masked, and genomic best linear unbiased prediction (GBLUP) was applied to predict 151 
the breeding values of the validation sets in ASReml 3.0, using the linear mixed model 152 

described above. Prediction accuracy was calculated as the correlation between the predicted 153 
EBVs of the validation set and the actual phenotypes divided by the square root of the 154 

heritability estimated from the full dataset [ ̴r(y1,y2) / √ℎ2 ].  155 

 156 

RESULTS 157 

Trait summary 158 

In total six traits were studied. Two traits related to Atlantic salmon resistance to AGD were 159 
used, gill score (subjective values 0 - 5) and amoebic load (qPCR, Ct values), with means of 160 

2.79 ± 0.85 and 31.36 ± 3.24, respectively. The estimated genomic heritabilities values were 161 
moderate for both phenotypes, 0.22 (± 0.04) for gill score and 0.24 (± 0.04) for amoebic load. 162 
Two growth traits were studied in carp, length and body weight, with means of 77.01 ± 7.11 163 

mm and 16.33 ± 4.58 g respectively. Length showed a skewed distribution, deviating 164 
significantly from normality, and therefore was log-transformed. The heritability estimates 165 
were 0.27 (± 0.04) for log-transformed length, and 0.19 (± 0.04) for carp weight. Days to 166 

death were measured in pasteurellosis infected sea bream. The mean and standard deviation 167 
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of surviving days for sea bream was 10.40 ± 4.08, and the heritability was 0.20 (± 0.06). The 168 
same trait, days to death, was measured in oyster infected with OsHV-1-μvar. Survivors were 169 
assigned a value of 8 for the variable “days to death”. The mean for this trait was 6.76 ± 1.91 170 
days, and the heritability 0.49 (±0.05). 171 

   172 

Table 1. Summary of the datasets. 173 

 174 

 175 

Reduced SNP panel densities decrease the precision of genomic heritability estimates 176 

Low-density panels were designed from the full set of SNPs that passed the QC filters in each 177 

species using two different strategies: (i) randomly selected across the genome and (ii) 178 
randomly selected within chromosome. The results obtained with both selection strategies 179 
were similar, therefore only the results of the panels randomly selected across the genome are 180 

shown.  181 

Heritabilities for the six traits were re-calculated using the reduced density SNP panels 182 
(Figure 1). In general, decreasing marker density led to progressively lower heritability 183 

estimates, however a clear downwards trend is only observed ~1000 bp onwards. The 184 
heritability estimates obtained for 100 SNPs decreased to 23 to 41 % of the values obtained 185 
for the full density panel, while for 200 SNPs the decrease was on average ~50 %. 186 

 187 

Figure 1. Heritability estimates using low-density panels. The heritability was calculated 188 
using a linear mixed model with the genomic relationship matrix obtained with each low-189 
density panel. For each density we used five different low-density panels, and the average of 190 
the heritabilities of the five panels is shown. The trend line was calculated using a Loess 191 

regression (local polynomial regression, span = 0.75), and the shadow represents the 192 
confidence intervals. 193 

Species Individuals before 

and after QC 

SNPs before 

and after QC 

Full-sib 

families 

Phenotypes 

Cyprinus 

carpio 

1,214 1,211 12,311 6,966 195  Log length, 

weight 

Crassostrea 

gigas 

718 718 21,338 14,028 23 Days to death 

Salmo salar 1,481 1,481 16,582 9,866 85 Gill score, 

amoebic load 

Sparus aurata 777 741 12,085 7,598 73 Days to death 
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 194 

 195 

Genomic prediction using reduced SNP panels 196 

The accuracy of genomic selection was evaluated using ten replicates of five-fold cross-197 

validation (training set 80%, validation set 20%) for five different panels per SNP density 198 
(Figure 2). Since the heritabilities decrease substantially with lower panel densities, the 199 

accuracy of genomic selection for all cross-validation analyses was calculated using the 200 
heritability obtained with the whole SNP panel, considered to be the most accurate 201 

heritability for the trait. Genomic selection accuracy remained practically unchanged for 202 
every dataset until marker density was reduced below ~ 2,000 SNPs, and a steep decrease 203 

was observed only for ≤1,000 SNPs. The common trend observed accross the different 204 
species, traits, and genotyping platforms is clearly observed by plotting the proportion of the 205 
full SNP panel accuracy achieved with each low-density panel (Figure 3). Despite the 206 

significant differences between datasets and traits, the genomic selection accuracies obtained 207 

with low-density panels were remarkably similar. The average proportion of the full panel 208 
accuracy achieved with 2,000 SNPs was 0.97, with 1,000 SNPs 0.93, and with 500 SNPs 209 
0.89. With 100 SNPs the accuracy was reduced to 0.70 of that obtained with the whole 210 

density panel.  211 

 212 

Figure 2. Genomic selection accuracy using low-density panels. Mean accuracy and 213 

standard deviation of genomic selection for five different SNP panels per density. The trend 214 

line was calculated using Loess regression (local polynomial regression, span = 0.75), and the 215 

shaded areas represent the confidence intervals. 216 
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 217 

 218 

Figure 3. Proportion of genomic selection accuracy achieved with low-density panels. 219 

The proportion of accuracy achieved by each SNP density was calculated by dividing the 220 

mean accuracy at that density by the mean accuracy obtained using the full high density SNP 221 

panels. The trend line was calculated using a Loess regression (local polynomial regression, 222 
span = 0.75), and the shadow represents the confidence intervals. 223 

 224 
 225 

In addition, with decreasing SNP density the differences in prediction accuracy between 226 
different replicates of SNP panels of the same density increased (Figure 4). Therefore, SNP 227 

selection seems to be more relevant for the design of low-density panels than for higher 228 
density panels. On average, the difference between the maximum and minimum accuracies 229 
achieved by 100 density SNP panels was 0.11; salmon mean gill score showed the largest 230 

difference (0.19) and carp Log standard length the lowest (0.05). 231 
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 232 

Figure 4. Standard deviation of selection accuracy using low-density panels. Variation in 233 
genomic selection accuracy across the different SNP panels of the same density. The trend 234 
line was calculated using a Loess regression (local polynomial regression, span = 0.75). 235 

 236 
 237 

DISCUSSION 238 

Genomic selection has clear potential for improving selection accuracy and genetic gain in 239 
aquaculture breeding programmes, but the cost of genotyping can be prohibitive for many 240 
species and sectors. Therefore, since the price of per sample genotyping is generally 241 

associated with SNP density, knowledge of the lowest SNP density at which optimal genetic 242 
parameter estimation and genomic prediction can be performed is valuable. It may be 243 
expected that the optimal SNP density for genomic prediction would be species, traits, and 244 

genotyping platform-specific. In the current study, genotype and trait datasets from four 245 
diverse aquaculture species (Atlantic salmon, common carp, gilthead sea bream, and Pacific 246 

oyster), genotyped using different genotyping platforms (SNP array and RAD sequencing) 247 

were evaluated to search for common patterns of the impact of reducing SNP marker density 248 

on genomic prediction accuracy. The results were consistent across the different datasets, 249 
suggesting that a SNP panel between 1,000 and 2,000 SNPs would be sufficient for near-250 
maximal prediction accuracy for most polygenic traits in aquaculture populations. These 251 

results and their consistency are encouraging for lower-cost genotyping, and therefore 252 
improved affordability of genomic selection across different species and aquaculture sectors.  253 

The uniformity of the results is relatively surprising considering the notable background 254 
differences between the four datasets. The trait, genotyping platform, family structure, 255 

population size or genome size seem to be relatively unimportant factors for the performance 256 
of low density SNP panels, since genomic prediction accuracy trends were consistent across 257 
the four species. The large family sizes observed in most aquaculture species might partially 258 

explain these results. The genetic distance between training and validation populations has a 259 
large impact on the efficacy of genomic selection (accuracy decreases with increasing genetic 260 
distance; Scutari et al. 2016; Tsai et al. 2016; Tan et al. 2017; Palaiokostas et al. 2019). The 261 
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underlying cause is that related individuals tend to share long haplotypes, which can be 262 
accurately captured with relatively sparse numbers of SNPs; however as genetic distance 263 
increases between training and validation populations haplotype length is reduced, and higher 264 
density panels are required to accurately capture the genomic similarity between animals. 265 
Most aquaculture species are highly fecund, and each pair of animals frequently produces 266 

thousands of offspring, meaning that inclusion of multiple full and half siblings in training 267 
and validation sets is common practice. Consequently, we consider that these results are 268 
generally applicable to polygenic traits in most aquaculture breeding schemes where close 269 
relatives of the selection candidates are routinely phenotyped. 270 

Nonetheless, there will be situations where genomic prediction across generations or across 271 
populations is necessary. In these scenarios the shared haplotypes between pairs of 272 

individuals will be shorter, and therefore capturing genomic relatedness (if it exists; i.e. 273 
relatedness between unrelated populations will be zero and therefore of no use for prediction)   274 
is much more challenging and is likely to require higher SNP densities (Tsai et al. 2016). An 275 
avenue to increase the accuracy of low-density panels across sets of distantly related 276 

individuals could be the prioritization of variants that have a higher likelihood of directly 277 
effecting the trait in question, rather than linked markers. For example, SNPs which fall in 278 
genes or other genomic features with a direct biological effect on the trait of interest, and the 279 
utilization of selection models that exploit biological priors (MacLeod et al. 2016). However, 280 

establishing causal relations between genotypes and phenotypes is not trivial and will require 281 
extensive efforts in functional annotation of genomes (e.g. Macqueen et al. 2017), and 282 
collection of genotype and phenotype datasets across very large reference populations 283 

(Hickey 2013). Consequently, low-density panels are not likely to be a feasible option for 284 

prediction across datasets without a high degree of relationship, which would require a large 285 
number of genome-wide distributed genetic markers. Nonetheless, this scenario is rare, and in 286 
the ample majority of aquaculture breeding programmes full-sibs of the selection candidates 287 

are routinely phenotyped. 288 

 289 

SNP panels consisting of <1,000 SNPs show a steep decline in genomic prediction accuracy, 290 
as does the estimated heritability, and the variation between replicate SNP panels of the same 291 

density increases. This suggests that low density panels are not accurately capturing the 292 
genetic relationship between animals, and that the performance of low-density SNP panels 293 
could be highly dependent on SNP choice.  While leveraging additional layers of information 294 

might enable the design of high-performing low-density SNP panels, these would have to be 295 
tailored to specific breeding programmes and might require substantial investment, i.e. an 296 

initial large-scale genotyping effort and extensive time commitment to determine the best 297 
panel, or potential functional experiments to establish marker function. Further, the 298 

performance of extreme low-density panels could fluctuate across generations as allelic 299 
frequencies vary. On the contrary, genotype imputation from very low-density panels (i.e. 300 
100-200 SNPs) to medium density (i.e. 1 K - 5 K) might be a more generally applicable 301 

strategy to achieve the optimal balance between economic cost and genetic gain. Previous 302 
studies have shown the potential of imputation to achieve near-maximal accuracies in 303 

aquaculture populations (Tsai et al. 2017; Yoshida et al. 2018); and a recent study by our 304 
group reported that imputation from 200 (offspring) to 5,000 SNPs (parents) results in 305 
selection accuracies similar to those obtained with 75K SNP panels for sea lice resistance in 306 

Atlantic salmon (Tsairidou et al. 2019). In aquaculture, studies of imputation for genomic 307 
selection have been limited to salmonid species to date, however it shows great potential and 308 

is likely to be a staple component of modern aquaculture breeding programmes. 309 
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 310 

CONCLUSIONS 311 

The patterns of loss of genomic prediction accuracy with reduced density SNP panels are 312 

strikingly consistent across datasets of different aquaculture species, despite their differences 313 

in population and family structure, phenotype and trait definition, and genotyping platform. 314 

These results suggest that SNP densities between 1,000 and 2,000 SNPs will frequently result 315 

in selection accuracies very similar to those obtained with high-density genotyping, 316 

irrespectively of the specifics of the breeding programme design or population structure, 317 

assuming the presense of close relatives in the training and validation sets. Further, the higher 318 

variance between SNP panel replicates observed with decreasing density suggests that non-319 

random SNP selection can increase the selection accuracy of low-density panels. In summary, 320 

this study suggests that low-density SNP panels offer a cost-effective solution for broadening 321 

the impact of genomic selection in aquaculture, leading to improved enhanced performace of 322 

stocks and improved global food security. 323 
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