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Abstract:  

Single-cell RNA-sequencing (scRNA-seq) has become an essential tool for characterizing multi-
celled eukaryotic systems but current methods are not compatible with bacteria. Here, we 
introduce microSPLiT, a low cost and high-throughput scRNA-seq method that works for gram-
negative and gram-positive bacteria and can resolve transcriptional states that remain hidden at 
a population level. We applied microSPLiT to >25,000 Bacillus subtilis cells sampled from different 
growth stages, creating a detailed atlas of changes in metabolism and lifestyle. We not only 
retrieve detailed gene expression profiles associated with known but rare states such as 
competence and PBSX prophage induction, but also identify novel and unexpected gene 
expression states including heterogeneous activation of a niche metabolic pathway in a 
subpopulation of cells. microSPLiT empowers high-throughput analysis of gene expression in 
complex bacterial communities. 

 

Main Text:  
Gene expression in bacteria is highly heterogeneous even in isogenic populations grown under 
the same lab conditions. Using bet-hedging strategies, bacteria differentiate into subpopulations 
that assume different roles for the survival of the community (1, 2). For example, gene expression 
programs governing developmental and stress-response states such as competence or antibiotic 
resistance may switch on stochastically in a small number of single cells (3–5). Population level 
gene expression measurements are insufficient to resolve such rare states which, to date, have 
been characterized only in tractable model systems and through single-cell methods such as 
fluorescence microscopy that can only measure a limited set of reporter genes at a time (6). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/869248doi: bioRxiv preprint 

mailto:kuchina.anna@gmail.com
mailto:gseelig@uw.edu
https://doi.org/10.1101/869248
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

 

 
Single-cell RNA-seq (scRNA-seq) methods developed for use with eukaryotic cells can provide 
comprehensive gene expression profiles for tens of thousands of cells (7–11). However, although 
the need for microbial scRNA-seq has been recognized, early attempts have been limited to 
relatively small cell numbers because of the technical challenges associated with adapting 
scRNA-seq technology to microbes (Figure 1A)(12–14). Specifically, bacteria have very low 
mRNA content, typically about two orders of magnitude less than human cells (13). Separation of 
mRNA from rRNA is challenging because bacterial mRNA is not polyadenylated. Bacteria have a 
wide diversity of cell walls and membranes which interfere with the lysis or permeabilization steps 
required for scRNA-seq and their small size can hinder microfluidic single-cell isolation. Here, we 
present microSPLiT (Microbial Split-Pool Ligation Transcriptomics), a scRNA-seq platform that 
can overcome these challenges and become a transformative technology for microbiology 
research. 

Developing microSPLiT. 

SPLiT-seq, which labels the cellular origin of RNA through combinatorial barcoding, provides a 
starting point for bacterial single cell transcriptomics (7). In SPLiT-seq, cells are fixed, 
permeabilized and mRNA is converted to cDNA through in-cell reverse transcription (RT) with 
barcoded poly-T and random hexamer primers in a multi-well format. Cells are then pooled, 
randomly split into a new 96-well plate, and a well-specific barcode is appended to the cDNA 
through ligation. This split-ligation-pool cycle is repeated and a fourth, optional barcode is added 
during sequencing library preparation to ensure that each cell acquires a unique barcode 
combination with very high likelihood (Figure 1B).  

 

Because SPLiT-seq does not require cell isolation, it is compatible with a wide range of cell 
shapes and sizes. Moreover, because SPLiT-seq already uses random hexamer primers in 
addition to poly-T primers for RT, we reasoned that it might be suitable for detecting bacterial 
mRNA. However, a direct application of the mammalian SPLiT-seq protocol to bacteria, not 
surprisingly, resulted in low total UMI counts (<100 max UMIs/cell, median 0 mRNA reads/cell) 
and a bias toward gram-negative over gram-positive bacteria (Figure S1). 

 

Next, we set out to optimize sample processing steps for bacteria. We took advantage of SPLiT-
seq’s multiplexing capabilities to test a wide range of approaches to cell wall removal and 
membrane permeabilization. We settled on a combination of a mild detergent, Tween-20, and 
lysozyme, as that treatment protocol demonstrated the best capture for both the gram-positive 
and gram-negative bacteria tested. (Figure 1B, inset, and Supplementary Table S1). Then, we 
compared different methods that would be compatible for in-cell mRNA enrichment. We tested 
polyadenylation with E.coli Poly(A) Polymerase I (PAP) which was previously used to 
preferentially polyadenylate mRNA (15), 5’-phosphate-dependent exonuclease (“Terminator”, 
Epicentre) treatment and reverse transcription with ribosomal RNA-specific probes followed by 
RNaseH-mediated degradation (Figure S2 and Supplementary Table S1). We found that the 
treatment of fixed and permeabilized cells with PAP resulted in the highest (about 2.5-fold, or 
approximately 7% of total RNA) enrichment of mRNA reads (Figure 1B, inset, and Figure S2). 
We also optimized the fixation protocol as well as the downstream enzymatic reaction conditions 
(Supplementary Table S1 and Materials and Methods). Notably, we found that RT resulted in 
cell clumping and that mild sonication after this step was necessary to reliably obtain single cell 
suspensions (Figure S3). 

 
microSPLiT generates high-quality single-cell RNA-seq data.  
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In order to validate microSPLiT performance on a mixture of gram-positive and gram-negative 
organisms, we grew Escherichia coli MW1255 and Bacillus subtilis PY79 cells to OD0.5 and 
subjected half of each culture to a brief 47C heat-shock. We performed a microSPLiT experiment 
on both samples, using the first barcode as a sample identifier. We prepared and sequenced a 
cDNA library from 2677 total bacteria from heat-shocked and control treatments and aligned the 
reads to a combined B. subtilis-E. coli genome. 99.2% of the putative single cell transcriptomes 
were unambiguously assigned to a single species (Figure 1C). We sampled a median of 237 
unique mRNA transcripts per cell for E. coli and 376 for B. subtilis, or approximately 5-10% of the 
estimated total mRNA (16). In total, we detected 3717 genes for E. coli and 3476 genes for B. 
subtilis (Figure 1D).  
 

Next, we tested whether microSPLiT could detect transcriptional responses to heat shock (Figure 
1E). Unsupervised clustering identified five distinct clusters which were visualized by t-distributed 
stochastic neighbor embedding (t-SNE) (Figure 1F). The first barcode identified two pairs of 
clusters corresponding to the heat treated and control cultures, and gene expression analysis 
within each pair further labeled them as corresponding to B. subtilis and E. coli cells (Figure S4A). 
Analysis of genes enriched within each cluster revealed classical heat shock genes differentially 
expressed in each of the E.C. and B. subtilis heat treated clusters. We detected induction of genes 
for abundant class I-IV and VI B. subtilis heat shock genes such as groEL, dnaK, clpC and htpG 
operons (Figures 1G, S4B-C) as well as both of the major chaperone systems of E.C. (groEL 
and dnaK operons, Figures 1H, S4B-C) (17, 18).  

 

Unexpectedly, we found an additional small cluster, representing E. coli cells from both control 
and heat treated samples that expressed a dramatically different signature of DEAD-box helicase 
deaD induction as well as cold shock genes cspA-G consistent with a transcriptional response to 
cold (Figures 1F and S4D) (19). This subpopulation of E. coli might be displaying a very rapid 
response to cold from a brief cold centrifugation step performed as the first step in sample 
preparation before formaldehyde fixation.  

 

Transcriptional patterns during B. subtilis growth in rich medium. 
Next, we applied microSPLiT to capture transcriptional states across the B. subtilis growth curve 
in a rich medium (LB). In total, we sampled ten optical density (OD) points along the growth curve 
of the laboratory strain PY79 ranging from OD 0.5 (early exponential phase) to 6.0 (early 
stationary phase). Four of the OD points were sampled in both replicates of microSPLiT while the 
rest were sampled only in one of the experiments (Figure 2A). In both experiments, the first 
barcode was used to record sample identity (i.e. OD). The data from two different experiments 
are consistent and produced a combined dataset of 25,214 cells (Figures 2B, S5 and S6). 
Unsupervised clustering of the combined datasets revealed 14 clusters, most of which contained 
cells predominantly from a single OD (Figure 2B). The most notable exceptions are two smaller 
clusters that contain cells from multiple ODs: a cluster with cells from OD2-3.2 that differentially 
express myo-inositol metabolism pathway genes, and a very small cluster containing only 36 cells 
from 5 different OD points uniquely expressing genes associated with the defective PBSX 
prophage (Figures 2B and S9-S12).  
 
Alternative sigma factors are the primary regulators of the prokaryotic RNA polymerase specificity 
and thus directly shape transcriptional changes in response to environmental conditions.  To 
understand whether microSPLiT could capture variation in sigma factor utilization across different 
growth stages, we averaged activity of genes regulated by each sigma factor, recording, for each 
cluster, both the percentage of cells expressing at least one gene regulated by a given sigma 
factor and the average intensity of gene expression (Figure 2C). We note that while averaged 
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intensity could also be obtained from bulk RNA-seq, only single-cell methods can reveal 
information about cell-to-cell variation in regulon activity.  
 
Consistent with expectations, we observe that the housekeeping σA activity is highest at OD0.5, 
while the activity of general stress response sigma factor σB rises as cells begin to exit from 
exponential phase (OD1.3-1.7) and then declines as cells approach stationary. Sporulation sigma 
factors σF, σJ and σK were induced at later ODs but in a small fraction of cells, consistent with the 
previously reported heterogeneous initiation of sporulation (3, 20). The extracellular function 
(ECF) sigma factors σM, σW and σX implicated in maintaining cell envelope function reached 
maximal activity at OD 1.0 in a large proportion of cells, consistent with reports of their basal 
activity in logarithmic phase in non-stressed cells (21). Meanwhile, the remaining ECF sigma 
factors σV, raising defenses against lytic endoglycosidases, and σY increased in activity towards 
later OD points in a small subpopulation of cells, similar to the sporulation sigma factors. σI and 
σH activities, regulating heat response and post-exponential behavior respectively, peak in cluster 
8 which represents a subgroup of cells at OD 1.7. In contrast, σB and σD regulating general stress 
response and motility are most active in cluster 7, a second distinct subgroup of OD 1.7 cells. 
Finally, σL implicated in utilization of arginine, acetoin and fructose as well as regulation of the 
cold shock response peaks in cells at OD 2-2.8 represented in cluster 10, most likely due to the 
highly enriched acetoin utilization genes in this cluster. Additionally, we found that correlations 
between the sigma factor regulons largely agreed with the concept of molecular time sharing, i.e. 
the idea that sigma factors compete for RNA polymerases (Figure S7) (22).  
 
To obtain an even finer-grained picture of the transcriptional programs during exponential growth 
and entry to stationary phase, we inferred the activity profiles of select transcriptional regulators 
(TR) from expression of the genes in their respective regulons (Figure 2D and S8) (22). This 
analysis revealed pronounced changes in regulation of carbon utilization, stress responses, metal 
uptake, developmental decisions and more. The main transition state regulator AbrB becomes 
inactive after OD1.0, indicating that the preferred carbon sources such as glucose start getting 
depleted. In response, cells begin to activate transcriptional programs to utilize different 
alternative carbon sources. Toward the intermediate growth stages, the cells start to sense 
carbon, nitrogen and phosphate limitation. Clusters 7 and 8 (OD 1.7) display a striking change in 
carbon metabolism indicated by the strong expression of genes repressed by the carbon 
catabolite control proteins CcpA, CcpC and CcpN. Similarly, the regulator of nitrogen assimilation 
TnrA becomes activated at OD1.7, while PhoP, regulating the phosphate metabolism, becomes 
active at three different growth stages: OD1.0, OD1.7 and later on at OD6.0. In addition, cells 
respond to metal deficiency, switching off the negative regulators of iron and manganese uptake 
Fur and MntR after OD1.0. Finally, we can observe cellular response to a variety of intrinsic and 
cell-envelope stresses, as well as temporal activation patterns of a battery of developmental 
regulators including ComA, SinI, DegU, Rok, Spo0A and others. Surprisingly, we also observe an 
upregulation of ComK-regulated genes in a high proportion of cells in the early ODs which is not 
consistent with the primary role of this transcription factor in a rare developmental state of 
competence. It could be explained by the fact that a large cohort of ComK-induced genes are 
involved in metabolism and DNA repair and can be activated by other regulators. These data 
show that microSPLiT not only captures known regulatory programs but also reveals intriguing 
heterogeneity in a wide range of these pathways.  
 
Central carbon metabolism changes and differential expression of tricarboxylic acid (TCA) 
cycle enzymes 
Given the dramatic changes in regulation of carbon utilization observed in our TR analysis, we 
turned to a more comprehensive examination of carbon metabolism genes enriched in each 
cluster (Figures S9-S12 and Figure 3). When glucose and other preferred sugars (discussed 
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below) are present, they are converted to pyruvate during glycolysis, which is the primary 
metabolic route under excess of these sugars. In these conditions promoting rapid growth, 
pyruvate is then converted to lactate, acetate, acetoin, and other by-products through 
fermentation. Upon depletion of preferred sugars, cells redirect the fermentation by-products to 
be metabolized in the TCA cycle generating additional adenosine triphosphate (ATP) and carbon 
dioxide.  
 
In the exponential phase (Clusters 0 and 1, OD0.5) we find high expression of ptsG, a glucose 
permease which transports and phosphorylates glucose. The enzymes in the gapA operon 
constituting the metabolic pathway from glyceraldehyde-3P to phosphoenolpyruvate (PEP): 
gapA, pgk, pgm and eno (23) were upregulated in this cluster (Figure 3A,B). 
 
Next, in clusters 3 and 4 (OD1.0) we observe transcriptional patterns suggesting an increase in 
flux from pyruvate either being converted to lactate by ldh  (24) which is then exported via a malate 
antiporter mleN  (25) or converted to acetate via intermediates by pdhAD (26) and ackA (27) 
(Figures 3A,B). These observations are consistent with previous reports of transient medium 
acidification via acetate production during rapid fermentative B. subtilis growth (28). 
 
At OD1.7 cells appear to undergo a dramatic transition from glycolysis to gluconeogenesis with 
multiple genes from the gluconeogenetic pathway activated in clusters 7 and 8. There are two 
glyceraldehyde-3-phosphate dehydrogenases in B. subtilis: GapA and GapB, mediating the flux 
of carbon either from glucose to the TCA cycle or vice versa (29). The glucose and intermediates 
generated by the gluconeogenetic pathway under conditions of glucose limitation are then used 
for synthesis of necessary structural constituents. We observe the switch from GapA to GapB 
expression in clusters 7 and 8 along with an upregulation of most of the TCA cycle enzymes. We 
also find a different pattern of pyruvate production and utilization, together with catabolism of 
acetoin, another fermentation product, and additional nutrient fluxes into the TCA cycle 
(Supplementary Text and Figures 3A-C, S9-S12).  
 
Interestingly, the TCA cycle enzymes which are collectively enriched in the entire OD1.7 sample 
display differential transcriptional abundances between clusters 7 and 8 (Figures 3A, B). For 
instance, cells in cluster 7 express more aconitase (citB), 2-oxoglutarate 
dehydrogenase (odhAB), and succinate dehydrogenase (sdhABC), while cells from cluster 8 
display higher expression of genes in the citZ-icd-mdh operon and sucCD (succinyl-CoA 
synthetase). CitB was reported to destabilize the citZ-icd-mdh mRNA upon citrate accumulation 
or iron limitation (30). Thus, differential transcript abundance of the TCA cycle enzymes could 
reflect the regulatory interactions between the respective genes.  
 
Transient activation of alternative carbon utilization pathways in distinct subpopulations 
Complementing changes in the core carbon metabolism, we observe expression of pathways 
responsible for uptake and utilization of a variety of different carbon sources. As the preferred 
sources of carbon are depleted, the major repressor of alternative carbon utilization pathways 
CcpA becomes inactive, permitting the cells to catabolize alternative carbon sources including a 
variety of carbohydrates (31) (Figure 3). We find that the activation and suppression of these 
pathways happen in varying proportions of the cells in each OD sample and appear to follow a 
temporal order (Figures 3 and S9-S13).  The preferred carbon sources for B. subtilis are glucose 
along with other Group A sugars (sucrose, fructose, and mannitol) and malate (32, 33). While the 
latter is directly metabolized in the TCA cycle, the former sugars are converted to one of the 
glucose metabolic intermediates. At OD0.5, in addition to glucose-specific ptsG, we observe 
increased expression of mtlA-D and glpK,D,F responsible for utilization of mannitol and glycerol, 
respectively. Cells in clusters 3 and 4 (OD1.0) activate catabolism of mannose and aryl-β-
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glucosides (manA,P and bglH,P). In cluster 7 (OD1.7) we observe the upregulation of genes for 
utilization of glucomannan (gmuA-F) and the ribose transporter (rbsA-D), while the gene for 
utilization of ribose rbsK, curiously, is upregulated much earlier in cluster 3. Finally, at even later 
ODs three additional alternative carbon source utilization programs switch on. Cluster 9 
comprising cells from ODs 1.7, 2.0, 2.8, and 3.2 is defined by the expression of genes implicated 
in the most common stereoisomer of inositol, myo-inositol catabolism (iolABCDEFGHIJ, further 
“iolAJ”), while cluster 10 (OD2.0) is enriched for genes responsible for utilization of acetoin 
(acoABCL). Finally, cluster 11, representing a range of ODs from 3.2 to 5.3, differentially 
expresses genes for melibiose utilization (melA, melCDE). 
 
Heterogeneous activation of myo-inositol catabolism pathway at intermediate growth 
stages 
Inositol is an abundant resource in soil, and B. subtilis is able to subsist on inositol as its sole 
carbon source (34). While LB medium is not typically expected to contain myo-inositol (further 
“inositol”), heterogeneous inositol utilization pathway activation is observed in a small (3-15%) 
subpopulation in both of our independent LB growth experiments (cluster 9, see Figure 3A, 
Figure 4A-B and Figure S14). It has been shown that the inositol catabolism intermediate, 2-
deoxy-5-keto-D-gluconic acid 6-phosphate (DKGP), is responsible for the pathway induction (34). 
We hypothesize that the trace amounts of inositol may be present in the LB medium, potentially 
from the yeast extract since yeast is capable of inositol production as a precursor to the essential 
membrane component, phosphatidylinositol.  
 
There are three operons involved in inositol utilization, iolT (main transporter), iolRS (the first gene 
is a repressor and the second is a likely dehydrogenase), and iolAJ (metabolic enzymes), with 
iolC producing and iolJ cleaving the pathway-activating DKGP intermediate. iolRS and iolAJ are 
normally transcribed by σA through divergent transcription (35). In the absence of the inducer (I), 
IolR supresses transcription of all three operons (36). In addition, CcpA represses the iolAJ  
operon in the presence of glucose (37) (Figure 4C). Interestingly, the pathway suppressor iolR 
gene is more broadly expressed both outside and inside of cluster 9 (Figure 4A-B and Figure 
S12).  
 
Next, we asked whether our data could be explained by the underlying gene regulatory network 
architecture (Figure 4D). Within the complex system of interactions, we observe two topological 
features capable of amplifying small molecular variations. An iolAJ-mediated incoherent feed-
forward loop can generate a pulse of DKGP, while IolT can generate a positive-feedback loop by 
transporting inositol into the cell. These features of the network can explain the difference in 
clusters, as probed with a qualitative model (Figure S15). Due to the small proportion of cells 
expressing the main catabolic operon iolAJ, this particular metabolic behavior could only be 
reliably detected on a single-cell level.  
 
Motility, antimicrobials production, stress response, and metal ion import 
B. subtilis is known to exhibit a variety of behaviors to enhance survival in adverse conditions 
including, but not limited to, production of degradative enzymes and antimicrobials, secretion and 
uptake of siderophores, three types of motility (swimming, swarming, and sliding), natural 
competence, and sporulation (38). Many if not most of these behaviors are not displayed by all 
cells at the same time (39), thus providing good targets for single-cell interrogation.  
 
Bacteria universally produce peptide and small molecule antimicrobials that are meant to target 
both closely and distantly related organisms (Figure 5A) (40). We observe the expression of 
endoA toxin/antitoxin (ndoA/I) and bacilysin (bacA-G) more broadly prior to OD2.0 (Figure 5A 
and S16). Subtilosin (sboA,X-albA-F), bacillaene (pksC-R), and plipastatin (ppsA-E) production, 
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on the other hand, are detected in a greater proportion of cells after OD2.0. All three of these 
peptides are broad spectrum antimicrobials (41–43) which suggests that under nutrient limitation, 
B. subtilis becomes competitive to preserve its access to the available resources, even in the 
absence of other species. Additionally, we also see a rise in spore killing factor (SKF) and spore 
delay protein (SDP) in the last three ODs (Figure S17).  
 
B. subtilis has two morphological phenotypes during active growth: filamentous, sessile cells and 
smaller motile cells (44, 45). In liquid media, the bacteria primarily swim which requires the 
expression of the flagellin protein (hag) and the fla-che operon (Figures 5B). We detected 
expression of these genes in 25 to 50% of cells in every cluster from early to intermediate growth 
stages before the fraction noticeably declines at late ODs, consistent with reports of heterogeneity 
of the motility operon expression at mid-exponential phase (42). The B. subtilis population is 
expected to be similarly differentiated into surfactin-producing and extracellular matrix-producing 
bacteria as cell density increases (46). We see the fraction of cells producing srfA-D genes 
gradually increase, slightly dipping at OD 1.7 and 2.0, and finally reaching almost 100% detection 
at OD 6.0, consistent with the PY79 strain having defective matrix production genes that cannot 
negatively regulate srfA-D expression (47).  
 
Cellular stress response pathways exemplified by GroEL chaperonin and ClpC proteases peak 
at OD1.7, the same time as the cells switch from glycolysis to gluconeogenesis (Figure 5C). The 
ClpP associated proteases (clpP,C,X,E), McsA and McsB kinases (mcsA,B), and chaperonins 
(groEL,ES) are all involved in the unfolded protein response (48). A transient increase in the 
regulatory sigma factor, σB, inducing expression of these genes, has been reported during normal 
exponential growth and attributed to intrinsic cellular stresses (49). clpP mutants have been linked 
to slower glucose consumption and overproduction of TCA cycle metabolites during rapid 
fermentative growth, which suggests their participation in glycolysis and may explain their highest 
expression during the early growth stages (50).    
 
B. subtilis needs both manganese and iron to grow (51), and the two ions often antagonize each 
other’s regulators (52). Upon iron limitation, B. subtilis produces and secretes siderophores 
including bacillibactin (dhbA) together with the ABC transporter (feuA) (Figure 5D) (53, 54). Both 
genes show increased expression at OD1.7, similar to the stress response proteins above. 
Manganese, on the other hand, is transported into the cells via a separate ABC transporter (mntA-
D) and a proton symporter (mntH) (52). It is required for the successful transition into stress 
related states such as biofilm formation and sporulation (55), which likely explains the increase in 
manganese transport related genes detected at later ODs. 
 
microSPLiT quantifies a rare stress response  
Cluster 13 (36 cells, or 0.142% of total cells, representing ODs between 0.5 and 2.8) contains a 
rare subpopulation of cells expressing PBSX prophage genes (Figure 6A). The PBSX element is 
a defective prophage that is non-infectious but upon induction causes the release of phage-like 
particles (56) containing 13 kb of random fragmented chromosomal DNA (57, 58). Prophage gene 
expression is induced by DNA damage mediated by the SOS response (56, 59)(Figure 6B). We 
identified eleven host genes with known or putative functions expressed in the PBSX prophage 
cluster (Figure 6C). Five of these genes have previously been shown to be induced only in PBSX-
harboring strains of B. S. after DNA damage (57). The rest, including a chemoreceptor (mcpC), 
an ATP-binding cassette transporter (liaL), a cell wall binding protein (ykuG), an ammonium 
transporter (amtB), a sucrose-6-phospate hydrolase (sacA), and a regulatory protein of 
homologous recombination (recX), have not previously been linked to prophage induction 
(Supplementary Text). These genes could have been induced by the damage sustained by the 
cells which also caused PBSX prophage activation. Alternatively, these genes could have been 
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activated in response to the chromosomal fragmentation and membrane vesicle formation caused 
by the prophage induction.  
 
microSPLiT detects a rare stochastically induced developmental state  
Under stress or nutrient limitation, a small fraction (2-5%) of B. subtilis cells undergoes stochastic 
transient differentiation into a state of natural competence, characterized by the ability to uptake 
extracellular DNA and integrate it into the chromosome (Figure 6D) (60). The master 
transcriptional regulator of competence ComK is activated via a positive feedback loop, inducing 
expression of a suite of >165 genes involved in a variety of cellular processes in addition to DNA 
uptake (61). Competence is expected to naturally occur under nutrient limitation. We thus 
separately subclustered the last two OD points (OD5.3 and 6.0). UMAP embedding revealed a 
small cluster (62 cells, or 4.6% of cells at OD 5.3 and 6) expressing a distinct transcriptional 
signature of the competent state, or K-state (Figure 6E-F). The most enriched gene was comGA, 
as expected from prior transcriptomic data, followed by the succinyl-CoA synthetase (sucCD) 
operon which has been shown to be induced in competent cells (28, 61, 62). We also see strong 
enrichment of other genes encoding the DNA uptake machinery: comF and comE operons, as 
well as the response regulator RapH which represses sporulation development in competent cells 
by dephosphorylating the phosphorelay component Spo0F (63). As the cells in the competent 
state arrest replication to integrate the incoming DNA into the chromosome, we observe the 
upregulation of genes necessary for processing of internalized ssDNA such as DNA 
recombination and repair protein RecA along with single-strand DNA binding proteins SsbA and 
SsbB consistent with prior reports (61). We also observe enrichment of several genes related to 
DNA processing such as topA encoding topoisomerase A and holA, delta subunit of DNA 
polymerase III which is a part of the replisome. These genes are not in the annotated ComK 
regulon but were tentatively identified in the microarray data comparing gene expression between 
mecA strain in which essentially all cells express ComK and a double mutant mecA comK strain 
(61). This coordinated upregulation of topA and holA is consistent with the model of RecA binding 
to the SsbA\SsbB coated ssDNA and forming a complex with the replisome during competence 
(64). In addition, we found four genes not previously linked to the competent state: ywfM 
(unknown), hemQ (coproheme decarboxylase), tlpC (an orphan membrane-bound chemotaxis 
receptor), and trmF, a folate- and FAD-dependent tRNA methyltransferase (Supplementary 
Text). 
 

Discussion 

We applied microSPLiT to B. subtilis cells growing in liquid rich medium, conditions which are not 
usually associated with abundant cellular heterogeneity. Nevertheless, we found a large variety 
of subpopulations displaying differential gene expression of select metabolic, stress response or 
developmental pathways. In particular, we identified a metabolic pathway, myo-inositol 
catabolism, which was strikingly activated only in a fraction of cells from several later OD points 
in a distinct temporal fashion. We expect microSPLiT to have even more utility in identifying 
heterogeneous cell states in an environment more conducive to bacterial differentiation, such as 
in multi-species biofilms and natural microbiota. 

We were able to detect subpopulations of cells as rare as 0.142%, pointing to microSPLiT’s 
potential to uncover physiologically relevant rare cell states, such as persistence, that are hard to 
study by bulk or low-throughput methods. For many such states, the regulators are not well known 
and consequently, the reporters or mutants producing the desired state at a higher frequency 
cannot be engineered. Even for states that are better understood and can be artificially induced, 
such as prophage induction by UV irradiation, microSPLiT is useful since the transcriptional 
signatures it produces are state-specific and free of artifacts introduced by the perturbation.  
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In order to use microSPLiT on complex natural communities, the protocol will likely need to be 
further optimized, particularly the permeabilization and mRNA enrichment steps. Since cell wall 
and membrane composition vary significantly among bacteria, any permeabilization treatment is 
likely to work better for some species than others. However, alternate treatment for different 
subsamples may still provide optimal results. In addition, we experienced lower mRNA counts 
from bacteria in stationary phase as opposed to logarithmic growth phase (Figure S18), 
consistent with slower growth rate and smaller cell size at this stage. Although the resulting data 
were still sufficient to reliably identify rare cell states such as the K-state, further improvement of 
the protocol will be instrumental to increase sensitivity for applications to slower dividing bacteria 
or challenging environmental conditions. Still, we expect microSPLiT to provide an exciting new 
dimension to studies of bacterial gene expression heterogeneity and community behavior 
facilitated by the method’s potential scalability to millions of bacterial cells and single-cell 
resolution without need for constructing reporters. 
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Fig. 1. microSPLiT development and validation. (A) Challenges associated with single-cell 
RNA sequencing of bacteria. (B) microSPLiT method summary. Fixed gram-positive and gram-
negative bacterial cells are permeabilized with a mild detergent Tween-20 and their cell walls are 
degraded by lysozyme. The mRNA is then polyadenylated in-cell with E.coli Poly(A) Polymerase 
I (PAP). Inset: comparison of mRNA read counts (normalized) obtained from PAP-treated cells 
compared with cells treated with Terminator 5’ phosphate-dependent exonuclease (TEX) and 
both methods consecutively (T+P). The cellular RNA then undergoes three rounds of 
combinatorial barcoding including in-cell reverse transcription (RT) and two in-cell ligation 
reactions, followed by lysis and library preparation. (C) Barnyard plot for the E. coli and B. subtilis 
species-mixing experiment. Each dot corresponds to a putative single-cell transcriptome.  UMI – 
unique molecular identifier. (D) Total (in thousands) and mRNA UMI counts per cell for both 
species. (E) Summary of the heat shock experiment showing the first barcode as sample 
identifier. (F) t-stochastic neighbor embedding (t-SNE) of the data from heat shock experiment 
showing distinct clusters. “HS” – heat shocked. (G) and (H) Genes enriched in the B.S and E.C. 
heat shock clusters, respectively. 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/869248doi: bioRxiv preprint 

https://doi.org/10.1101/869248
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

 

 
 
Fig. 2. microSPLiT detects global transcriptional states during B. subtilis growth. (A) 
Optical density (OD) points sampled in two experiments overlayed on the growth curve from 
experiment 2 (see Supplementary Text). (B) t-SNE embedding of the combined growth curve data 
colored by cluster. A total of 14 clusters were found using Louvain clustering. (C) Inferred 
normalized sigma factor activity for each cluster. The size of each dot indicates the proportion of 
cells in the cluster in which the sigma factor is active, while the color indicates the average activity. 
(D) Inferred normalized activity of select transcriptional regulators per cluster. “Neg” indicates that 
activity was calculated for the genes known to be negatively regulated by this TR, and “pos” 
indicates the activity was calculated for the genes positively regulated by the given TR. 
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Fig. 3. Central carbon metabolism changes and alternative carbon sources utilization 
during B. subtilis growth. (A) Normalized expression of genes from select metabolic pathways 
and central carbon metabolism shown per cluster. Gene expression clearly shows distinct carbon 
utilization programs associated with different clusters and growth states. (B) Expression of select 
genes from (A) overlaid on the t-SNE plot to illustrate the differential patterns of activation. (C) 
Schematic of the central carbon metabolism pathway showing alternative carbon sources, 
metabolic products and genes in the pathway. The genes are color-coded according to the cluster 
they are highest expressed in.  
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Fig. 4. Myo-inositol utilization pathway genes are expressed heterogeneously at 
intermediate growth stages. (A) Expression of each of the three inositol utilization operons, 
averaged across all genes in a given operon, and overlaid on the t-SNE plot. (B) Activities of the 
three inositol utilization operons across ODs. The size of each dot indicates the proportion of cells 
in each OD sample expressing any of the genes in the selected operon, while the color shows 
the average expression of the genes in a given operon. (C) Schematic of the inositol utilization 
operons structure along with the main regulators in different metabolic states. When both glucose 
(G) and inositol (I) are present in the cell, the IolR repression of all three operons is relieved, but 
CcpA still represses the iolAJ operon preventing it from metabolizing inositol (we show the 
signaling intermediates bound to the repressors also as G and I for simplicity). As glucose levels 
drop, CcpA no longer inhibits transcription of iolAJ, and if inositol is present, it relieves the 
repression of iolRS and iolT, inducing the expression of the entire metabolic network. Meanwhile, 
in the absence of inositol, all of the operons remain repressed regardless of the glucose levels. 
(D) A simplified network diagram representing the interactions and regulations within the inositol 
utilization pathway. 
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Fig. 5. Intrinsic stress responses and developmental gene expression. (A)  Antimicrobial 
agents and endoA toxin-antitoxin secretion. Subtilosin and bacillaene action diagram. Overlay of 
representative subtilosin (albA) and bacillaene (pksJ) production pathway gene expression on the 
t-SNE. Fraction of cells expressing the indicated antimicrobials and endotoxin-antitoxin as a 
function of OD. (B) Swarming and motility genes expression. Flagellin and surfactin action 
diagram. Overlay of surfactin (srfAA) and flagellin (hag) gene expression on the t-SNE. Fraction 
of cells expressing the indicated motility operons as a function of OD.  (C) Intrinsic stress and 
unfolded protein response (UPR) genes expression. GroEL chaperonin and ClpCP protease 
action diagram. Overlay of clpC and groEL gene expression on the t-SNE. Fraction of cells 
expressing the indicated genes as a function of OD. (D) Metal (iron and manganese) uptake 
genes expression. Bacillibactin siderophore and transporter action diagram. Overlay of 
bacillibactin (dhbA) and siderophore transporter (feuA) production pathway gene expression on 
the t-SNE. Fraction of cells expressing the indicated metal uptake genes as a function of OD. The 
genes used for fractional plots are listed in Supplementary Table S2. 
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Fig. 6. Rare developmental states induced by cellular stress. (A) PBSX prophage induction 
and killing of the non-lysogenic cells. Upon DNA damage, two large prophage operons are 
induced and non-infectious phage particles along with endolysins are released. The latter degrade 
cell walls of other cells containing heterologous prophage elements. (B) PBSX prophage cluster 
(36 cells) shown on the t-SNE plot. (C) Genes enriched in the PBSX prophage cluster, including 
both prophage and host genes.  (D)  Overview of competence development. Activated by stress 
and quorum-sensing, ComS binds to and redirects MecA complex from degrading master 
competence regulator ComK. Amplified via positive autoregulation, ComK induces >165 genes 
involved in extracellular DNA uptake and cellular physiology. (E) UMAP embedding of the 
subclustered OD5.3 and 6.0 samples, showing the competence cluster (62 cells). (F) Genes 
enriched in the discovered competence cluster relative to the rest of the cells in OD5.3 and 6.0 
samples.  
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