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Abstract 17 

Under Canada’s Wild Salmon Policy, biological status of salmon Conservation Units (CUs) is 18 

determined by expert consensus based on quantitative metrics, considering the associated 19 

assumptions, uncertainties, and risks.  This process takes time and resources and has been 20 

completed for <10% of CUs.  Data-driven approaches that rely on a standardized subset of 21 

metrics can provide transparent, timely, and accessible assessments on those metrics, but lack 22 

rigorous review by experts on a CU-by-CU basis.  Thus, it is important to understand how status 23 

outcomes from data-driven assessments may be biased by underlying assumptions.  We used a 24 

stochastic simulation model to quantify how common assumptions in “run reconstructions” 25 

around imputing missing spawner data, expanding observed spawner abundance to CUs, 26 

assigning catch to CUs, and quantifying age-at-return biased assessments.  We found that data-27 

driven assessments based on spawner abundances are robust to most common assumptions in 28 

run reconstructions, but overestimating catch to CUs may increase rates of status 29 

misclassification.  Further research is needed to understand the implications for more complex 30 

run-reconstruction models that incorporate spatial and temporal variability in return timing.  31 
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Introduction 32 

Timely and effective management of fish and wildlife relies on accurate information about the 33 

current biological status of populations.  However, complete information on abundance, trends, 34 

and demographic parameters is rarely available for those populations or species that need to 35 

be assessed.  Therefore, assumptions have to be made when assessing status.  Evaluating the 36 

impact of assumptions on resulting status outcomes is critical to understanding the potential 37 

biases, uncertainty, and limitations of status assessments (Chen et al. 2003; Wetzel and Punt 38 

2011). 39 

Wild Salmon Policy – Monitoring and Assessing Biological Status  40 

Pacific salmon are a highly exploited group of species and many populations have experienced 41 

declines in recent decades due to overfishing, changing ocean conditions, and freshwater 42 

habitat degradation (e.g., COSEWIC 2016, 2017; Brown et al. 2019).  The management of Pacific 43 

salmon is challenging, in part due to the rich ecological, genetic, and life-history diversity within 44 

species that must be conserved and considered when devising fisheries management strategies 45 

(Gustafson et al. 2007).  Canada’s Wild Salmon Policy (WSP) provides a framework for 46 

maintaining salmon biodiversity through the preservation of Conservation Units (CUs) – groups 47 

of wild salmon that, if lost, are unlikely to recolonize within an acceptable timeframe (Fisheries 48 

and Oceans Canada 2005).  Standardized monitoring and assessment of the biological status of 49 

CUs is a critical element of the WSP (Fisheries and Oceans Canada 2005, 2018).   50 
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Status assessments under the WSP - called integrated status assessments - use expert-driven 51 

processes to combine a suite of metrics into an overall status assessment given uncertainties in 52 

each metric (e.g., DFO 2015, 2016, 2018a).  Although these integrated status assessments are 53 

thorough and ensure the unique context of each CU and associated data are taken into 54 

consideration, the required resources and time (typically 1-3 years) have limited their broad 55 

application to all 462 Pacific salmon CUs.  Only 9% Pacific salmon CUs have had their biological 56 

status assessed through an integrated status assessment since the WSP was released nearly 15 57 

years ago, and reports are often already 2-4 years out of date when they are released (DFO 58 

2019).  Given the multiple pressures facing Pacific salmon and the declining status of many 59 

populations, there is an urgent need for more timely and transparent measures of biological 60 

status that can be broadly applied to salmon CUs to inform conservation and management 61 

decisions when up-to-date integrated status assessments are not available.  62 

Using robust, standardized, and objective measures to quantify the biological status of CUs is 63 

critical for supporting the implementation of the WSP.  Furthermore, the outcomes of status 64 

assessments are more impactful if they are broadly, and freely, available to the public through 65 

open-access platforms.  In BC, a novel open-access data visualization platform called the Pacific 66 

Salmon Explorer (see www.salmonexplorer.ca) has been developed by the Pacific Salmon 67 

Foundation to provide timely, data-driven assessments of the current status of Pacific salmon 68 

CUs on a subset of metrics.  This approach has many benefits, but the trade-off is that a 69 

thorough expert review of the assumptions and limitations unique to the assessment of each 70 

CU, as is undertaken in integrated status assessments, is not always possible.  We refer to 71 
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biological status assessments that do not undergo review by experts to interpret and combine 72 

different indicators as “data-driven” status assessments.  Similar data-driven approaches are 73 

also applied by DFO and stakeholders in other contexts (e.g., local management, Marine 74 

Stewardship Council certification (www.msc.org), and for the Pacific Salmon Treaty (PSC 2019)). 75 

Data-driven biological status assessments may be prone to biases from compounding 76 

assumptions around the imputation of data, which is of concern given that they are not subject 77 

to the same level of scrutiny as integrated status assessments.  Here, we aim to explicitly 78 

quantify potential biases in data-driven biological status assessments due to common 79 

assumptions in reconstructing salmon abundance, relative to the uncertainty inherent to 80 

ecological systems. 81 

Metrics and benchmarks for assessing biological status 82 

Under the WSP’s biological status assessment framework, quantifiable metrics are calculated 83 

from available data and compared against biological reference points, or “benchmarks”, to 84 

arrive at a status outcome of red, amber, or green (Fisheries and Oceans Canada 2005; Figure 85 

1).  A red status indicates that a CU has low spawner abundance and/or reduced spatial 86 

distribution and management intervention is required to avoid extirpation.  A green status 87 

indicates that the CU is able to sustain maximum annual catch under existing environmental 88 

conditions.  The specific benchmarks delineating these status zones must consider uncertainties 89 

in metrics and risk tolerance, and depend on the biological characteristics of the CU being 90 

assessed.  91 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/868927doi: bioRxiv preprint 

https://doi.org/10.1101/868927
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evaluating assumptions in run reconstructions     Peacock et al. 

 

 6 

Multiple metrics of biological status have been proposed under the WSP.  These metrics fall 92 

under four broad classes of indicators: current spawner abundance, trends in abundance over 93 

time, distribution of spawners, and fishing mortality (Holt et al. 2009).  The PSE has focused on 94 

biological status assessments based on a single indicator class, current spawner abundance, 95 

using two types of benchmarks that have been widely applied: spawner abundances associated 96 

with maximum sustainable yield, derived from stock-recruitment analyses (Holt et al. 2009), 97 

and percentiles of historical spawner abundance (Connors et al. 2013, 2018, 2019; Holt et al. 98 

2018; Figure 1).   99 

Common assumptions in estimating biological status 100 

Pacific salmon are anadromous and semelparous, returning from ocean rearing grounds to 101 

spawn in freshwater before dying, and are typically vulnerable to fisheries upon their return to 102 

coastal waters.  Data imputation and expansion are necessary to assess and manage Pacific 103 

salmon and many other fisheries (Chen et al. 2003; Wetzel and Punt 2011).  The data required 104 

to assess biological status of Pacific salmon can include annual estimates of the number of 105 

returning adult salmon to individual rivers, fisheries catch or harvest rates, and the age 106 

composition of returning salmon (needed for stock-recruitment analyses).  Often, these data 107 

are incomplete and require imputation (e.g., Figure 2).  Furthermore, the calculation of harvest 108 

rates (i.e., the proportion of the total return caught in fisheries) requires expanding estimates 109 

of observed spawner abundance to account for observer efficiency and spawning sites that may 110 

not be monitored for spawners.  “Run reconstructions” have been undertaken for salmon CUs 111 

to expand spawner abundances to the entire CU and estimate recruitment (Cave and Gazey 112 
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1994; English et al. 2007, 2016, 2018).  The exact procedure undertaken depends on the life-113 

history traits and available data for each CU, and can include complexities such as spatial and 114 

temporal variability in returns among spawning populations. 115 

Investigating the impact of assumptions on status outcomes (and therefore management 116 

actions) is essential to understand potential biases and minimize the risk of overharvesting or 117 

unnecessarily constraining fisheries.  The combined influence of assumptions in run 118 

reconstruction models on our ability to accurately assess the status of CUs is unknown.  In this 119 

study, we use a simulation approach to quantify the consequences of common assumptions in 120 

simple run-reconstruction models that we considered most likely to affect status assessments.  121 

As a case study, we tailored our simulation model to represent a generic chum salmon CU from 122 

the central coast of British Columbia (Figure 3) because these CUs have recently been assessed 123 

using a data-driven approach (Connors et al. 2018) and have a relatively simple run-124 

reconstruction model that does not include run timing.  Furthermore, there are conservation 125 

concerns for both north and central coast chum salmon, which have not recovered despite 126 

significant reductions in harvest rates over the past two decades (DFO 2018b).  Thus, central 127 

coast chum salmon offer a useful case study for an initial investigation of basic assumptions 128 

underlying biological status assessments.  However, our simulation model is flexible enough 129 

that it can accommodate different species and life-history traits of Pacific salmon.  We further 130 

explore a broad range of biological (e.g., trends in capacity) and management (e.g., monitoring 131 

coverage) scenarios to yield more general insight into the circumstances under which 132 

assumptions may bias status assessments.  Our results suggest that efforts to provide timely 133 
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and objective data-driven assessments of biological status are robust to most underlying 134 

assumptions, although improving estimates of CU-level harvest rates would reduce potential 135 

misclassifications of status.  136 

Methods 137 

Benchmark calculations and assumptions 138 

In this study, we consider two types of benchmarks for the spawner-abundance metric (Figure 139 

1) that have been frequently applied to determine biological status of Pacific salmon CUs, 140 

including in the Pacific Salmon Explorer (PSE; Connors et al. 2013, 2018, 2019).  The first type of 141 

benchmark is associated with maximum sustainable yield, derived from a stock-recruitment 142 

relationship (Figure 2b).  An upper stock-recruitment (SR) benchmark of 80% of the spawner 143 

abundance that is projected to maintain long-term maximum yield, or 80% SMSY, has been 144 

recommended by Holt et al. (Holt et al. 2009, 2018) and will be applied to future assessments in 145 

the PSE (previous PSE assessments have applied SMSY; Connors et al. 2018, 2019).  SMSY can be 146 

calculated explicitly from the productivity and density-dependence parameters of the Ricker 147 

spawner recruitment relationship (Scheuerell 2016).  Multiple lower benchmarks have been 148 

suggested (Holt et al. 2009, 2018), and here we focus on a lower benchmark of the spawner 149 

abundance that leads to SMSY in one generation in the absence of fishing mortality, or SGEN 150 

(Korman and English 2013; DFO 2015) as applied in the PSE. 151 

The second type of benchmarks we considered, referred to as historical spawners (HS), also 152 

called percentile benchmarks (Clark et al. 2014; Holt and Folkes 2015; Holt et al. 2018), are 153 
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based on historical spawner abundance (Figure 2a).  The upper and lower benchmarks we 154 

considered were the 50th and 25th percentiles of historical spawner abundance, respectively.  155 

The calculation of these benchmarks has fewer data requirements, as the stock-recruitment 156 

relationship need not be estimated (i.e. there is no need for age-at-return or harvest data).  As 157 

such, the HS benchmarks can be applied to data-limited CUs for which spawner data are patchy 158 

or age and harvest data are not available. 159 

Here, we focus on a basic run-reconstruction model and associated assumptions that are 160 

commonly made when assessing spawner abundance against the benchmarks above (Figure 2c; 161 

Table 1).  At a minimum, in order to apply HS benchmarks, a time series of total spawner 162 

abundance at the CU scale is required.  Conservation Units are typically comprised of multiple 163 

spawning populations that may or may not be monitored in any given year.  Spawning 164 

populations in individual streams (henceforth “populations”) may exhibit unique dynamics as 165 

their productivity is (in part) limited by density-dependent processes in freshwater.  A simple 166 

sum of the observed spawner abundance within a CU may be misleading if the same 167 

populations are not monitored consistently.  On the north and central coast, monitored 168 

populations have been designated as either “indicator streams” or “non-indicator streams”, 169 

with indicator streams being prioritized for monitoring and thus having more continuous and 170 

reliable spawner estimates (English 2016).  In addition, there may be populations that have 171 

never been monitored and for which spawner abundance is unknown.  To reconstruct spawner 172 

abundance to the CU, three “Expansion Factors” have been applied to account for (1) spawners 173 

returning to indicator streams that are not monitored in a given year, (2) spawners returning to 174 
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non-indicator streams, and (3) observation efficiency and populations that are never monitored 175 

(Table 1). 176 

The application of stock-recruitment benchmarks also requires timeseries of the total number 177 

of salmon returning to the CU, including those caught in fisheries and those that make it to 178 

spawn but are not counted, to reconstruct recruitment.  The number of returning salmon in a 179 

CU that are caught in fisheries is estimated based on the catch statistics for Pacific Fisheries 180 

Management Areas (PFMAs) adjacent to the geographic location of the CU (Figure 3).  It is 181 

assumed that salmon caught in an PFMA were destined to spawn in streams that empty into 182 

that PFMA, although there is the potential for bias in that fish may be caught while migrating 183 

through the PFMA or fish destined for streams in the focal PFMA may be caught in other 184 

PFMAs.  Furthermore, in most cases, there is not a perfect spatial correspondence between 185 

PFMAs and CUs (Figure 3).  Streams in multiple CUs may flow into a single PFMA, which is 186 

common for small CUs, such as with sockeye salmon (Holtby and Ciruna 2007).  In the simplest 187 

case, the catch from that PFMA may be assigned to CUs based on the relative spawner 188 

abundance to each CU.  However, differences in run-timing among CUs may complicate the 189 

assignment of catch and necessitate more complex run-reconstruction models.  A single CU 190 

may also be comprised of populations that are caught in multiple PFMAs, particularly for 191 

species with large CUs such as pink and chum salmon (Figure 3), in which case an average 192 

harvest rate across PFMAs may be applied.  The impact of observation bias in the catch 193 

assigned to each CU on status assessments in unknown and is a focal aspect of this study (see 194 

Sensitivity analyses, below).  195 
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 196 

Figure 1.  Illustration of the WSP status assessment framework (adapted from Holt et al. 2009).  We focused on the 197 

geometric mean spawner abundance (metric, blue) under the spawner abundance indicator.  This metric was 198 

assessed against two types of benchmarks: stock-recruitment and historical spawners (see Figure 2).  Faded boxes 199 

represent other types of metrics and indicators that may be included in integrated status assessments but were 200 

beyond the scope of what we considered. 201 
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 202 

Figure 2. a) Historical spawners benchmarks are the 50th (horizontal green line) and 25th (horizontal red line) 203 

percentiles of historical spawner abundance (points). The current spawner abundance is calculated as the 204 

geometric mean spawner abundance over the most recent generation (4 years, blue points and line). b) Stock-205 

recruitment benchmarks are based on the shape of the Ricker stock-recruitment relationship (solid line) fit to data 206 

on spawner abundance (x-axis) and corresponding recruitment (catch + escapement, y-axis). The upper and lower 207 

benchmarks are 80% SMSY (green) and SGEN (red), respectively. SGEN is defined as the spawner abundance that leads 208 

to SMSY (grey) in one generation in the absence of fishing mortality. Under both types of benchmarks, the current 209 

spawner abundance in the example shown is above the upper benchmark, and this CU would be assessed as 210 

‘green’.  c) The calculation of historical spawners benchmarks and stock-recruitment benchmarks requires run 211 

reconstruction to expand observed spawners abundances, assign catch to CUs, and calculate recruitment (Table 1).  212 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/868927doi: bioRxiv preprint 

https://doi.org/10.1101/868927
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evaluating assumptions in run reconstructions     Peacock et al. 

 

 13 

 213 

Figure 3. Our study focused on central coast chum salmon Conservation Units (CUs) as a case study for how 214 

common run-reconstruction assumptions affect the assessment of biological status. Chum salmon CUs (green; 215 

different CUs shaded differently in central coast inset) are relatively large, and do not correspond to the Pacific 216 

Fishery Management Areas (PFMAs; white or light blue shaded regions) for which catch is reported.  Therefore, 217 

assumptions have to be made when assigning catch to CUs that may result in under- or over-estimation of catch. 218 

Map produced using PBSmapping (Schnute et al. 2015) with data from Fisheries and Oceans Canada (Martin 219 

Huang, pers. comm. <Martin.Huang@dfo-mpo.gc.ca>). 220 

Finally, to calculate recruitment for a given cohort of spawners, assumptions about the age-at-221 

return of spawners in any given year are required (except in the case of pink salmon, which 222 

have a fixed 2-year generation time).  The total return in a given year is assigned to brood years 223 
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based on the proportion of fish that return at a certain age, but these proportions are often not 224 

estimated every year. For chum salmon on the central coast, the distribution of age-at-return is 225 

assumed to be constant over time and is based on the average of available data (English et al. 226 

2018). In this case, interannual variability in age-at-return may introduce uncertainty into the 227 

calculation of brood-year recruitment and bias resulting assessments of status (Zabel and Levin 228 

2002).  Temporal shifts in age-at-maturity, as have been widely observed in Pacific salmon 229 

(Ohlberger et al. 2018; Cline et al. 2019), may also introduce directional bias into status 230 

assessments. 231 

Simulation model 232 

We developed and applied a stochastic simulation model of salmon population dynamics that 233 

allows control over various biological and management factors that may influence the accuracy 234 

of status assessments.  This approach built on previous studies that evaluated uncertainties in 235 

fisheries management (e.g., Holt and Peterman 2008) and other factors influencing the 236 

performance of metrics and benchmarks under the Wild Salmon Policy (e.g., Peacock and Holt 237 

2012; Holt and Folkes 2015; Holt et al. 2016, 2018).  The simulation model is comprised of 238 

submodels for salmon population dynamics, observation of spawners, assessment, harvest, and 239 

performance (Figure 4). 240 
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 241 

Figure 4. Schematic of the simulation model comprised of submodels for population dynamics (including harvest), 242 

observation, assessment, and performance. Adapted from Holt et al. (2016). 243 

Population dynamics 244 

We simulated the dynamics of multiple spawning populations returning to indicator or non-245 

indicator streams within a single hypothetical CU.  Although some CUs consist of just a single 246 

spawning population (e.g., lake-type sockeye salmon), many CUs (especially pink and chum 247 

salmon) span hundreds of kilometers (Figure 3) and can include multiple spawning populations 248 

whose dynamics may differ due to local adaptation and finite rearing and spawning habitats.   249 

We based our simulations on the life history of chum salmon, which generally return as 3-, 4-, 250 

or 5-year-olds.  The number of salmon returning to spawn in return year ! and population ", 251 

#$,&, was calculated as: 252 
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#$, & = #′$*+, & -$*+, + + #′$*/, & -$*/, / + #′$*0, & -$*0, 0, (1) 

where -1,2 is the proportion of recruits from brood year 3 returning at age 4. Throughout this 253 

model description, we use # to denote returns, or catch plus escapement of fish returning in a 254 

year, and #5 to denote recruitment, or the total number of offspring from a brood year that 255 

survive to return to spawn.  256 

We assumed that the annual proportion of recruits returning at a given age was the same 257 

among populations, but incorporated interannual variability in age-at-maturity by allowing the 258 

proportion of recruits that return as 4 year-olds to vary among brood years, 3: 259 

-1,2 =
-2exp(: ;1,2)

∑ ->0
>?+ exp(: ;1,>)

, 
(2) 

where -2 is the average proportion of individuals maturing as 4 year-olds, : is a parameter 260 

that controls interannual variability in proportions of fish returning at each age (Figure S4) and 261 

;1,2 are standard normal deviates (Schnute and Richards 1995). 262 

The number of salmon that escape the fishery and return to spawn was calculated as: 263 

@$,& = A1 − ℎ$,&E #$,&, (3) 

where #$,&  is the number of returning salmon from eq. (1) and ℎ$,&  is the realized harvest rate 264 

for population j in year !.  We incorporated outcome uncertainty (i.e., deviations from the 265 
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target harvest rates) by drawing the realized harvest rates each year from a Beta distribution 266 

with mean equal to a target harvest rate, ℎ$5  (Holt and Peterman 2008).  267 

We considered two different scenarios for determining the target harvest rate (Figure 5).  First, 268 

we considered a simple, abundance-based harvest control rule (HCR) where ℎ$5  increased with 269 

the total return to the CU from a minimum of 0.05 (to account for bycatch and unavoidable 270 

mortality and also avoid problems associated with low target HRs when incorporating Beta-271 

distributed outcome uncertainty) up to an asymptote, ℎFGH (Holt and Peterman 2008): 272 

ℎ$5 = maxA	ℎFGH	L1 − expMN∑ #$,&& O	P, 0.05E,  (4) 

where N is the shape parameter of the HCR.  The low harvest rates at low returns under this 273 

HCR prevented the CU from declining to red status in simulations, and so as to broaden our 274 

results to include CUs with true red status, we also considered a constant high target harvest 275 

rate of ℎ$5 = 0.60 regardless of the total return (Figure 5).  In the Supplementary Material, we 276 

present an intermediate scenario with a constant moderate target harvest of ℎ$5 = 0.42. 277 
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 278 

Figure 5. The two harvest cases we simulated were (1) a simple Harvest Control Rule (eq. (4); solid line) with 279 

parameters estimated from historical harvest rates and total return from five central coast chum CUs (grey points), 280 

(2) a constant high target harvest rate of ℎ$5 = 0.6 (dotted line).  281 

Each population in our model was harvested in proportion to its abundance, such that the true 282 

total catch of fish that would have returned to streams within the CU was calculated as: 283 

W$ = ℎ$,&X#$,&
&

. (5) 

 Although realized harvest rates differed among populations, we did not incorporate persistent 284 

biases in realized harvest rates among populations and thus assumed that all populations were 285 

equally vulnerable to the fishery.  The extent to which this assumption is violated will depend 286 

the size of the CU, the number of populations within it, the magnitude of variation in run-timing 287 

among populations, and where fisheries are prosecuted.  Any such biases among populations 288 

within a CU would likely be small because run-timing was a consideration when delineating CUs 289 

(Holtby and Ciruna 2007).  However, biases among CUs may be significant and we investigate 290 
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this by varying the observation bias in the total catch to the CU (see Sensitivity analyses, 291 

below). 292 

Finally, we assumed the stock-recruitment dynamics followed a Ricker relationship (Ricker 293 

1954) yielding the number of recruits from brood year 3 and population ": 294 

#′1,& = @1,& expAY& − Z&,1 @1,&E expA[1,&E, (6) 

where Y&  is the loge recruits per spawner at low spawner abundance (i.e., productivity), Z&,1 is 295 

the time-varying density-dependence parameter, and [1,&  are the normally distributed 296 

recruitment deviates applied for year 3 and population " (eq. (7)). 297 

We allowed productivity to differ among populations, where Y&	~	](Y, _̂).  We constrained 298 

Y& ≥ 0.4 by re-drawing values of Y& < 0.4 because SR benchmarks are not calculable for very 299 

low productivity (Holt and Ogden 2013; Holt et al. 2018).  For central coast chum salmon, we 300 

found only 1% of spawning populations (2/181) had Y& < 0.4 (Online Supplement).  A linear 301 

change in the density-dependence parameter was simulated for some populations as a decline 302 

in the capacity of the stream (i.e., @FGH,&,1 = 1/Z&,1, or the spawner abundance that leads to 303 

maximum recruitment).  This decline in capacities captured the potential consequences of 304 

cumulative stressors to freshwater habitat among watersheds on the central coast (Connors et 305 

al. 2018).  For all populations, the initial capacity @FGH,&,c was drawn from a lognormal 306 

distribution whose mean and standard deviation differed for populations in indicator versus 307 

non-indicator streams, as indicator streams tend to be larger systems (English 2016; see 308 
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Parameterization).  The productivity and density-dependence parameters were drawn 309 

independently for each MC iteration of the model.   310 

We incorporated temporal autocorrelation in recruitment deviates: 311 

[1,& = d [1*c,& + e1,&, (7) 

where d is the temporal autocorrelation coefficient and e1,&  is a multivariate normal random 312 

variable with mean zero and variance-covariance matrix: 313 

f&×& =
⎣
⎢
⎢
⎡   k̂

l m  k̂l … m  k̂l
m  k̂l k̂

l … m  k̂l
⋮ ⋮ ⋱ ⋮

m  k̂l m  k̂l … k̂
l ⎦
⎥
⎥
⎤

&×&

. 
(8) 

Here, k̂ is the standard deviation in recruitment deviates without autocorrelation (Ricker 1975, 314 

Holt and Bradford 2011) and m is the correlation in recruitment deviates among populations.   315 

We simulated the ‘true’ population dynamics over 50 years, after an initialization period of 316 

seven years to seed eq. (6) given the variable age-at-return of chum salmon.  For each year in 317 

this initialization, we assumed that the number of spawners was equal to 20% of SMAX for 318 

population ".  For the first year of the initialization, we set [1*c,&  from eq. (7) to zero. 319 

Observation submodel 320 

In the observation submodel, we incorporated both incomplete monitoring coverage of 321 

streams and imperfect observation of spawners in streams that were monitored.  In any given 322 
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year, population j was observed with probability t1,&.  We included a linear decline in 323 

monitoring coverage (i.e., the probability of a population being observed) over time based on 324 

observations of declining monitoring coverage on the north and central coast (Price et al. 2008, 325 

2017; English 2016).  We calculated the annual probability of being monitored separately for 326 

indicator and non-indicator streams based on observations that monitoring coverage of non-327 

indicator streams is generally lower and has declined more severely than coverage of indicator 328 

streams (English 2016).  See Parameterization for further details.  329 

Spawner abundances were ‘observed’ with log-normal error: 330 

@̂1,& = v1,& M@1,& expAw1,&EO, (9) 

where v1,& ∼ Bernoulli(prob = t1,&), w1,& ∼ ](w,  Å̂), w is the mean observation error, and 331 

Å̂  is the standard deviation in observation error of spawner abundances.  Thus, this combines 332 

both the probability of a population being monitored and the distribution of observation errors 333 

around true spawner abundances if monitored.  We included a negative bias in the observation 334 

of spawners (w ≤ 0) such that the mean observed spawner abundance is on average lower than 335 

the true spawner abundance.  In general, it is challenging to enumerate spawners in all reaches 336 

of a stream and in all streams within a CU. The reported spawner abundance is considered an 337 

underestimate of the total spawners in a CU, which motivates the application of Expansion 338 

Factor III for observer (in)efficiency when performing run reconstructions (Table 1).  The 339 

calculation of Expansion Factor I required that we impose the constraint that at least one 340 
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indicator stream was monitored each year, so if v1,&  = 0 for all indicator streams in a year, we 341 

randomly selected one indicator stream to be monitored. 342 

The catch to the entire CU in return year ! was observed with log-normal error: 343 

Ŵ$ = W$ exp(É$), (10) 

where É$ ∼ ](É̅, σÜ), ^á is the standard deviation in catch error, and É̅ is a bias in catch.  We 344 

assumed a default value of É̅ =0, but in sensitivity analyses we varied this parameter to simulate 345 

scenarios in which fish are caught from other CUs or fish from the focal CU were caught in other 346 

PFMAs. 347 

Previous models (e.g., Holt et al. 2018) have included error in the “estimated age-at-return” 348 

separately for each return year.  For central coast chum salmon, annual age-at-return data are 349 

rarely sampled comprehensively so the same average is generally applied across all years 350 

(Peacock et al. 2014; English et al. 2018).  Therefore, for each year in a Monte Carlo (MC) trial 351 

we applied the same age-at-return, which was drawn independently for each MC trial using eq. 352 

(2) with observation error, :àââââ (Table A1). 353 

Assessment submodel 354 

As described above, the minimum requirement to calculate benchmarks and assess population 355 

status using HS benchmarks is a time-series of spawner abundance to the CU.  For SR 356 

benchmarks, harvest rates and age-at-return must also be estimated in order to calculate 357 

recruitment.  The basic procedure of these run reconstructions is outlined in Table 1, and 358 
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begins by expanding observations of spawners to indicator streams to the total spawner 359 

abundance to the CU by applying three Expansion Factors.  The equations and criteria 360 

governing these Expansion Factors are detailed in the Online Supplement and in English et al. 361 

(2012, 2016, 2018).  Briefly, Expansion Factor I (ä$,ã5 ) imputes for populations in unmonitored 362 

indicator streams and is calculated for each year, t,  within a decade, d, of the spawner time 363 

series.  It relies on the decadal contribution of each indicator-stream population to the total 364 

escapement to all indicator streams (English et al. 2016).  Expansion Factor II (äã55) expands 365 

observations of spawners from indicator streams to include populations in non-indicator 366 

streams that are less frequently monitored, and is the same for each year within a decade, d.  367 

Expansion Factor II is calculated as the average proportion of total monitored spawners (in 368 

indicator and non-indicator streams) that are in non-indicator streams for that decade.  For 369 

decades with insufficient information to calculate either of these Expansion Factors, for 370 

example due to declining monitoring coverage, a reference decade may be used.  Expansion 371 

Factor III (ä555) is determined by the regional DFO staff familiar with the escapement monitoring 372 

techniques used in each statistical area and is assumed to be constant through time (English et 373 

al. 2018). In our model, we assumed that all populations were at least partially monitored, and 374 

that Expansion Factor III accounted for observation (in)efficiency, but in reality, Expansion 375 

Factor III may also account for populations in unmonitored streams. 376 

The observed number of salmon returning in year ! is the sum of observed catch and expanded 377 

escapement to the CU: 378 
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#̂$ = Ŵ$ + ä$,ã5 	äã55	ä555X @̂$,&
&	∈	ç

, (11) 

where the summation includes observed spawner abundance to the I indicator streams only, 379 

with the non-indicator streams being accounted for through Expansion Factor II, äã55. 380 

We do not explicitly account for en route or pre-spawning mortality of fish that escaped the 381 

fishery, and assume that pre-spawning mortality is relatively small and accounted for in the 382 

productivity of the population through the Ricker stock-recruitment dynamics.  Observed 383 

recruitment for brood year 3 is calculated as the sum of age 3, 4, and 5 fish returning in years 384 

3 + 3, 3 + 4, and 3 + 5, respectively: 385 

#̂1
5
= #̂1è+ -ê̂+ + #̂1è/ -ê̂/ + #̂1è0 -ê̂0, (12) 

yielding the ‘reconstructed’ spawner-recruit pairs for brood year y. 386 

To calculate estimated SR benchmarks, we fit a linearized Ricker model to the observed data at 387 

the aggregate CU-level.  The estimated productivity and density-dependence parameters were 388 

used to calculate upper and lower SR benchmarks (80% of @Fëí and @>ìî) for the CU. 389 

Performance submodel 390 

For each MC simulation, we estimated status using both SR and HS benchmarks calculated from 391 

the observed stock-recruitment pairs for the CU, including observation biases and incomplete 392 

monitoring coverage.  Estimated status under both types of benchmarks was compared to the 393 

true status, which was calculated by comparing the current true spawner abundance (without 394 
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observation error) against the upper and lower SR benchmarks (80% of SMSY and SGEN) from the 395 

underlying stock-recruitment parameters.  Because we simulated the true dynamics at the scale 396 

of spawning populations and there was no “true” CU-level value for the Ricker parameters, 397 

calculating the true SMSY (and thus the SR benchmarks) at the CU-level was not straightforward.  398 

We chose to calculate the true SR benchmarks for each population from the underlying Ricker 399 

parameters for that simulation and then summed the benchmarks across all populations to 400 

yield the “true” CU-level benchmarks. Although this CU-level benchmark will underestimate the 401 

level required to maintain all component populations above their individual benchmarks in any 402 

given year, the objective of the WSP is to maintain the overall CU and populations within CUs 403 

are generally assumed be recolonizable within reasonable time frames (Fisheries and Oceans 404 

Canada 2005).  We evaluated estimates of HS benchmarks against the true underlying 405 

benchmarks derived from ”true” SR parameters. When declines in capacity were included in the 406 

simulation, we calculated true status from the initial capacity parameters before the decline in 407 

order to avoid a shifting baseline in benchmarks.   408 

Performance was evaluated in two ways that capture the difference between estimated and 409 

true status: 410 

a) Proportion of MC simulations for which status was correctly assessed as green, amber, or 411 

red, and the proportion of simulations for which status was either underestimated 412 

(pessimistic) or overestimated (optimistic).  413 

b) Percent relative bias of observed average spawner abundance (SAVG) and of the four 414 

benchmarks (SGEN, 80% SMSY, S25, S50) compared to their true values for each MC simulation. 415 
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For each parameterization investigated (see below) we ran 4000 MC trials, which was sufficient 416 

to ensure the mean percent error in performance measures was < 3% (Figure S3). 417 

Parameterization 418 

Some of the parameters in our simulation model were unknown or unknowable, in which case 419 

we followed assumptions made for southern BC chum salmon by Holt et al. (2018).  Other 420 

parameters were available specifically for central coast chum salmon or could be estimated 421 

from raw data; details of parameter estimation are given in the Online Supplement.  As 422 

mentioned above, in order to understand the assessment biases under different true statuses 423 

we considered two cases: (1) high productivity and a conservative harvest control rule (HCR), 424 

which we refer to as the “base case” because it is most representative of central coast chum 425 

salmon, and (2) low productivity and a constant high target harvest rate, which represented a 426 

CU at high risk of extirpation.  In the Online Supplement, we also present results from a third 427 

case intermediate between these two with low productivity and moderate harvest.  Unless 428 

otherwise indicated in the sensitivity analysis (below), parameters defaulted to the values 429 

described here and listed in the Appendix, Table A1.  430 

The mean proportion of adults maturing at ages 3, 4, and 5 in eq. (2) was 0.23, 0.64, and 0.13, 431 

respectively, based on the average age-at-return applied in run reconstructions of central coast 432 

chum (Challenger et al. 2018; English et al. 2018).  433 
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We estimated the parameters in the HCR (Figure 5) from harvest rates and total return sizes for 434 

five central coast chum CUs (English et al. 2018; Salmon Watersheds Program - Pacific Salmon 435 

Foundation 2019). 436 

To estimate the stock-recruitment parameters for spawning populations (eq. (6)), we fit a 437 

linearized Ricker model to population-level spawner-recruit pairs from nine central coast chum 438 

CUs with individual productivity and density-dependence parameters for each population 439 

(Figure S5).  From these model fits, we calculated (1) mean and variance in productivity among 440 

populations, (2) mean and variance in the initial capacity (i.e., 1/SMAX) for indicator and non-441 

indicator streams, (3) the residual variance within populations, (4) the correlation in residuals 442 

among populations, and (4) the temporal autocorrelation in residuals within populations.  The 443 

mean population-level productivity was Yâ = 1.40 (Figure S5), which we applied in our base case.  444 

For the low-productivity case, we chose Yâ = 0.56, which was the 2.5th percentile of population-445 

level productivity estimates (Figure S5).  The correlation in residuals among populations was 446 

estimated at m = 0.46, but we also investigated lower (m = 0) and higher (m = 0.9) levels of 447 

synchrony in the Online Supplement. 448 

As the default case, we considered a decline in the capacity of streams (i.e., inverse density-449 

dependence parameter of the Ricker model) that reflected observed declines in freshwater 450 

habitat (Office of the Auditor General of Canada 2004).  Within the central coast chum CUs, 451 

29% of watersheds are considered to be at moderate risk, and 21% at high risk, of cumulative 452 

habitat pressures over the last 60 years from stressors such as logging, water licenses for 453 

withdrawal of water from streams, and stream crossings (Connors et al. 2018).  We 454 
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hypothesized that declines in capacity that differ among spawning populations may affect the 455 

accuracy of Expansion Factors I and II, particularly in combination with declining monitoring 456 

coverage (Price et al. 2017).  We incorporated a linear decline in capacity (i.e., SMAX = 1/b) 457 

between 25% and 50%, representing a moderate decline, for 29% of populations (the 458 

percentage of central coast chum watersheds deemed to be at moderate risk of cumulative 459 

habitat pressures by Connors et al. 2018) and a linear decline between 50% and 75%, 460 

representing severe decline, for 21% of populations (the percentage deemed to be at high risk) 461 

over the 50-year simulation.  The exact percent decline for each population was randomly 462 

drawn from a uniform distribution within the above range for each MC simulation.  The 463 

remaining 50% of populations had stable capacity over the 50-year simulation.  In a sensitivity 464 

analysis, we investigated four additional scenarios for declining capacity (Table 2). 465 

In the observation submodel, we chose the bias in the observation of spawners to match 466 

Expansion Factor III, which corrects for observer efficiency, with a range of values explored in a 467 

sensitivity analysis (below).  The value of Expansion Factor III applied in status assessments has 468 

been constant at F’’’ = 1.5 for all central coast chum CUs (English et al. 2016), and so we applied 469 

a default value of w̅ = loge(1/1.5) = -0.4.  The majority of central coast chum streams are 470 

surveyed visually by ground (fish counts or other sampling) with some aerial (fish counts) or 471 

boat (fish counts or other sampling) surveys (English 2016), similar to southern BC chum 472 

streams (Holt et al. 2018).  We assumed Å̂  = 0.5 following Holt et al. (2018), which is the 473 

maximum estimated uncertainty for visually surveyed spawners (Cousens et al. 1982; Szerlong 474 

and Rundio 2008). 475 
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We incorporated a linear decline over the last 27 years of simulations in the proportion of 476 

indicator and non-indicator streams monitored each year from 0.76 and 0.72, respectively, to 477 

0.72 and 0.05 based on English (2016).  These declines are representative of overall declines in 478 

monitoring across species, but we also consider the trends specific to chum salmon in the 479 

Online Supplement (Figure S6). 480 

We assumed no bias in the observation of catch (É̅ = 0) by default, but consider a range of bias 481 

in sensitivity analyses (below).  The standard deviation in the observation error of catch 482 

accounts for differences between observed (i.e., reported) and actual catch due to 483 

uncertainties with mixed-stock fisheries and in reporting and estimation of recreational 484 

fisheries and subsistence use. We set this to ^á	= 0.2 (Holt et al. 2018), which is less than the 485 

observation error in spawners. 486 

Sensitivity analyses 487 

We examined the sensitivity of status assessments over a range of values for several different 488 

model parameters that we considered most likely to affect status assessments due to their 489 

influence on the assumptions in run reconstructions (Table 1; Table 2).  We investigated each of 490 

the questions below under both the base case and low-productivity high-harvest case described 491 

above, with other parameters at their default values (Table A1) unless otherwise noted.  The 492 

specific questions that we addressed were: 493 
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1. How does the number of spawning populations and the proportion designated as 494 

indicator streams affect status assessments? The lower the proportion of streams that 495 

are indicators, the greater the magnitude of Expansion Factor II.  496 

2. How does a decline in monitoring coverage affect status assessments? The fewer 497 

indicator streams that are monitored, the greater the magnitude of Expansion Factor I 498 

and the potential uncertainty in expanded spawner abundance.  Here, we consider two 499 

scenarios (Table 2; Figure S6): constant monitoring coverage at historical proportions 500 

among all streams and an observed decline in coverage starting in the mid-1980s as has 501 

been observed on the north and central coast (English 2016; Figure S6).  In the Online 502 

Supplement we consider two additional scenarios: observed declines in monitoring 503 

specific to chum salmon streams and a sharp, recent decline in monitoring of indicator 504 

streams. 505 

3. How do declines in capacity affect status assessments? The application of Expansion 506 

Factors I and II assumes that the relative contributions of populations to aggregate 507 

abundance in the CU does not change over time, but declines in capacity that differ 508 

among populations may violate this assumption.  509 

4. How does spawner observation bias affect status assessments, given that the value of 510 

Expansion Factor III is fixed over time and often the same among CUs (English et al. 511 

2018)? 512 

5. How does catch observation bias (e.g., over- or under-estimating catch of salmon) affect 513 

status assessments?  This represents scenarios where there are errors in estimates of 514 

CU proportions in the aggregate catch in a mixed-stock fishery, or violation in the 515 
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assumption of homogenous spatial and temporal distribution of CUs when CU 516 

proportions are not monitored in such fisheries.   517 

6. How does interannual variability in age-at-return affect status assessments? 518 

We investigated the impact of declines in monitoring coverage (question #2 above) in 519 

combination with declines in capacity of spawning populations (question #3) in a bivariate 520 

sensitivity analysis. 521 

Results 522 

The different productivity and harvest rate combinations that we considered led to different 523 

true statuses for the CU.  Under high productivity and an abundance-based harvest control rule 524 

(HCR) – the base case corresponding to central coast chum salmon – 86.0% of simulations 525 

resulted in true green status (Figure 6a,b).  Conversely, under low productivity and high harvest 526 

rates, 68.3% of simulations resulted in true red status (Figure 6c,d).  527 

Under the base case when true status was mostly green, misclassifications resulted in 528 

estimated status lower than the true status meaning assessments were biologically pessimistic 529 

(henceforth referred to as “pessimistic misclassifications”).  This was particularly true of the 530 

historical spawners (HS) benchmarks, for which 54.5% of simulations resulted in a pessimistic 531 

misclassification with 12.1% of simulations having misclassified green status as red.  Pessimistic 532 

misclassifications were due to positive bias in benchmarks and not bias in the current spawner 533 

abundance (Figure 7), resulting in status being underestimated.  For productive populations (as 534 

in the base case), most observed spawner abundances tend to be far above lower benchmarks 535 
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and closer to equilibrium values.  As a result, HS benchmarks of 25th and 50th percentile of 536 

historical spawner abundance tend to overestimate the “true” SR-based benchmarks. 537 

When true status was mainly red, under low productivity and high harvest rates, biologically 538 

optimistic misclassifications (henceforth “optimistic misclassifications”) were more common, 539 

which may be riskier from a conservation and management standpoint.  For example, 45.8% 540 

and 43.8% of simulations had an estimated status higher than true status under the stock-541 

recruitment (SR) and HS benchmarks, respectively (Figure 6c,d).  These more frequent 542 

optimistic misclassifications were due to a negative bias in benchmarks, in particular the lower 543 

SR benchmark of SGEN (Figure 7a), likely due to a poor ability to estimate SMSY under low 544 

productivity when spawner abundances tend to cluster near the origin. 545 

Under both types of benchmarks, bias did not decrease when monitoring coverage was held 546 

constant at 100% (Figure S9), suggesting that the application of Expansion Factors I and II were 547 

not contributing factors.  548 
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 549 

Figure 6. Estimated status according to the stock-recruitment benchmarks (left) and the historical spawners 550 

benchmarks (right), over the true status for each of two cases (high productivity and an HCR (a-b) and low 551 

productivity and high harvest rates (c-d)). Grey cells indicate pessimistic misclassifications, which may lead to overly 552 

conservative management actions, and black cells indicate optimistic misclassifications, which may lead to overly 553 

risky management actions. Coloured cells indicate correct classifications for red, amber, and green zones, 554 

respectively. 555 
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 556 

Figure 7. Relative bias in stock-recruitment benchmarks (a), historical spawners benchmarks (b), and current 557 

spawner abundance (SAVG; black) (median ± interquartile range among 4000 MC simulations) for the base case 558 

(high productivity and an HCR) and the low-productivity high-harvest case.  559 

Sensitivity analyses 560 

The number of spawning populations within the CU and the proportion of those populations 561 

spawning in indicator streams had little impact overall on status assessments (Figure S10).  562 

Under the base case, the relative bias in estimates of SMSY and SGEN were lower in larger CUs, 563 

presumably because the effect of recruitment deviations for individual spawning populations 564 

on the aggregate stock-recruitment relationship was diminished when there were more 565 

component populations.  This decline in bias resulted in half as many pessimistic 566 

misclassifications for larger CUs under the SR benchmarks (40% for 10 populations versus 20% 567 

for 140 populations with 30% indicator streams; Figure S10a).  This trend was not, however, 568 

observed in the low-productivity high-harvest case when true status was predominantly red 569 

(Figure S12). 570 
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The monitoring-coverage scenarios that we considered, representative of observed declines in 571 

monitoring on the north and central coast, had no effect on status outcomes or the relative bias 572 

in benchmarks.  This was true in the base case (Figure 8, Figure S13) and under low productivity 573 

(Figures S14 – S15).  Even under severe declines in capacity of 50% to 75% for all spawning 574 

populations, our results suggest that the observed declines in monitoring coverage on the north 575 

and central coast are unlikely to influence the accuracy of status assessments.  This result held 576 

regardless of whether the recruitment deviates among component populations within the CU 577 

were not correlated (m = 0; Figure S16) or highly correlated (m = 0.9; Figure S17).  578 

 579 
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 580 

Figure 8. The effect of monitoring coverage (no change and decline; Table 2) and the percentage of spawning 581 

populations with severe declines in capacity (x-axis) on performance measures under the base case of high 582 

productivity and HCR. (a-b) The proportion of simulations with correct green, amber, or red status or pessimistic 583 

misclassifications (grey) and optimistic misclassifications (black) under the SR benchmarks (a) and HS benchmarks 584 

(b). (c-d) The percent relative bias (median ± interquartile range among 4000 MC simulations) in the current 585 

spawner abundance (SAVG; black) and lower and upper benchmarks (red and green, respectively) under the SR 586 

benchmarks (c) and the HS benchmarks (d).  See Online Supplement for results under the low-productivity high-587 

harvest case. 588 

 589 

Under the base case, declines in capacity of the CU were associated with poorer estimated 590 

status and an increase in misclassification rates (Figure 8a-b).  Pessimistic misclassifications 591 
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increased because CUs more frequently had a true status of amber but were misclassified as 592 

red.  Optimistic misclassifications increased, particularly under the SR benchmarks (Figure 8a), 593 

because the relative bias in the current spawner abundance (SAVG) remained unchanged, but 594 

the bias in benchmarks decreased (Figure 8c-d).  In the low-productivity high-harvest case, the 595 

results were similar but with biologically optimistic misclassifications dominating as status was 596 

predominantly amber or red (Figure S15).  597 

 598 
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 599 

Figure 9. The effect of observation bias in the number of spawners (x-axis) on performance measures under the 600 

base case. (a-b) The proportion of simulations with correct green, amber, or red status or pessimistic 601 

misclassifications (grey) and optimistic misclassifications (black) under the SR benchmarks (a) and HS benchmarks 602 

(b). (c-d) The percent relative bias (median ± interquartile range among 4000 MC simulations) in the current 603 

spawner abundance (SAVG; black circle) and lower and upper benchmarks (red and green, respectively) under the SR 604 

benchmarks (c) and the HS benchmarks (d). The Asterisk (*) in (a-b) and grey zone in (c-d) indicate the default 605 

parameter value of w̅ = -0.4, and the bias	that matches the Expansion Factor III of F’’’ = 1.5 applied in all 606 

simulations. See Online Supplement for results under the low-productivity high-harvest case (results were similar). 607 

As the bias in the observation of spawners approached zero (δâ →0), misclassifications under the 608 

SR benchmarks declined in all cases, even as the observation bias became less than the 609 

Expansion Factor III applied to correct for it (Figure 9a, Figures S18-S19).  The relative bias in the 610 
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current spawner abundance was minimized when the observation bias matched the assumed 611 

value of Expansion Factor III (w̅ = -0.4 corresponding to F’’’ = 1.5; Figure 9c-d).  When observed 612 

spawner abundance was biased low (w̅ = -1.6), the relative bias in the upper benchmark of 80% 613 

SMSY was higher than the relative bias in current spawner abundance (SAVG) or the lower 614 

benchmark (SGEN), and thus CUs with a true green status were more likely to be misclassified as 615 

amber.  Status outcomes under the HS benchmarks were unaffected by changes in observation 616 

bias of spawners (Figure 9b); the bias in both benchmarks and current abundance showed 617 

similar changes as observation bias declined (Figure 9d) such that the resulting status outcome 618 

was unchanged.  In the Online Supplement, we also investigated a change in observation bias 619 

halfway through the simulation (Figure S20), but a change from the base value of w̅ = -0.4 to w̅ = 620 

-1.6, -0.7, and 0 did not have any impact on status outcomes or biases in benchmarks (Figure 621 

S21). 622 

Underestimation of catch (i.e., negative values of É̅) resulted in fewer misclassifications than 623 

overestimating catch (Figure 10, Figures S22 – S23).  As the catch bias increased from É̅ = -1.0 624 

(63% underestimation) to É̅ = 1.0 (271% overestimation), the relative bias in the lower SR 625 

benchmark of SGEN declined while the relative bias in the upper benchmark of 80% SMSY 626 

increased (Figure 10b).  This is due to the errors in variables that occur when catch is 627 

underestimated: productivity and recruitment tend to be underestimated, thus leading to 628 

lower estimates of SMSY and higher estimates of SGEN (Holt and Folkes 2015).  Under the base 629 

case, the true status was green in the majority of simulations and so the increasing bias in the 630 

upper benchmark dominated the overall status assessments and led to the increase in 631 
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pessimistic misclassifications with increasing É̅.  In the low-productivity high-harvest case, true 632 

status was mostly red and so the increasingly negative bias in SGEN resulted in more optimistic 633 

misclassifications as the observation bias in catch increased (Figure S23).  In both cases, 634 

overestimating catch by ∼80% (i.e.,  É̅ = 0.6) led to a ∼5% increase in misclassification rate 635 

(Figure S24).  Although these changes in misclassification rates may seem small, there is 636 

potential for large catch errors in run reconstructions, especially when multiple CUs overlap 637 

with a single PFMA.  Catch does not factor into the calculation of HS benchmarks, so status 638 

under the HS benchmarks was unaffected by changing catch bias. 639 

Finally, increasing interannual variability in age-at-maturity resulted in more frequent status 640 

misclassifications, but the effect was relatively small.  Under the base case, increasing :ô from 641 

0.2 to the default value of 0.8 resulted in an increase in misclassifications from 25.2% to 29.8%, 642 

but very little change in the bias in benchmarks (Figure S25).  Further increasing the interannual 643 

variability to :ô = 1.6 led to 32.1% of simulations being misclassified, but this level of interannual 644 

variability is high (see Figure S4 for example) compared to data on age-at-return for central 645 

coast chum salmon (Challenger et al. 2018; English et al. 2018).  The increase in 646 

misclassifications was smaller under the low-productivity high-harvest case (Figure S25).   647 
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 648 

Figure 10. The effect of observation bias in catch (x-axis) on performance measures under the base case. (a) The 649 

proportion of simulations with correct green, amber, or red status or pessimistic misclassifications (grey) and 650 

optimistic misclassifications (black) under the SR benchmarks . (b) The percent relative bias (median ± interquartile 651 

range among 4000 MC simulations) in the current spawner abundance (SAVG) and upper and lower benchmarks 652 

under the SR benchmarks. The asterisk in (a) and grey zone in (b) indicate the default parameter value of É̅ = 0. See 653 

Online Supplement for results under the low-productivity high-harvest case. 654 

Discussion 655 

Complete knowledge of the dynamics of wild fish populations and fisheries is unattainable, and 656 

thus assumptions must be made when assessing biological status to inform conservation and 657 
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management (Chen et al. 2003).  Integrated status assessments of Pacific salmon Conservation 658 

Units (CUs) under Canada’s Wild Salmon Policy (WSP) rely on the judgement of selected experts 659 

to help evaluate status, considering multiple indicators and the quality and quantity of available 660 

data (DFO 2015, 2016, 2018a), but this process is time and resource intensive, slowing the 661 

broad application of integrated status assessments.  Other types of assessments rely on a data-662 

driven approach focused on specific metrics without extended expert elicitation to evaluate the 663 

potential uncertainty and biases arising from assumptions around imputing spawner 664 

abundances and calculating recruitment (i.e., run reconstruction).  These run-reconstructions 665 

have been adopted by, for example, local management organisations, Marine Stewardship 666 

Council (www.msc.org), the Pacific Salmon Treaty (PSC 2019), COSEWIC (e.g., COSEWIC 2016, 667 

2017), and the Pacific Salmon Foundation (PSF).  The PSF, in particular, have undertaken a 668 

widespread effort to apply a data-driven approach to assessing spawner abundance under the 669 

WSP framework, with results for the north and central coast openly available through their 670 

Pacific Salmon Explorer (Connors et al. 2013, 2018, 2019), and are currently expanding their 671 

assessments to the south coast of BC.   672 

The benefits of this data-driven approach to biological status assessment include transparent 673 

and repeatable methodology, standardized and comparable results across CUs, and the ability 674 

to update status assessments in a timely manner.  However, the impact of compound 675 

assumptions on the assessment of biological status needs to be quantified to lend confidence 676 

and credibility to status outcomes.  In this study, we quantified the impact of common 677 
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assumptions in basic run reconstructions (Figure 2c; Table 1) on resulting biological status 678 

outcomes.  679 

Implications for status assessments 680 

In general, the common assumptions in salmon run reconstructions that we hypothesized might 681 

introduce biases (Table 1) had little effect on status outcomes on our simulated populations, 682 

suggesting that attempts to assess status in the face of limited data are worthwhile.  In 683 

particular, there was almost no effect of declines in monitoring coverage to the extent that has 684 

been observed on the accuracy of benchmarks or resulting status outcomes, even in the face of 685 

different trends in capacity and reduced synchrony (i.e., zero autocorrelation in recruitment 686 

deviates) among spawning populations within the CU.  This result suggests that the application 687 

of Expansion Factors accurately infills gaps in spawner abundances, even when there are 688 

changes over time in the dynamics of populations in indicator and non-indicator streams.  More 689 

extreme declines in monitoring may impact assessments – certainly, if no spawning populations 690 

are monitored then our ability to assess status will inevitably be compromised – but the current 691 

approach to infilling and expanding spawner abundances proved robust to declines in 692 

monitoring coverage in the range documented for the north and central coast (English 2016; 693 

Price et al. 2017).  694 

Perhaps unexpectedly, misclassifications were not minimized when the value of Expansion 695 

Factor III, correcting for observer efficiency, accurately reflected the true observation bias in 696 

the underlying simulation.  Rather, misclassifications under the stock-recruitment (SR) 697 

benchmarks declined as the observation bias in spawners approached zero.  This result is due 698 
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to the combination of bias in current spawner abundance, which is minimized when 699 

observation bias matches Expansion Factor III, and biases in benchmarks, which depend on 700 

underlying status.  Status outcomes under the historical spawners (HS) benchmarks were 701 

unaffected by observation bias, as this bias was assumed to be constant over time and affected 702 

the current and historical spawner abundances equally. 703 

Under high productivity and an abundance-based harvest control rule (HCR) consistent with 704 

historical central coast chum salmon harvest rates, most simulations had a true green status, 705 

but misclassifications as amber were common under both SR and HS benchmarks.  The 706 

estimated status from our simulations roughly matched the status outcomes for seven central 707 

coast chum CUs from that period, with the majority of CUs having green status under the SR 708 

benchmarks and amber status under the HS benchmarks (Connors et al. 2018).  (Note that 709 

status of central coast chum salmon CUs has since declined; see the Pacific Salmon Explorer 710 

(www.salmonexplorer.ca) for the most up-to-date assessments.)  Consistent with the real 711 

status assessments, status under the HS benchmarks tended to be poorer than status under the 712 

SR benchmarks.  Our simulations attributed this to a higher relative bias in HS benchmarks, 713 

consistent with a similar simulation study of south-coast chum salmon that found estimated HS 714 

benchmarks tended to be biased high under high-productivity scenarios, resulting in pessimistic 715 

misclassifications of biological status (Holt et al. 2018).  These pessimistic misclassifications may 716 

result in overly conservative management actions that are less risky from a conservation 717 

standpoint, consistent with the Precautionary Principle (Foster et al. 2000).  However, high 718 
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probabilities of pessimistic misclassification are not always desirable as they may result in 719 

foregone harvest (Walters et al. 2019).  720 

We extended our results beyond the base case, representative of central coast chum salmon, 721 

by including simulations with low productivity and high harvest rates.  These simulations 722 

revealed that misclassifications strongly depend on the true status of the CU.  For example, 723 

when we manipulated productivity and target harvest rates to mimic a CU with poor biological 724 

status (i.e., true red), the bias in benchmarks was negative, resulting in a high proportion of 725 

optimistic misclassifications.  This represents a high-risk management scenario from a 726 

conservation standpoint, particularly as the true underlying status is red.  Similarly, the absolute 727 

biases in benchmarks were more severe under declines in capacity when status was 728 

predominantly red (productivity low) compared to predominantly green (productivity high).  729 

The bias in SR benchmarks was particularly sensitive to the underlying true status, presumably 730 

because productivity and recruitment, which influence status, also affect the bias in stock-731 

recruitment parameters (Subbey et al. 2014) that arises due to recruitment-spawner linkage 732 

inherent in the data (Walters 1985; Korman et al. 1995) and/or due to error in spawner 733 

estimates (Walters and Ludwig 1981; Kehler et al. 2002; Kope 2006). 734 

Our results suggest that overestimating catch should be avoided.  In particular, under low 735 

productivity and high harvest rates when status is mainly red, optimistic misclassifications 736 

associated with oversestimating catch and therefore underestimating the lower benchmark, 737 

SGEN, may put populations at further risk.  In contrast, under the base case of high productivity 738 

and an HCR, overestimating catch resulted mainly in more frequent pessimistic 739 
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misclassifications as the upper benchmark (SMSY) was overestimated, resulting in CUs with a 740 

true green status being estimated as amber.  In both cases, the impact of overestimating catch 741 

has the potential to significantly bias assessments: overestimating catch by ∼80% led to a ∼5% 742 

increase in misclassification rates.  This level of catch overestimation (and higher levels) may 743 

occur when fish caught in a Pacific Fisheries Management Area (PFMA) and assigned to the CU 744 

that overlaps with that PFMA were actually bound for other CUs. This could occur in mixed-745 

stock fisheries if genetic stock identification is not undertaken to validate assumptions 746 

regarding run-timing and migration patterns.  Increased efforts to quantify catch composition, 747 

run timing, and spatial distribution of Pacific salmon CUs are therefore needed to more 748 

accurately estimate harvest rates and minimize misclassifications of biological status. 749 

Limitations, challenges, and future research 750 

As is inevitable when trying to accurately model the stochastic dynamics of salmon spawning 751 

populations within CUs, we made a number of assumptions and so there remain several 752 

limitations to our modelling approach.  We considered true stock-recruitment dynamics to 753 

operate at the spatial scale of spawning populations (i.e., individual streams), but there is 754 

evidence that the processes influencing productivity and density-dependence may operate at 755 

broader, regional spatial scales (e.g., Malick and Cox 2016).  Other simulation models have 756 

incorporated straying among spawning populations within a CU (e.g., Peacock and Holt 2012; 757 

Holt and Folkes 2015).  While that approach incorporates density-dependence that may occur 758 

at broader spatial scales, it also requires additional assumptions to be made about the 759 

probabilities of straying among streams, which is largely unknown. 760 
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Simulating true dynamics at the scale of individual spawning populations also complicates the 761 

calculation of true status at the CU-level from SR benchmarks.  We chose to calculate SR 762 

benchmarks at the spawning-population-level and then sum across spawning populations to 763 

calculate SMSY and SGEN at the CU-level.  There are other approaches to calculate aggregate 764 

benchmarks, but each has its own potential biases.  For example, stock-recruitment 765 

relationships could be fit to the “true” data aggregated at the CU-level and SR benchmarks 766 

calculated from the resulting CU-level estimates of productivity and density dependence.  The 767 

way in which spawning-population-level benchmarks are aggregated to CU-level benchmarks 768 

may affect performance in our simulations, and a full exploration of how different methods of 769 

aggregation affect our results warrants future consideration.  770 

Despite these limitations, the simulation model that we adapted and applied is flexible enough 771 

that it can accommodate different Pacific-salmon species and life-history traits, opening the 772 

door to future work investigating the impact of different assumptions and the impact of the 773 

assumptions that we focused on under additional scenarios.  Here, we considered a relatively 774 

simple run-reconstruction model, but further work is needed to quantify how observation 775 

errors and uncertainty in the spatial and temporal distribution of returns affects status 776 

outcomes when more complex run-reconstruction models are used.  Temporal shifts in 777 

biological parameters, including age-at-return (e.g., associated with environmental change and 778 

selective fisheries) and productivity (non-stationarity has been widely observed in Pacific 779 

salmon; e.g., Peterman and Dorner 2012; Malick and Cox 2016; Dorner et al. 2017),  are also 780 

areas that warrant further exploration.  Additional simulations could also help inform methods 781 
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in the assessment process, such as the optimal time-series length for detecting changes, 782 

whether benchmarks should be updated with each assessment, and the best analytical 783 

approach to calculate SR benchmarks (e.g., Bayesian hierarchical models vs. single-stock 784 

ordinary least squares). 785 

Conclusions 786 

Pacific salmon are one of the most data-rich groups of fish due to their high economic, social, 787 

and cultural value, but nonetheless our knowledge of their dynamics is uncertain.  Assessing the 788 

biological status of Pacific salmon CUs is a conservation and management priority given the 789 

continued declines of many stocks (e.g., COSEWIC 2016, 2017) and escalating threats to salmon 790 

conservation.  Status assessments are also central to the implementation of Canada’s WSP, 791 

which requires information on current biological status in order to inform management 792 

strategies that can help to maintain salmon biodiversity.  Current government-led approaches 793 

to assessing the status of salmon CUs are either time and resource intensive (e.g., integrated 794 

assessments) or are not clearly documented in a consistent way (e.g., in assessment bulletins), 795 

which has limited their application to all 460+ Pacific salmon CUs in Canada.  It is unlikely that 796 

integrated status assessments will be undertaken in a timely manner for all salmon CUs.  Given 797 

the importance of current information on biological status, more rapid approaches for 798 

assessing biological status are required.  799 

The PSF has developed a timely and standardized approach for assessing biological status based 800 

on the indicators and benchmarks recommended under the WSP.  Similar approaches have also 801 

been adopted by other management and conservation organizations (e.g., Marine Stewardship 802 
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Council, COSEWIC, Pacific Salmon Commission).  These data-driven approaches to assessing 803 

biological status require assumptions to be made to estimate spawner and recruitment 804 

timeseries for CUs.  We found that the data-driven biological status assessments applied here 805 

were relatively insensitive to common assumptions in expanding spawner abundances within 806 

the parameter ranges we explored, but misclassification rates depend on the underlying status 807 

of the CU and may be of greater concern for CUs with poor status.  To ensure the accuracy of 808 

data-driven status assessments, increased efforts to collect data on catch composition, age-at-809 

return, and maintain timeseries of spawner abundances are needed.  Such information will 810 

help, for example, to define plausible ranges of error in catch estimation to lend confidence to 811 

estimates of recruitment and thus assessments under SR benchmarks.  Nonetheless, our 812 

research suggests that current efforts to assess status in the face of imperfect and incomplete 813 

data are worthwhile for central coast chum salmon and other similar stocks,  and can provide a 814 

timely approach to assessing status for CUs that complements more thorough integrated status 815 

assessments.  816 
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Table 1. Summary of common steps in run reconstructions (Figure 2) and associated assumptions and potential biases that we investigated. 1027 

Step in run 

recon-

struction 

Description Assumption Potential biases Associated factor(s) 

investigated in this study 

(1) 

Expansion 

Factor I 

Infills observed spawner 

abundances in indicator 

streams to account for 

indicator streams that 

were not monitored in a 

given year. 

The contribution of each indicator-

stream population to total escapement 

is constant within a decade. 

May be biased if contributions are 

changing due to, for example, changes in 

capacity or productivity that differ 

among populations. Under low 

monitoring coverage, the magnitude of 

expansion is greater and thus we expect 

that any potential bias would be larger. 

® Diverging capacities of 

populations through 

time 

® Declining monitoring 

coverage 

(2) 

Expansion 

Factor II 

Expands spawner 

abundances from (1) to 

include spawners in non-

indicator streams. 

The contribution of non-indicator-

stream populations to total escapement 

is constant within a decade. 

May be biased if contributions are 

changing due to, for example, changes in 

capacity or productivity that differ 

between populations in indicator and 

non-indicator streams.  

® Diverging capacities of 

populations through 

time 

® Declining monitoring 

coverage 
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® Number of streams and 

proportion that are 

indicators 

(3) 

Expansion 

Factor III 

Expands spawner 

abundances from (2) to 

account for observer 

efficiency and for 

populations that are 

never monitored, 

yielding the estimated 

total spawner 

abundance for the CU. 

The proportion of total spawner 

abundance estimated in (2) is known, 

constant over time, and independent of 

spawner abundance. 

May be biased if observer efficiency is 

not known or poorly estimated, if survey 

methods change over time (e.g., a weir 

to overhead counts), or if observation 

bias varies with total spawner 

abundance. 

® Bias in the observation 

of spawners (under the 

same value of Expansion 

Factor III) 

® Declining monitoring 

coverage 

(4) Catch 

assignment 

to CUs 

Catch from PFMAs is 

assigned to CUs in 

proportion to the 

spawner abundance for 

that CU. 

Fish caught in an PFMA were destined to 

spawn in streams that flow into that 

PFMA.  

Over- or under-estimation of catch due 

to different run timing among CUs that 

flow into the same PFMA (if information 

on run timing is uncertain, unavailable, 

or not incorporated into run-

reconstruction models). 

® Bias in the observation 

of catch 
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(5) 

Calculating 

recruitment 

using age-at-

return 

The total return to the 

CU is assigned to brood 

years based on the 

proportion of fish 

returning at different 

ages. 

Often, annual age-at-return data are not 

available for each CU, and so age-at-

return is assumed to be constant over 

time, using the average of available 

data. 

Variability in brood year recruitment will 

be underestimated if there is high inter-

annual variability, or temporal changes, 

in age-at-return that is not accounted 

for in assessments. 

® Inter-annual variability 

in age-at-return 

 

1028 
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Table 2. Summary of factors that we investigated in sensitivity analyses to determine their impact on bias in status 1029 

assessments. 1030 

Factor  Scenario Details 

Number of 

populations and 

proportion that 

spawn in 

indicator streams 

Central coast chum* 35 populations, 15 (43%) indicator streams 

Small/Low 10 populations, 3 (30%) indicator streams 

Small/High 10 populations, 8 (80%) indicator streams 

Large/Low 140 populations, 42 (30%) indicator streams 

Large/High 140 populations, 119 (85%) indicator streams 

Monitoring 

coverage 

Constant Indicator: historical 76% with no change 

Non-indicator: historical 72% with no change 

Observed decline* Indicator: 76% with a change of -5% over the last 26 years 

Non-indicator: 72% with a change of -67% over the last 26 years 

Declines in 

capacity† 

0 All spawning populations have stable capacities 

25 25% of populations severe and 25% moderate declines, and 

50% stable capacity 

50 50% of populations severe and 50% moderate declines in 

capacity 

100 100% of populations display severe declines in capacity 

Bias in 

observation of 

spawners 

Range in bias from !̅ = -1.6, which would correspond to the maximum value of Expansion 

Factor III that has been applied (F’’’ = 5.0,; English et al. 2018) to !̅ = 0 in increments of 0.2 

(*default value !̅ = -0.4, corresponding to F’’’=1.5) 

Bias in 

observation of 

catch 

Range in bias from #̅ = -1.0 (63% underestimation) to #̅ = 1.0 (271% overestimation) in 

increments of 0.2 (*default value #̅ = 0). 
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Interannual 

variability in age-

at-return 

Range in variability from $% = 0.2 to $% = 1.6 in increments of 0.2 (*default value $% = 0.8; 

Figure S4) 

*Default values. †The default values for decline in capacity did not correspond exactly to the 1031 

scenarios considered in the sensitivity analyses, but were based on habitat assessments for 1032 

central coast (21% of populations having severe declines and 29% of populations having 1033 

moderate declines (Connors et al. 2018)). 1034 
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Figure captions 1035 

Figure 1.  Illustration of the WSP status assessment framework (adapted from Holt et al. 2009).  1036 

We focused on the geometric mean spawner abundance (metric, blue) under the spawner 1037 

abundance indicator.  This metric was assessed against two types of benchmarks: stock-1038 

recruitment and historical spawners (see Figure 2).  Faded boxes represent other types of 1039 

metrics and indicators that may be included in integrated status assessments but were beyond 1040 

the scope of what we considered. 1041 

Figure 2. a) Historical spawners benchmarks are the 50th (horizontal green line) and 25th 1042 

(horizontal red line) percentiles of historical spawner abundance (points). The current spawner 1043 

abundance is calculated as the geometric mean spawner abundance over the most recent 1044 

generation (4 years, blue points and line). b) Stock-recruitment benchmarks are based on the 1045 

shape of the Ricker stock-recruitment relationship (solid line) fit to data on spawner abundance 1046 

(x-axis) and corresponding recruitment (catch + escapement, y-axis). The upper and lower 1047 

benchmarks are 80% SMSY (green) and SGEN (red), respectively. SGEN is defined as the spawner 1048 

abundance that leads to SMSY (grey) in one generation in the absence of fishing mortality. Under 1049 

both types of benchmarks, the current spawner abundance in the example shown is above the 1050 

upper benchmark, and this CU would be assessed as ‘green’.  c) The calculation of historical 1051 

spawners benchmarks and stock-recruitment benchmarks requires run reconstruction to 1052 

expand observed spawners abundances, assign catch to CUs, and calculate recruitment (Table 1053 

1). 1054 
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Figure 3. Our study focused on central coast chum salmon Conservation Units (CUs) as a case 1055 

study for how common run-reconstruction assumptions affect the assessment of biological 1056 

status. Chum salmon CUs (green; different CUs shaded differently in central coast inset) are 1057 

relatively large, and do not correspond to the Pacific Fishery Management Areas (PFMAs; white 1058 

or light blue shaded regions) for which catch is reported.  Therefore, assumptions have to be 1059 

made when assigning catch to CUs that may result in under- or over-estimation of catch. Map 1060 

produced using PBSmapping (Schnute et al. 2015) with data from Fisheries and Oceans Canada 1061 

(Martin Huang, pers. comm. <Martin.Huang@dfo-mpo.gc.ca>). 1062 

Figure 4. Schematic of the simulation model comprised of submodels for population dynamics 1063 

(including harvest), observation, assessment, and performance. Adapted from Holt et al. (2016). 1064 

Figure 5. The two harvest cases we simulated were (1) a simple Harvest Control Rule (eq. (4); 1065 

solid line) with parameters estimated from historical harvest rates and total return from five 1066 

central coast chum CUs (grey points), (2) a constant high target harvest rate of ht'=0.6 (dotted 1067 

line). 1068 

Figure 6. Estimated status according to the stock-recruitment benchmarks (left) and the 1069 

historical spawners benchmarks (right), over the true status for each of two cases (high 1070 

productivity and an HCR (a-b) and low productivity and high harvest rates (c-d)). Grey cells 1071 

indicate pessimistic misclassifications, which may lead to overly conservative management 1072 

actions, and black cells indicate optimistic misclassifications, which may lead to overly risky 1073 

management actions. Coloured cells indicate correct classifications for red, amber, and green 1074 

zones, respectively. 1075 
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Figure 7. Relative bias in stock-recruitment benchmarks (a), historical spawners benchmarks (b), 1076 

and current spawner abundance (SAVG; black) (median ± interquartile range among 4000 MC 1077 

simulations) for the base case (high productivity and an HCR) and the low-productivity high-1078 

harvest case. 1079 

Figure 8. The effect of monitoring coverage (no change and decline; Table 2) and the 1080 

percentage of spawning populations with severe declines in capacity (x-axis) on performance 1081 

measures under the base case of high productivity and HCR. (a-b) The proportion of simulations 1082 

with correct green, amber, or red status or pessimistic misclassifications (grey) and optimistic 1083 

misclassifications (black) under the SR benchmarks (a) and HS benchmarks (b). (c-d) The percent 1084 

relative bias (median ± interquartile range among 4000 MC simulations) in the current spawner 1085 

abundance (SAVG; black) and lower and upper benchmarks (red and green, respectively) under 1086 

the SR benchmarks (c) and the HS benchmarks (d).  See Online Supplement for results under 1087 

the low-productivity high-harvest case. 1088 

Figure 9. The effect of observation bias in the number of spawners (x-axis) on performance 1089 

measures under the base case. (a-b) The proportion of simulations with correct green, amber, 1090 

or red status or pessimistic misclassifications (grey) and optimistic misclassifications (black) 1091 

under the SR benchmarks (a) and HS benchmarks (b). (c-d) The percent relative bias (median ± 1092 

interquartile range among 4000 MC simulations) in the current spawner abundance (SAVG; black 1093 

circle) and lower and upper benchmarks (red and green, respectively) under the SR benchmarks 1094 

(c) and the HS benchmarks (d). The Asterisk (*) in (a-b) and grey zone in (c-d) indicate the 1095 

default parameter value of δ = -0.4, and the bias that matches the Expansion Factor III of F’’’ = 1096 
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1.5 applied in all simulations. See Online Supplement for results under the low-productivity 1097 

high-harvest case (results were similar). 1098 

Figure 10. The effect of observation bias in catch (x-axis) on performance measures under the 1099 

base case. (a) The proportion of simulations with correct green, amber, or red status or 1100 

pessimistic misclassifications (grey) and optimistic misclassifications (black) under the SR 1101 

benchmarks . (b) The percent relative bias (median ± interquartile range among 4000 MC 1102 

simulations) in the current spawner abundance (SAVG) and upper and lower benchmarks under 1103 

the SR benchmarks. The asterisk in (a) and grey zone in (b) indicate the default parameter value 1104 

of χ = 0. See Online Supplement for results under the low-productivity high-harvest case. 1105 
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Appendices 1106 

Appendix A: Table of default parameter values 1107 

Table A1. Default values for parameters in the simulation model that were used unless otherwise specified (e.g., in 1108 

sensitivity analyses). See text for further explanation of the values and the Online Supplement for details of 1109 

estimation for those based on raw data. For parameters that were part of sensitivity analyses, the range in 1110 

parameter values that was explored is highlighted. 1111 

Submodel Parameter Symbol Default 

value 

Range Ref. 

General Years over which the 

simulation is run 

& : return year 

' : brood year 

50 -  

Number of indicator 

streams 

( 15 1 – 41  1 

Number of non-indicator 

streams 

) 20 1 - 100 1 

Population 

dynamics 

Productivity 

 

*+ ∼ -(*/, 123) 

* 1.40 - 2 

123 0.22 - 2 

Density dependence 

(initial) 

 

5+,678 = 1/<=>?+ 

log <=>?+ ∼ -CDE,F, 1E,F
3 G 

DE,F 

 

7.95 - 2 

1E,F3  

 

2.07 - 2 

DE,H 

 

6.95 - 2 

1E,H3  1.39 - 2 
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Temporal autocorrelation I 0.422 - 2 

Variance in recruitment 

deviates within spawning 

populations 

1J3 1.28 - 2 

Correlation among 

spawning populations in 

recruitment deviates 

K 0.46  - 2 

Average proportions for 

age-at-maturity 

LM LN= 0.23 

LO= 0.64 

LP= 0.13 

- 3 

Interannual variability in 

age-at-maturity 

$ 0.8 - 4 

Maximum target harvest 

rate 

ℎ=>?R  0.42 - 5 

Shape parameter for that 

harvest rule 

S 1.13 × 10-5  5 

Standard deviation in 

outcome uncertainty 

around harvest rate 

1U 0.13 - 5 

Observation Lognormal observation 

error of spawners 

!̅ - 0.4 -1.6 to 0.0 6 

1V
3 0.25 - 4 

#̅	 0 -1.0 to 1.0  
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Lognormal observation 

error of catch 

1X3 0.04 - 4 

Variability in observed age-

at-return 

$Y 0.1 - 4 

References:  1112 

1. Based on the range of indicator and non-indicator streams reported in the Pacific Salmon Explorer 1113 

(www.salmonexplorer.ca) for the eight central coast chum CUs. 1114 

2. Calculated from river-level stock-recruitment data for central coast chum CUs. See Online Supplement for 1115 

details. 1116 

3. From the NCCDBV2 (Challenger et al. 2018).  1117 

4. Same as assumed in Holt et al. (2018) for south-coast chum salmon. 1118 

5. Calculated from CU-level harvest rates and total return size, from the Salmon Watersheds Data Library (Salmon 1119 

Watersheds Program - Pacific Salmon Foundation 2019). See Online Supplement for details. 1120 

6. Based on expert opinion. Expansion Factor of F’’’ = 1.5 in Table A3-A4 of English et al. (2016). 1121 
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