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Abstract

Under Canada’s Wild Salmon Policy, biological status of salmon Conservation Units (CUs) is
determined by expert consensus based on quantitative metrics, considering the associated
assumptions, uncertainties, and risks. This process takes time and resources and has been
completed for <10% of CUs. Data-driven approaches that rely on a standardized subset of
metrics can provide transparent, timely, and accessible assessments on those metrics, but lack
rigorous review by experts on a CU-by-CU basis. Thus, it is important to understand how status
outcomes from data-driven assessments may be biased by underlying assumptions. We used a
stochastic simulation model to quantify how common assumptions in “run reconstructions”
around imputing missing spawner data, expanding observed spawner abundance to CUs,
assigning catch to CUs, and quantifying age-at-return biased assessments. We found that data-
driven assessments based on spawner abundances are robust to most common assumptions in
run reconstructions, but overestimating catch to CUs may increase rates of status
misclassification. Further research is needed to understand the implications for more complex

run-reconstruction models that incorporate spatial and temporal variability in return timing.
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Introduction

Timely and effective management of fish and wildlife relies on accurate information about the
current biological status of populations. However, complete information on abundance, trends,
and demographic parameters is rarely available for those populations or species that need to
be assessed. Therefore, assumptions have to be made when assessing status. Evaluating the
impact of assumptions on resulting status outcomes is critical to understanding the potential
biases, uncertainty, and limitations of status assessments (Chen et al. 2003; Wetzel and Punt

2011).

Wild Salmon Policy — Monitoring and Assessing Biological Status

Pacific salmon are a highly exploited group of species and many populations have experienced
declines in recent decades due to overfishing, changing ocean conditions, and freshwater
habitat degradation (e.g., COSEWIC 2016, 2017; Brown et al. 2019). The management of Pacific
salmon is challenging, in part due to the rich ecological, genetic, and life-history diversity within
species that must be conserved and considered when devising fisheries management strategies
(Gustafson et al. 2007). Canada’s Wild Salmon Policy (WSP) provides a framework for
maintaining salmon biodiversity through the preservation of Conservation Units (CUs) — groups
of wild salmon that, if lost, are unlikely to recolonize within an acceptable timeframe (Fisheries
and Oceans Canada 2005). Standardized monitoring and assessment of the biological status of

CUs is a critical element of the WSP (Fisheries and Oceans Canada 2005, 2018).
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Status assessments under the WSP - called integrated status assessments - use expert-driven
processes to combine a suite of metrics into an overall status assessment given uncertainties in
each metric (e.g., DFO 2015, 2016, 2018a). Although these integrated status assessments are
thorough and ensure the unique context of each CU and associated data are taken into
consideration, the required resources and time (typically 1-3 years) have limited their broad
application to all 462 Pacific salmon CUs. Only 9% Pacific salmon CUs have had their biological
status assessed through an integrated status assessment since the WSP was released nearly 15
years ago, and reports are often already 2-4 years out of date when they are released (DFO
2019). Given the multiple pressures facing Pacific salmon and the declining status of many
populations, there is an urgent need for more timely and transparent measures of biological
status that can be broadly applied to salmon CUs to inform conservation and management

decisions when up-to-date integrated status assessments are not available.

Using robust, standardized, and objective measures to quantify the biological status of CUs is
critical for supporting the implementation of the WSP. Furthermore, the outcomes of status
assessments are more impactful if they are broadly, and freely, available to the public through
open-access platforms. In BC, a novel open-access data visualization platform called the Pacific

Salmon Explorer (see www.salmonexplorer.ca) has been developed by the Pacific Salmon

Foundation to provide timely, data-driven assessments of the current status of Pacific salmon
CUs on a subset of metrics. This approach has many benefits, but the trade-off is that a
thorough expert review of the assumptions and limitations unique to the assessment of each

CU, as is undertaken in integrated status assessments, is not always possible. We refer to
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biological status assessments that do not undergo review by experts to interpret and combine
different indicators as “data-driven” status assessments. Similar data-driven approaches are
also applied by DFO and stakeholders in other contexts (e.g., local management, Marine

Stewardship Council certification (www.msc.org), and for the Pacific Salmon Treaty (PSC 2019)).

Data-driven biological status assessments may be prone to biases from compounding
assumptions around the imputation of data, which is of concern given that they are not subject
to the same level of scrutiny as integrated status assessments. Here, we aim to explicitly
guantify potential biases in data-driven biological status assessments due to common
assumptions in reconstructing salmon abundance, relative to the uncertainty inherent to

ecological systems.

Metrics and benchmarks for assessing biological status

Under the WSP’s biological status assessment framework, quantifiable metrics are calculated
from available data and compared against biological reference points, or “benchmarks”, to
arrive at a status outcome of red, amber, or green (Fisheries and Oceans Canada 2005; Figure
1). Ared status indicates that a CU has low spawner abundance and/or reduced spatial
distribution and management intervention is required to avoid extirpation. A green status
indicates that the CU is able to sustain maximum annual catch under existing environmental
conditions. The specific benchmarks delineating these status zones must consider uncertainties
in metrics and risk tolerance, and depend on the biological characteristics of the CU being

assessed.


https://doi.org/10.1101/868927
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/868927; this version posted December 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Evaluating assumptions in run reconstructions Peacock et al.

92  Multiple metrics of biological status have been proposed under the WSP. These metrics fall

93  under four broad classes of indicators: current spawner abundance, trends in abundance over
94  time, distribution of spawners, and fishing mortality (Holt et al. 2009). The PSE has focused on
95 biological status assessments based on a single indicator class, current spawner abundance,

96 using two types of benchmarks that have been widely applied: spawner abundances associated
97  with maximum sustainable yield, derived from stock-recruitment analyses (Holt et al. 2009),

98 and percentiles of historical spawner abundance (Connors et al. 2013, 2018, 2019; Holt et al.

99  2018; Figure 1).

100 Common assumptions in estimating biological status

101  Pacific salmon are anadromous and semelparous, returning from ocean rearing grounds to

102  spawn in freshwater before dying, and are typically vulnerable to fisheries upon their return to
103  coastal waters. Data imputation and expansion are necessary to assess and manage Pacific
104  salmon and many other fisheries (Chen et al. 2003; Wetzel and Punt 2011). The data required
105  to assess biological status of Pacific salmon can include annual estimates of the number of

106  returning adult salmon to individual rivers, fisheries catch or harvest rates, and the age

107 composition of returning salmon (needed for stock-recruitment analyses). Often, these data
108 are incomplete and require imputation (e.g., Figure 2). Furthermore, the calculation of harvest
109 rates (i.e., the proportion of the total return caught in fisheries) requires expanding estimates
110 of observed spawner abundance to account for observer efficiency and spawning sites that may
111 not be monitored for spawners. “Run reconstructions” have been undertaken for salmon CUs

112  to expand spawner abundances to the entire CU and estimate recruitment (Cave and Gazey
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113 1994; English et al. 2007, 2016, 2018). The exact procedure undertaken depends on the life-
114  history traits and available data for each CU, and can include complexities such as spatial and

115  temporal variability in returns among spawning populations.

116  Investigating the impact of assumptions on status outcomes (and therefore management

117  actions) is essential to understand potential biases and minimize the risk of overharvesting or
118  unnecessarily constraining fisheries. The combined influence of assumptions in run

119  reconstruction models on our ability to accurately assess the status of CUs is unknown. In this
120  study, we use a simulation approach to quantify the consequences of common assumptions in
121 simple run-reconstruction models that we considered most likely to affect status assessments.
122  As a case study, we tailored our simulation model to represent a generic chum salmon CU from
123 the central coast of British Columbia (Figure 3) because these CUs have recently been assessed
124  using a data-driven approach (Connors et al. 2018) and have a relatively simple run-

125  reconstruction model that does not include run timing. Furthermore, there are conservation
126  concerns for both north and central coast chum salmon, which have not recovered despite
127  significant reductions in harvest rates over the past two decades (DFO 2018b). Thus, central
128  coast chum salmon offer a useful case study for an initial investigation of basic assumptions
129  underlying biological status assessments. However, our simulation model is flexible enough
130 that it can accommodate different species and life-history traits of Pacific salmon. We further
131  explore a broad range of biological (e.g., trends in capacity) and management (e.g., monitoring
132  coverage) scenarios to yield more general insight into the circumstances under which

133  assumptions may bias status assessments. Our results suggest that efforts to provide timely
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134  and objective data-driven assessments of biological status are robust to most underlying
135  assumptions, although improving estimates of CU-level harvest rates would reduce potential

136  misclassifications of status.

137 Methods

138 Benchmark calculations and assumptions

139 In this study, we consider two types of benchmarks for the spawner-abundance metric (Figure
140 1) that have been frequently applied to determine biological status of Pacific salmon CUs,

141  including in the Pacific Salmon Explorer (PSE; Connors et al. 2013, 2018, 2019). The first type of
142  benchmark is associated with maximum sustainable yield, derived from a stock-recruitment
143  relationship (Figure 2b). An upper stock-recruitment (SR) benchmark of 80% of the spawner
144  abundance that is projected to maintain long-term maximum vyield, or 80% Swsy, has been

145 recommended by Holt et al. (Holt et al. 2009, 2018) and will be applied to future assessments in
146  the PSE (previous PSE assessments have applied Susy; Connors et al. 2018, 2019). Swsy can be
147  calculated explicitly from the productivity and density-dependence parameters of the Ricker
148  spawner recruitment relationship (Scheuerell 2016). Multiple lower benchmarks have been
149  suggested (Holt et al. 2009, 2018), and here we focus on a lower benchmark of the spawner
150 abundance that leads to Swmsy in one generation in the absence of fishing mortality, or Scen

151  (Korman and English 2013; DFO 2015) as applied in the PSE.

152  The second type of benchmarks we considered, referred to as historical spawners (HS), also

153  called percentile benchmarks (Clark et al. 2014; Holt and Folkes 2015; Holt et al. 2018), are
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154  based on historical spawner abundance (Figure 2a). The upper and lower benchmarks we

155  considered were the 50™ and 25™ percentiles of historical spawner abundance, respectively.
156  The calculation of these benchmarks has fewer data requirements, as the stock-recruitment
157  relationship need not be estimated (i.e. there is no need for age-at-return or harvest data). As
158  such, the HS benchmarks can be applied to data-limited CUs for which spawner data are patchy

159  or age and harvest data are not available.

160 Here, we focus on a basic run-reconstruction model and associated assumptions that are

161 commonly made when assessing spawner abundance against the benchmarks above (Figure 2c;
162  Table 1). Ata minimum, in order to apply HS benchmarks, a time series of total spawner

163  abundance at the CU scale is required. Conservation Units are typically comprised of multiple
164  spawning populations that may or may not be monitored in any given year. Spawning

165  populations in individual streams (henceforth “populations”) may exhibit unique dynamics as
166  their productivity is (in part) limited by density-dependent processes in freshwater. A simple
167 sum of the observed spawner abundance within a CU may be misleading if the same

168 populations are not monitored consistently. On the north and central coast, monitored

169 populations have been designated as either “indicator streams” or “non-indicator streams”,
170  with indicator streams being prioritized for monitoring and thus having more continuous and
171  reliable spawner estimates (English 2016). In addition, there may be populations that have

172  never been monitored and for which spawner abundance is unknown. To reconstruct spawner
173  abundance to the CU, three “Expansion Factors” have been applied to account for (1) spawners

174  returning to indicator streams that are not monitored in a given year, (2) spawners returning to
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175 non-indicator streams, and (3) observation efficiency and populations that are never monitored

176  (Table 1).

177  The application of stock-recruitment benchmarks also requires timeseries of the total number
178  of salmon returning to the CU, including those caught in fisheries and those that make it to
179  spawn but are not counted, to reconstruct recruitment. The number of returning salmon in a
180 CU that are caught in fisheries is estimated based on the catch statistics for Pacific Fisheries
181  Management Areas (PFMAs) adjacent to the geographic location of the CU (Figure 3). Itis
182  assumed that salmon caught in an PFMA were destined to spawn in streams that empty into
183  that PFMA, although there is the potential for bias in that fish may be caught while migrating
184  through the PFMA or fish destined for streams in the focal PFMA may be caught in other

185 PFMAs. Furthermore, in most cases, there is not a perfect spatial correspondence between
186  PFMAs and CUs (Figure 3). Streams in multiple CUs may flow into a single PFMA, which is

187 common for small CUs, such as with sockeye salmon (Holtby and Ciruna 2007). In the simplest
188 case, the catch from that PFMA may be assigned to CUs based on the relative spawner

189  abundance to each CU. However, differences in run-timing among CUs may complicate the
190 assignment of catch and necessitate more complex run-reconstruction models. A single CU
191  may also be comprised of populations that are caught in multiple PFMAs, particularly for

192  species with large CUs such as pink and chum salmon (Figure 3), in which case an average

193  harvest rate across PFMAs may be applied. The impact of observation bias in the catch

194  assigned to each CU on status assessments in unknown and is a focal aspect of this study (see

195  Sensitivity analyses, below).

10
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Class of Spawner
indicator abundance

Quantifiable Geometric mean spawner abundance
metrics over the most recent generation
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Figure 1. lllustration of the WSP status assessment framework (adapted from Holt et al. 2009). We focused on the
geometric mean spawner abundance (metric, blue) under the spawner abundance indicator. This metric was
assessed against two types of benchmarks: stock-recruitment and historical spawners (see Figure 2). Faded boxes
represent other types of metrics and indicators that may be included in integrated status assessments but were

beyond the scope of what we considered.
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Figure 2. a) Historical spawners benchmarks are the 50 (horizontal green line) and 25 (horizontal red line)
percentiles of historical spawner abundance (points). The current spawner abundance is calculated as the
geometric mean spawner abundance over the most recent generation (4 years, blue points and line). b) Stock-
recruitment benchmarks are based on the shape of the Ricker stock-recruitment relationship (solid line) fit to data
on spawner abundance (x-axis) and corresponding recruitment (catch + escapement, y-axis). The upper and lower
benchmarks are 80% Swmsy (green) and Sgen (red), respectively. Scen is defined as the spawner abundance that leads
to Smsy (grey) in one generation in the absence of fishing mortality. Under both types of benchmarks, the current
spawner abundance in the example shown is above the upper benchmark, and this CU would be assessed as
‘green’. c) The calculation of historical spawners benchmarks and stock-recruitment benchmarks requires run

reconstruction to expand observed spawners abundances, assign catch to CUs, and calculate recruitment (Table 1).
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4

Figure 3. Our study focused on central coast chum salmon Conservation Units (CUs) as a case study for how
common run-reconstruction assumptions affect the assessment of biological status. Chum salmon CUs (green;
different CUs shaded differently in central coast inset) are relatively large, and do not correspond to the Pacific
Fishery Management Areas (PFMAs; white or light blue shaded regions) for which catch is reported. Therefore,
assumptions have to be made when assigning catch to CUs that may result in under- or over-estimation of catch.
Map produced using PBSmapping (Schnute et al. 2015) with data from Fisheries and Oceans Canada (Martin

Huang, pers. comm. <Martin.Huang@dfo-mpo.gc.ca>).

Finally, to calculate recruitment for a given cohort of spawners, assumptions about the age-at-
return of spawners in any given year are required (except in the case of pink salmon, which

have a fixed 2-year generation time). The total return in a given year is assigned to brood years

13
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224  based on the proportion of fish that return at a certain age, but these proportions are often not
225 estimated every year. For chum salmon on the central coast, the distribution of age-at-return is
226  assumed to be constant over time and is based on the average of available data (English et al.
227  2018). In this case, interannual variability in age-at-return may introduce uncertainty into the
228  calculation of brood-year recruitment and bias resulting assessments of status (Zabel and Levin
229  2002). Temporal shifts in age-at-maturity, as have been widely observed in Pacific salmon

230 (Ohlberger et al. 2018; Cline et al. 2019), may also introduce directional bias into status

231 assessments.

232 Simulation model

233  We developed and applied a stochastic simulation model of salmon population dynamics that
234 allows control over various biological and management factors that may influence the accuracy
235  of status assessments. This approach built on previous studies that evaluated uncertainties in
236  fisheries management (e.g., Holt and Peterman 2008) and other factors influencing the

237  performance of metrics and benchmarks under the Wild Salmon Policy (e.g., Peacock and Holt
238  2012; Holt and Folkes 2015; Holt et al. 2016, 2018). The simulation model is comprised of

239  submodels for salmon population dynamics, observation of spawners, assessment, harvest, and

240  performance (Figure 4).

14
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Figure 4. Schematic of the simulation model comprised of submodels for population dynamics (including harvest),

observation, assessment, and performance. Adapted from Holt et al. (2016).

Population dynamics

We simulated the dynamics of multiple spawning populations returning to indicator or non-

indicator streams within a single hypothetical CU. Although some CUs consist of just a single

spawning population (e.g., lake-type sockeye salmon), many CUs (especially pink and chum

salmon) span hundreds of kilometers (Figure 3) and can include multiple spawning populations

whose dynamics may differ due to local adaptation and finite rearing and spawning habitats.

We based our simulations on the life history of chum salmon, which generally return as 3-, 4-,

or 5-year-olds. The number of salmon returning to spawn in return year t and population j,

R; ;, was calculated as:

15
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R j=R't_3Dt-33+Rt_s; Pe—aa t R't_s j Pt-s 5 (1)

where p,, ;4 is the proportion of recruits from brood year y returning at age g. Throughout this
model description, we use R to denote returns, or catch plus escapement of fish returning in a
year, and R’ to denote recruitment, or the total number of offspring from a brood year that

survive to return to spawn.

We assumed that the annual proportion of recruits returning at a given age was the same
among populations, but incorporated interannual variability in age-at-maturity by allowing the

proportion of recruits that return as g year-olds to vary among brood years, y:

P, exp(@ ) 2)

 Yos P exp(@ ey )

Py,.g

where ﬁg is the average proportion of individuals maturing as g year-olds, w is a parameter

that controls interannual variability in proportions of fish returning at each age (Figure S4) and

&y, 4 are standard normal deviates (Schnute and Richards 1995).

The number of salmon that escape the fishery and return to spawn was calculated as:

Se;=(1=hy;) Ry, (3)

where R, ; is the number of returning salmon from eq. (1) and h; ; is the realized harvest rate

for population jin year t. We incorporated outcome uncertainty (i.e., deviations from the
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266  target harvest rates) by drawing the realized harvest rates each year from a Beta distribution

267  with mean equal to a target harvest rate, h; (Holt and Peterman 2008).

268 We considered two different scenarios for determining the target harvest rate (Figure 5). First,
269  we considered a simple, abundance-based harvest control rule (HCR) where h; increased with
270  the total return to the CU from a minimum of 0.05 (to account for bycatch and unavoidable
271  mortality and also avoid problems associated with low target HRs when incorporating Beta-

272  distributed outcome uncertainty) up to an asymptote, hy;4x (Holt and Peterman 2008):

hi = max( hyax {1 — exp[mX;R; ;| },0.05), (4)

273  where m is the shape parameter of the HCR. The low harvest rates at low returns under this
274  HCR prevented the CU from declining to red status in simulations, and so as to broaden our
275  results to include CUs with true red status, we also considered a constant high target harvest
276  rate of hy = 0.60 regardless of the total return (Figure 5). In the Supplementary Material, we

277  present an intermediate scenario with a constant moderate target harvest of h; = 0.42.
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Figure 5. The two harvest cases we simulated were (1) a simple Harvest Control Rule (eq. (4); solid line) with
parameters estimated from historical harvest rates and total return from five central coast chum CUs (grey points),
(2) a constant high target harvest rate of hy = 0.6 (dotted line).

Each population in our model was harvested in proportion to its abundance, such that the true

total catch of fish that would have returned to streams within the CU was calculated as:

Co=hey ) Rey (5)
J

Although realized harvest rates differed among populations, we did not incorporate persistent
biases in realized harvest rates among populations and thus assumed that all populations were
equally vulnerable to the fishery. The extent to which this assumption is violated will depend
the size of the CU, the number of populations within it, the magnitude of variation in run-timing
among populations, and where fisheries are prosecuted. Any such biases among populations
within a CU would likely be small because run-timing was a consideration when delineating CUs

(Holtby and Ciruna 2007). However, biases among CUs may be significant and we investigate
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291 this by varying the observation bias in the total catch to the CU (see Sensitivity analyses,

292  below).

293  Finally, we assumed the stock-recruitment dynamics followed a Ricker relationship (Ricker

294  1954) yielding the number of recruits from brood year y and population j:

R'y; =S, exp(a; = by S,,;) exp(dy,;), (6)

295  where g; is the loge recruits per spawner at low spawner abundance (i.e., productivity), b; ,, is
296  the time-varying density-dependence parameter, and ¢,, ; are the normally distributed

297  recruitment deviates applied for year y and population j (eq. (7)).

298  We allowed productivity to differ among populations, where a; ~ N(a,o,). We constrained
299  a; = 0.4 by re-drawing values of a; < 0.4 because SR benchmarks are not calculable for very
300 low productivity (Holt and Ogden 2013; Holt et al. 2018). For central coast chum salmon, we
301  found only 1% of spawning populations (2/181) had a; < 0.4 (Online Supplement). A linear
302 change in the density-dependence parameter was simulated for some populations as a decline
303 inthe capacity of the stream (i.e., Sy4x j, = 1/b;,, or the spawner abundance that leads to
304 maximum recruitment). This decline in capacities captured the potential consequences of

305 cumulative stressors to freshwater habitat among watersheds on the central coast (Connors et
306  al. 2018). For all populations, the initial capacity Sy 4x,;,1 was drawn from a lognormal

307 distribution whose mean and standard deviation differed for populations in indicator versus

308 non-indicator streams, as indicator streams tend to be larger systems (English 2016; see
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309 Parameterization). The productivity and density-dependence parameters were drawn

310 independently for each MC iteration of the model.

311  We incorporated temporal autocorrelation in recruitment deviates:

¢y,] = T¢y_1'] + Uy’j, (7)

312 where 7 is the temporal autocorrelation coefficient and v,, ; is a multivariate normal random

313  variable with mean zero and variance-covariance matrix:

2 2 2
oy POy .. PO (8)
2 2 2
Y. p Oy Oy P Oy
JXJ . . .
2 2 2
poy, poy - Oy i

314  Here, g, is the standard deviation in recruitment deviates without autocorrelation (Ricker 1975,

315 Holt and Bradford 2011) and p is the correlation in recruitment deviates among populations.

316  We simulated the ‘true’ population dynamics over 50 years, after an initialization period of
317 seven years to seed eq. (6) given the variable age-at-return of chum salmon. For each year in
318 this initialization, we assumed that the number of spawners was equal to 20% of Suax for

319  population j. For the first year of the initialization, we set ¢,,_; ; from eq. (7) to zero.

320 Observation submodel

321 Inthe observation submodel, we incorporated both incomplete monitoring coverage of

322  streams and imperfect observation of spawners in streams that were monitored. In any given
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323 year, population j was observed with probability ¥,, ;. We included a linear decline in

324  monitoring coverage (i.e., the probability of a population being observed) over time based on
325 observations of declining monitoring coverage on the north and central coast (Price et al. 2008,
326 2017; English 2016). We calculated the annual probability of being monitored separately for
327 indicator and non-indicator streams based on observations that monitoring coverage of non-
328 indicator streams is generally lower and has declined more severely than coverage of indicator

329 streams (English 2016). See Parameterization for further details.

330 Spawner abundances were ‘observed’ with log-normal error:

:g\y,j = Zy,j [Sy,j eXp(5y,j)]' ®)

331 where z,,; ~ Bernoulli(prob = v, ;), §,, ; ~ N(g, 0s), & is the mean observation error, and
332 o5 is the standard deviation in observation error of spawner abundances. Thus, this combines
333  both the probability of a population being monitored and the distribution of observation errors

334  around true spawner abundances if monitored. We included a negative bias in the observation

335 of spawners (E < 0) such that the mean observed spawner abundance is on average lower than
336 the true spawner abundance. In general, it is challenging to enumerate spawners in all reaches
337 of astream and in all streams within a CU. The reported spawner abundance is considered an
338 underestimate of the total spawners in a CU, which motivates the application of Expansion

339  Factor lll for observer (in)efficiency when performing run reconstructions (Table 1). The

340 calculation of Expansion Factor | required that we impose the constraint that at least one
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341  indicator stream was monitored each year, so if z,, ; = 0 for all indicator streams in a year, we

342 randomly selected one indicator stream to be monitored.

343  The catch to the entire CU in return year t was observed with log-normal error:

N
Cr = Cr exp(xe), (10)

344  where y; ~ N(¥, 0y), 0, is the standard deviation in catch error, and y is a bias in catch. We
345  assumed a default value of ¥ =0, but in sensitivity analyses we varied this parameter to simulate
346  scenarios in which fish are caught from other CUs or fish from the focal CU were caught in other

347 PFMAs.

348  Previous models (e.g., Holt et al. 2018) have included error in the “estimated age-at-return”
349  separately for each return year. For central coast chum salmon, annual age-at-return data are
350 rarely sampled comprehensively so the same average is generally applied across all years

351  (Peacock et al. 2014; English et al. 2018). Therefore, for each year in a Monte Carlo (MC) trial
352  we applied the same age-at-return, which was drawn independently for each MC trial using eq.

353  (2) with observation error, @, (Table Al).
354  Assessment submodel

355  As described above, the minimum requirement to calculate benchmarks and assess population
356  status using HS benchmarks is a time-series of spawner abundance to the CU. For SR
357 benchmarks, harvest rates and age-at-return must also be estimated in order to calculate

358 recruitment. The basic procedure of these run reconstructions is outlined in Table 1, and
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359 begins by expanding observations of spawners to indicator streams to the total spawner

360 abundance to the CU by applying three Expansion Factors. The equations and criteria

361 governing these Expansion Factors are detailed in the Online Supplement and in English et al.
362 (2012, 2016, 2018). Briefly, Expansion Factor | (Ft',d) imputes for populations in unmonitored
363 indicator streams and is calculated for each year, t, within a decade, d, of the spawner time
364  series. It relies on the decadal contribution of each indicator-stream population to the total
365 escapement to all indicator streams (English et al. 2016). Expansion Factor Il (F;') expands
366 observations of spawners from indicator streams to include populations in non-indicator

367 streams that are less frequently monitored, and is the same for each year within a decade, d.
368 Expansion Factor Il is calculated as the average proportion of total monitored spawners (in
369 indicator and non-indicator streams) that are in non-indicator streams for that decade. For
370 decades with insufficient information to calculate either of these Expansion Factors, for

371 example due to declining monitoring coverage, a reference decade may be used. Expansion
372  Factor lll (F'"") is determined by the regional DFO staff familiar with the escapement monitoring
373  techniques used in each statistical area and is assumed to be constant through time (English et
374  al. 2018). In our model, we assumed that all populations were at least partially monitored, and
375 that Expansion Factor Il accounted for observation (in)efficiency, but in reality, Expansion

376  Factor lll may also account for populations in unmonitored streams.

377  The observed number of salmon returning in year t is the sum of observed catch and expanded

378 escapement to the CU:
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ﬁt = é\'t+Ft,d Fél F”,z ",S\‘t,j' (11)
’ jer
379  where the summation includes observed spawner abundance to the I indicator streams only,

380  with the non-indicator streams being accounted for through Expansion Factor Il, F;.

381 We do not explicitly account for en route or pre-spawning mortality of fish that escaped the
382 fishery, and assume that pre-spawning mortality is relatively small and accounted for in the
383  productivity of the population through the Ricker stock-recruitment dynamics. Observed
384  recruitment for brood year y is calculated as the sum of age 3, 4, and 5 fish returning in years

385 y+3,y+4,andy + 5, respectively:

NG

AN A AN
Ry = Ry+3 ﬁ\rg + Ry+4 p’\r4 + Ry+5 p’\rs, (12)

386 yielding the ‘reconstructed’ spawner-recruit pairs for brood year y.

387 To calculate estimated SR benchmarks, we fit a linearized Ricker model to the observed data at
388 the aggregate CU-level. The estimated productivity and density-dependence parameters were

389  used to calculate upper and lower SR benchmarks (80% of Sysy and S;gy) for the CU.
390 Performance submodel

391  For each MC simulation, we estimated status using both SR and HS benchmarks calculated from
392  the observed stock-recruitment pairs for the CU, including observation biases and incomplete
393  monitoring coverage. Estimated status under both types of benchmarks was compared to the

394  true status, which was calculated by comparing the current true spawner abundance (without
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395 observation error) against the upper and lower SR benchmarks (80% of Smsy and Sgen) from the
396 underlying stock-recruitment parameters. Because we simulated the true dynamics at the scale
397 of spawning populations and there was no “true” CU-level value for the Ricker parameters,

398 calculating the true Smsy (and thus the SR benchmarks) at the CU-level was not straightforward.
399  We chose to calculate the true SR benchmarks for each population from the underlying Ricker
400 parameters for that simulation and then summed the benchmarks across all populations to

401  vyield the “true” CU-level benchmarks. Although this CU-level benchmark will underestimate the
402 level required to maintain all component populations above their individual benchmarks in any
403 given year, the objective of the WSP is to maintain the overall CU and populations within CUs
404  are generally assumed be recolonizable within reasonable time frames (Fisheries and Oceans
405 Canada 2005). We evaluated estimates of HS benchmarks against the true underlying

406  benchmarks derived from “true” SR parameters. When declines in capacity were included in the
407  simulation, we calculated true status from the initial capacity parameters before the decline in

408 order to avoid a shifting baseline in benchmarks.

409 Performance was evaluated in two ways that capture the difference between estimated and

410 true status:

411 a) Proportion of MC simulations for which status was correctly assessed as green, amber, or
412 red, and the proportion of simulations for which status was either underestimated

413 (pessimistic) or overestimated (optimistic).

414 b) Percent relative bias of observed average spawner abundance (Save) and of the four

415 benchmarks (Scen, 80% Swmsy, S25, Sso) compared to their true values for each MC simulation.
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416  For each parameterization investigated (see below) we ran 4000 MC trials, which was sufficient

417  to ensure the mean percent error in performance measures was < 3% (Figure S3).

418 Parameterization

419  Some of the parameters in our simulation model were unknown or unknowable, in which case
420 we followed assumptions made for southern BC chum salmon by Holt et al. (2018). Other
421  parameters were available specifically for central coast chum salmon or could be estimated
422  from raw data; details of parameter estimation are given in the Online Supplement. As

423  mentioned above, in order to understand the assessment biases under different true statuses
424  we considered two cases: (1) high productivity and a conservative harvest control rule (HCR),
425  which we refer to as the “base case” because it is most representative of central coast chum
426  salmon, and (2) low productivity and a constant high target harvest rate, which represented a
427  CU at high risk of extirpation. In the Online Supplement, we also present results from a third
428 case intermediate between these two with low productivity and moderate harvest. Unless
429 otherwise indicated in the sensitivity analysis (below), parameters defaulted to the values

430 described here and listed in the Appendix, Table Al.

431 The mean proportion of adults maturing at ages 3, 4, and 5 in eq. (2) was 0.23, 0.64, and 0.13,
432  respectively, based on the average age-at-return applied in run reconstructions of central coast

433  chum (Challenger et al. 2018; English et al. 2018).
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434  We estimated the parameters in the HCR (Figure 5) from harvest rates and total return sizes for
435 five central coast chum CUs (English et al. 2018; Salmon Watersheds Program - Pacific Salmon

436  Foundation 2019).

437  To estimate the stock-recruitment parameters for spawning populations (eq. (6)), we fit a

438 linearized Ricker model to population-level spawner-recruit pairs from nine central coast chum
439  CUs with individual productivity and density-dependence parameters for each population

440  (Figure S5). From these model fits, we calculated (1) mean and variance in productivity among
441  populations, (2) mean and variance in the initial capacity (i.e., 1/Swax) for indicator and non-
442  indicator streams, (3) the residual variance within populations, (4) the correlation in residuals
443  among populations, and (4) the temporal autocorrelation in residuals within populations. The
444  mean population-level productivity was a = 1.40 (Figure S5), which we applied in our base case.
445  For the low-productivity case, we chose @ = 0.56, which was the 2.5 percentile of population-
446  level productivity estimates (Figure S5). The correlation in residuals among populations was
447  estimated at p = 0.46, but we also investigated lower (p = 0) and higher (p = 0.9) levels of

448  synchrony in the Online Supplement.

449  As the default case, we considered a decline in the capacity of streams (i.e., inverse density-
450 dependence parameter of the Ricker model) that reflected observed declines in freshwater
451  habitat (Office of the Auditor General of Canada 2004). Within the central coast chum CUs,
452  29% of watersheds are considered to be at moderate risk, and 21% at high risk, of cumulative
453  habitat pressures over the last 60 years from stressors such as logging, water licenses for

454  withdrawal of water from streams, and stream crossings (Connors et al. 2018). We
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455  hypothesized that declines in capacity that differ among spawning populations may affect the
456  accuracy of Expansion Factors | and Il, particularly in combination with declining monitoring
457  coverage (Price et al. 2017). We incorporated a linear decline in capacity (i.e., Smax= 1/b)

458  between 25% and 50%, representing a moderate decline, for 29% of populations (the

459  percentage of central coast chum watersheds deemed to be at moderate risk of cumulative
460 habitat pressures by Connors et al. 2018) and a linear decline between 50% and 75%,

461 representing severe decline, for 21% of populations (the percentage deemed to be at high risk)
462  over the 50-year simulation. The exact percent decline for each population was randomly

463  drawn from a uniform distribution within the above range for each MC simulation. The

464  remaining 50% of populations had stable capacity over the 50-year simulation. In a sensitivity

465  analysis, we investigated four additional scenarios for declining capacity (Table 2).

466 Inthe observation submodel, we chose the bias in the observation of spawners to match

467  Expansion Factor lll, which corrects for observer efficiency, with a range of values explored in a
468  sensitivity analysis (below). The value of Expansion Factor Il applied in status assessments has
469  been constant at F’”’ = 1.5 for all central coast chum CUs (English et al. 2016), and so we applied
470  adefault value of § = loge(1/1.5) = -0.4. The majority of central coast chum streams are

471  surveyed visually by ground (fish counts or other sampling) with some aerial (fish counts) or
472  boat (fish counts or other sampling) surveys (English 2016), similar to southern BC chum

473  streams (Holt et al. 2018). We assumed g5 = 0.5 following Holt et al. (2018), which is the

474  maximum estimated uncertainty for visually surveyed spawners (Cousens et al. 1982; Szerlong

475  and Rundio 2008).
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476  We incorporated a linear decline over the last 27 years of simulations in the proportion of

477  indicator and non-indicator streams monitored each year from 0.76 and 0.72, respectively, to
478 0.72 and 0.05 based on English (2016). These declines are representative of overall declines in
479  monitoring across species, but we also consider the trends specific to chum salmon in the

480  Online Supplement (Figure S6).

481  We assumed no bias in the observation of catch (y = 0) by default, but consider a range of bias
482  in sensitivity analyses (below). The standard deviation in the observation error of catch

483  accounts for differences between observed (i.e., reported) and actual catch due to

484  uncertainties with mixed-stock fisheries and in reporting and estimation of recreational

485  fisheries and subsistence use. We set this to g, = 0.2 (Holt et al. 2018), which is less than the

486  observation error in spawners.

487  Sensitivity analyses

488 We examined the sensitivity of status assessments over a range of values for several different
489 model parameters that we considered most likely to affect status assessments due to their

490 influence on the assumptions in run reconstructions (Table 1; Table 2). We investigated each of
491 the questions below under both the base case and low-productivity high-harvest case described
492  above, with other parameters at their default values (Table A1) unless otherwise noted. The

493  specific questions that we addressed were:
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494 1. How does the number of spawning populations and the proportion designated as
495 indicator streams affect status assessments? The lower the proportion of streams that
496 are indicators, the greater the magnitude of Expansion Factor II.
497 2. How does a decline in monitoring coverage affect status assessments? The fewer
498 indicator streams that are monitored, the greater the magnitude of Expansion Factor |
499 and the potential uncertainty in expanded spawner abundance. Here, we consider two
500 scenarios (Table 2; Figure S6): constant monitoring coverage at historical proportions
501 among all streams and an observed decline in coverage starting in the mid-1980s as has
502 been observed on the north and central coast (English 2016; Figure S6). In the Online
503 Supplement we consider two additional scenarios: observed declines in monitoring
504 specific to chum salmon streams and a sharp, recent decline in monitoring of indicator
505 streams.
506 3. How do declines in capacity affect status assessments? The application of Expansion
507 Factors | and Il assumes that the relative contributions of populations to aggregate
508 abundance in the CU does not change over time, but declines in capacity that differ
509 among populations may violate this assumption.
510 4. How does spawner observation bias affect status assessments, given that the value of
511 Expansion Factor Il is fixed over time and often the same among CUs (English et al.
512 2018)?
513 5. How does catch observation bias (e.g., over- or under-estimating catch of salmon) affect
514 status assessments? This represents scenarios where there are errors in estimates of
515 CU proportions in the aggregate catch in a mixed-stock fishery, or violation in the
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516 assumption of homogenous spatial and temporal distribution of CUs when CU
517 proportions are not monitored in such fisheries.
518 6. How does interannual variability in age-at-return affect status assessments?

519 We investigated the impact of declines in monitoring coverage (question #2 above) in
520 combination with declines in capacity of spawning populations (question #3) in a bivariate

521  sensitivity analysis.

522  Results

523  The different productivity and harvest rate combinations that we considered led to different
524  true statuses for the CU. Under high productivity and an abundance-based harvest control rule
525 (HCR) —the base case corresponding to central coast chum salmon — 86.0% of simulations

526  resulted in true green status (Figure 6a,b). Conversely, under low productivity and high harvest

527 rates, 68.3% of simulations resulted in true red status (Figure 6c,d).

528 Under the base case when true status was mostly green, misclassifications resulted in

529  estimated status lower than the true status meaning assessments were biologically pessimistic
530 (henceforth referred to as “pessimistic misclassifications”). This was particularly true of the
531  historical spawners (HS) benchmarks, for which 54.5% of simulations resulted in a pessimistic
532  misclassification with 12.1% of simulations having misclassified green status as red. Pessimistic
533  misclassifications were due to positive bias in benchmarks and not bias in the current spawner
534  abundance (Figure 7), resulting in status being underestimated. For productive populations (as

535 inthe base case), most observed spawner abundances tend to be far above lower benchmarks
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536 and closer to equilibrium values. As a result, HS benchmarks of 25%" and 50" percentile of

537 historical spawner abundance tend to overestimate the “true” SR-based benchmarks.

538  When true status was mainly red, under low productivity and high harvest rates, biologically
539  optimistic misclassifications (henceforth “optimistic misclassifications”) were more common,
540  which may be riskier from a conservation and management standpoint. For example, 45.8%
541  and 43.8% of simulations had an estimated status higher than true status under the stock-

542  recruitment (SR) and HS benchmarks, respectively (Figure 6¢,d). These more frequent

543  optimistic misclassifications were due to a negative bias in benchmarks, in particular the lower
544 SR benchmark of Sgen (Figure 7a), likely due to a poor ability to estimate Swsy under low

545  productivity when spawner abundances tend to cluster near the origin.

546  Under both types of benchmarks, bias did not decrease when monitoring coverage was held
547  constant at 100% (Figure S9), suggesting that the application of Expansion Factors | and Il were

548  not contributing factors.
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550 Figure 6. Estimated status according to the stock-recruitment benchmarks (left) and the historical spawners

551 benchmarks (right), over the true status for each of two cases (high productivity and an HCR (a-b) and low

552 productivity and high harvest rates (c-d)). Grey cells indicate pessimistic misclassifications, which may lead to overly
553 conservative management actions, and black cells indicate optimistic misclassifications, which may lead to overly
554 risky management actions. Coloured cells indicate correct classifications for red, amber, and green zones,

555 respectively.
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556

557  Figure 7. Relative bias in stock-recruitment benchmarks (a), historical spawners benchmarks (b), and current
558 spawner abundance (Savs; black) (median + interquartile range among 4000 MC simulations) for the base case

559 (high productivity and an HCR) and the low-productivity high-harvest case.

560  Sensitivity analyses

561 The number of spawning populations within the CU and the proportion of those populations
562  spawning in indicator streams had little impact overall on status assessments (Figure S10).
563  Under the base case, the relative bias in estimates of Smsy and Scen were lower in larger CUs,
564  presumably because the effect of recruitment deviations for individual spawning populations
565 on the aggregate stock-recruitment relationship was diminished when there were more

566 component populations. This decline in bias resulted in half as many pessimistic

567  misclassifications for larger CUs under the SR benchmarks (40% for 10 populations versus 20%
568  for 140 populations with 30% indicator streams; Figure S10a). This trend was not, however,
569 observed in the low-productivity high-harvest case when true status was predominantly red

570  (Figure S12).
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571 The monitoring-coverage scenarios that we considered, representative of observed declines in
572  monitoring on the north and central coast, had no effect on status outcomes or the relative bias
573  in benchmarks. This was true in the base case (Figure 8, Figure S13) and under low productivity
574  (Figures S14 —S15). Even under severe declines in capacity of 50% to 75% for all spawning

575 populations, our results suggest that the observed declines in monitoring coverage on the north
576  and central coast are unlikely to influence the accuracy of status assessments. This result held
577  regardless of whether the recruitment deviates among component populations within the CU

578  were not correlated (p = 0; Figure S16) or highly correlated (p = 0.9; Figure S17).

579
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Figure 8. The effect of monitoring coverage (no change and decline; Table 2) and the percentage of spawning

populations with severe declines in capacity (x-axis) on performance measures under the base case of high

productivity and HCR. (a-b) The proportion of simulations with correct green, amber, or red status or pessimistic

misclassifications (grey) and optimistic misclassifications (black) under the SR benchmarks (a) and HS benchmarks

(b). (c-d) The percent relative bias (median + interquartile range among 4000 MC simulations) in the current

spawner abundance (Savs; black) and lower and upper benchmarks (red and green, respectively) under the SR

benchmarks (c) and the HS benchmarks (d). See Online Supplement for results under the low-productivity high-

harvest case.

Under the base case, declines in capacity of the CU were associated with poorer estimated

status and an increase in misclassification rates (Figure 8a-b). Pessimistic misclassifications

36


https://doi.org/10.1101/868927
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/868927; this version posted December 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Evaluating assumptions in run reconstructions Peacock et al.

592  increased because CUs more frequently had a true status of amber but were misclassified as
593 red. Optimistic misclassifications increased, particularly under the SR benchmarks (Figure 8a),
594  because the relative bias in the current spawner abundance (Savs) remained unchanged, but
595 the bias in benchmarks decreased (Figure 8c-d). In the low-productivity high-harvest case, the
596  results were similar but with biologically optimistic misclassifications dominating as status was

597 predominantly amber or red (Figure S15).

598
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599 Observation bias of spawners (3)

600 Figure 9. The effect of observation bias in the number of spawners (x-axis) on performance measures under the
601 base case. (a-b) The proportion of simulations with correct green, amber, or red status or pessimistic

602  misclassifications (grey) and optimistic misclassifications (black) under the SR benchmarks (a) and HS benchmarks
603  (b). (c-d) The percent relative bias (median + interquartile range among 4000 MC simulations) in the current

604 spawner abundance (Savs; black circle) and lower and upper benchmarks (red and green, respectively) under the SR
605 benchmarks (c) and the HS benchmarks (d). The Asterisk (*) in (a-b) and grey zone in (c-d) indicate the default

777

606  parameter value of § = -0.4, and the bias that matches the Expansion Factor Il of F”” = 1.5 applied in all

607 simulations. See Online Supplement for results under the low-productivity high-harvest case (results were similar).

608  As the bias in the observation of spawners approached zero (8§ —0), misclassifications under the
609 SR benchmarks declined in all cases, even as the observation bias became less than the

610 Expansion Factor lll applied to correct for it (Figure 9a, Figures S18-519). The relative bias in the
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611  current spawner abundance was minimized when the observation bias matched the assumed
612  value of Expansion Factor IIl (§ = -0.4 corresponding to F””’ = 1.5; Figure 9c-d). When observed
613  spawner abundance was biased low (& = -1.6), the relative bias in the upper benchmark of 80%
614  Swmsy was higher than the relative bias in current spawner abundance (Savs) or the lower

615 benchmark (Sgen), and thus CUs with a true green status were more likely to be misclassified as
616 amber. Status outcomes under the HS benchmarks were unaffected by changes in observation
617  bias of spawners (Figure 9b); the bias in both benchmarks and current abundance showed

618 similar changes as observation bias declined (Figure 9d) such that the resulting status outcome
619  was unchanged. In the Online Supplement, we also investigated a change in observation bias
620  halfway through the simulation (Figure $20), but a change from the base value of § =-0.4to § =
621 -1.6,-0.7, and 0 did not have any impact on status outcomes or biases in benchmarks (Figure

622  S21).

623  Underestimation of catch (i.e., negative values of y) resulted in fewer misclassifications than
624  overestimating catch (Figure 10, Figures S22 —S23). As the catch bias increased from y =-1.0
625  (63% underestimation) to y = 1.0 (271% overestimation), the relative bias in the lower SR
626  benchmark of Sgen declined while the relative bias in the upper benchmark of 80% Swsy

627 increased (Figure 10b). This is due to the errors in variables that occur when catch is

628 underestimated: productivity and recruitment tend to be underestimated, thus leading to
629 lower estimates of Smsy and higher estimates of Sgen (Holt and Folkes 2015). Under the base
630 case, the true status was green in the majority of simulations and so the increasing bias in the

631 upper benchmark dominated the overall status assessments and led to the increase in
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632  pessimistic misclassifications with increasing y. In the low-productivity high-harvest case, true
633  status was mostly red and so the increasingly negative bias in Sgen resulted in more optimistic
634  misclassifications as the observation bias in catch increased (Figure S23). In both cases,

635  overestimating catch by ~80% (i.e., ¥ = 0.6) led to a ~5% increase in misclassification rate
636  (Figure S24). Although these changes in misclassification rates may seem small, there is

637 potential for large catch errors in run reconstructions, especially when multiple CUs overlap
638  with a single PFMA. Catch does not factor into the calculation of HS benchmarks, so status

639  under the HS benchmarks was unaffected by changing catch bias.

640  Finally, increasing interannual variability in age-at-maturity resulted in more frequent status
641  misclassifications, but the effect was relatively small. Under the base case, increasing w from
642 0.2 to the default value of 0.8 resulted in an increase in misclassifications from 25.2% to 29.8%,
643  but very little change in the bias in benchmarks (Figure S25). Further increasing the interannual
644  variability to w = 1.6 led to 32.1% of simulations being misclassified, but this level of interannual
645  variability is high (see Figure S4 for example) compared to data on age-at-return for central

646  coast chum salmon (Challenger et al. 2018; English et al. 2018). The increase in

647  misclassifications was smaller under the low-productivity high-harvest case (Figure S25).
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Figure 10. The effect of observation bias in catch (x-axis) on performance measures under the base case. (a) The

proportion of simulations with correct green, amber, or red status or pessimistic misclassifications (grey) and

optimistic misclassifications (black) under the SR benchmarks . (b) The percent relative bias (median * interquartile

range among 4000 MC simulations) in the current spawner abundance (Savs) and upper and lower benchmarks

under the SR benchmarks. The asterisk in (a) and grey zone in (b) indicate the default parameter value of y = 0. See

Online Supplement for results under the low-productivity high-harvest case.

Discussion

Complete knowledge of the dynamics of wild fish populations and fisheries is unattainable, and

thus assumptions must be made when assessing biological status to inform conservation and

41


https://doi.org/10.1101/868927
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/868927; this version posted December 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Evaluating assumptions in run reconstructions Peacock et al.

658 management (Chen et al. 2003). Integrated status assessments of Pacific salmon Conservation
659  Units (CUs) under Canada’s Wild Salmon Policy (WSP) rely on the judgement of selected experts
660 to help evaluate status, considering multiple indicators and the quality and quantity of available
661 data (DFO 2015, 2016, 2018a), but this process is time and resource intensive, slowing the

662  broad application of integrated status assessments. Other types of assessments rely on a data-
663  driven approach focused on specific metrics without extended expert elicitation to evaluate the
664  potential uncertainty and biases arising from assumptions around imputing spawner

665 abundances and calculating recruitment (i.e., run reconstruction). These run-reconstructions
666 have been adopted by, for example, local management organisations, Marine Stewardship

667  Council (www.msc.org), the Pacific Salmon Treaty (PSC 2019), COSEWIC (e.g., COSEWIC 2016,
668 2017), and the Pacific Salmon Foundation (PSF). The PSF, in particular, have undertaken a

669  widespread effort to apply a data-driven approach to assessing spawner abundance under the
670  WSP framework, with results for the north and central coast openly available through their

671  Pacific Salmon Explorer (Connors et al. 2013, 2018, 2019), and are currently expanding their

672  assessments to the south coast of BC.

673  The benefits of this data-driven approach to biological status assessment include transparent

674  and repeatable methodology, standardized and comparable results across CUs, and the ability
675 to update status assessments in a timely manner. However, the impact of compound

676 assumptions on the assessment of biological status needs to be quantified to lend confidence

677  and credibility to status outcomes. In this study, we quantified the impact of common
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678 assumptions in basic run reconstructions (Figure 2c; Table 1) on resulting biological status

679 outcomes.

680 Implications for status assessments

681 In general, the common assumptions in salmon run reconstructions that we hypothesized might
682 introduce biases (Table 1) had little effect on status outcomes on our simulated populations,
683  suggesting that attempts to assess status in the face of limited data are worthwhile. In

684  particular, there was almost no effect of declines in monitoring coverage to the extent that has
685 been observed on the accuracy of benchmarks or resulting status outcomes, even in the face of
686  different trends in capacity and reduced synchrony (i.e., zero autocorrelation in recruitment
687  deviates) among spawning populations within the CU. This result suggests that the application
688  of Expansion Factors accurately infills gaps in spawner abundances, even when there are

689  changes over time in the dynamics of populations in indicator and non-indicator streams. More
690 extreme declines in monitoring may impact assessments — certainly, if no spawning populations
691 are monitored then our ability to assess status will inevitably be compromised — but the current
692  approach to infilling and expanding spawner abundances proved robust to declines in

693  monitoring coverage in the range documented for the north and central coast (English 2016;

694  Price et al. 2017).

695  Perhaps unexpectedly, misclassifications were not minimized when the value of Expansion
696  Factor lll, correcting for observer efficiency, accurately reflected the true observation bias in
697  the underlying simulation. Rather, misclassifications under the stock-recruitment (SR)

698 benchmarks declined as the observation bias in spawners approached zero. This result is due
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699 tothe combination of bias in current spawner abundance, which is minimized when

700 observation bias matches Expansion Factor I, and biases in benchmarks, which depend on
701  underlying status. Status outcomes under the historical spawners (HS) benchmarks were

702  unaffected by observation bias, as this bias was assumed to be constant over time and affected

703  the current and historical spawner abundances equally.

704  Under high productivity and an abundance-based harvest control rule (HCR) consistent with
705 historical central coast chum salmon harvest rates, most simulations had a true green status,
706  but misclassifications as amber were common under both SR and HS benchmarks. The

707  estimated status from our simulations roughly matched the status outcomes for seven central
708  coast chum CUs from that period, with the majority of CUs having green status under the SR
709  benchmarks and amber status under the HS benchmarks (Connors et al. 2018). (Note that
710  status of central coast chum salmon CUs has since declined; see the Pacific Salmon Explorer

711 (www.salmonexplorer.ca) for the most up-to-date assessments.) Consistent with the real

712  status assessments, status under the HS benchmarks tended to be poorer than status under the
713 SR benchmarks. Our simulations attributed this to a higher relative bias in HS benchmarks,

714  consistent with a similar simulation study of south-coast chum salmon that found estimated HS
715  benchmarks tended to be biased high under high-productivity scenarios, resulting in pessimistic
716  misclassifications of biological status (Holt et al. 2018). These pessimistic misclassifications may
717  result in overly conservative management actions that are less risky from a conservation

718  standpoint, consistent with the Precautionary Principle (Foster et al. 2000). However, high
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719  probabilities of pessimistic misclassification are not always desirable as they may result in

720 foregone harvest (Walters et al. 2019).

721  We extended our results beyond the base case, representative of central coast chum salmon,
722 by including simulations with low productivity and high harvest rates. These simulations

723  revealed that misclassifications strongly depend on the true status of the CU. For example,
724  when we manipulated productivity and target harvest rates to mimic a CU with poor biological
725  status (i.e., true red), the bias in benchmarks was negative, resulting in a high proportion of
726  optimistic misclassifications. This represents a high-risk management scenario from a

727  conservation standpoint, particularly as the true underlying status is red. Similarly, the absolute
728  biases in benchmarks were more severe under declines in capacity when status was

729  predominantly red (productivity low) compared to predominantly green (productivity high).
730 The bias in SR benchmarks was particularly sensitive to the underlying true status, presumably
731  because productivity and recruitment, which influence status, also affect the bias in stock-
732 recruitment parameters (Subbey et al. 2014) that arises due to recruitment-spawner linkage
733  inherent in the data (Walters 1985; Korman et al. 1995) and/or due to error in spawner

734  estimates (Walters and Ludwig 1981; Kehler et al. 2002; Kope 2006).

735  Our results suggest that overestimating catch should be avoided. In particular, under low

736  productivity and high harvest rates when status is mainly red, optimistic misclassifications
737  associated with oversestimating catch and therefore underestimating the lower benchmark,
738  Sgen, may put populations at further risk. In contrast, under the base case of high productivity

739  and an HCR, overestimating catch resulted mainly in more frequent pessimistic
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740  misclassifications as the upper benchmark (Svsy) was overestimated, resulting in CUs with a
741  true green status being estimated as amber. In both cases, the impact of overestimating catch
742  has the potential to significantly bias assessments: overestimating catch by ~80% led to a ~5%
743  increase in misclassification rates. This level of catch overestimation (and higher levels) may
744  occur when fish caught in a Pacific Fisheries Management Area (PFMA) and assigned to the CU
745  that overlaps with that PFMA were actually bound for other CUs. This could occur in mixed-
746  stock fisheries if genetic stock identification is not undertaken to validate assumptions

747  regarding run-timing and migration patterns. Increased efforts to quantify catch composition,
748  run timing, and spatial distribution of Pacific salmon CUs are therefore needed to more

749  accurately estimate harvest rates and minimize misclassifications of biological status.

750 Limitations, challenges, and future research

751  Asis inevitable when trying to accurately model the stochastic dynamics of salmon spawning
752  populations within CUs, we made a number of assumptions and so there remain several

753  limitations to our modelling approach. We considered true stock-recruitment dynamics to
754  operate at the spatial scale of spawning populations (i.e., individual streams), but there is

755  evidence that the processes influencing productivity and density-dependence may operate at
756  broader, regional spatial scales (e.g., Malick and Cox 2016). Other simulation models have
757  incorporated straying among spawning populations within a CU (e.g., Peacock and Holt 2012;
758  Holt and Folkes 2015). While that approach incorporates density-dependence that may occur
759  at broader spatial scales, it also requires additional assumptions to be made about the

760  probabilities of straying among streams, which is largely unknown.
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761  Simulating true dynamics at the scale of individual spawning populations also complicates the
762  calculation of true status at the CU-level from SR benchmarks. We chose to calculate SR

763  benchmarks at the spawning-population-level and then sum across spawning populations to
764  calculate Smsy and Sgen at the CU-level. There are other approaches to calculate aggregate
765  benchmarks, but each has its own potential biases. For example, stock-recruitment

766  relationships could be fit to the “true” data aggregated at the CU-level and SR benchmarks
767  calculated from the resulting CU-level estimates of productivity and density dependence. The
768  way in which spawning-population-level benchmarks are aggregated to CU-level benchmarks
769  may affect performance in our simulations, and a full exploration of how different methods of

770  aggregation affect our results warrants future consideration.

771  Despite these limitations, the simulation model that we adapted and applied is flexible enough
772  that it can accommodate different Pacific-salmon species and life-history traits, opening the
773  door to future work investigating the impact of different assumptions and the impact of the
774  assumptions that we focused on under additional scenarios. Here, we considered a relatively
775  simple run-reconstruction model, but further work is needed to quantify how observation

776  errors and uncertainty in the spatial and temporal distribution of returns affects status

777  outcomes when more complex run-reconstruction models are used. Temporal shifts in

778  Dbiological parameters, including age-at-return (e.g., associated with environmental change and
779  selective fisheries) and productivity (non-stationarity has been widely observed in Pacific

780  salmon; e.g., Peterman and Dorner 2012; Malick and Cox 2016; Dorner et al. 2017), are also

781  areas that warrant further exploration. Additional simulations could also help inform methods
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782  inthe assessment process, such as the optimal time-series length for detecting changes,
783  whether benchmarks should be updated with each assessment, and the best analytical
784  approach to calculate SR benchmarks (e.g., Bayesian hierarchical models vs. single-stock

785  ordinary least squares).

786 Conclusions

787  Pacific salmon are one of the most data-rich groups of fish due to their high economic, social,
788  and cultural value, but nonetheless our knowledge of their dynamics is uncertain. Assessing the
789  biological status of Pacific salmon CUs is a conservation and management priority given the
790 continued declines of many stocks (e.g., COSEWIC 2016, 2017) and escalating threats to salmon
791  conservation. Status assessments are also central to the implementation of Canada’s WSP,

792  which requires information on current biological status in order to inform management

793  strategies that can help to maintain salmon biodiversity. Current government-led approaches
794  to assessing the status of salmon CUs are either time and resource intensive (e.g., integrated
795  assessments) or are not clearly documented in a consistent way (e.g., in assessment bulletins),
796  which has limited their application to all 460+ Pacific salmon CUs in Canada. It is unlikely that
797  integrated status assessments will be undertaken in a timely manner for all salmon CUs. Given
798 the importance of current information on biological status, more rapid approaches for

799  assessing biological status are required.

800 The PSF has developed a timely and standardized approach for assessing biological status based
801 ontheindicators and benchmarks recommended under the WSP. Similar approaches have also

802 been adopted by other management and conservation organizations (e.g., Marine Stewardship
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803  Council, COSEWIC, Pacific Salmon Commission). These data-driven approaches to assessing
804  biological status require assumptions to be made to estimate spawner and recruitment

805 timeseries for CUs. We found that the data-driven biological status assessments applied here
806  were relatively insensitive to common assumptions in expanding spawner abundances within
807 the parameter ranges we explored, but misclassification rates depend on the underlying status
808  of the CU and may be of greater concern for CUs with poor status. To ensure the accuracy of
809 data-driven status assessments, increased efforts to collect data on catch composition, age-at-
810 return, and maintain timeseries of spawner abundances are needed. Such information will
811 help, for example, to define plausible ranges of error in catch estimation to lend confidence to
812  estimates of recruitment and thus assessments under SR benchmarks. Nonetheless, our

813  research suggests that current efforts to assess status in the face of imperfect and incomplete
814  data are worthwhile for central coast chum salmon and other similar stocks, and can provide a
815 timely approach to assessing status for CUs that complements more thorough integrated status

816 assessments.
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1027 Table 1. Summary of common steps in run reconstructions (Figure 2) and associated assumptions and potential biases that we investigated.

Step in run Description Assumption Potential biases Associated factor(s)
recon- investigated in this study
struction
(1) Infills observed spawner  The contribution of each indicator- May be biased if contributions are — Diverging capacities of
Expansion abundances in indicator ~ stream population to total escapement changing due to, for example, changes in populations through
Factor | streams to account for is constant within a decade. capacity or productivity that differ time

indicator streams that among populations. Under low Declining monitoring

were not monitored in a monitoring coverage, the magnitude of coverage

given year. expansion is greater and thus we expect

that any potential bias would be larger.

(2) Expands spawner The contribution of non-indicator- May be biased if contributions are Diverging capacities of
Expansion abundances from (1) to stream populations to total escapement  changing due to, for example, changes in populations through
Factor Il include spawners in non- is constant within a decade. capacity or productivity that differ time

indicator streams.

between populations in indicator and

non-indicator streams.

Declining monitoring

coverage
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— Number of streams and

proportion that are

indicators

(3)
Expansion

Factor IlI

Expands spawner
abundances from (2) to
account for observer
efficiency and for
populations that are
never monitored,
yielding the estimated
total spawner

abundance for the CU.

The proportion of total spawner
abundance estimated in (2) is known,
constant over time, and independent of

spawner abundance.

May be biased if observer efficiency is
not known or poorly estimated, if survey
methods change over time (e.g., a weir
to overhead counts), or if observation
bias varies with total spawner

abundance.

Bias in the observation
of spawners (under the
same value of Expansion
Factor lll)

Declining monitoring

coverage

(4) Catch
assignment

to CUs

Catch from PFMAs is
assigned to CUs in

proportion to the

spawner abundance for

that CU.

Fish caught in an PFMA were destined to
spawn in streams that flow into that

PFMA.

Over- or under-estimation of catch due
to different run timing among CUs that
flow into the same PFMA (if information
on run timing is uncertain, unavailable,
or not incorporated into run-

reconstruction models).

— Bias in the observation

of catch

64


https://doi.org/10.1101/868927
http://creativecommons.org/licenses/by-nc-nd/4.0/

Evaluating assumptions in run reconstructions Peacock et al.

(5) The total return to the Often, annual age-at-return data are not  Variability in brood year recruitment will — Inter-annual variability
Calculating CU is assigned to brood available for each CU, and so age-at- be underestimated if there is high inter- in age-at-return
recruitment  years based on the return is assumed to be constant over annual variability, or temporal changes,
using age-at- proportion of fish time, using the average of available in age-at-return that is not accounted
return returning at different data. for in assessments.

ages.

1028
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1029 Table 2. Summary of factors that we investigated in sensitivity analyses to determine their impact on bias in status

1030 assessments.

Factor Scenario Details
Number of Central coast chum* 35 populations, 15 (43%) indicator streams
populationsand  Small/Low 10 populations, 3 (30%) indicator streams
proportion that Small/High 10 populations, 8 (80%) indicator streams
spawn in Large/Low 140 populations, 42 (30%) indicator streams
indicator streams | arge/High 140 populations, 119 (85%) indicator streams
Monitoring Constant Indicator: historical 76% with no change
coverage Non-indicator: historical 72% with no change
Observed decline* Indicator: 76% with a change of -5% over the last 26 years

Non-indicator: 72% with a change of -67% over the last 26 years

Declines in 0 All spawning populations have stable capacities
capacityt 25 25% of populations severe and 25% moderate declines, and

50% stable capacity

50 50% of populations severe and 50% moderate declines in
capacity
100 100% of populations display severe declines in capacity
Bias in Range in bias from § = -1.6, which would correspond to the maximum value of Expansion

observation of Factor Il that has been applied (F””” = 5.0,; English et al. 2018) to § = 0 in increments of 0.2

spawners (*default value § = -0.4, corresponding to F"’=1.5)

Bias in Range in bias from j = -1.0 (63% underestimation) to ¥ = 1.0 (271% overestimation) in
observation of increments of 0.2 (*default value j = 0).

catch
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Interannual Range in variability from @ = 0.2 to @ = 1.6 in increments of 0.2 (*default value w = 0.8;
variability in age-  Figure S4)

at-return

*Default values. TThe default values for decline in capacity did not correspond exactly to the
scenarios considered in the sensitivity analyses, but were based on habitat assessments for
central coast (21% of populations having severe declines and 29% of populations having

moderate declines (Connors et al. 2018)).
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1035  Figure captions

1036  Figure 1. lllustration of the WSP status assessment framework (adapted from Holt et al. 2009).
1037 We focused on the geometric mean spawner abundance (metric, blue) under the spawner
1038 abundance indicator. This metric was assessed against two types of benchmarks: stock-

1039 recruitment and historical spawners (see Figure 2). Faded boxes represent other types of
1040 metrics and indicators that may be included in integrated status assessments but were beyond

1041  the scope of what we considered.

1042  Figure 2. a) Historical spawners benchmarks are the 50th (horizontal green line) and 25th

1043  (horizontal red line) percentiles of historical spawner abundance (points). The current spawner
1044  abundance is calculated as the geometric mean spawner abundance over the most recent

1045 generation (4 years, blue points and line). b) Stock-recruitment benchmarks are based on the
1046  shape of the Ricker stock-recruitment relationship (solid line) fit to data on spawner abundance
1047  (x-axis) and corresponding recruitment (catch + escapement, y-axis). The upper and lower

1048  benchmarks are 80% Swsy (green) and Scen (red), respectively. Scen is defined as the spawner
1049 abundance that leads to Swsy (grey) in one generation in the absence of fishing mortality. Under
1050 both types of benchmarks, the current spawner abundance in the example shown is above the
1051  upper benchmark, and this CU would be assessed as ‘green’. c) The calculation of historical
1052  spawners benchmarks and stock-recruitment benchmarks requires run reconstruction to

1053  expand observed spawners abundances, assign catch to CUs, and calculate recruitment (Table

1054  1).
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1055  Figure 3. Our study focused on central coast chum salmon Conservation Units (CUs) as a case
1056  study for how common run-reconstruction assumptions affect the assessment of biological
1057  status. Chum salmon CUs (green; different CUs shaded differently in central coast inset) are
1058 relatively large, and do not correspond to the Pacific Fishery Management Areas (PFMAs; white
1059  or light blue shaded regions) for which catch is reported. Therefore, assumptions have to be
1060 made when assigning catch to CUs that may result in under- or over-estimation of catch. Map
1061  produced using PBSmapping (Schnute et al. 2015) with data from Fisheries and Oceans Canada

1062  (Martin Huang, pers. comm. <Martin.Huang@dfo-mpo.gc.ca>).

1063  Figure 4. Schematic of the simulation model comprised of submodels for population dynamics

1064 (including harvest), observation, assessment, and performance. Adapted from Holt et al. (2016).

1065  Figure 5. The two harvest cases we simulated were (1) a simple Harvest Control Rule (eq. (4);
1066  solid line) with parameters estimated from historical harvest rates and total return from five
1067 central coast chum CUs (grey points), (2) a constant high target harvest rate of h/'=0.6 (dotted

1068 line).

1069  Figure 6. Estimated status according to the stock-recruitment benchmarks (left) and the
1070 historical spawners benchmarks (right), over the true status for each of two cases (high

1071  productivity and an HCR (a-b) and low productivity and high harvest rates (c-d)). Grey cells
1072 indicate pessimistic misclassifications, which may lead to overly conservative management
1073  actions, and black cells indicate optimistic misclassifications, which may lead to overly risky
1074 management actions. Coloured cells indicate correct classifications for red, amber, and green

1075  zones, respectively.
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1076  Figure 7. Relative bias in stock-recruitment benchmarks (a), historical spawners benchmarks (b),
1077  and current spawner abundance (Savs; black) (median + interquartile range among 4000 MC
1078  simulations) for the base case (high productivity and an HCR) and the low-productivity high-

1079 harvest case.

1080  Figure 8. The effect of monitoring coverage (no change and decline; Table 2) and the

1081  percentage of spawning populations with severe declines in capacity (x-axis) on performance
1082 measures under the base case of high productivity and HCR. (a-b) The proportion of simulations
1083  with correct green, amber, or red status or pessimistic misclassifications (grey) and optimistic
1084  misclassifications (black) under the SR benchmarks (a) and HS benchmarks (b). (c-d) The percent
1085 relative bias (median * interquartile range among 4000 MC simulations) in the current spawner
1086  abundance (Save; black) and lower and upper benchmarks (red and green, respectively) under
1087  the SR benchmarks (c) and the HS benchmarks (d). See Online Supplement for results under

1088 the low-productivity high-harvest case.

1089  Figure 9. The effect of observation bias in the number of spawners (x-axis) on performance
1090 measures under the base case. (a-b) The proportion of simulations with correct green, amber,
1091  orred status or pessimistic misclassifications (grey) and optimistic misclassifications (black)
1092  under the SR benchmarks (a) and HS benchmarks (b). (c-d) The percent relative bias (median +
1093 interquartile range among 4000 MC simulations) in the current spawner abundance (Save; black
1094 circle) and lower and upper benchmarks (red and green, respectively) under the SR benchmarks
1095 (c) and the HS benchmarks (d). The Asterisk (*) in (a-b) and grey zone in (c-d) indicate the

1096  default parameter value of 6 =-0.4, and the bias that matches the Expansion Factor Il of F"”’ =
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1097 1.5 applied in all simulations. See Online Supplement for results under the low-productivity

1098  high-harvest case (results were similar).

1099  Figure 10. The effect of observation bias in catch (x-axis) on performance measures under the
1100 base case. (a) The proportion of simulations with correct green, amber, or red status or

1101  pessimistic misclassifications (grey) and optimistic misclassifications (black) under the SR

1102  benchmarks . (b) The percent relative bias (median * interquartile range among 4000 MC

1103  simulations) in the current spawner abundance (Save) and upper and lower benchmarks under
1104  the SR benchmarks. The asterisk in (a) and grey zone in (b) indicate the default parameter value

1105 of x =0. See Online Supplement for results under the low-productivity high-harvest case.
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1106  Appendices

1107  Appendix A: Table of default parameter values

1108 Table Al. Default values for parameters in the simulation model that were used unless otherwise specified (e.g., in
1109 sensitivity analyses). See text for further explanation of the values and the Online Supplement for details of
1110 estimation for those based on raw data. For parameters that were part of sensitivity analyses, the range in

1111  parameter values that was explored is highlighted.

Submodel Parameter Symbol Default Range Ref.
value
General Years over which the t : return year 50 -
simulation is run y : brood year
Number of indicator I 15 1-41 1
streams
Number of non-indicator ] 20 1-100 1
streams
Population Productivity a 1.40 - 2
dynamics a? 0.22 - 2

a; ~ N(C_l, O'g)

Density dependence Up g 7.95 - 2
(initial)

o5 2.07 - 2
bit—o = 1/Smax;

log Syax; ~ N(,ub,[, (sz,,) Hp,j 6.95 - 2

op; 1.39 - 2
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Temporal autocorrelation T 0.422 - 2
Variance in recruitment o2 1.28 - 2

deviates within spawning

populations

Correlation among p 0.46 - 2
spawning populations in

recruitment deviates

Average proportions for P, 173= 0.23 - 3
age-at-maturity 174: 0.64
ps=0.13
Interannual variability in w 0.8 - 4
age-at-maturity
Maximum target harvest Ry ax 0.42 - 5
rate
Shape parameter for that m 1.13 x 10° 5
harvest rule
Standard deviation in oy, 0.13 - 5
outcome uncertainty
around harvest rate
Observation Lognormal observation § -04 -1.6t00.0 6
error of spawners
o} 0.25 - 4
X 0 -1.0to 1.0
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N

Lognormal observation Oy 0.04 - 4

error of catch

Variability in observed age- w, 0.1 - 4

at-return

References:

1. Based on the range of indicator and non-indicator streams reported in the Pacific Salmon Explorer
(www.salmonexplorer.ca) for the eight central coast chum CUs.

2. Calculated from river-level stock-recruitment data for central coast chum CUs. See Online Supplement for
details.

3. From the NCCDBV2 (Challenger et al. 2018).

4. Same as assumed in Holt et al. (2018) for south-coast chum salmon.

5. Calculated from CU-level harvest rates and total return size, from the Salmon Watersheds Data Library (Salmon
Watersheds Program - Pacific Salmon Foundation 2019). See Online Supplement for details.

6. Based on expert opinion. Expansion Factor of F”” = 1.5 in Table A3-A4 of English et al. (2016).
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