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Kirchhoff polynomials are central for deriving symbolic steady-state expressions of
models whose dynamics are governed by linear diffusion on graphs. In biology, such
models have been unified under a common linear framework subsuming studies across
areas such as enzyme kinetics, G-protein coupled receptors, ion channels, and gene
regulation. Due to “history dependence” away from thermodynamic equilibrium these
models suffer from a (super) exponential growth in the size of their symbolic steady-
state expressions and respectively Kirchhoff polynomials. This algebraic explosion has
limited applications of the linear framework. However, recent results on the graph-
based prime factorisation of Kirchhoff polynomials may help subdue the combinatorial
complexity. By prime decomposing the graphs contained in an expression of Kirchhoff
polynomials and identifying the graphs giving rise to equal polynomials, we formulate
a coarse-grained variant of the expression suitable for symbolic simplification. We
devise criteria to efficiently test the equality of Kirchhoff polynomials and propose
two heuristic algorithms to explicitly generate individual Kirchhoff polynomials in a
compressed form; they are inspired by algebraic simplifications but operate on the
corresponding graphs. We illustrate the practicality of the developed theory and al-
gorithms for a diverse set of graphs of different sizes and for non-equilibrium gene
regulation analyses.
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1 Introduction

Linear diffusion processes (of information, probabilities, concentrations) on graph models are abun-
dant in science (1; 2; 3). The great significance of Kirchhoff polynomials (4) stems from their role
in linking the graph topologies to the symbolic steady-state expressions of such processes. In biol-
ogy, analyses of linear diffusion processes on graphs, originating from areas as diverse as enzyme
kinetics, G-protein-coupled receptors, and gene regulation, have recently been unified under a com-
mon mathematical linear framework (5). The linear framework represents a biological system as a
labelled directed graph (graph, for short) having molecular states as vertices, state transitions as
edges, and transition rate constants as edge labels. The dynamics on the graph have deterministic
(linear ODEs) and stochastic (Markov process master equation) interpretations, and define how
states (concentrations, respectively probabilities) evolve over time (6). Closed form steady states
of such linear framework models (LFMs) always exist and can be symbolically derived from ini-
tial conditions and the basis of the kernel of a matrix representation of LFMs, namely the graph
Laplacian matrix (5). For systems at thermodynamic equilibrium, the principle of detailed
balance dictates “history-independent” equilibrium steady states, for which the basis elements of
the kernel can be derived from products of equilibrium constants along any path in the model
graph (5). However, a breakdown of detailed balance occurs when systems expend energy, leading
to “history-dependent” non-equilibrium steady states of substantially higher algebraic complexity
(7). Namely, away from equilibrium a basis element of the kernel of the graph Laplacian matrix
becomes a homogeneous multivariate polynomial called the Kirchhoff polynomial, which according
to Tutte’s Matrix-Tree Theorem (8) can be equivalently obtained by i) symbolically deriving all
(j, j)-minors of the graph Laplacian matrix and summing them up, and by ii) enumerating all
spanning trees in the model graph, multiplying the symbolic labels in each tree, and adding the
resulting monomials of all spanning trees.
Departure from equilibrium and the ensuing “history dependence” pose a fundamental challenge
– the number of spanning trees and, correspondingly, the size of their Kirchhoff polynomials and
symbolic steady-state expressions frequently grows super-exponentially with the size of the graph
models (9). Symbolic derivations bring great benefits in understanding non-equilibrium biological
phenomena despite this seemingly unmanageable combinatorial explosion. In consequence, there
has been a prolific development of software (reviewed in (10)) and of methods to derive steady states
and rate equations of biological models that can be classified as falling within the linear framework
using, among others, graph theoretical methods (11; 12), systematic determinant expansion (13),
and Wang algebra (14). In computer science, advances have also been made to enumerate the set
of all spanning trees from which Kirchhoff polynomials are obtained (15; 16). However, all existing
exact methods and algorithms suffer from the aforementioned combinatorial explosion and they
only offer limited and ad hoc manipulation of steady-state expressions. This hinders the in-depth
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understanding of the role of energy expenditure in biological systems, the extraction of general
principles of eukaryotic gene regulation (7) and differential signalling (17), and the analysis of more
detailed models that follow from advanced experimental techniques, such as phosphoproteomics
(18).
An important step towards taming the combinatorial complexity is the realisation that a model
graph G can be efficiently decomposed into smaller graphs whose Kirchhoff polynomials are prime
factors of the Kirchhoff polynomial of G (19). This graph-based polynomial factorisation provides a
natural, compact representation that does not directly depend on the number of spanning trees but
rather on directed graph connectivity. Here, we exploit the factorisation to further develop theory
and algorithms for dissecting and mitigating the seemingly intractable combinatorial complexity.
Our approach aims to simplify expressions of Kirchhoff polynomials, bypassing the customary
expensive symbolic generation and manipulation by computer algebra systems. Specifically, we
consider the prime factors of all Kirchhoff polynomials in an expression as symbolic variables. The
resulting coarse-grained expressions allow for symbolic simplification without explicit generation of
the polynomials. To explicitly generate the Kirchhoff polynomials, e.g. as is needed for their re-
peated evaluation, we propose a recursive and an iterative heuristic algorithm inspired by algebraic
simplification, but operating on the graphs alone. Applied to a collection of graphs, in particular,
graph connectivity aware heuristics prove to be useful in practice, with large compressions and
short running times. Further, we extend the sharpness analysis of gene expression in development
from (7) and show that away from equilibrium, four binding sites allow for previously unknown
qualitative shapes of gene regulation functions. The methods and algorithms are implemented in
the Python package KirchPy available on https://gitlab.com/csb.ethz/KirchPy.

2 Background

2.1 Linear framework models (LFMs)

Let us consider the model of Ca2+-dependent nuclear translocation of the nuclear factor of activated
T cells (NFAT) from (20), which can be expressed in the linear framework. NFAT can be in
one of three states – cytoplasmic phosphorylated (N∗c ), cytoplasmic dephosphorylated (Nc), or
nuclear (Nn), and undergo four reactions – dephosphorylation, phosphorylation, nuclear import,
and nuclear export with respective rate constants r1, r2, r3, and r4. This system functions away
from equilibrium because it contains multiple irreversible, and thus energy expending reactions.
The reaction scheme of NFAT can formally be represented as a simple labelled directed graph G =
(V,E) (see Figure 1a). The graph G is composed of a set of vertices V (G) = {vN∗

c
, vNc , vNn} corre-

sponding to NFAT states (correspondence marked in subscript), and a set of edges (ordered pairs
of distinct vertices; no multiple parallel edges allowed) E(G) = {vN∗

c
vNc , vNcvN∗

c
, vNcvNn , vNcvN∗

c
}

corresponding to reactions. We associate a label `(uv), standing for a mathematical expression,
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Figure 1: Example model for nuclear translocation of the nuclear factor of activated T cells (NFAT)
(20). (a) Graph G, (b) all its spanning trees, and (c) the corresponding Kirchhoff polynomial. (d) The
graph obtained by rooting G at vNn

, (e) the edge deleted graph G \ vNc
vN∗

c
, and (f) the edge contracted

graph G/vNcvN∗
c
. Vertex labels mark the states that they represent and W denotes a vertex obtained after

edge contraction. Highlighted vertices are, respectively, roots of the corresponding spanning tree and of all
spanning trees when rooting a graph.

to each edge uv ∈ E(G). For example, with `(vN∗
c
vNc) = r1 we mark that the label associated to

vN∗
c
vNc is the rate constant r1. Additionally, by `(G) we define the set of all edge labels of G.

Here, we are primarily interested in LFMs that correspond to strongly connected graphs. Namely,
graphs G in which there exists a directed path from u to v and from v to u for any two vertices
u, v ∈ V (G) (as in Figure 1a); Figure 1d shows an example for which this property does not hold.
However, this does not limit the generality of the developed algorithms and theory.
LFMs are frequently obtained from more complicated models after applying the technique of time-
scale separation, stating that a part of a biochemical system operating much faster than the rest
of the system can be assumed to have reached a steady state (5). This model reduction could
result in edge labels involving (non-linear) algebraic expressions of kinetic parameters and species
concentration terms. To retain the linearity of LFMs, concentration terms in labels must correspond
to species not contained in V (G). These could be species acting on the slow time scale or other
entities as in the case of NFAT, where r1 is assumed to be modulated by Ca2+ oscillations. We
circumvent explicitly dealing with the arbitrary, though biologically significant, algebraic structure
of the label expressions by regarding them as uninterpreted symbols `(uv) that denote unique edge
names.
We concentrate on the deterministic interpretation of LFM dynamics (also called Laplacian dy-
namics) and associate each vertex vi ∈ V (G) in G to a non-negative species concentration xi and
each edge to a mass-action reaction. In the resulting dynamical system, species concentrations
associated to vertices flow in the direction of the edges at rates proportional to the concentrations
on the edges’ source vertices, where proportionality is set by the edge label `(uv).
The example model from Figure 1a is closed, it does not exchange matter with the environment.
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The dynamics of closed LFMs can be expressed in the form:

dx

dt
= L(G)x, (1)

where x = (x1, . . . , xn)T is the vector of species’ concentrations corresponding to each vertex
v1, . . . , vn ∈ V (G) and L(G) is the graph Laplacian matrix of G defined as:

L(G)ij =
{
`(vjvi) if i 6= j,

−
∑
r 6=j `(vjvr) if i = j,

(2)

and `(vjvi) = 0 when the vjvi /∈ E(G). For the example model this means:

x =


xN∗

c

xNc

xNn

 and L(G) =


−r1 r2 r4

r1 −(r2 + r3) 0
0 r3 −r4

 . (3)

In closed systems the total amount of material xt is conserved according to a single conservation law
x1 + · · ·+ xn = xt. The system has a unique stable steady state that can be derived symbolically
from initial conditions and the kernel of L(G) (6).
Graphs G for open LFMs with synthesis and degradation reactions are obtained by adding a vertex
v∅ representing the environment to a core graph G (akin to closed systems, the core graph is
composed of all non-synthesis and non-degradation reactions), and by introducing directed edges
from v∅ to the synthesised species in G with labels si and edges labelled di from the degraded
species to v∅. The dynamics of open LFMs are defined in general form as:

dx

dt
= L(G)x−∆x+ S,

where L(G) is the graph Laplacian matrix of the core graph, ∆ is a diagonal matrix with ∆ii = δi

the degradation rate constants of species i, and S is a vector Si = si comprising the synthesis
rate constants. In open systems, the total amount of matter is not conserved, but synthesis and
degradation at steady state are balanced: δ1x1 + . . . + δnxn = s1 + . . . + sn. Similarly to closed
systems, but assuring that the steady state concentration at v∅ is always 1, the unique stable
steady state for vertex vi (vi 6= v∅) can be derived symbolically. For more details on LFMs, see
(5; 6; 21).

2.2 Spanning trees

A class of subgraphs, so-called spanning trees, connect non-equilibrium steady states of LFMs to
model graph structure.
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A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G), such that every edge
in G between vertices in H is also an edge in H. For V ′ ⊆ V (G), G[V ′] denotes the induced
subgraph of G by the set of vertices V ′. A strongly connected component (SCC ) of G is any largest
(w.r.t. vertex inclusion) strongly connected induced subgraph of G. The definition implies that
no two distinct SCCs share a vertex, that is, the SCCs G1, . . . , Gk of a graph G induce a unique
partition V (G1), . . . , V (Gk) of V (G). Further, two distinct SCCs Gi and Gj can be connected by
either a directed path from Gi to Gj , or from Gj to Gi, but not by both. The existence of such
unidirectional paths induces a unique partial order on the SCCs G1, . . . , Gk.
A rooted directed spanning tree (spanning tree, for short) A is a subgraph of G that spans its vertex
set such that there is a unique directed path from any vertex to a root vertex. We denote the
set of all spanning trees of G by spt(G), and the set of all spanning trees rooted at a vertex v by
sptv(G) (see Figure 1b for all spanning trees of the example graph). To obtain a graph containing
only spanning trees rooted at a vertex v we define the graph rooting operation rt, so that rtv(G)
is the graph constructed from G by removing all edges outgoing from v (see Figure 1d). Likewise,
we call a graph G rooted at a vertex v if v has no outgoing edges and v is reachable from every
other vertex in G. Observe that sptv(G) = spt(rtv(G)). Graph G contains a spanning tree iff the
partial order of the SCCs has exactly one maximal element, i.e. no other SCC is reachable from a
maximal SCC. Such a maximal SCC is also called a terminal SCC.

2.3 Kirchhoff polynomials and steady states

A spanning tree A of a graph G with n vertices is a subgraph with n− 1 edges e1, . . . , en−1 ∈ E(G)
(we denote edges by e when not interested in the pairs of vertices defining them). In a uniquely
labelled graph G, i.e. when no two edge labels in G are the same, A can also be represented as a
monomial `(e1)`(e2) · · · `(en−1) in the edge labels of G. Further, the set of all spanning trees of G
can be represented by a homogeneous multivariate polynomial over the variables `(ei), ei ∈ E(G).
This polynomial is called the Kirchhoff polynomial κ(G) (see Figure 1c):

κ(G) =
∑

A∈spt(G)

∏
ei∈A

`(ei). (4)

Note that κ(G) = 0 when no spanning trees exist in G and κ(G) = 1 when G consists of a
single vertex. We also denote the Kirchhoff polynomial of all spanning trees rooted at vertex v by
κv(G) =

∑
A∈sptv(G)

∏
ei∈E(A) `(ei) (a shorter notation for κ(rtv(G))).

A Kirchhoff polynomial κ(G) can have multiple algebraically equivalent representations Γi(κ(G))
(i indexes all such representations) corresponding to different expression trees (see Figure 2). We
consider expression trees in which the branch vertices represent the operations of n-ary addition
or multiplication, and leaf vertices are the unique edge labels `(G), the variables of κ(G). We

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2019. ; https://doi.org/10.1101/868323doi: bioRxiv preprint 

https://doi.org/10.1101/868323
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a)

ΓE(κ(G)) = r1r2r4 + r1r3r4 + r2r3r4 + r1r3r5 + r1r4r5 + r3r4r5
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+
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+r3(r4(r2+r5)+r1(r4+r5))

jΓCR
(κ(G))j = 20

Figure 2: Algebraically equivalent representations of a Kirchhoff polynomial, their expression trees, and
sizes for an example graph G (see Figure S1) in (a) the fully expanded representation, (b) a simplified
representation, e.g. obtained by algorithm CR, and (c) a change of variables form (forest of expression
trees), e.g. obtained by algorithm CI . The size of a representation is the sum of the numbers of branch
vertices and of leaves in the expression tree. With change of variables, each expression tree from the forest is
assigned a pointer counting as 1 to the size of the representation and pointing to the leaves of other expression
trees where it should be substituted to obtain the expression tree of the complete Kirchhoff polynomial. The
pointer S denotes the “starting” tree.

define the size of a representation of κ(G), |Γ(κ(G))|, as the size of its corresponding expression
tree. However, a change of variables requires an extended definition because it produces a forest of
expression trees, and not a single tree (see Figure 2c). We define the size of a Kirchhoff polynomial
in such a representation as the total number of branch vertices and leaves in the forest plus the
number of expression trees in the forest. We need to account for the number of expression trees
since each of them has a unique pointer indicating its location within the other expression trees.
The unique steady state of LFMs can be symbolically obtained from initial conditions and the
kernel of the graph Laplacian matrix by employing Tutte’s Matrix-Tree Theorem (8).

Theorem 2.1 (Tutte’s Matrix-Tree Theorem). Let G be a graph with n vertices then the minors
L(G)(i,j) of its Laplacian matrix can be expressed, up to a sign, by the Kirchhoff polynomial rooted
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at the vertex vj corresponding to the j-th column of L(G) as:

L(G)(i,j) = (−1)n+i+j−1 ∑
A∈sptvj

(G)

∏
e∈A

`(e) = κvj (G).

As a result, the non-equilibrium steady-state concentration xSSi of species i associated to vertex vi
in a closed LFM with a strongly connected graph G is a fraction of Kirchhoff polynomials:

xSSi = κvi(G)
κ(G) xt. (5)

Correspondingly, for open systems and a vertex vi 6= v∅:

xSSi = κvi(G)
κv∅(G) .

Note that the Kirchhoff polynomial κ(G) in the denominator of the steady-state expression for
closed systems acts as a non-equilibrium partition function (7). For more details on LFMs, deriva-
tions, equilibrium steady states, and steady states in non-strongly connected graphs see (5; 6; 21).

2.4 Deletion, contraction, prime factorisation

By G \ e we denote the graph obtained from G by deleting edge e ∈ E(G) (see Figure 1e). Ad-
ditionally, for a graph G and an edge e = vivj ∈ E(G), G/e is the edge contracted graph con-
structed from G by (i) removing the edge vjvi, if it exists, and all out-going edges from vi, i.e.
viu ∈ E(G) and (ii) fusing vertices vi and vj into a new vertex w (see Figure 1f). Edge contrac-
tions may give rise to graphs with multiple parallel edges between two vertices. To correct this
we replace m multiple parallel edges e1, e2, . . . , em from u to v with a single edge e = uv so that
`(e) = `(e1) + `(e2) + . . .+ `(em).
The defined graph operations can be used to decompose κ(G), given an edge e ∈ E(G), into a sum
of Kirchhoff polynomials according to the classic deletion-contraction identity (22):

κ(G) = κ(G \ e) + `(e)κ(G/e). (6)

A Kirchhoff polynomial P is a factor of another Kirchhoff polynomial Q, if there exists a Kirch-
hoff polynomial R such that Q = P · R. A Kirchhoff polynomial P that cannot be factorized
into non-trivial factors is called prime. Correspondingly, for graphs, G′ is a component (a prime
component) of G if κ(G′) is a factor (a prime factor) of κ(G). Reference (19) introduces graph
decomposition rules that correspond to factorisation steps of the Kirchhoff polynomial. In partic-
ular, the method yields in linear time graphs whose Kirchhoff polynomials are prime factors of the
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Kirchhoff polynomial of the original G:

κ(G) =
n∏
i=1

κ(Pi),

where Pi are the prime components of G. A prime component Pi can be either (i) strongly connected
or (ii) rooted at v such that Pi \ v (here \ denotes vertex deletion) is strongly connected and Pi

does not have any non-trivial vertex dominators (a vertex u dominates a vertex w if every path
from w to v goes through u). We call graphs with prime Kirchhoff polynomials also prime graphs.
Importantly, the prime factorisation is conditional on label uniqueness—when different edges have
equal labels or there are variables shared across labels, the factorisation is not guaranteed to be
prime.

3 Efficient manipulation of Kirchhoff polynomials

Non-equilibrium steady states of LFMs are ratios (or more generally: expressions) of Kirchhoff
polynomials. Similarly, any symbolic expression derived from steady state LFMs through arith-
metic and calculus will also comprise expressions of Kirchhoff polynomials. Examples are ratios
of steady states, steady-state rate equations, EC50 values for steady-state dose-response curves,
differential responses (17), and steady-state parameter sensitivities (expressions differentiated with
respect to a reaction constant). Correspondingly, algebraic manipulation of expressions of Kirch-
hoff polynomials is important to understand when expressions can be simplified. For example, the
steady state of a LFM can be simplified if the numerator and denominator share common factors.
After all common factors are crossed out, numerator and denominator become relatively prime and
further simplification is not possible.
To circumvent tedious symbolic manipulation of combinatorially complex algebraic expressions, we
exploit properties of Kirchhoff polynomials that allow their implicit manipulation, that is, without
explicitly generating polynomials in expanded form but working with the corresponding graphs.
More precisely, we (i) find the prime components corresponding to prime factors of all Kirchhoff
polynomials in the expression, (ii) determine which prime components generate identical Kirchhoff
polynomials, and (iii) form a coarse-grained representation of the original expression by substituting
prime components with symbolic variables, where prime graphs with equal Kirchhoff polynomials
are assigned the same variable, and finally, (iv) symbolically simplify the coarse-grained expression.
However, it is an open problem to efficiently determine which prime components generate equal
Kirchhoff polynomials without their explicit generation.
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b

a
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(a)

κ( ) = κ( )
a

c
d

b

d
c

a

b

(b)

Figure 3: Examples for (a) two graphs with equal edge label sets but different Kirchhoff polynomials and
for (b) two non-λ-isomorphic prime graphs with identical Kirchhoff polynomials.

3.1 Prime graphs with equal Kirchhoff polynomials

We consider Kirchhoff polynomial equality in the algebraic sense. By uniquely labelling a graph we
assign identity to each edge through its label, that is, a label defines a particular reaction. Applying
the graph operations of prime decomposition, edge deletion, edge contraction, and vertex rooting to
a uniquely labelled graph preserves the identity of the reactions while the names of the vertices can
change. However, when comparing two Kirchhoff polynomials originating from different sources,
identical (different) reactions between the sources need to carry the same (different) labels to have
a meaningful comparison.
A necessary condition for two polynomials to be equal is that they have the same set of variables
corresponding to terms with non-zero coefficients. This condition cannot be transferred directly
to compare the graphs generating Kirchhoff polynomials because the graphs may contain nuisance
edges that do not participate in any spanning tree. With nuisance edges, the set of labels of two
graphs that generate equal Kirchhoff polynomials will be different. However, if we compare only
prime graphs we can prove that they do not contain nuisance edges because every edge participates
in at least one spanning tree.

Theorem 3.1. Let G be a prime graph, then each edge in G participates in at least one spanning
tree.

Absence of nuisance edges in prime graphs allows us to formulate a necessary condition for Kirchhoff
polynomial equality:

Corollary 3.2. Let G and H be two prime graphs with equal Kirchhoff polynomials, then G and
H have equal sets of edge labels, i.e. κ(G) = κ(H) ⇒ `(G) = `(H).

Proof. Follows directly from Theorem 3.1.

The condition can be tested efficiently since it involves only a comparison between sets, but it is
not a sufficient condition for Kirchhoff polynomial equality (see Figure 3a).
To obtain a graph-based sufficient condition of Kirchhoff polynomial equality, we define the term
λ-isomorphism to denote a vertex bijection that is edge-preserving and enforces the corresponding
edges to have identical labels.
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Definition 3.3 (λ-isomorphism). Two labelled graphs G and H are called λ-isomorphic, denoted
G 'λ H, iff there exists a bijective mapping ψ : V (G) 7→ V (H), such that:

1. uv ∈ E(G) iff ψ(u)ψ(v) ∈ E(H) and

2. `(uv) = `(ψ(u)ψ(v)).

Evidently, two λ-isomorphic graphs give rise to equal Kirchhoff polynomials because the graphs
differ only by vertex names, and otherwise have identical topology and labels.

Observation 3.4. Let G and H be λ-isomorphic, then they generate identical Kirchhoff polyno-
mials, i.e. G 'λ H ⇒ κ(G) = κ(H).

To derive a condition testing for λ-isomorphism we first define the so-called line graph L (G)
associated to G.

Definition 3.5 (Line graph). The line graph L (G) associated to the graph G satisfies the condi-
tions:

1. the vertices of L (G) are the unique edge labels of G, i.e. V (L (G)) ≡ `(G) and

2. two vertices u, v ∈ V (L (G)) are joined by an edge uv iff u = `(rs), v = `(st) for r, s, t ∈ V (G).

Theorem 3.6. Two prime graphs G and H are λ-isomorphic iff the edge sets of their line graphs
are equal, i.e. G 'λ H ⇔ E(L (G)) = E(L (H)).

Theorem 3.6 allows us to formulate a sufficient condition for prime Kirchhoff polynomial equality:

Corollary 3.7. Let G and H be two uniquely labelled prime graphs whose line graphs have equal
edge sets, then the Kirchhoff polynomials they generate are equal, i.e. E(L (G)) = E(L (H)) ⇒
κ(G) = κ(H).

Proof. Follows directly from Observation 3.4 and Theorem 3.6.

The sufficient condition in Corollary 3.7 is also cheap to evaluate since it only involves line graph
construction, which has quadratic time complexity, and the comparison of two sets. The condition
is not necessary for prime Kirchhoff polynomial equality (see Figure 3b).

3.2 Formulation of coarse-grained expressions

We use the conditions in Corollary 3.2 and Corollary 3.7 to assign identical variable names to
prime graphs with equal Kirchhoff polynomials when formulating the coarse-grained description
of an expression of Kirchhoff polynomials without their explicit generation. First we apply the
necessary condition to filter possible matches, and then the sufficient one to certify the equality.
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Pairs of prime graphs that are non-λ-isomorphic but have the same label sets require special
attention. With such pairs, we cannot guarantee that we have identified all graphs with equal
Kirchhoff polynomials, which translates to a lack of guarantees for maximal symbolic simplification
of the coarse-grained description. However, without such pairs of graphs in the expression, we can
guarantee the exhaustive identification of prime graphs with equal Kirchhoff polynomials. Further,
comparisons of prime graphs can be accelerated by realizing that each prime component of a graph
is equal to at most one prime component of another graph, since prime factorisation partitions
the set of labels. Note that there might be other reasons that do not guarantee full simplification
and contexts in which full simplification is guaranteed (see Supplementary Material for details).
Additionally, some proofs and derivations assume that the graph models have unique and irreducible
expressions in their labels. If this assumption is not met, e.g. when different reactions have the
same rate constant, rate constants are expressions that can be simplified, or rate constants contain
symbols shared across different labels, then additional symbolic simplification might be required
since the primality of the decomposition is not guaranteed and the manipulation formulas of the
coarse-grained representation might not hold.
The study of non-equilibrium steady-state LFMs is not complete without efficient methods to
apply differentiation and integration to Kirchhoff polynomials, for example, to derive parameter
sensitivities. In Supplementary Material we show that the properties of Kirchhoff polynomials allow
us to map differentiation and integration to graph operations, and thus to work with the implicit
coarse-grained representation.

3.3 Application examples

To illustrate the manipulation of expressions of Kirchhoff polynomials in the coarse-grained rep-
resentation, we first consider a simple open receptor trafficking model with graph G shown in
Figure 4a. It consists of species for an unbound surface receptor R, a cell surface ligand-receptor
complex RL, their respective internalised counterparts Ri and RLi, and a set of state transition,
synthesis, and degradation reactions. Figure 4b shows the steady state for RLi obtained by prime
decomposing the graphs in the steady-state ratio and crossing out the common factors. Without
complete generation of the polynomials κRLi(G) or κ∅(G), we immediately see that the resulting
expression does not depend on the rate constants r1, r2, and r3.
The coarse-grained description is most instrumental in understanding large non-equilibrium sys-
tems when steady-state derivations are difficult or practically impossible. For example, one could
study relative responses, expressed through ratios between the steady states of two species, which
upon simplification could become decoupled from a subset of reaction rate constants. Biologically
important examples for such relative responses are ratios of folded and misfolded protein confor-
mations in proteostasis, where chaperones expend energy to alter the ratios (23), and ratiometric
mechanisms in signalling, in which the ratio between unoccupied receptors and ligand-bound recep-
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Figure 4: Simplification of expressions of Kirchhoff polynomials in the coarse-grained representation. (a)
Simple receptor trafficking model G and (b) simplification of its steady-state expression. Prime components
with equal Kirchhoff polynomials have the same colour; reaction constant r2 is a label on a nuisance edge
marked in black and does not partake in any prime component. Note that vertex labels are not important
since they can change during edge contractions. Also, the symbol κ is omitted in front of the graphs for
clarity.

tor complexes determines downstream effects (24). Decoupling can be used to infer the connectivity
of reaction networks, or design measurements to focus on (or isolate) the effect of certain reactions
on the combinatorially complex steady state of a system.
Let us consider the detailed catalytic cycle of the Prostaglandin H Synthase 1 (PGHS) from (25)
(for description see COX in Table S1), whose graph G is shown in Figure S2a and contains 24
quadrillion spanning trees. We analyse the decoupling from reaction rate constants in all of its
possible steady-state ratios by coarse-graining the relevant Kirchhoff polynomials and cancelling
the common factors between the numerator and denominator. We find that the ratio between the
steady states of species E21 and E17 (two states in the peroxidase cycle of the enzyme containing
the arachidonic acid radical in the cyclooxygenase site and differing by the state of Tyrosine 385)
contains the fewest number of reaction dependencies – only five (see Figure S2b) – while the
Kirchhoff polynomials κE21(G) and κE17(G) consist of trillions of spanning trees.

4 Compact generation of Kirchhoff polynomials

After simplifying an expression of Kirchhoff polynomials in its coarse-grained form, we find which
labels have vanished (the corresponding reactions do not affect the expression) and which ones re-
main (the corresponding reactions might affect the function modelled by the expression). However,
to symbolically obtain the simplified expression for further analysis or repeated evaluation, e.g. for
parameter space exploration, we have to explicitly generate full-length Kirchhoff polynomials. The
coarse-grained representation is advantageous here as well because we only need to generate the
Kirchhoff polynomials for prime graphs with unequal Kirchhoff polynomials.
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4.1 Recursive and iterative algorithms

Specifically, we extend the approach of (19) to Kirchhoff polynomial generation, namely, that of
algebraic simplification—compression of the polynomial to an equivalent but more compact form.
Thus we look for an algorithm C that takes a graph G as input and produces a representation of its
Kirchhoff polynomial ΓC(κ(G)) of size as small as possible. An ideal algorithm C would generate
ΓC(κ(G)) in a maximally compact form, bypassing explicit generation and tedious simplification.
However, it is hard to even check if a Kirchhoff polynomial is fully simplified. Therefore, we aim to
propose algorithms that, without guarantees for maximal compression, provide satisfactory results
to practical problems.
The prime decomposition in (19) behaves as the ideal algorithm C for compression—in linear time,
it produces a guaranteed maximally compact representation for a graph due to the irreducibility
of each prime component. However, it cannot be applied to prime graphs, which can also have
sizable Kirchhoff polynomials. To compress the Kirchhoff polynomials of the prime components,
we rearrange prime Kirchhoff polynomials, particularly by taking a factor out from part of their
monomials, such that we can further factorise parts of them. Without explicit generation, this is
achieved through the deletion-contraction identity (Equation 6), in which the modified graphs G\e
and G/e could be amenable to further prime decomposition since e’s deletion and contraction could
change the connectivity of G.
With this insight, we formulate the algorithm CR (initially presented in (19); see pseudocode in
Supplementary Material as Algorithm 1). It takes a graph G, and recursively alternates between
prime decomposition and edge deletion-contraction in every prime component until graphs are
reduced to a single vertex or a single edge, whose polynomials are trivial to generate. CR is easy to
implement and produces an expression tree as in Figure 2b that is more compact than the expanded
form of the Kirchhoff polynomial. However, multiple recursive calls could unnecessarily work on
large graphs with equal Kirchhoff polynomials.
We propose a second, iterative algorithm, CI (for details and pseudocode see Supplementary Ma-
terial, Algorithm 2). It employs the graph comparisons certifying Kirchhoff polynomial equality to
eliminate the potential redundancy of multiply generating equal Kirchhoff polynomials. In contrast
to CR, CI associates a unique pointer to every graph under study, and reduced graphs are added
to a queue for further reduction, while remembering the partial expression tree they participate in.
Then, the algorithm iterates over the graphs in the queue, reducing them only if their Kirchhoff
polynomials are distinct from the Kirchhoff polynomials of all graphs already considered. Alge-
braically, this is equivalent to a change of variables—substituting identical parts of the Kirchhoff
polynomial with identical symbols and explicitly generating them only once (see Figure 2c for an
example). The partial expression trees are then assembled to obtain a forest of expression trees
marked with the pointers of the initializing graphs as in Figure 2c. This forest corresponds to a set
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of Kirchhoff polynomials, which after being substituted into each other, gives rise to the complete
Kirchhoff polynomial of graph G.
CI ’s representation of the Kirchhoff polynomial is more compact than the expanded form and can
still be easily evaluated and analysed. However, if there are few small graphs with equal Kirchhoff
polynomials encountered during the reduction, compared to CR, CI might consume more memory
(to remember pointers and already considered graphs), have longer running time (due to equality
comparisons), and not provide significantly better compression (compare Figure 2b and c). On the
other hand, if the reduction encounters many large graphs with equal Kirchhoff polynomials, only
CI may generate practically relevant Kirchhoff polynomials.
An important ingredient of both algorithms GR and CI is the choice of an edge for the deletion-
contraction operation (function GetEdgeForDelContr in Supplementary Material, Algorithms 1
and 2). It is unknown which edges to delete-contract to generate a maximally compressed Kirch-
hoff polynomial (19). Therefore, we resort to a heuristic approach: we greedily select an edge to
delete-contract such that a criterion on the decomposition properties is optimised. Since Kirchhoff
polynomial generation results are instance specific, we explore different heuristics (see Supplemen-
tary Material).

4.2 Performance evaluation

For performance analysis, we evaluated the running time and compression of CR and CI , where we
define compression as the ratio of the size of the expanded representation of a Kirchhoff polynomial
|ΓE(κ(G))| and the size of its representation produced by an algorithm C, |ΓC(κ(G))|. Specifically,
we applied 109 heuristics on a collection of example graphs of widely different complexity (see
Table S1). Ten less complex graph models have tens to millions of spanning trees and two more
complex models, HC4 and COXD, have up to quadrillion of spanning trees.
First, we analysed the less complex examples to compare the performance of the different heuristics
(see Supplementary Material for details). For more complex graphs, a random heuristic’s perfor-
mance quickly deteriorates, becoming orders of magnitude worse than heuristics informed by the
graph connectivity (Figure S5). We normalized the performance measures over all heuristics sep-
arately for each example and divided them into groups (see Supplementary Material, Figures S3
and S4). Post-hoc comparisons of sub-heuristic choices revealed that focusing deletion-contraction
on edges relevant to the cycle structure of the graphs, and considering the edge deleted graphs and
strongly connected components leads to significantly shorter running time and larger compression
on average (see Table S2 and Table S3).
Figure 5 compares the performance of algorithms CR and CI for the connectivity-informed heuris-
tics. The performance data for examples of low complexity lie on or symmetrically around the 45◦

line, indicating that the two algorithms perform alike. However, the more complex the examples,
the more apparent becomes the superiority of algorithm CI over CR. The difference is most striking
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Figure 5: Running time (left) and compression (right) of algorithms CR and CI on the collection of
less complex examples in Table S1. Each point represents the running time/compression for an example
graph obtained by CR and CI using the same connectivity-informed heuristic. The dashed line marks equal
performance for CR and CI . Examples are sorted by complexity (number of spanning trees): COLE1 has
the lowest complexity and TF the highest.

Table 1: Performance of algorithm CI with the heuristics leading to the largest compression on a set of
example graphs (see graph descriptions in Table S1): size of the expression tree of the expanded Kirchhoff
polynomial |ΓE(κ(G))|, size of the compressed expression tree |ΓCI

(κ(G))|, heuristic H, compression calcu-
lated as the ratio |ΓE(κ(G))|/|ΓCI

(κ(G))|, and average running time in seconds obtained from 10 runs (one
run for HC4 and COXD) of KirchPy on a Dell laptop with Intel i-7 CPU@2.10GHz and 8GB RAM.

G |ΓE(κ(G))| |ΓCI
(κ(G))| H Compression Time (s)

COLE1 157 46 2012 3.4 0.09
AMPAR 211 63 2102 3.3 0.07
MDH 1, 270 141 2001 9.0 0.27
ACTMYO 3, 561 142 3003 25.1 0.19
KNF33 15, 553 940 3114 16.5 1.41
SHPIL 45, 601 786 2204 58.0 1.58
GR 65, 742 1, 280 2102 51.4 1.63
PHO5 640, 513 4, 691 3215 136.5 10.61
RND 967, 681 3, 281 1011 294.9 7.53
TF 38, 746, 801 1, 191 2002 32, 533 1.84
HC4 679, 477, 249 333, 599 1001 2, 036 1, 797
COXD 367, 647, 474,

647, 060, 221 89, 532 1010 4.1 · 1012 661

for compression, implying that the change of variables benefits the compression of all models.
Finally, the results for the heuristics leading to the largest compression with CI (Table 1) show
that, for larger graphs, the compressed form is orders of magnitude shorter than the number of
spanning trees. Therefore, algebraic compressibility, rather than the number of spanning trees,
is a hard bound for Kirchhoff polynomial generation. It is an open problem how to determine
the compressibility of a graph, but we can get an impression by comparing HC4 and COXD.
The compression results are expected because it is difficult to uncover strong connectivity and
domination during the graph reduction procedure in dense graphs with many reversible edges; it is
simpler to break open cycles in graphs with low density and many unidirectional edges.
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4.3 Application to non-equilibrium gene regulation

Example HC4 from Table 1 belongs to a family of LFMs used in (7) to explore possible biophys-
ical mechanisms behind the sharp expression profile of the hunchback gene as a function of the
transcription factor Bicoid in the early Drosophila embryo. In this family of hypercube graphs,
vertices represent DNA microstates (patterns of a transcription factor (TF) bound to a gene), and
edges and edge labels mark TF binding (with rates dependent on TF concentration) and unbinding.
Graph topology is determined by the number n of TF binding sites at the gene, for example, n = 3
corresponds to a cube graph (see Figure S6) and n = 4 to the four dimensional hypercube HC4.
Under the stochastic interpretation of LFM dynamics, microstate probabilities evolve depending
on the transition rates until a steady state is reached.
Reference (7) develops a sharpness analysis for relations between gene expression rate and TF
concentration, called gene regulation functions (GRFs), that are derived from these LFMs. More
precisely, GRFs are functions of steady-state microstate probabilities determined by a choice of an
expression strategy. For example, in the all-or-nothing strategy, transcription is proportional to the
steady-state probability of the microstate in which all TF sites are bound; microstate probabilities
are, in turn, functions of TF concentrations. After normalisation, two features are extracted from
a GRF to evaluate its sharpness: i) steepness – the GRF’s maximal derivative and ii) position –
the TF concentration at which the maximal derivative is attained. A subsequent exploration of
the GRF parameter space by a biased sampling algorithm aims to determine the boundaries of the
feasible position-steepness region.
An important result of (7) is that energy expenditure is one possible explanation for the observed
sharp response expression profiles in development. In particular, at thermodynamic equilibrium
GRF position-steepness regions are restricted by the Hill function, which acts as a Hopfield barrier,
whereas energy expenditure broadens the feasible position-steepness regions and allows for sharper
responses. However, due to the large algebraic complexity of non-equilibrium steady states, the
non-equilibrium position-steepness analysis in (7) is limited to models with up to n = 3 sites, while
the hunchback P2 enhancer has 5–7 Bicoid binding sites.
The 2000-fold compression of the n = 4 sites model HC4 allows us to extend the non-equilibrium
case analysis and explore how the number of binding sites affects the position-steepness regions.
We focus on the all-or-nothing expression strategy and models with n = 2, 3, 4 binding sites whose
non-dimensionalised kinetic parameters are sampled in the range [103, 10−3]. We obtain position-
steepness boundaries as described in (7), with differences mentioned in Supplementary Material.
Our results are shown in Figure 6 and indicate that the n = 3 and n = 4 site models can achieve
steepness of around 5.5 and 6.4, respectively, both exceeding the experimentally fitted Hill coeffi-
cient of 5 to the hunchback expression profile in response to Bicoid. Interestingly, n = 4 site models
can generate GRFs with position values greater than 1, which are not attainable by Hill functions,
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Figure 6: Position-steepness regions for non-equilibrium gene response functions corresponding to models
with n = 2 (green), n = 3 (blue), n = 4 (black) transcription factor binding sites. The boundaries are
obtained for the all-or-nothing expression strategy by sampling parameter values in the interval [103, 10−3].
The Hill line defined by the position-steepness loci of Hill functions with coefficients ranging from 1.5 to 7 is
shown in red; loci corresponding to integer Hill coefficients are marked with red crosses and numbers. The
position asymptote of the Hill line is marked in grey.

equilibrium GRFs (since they are bounded by Hill functions acting as a Hopfield barrier), and non-
equilibrium models with a lower number of sites. A normalised position value of 1 corresponds to
a TF concentration at which the GRF is half-maximal, suggesting that n ≥ 4 binding sites permit
a wider class of GRF shapes in which the maximal steepness arises at TF concentrations larger or
equal to the half-maximal TF concentration (see examples in Figure S7). Note that the increase
of the position-steepness area from n = 2 to n = 3 sites is much larger than from n = 3 to n = 4
sites. We believe that, because of the vastly different dimensions of the sampled parameter spaces
(6, 22, and 62 free parameters for models with n = 2, 3, and 4 sites, respectively), the more the
sites, the less precise the boundaries.

5 Conclusions

Here, we concentrated on biochemical models falling under the linear framework (5) and took an
algebraic graph theory approach to describe their non-equilibrium steady states. The convenient
correspondence between graphs and polynomials was essential in the development of theory and
algorithms allowing us to manipulate and compress the combinatorially complex expressions. In
particular, our coarse-grained representation permits the manipulation of otherwise symbolically
intractable expressions of Kirchhoff polynomials. It also helps establish a structure-function re-
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lationship between a model and its steady-state response by identifying which reactions do not
partake in the expression due to algebraic simplification and, in some cases, which reactions par-
ticipate in it due to irreducibility.
To explicitly generate individual Kirchhoff polynomials from a simplified coarse-grained expression,
our two proposed algorithms produce compressed polynomials that are algebraically equivalent to
their fully expanded counterparts. We demonstrated the practical utility of the algorithms for a
wide range of graph examples. The large compression results affirm the finding from (19) that
Kirchhoff polynomial generation depends on graph connectivity and not on the (super) exponen-
tially growing number of spanning trees. This calls for a more in-depth characterisation of Kirchhoff
polynomial compressibility based on connectivity. Additionally, compression allowed us to expand
the non-equilibrium gene regulation analysis of (7) and conclude that with four transcription factor
binding sites qualitatively different shapes of gene regulation functions can be obtained.
The presented manipulation and generation theory and algorithms are implemented in the Python
package KirchPy (available on https://gitlab.com/csb.ethz/KirchPy). A direction for
improvement of the manipulation and simplification tools is the further development of Kirchhoff
polynomial equality conditions, since the ones we present are not simultaneously necessary and suffi-
cient, such that we cannot, in general, guarantee to identify all graphs giving rise to equal Kirchhoff
polynomials in a coarse-grained expression. We anticipate that developments in Kirchhoff poly-
nomial isomorphism similar to those for undirected graphs (26) and optimized deletion-contraction
heuristics fuelled by recent advances in strong connectivity and 2-connectivity (27) could further
improve the performance of our compression algorithms. Overall, we believe that KirchPy, together
with the theoretical insights into manipulation and generation of Kirchhoff polynomials, would i)
allow modelling and analysis efforts to catch up with the ever more comprehensive experimental
data by promoting the construction and analysis of larger linear framework models, ii) enable the
analysis of the functional significance of simplifications in classes of models, which can be useful in
experimental design as well as for studying phenomena such as proteostasis, ratiometric and differ-
ential signalling, iii) find applications beyond biology because of the equivalence of linear framework
models to continuous time Markov Chains, and iv) offer an alternative for steady state derivations
that is more convenient than the direct application of the Matrix-Tree Theorem through naive
spanning tree enumeration.
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We are grateful to Przemys law Uznański for insightful discussions and to Jeremy Gunawardena for
critical comments and valuable suggestions.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2019. ; https://doi.org/10.1101/868323doi: bioRxiv preprint 

https://doi.org/10.1101/868323
http://creativecommons.org/licenses/by-nc-nd/4.0/


Funding

This work has been supported by the EU FP7 project IFNAction (contract 223608).

Author contributions

Conceptualization, P.Y. and J.S.; Methodology and algorithms, P.Y.; Investigation, P.Y.; Writing,
P.Y. and J.S. All authors gave final approval for publication.

Competing interests

We have no competing interests.

References
[1] Leighton F, Rivest R. The Markov Chain Tree Theorem. MIT/LCS/TM-249, Laboratory for Computer Science, MIT, Cambridge,

Mass., 1983. Also in IEEE Transactions on Information Theory, IT-37 (6); 1986.

[2] Biane P. Polynomials Associated with Finite Markov Chains. In: In Memoriam Marc Yor-Séminaire de Probabilités XLVII.
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