

1 **Full Title:** Co-immunoprecipitation with MYR1 identifies three additional proteins within
2 the *Toxoplasma* parasitophorous vacuole required for translocation of dense granule
3 effectors into host cells

4

5 **Running Title:** Novel proteins required for *Toxoplasma* effector export

6

7 Alicja M. Cygan^{a*}, Terence C. Theisen^{a*}, Alma G. Mendoza^a, Nicole D. Marino^{a,b},
8 Michael W. Panas^a, and John C. Boothroyd^{a,#}

9

10 Author Affiliations:

11 ^aDepartment of Microbiology and Immunology, Stanford School of Medicine, Stanford
12 CA, USA

13 ^bCurrent address: Department of Microbiology and Immunology, University of California,
14 San Francisco CA, USA

15

16 *A.M.C. and T.C.T. contributed equally to this work. A.M.C. took the lead on writing the
17 manuscript.

18

19 #Address correspondence to John C. Boothroyd, jboothr@stanford.edu

20

21 Word count, abstract: 177

22 Word count, text: 4,236

23

24 **Abstract**

25 *Toxoplasma gondii* is a ubiquitous, intracellular protozoan that extensively
26 modifies infected host cells through secreted effector proteins. Many such effectors
27 must be translocated across the parasitophorous vacuole (PV) in which the parasites
28 replicate, ultimately ending up in the host cytosol or nucleus. This translocation has
29 previously been shown to be dependent on five parasite proteins: MYR1, MYR2, MYR3,
30 ROP17, and ASP5. We report here the identification of several MYR1-interacting and
31 novel PV-localized proteins via affinity purification of MYR1, including TGGT1_211460
32 (dubbed MYR4), TGGT1_204340 (dubbed GRA54) and TGGT1_270320 (PPM3C).
33 Further, we show that three of the MYR1-interacting proteins, GRA44, GRA45, and
34 MYR4, are essential for the translocation of the *Toxoplasma* effector protein GRA16,
35 and for the upregulation of human c-Myc and cyclin E1 in infected cells. GRA44 and
36 GRA45 contain ASP5-processing motifs, but like MYR1, processing at these sites
37 appears to be nonessential for their role in protein translocation. These results expand
38 our understanding of the mechanism of effector translocation in *Toxoplasma* and
39 indicate that the process is highly complex and dependent on at least eight discrete
40 proteins.

41

42 **Importance**

43 *Toxoplasma* is an extremely successful intracellular parasite and important
44 human pathogen. Upon infection of a new cell, *Toxoplasma* establishes a replicative
45 vacuole and translocates parasite effectors across this vacuole to function from the host
46 cytosol and nucleus. These effectors play a key role in parasite virulence. The work
47 reported here newly identifies three parasite proteins that are necessary for protein
48 translocation into the host cell. These results significantly increase our knowledge of the
49 molecular players involved in protein translocation in *Toxoplasma*-infected cells, and
50 provide additional potential drug targets.

51 **Introduction**

52 *Toxoplasma gondii* is an obligate intracellular parasite that can cause severe
53 illness in immunocompromised individuals and the developing fetus. It is estimated to
54 infect up to a third of the world's population, and has an unparalleled host range,
55 infecting virtually any nucleated cell in almost any warm-blooded animal (1). In order to
56 survive within a host cell, *Toxoplasma* tachyzoites, the rapidly-dividing, asexual stage of
57 the parasite, establish a replicative niche, the parasitophorous vacuole (PV), whose
58 membrane (PVM) acts as the interface between parasite and host. While the PV
59 protects intracellular *Toxoplasma* from clearance by the innate immune system, it also
60 acts as a barrier that *Toxoplasma* must overcome in order to hijack host resources.

61 *Toxoplasma* extensively modifies the host cells it infects via secreted effectors,
62 either rhoptry (ROP) or dense granule (GRA) proteins, which it introduces into the host
63 during or following invasion (2). In recent years, several *Toxoplasma* GRAs, including
64 GRA16, GRA24, IST, HCE1/TEEGR, GRA28, and GRA18, have been identified that are
65 translocated across the PVM into the host cell cytosol and/or nucleus, where they can
66 have profound effects on host processes (3–9). The machinery that is responsible for
67 the translocation of these effectors across the *Toxoplasma* PVM is incompletely
68 defined. A recent forward genetic screen identified several parasite proteins essential
69 for GRA protein translocation, including MYR1, MYR2, MYR3, (named for their effect on
70 host c-Myc regulation) and the rhoptry-derived protein kinase, ROP17 (10–12).
71 Precisely how these proteins function to promote protein translocation across the PVM
72 is poorly understood. Of the four, the only protein with a known biochemical function is

73 ROP17, a serine/threonine protein kinase that phosphorylates host, and perhaps
74 parasite proteins at the PVM (6, 13, 14).

75 In addition to MYR1, MYR2, MYR3, and ROP17, an active *Toxoplasma* aspartyl
76 protease V (ASP5), which proteolytically processes secreted proteins at the amino acid
77 sequence “RRL” (also known as a *Toxoplasma* export element, or TEXEL), is also
78 required for the translocation of all exported GRAs studied thus far (5, 6, 8, 9, 15–17). In
79 *Plasmodium*, the homolog of ASP5, plasmepsin V, appears to “license” many proteins
80 for export across the PVM by proteolytically processing them at a *Plasmodium* export
81 element (“RxLxE/Q/D”) (18–21). Intriguingly, and as for *Plasmodium* (22, 23), not all of
82 *Toxoplasma*’s exported GRAs contain “RRL” motifs (e.g. GRA24, GRA28, and
83 HCE1/TEEGR lack such an element), which leaves open the possibility that ASP5’s role
84 in translocation is in processing the translocation machinery, rather than the effectors
85 themselves. Indeed, MYR1 is processed by ASP5, but this processing is not necessary
86 for protein export, as unprocessed full length MYR1 harboring a mutated “RRL” motif
87 can still promote the translocation of the effector GRA24 to the host nucleus (24). The
88 role of ASP5 processing of MYR1, therefore, remains unknown.

89 To learn more about the mechanism of protein translocation in *Toxoplasma*, and
90 to complement the genetic approaches taken previously, we report here the use of
91 MYR1 as “bait” for immunoprecipitation followed by mass spectrometry (IP-MS) to
92 identify putative MYR1-associated proteins that are involved in effector translocation. Of
93 the many associating proteins, at least eleven are shown here or were previously known
94 to be PV-localized and, of these, three additional proteins are now shown to be required
95 for GRA translocation across the PVM. Interestingly, all three of these new components

96 contain “RRL” motifs, with two confirmed to be cleaved in an ASP5-dependent manner;
97 yet, like MYR1, cleavage at these sites appears not to be required for their translocation
98 function. Thus, we have expanded the list of proteins involved in GRA translocation to
99 eight while also expanding the enigma of why at least three of these components are
100 proteolytically processed without any apparent impact on their one known function.

101

102 **Results**

103 We previously reported the use of a forward genetic screen to identify
104 *Toxoplasma* genes required for the induction of human c-Myc. This identified *MYR1*,
105 *MYR2*, *MYR3*, and *ROP17* as essential for the translocation of effector proteins across
106 the PVM (10–12). Two of these proteins, *MYR1* and *MYR3*, were found to co-precipitate
107 with each other (11), and we hypothesized that *MYR1* functions in complex with other
108 yet unidentified proteins to facilitate effector translocation across the PVM. Given the
109 small but significant reduction in plaque size observed when growing strains deleted in
110 *MYR1*, *MYR2*, and *MYR3* on human foreskin fibroblasts (HFFs) (11), we also reasoned
111 that the genetic approach might also miss genes whose disruption substantially reduces
112 fitness.

113 To identify additional *MYR1*-associating proteins, therefore, we adopted a
114 biochemical approach. Specifically, we immunoprecipitated 3xHA-tagged *MYR1* from
115 HFFs infected for 24 hours with an RH::*MYR1*-3xHA strain, or from an untagged RH
116 strain to control for proteins that co-precipitate with the anti-HA beads nonspecifically
117 (**Fig. 1A**). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was
118 performed on the eluates and the identified parasite proteins were ranked by the ratio of
119 average normalized spectral abundance factors (NSAFs) for a given protein in the
120 RH:*MYR1*-3xHA lysates compared to the RH control (25). This mass spectrometry
121 experiment was performed twice (IP 1 and IP 2). As expected, *MYR1* was the most
122 enriched protein in both biological replicates (**Fig. 1B**). Additionally, several PV- or
123 PVM-localized GRA proteins were highly enriched (enrichment score >10) in the *MYR1*-
124 3xHA immunoprecipitations over the untagged RH control, including GRA44, CST1,

125 GRA52, MAG1, PPM11C, GRA50, MAF1a, GRA7, and a GRA12 paralog, in addition to
126 two exported effector proteins, GRA16 and GRA28, of which GRA16 has been shown to
127 be exported in a MYR1-dependent manner (10) (**Fig. 1B, File S1**). The large number of
128 enriched PV- and PVM-localized proteins may be explained by the mild detergent
129 conditions used (0.1% NP-40), which were chosen in an attempt to maintain associating
130 proteins, although these proteins might also be associating with one another in large,
131 non-specific complexes or lipid rafts (26).

132 Importantly, and also as expected, the known MYR1-associating protein, MYR3,
133 was enriched in the MYR1-3xHA immunoprecipitations, albeit with an enrichment score
134 (4.5) that did not put it in the top 20 most enriched proteins (**Fig. 1B, File S1**). Of note,
135 ROP17 was not substantially enriched (enrichment score = 1.2) and no peptides for
136 MYR2 were detected, but neither protein has previously been found to associate with
137 MYR1 and so this was not unexpected. Human proteins with an enrichment score >10
138 include Filamin-C (FLNC), DNA-dependent protein kinase catalytic subunit (PRKDC),
139 sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (ATP2A2), and Alpha-N-
140 acetylglucosaminidase (NAGLU) (**File S1**). As our focus was on parasite proteins only,
141 the potential role of these human proteins in *Toxoplasma* infection was not further
142 investigated.

143 To screen for a possible role in GRA effector translocation, we focused on the
144 top 6 most enriched parasite proteins: GRA44 (TGGT1_228170), CST1
145 (TGGT1_264660), TGGT1_204340, TGGT1_211460, PPM3C (TGGT1_270320), and
146 GRA52 (TGGT1_319340). GRA45 (TGGT1_316250) was also pursued because it is a
147 known binding partner of the top hit, GRA44 (27), and it also had a substantial

148 enrichment score of 5.2 in the immunoprecipitations (**Fig. 1B**). Interestingly, two well-
149 characterized PV proteins that have not previously been described to be involved in
150 effector translocation, GRA7 (TGGT1_203310) and MAF1a (TGGT1_279100), were
151 substantially enriched and, since antibodies and gene knockouts for both were readily
152 available, we included these in the list of genes to explore further. Lastly, as a positive
153 control for a protein whose disruption is known to prevent effector translocation, we also
154 included MYR3 in the pipeline for gene disruption and testing. All ten proteins chosen
155 for further analysis are highlighted in orange in Fig. 1B.

156 With the exception of ASP5, and as might be expected, all proteins so far
157 published as required for effector translocation across the PVM localize to the PV/PVM
158 (2). Of the ten proteins chosen for further analysis, GRA44, GRA45, CST1, GRA7,
159 GRA52, and MAF1a, are all known to be PV/PVM-localized (27–31). The localization of
160 211460 and PPM3C has not been reported, but both include predicted signal peptides
161 (see below) as does 204340 which has been described as possibly micronemal (32).
162 We therefore set out to localize these three proteins within infected cells. To do this, we
163 generated populations of parasites in which each of the three genes was endogenously
164 modified to encode a 3xHA-tag immediately before the stop codon and then assessed
165 the protein's localization by immunofluorescence assay (IFA). Correct integration of the
166 3xHA-tag into the appropriate locus was confirmed by PCR and by checking for an
167 appropriately sized HA-tagged protein via western blotting. The results (**Fig. 2A**)
168 showed major bands at ~130 kDa, ~110 kDa, and ~70 kDa for 211460, 204340, and
169 PPM3C, respectively. In the case of 204340 and PPM3C, this is close to the predicted
170 sizes of ~97 kDa and ~60kDa (ToxoDB v45). For 211460, however, the mobility is

171 significantly retarded relative to its predicted size of ~100 kDa. This could be due to its
172 acidic pI of 4.91 (ToxoDB v45) which is known to reduce protein mobility on SDS-PAGE
173 (33), and/or to post-translational modifications (all three proteins are reported to be
174 phosphorylated (31; ToxoDB v45)). This same slower-than-expected mobility for the
175 major band was seen for an independently generated, cloned line expressing HA-
176 tagged 211460 (**Fig. S1A**) and so we conclude that this is the correct mobility for this
177 protein. Interestingly, both the 211460-3xHA tagged population and single clone also
178 showed a smaller but considerably weaker band at around the expected size (~100
179 kDa). Whether this smaller MYR4 product is biologically relevant, or is simply a product
180 of protein degradation, is unclear.

181 Using the HA-tagged 211460, 204340, and PPM3C parasite populations, we next
182 sought to determine the localization of these proteins in infected cells. Using SignalP
183 software (v5.0), all three proteins have strongly predicted signal peptides although in the
184 case of 211460, this is only true if translation starts at the fourth in-frame methionine
185 (position 61) relative to the protein sequence predicted on ToxoDB (v45). The results
186 (**Fig. 2B**) show a clear PV-like signal outside of the parasites in the 211460-3xHA,
187 204340-4xHA, and PPM3C-3xHA populations, including at the periphery of the PV. The
188 PV-localization for 211460 is further confirmed in the independently generated clonal
189 line (**Fig. S1B**). Thus, we conclude that 211460, 204340, and PPM3C are at least
190 transiently localized to the *Toxoplasma* PV during infection. Furthermore, we also
191 assessed the localization of these proteins within the parasites themselves. The results
192 (**Fig. S2**) show that while PPM3C appears to be present throughout the parasite,
193 211460 and 204340 show a clear, punctate staining pattern that largely co-localizes

194 with the dense granule protein GRA7, suggesting that these two proteins are also GRA
195 proteins. We therefore designate 204340 as *GRA54* for its GRA-like localization, and
196 211460 as *MYR4*, for reasons described below.

197 To assess their potential involvement in GRA effector translocation, we
198 attempted to generate knockouts of our candidate genes in a strain of *Toxoplasma* that
199 constitutively expresses an HA-tagged version of the MYR1-dependent secreted
200 effector protein GRA16, RH Δ gra16::GRA16-HA (“parental”). To do this, we co-
201 transfected a CRISPR/Cas9 sgRNA plasmid that targets the first exon of the relevant
202 gene along with a pTKO2-CAT-mCherry plasmid (CAT encodes the chloramphenicol-
203 resistance gene, chloramphenicol acetyl transferase; **Fig. 3A**). Following selection with
204 chloramphenicol, we cloned the populations by limiting dilution and confirmed disruptive
205 integration of the vector by PCR with gene-specific primers. Using this strategy, we
206 were able to disrupt the genomic loci of *MYR3*, *GRA44*, *GRA45*, *CST1*, *GRA54*, *MYR4*,
207 *PPM3C*, and *GRA7* (**Fig. S3**). Despite several attempts, however, we were unable to
208 generate a *GRA52* mutant. This gene may be essential as it has a very negative
209 CRISPR fitness score of -3.96 (35). Given that the *MAF1* locus is expanded in
210 *Toxoplasma*, with 4 copies in RH parasites (36), we chose not to attempt a
211 CRISPR/Cas9 approach to knockout *MAF1a*, and instead utilized a previously
212 generated strain in which the entire *MAF1* cluster (including *MAF1a* and *MAF1b*) is
213 deleted (31).

214 To determine if the absence of any of the candidate genes results in a defect in
215 effector translocation across the PVM, we used IFA to assess both GRA16-HA export to
216 the host nucleus and host c-Myc upregulation (which *Toxoplasma* induces during

217 infection (37)) in the disrupted lines. Quantified results for all nine genes tested show
218 that disruption of *GRA44*, *GRA45*, *MYR4* and the previously described *MYR3*, all
219 resulted in a complete or near-complete block in *GRA16* export to the host nucleus
220 (**Figs. 3B, S4**) and a failure to upregulate host c-Myc (**Figs. 3C, S4**); on the other hand,
221 disruption of *GRA7*, *CST1*, *GRA54*, or *PPM3C* resulted in no detectable effect on either
222 of these two phenotypes. Additionally, we found that the previously generated $\Delta maf1$
223 strain also had normal *GRA16* export to the host nucleus (**Fig. 3D**). These results
224 indicate that of the nine genes tested here, only *MYR3*, *GRA44*, *GRA45* and *MYR4* are
225 necessary for the translocation of GRA effectors across the PVM.

226 To test the generality of their role in effector translocation, we next assessed the
227 impact of these gene disruptions on the upregulation of host cyclin E1 which has been
228 shown to be dependent on export of the *MYR1*-dependent effector *HCE1/TEEGR* (6).
229 The results showed that, as for *GRA16*, disruption of *MYR3*, *GRA44*, *GRA45*, and
230 *MYR4* also resulted in a block in cyclin E1 upregulation in infected host cells, while no
231 obvious defect was observed in the parasite lines disrupted in *GRA7*, *CST1*, *GRA54*
232 and *PPM3C* (**Fig. 3E**). A repetition of the cyclin E1 western blot with higher parasite
233 input reveals that the absence of cyclin E1 upregulation observed in $\Delta gra44$ parasites in
234 **Fig. 3E** is not due to low parasite input in that particular experiment (**Fig. S5**). These
235 results argue that *GRA44*, *GRA45* and *MYR4* are all required for translocation across
236 the PVM of at least two independent GRA effectors.

237 Our previous work has shown that deletion of *MYR1*, *MYR2*, and *MYR3* results in
238 a small but significant, negative effect on parasite growth *in vitro* (11). To determine if
239 disruption of the three new genes involved in effector translocation described here has a

240 similar impact, we infected HFF monolayers with each of the disrupted lines, fixed the
241 monolayers 7 days post infection, and measured plaque size. The results show that the
242 $\Delta myr4$, $\Delta gra44$ and $\Delta gra45$ strains all exhibit a significant growth defect compared to the
243 parental strain (**Fig. 3F**). We did not test for rescue of the growth phenotype with
244 complementation due to limitations in selectable markers available in these strains. The
245 $\Delta gra54$ and $\Delta ppm3c$ strains, on the other hand, did not have significant growth defects,
246 consistent with the growth defects observed being dependent on the respective
247 genotype rather than nonspecific effects of the manipulations.

248 To confirm that ablation of *GRA44*, *GRA45*, and *MYR4* loci are responsible for
249 the observed defect in *GRA16* export, we transiently expressed a C-terminally V5-
250 tagged version of each protein, driven by its native promoter, in the relevant disrupted
251 line. These transiently transfected parasites were then assessed for *GRA16-HA* export
252 to the host nucleus via IFA. The results showed that the parental and complemented
253 strains had *GRA16-HA* signal in both the vacuole and host nucleus, while the parasites
254 within the population that did not express the complementing transgene (as indicated by
255 lack of anti-V5 staining) showed essentially no *GRA16* in the host nucleus (**Figs. 4A,**
256 **4B**). Thus *GRA44*, *GRA45*, and *MYR4* are indeed essential for the translocation of
257 effectors across the PVM, and we therefore designate 211460 as *MYR4*, consistent with
258 previous nomenclature (10, 11).

259 Interestingly, *GRA44*, *GRA45* and *MYR4* all contain one or two instances of the
260 three-amino-acid motif “RRL” (**Fig. 5A**), which has previously been shown to be the
261 preferred sequence for cleavage by ASP5 protease (15). Indeed, cleavage at the three
262 sites shown in *GRA44* and *GRA45* (27), as well as at the first “RRL” motif in the

263 secreted GRA effector, GRA16 (15), has been experimentally confirmed. ASP5 is
264 essential for the translocation of all GRA effectors so far tested (5, 6, 8, 9, 15–17) and it
265 has previously been suggested that ASP5-mediated cleavage of some effectors is
266 required to “license” them for translocation across the PVM, as appears to be the case
267 in *Plasmodium* (38, 39). Given, however, that not all such effectors contain ASP5
268 processing motifs (e.g., GRA24 lacks the canonical “RRL” and shows no evidence of
269 ASP5-dependent processing; (17)), and given that the three newly identified
270 components of the translocation machinery identified here do, we hypothesized that
271 ASP5’s essential contribution to effector translocation across the PVM might be in
272 processing one or more components of the translocation machinery. We have
273 previously shown that MYR1 is also processed by ASP5 at a “RRL” site but this does
274 not appear to be required for MYR1 to function in effector translocation (24) and so we
275 turned our attention to the newly identified translocation components identified here.

276 To determine if processing at the “RRL” sites of GRA44, GRA45, and MYR4 is
277 required for protein translocation activity, we mutated the ASP5 cleavage sites by
278 converting the first arginine to an alanine (i.e., RRL→ARL) in the V5-tagged
279 complementation plasmids for each gene, and transiently transfected these into the
280 corresponding disrupted line. Western blots were then used to show that processing of
281 GRA45 at its lone “RRL” and of GRA44 at its second “RRL” is indeed abrogated by the
282 mutations (**Fig. 5B**). For the more N-terminal site in GRA44 (R83A), we cannot
283 definitively confirm that the mutation abrogates ASP5 processing because GRA44 is
284 epitope-tagged at its C-terminus and so, assuming cleavage at the two sites is an
285 independent event, cleavage at the downstream site will produce a C-terminal, V5-

286 tagged fragment whether or not cleavage occurs at R83A. We fully expect, however,
287 that the RRL→ARL change disrupts ASP5 cleavage at this site because it did in the two
288 other examples shown here (GRA45 and the downstream site in GRA44, R1348A) and
289 because RRL→ARL mutations have previously been shown to disrupt the ASP5-
290 dependent cleavage of other proteins (24, 27).

291 Interestingly, mutation of the “RRL” to an “ARL” in MYR4 did not appear to affect
292 the processing of the protein (**Fig. 5B**). To rule out whether this is due to incomplete
293 ablation of the ASP5 processing site with a single amino acid substitution, we assessed
294 the processing of an RRL→AAA MYR4 mutant where the entire ASP5-processing motif
295 is mutated to alanines. The results (**Fig. 5C**) show that the higher molecular weight
296 product of MYR4 (~130kD) does not change in mobility upon mutation of the entire
297 “RRL” motif, and thus we conclude that little if any MYR4 is processed by ASP5. Note
298 that, despite repeated attempts with large amounts of DNA, the signal for the transiently
299 expressed MYR4 was never strong enough to confidently conclude whether a small
300 amount of a processed form might be present in these transiently transfected parasites;
301 we therefore cannot comment on whether the low-intensity, smaller molecular weight
302 product of MYR4 (~100kD) seen in long exposures of endogenously tagged wild type
303 MYR4 (**Figs. 2A, S1A**) is a result of an ASP5 processing event.

304 Having generated the four RRL→ARL mutants, and having validated that ASP5
305 cleavage is ablated in at least two instances, we next tested each for its impact on the
306 localization of the epitope-tagged, C-terminal portion of the protein and on the ability of
307 the uncleaved protein to function; i.e., whether it can rescue the defect in effector
308 protein translocation. The results show that the RRL→ARL mutated versions of each

309 protein are still secreted into the PV, similar to the wild type copy (**Figs. 6A, 4A**), and
310 are all able to rescue the translocation defect to a similar extent as the corresponding
311 control (WT) plasmid (**Fig. 6B**). While the GRA45 R64A mutant did substantially rescue
312 translocation, it did not consistently rescue to wildtype levels. Nevertheless, these data
313 suggest that mutation of the “RRL” sites in GRA44, GRA45, and MYR4 to “ARL” does
314 not substantially affect their function in effector protein translocation.

315 **Discussion**

316 Using affinity purification of MYR1 under conditions expected to retain
317 associating partners, we identify three novel parasite proteins, GRA44, GRA45, and
318 MYR4, as essential for the export of GRA effectors into infected cells. Additionally, we
319 localize MYR4, as well as two additional MYR1-associating proteins, GRA54 and
320 PPM3C, to the PV in infected cells. Altogether, eight proteins are now known to be
321 necessary for effector export: the 3 described here and MYR1, MYR2, MYR3,
322 ROP17 and ASP5 – summarized in Table S1 (10–12, 15–17). Besides ASP5, which
323 localizes to the Golgi (15–17), these proteins all localize to the PV/PVM.

324 The newly identified components described here do not display any homology to
325 known protein translocation machinery based on BLAST analysis results (BLASTP
326 2.10.0+), making it difficult to infer their functions and thus which, if any, are part of an
327 actual translocon remains unknown. In addition to lacking homology to known
328 translocation machinery, MYR4 and GRA45 do not have detectable homology to any
329 other known, functional protein domains and neither do they share homology to proteins
330 in any species outside of *Coccidia/Eimeriorina*. Like MYR1, MYR2, MYR3, and ROP17,
331 however, MYR4, GRA44 and GRA45 all have clear orthologs in *Hammondia hammondi*
332 and *Neospora caninum* (**Table S1**).

333 GRA44, by contrast, contains a putative phosphatase domain that shares
334 homology to a region of the *Plasmodium* serine/threonine phosphatase UIS2 (28%
335 identity over 21% of the protein; BLASTP 2.10.0+), which has recently been shown to
336 localize to the *Plasmodium* PVM in liver stage parasites (40). Whether UIS2 plays a
337 role in protein translocation in *Plasmodium* remains to be determined but this would be

338 surprising given that none of the other components of the complex known to promote
339 translocation in *Plasmodium* (known as PTEX) so far studied play a role in translocation
340 in *Toxoplasma* (2). Additionally, whether this phosphatase domain is important for
341 effector export in *Toxoplasma* is not yet known. Given that the kinase domain of ROP17
342 is necessary for GRA16 export (12) it is intriguing that two of the eight factors necessary
343 for effector export are either a kinase or a phosphatase. There are numerous serine
344 residues that are phosphorylated among MYR1, MYR2, MYR3, and MYR4, supporting
345 the possibility that phosphorylation of the translocation machinery is critical to regulating
346 its function in effector export. While this work was in progress, we learned of similar
347 studies by Blakely, Arrizabalaga and colleagues who also found that GRA44 associates
348 with MYR1 and is necessary for efficient c-Myc upregulation during infection (see
349 accompanying manuscript). These latter authors used a knockdown approach to study
350 GRA44 and saw a more dramatic impact of GRA44 loss on parasite growth than we
351 report here for the GRA44 knockout; this might indicate that compensatory changes
352 were selected for during the prolonged selection necessary to generate and expand our
353 knockout clone, as was reported for AMA1 knockouts that showed dramatic up-
354 regulation of the parologue, AMA2 (41). Thus, transcriptomic analysis of the GRA44
355 knockout may reveal clues to its specific role(s) in *Toxoplasma* tachyzoites.

356 Our results expand the enigmas of why some parasite proteins are proteolytically
357 processed by ASP5, and why ASP5 is essential for effector translocation across the
358 PVM. MYR1, GRA44, and GRA45 all possess “RRL” motifs that appear to be cleaved in
359 an ASP5-dependent manner yet, surprisingly, their function in the export of GRA16, and
360 of GRA24 in the case of MYR1 (24), appears agnostic to mutation of these sites.

361 For MYR1, we previously showed that the two domains generated by ASP5 processing
362 stay connected through a disulfide bond after cleavage (11); it remains to be determined
363 whether the polypeptides formed by RRL cleavage in GRA44 and GRA45 likewise
364 associate in a similar manner. It is also important to note that our assays may not be
365 sensitive enough to detect small changes in protein abundance in the host nucleus, and
366 that it is the combination of multiple proteins not being processed by ASP5 that is
367 deleterious to export in Δ asp5 mutants, rather than the result of failure to cleave any
368 single protein.

369 Interestingly, there was a large number of proteins that were more highly
370 enriched than MYR3 in our immunoprecipitations with MYR1, and it remains a strong
371 possibility that additional MYR1-associating proteins are involved in effector
372 translocation. Due to the large number of enriched proteins and the limited throughput
373 of our approach, we were unable to investigate all candidates for such a role;
374 nevertheless, our data showing that GRA16-HA export is not lost in parasites disrupted
375 for GRA7, CST1, MAF1, PPM3C, or GRA54 strongly suggests that it is not general
376 PV/PVM disruption that results in the loss of effector translocation. Further work will be
377 needed to determine which of the remaining proteins we see enriched in the MYR1
378 immunoprecipitations are there because of specific association with MYR1 vs.
379 nonspecific associations of proteins within the PV/PVM due to association within lipid
380 rafts or other entities.

381 Lastly, none of GRA44, GRA45, or MYR4 were identified in the forward genetic
382 screen of parasites that are unable to induce c-Myc (10). This could be due to the
383 growth defects observed in Δ myr4, Δ gra44, and Δ gra45 parasites shown here since

384 parasites with null mutations in these genes might be lost during the 7-8 rounds of
385 selection used in that screen due to a fitness disadvantage. Alternatively, the
386 mutagenesis-based genetic screen was not saturating and so a more comprehensive,
387 genome-wide screen using CRISPR/Cas9 technologies might reveal these and other
388 genes responsible for effector translocation in *Toxoplasma*. Regardless, our finding of
389 three new components of the export machinery provides a richer understanding of how
390 *Toxoplasma* delivers effectors into host cells. Future work will determine the precise
391 function of each, including how they interact, the role of ASP5 cleavage, and which, if
392 any, constitutes the actual translocon.

393

394

395 **Materials and Methods**

396

397 **Parasite strains, culture and infections**

398 All *Toxoplasma* tachyzoites used in this study are in the Type I “RH” background,
399 either RH::MYR1-3xHA (11), RH Δ gra16::GRA16HA (6), RH Δ maf1 (31), RH Δ hpt (42), or
400 RH Δ hpt Δ ku80 (43). These tachyzoites, and all subsequently generated lines, were
401 propagated in human foreskin fibroblasts (HFFs) cultured in complete Dulbecco’s
402 Modified Eagle Medium (cDMEM) supplemented with 10% heat-inactivated fetal bovine
403 serum (FBS; HyClone, Logan, UT), 2 mM L-glutamine, 100 U/ml penicillin and 100
404 μ g/ml streptomycin at 37 °C with 5% CO₂. The HFFs were obtained from the neonatal
405 clinic at Stanford University following routine circumcisions that are performed at the
406 request of the parents for cultural, health or other personal medical reasons (i.e., not in
407 any way related to research). These foreskins, which would otherwise be discarded, are
408 fully de-identified and therefore do not constitute “human subjects research”.

409 Prior to infection, parasites were scraped and syringe-lysed using a 27 G needle,
410 counted using a hemocytometer, and added to HFFs. “Mock” infection was done by first
411 syringe-lysing uninfected HFFs, processing this in the same manner as done for the
412 infected cells, and then adding the same volume of the resulting material as used for
413 infections. For experiments where human c-Myc protein was detected, the parasites
414 were added to HFFs in media containing 0% serum.

415 **Immunofluorescence assay (IFA)**

416 Infected cells grown on glass coverslips were fixed and permeabilized using
417 100% cold methanol for 10 min. Samples were washed 3x with PBS and blocked using

418 3% BSA in PBS for 1 hour at room temperature (RT). HA was detected with rat
419 monoclonal anti-HA antibody 3F10 (Roche), SAG1 was detected with mouse anti-SAG1
420 monoclonal antibody DG52 (44), GRA7 was detected with rabbit anti-GRA7 antibodies
421 (45), V5 was detected with mouse anti-V5 tag monoclonal antibody (Invitrogen), and c-
422 Myc was detected with rabbit monoclonal anti-c-Myc antibody Y69 (Abcam). Primary
423 antibodies were detected with goat polyclonal Alexa Fluor-conjugated secondary
424 antibodies (Invitrogen). Primary and secondary antibodies were both diluted in 3% BSA
425 in PBS. Coverslips were incubated with primary antibodies for 1 hour at RT, washed,
426 and incubated with secondary antibodies for 1 hour at RT. Vectashield with DAPI stain
427 (Vector Laboratories) was used to mount the coverslips on slides. Fluorescence was
428 detected using wide-field epifluorescence microscopy and images were analyzed using
429 ImageJ. All images shown for any given condition/staining in any given
430 comparison/dataset were obtained using identical parameters.

431 **Transfections**

432 All transfections were performed using the Amaxa 4D Nucleofector (Lonza)
433 model. Tachyzoites were mechanically released in PBS, pelleted, and resuspended in
434 20 µL P3 Primary Cell Nucleofector Solution (Lonza) with 5-25 µg DNA for transfection.
435 After transfection, parasites were allowed to infect HFFs in DMEM.

436 **Plasmid construction**

437 For gene disruption plasmids: gRNAs designed against a PAM site of each gene
438 of interest were cloned into the pU6-Universal plasmid. pU6-Universal was a gift from
439 Sebastian Lourido (Addgene plasmid # 52694 ; <http://n2t.net/addgene:52694> ;
440 RRID:Addgene_52694).

441 For ectopic expression plasmids: The pGRA-V5 plasmid was created by
442 replacing the HA tag sequence in the pGRA-HPT-HA plasmid (46) with the V5 tag DNA
443 sequence (GGCAAGCCCATCCCCAACCCCTGCTGGGCCTGGACAGCAC) and
444 removing the HPT resistance cassette using standard molecular biology techniques.
445 The pX-V5 plasmid was created by removing the GRA1 promoter from pGRA-V5 using
446 standard molecular biology techniques. Complementation plasmids to ectopically
447 express V5 tagged proteins off their native promoters were created by PCR
448 amplification of the open reading frame of each gene, minus the stop codon, plus ~2000
449 bp upstream of the start codon to include the native promoter, followed by cloning into
450 pX-V5 using Gibson Assembly (NEB). RRL→ARL or RRL→AAA mutated
451 complementation plasmids were generated using overlap extension PCR using primers
452 harboring the mutation and cloning the resultant products into pX-V5 using Gibson
453 Assembly (NEB).

454 For endogenous tagging plasmids: Approximately 1500-3000 bp of the 3' coding
455 sequence of each gene was amplified from RH genomic DNA and cloned into the
456 pTKO2-HPT-3xHA plasmid (11) using either Gibson Assembly (NEB) or by cloning into
457 the EcoRV and NotI restriction sites.

458 A list of all primers and plasmids used and generated in this study can be found
459 in **File S2**.

460 **Endogenous tagging**

461 Endogenous tagging plasmids were transfected into *Toxoplasma* via
462 electroporation. Tachyzoites were allowed to infect HFFs in T25 flasks for 24 hours,
463 after which the medium was changed to complete DMEM supplemented with 50 µg/ml

464 mycophenolic acid and 50 µg/ml xanthine for selection for the hypoxanthine-xanthine-
465 guanine-phosphoribosyltransferase (HXGPRT or HPT) marker for 3-5 days.

466 **Gene disruption**

467 A list of all sgRNA sequences used in this study can be found in **File S2**.
468 RH Δ gra16::GRA16HA tachyzoites were transfected with pTKO2-CAT-mCherry (CAT is
469 chloramphenicol acetyl transferase which confers resistance to chloramphenicol; the
470 plasmid was a gift from Ian Foe and Matthew Bogyo (47)) and the corresponding
471 modified pU6-sgRNA plasmid and allowed to infect HFFs for 24-48 hours. For gene
472 disruption of MYR3, the previously published pSAG1:U6-Cas9:sgMYR3 plasmid was
473 used instead (11). Between 24-48 hours after transfection, DMEM media with 80 µM
474 chloramphenicol was added to the cells. The media was replaced with fresh
475 chloramphenicol-supplemented media every 48-72 hours. After at least 7 days in
476 selection, single clones were selected from the transfected populations in 96 well plates
477 using limiting dilution. Single clones were maintained in chloramphenicol-supplemented
478 media until confirmation of the genetic disruption.

479 **Ectopic expression**

480 Plasmids for ectopic expression were transiently transfected into *Toxoplasma*
481 using electroporation. Tachyzoites were allowed to infect HFFs for 18-24 hours before
482 assessing for expression of the ectopically expressed protein via either IFA or western
483 blotting.

484 **Western blotting**

485 Cell lysates were prepared at the indicated time points post-infection in Laemmli
486 sample buffer (BioRad). The samples were boiled for 5 min, separated by SDS-PAGE,

487 and transferred to polyvinylidene difluoride (PVDF) membranes. Membranes were
488 blocked with 5% nonfat dry milk in TBS supplemented with 0.5% Tween-20, and
489 proteins were detected by incubation with primary antibodies diluted in blocking buffer
490 followed by incubation with secondary antibodies (raised in goat against the appropriate
491 species) conjugated to horseradish peroxidase (HRP) and diluted in blocking buffer. HA
492 was detected using a horseradish peroxidase (HRP)-conjugated HA antibody (Roche
493 cat no. 12013819001), SAG2A was detected using rabbit polyclonal anti-SAG2A
494 antibodies (48), Cyclin E1 was detected using mouse monoclonal antibody HE12 (Santa
495 Cruz Biotechnology), and GAPDH was detected using mouse monoclonal anti-GAPDH
496 antibody 6C5 (Calbiochem). Horseradish peroxidase (HRP) was detected using
497 enhanced chemiluminescence (ECL) kit (Pierce).

498 **Plaque assay**

499 Parasites were syringe-released from HFFs and added to confluent HFFs in T25
500 flasks. After 7 days, the infected monolayers were washed with PBS, fixed with
501 methanol, and stained with crystal violet. Plaque area was measured using ImageJ.

502 **Immunoprecipitations (IPs) for mass spectrometry**

503 IPs to identify MYR1-interacting proteins in HFFs were performed as follows.
504 One 15-cm dish of HFFs for each infection condition was grown to confluence. HFFs
505 were infected with either 15×10^6 RH::MYR1-3xHA or RH Δ hpt parasites for 24 hours.
506 Infected cells were washed 3 times in cold PBS and then scraped into 1 mL cold cell
507 lysis buffer (50mM Tris (pH 8.0), 150mM NaCl, 0.1% (v/v) Nonidet P-40 Alternative
508 [CAS no. 9016-45-9]) supplemented with complete protease inhibitor cocktail
509 (cComplete, EDTA-free [Roche]). Cell lysates were passed 3 times through a 25 G

510 needle, followed by 3 times through a 27 G needle, followed by sonication on ice
511 (Branson Sonifier 250), with 3 pulses of 10 s at 50% duty cycle and output control 2.
512 Cell lysates were spun at 1000 \times g for 10 min to remove insoluble material and unlysed
513 cells. Lysates were added to 100 μ L magnetic beads conjugated to anti-HA antibodies
514 (Pierce) and incubated overnight rotating at 4 °C. Unbound protein lysate was removed,
515 and the anti-HA magnetic beads were then washed 10 times in cell lysis buffer. HA-
516 tagged MYR1, and associated proteins, were eluted in 60 μ L pH 2.0 buffer (Pierce) for
517 10 min at 50 °C to dissociate proteins from the antibody-conjugated beads. The elutions
518 were immediately neutralized 1:10 with pH 8.5 neutralization buffer (Pierce).

519 **Mass spectrometry sample preparation**

520 45 μ L of each IP elution was combined with 15 μ L of 4X Laemmli sample buffer
521 supplemented with BME (BioRad), boiled for 10 min at 95 °C, and loaded on a Bolt 4-
522 12% Bis-Tris gel (Invitrogen). The samples were resolved for approximately 8 min at
523 150V. The gel was washed once in UltraPure water (Thermo), fixed in 50% methanol
524 and 7% acetic acid for 15 min, followed by 3 additional washes with UltraPure water.
525 The gel was stained for 10 min with GelCode Blue (Thermo) and washed with UltraPure
526 water for an additional 20 min. One gel band (approx. 1.5 cm in size) for each condition
527 was excised and de-stained for 2 hours in a 50% methanol and 10% acetic acid
528 solution, followed by a 30 min soak in UltraPure water. Each gel slice was cut into 1 mm
529 \times 1 mm squares, covered in 1% acetic acid solution, and stored at 4 °C until the in-gel
530 digestion could be performed.

531 To prepare samples for mass spectrometry, the 1% acetic acid solution was
532 removed, 10 μ L of 50 mM DTT was added, and volume was increased to 100 μ L with 50

533 mM ammonium bicarbonate. Samples were incubated at 55 °C for 30 min. Samples
534 were then brought down to RT, DTT solution was removed, 10 µl of 100 mM acrylamide
535 (propionamide) was added and volume was again normalized to 100 µl with 50 mM
536 ammonium bicarbonate followed by an incubation at RT for 30 min. Acrylamide solution
537 was removed, 10 µl (0.125 µg) of Trypsin/LysC (Promega) solution was added and
538 another 50 µl of 50 mM ammonium bicarbonate was added to cover the gel pieces.
539 Samples were incubated overnight at 37 °C for peptide digestion. Solution consisting of
540 digested peptides was collected in fresh Eppendorf tubes, 50 µl of extraction buffer
541 (70% acetonitrile, 29% water, 1% formic acid) was added to gel pieces, incubated at 37
542 °C for 10 min, centrifuged at 10,000 x g for 2 minutes and collected in the same tubes
543 consisting of previous elute. This extraction was repeated one more time. Collected
544 extracted peptides were dried to completion in a speed vac and stored at 4 °C until
545 ready for mass spectrometry.

546 **Mass spectrometry**

547 Eluted, dried peptides were dissolved in 12.5 µl of 2% acetonitrile and 0.1%
548 formic acid and 3 µl was injected into an in-house packed C18 reversed phase
549 analytical column (15 cm in length). Peptides were separated using a Waters M-Class
550 UPLC, operated at 450 nL/min using a linear 80 minute gradient from 4-40% mobile
551 phase B. Mobile phase A consisted of 0.2% formic acid, 99.8% water, Mobile phase B
552 was 0.2% formic acid, 99.8% acetonitrile. Ions were detected using an Orbitrap Fusion
553 mass spectrometer operating in a data dependent fashion using typical “top speed”
554 methodologies. Ions were selected for fragmentation based on the most intense multiply

555 charged precursor ions using Collision induced dissociation (CID). Data from these
556 analyses was then transferred for analysis.

557 **Mass spectrometric analysis**

558 The .RAW data were searched using MaxQuant version 1.6.1.0 against the
559 canonical human database from UniProt, *Toxoplasma* GT1 databases from ToxoDB
560 (versions 7.3 and 37.0), and the built-in contaminant database. Specific parameters
561 used in the MaxQuant analysis can be found in **File S1**. Peptide and protein
562 identifications were filtered to a 1% false discovery rate (FDR) and reversed proteins,
563 contaminants, and proteins only identified by a single modification site, were removed
564 from the dataset. MYR1-3xHA enrichment over the non-HA tagged RH was determined
565 by adding 1 to each spectral count (tandem MS [MS/MS count]) and calculating the
566 NSAF (number of spectral counts identifying a protein divided by the protein's length,
567 divided by the sum of all spectral counts/lengths for all proteins in the experiment). The
568 average MYR1-3xHA enrichment from the two biological replicates (IP 1 and IP 2) was
569 used to determine the protein ranking.

570 **Data availability**

571 The mass spectrometry proteomics data have been deposited to the
572 ProteomeXchange Consortium (<http://proteomecentral.proteomexchange.org>) via the
573 PRIDE partner repository (49) with the dataset identifier PXD016383.

574

575 **Acknowledgements**

576 We thank all members of our laboratory, as well as Melanie Espiritu for help with
577 tissue culture and ordering, Ian Foe and Matthew Bogyo for providing reagents, Ryan
578 Leib and Kratika Singhal for helpful advice regarding mass spectrometry, and Will
579 Blakely and Gustavo Arrizabalaga for helpful discussions and exchange of data prior to
580 publication. Special thanks to the Vincent Coates Foundation Mass Spectrometry
581 Laboratory at Stanford University Mass Spectrometry (SUMS) for assistance in
582 processing mass spectrometry samples.

583 This project has been funded in whole or part with federal funds from the U.S.
584 National Institute of Allergy and Infectious Diseases, National Institutes of Health,
585 Department of Health and Human Services, under awards NIH RO1-AI021423 (J.C.B.)
586 and NIH RO1-AI129529 (J.C.B.), NIH T32-AI732832 (A.M.C.), NIH T32-AI007328
587 (T.C.T.), NIH T32-AI732832 (A.G.M.), NIH F31-AI120649 (N.D.M.), with funds from the
588 National Science Foundation Graduate Research Fellowship Program
589 (<https://www.nsfgrfp.org/>) under grant DGE-114747 (A.M.C.), with support from the
590 Stanford Bio-X Graduate Research Fellowship (T.C.T.), and with grant NIH P30
591 CA124435 for utilization of the Stanford Cancer Institute Proteomics/Mass Spectrometry
592 Shared Resource. The funders had no role in study design, data collection and analysis,
593 decision to publish, or preparation of the manuscript.

594

595

596 **References**

597 1. Hill DE, Chirukandoth S, Dubey JP. 2005. Biology and epidemiology of
598 Toxoplasma gondii in man and animals . Anim Heal Res Rev.

599 2. Rastogi S, Cygan AM, Boothroyd JC. 2019. Translocation of effector proteins into
600 host cells by Toxoplasma gondii. Curr Opin Microbiol.

601 3. Bougdour A, Durandau E, Brenier-Pinchart MP, Ortet P, Barakat M, Kieffer S,
602 Curt-Varesano A, Curt-Bertini RL, Bastien O, Coute Y, Pelloux H, Hakimi MA.
603 2013. Host cell subversion by Toxoplasma GRA16, an exported dense granule
604 protein that targets the host cell nucleus and alters gene expression. Cell Host
605 Microbe2013/04/23. 13:489–500.

606 4. Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL,
607 Hussain T, Kieffer-Jaquinod S, Coute Y, Pelloux H, Tardieu I, Sharma A, Belrhali
608 H, Bougdour A, Hakimi MA. 2013. A Toxoplasma dense granule protein, GRA24,
609 modulates the early immune response to infection by promoting a direct and
610 sustained host p38 MAPK activation. J Exp Med 210:2071–2086.

611 5. Gay G, Braun L, Brenier-Pinchart MP, Vollaire J, Josserand V, Bertini RL,
612 Varesano A, Touquet B, De Bock PJ, Coute Y, Tardieu I, Bougdour A, Hakimi
613 MA. 2016. Toxoplasma gondii TgIST co-opts host chromatin repressors
614 dampening STAT1-dependent gene regulation and IFN-gamma-mediated host
615 defenses. J Exp Med 213:1779–1798.

616 6. Panas MW, Naor A, Cygan AM, Boothroyd JC. 2019. Toxoplasma Controls Host
617 Cyclin E Expression through the Use of a Novel MYR1-Dependent Effector
618 Protein, HCE1. MBio2019/05/02. 10.

619 7. Nadipuram SM, Kim EW, Vashisht AA, Lin AH, Bell HN, Coppens I, Wohlschlegel
620 JA, Bradley PJ. 2016. In Vivo biotinylation of the toxoplasma parasitophorous
621 vacuole reveals novel dense granule proteins important for parasite growth and
622 pathogenesis. *MBio* 7.

623 8. He H, Brenier-Pinchart MP, Braun L, Kraut A, Touquet B, Coute Y, Tardieu I,
624 Hakimi MA, Bougdour A. 2018. Characterization of a Toxoplasma effector
625 uncovers an alternative GSK3/beta-catenin-regulatory pathway of inflammation.
626 *Elife* 7.

627 9. Braun L, Brenier-Pinchart MP, Hammoudi PM, Cannella D, Kieffer-Jaquinod S,
628 Vollaire J, Josserand V, Touquet B, Couté Y, Tardieu I, Bougdour A, Hakimi MA.
629 2019. The Toxoplasma effector TEEGR promotes parasite persistence by
630 modulating NF- κ B signalling via EZH2. *Nat Microbiol*.

631 10. Franco M, Panas MW, Marino ND, Lee MCW, Buchholz KR, Kelly FD, Bednarski
632 JJ, Sleckman BP, Pourmand N, Boothroyd JC. 2016. A novel secreted protein,
633 MYR1, is central to Toxoplasma's manipulation of host cells. *MBio* 7.

634 11. Marino ND, Panas MW, Franco M, Theisen TC, Naor A, Rastogi S, Buchholz KR,
635 Lorenzi HA, Boothroyd JC. 2018. Identification of a novel protein complex
636 essential for effector translocation across the parasitophorous vacuole membrane
637 of *Toxoplasma gondii*. *PLoS Pathog* 14:e1006828.

638 12. Panas MW, Ferrel A, Naor A, Tenborg E, Lorenzi HA, Boothroyd JC. 2019.
639 Translocation of Dense Granule Effectors across the Parasitophorous Vacuole
640 Membrane in Toxoplasma- Infected Cells Requires the Activity of ROP17, a
641 Rhopty Protein Kinase . *mSphere*.

642 13. El Hajj H, Lebrun M, Arold ST, Vial H, Labesse G, Dubremetz JF. 2007. ROP18 Is
643 a Rhopty Kinase Controlling the Intracellular Proliferation of *Toxoplasma gondii*.
644 *PLoS Pathog* 3:e14.

645 14. Etheridge RD, Alagangan A, Tang K, Lou HJ, Turk BE, Sibley LD. 2014. The
646 *Toxoplasma* pseudokinase ROP5 forms complexes with ROP18 and ROP17
647 kinases that synergize to control acute virulence in mice. *Cell Host Microbe*
648 15:537–550.

649 15. Coffey MJ, Sleebs BE, Uboldi AD, Garnham A, Franco M, Marino ND, Panas MW,
650 Ferguson DJ, Enciso M, O'Neill MT, Lopaticki S, Stewart RJ, Dewson G, Smyth
651 GK, Smith BJ, Masters SL, Boothroyd JC, Boddey JA, Tonkin CJ. 2015. An
652 aspartyl protease defines a novel pathway for export of *Toxoplasma* proteins into
653 the host cell. *Elife* 4.

654 16. Hammoudi PM, Jacot D, Mueller C, Di Cristina M, Dogga SK, Marq JB, Romano
655 J, Tosetti N, Dubrot J, Emre Y, Lunghi M, Coppens I, Yamamoto M, Sojka D, Pino
656 P, Soldati-Favre D. 2015. Fundamental Roles of the Golgi-Associated
657 *Toxoplasma* Aspartyl Protease, ASP5, at the Host-Parasite Interface. *PLoS*
658 *Pathog* 11:e1005211.

659 17. Curt-Varesano A, Braun L, Ranquet C, Hakimi MA, Bougdour A. 2016. The
660 aspartyl protease TgASP5 mediates the export of the *Toxoplasma* GRA16 and
661 GRA24 effectors into host cells. *Cell Microbiol* 18:151–167.

662 18. Russo I, Babbitt S, Muralidharan V, Butler T, Oksman A, Goldberg DE. 2010.
663 Plasmepsin v licenses Plasmodium proteins for export into the host erythrocyte.
664 *Nature*.

665 19. Boddey JA, Hodder AN, Günther S, Gilson PR, Patsiouras H, Kapp EA, Pearce
666 JA, De Koning-Ward TF, Simpson RJ, Crabb BS, Cowman AF. 2010. An aspartyl
667 protease directs malaria effector proteins to the host cell. *Nature*.
668 20. Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estrano C,
669 Haldar K. 2004. A host-targeting signal in virulence proteins reveals a secretome
670 in malarial infection. *Science* (80-) 306:1934–1937.
671 21. Marti M, Good RT, Rug M, Knuepfer E, Cowman AF. 2004. Targeting malaria
672 virulence and remodeling proteins to the host erythrocyte. *Science* (80-)
673 306:1930–1933.
674 22. Heiber A, Kruse F, Pick C, Gruring C, Flemming S, Oberli A, Schoeler H, Retzlaff
675 S, Mesen-Ramirez P, Hiss JA, Kadekoppala M, Hecht L, Holder AA, Gilberger
676 TW, Spielmann T. 2013. Identification of new PNEPs indicates a substantial non-
677 PEXEL exportome and underpins common features in *Plasmodium falciparum*
678 protein export. *PLoS Pathog* 9:e1003546.
679 23. Spielmann T, Hawthorne PL, Dixon MW, Hannemann M, Klotz K, Kemp DJ,
680 Klonis N, Tilley L, Trenholme KR, Gardiner DL. 2006. A cluster of ring stage-
681 specific genes linked to a locus implicated in cytoadherence in *Plasmodium*
682 *falciparum* codes for PEXEL-negative and PEXEL-positive proteins exported into
683 the host cell. *Mol Biol Cell* 2006/06/09. 17:3613–3624.
684 24. Naor A, Panas MW, Marino N, Coffey MJ, Tonkin CJ, Boothroyd JC. 2018.
685 MYR1-Dependent Effectors Are the Major Drivers of a Host Cell's Early Response
686 to *Toxoplasma*, Including Counteracting MYR1-Independent Effects. *MBio* 9.
687 25. Florens L, Carozza MJ, Swanson SK, Fournier M, Coleman MK, Workman JL,

688 Washburn MP. 2006. Analyzing chromatin remodeling complexes using shotgun
689 proteomics and normalized spectral abundance factors. *Methods* 40:303–311.

690 26. de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ, Papenfuss AT,
691 Sanders PR, Lundie RJ, Maier AG, Cowman AF, Crabb BS. 2009. A newly
692 discovered protein export machine in malaria parasites. *Nature* 459:945–949.

693 27. Coffey MJ, Dagley LF, Seizova S, Kapp EA, Infusini G, Roos DS, Boddey JA,
694 Webb AI, Tonkin CJ. 2018. Aspartyl Protease 5 Matures Dense Granule Proteins
695 That Reside at the Host-Parasite Interface in *Toxoplasma gondii*. *MBio*.

696 28. Zhang YW, Halonen SK, Ma YF, Wittner M, Weiss LM. 2001. Initial
697 characterization of CST1, a *Toxoplasma gondii* cyst wall glycoprotein. *Infect*
698 *Immun* 69:501–507.

699 29. Fischer HG, Stachelhaus S, Sahm M, Meyer HE, Reichmann G. 1998. GRA7, an
700 excretory 29 kDa *Toxoplasma gondii* dense granule antigen released by infected
701 host cells. *Mol Biochem Parasitol* 91:251–262.

702 30. Tu V, Mayoral J, Sugi T, Tomita T, Han B, Ma YF, Weiss LM. 2019. Enrichment
703 and proteomic characterization of the cyst wall from in vitro *toxoplasma gondii*
704 cysts. *MBio*.

705 31. Pernas L, Adomako-Ankomah Y, Shastri AJ, Ewald SE, Treeck M, Boyle JP,
706 Boothroyd JC. 2014. *Toxoplasma* Effector MAF1 Mediates Recruitment of Host
707 Mitochondria and Impacts the Host Response. *PLoS Biol* 12.

708 32. Huynh MH, Carruthers VB. 2009. Tagging of endogenous genes in a *Toxoplasma*
709 *gondii* strain lacking Ku80. *Eukaryot Cell* 2009/02/17. 8:530–539.

710 33. Shirai A, Matsuyama A, Yashiroda Y, Hashimoto A, Kawamura Y, Arai R,

711 Komatsu Y, Horinouchi S, Yoshida M. 2008. Global analysis of gel mobility of
712 proteins and its use in target identification. *J Biol Chem.*

713 34. Treeck M, Sanders JL, Elias JE, Boothroyd JC. 2011. The Phosphoproteomes of
714 *Plasmodium falciparum* and *Toxoplasma gondii* Reveal Unusual Adaptations
715 Within and Beyond the Parasites' Boundaries. *Cell Host Microbe* 2011/10/25.
716 10:410–419.

717 35. Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T, Nasamu AS, Thiru P, Saeij
718 JP, Carruthers VB, Niles JC, Lourido S. 2016. A Genome-wide CRISPR Screen in
719 *Toxoplasma* Identifies Essential Apicomplexan Genes. *Cell* 166:1423-1435 e12.

720 36. Adomako-Ankomah Y, English ED, Danielson JJ, Pernas LF, Parker ML,
721 Boulanger MJ, Dubey JP, Boyle JP. 2016. Host Mitochondrial Association
722 Evolved in the Human Parasite *Toxoplasma gondii* via Neofunctionalization of a
723 Gene Duplicate. *Genetics.*

724 37. Franco M, Shastri AJ, Boothroyd JC. 2014. Infection by *Toxoplasma gondii*
725 Specifically Induces Host c-Myc and the Genes This Pivotal Transcription Factor
726 Regulates. *Eukaryot Cell* 13:483–493.

727 38. Russo I, Babbitt S, Muralidharan V, Butler T, Oksman A, Goldberg DE. 2010.
728 Plasmepsin V licenses *Plasmodium* proteins for export into the host erythrocyte.
729 *Nature* 463:632–636.

730 39. Boddey JA, Hodder AN, Gunther S, Gilson PR, Patsiouras H, Kapp EA, Pearce
731 JA, de Koning-Ward TF, Simpson RJ, Crabb BS, Cowman AF. 2010. An aspartyl
732 protease directs malaria effector proteins to the host cell. *Nature* 463:627–631.

733 40. Schnider CB, Bausch-Fluck D, Brühlmann F, Heussler VT, Burda P-C. 2018.

734 BiID Reveals Novel Proteins of the *Plasmodium* Parasitophorous Vacuole
735 Membrane. *mSphere*.

736 41. Lamarque MH, Roques M, Kong-Hap M, Tonkin ML, Rugarabamu G, Marq JB,
737 Penarete-Vargas DM, Boulanger MJ, Soldati-Favre D, Lebrun M. 2014. Plasticity
738 and redundancy among AMA-RON pairs ensure host cell entry of *Toxoplasma*
739 parasites. *Nat Commun* 5:4098.

740 42. Donald RGK, Carter D, Ullman B, Roos DS. 1996. Insertional tagging, cloning,
741 and expression of the *Toxoplasma gondii* hypoxanthine-xanthine-guanine-
742 phosphoribosyltransferase gene. *J Biol Chem* 271:14010–14019.

743 43. Fox BA, Ristuccia JG, Gigley JP, Bzik DJ. 2009. Efficient gene replacements in
744 *Toxoplasma gondii* strains deficient for nonhomologous end joining. *Eukaryot
745 Cell* 2009/02/17. 8:520–529.

746 44. Burg JL, Perelman D, Kasper LH, Ware PL, Boothroyd JC. 1988. Molecular
747 analysis of the gene encoding the major surface antigen of *Toxoplasma gondii*. *J
748 Immunol* 141:3584–3591.

749 45. Dunn JD, Ravindran S, Kim SK, Boothroyd JC. 2008. The *Toxoplasma gondii*
750 dense granule protein GRA7 is phosphorylated upon invasion and forms an
751 unexpected association with the rhoptry proteins ROP2 and ROP4. *Infect Immun*
752 76:5853–5861.

753 46. Saeij JPJ, Boyle JP, Coller S, Taylor S, Sibley LD, Brooke-Powell ET, Ajioka JW,
754 Boothroyd JC. 2006. Polymorphic Secreted Kinases Are Key Virulence Factors in
755 *Toxoplasmosis*. *Science* (80-) 314:1780–1783.

756 47. Foe IT, Onguka O, Amberg-Johnson K, Garner RM, Amara N, Beatty W, Yeh E,

757 Bogyo M. 2018. The *Toxoplasma gondii* Active Serine Hydrolase 4 Regulates
758 Parasite Division and Intravacuolar Parasite Architecture. *mSphere* 3.

759 48. Grigg ME, Bonnefoy S, Hehl AB, Suzuki Y, Boothroyd JC. 2001. Success and
760 virulence in *Toxoplasma* as the result of sexual recombination between two
761 distinct ancestries. *Science* (80-) 294:161–165.

762 49. Vizcaíno JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G,
763 Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H. 2016.
764 2016 update of the PRIDE database and its related tools. *Nucleic Acids Res.*
765
766

767 **Figures and Figure Legends**

768

769 **Supplemental File 1.**

770 Mass spectrometry analysis parameters and results for proteins that
771 coimmunoprecipitate with MYR1-3xHA-expressing and untagged RH parasites. For all
772 sheets, the IDs corresponding to the majority proteins, i.e., the proteins which contained
773 at least half of the peptides belonging to a protein group (grouping of proteins which
774 cannot be unambiguously identified by unique peptides), the number of spectral counts
775 (MS/MS count), the average NSAF enrichment score (MYR1/RH Enrichment, as further
776 elaborated in Materials and Methods), and the protein rank as defined by the
777 enrichment score corresponding to each grouping are shown. The gene product
778 (for *Toxoplasma* proteins) or associated gene name (for human proteins) for the first
779 listed protein ID in each row is shown in the Description column. Sheet 1
780 (“Toxo_proteins”) shows the experimental data sets for *Toxoplasma* proteins only, listed
781 in rank order by the average NSAF enrichment from both experiments. Sheet 2
782 (“All_proteins”) shows the experimental data sets for both human and *Toxoplasma*
783 proteins, listed in rank order by the average NSAF enrichment from both experiments.
784 Sheet 3 (“Parameters”) shows the parameters used in the MaxQuant analysis.

785

786 **Supplemental File 2.**

787 Primers, sgRNA sequences, and plasmids used and/or generated in this study.

788

789 **Supplemental Table 1.**

790 Summary of *Toxoplasma* genes necessary for effector translocation. The number of
791 predicted transmembrane domains, number of “RRL” motifs, and CRISPR phenotype
792 score are listed for each *Toxoplasma* gene necessary for effector translocation
793 identified thus far. Additionally, the percent identities of each of these genes to their
794 orthologs in *Hammondia hammondi* and *Neospora caninum*, and whether the “RRL”
795 sequences are conserved in these species are also listed. Transmembrane domain
796 prediction based on Phobius (Lukas Kall et al., Nucleic Acids Res 35:W429-32, 2007,
797 <https://doi.org/10.1093/nar/gkm256>). CRISPR phenotype scores are from Sidik et al.
798 (Cell 166(6):1423-1435.e12, <https://doi.org/10.1016/j.cell.2016.08.019>). Identity calculated by
799 comparison to head-to-head comparison of ortholog in indicated species using
800 Sequence Manipulation Suite (Stothard P, Biotechniques 28:1102-1104, <https://doi.org/10.2144/00286ir01>).
801
802

803 **Supplemental Figure 1.**

804 A. Western blot of endogenously tagged 211460-3xHA single clone and population.
805 HFFs were infected with RH Δ hpt Δ ku80 tachyzoites (RH) or endogenously tagged
806 RH::211460-3xHA parasites (either from the population or an independently
807 generated single clone). Lysates from infected HFFs were prepared and 211460-
808 3xHA was detected by western blotting using rat anti-HA antibodies. Rabbit anti-
809 SAG2A staining was used as a loading control for total parasite protein. The
810 western blot for the 211460-3xHA population is the same data as presented in
811 Fig 2A. Approximate migration of a ladder of size standards (sizes in kDa) is
812 indicated.

813 B. Immunofluorescence microscopy of endogenously tagged 211460-3xHA from an
814 independently generated single clone. Tachyzoites were allowed to infect HFFs
815 for 16 hours before the infected monolayer was fixed with methanol. 211460-
816 3xHA was detected with rat anti-HA antibodies, *Toxoplasma* tachyzoites were
817 detected with mouse anti-SAG1 antibodies, and the infected monolayer was
818 visualized with DIC. Scale bar is 10 μ m.

819

820 **Supplemental Figure 2.**

821 Immunofluorescence microscopy of endogenously tagged proteins in extracellular
822 parasites. The populations of endogenously tagged parasites analyzed in Fig. 2A were
823 seeded onto empty coverslips before being fixed with methanol. The corresponding
824 tagged proteins were detected with rat anti-HA antibodies, the marker for dense granule
825 proteins, GRA7, was detected with rabbit anti-GRA7 antibodies, and the parasites were
826 visualized with differential interference microscopy (DIC). Scale bar is 5 μ m.

827

828 **Supplemental Figure 3.**

829 A. Schematic of CRISPR-mediated gene disruption of candidate genes. Primers
830 flanking the guide-targeted region, indicated by “Forward” and “Reverse”, were
831 constructed to amplify a ~1000bp region of the native, uninterrupted gene.
832 pTKO2-CAT-mCherry is the plasmid used for integration and selection.

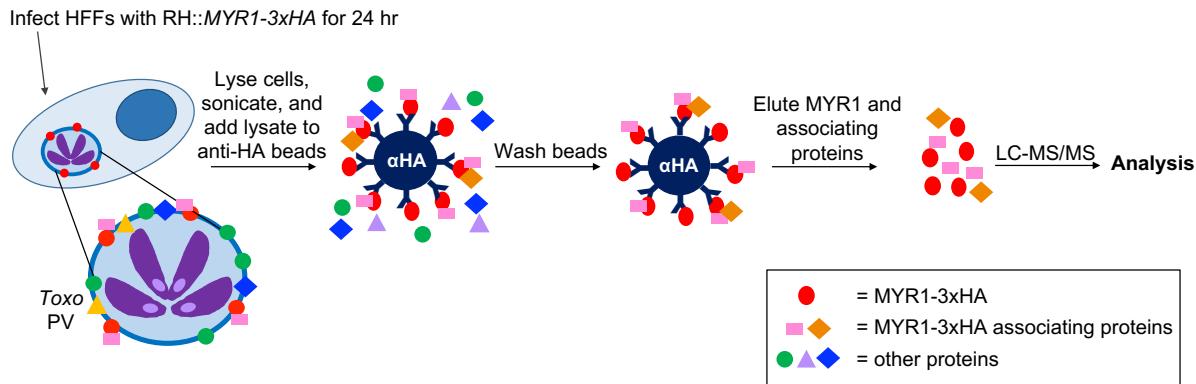
833 B. PCR amplifications of genomic DNA from RH Δ gra16::GRA16-HA parasites
834 (parental) and from a chloramphenicol-resistant (CAT $^+$) clonal strain with
835 disruption of the indicated gene using the forward and reverse primers shown in
836 Panel A. Sizes (base pairs) of the standard ladder are shown. Bands of the

837 expected size in the parental strain (~1000bp) and either lack of a band or
838 presence of altered bands in the disrupted strains, indicate insertion of the
839 selection plasmid within the targeted gene, as indicated (e.g., $\Delta myr3$ is a strain
840 with a disruption of the *MYR3* locus).

841

842 **Supplemental Figure 4.**

843 Immunofluorescence microscopy of GRA16-HA nuclear localization and human nuclear
844 c-Myc expression in HFFs infected with the indicated disrupted parasite strains.
845 Tachyzoites were allowed to infect HFFs (without serum) for 18 hours before the
846 infected monolayers were fixed with methanol and stained with rat anti-HA antibodies
847 and rabbit anti-c-Myc antibodies. Host nuclei were visualized using DAPI. Scale bar is
848 20 μ m.


849

850 **Supplemental Figure 5.**

851 Western blot of human cyclin E1 protein in cells infected with the indicated parasite
852 strain. HFFs were infected with the indicated strain of tachyzoites, or mock-treated with
853 uninfected HFF lysate, for 20 hours before lysates were generated for immunoblotting.
854 Lysates were analyzed by western blotting using mouse anti-cyclin E1 antibodies.
855 Rabbit anti-SAG2A was used to assess the levels of parasite protein in the lysate.

856

A

B

GenelD (TGGT1_)	Description	MS/MS Count				Enrichment	Rank
		MYR1		RH Control			
IP 1	IP 2	IP 1	IP 2	Enrichment	Rank		
254470	MYR1	111	121	0	1	65.3	1
228170	GRA44	55	37	0	0	35.4	2
264660	CST1	47	29	0	0	29.4	3
204340	Hypothetical	48	27	0	0	29.1	4
211460	Hypothetical	40	27	0	0	26.0	5
270320	PPM3C	36	27	0	0	24.4	6
319340	GRA52	33	23	0	0	21.8	7
270240	MAG1	44	32	0	2	21.4	8
258458	Hypothetical	30	21	0	0	19.9	9
304955	PPM11C	27	17	0	0	17.3	10
294200	G6PDH	21	16	0	0	14.6	11
229480	TgERC	29	15	0	1	14.5	12
233870	Hypothetical	19	17	0	0	14.2	13
237500	PPM3A	19	16	0	0	13.9	14
203600	GRA50	19	16	0	0	13.9	15
279100	MAF1a	16	19	0	0	13.8	16
203310	GRA7	16	16	0	0	12.7	17
208830	GRA16	17	11	0	0	11.3	18
275860	GRA12 paralog	16	12	0	0	11.3	19
299780	Hypothetical	14	14	0	0	11.2	20
231960	GRA28	13	12	0	0	10.1	21
...
316250	GRA45	5	7	0	0	5.2	60
...
237230	MYR3	7	3	0	0	4.5	67
...
258580	ROP17	26	25	18	13	1.2	224
		Total MS/MS count:		6174	4295	3694	1858

857

858 **Figure 1. MYR1-3xHA immunoprecipitation identifies many MYR1-associating**
859 **Toxoplasma proteins.**

860 A. Schematic of MYR1 IP-MS workflow.

861 B. Results of IP-MS analysis. Mass spectrometry was performed on

862 immunoprecipitated material as depicted in Fig. 1A and the number of spectral

863 counts was determined for all identified proteins. This experiment was performed

864 twice (IP 1 and IP 2) for both RH::MYR1-3xHA and an RH Δ hpt untagged control.

865 The identified *Toxoplasma* proteins from the two experiments were ranked

866 according to the average NSAF enrichment in the MYR1-3xHA-expressing strain

867 relative to the untagged RH control after adding a nominal single count to all

868 results, enabling a ratio to be determined (Enrichment and Rank). The full

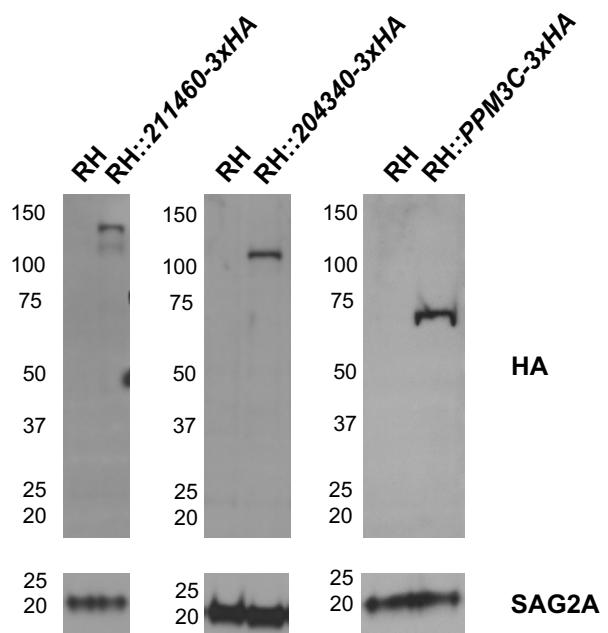
869 dataset, including associating host proteins, is presented in File S1. Displayed

870 here are the majority *Toxoplasma* protein identifiers (TGGT1_), i.e., the proteins

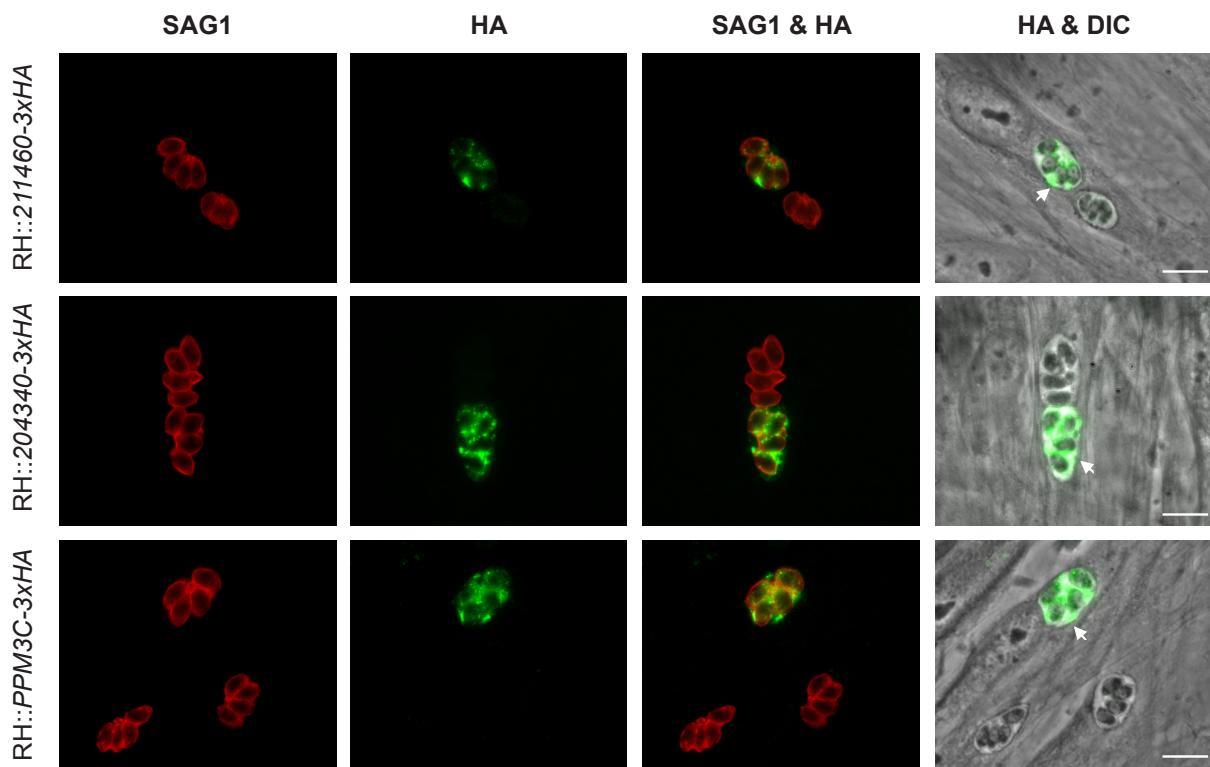
871 that contain at least half of the peptides belonging to a group of proteins that

872 cannot be unambiguously identified by unique peptides, the descriptive name for

873 each protein (Description), and the corresponding number of spectral counts


874 detected (MS/MS count) for all *Toxoplasma* proteins with an average enrichment

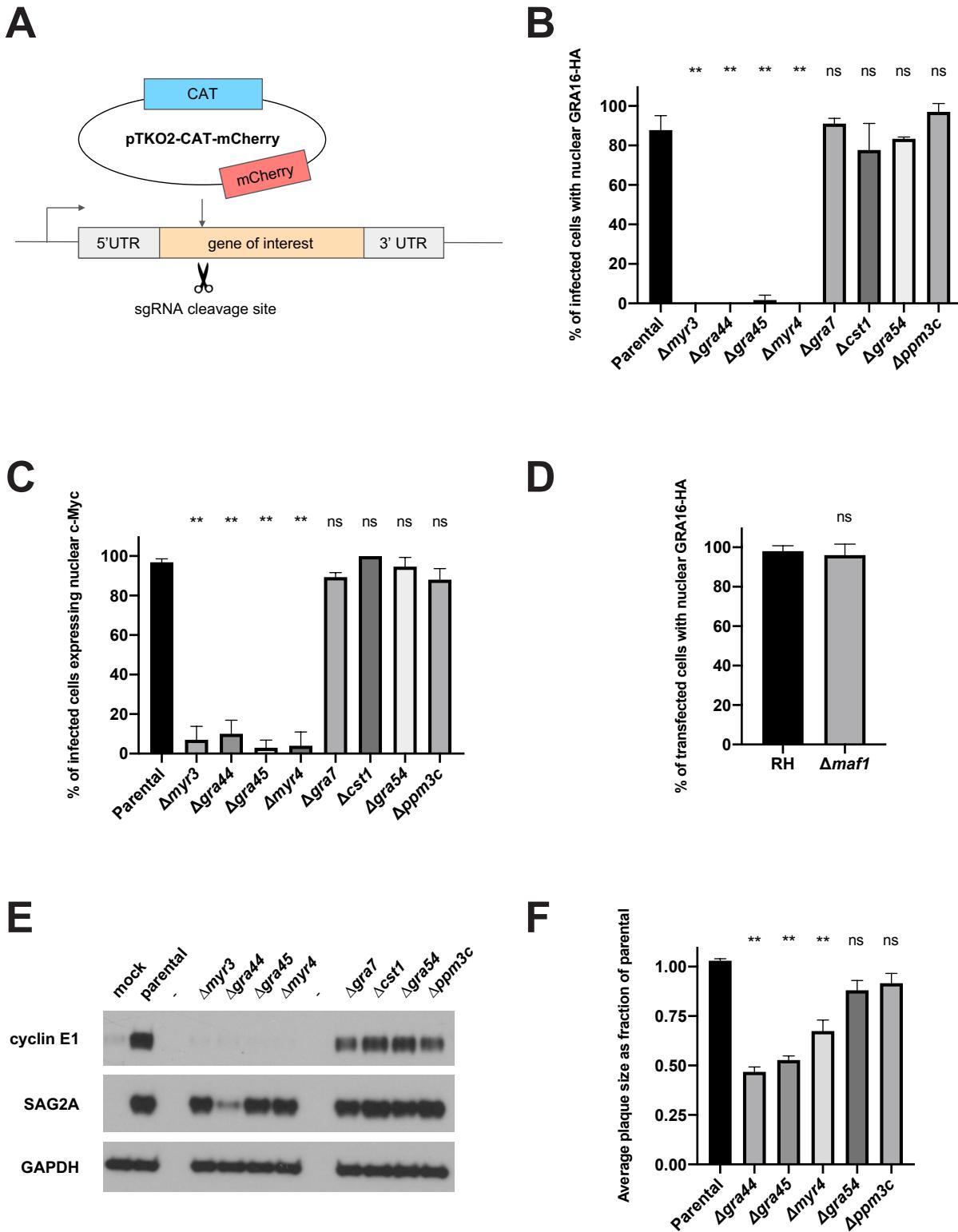
875 score greater than 10. Also shown are data for the proteins GRA45, MYR3, and


876 ROP17. Genes chosen for subsequent disruption are highlighted in orange.

877

A

B


878

879 **Figure 2. 211460, 204340, and PPM3C localize to the *Toxoplasma* parasitophorous
880 vacuole in infected cells.**

881 A. Western blot of endogenously tagged parasite proteins. HFFs were infected with
882 RH Δ hpt Δ ku80 tachyzoites (RH) or with populations of RH that had been transfected
883 with HA-tagging plasmids targeted to the indicated locus (RH::211460-3xHA,
884 RH::204340-3xHA, and RH::PPM3C-3xHA). Lysates from infected HFFs were
885 prepared and the HA-tagged proteins were detected by western blotting and probing
886 with rat anti-HA antibodies. Rabbit anti-SAG2A staining was used as a loading
887 control for total parasite protein. Approximate migration of a ladder of size standards
888 (sizes in kDa) is indicated.

889 B. Representative immunofluorescence microscopy images of endogenously tagged
890 parasite proteins. The populations of endogenously tagged parasites analyzed in
891 Fig. 2A were allowed to infect HFFs for 16 hours before the infected monolayers
892 were fixed with methanol. The corresponding tagged proteins in parasites that had
893 successfully incorporated the HA-tag were detected with rat anti-HA antibodies,
894 while all tachyzoites were detected with mouse anti-SAG1 antibodies and the entire
895 monolayer was visualized with differential interference microscopy (DIC). The arrows
896 indicate localization of the endogenously tagged proteins outside of the parasites
897 and within the PV. Scale bar is 10 μ m.

898

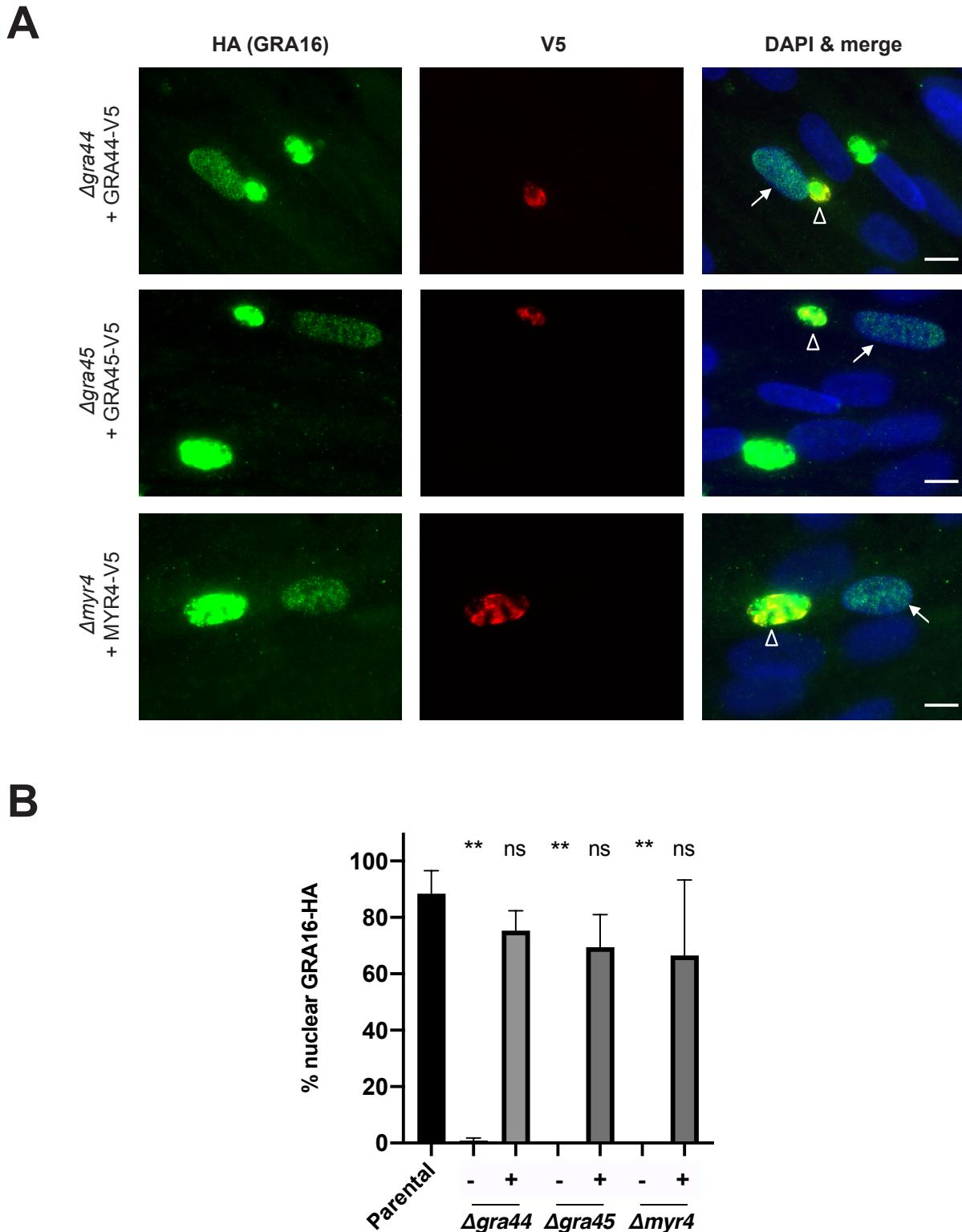
899

900 **Figure 3. GRA44, GRA45, and MYR4 are required for *Toxoplasma* effector**

901 **translocation and fully efficient growth *in vitro*.**

902 A. Schematic of CRISPR-mediated gene disruption of candidate genes followed by
903 insertion of the pTKO2 plasmid carrying *mCherry* and a *chloramphenicol acetyl*
904 *transferase (CAT)* gene for selection in chloramphenicol.

905 B. Quantification of the percentage of infected cells showing GRA16-HA in the host
906 nucleus via IFA. Tachyzoites were allowed to infect HFFs for 16 hours before the
907 infected monolayers were fixed with methanol and stained with rat anti-HA
908 antibodies. The averages are based on examination of at least 25 infected host cells
909 per experiment from 2-5 biological replicates, and error bars indicate the standard
910 deviation (SD). Statistics were performed using one-way ANOVA and Dunnett's
911 multiple comparisons test. ** indicates $p<0.0001$ and ns indicates nonsignificance
912 ($p>0.05$) for the indicated strain relative to the parental control.

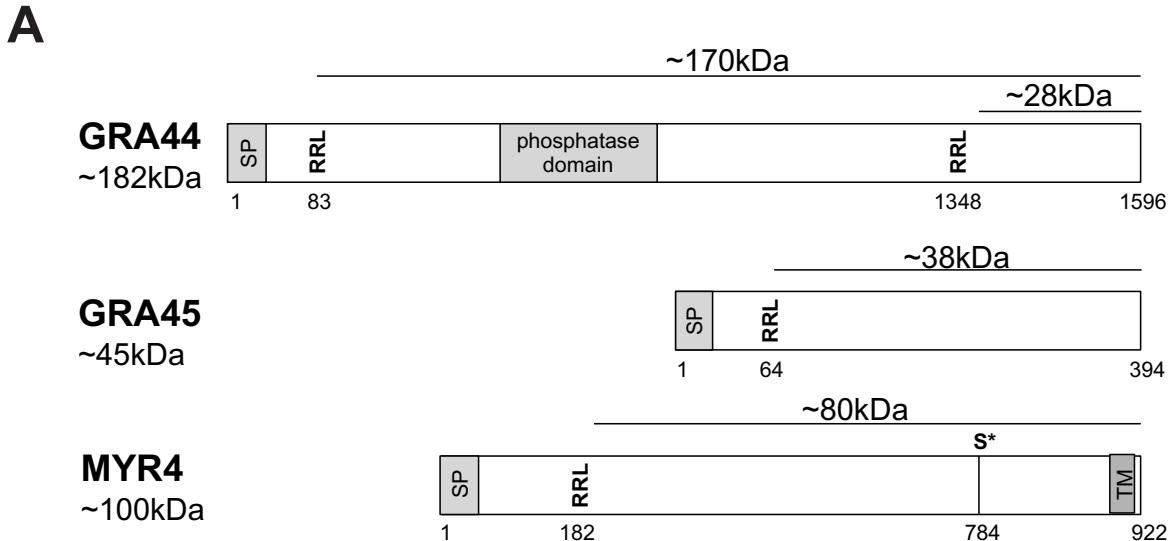

913 C. Quantification of the percentage of infected cells showing upregulation of human c-
914 Myc protein in the host nucleus via IFA. Tachyzoites were allowed to infect HFFs in
915 serum-free media for 20 hours before the infected monolayers were fixed with
916 methanol and stained with rabbit anti-c-Myc antibodies. Scoring and statistics are as
917 for Fig. 3B.

918 D. Quantification of the percentage of transfected, infected cells showing GRA16-HA in
919 the host nucleus via IFA. Wild-type RH Δ hpt and RH Δ maf1 tachyzoites were
920 transiently transfected with a plasmid expressing GRA16-HA, and transfected
921 parasites were allowed to infect HFFs for 16 hours before the infected monolayers
922 were fixed with methanol and stained with rat anti-HA antibodies. The averages are
923 based on the examination of 25 vacuoles from 2 biological replicates, and error bars
924 indicate the SD. Statistics are as for Fig. 3B.

925 E. Western blot of human cyclin E1 protein in infected cells. HFFs were infected with
926 the indicated tachyzoites, or mock-treated with uninfected HFF lysate, for 18 hours
927 before lysates were generated for immunoblotting. Lysates were analyzed by
928 western blotting using mouse anti-cyclin E1 antibodies. Rabbit anti-SAG2A and
929 mouse anti-GAPDH were used to assess the levels of parasite and host protein in
930 the lysate respectively. “-“ indicates empty lanes.

931 F. Quantification of plaque size. HFFs were infected with tachyzoites of the indicated
932 strain for 7 days, fixed with methanol, and then stained with crystal violet. Plaque
933 size was measured using ImageJ. Plaque areas were normalized to the median of
934 the parental strain for each biological replicate. The averages are based on the
935 results of at least 3 independent biological replicates, each with 2-3 technical
936 replicates, and error bars represent the standard error of the mean. Statistics are as
937 for Fig. 3B.

938



939

940 **Figure 4. Ectopic protein expression rescues the effector translocation defect in**
941 **$\Delta gra44$, $\Delta gra45$, and $\Delta myr4$ parasites.**

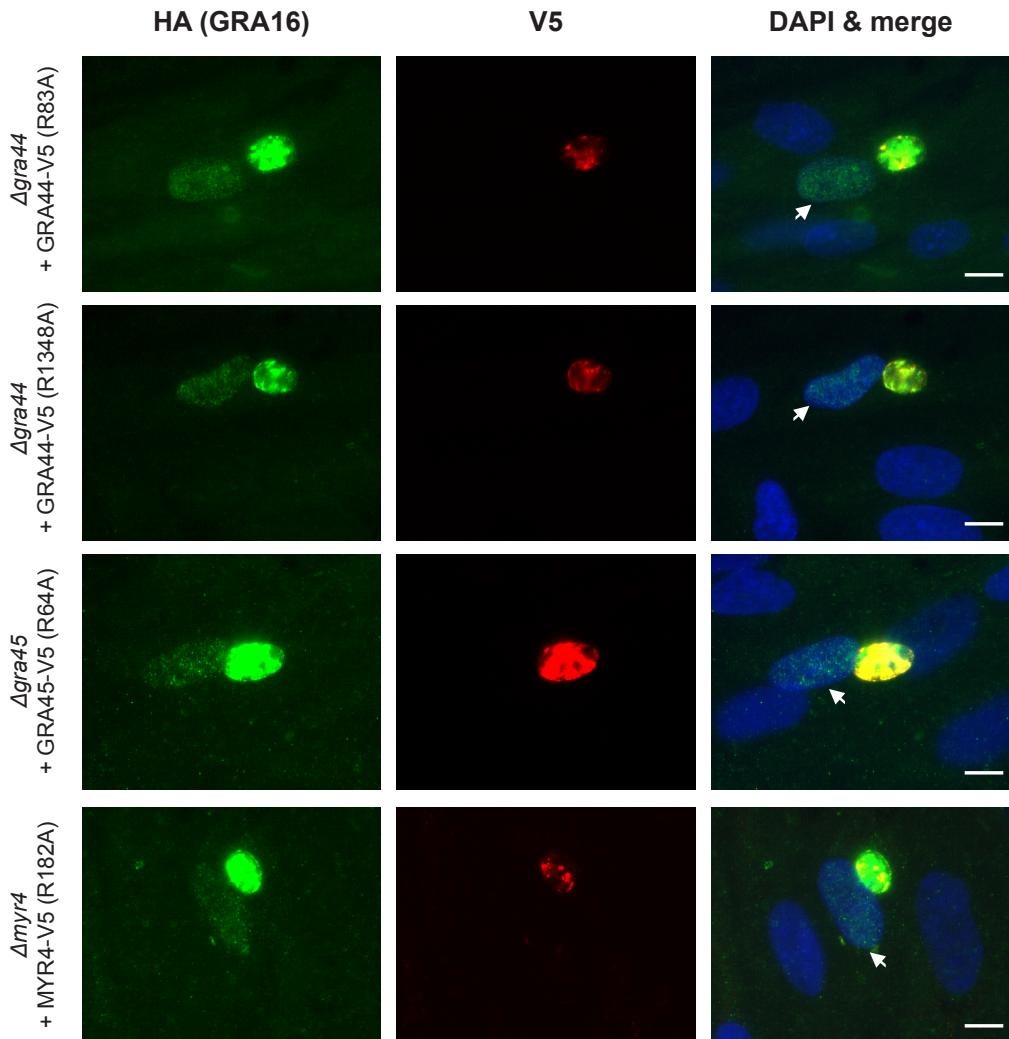
942 A. Representative immunofluorescence microscopy images of transiently expressed
943 GRA44, GRA45, and MYR4 proteins. The indicated strains were transiently
944 transfected with plasmids expressing the corresponding, C-terminally V5-tagged
945 protein under its native promoter and the tachyzoites were allowed to infect HFFs for
946 18-22 hours before the infected monolayers were fixed with methanol. Localization
947 of the V5-tagged proteins and rescue of the GRA16-HA host nuclear translocation
948 were assessed by IFA using mouse anti-V5 and rat anti-HA antibodies, respectively.
949 White arrows indicate a GRA16-HA positive host nucleus in a cell infected with
950 tachyzoites expressing the indicated V5 tagged protein (white open
951 arrowheads). Scale bar is 10 μ m.

952 B. Quantification of the data represented in Fig. 4A showing the percentage of infected
953 cells showing GRA16-HA in the host nucleus via IFA. The indicated strains were
954 transiently transfected with either empty plasmid (-) or plasmids expressing the
955 corresponding C-terminally V5-tagged protein (+) under its native promoter. Scoring
956 and statistics are as for Fig. 3B, except for “+” conditions where only cells infected
957 with V5-positive vacuoles were quantified.

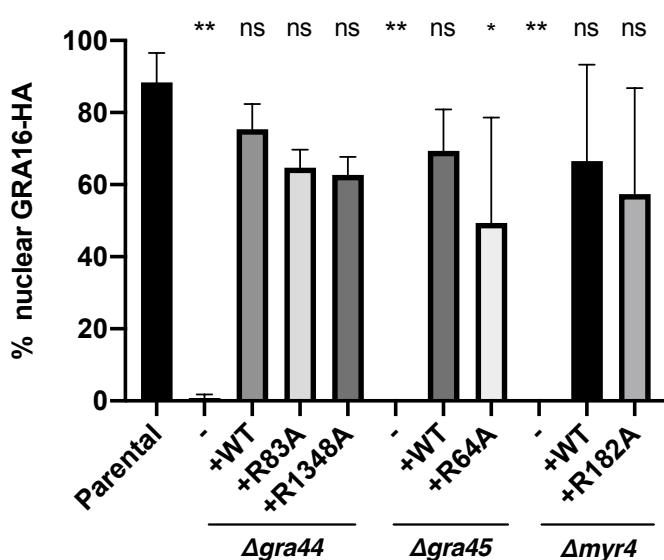
958

959 **Figure 5. GRA44 and GRA45, but not MYR4, show evidence for processing at**
960 **RRL sites.**

961 A. Schematic of GRA44, GRA45, and MYR4 protein sequence showing the location of
962 predicted signal peptides (SP), RRL tripeptide sequences, previously identified
963 phosphorylated serine residues (S*) and conserved domains, numbered in amino


964 acid residues relative to the predicted N-terminus of the primary translation product.

965 Approximate molecular weights (kDa) of the indicated portions are indicated. The
966 amino acid sequence of MYR4 was determined using the 4th in-frame methionine
967 relative to the protein predicted in ToxoDB (v45). Transmembrane domain prediction
968 based on Phobius (Lukas Kall et al., Nucleic Acids Res 35:W429-32, 2007,
969 <https://doi.org/10.1093/nar/gkm256>).


970 B. Western blot of protein processing. The indicated parasite lines were transiently
971 transfected with plasmids expressing C-terminally V5-tagged versions of either the
972 indicated wildtype protein or a mutant version with the indicated RRL mutated to
973 ARL (numbers indicate the amino acid position of the mutated arginine). These were
974 then used to infect HFFs for 18 hours. Lysates were analyzed by western blotting
975 using mouse anti-V5 antibodies to detect the C-terminally V5-tagged portions of
976 each protein. Approximate migration of a ladder of size standards (sizes in kDa) is
977 indicated. The right panel is a longer exposure of the right-most two lanes of the left
978 panel.

979 C. Western blot of MYR4 processing. RH Δ hpt (RH) parasites were transiently
980 transfected with either WT or an RRL \rightarrow AAA mutated version of C-terminally V5-
981 tagged MYR4 and allowed to infect HFFs for 24 hours before lysates were
982 generated for immunoblotting. Lysates were analyzed by western blotting using
983 mouse anti-V5 antibodies to detect MYR4. Approximate migration of a ladder of size
984 standards (sizes in kDa) is indicated.

A

B

986 **Figure 6. Ectopic expression of RRL mutants of GRA44, GRA45, and MYR4**
987 **rescues the translocation defect in Δ gra44, Δ gra45, and Δ myr4 parasites.**

988 A. Representative immunofluorescence microscopy images of transiently expressed
989 GRA44, GRA45, and MYR4 RRL→ARL mutated proteins. The indicated strains
990 were transiently transfected with plasmids expressing the corresponding C-
991 terminally V5-tagged protein under its native promoter and the tachyzoites were
992 allowed to infect HFFs for 18-22 hours before the infected monolayers were fixed
993 with methanol. Localization of the V5-tagged proteins and rescue of the GRA16-HA
994 host nuclear translocation were assessed by IFA using mouse anti-V5 and rat anti-
995 HA antibodies, respectively. White arrows indicate a GRA16-HA positive host
996 nucleus in a cell infected with tachyzoites expressing the indicated V5 tagged
997 protein. Scale bar is 10 μ m.
998 B. Quantification of the data represented in Fig. 6A showing the percentage of infected
999 cells showing GRA16-HA in the host nucleus via IFA. The indicated strains were
1000 transiently transfected with either empty plasmid (-) or plasmids expressing the
1001 corresponding C-terminally V5-tagged protein (+) under its native promoter. The
1002 data for the untransfected parental strain, the empty plasmid transfected strains, and
1003 the wildtype protein transfected strains are the same as in Fig. 4B and are included
1004 here for ease of comparison. Scoring and statistics are as for Fig. 4B except *
1005 indicates p=0.017.