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91 Abstract

92 Biogeographical studies have traditionally focused on readily visible organisms, but recent
93  technological advances are enabling analyses of the large-scale distribution of microscopic organisms,
94  whose biogeographical patterns have long been debated'2. The most prominent global biogeography
95 of marine plankton was derived by Longhurst® based on parameters principally associated with
96  photosynthetic plankton. Localized studies of selected plankton taxa or specific organismal sizes*”’
97 have mapped community structure and begun to assess the roles of environment and ocean current
98 transport in shaping these patterns®®. Here we assess global plankton biogeography and its relation
99 tothe biological, chemical and physical context of the ocean (the ‘seascape’) by analyzing 24 terabases
100  of metagenomic sequence data and 739 million metabarcodes from the Tara Oceans expedition in
101 light of environmental data and simulated ocean current transport. In addition to significant local
102 heterogeneity, viral, prokaryotic and eukaryotic plankton communities all display near steady-state,
103 large-scale, size-dependent biogeographical patterns. Correlation analyses between plankton
104  transport time and metagenomic or environmental dissimilarity reveal the existence of basin-scale
105 biological and environmental continua emerging within the main current systems. Across oceans,
106  there is a measurable, continuous change within communities and environmental factors up to an
107 average of 1.5 years of travel time. Modulation of plankton communities during transport varies with
108 organismal size, such that the distribution of smaller plankton best matches Longhurst biogeochemical
109 provinces, whereas larger plankton group into larger provinces. Together these findings provide an
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110 integrated framework to interpret plankton community organization in its physico-chemical context,
111 paving the way to a better understanding of oceanic ecosystem functioning in a changing global
112 environment.

113 Main Text

114 Plankton communities are constantly on the move, transported by ocean currents®. Transport involves
115 both advection and mixing. While being advected by currents, plankton are influenced by multiple
116  processes, both physico-chemical (fluxes of heat, light and nutrients!®) and biological (species
117  interactions, life cycles, behavior, acclimation/adaptation'*!?), which act across various spatio-
118  temporal scales. In turn, plankton impact seawater physico-chemistry while they are being advected™®.
119 The community composition and biogeochemical properties of a water mass are also partially
120  dependenton its history of mixing with neighboring water masses during transport. These intertwined
121 processes form the pelagic seascape®® (Supplementary Fig. 1a). Previous studies on plankton
122 distribution have tended to focus on individual factors, such as nutrient or light availability*!4, or have
123  investigated the role of transport for specific nutrients®® or types of planktonic organisms®!®. Here,
124 instead, we integrated uniformly collected metagenomic data across multiple size fractions with large-
125 scale ocean circulation simulations in the context of the seascape.

126  We assessed global patterns of plankton biogeography in the context of the seascape using samples
127 collected at 113 stations during the Tara Oceans expedition?’, including DNA sequence data from six
128  organismal size fractions: one virus-enriched (0-0.22 um)>, one prokaryote-enriched (either 0.22-1.6
129  or 0.22-3 um)?®, and four eukaryote-enriched (0.8-5 um, 5-20 um, 20-180 um and 180-2000 pum?*;
130  Supplementary Fig. 1b). We analyzed 24.2 terabases of metagenomic sequence reads and 320 million
131 new eukaryotic 18S V9 ribosomal DNA marker sequences (Supplementary Table 1), complementing
132  previously described Tara Oceans data>*®°, We used metagenomic data and Operational Taxonomic
133 Units (OTUs, representing groups of genetically related organisms) as independent proxies to compute
134  pairwise comparisons of plankton community dissimilarity (B-diversity). Metagenomic dissimilarity
135 highlighted, at species and sub-species resolution, differences in the genomic identity of organisms
136 between stations. Our metagenomic sampling resulted in pairwise metagenomic dissimilarities that
137 likely represent an overestimate of true B-diversity (Supplementary Information 1). However, since
138  we applied an identical procedure to compute dissimilarity between all pairs of samples, these values
139 nevertheless provide an accurate picture of B-diversity variation among samples. The more deeply
140 sampled OTU dissimilarity, in contrast, incorporated the numerous rare taxa within the plankton, but
141  atgenus or higher-level taxonomic resolution®®. Metagenomic and OTU dissimilarities were correlated
142  for all size fractions (Spearman’s p 0.53 to 0.97, p < 10*, Supplementary Fig. 2), indicating that both
143 proxies, although characterized by different sampling depth and taxonomic resolution, provided
144  coherent and complementary estimates of B-diversity (Supplementary Information 1). We performed
145 subsequent analyses using both measures, which produced consistent results. We focus on analyses
146  of metagenomic dissimilarity here, with accompanying results for OTU dissimilarity presented in
147 Supplementary Figures.

148  Globally, we observed significant dissimilarities at both the metagenomic and OTU level between
149 sampled stations (including adjacent sites) across all size fractions (Supplementary Fig. 3a,
150  Supplementary Information 1). The resulting portrait is of a locally heterogeneous oceanic ecosystem
151 dominated by a small number of abundant and cosmopolitan taxa, with a much larger number of less
152  abundant taxa found at fewer sampling sites (Supplementary Fig. 3b-e), corroborating previous
153  studies®.

154 Underlying this local heterogeneity, we found robust evidence for the existence of large-scale
155 biogeographical patterns within all plankton size classes using two complementary analyses of
156 dissimilarity among samples (Fig. 1a, Supplementary Fig. 4a-f, Supplementary Fig. 5, Supplementary
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157 Information 2). First, we grouped metagenomic samples within each size fraction into ‘genomic
158 provinces’ via hierarchical clustering (Supplementary Fig. 6). Second, we derived colors for each
159 sample based on a principal coordinates analysis (PCoOA-RGB; see Methods) in order to visualize
160 transitions in community composition within and between genomic provinces. Most genomic
161 provinces were composed of large-scale geographically contiguous stations (consistent with previous
162  studies documenting patterns in plankton biogeography®%*¢) with some independent distant samples
163 (Fig. 1a, Supplementary Fig. 4a-f). Genomic provinces of smaller plankton (viruses, bacteria and
164  eukaryotes <20 um) tended to be limited to a single ocean basin and to approximately correspond to
165 Longhurst biogeochemical provinces® (Supplementary Fig. 4a-d; Supplementary Information 3). In
166  contrast, provinces of larger plankton (micro- and meso-plankton, >20 um) spanned multiple basins
167  (Supplementary Fig. 4e-f, Supplementary Information 4).

168  These large-scale biogeographical patterns derived from metagenomes were linked to environmental
169 parameters including nutrients, temperature and trophic level. Seawater temperature was
170  significantly different among genomic provinces for all plankton size classes (Kruskal-Wallis test, p <
171 10°), corroborating previous results for prokaryotes'®, whereas other environmental conditions were
172 significantly different only with respect to specific size classes (Supplementary Fig. 7). The geography
173 of combined nutrient and temperature variations resembled the biogeography of smaller plankton
174  size classes (Fig. 1a-b, Supplementary Fig. 4a-d,g), whereas temperature alone more closely matched
175  thedistribution of larger plankton (Supplementary Fig. 4e,f,h), reflecting different potential ecological
176  constraints. Many genomic provinces were spatially consistent with ocean basin-scale circulation
177 patterns, such as western boundary currents or major subtropical gyres? (Fig. 1a, Supplementary Fig.
178  4a-f), suggesting a particular role for large-scale surface transport (a core component of the seascape)
179 in the emergence of spatial patterns of plankton community composition, as previously proposed?*.
180  We therefore investigated community composition differences between sampled stations in light of
181  the corresponding transit time. We inferred the time of mean transport between stations from
182  trajectories computed with the physically well-constrained MITgcm ocean model (see Methods),
183 which takes into account directionalities® and meso- to large-scale circulation, potential dispersal
184  barriers and mixing effects®*?3, We quantified transport using the minimum travel time? (Tmin)
185 between pairs of Tara stations. These trajectories corresponded to the dominant paths that transport
186  the majority of water volume and its contents (e.g., heat, nutrients and plankton; Fig. 1c). For all
187 plankton size classes, community composition differences between stations were correlated to travel
188 time (Supplementary Fig. 8). Cumulative correlation values (correlations between metagenomic
189  dissimilarity and Tmin computed for an increasing range of Tmin) were maximal for pairs of stations
190 separated by Tmin <~1.5 years for all size classes (p < 10*; Spearman’s p 0.45 to 0.71 depending on size
191  class, Fig. 2a, Supplementary Fig. 9a-e), hence revealing measurable plankton community dynamics
192 ontime scales far longer than typical plankton growth rates or life cycles. In contrast, no such unimodal
193 pattern was found for correlations between metagenomic dissimilarity and geographic distance
194  (without traversing land; Supplementary Fig. 9f). Over the timescale <~1.5 years, which corresponds
195  well with the average time to travel across a basin or gyre, large-scale transport is therefore an
196  appropriate framework for studying differences in plankton community composition (Fig. 2b). The fact
197  that simulated transport times and metagenomic dissimilarity were correlated despite a 3 year pan-
198  season sampling campaign highlights the overall stability of plankton dynamics along the main ocean
199  currents.

200  Transit time also covaried (although less strongly) with differences in environmental conditions for
201 pairs of stations for which Tmin <~1.5 years (Fig. 3). This indicates that along large-scale oceanic current
202 systems, changes in environmental conditions and plankton community composition are concurrent.
203 In our data, beyond ~1.5 years of transport, correlations of Tmin with metagenomic dissimilarity
204  decreased (Fig. 2a, Fig. 3, Supplementary Fig. 9a-e), meaning the signature of transport in generating
205 large-scale diversity changes weakened and travel time therefore becomes a less appropriate
206  framework to study B-diversity. A similar trend was observed for the correlation between Tmin and
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207 nutrient concentrations whereas temperature was better correlated when considering larger transit
208  times (Fig. 3).

209  Together, these analyses suggest the existence in the seascape of stable biogeochemical continua
210 induced by basin-scale currents with predictable, interlinked changes in environmental conditions and
211 plankton community composition (Supplementary Information 5). It has previously been posited that
212 transport could generate continuous transitions between niches®, but it was not anticipated that this
213  would occur on the scale of ocean basins. Beyond ~1.5 years, the correlation of metagenomic
214  dissimilarity with differences in temperature increased while that with differences in nutrients
215  decreased (Fig. 3, Supplementary Fig. 9a-e). However, both of these correlations with metagenomic
216  dissimilarity remained strong on these time scales. This might be related to distant Tara Oceans
217 stations experiencing similar oceanographic phenomena (notably temperature), for example
218 upwelling zones, producing generally similar environmental conditions.

219 The existence of a size-class dependent (smaller or larger than 20 um) plankton biogeography
220 indicates that organisms contribute differently to the basin-scale biogeochemical continua presentin
221  the seascape. In the case of the North Atlantic current system (including the Mediterranean Sea), a
222 simple exponential fit of metagenomic dissimilarity along Tmin for Tmin <~1.5 years (Fig. 2c) revealed
223 that the smaller size classes (<20 um) had a shorter metagenomic turnover time (ca. 1y) than larger
224 plankton (ca. 2y) (Supplementary Fig. 10, Supplementary Information 6). At global geographical scales,
225  the genomic provinces of small size classes, which are enriched in phytoplankton*®*°, corresponded
226  with differences in environmental parameters such as nutrient levels (Fig. 1b, Supplementary Fig. 7)
227  that are often constrained by regional oceanographic processes?®, as shown in our data. On the other
228 hand, genomic provinces of larger plankton, dominated by heterotrophic and symbiotic organisms*®,
229 often crossed biogeochemical boundaries and were more related to global scale gradients and
230  circulation patterns, notably major latitudinal temperature zones or the separation between Atlantic
231  and Indo-Pacific large-scale surface circulations (Supplementary Fig. 4e,f,h). These divergent effects
232 were also evident in comparisons of metagenomic dissimilarity with variations in environmental
233  conditions (Supplementary Fig. 9b). For smaller plankton, correlations with differences in nutrient
234  concentrations were stronger for Tmin Up to ~1.5 years, but for larger plankton, correlations were
235 stronger with temperature variations for Tmin beyond ~1.5 years. These results indicate a significant
236  size-based decoupling within planktonic food webs (see Supplementary Information 4).

237 In this study, we provide genomic evidence for an organism-size-dependent global plankton
238 biogeography shaped by currents at the scale of ocean basins. We measured, using metagenomes,
239  the underlying plankton dynamics driven by seascape processes such as intrinsic biological dynamics,
240  variation in environmental conditions, and/or long-range transport. Our analyses reveal that global
241 plankton communities include components that are in a near steady-state that emerges from the
242 integration of the seascape. This behavior resembles self-organizing systems within reaction-
243 advection-diffusion contexts?’. This work shows that studies of the dynamics of plankton communities
244 must consider the critical influence of ocean currents in stretching and altering, on the scale of basins,
245  the distribution of both planktonic organisms and the physico-chemical nature of the water mass in
246 which they reside. In this context, our study confirms that the combination of ocean circulation
247 modelling with the use of metagenomic DNA as a tracer of plankton communities is a key tool for
248  unravelling the regulation of plankton dynamics. The planktonic ecosystem is fundamentally different
249 in many ways from other major planetary ecosystems and this study provides a framework to
250 understand and predict the structuring of the ocean ecosystem in a scenario of rapid environmental
251  and current system changes®?°,

252

253

254 Methods

255

256  Sampling, sequencing and environmental parameters
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257 Sampling, size fractionation, measurement of environmental parameters and associated metadata,
258  DNA extraction and metagenomic sequencing were conducted as described previously®®3!, Samples
259  were collected at 113 Tara Oceans stations for six size fractions (0-0.2, 0.22-1.6/3, 0.8-5, 5-20, 20-180,
260 180-2000 um; Supplementary Fig. 1b; Supplementary Table 1) and two depths (subsurface and deep
261  chlorophyll maximum (DCM)). The prokaryote-enriched size fraction was collected either a 0.22-1.6
262  pmor 0.22-3 um filter'®*,

263  We used physico-chemical data measured in situ during the Tara Oceans expedition (depth of
264  sampling, temperature, chlorophyll, phosphate, nitrate and nitrite concentrations), supplemented
265 with simulated values for iron and ammonium (using the MITgcm Darwin model described below in
266  “Ocean circulation simulations”), day length, and 8-day averages calculated for photosynthetically
267  activeradiation (PAR) in surface waters (AMODIS, https://modis.gsfc.nasa.gov). In order to obtain PAR
268  values at the deep chlorophyll maximum, we used the following formula32:

269 PAR(Z) = PAR(0)*exp(-k*Z)

270 x=log(Chl)

271 log(Z)=1.524-0.426x-0.0145x"2+0.0186x"3
272 k=-In (0.01)/Z

273 in which k is the attenuation coefficient, and Z is the depth of the DCM (in meters). Other data, such
274  assilicate and the nitrate/phosphate ratio, were extracted from the World Ocean Atlas 2013 (WOA13
275  version 2, https://www.nodc.noaa.gov/OC5/woal3/), by retrieving the annual mean values at the
276  closest available geographical coordinates and depths to Tara sampling stations. For temperature and
277 nitrate, we calculated seasonality indexes (SI) from monthly WOA13 data. For each sample, the index
278 is the annual variation of the parameter (max - min) at this location divided by the highest variation
279  value among all samples.

280 A list of samples, metagenomic and metabarcode sequencing information and associated
281 environmental data is available in Supplementary Tables 1-2.

282

283  Calculation of metagenomic community dissimilarity

284 Metagenomic community distance between pairs of samples was estimated using whole shotgun
285 metagenomes for all six size fractions. We used a metagenomic comparison method (Simka*3) that
286  computes standard ecological distances by replacing species counts by counts of DNA sequence k-
287  mers (segments of length k). K-mers of 31 base pairs (bp) derived from the first 100 million reads
288  sequenced in each sample (or the first 30 million reads for the 0-0.2 um size fraction) were used to
289 compute a similarity measure between all pairs of samples within each organismal size fraction. Based
290 on a benchmark of Simka, we selected 100 million reads per sample (or 30 million for the 0-0.2 um
291 fraction) because increasing this number did not produce a qualitatively different set of results, and
292  toensurethat the same number of reads were used in each pairwise comparison within a size fraction.
293 Nearly all samples in our data set had at least 100 million reads (or at least 30 million for the 0-0.2 um
294  fraction; Supplementary Table 1).

295  We estimated B-diversity for metagenomic reads with the following equation within Simka:

296 Metagenomic B-diversity = (b +c)/(2a+ b +¢)

297 Where a is the number of distinct k-mers shared between two samples, and b and c are the number
298 of distinct k-mers specific to each sample. We represented the distance between each pair of samples
299  on a heatmap using the heatmap.2 function of the R-package®* gplots_2.17.0%. The dissimilarity
300 matrices we produced for each plankton size fraction (on a scale of 0 = identical to 100 = completely
301 dissimilar) are available as Supplementary Tables 3-8.

302

303 Calculation of OTU-based community dissimilarity

304  Within the 0-0.2 um size fraction, we used previously published viral populations (equivalent to
305 OTUs)*® and viral clusters (analogous to higher taxonomic levels)® based on clustering of protein
306 content. For the 0.22-1.6/3 pm size fraction, we used previously derived miTAGs based on
307 metagenomic matches to 16S ribosomal DNA loci and processed them as described*®. For the four
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308 eukaryotic size fractions, we added additional samples to a previously published Tara Oceans
309 metabarcoding data set and processed them using the same methods!® (also described at DOI:
310 10.5281/zenodo.15600).

311 We calculated OTU-based community dissimilarity for all size fractions as the Jaccard index based on
312 presence/absence data using the vegdist function implemented in vegan 2.4-0% in the software
313 package R. The dissimilarity matrices we produced for each plankton size fraction (on a scale of 0 =
314  identical to 100 = completely dissimilar) are available as Supplementary Tables 9-14.

315

316 Calculating distances of environmental parameters

317 We calculated Euclidean distances® for physico-chemical parameters. Each were scaled individually
318 to have a mean of 0 and a variance of 1 and thus to contribute equally to the distances. Then the
319 Euclidean distance between two stations i and j for parameters P was computed as follows:

320 ED(i,j,P) = Z(xip —x;)°

pEP

321

322  RGB encoding of environmental positions

323  We color-coded the position of stations in environmental space for Fig. 1b and Supplementary Fig. 4g
324 as follows. First, environmental variables were power-transformed using the Box-Cox transformation
325  tohave Gaussian-like distributions to mitigate the effect of outliers and scaled to have zero mean and
326 unit variance. We then performed a principal component analysis (PCA) with the R command prcomp
327  from the package stats 3.2.13** on the matrix of transformed environmental variables and kept only
328  the first 3 principal components. Finally, we rescaled the scores in each component to have unit
329  variance and decorrelated them using the Mahalanobis transformation. Each component was mapped
330 toacolorchannel (red, green or blue) and the channels were combined to attribute a single composite
331  color to each station. The components (X, y, z) were mapped to color channel values (r, g, b) between
332 0and255asr=128 * (1 + x / max(abs(x)), and similarly for g and b. This map ensures that the global
333 dispersion is equally distributed across the three components and composite colors span the whole
334  color space.

335

336  Definition of genomic provinces

337 We used a hierarchical clustering method on the metagenomic pairwise dissimilarities produced by
338 Simka for all surface and DCM samples, and multiscale bootstrap resampling for assessing the
339  uncertainty in hierarchical cluster analysis. We focused on metagenomic dissimilarity due to its higher
340 resolution, and confirmed that the patterns found in metagenomic data were consistent when using
341  OTU data (Supplementary Fig. 5). We used UPGMA (Unweighted Pair-Group Method using Arithmetic
342 averages) clustering, as it has been shown to have the best performance to describe clustering of
343 regions for organismal biogeography®°. The R-package pvclust_1.3-2*°, with average linkage clustering
344  and 1,000 bootstrap replications, was used to construct dendrograms with the approximately
345  unbiased p-value for each cluster (Supplementary Fig. 6). Because the number of genomic provinces
346 by size fraction was not known a priori, we applied a combination of visualization and statistical
347 methods to compare and determine the consistency within clusters of samples. First, the silhouette
348 method*! was used to measure how similar a sample was within its own cluster compared to other
349  clusters using the R package cluster_2.0.1%2. The Silhouette Coefficient s for a single sample is given
350 as:

351 s=(b-a)/ max(a,b)

352 Where a is the mean distance between a sample and all other points in the same class and b is the
353 mean distance between a sample and all other points in the next nearest cluster. We used the value
354  ofs, inaddition to bootstrap values, to partition each tree into genomic provinces (see Supplementary
355 Information 2 for further details on statistical validation of genomic provinces). Additionally, we used
356  the Radial Reingold-Tilford Tree representation from the JavaScript library D3.js (https://d3js.org/)*
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357  tovisualize sample partitions from the dendrogram. Single samples were not considered as genomic
358 provinces.

359 In a complementary approach, we performed a principal coordinates analysis (PCoA) with the R
360 command cmdscale (eig = TRUE, add = TRUE) from the package stats 3.2.13* on the matrices of
361 pairwise metagenomic dissimilarities calculated by Simka (or OTU dissimilarity measured with the
362  Jaccard index) within each size fraction and kept only the first 3 principal coordinates. We then
363 converted those coordinates to a color using the RGB encoding described above, with one
364 modification: scaling factors A;, A; and A, were calculated as the ratios of the second and third
365  eigenvalues to the first (dominant) eigenvalue to ensure that the dispersion of stations along each
366  color channel reproduced the dispersion of the stations along the corresponding principal component
367  (the ratio for the color corresponding to the dominant eigenvalue is 1). The components (x, y, z) were
368 then mapped to color channel values (r, g, b) between 0 and 255 as r = 128 * (1 + Ax / max(abs(x)),
369  where A.is the ratio of the eigenvalue of color c to the dominant eigenvalue.

370  We represented number and PCoA-RGB color of genomic provinces for each sample on a world map
371  (Fig. 1, Supplementary Fig. 4a-f) generated with the R packages maps_3.0.0.2*, mapproj 1.2-4%,
372  gplots_2.17.0°* and mapplots_1.5%. We also plotted phosphate and temperature (Supplementary Fig.
373  4a-f) obtained from the Csiro Atlas of Regional Seas (CARS2009, http://www.cmar.csiro.au/cars) using
374  the phosphate_cars2009.nc and temprerature_cars2009a.nc files and the R package RNetCDF¥’.

375

376 Comparison of genomic provinces to previous ocean divisions

377  Toevaluate the spatial similarity between the clusters obtained in our study for each size fraction and
378 previous biogeographic divisions, we performed an analysis of similarity (ANOSIM, Fathom toolbox,
379 matlab®). First, we collected coordinates for three spatial divisions at a resolution of 0.5° x 0.5°:
380 biomes, biogeochemical provinces (BGCPs)**® and objective global ocean biogeographic provinces
381 (OGOBPs)*. Second, we assigned Tara Oceans stations to biomes, BGCPs, and OGOBPs based on their
382 GPS coordinates. Third, for each size fraction we performed an ANOSIM with the metagenomic
383  dissimilarity matrix calculated by Simka, using biogeographic clusters (biome, BGCP, OGOBP) as group
384 membership for each station. Each ANOSIM was bootstrapped 1,000 times to evaluate the interval of
385 confidence around the strength of the relationships we detected (Supplementary Fig. 4a-f).

386

387 Environmental differences among genomic provinces

388  For each size fraction, we tested which environmental parameters significantly discriminated among
389 genomic provinces (Supplementary Fig. 7). A total of 12 parameters characterizing each sample,
390 grouped by genomic provinces, were evaluated with a Kruskal-Wallis test within each size fraction
391  with asignificance threshold of p < 107. Selected parameters for each size fraction were then used to
392 perform a principal components analysis of the samples using the R package vegan_1.17-11%". Samples
393  were plotted with the same PCoA-RGB colors used in the genomic province maps above and each
394  genomic province surrounded by a grey polygon. In analyses where Southern Ocean (including
395  Antarctic) stations were considered independently from other stations, the following were considered
396  Southern Ocean stations: 82, 83, 84, 85, 86, 87, 88, 89.

397

398  Ocean circulation simulations

399  We derived travel times from the MITgcm Darwin simulation®® based on an optimized global ocean
400 circulation model from the ECCO2 group®. The horizontal resolution of the model was approximately
401 18 km, with 1,103,735 total ocean cells. We ran the model for six continuous years in order to smooth
402 anomalies that might occur during any single year. We used surface velocity simulation data to
403 compute trajectories of floats originating in ocean cells containing all Tara Oceans stations, and
404  applied the following stitching procedure to generate a large number of trajectories for each initial
405 position. (The use of surface velocity data implies that Ekman transport also influences trajectories
406  within the simulation.)
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407 First, we precomputed a set of monthly trajectories: for each of the 72 months in the dataset, we
408 released floats in every ocean cell of the model grid and simulated transport for one month. We used
409 a fourth-order Runge-Kutta method with trilinearly interpolated velocities and a diffusion of 100 m?/s.
410 Second, following previous studies®, we stitched together monthly trajectories to create 10,000 year
411  trajectories: for each float released within a 200 km radius of a Tara station, we constructed 1,000
412  trajectories, each 10,000 years long. To avoid seasonal effects, we began by selecting a random
413 starting month. We followed the trajectory of a float released within that month to the grid cell
414  containing its end point at the end of the month. Next, we randomly selected a trajectory starting on
415  the following month (e.g., February would follow January) from that grid cell, and repeated until
416 reaching a 10,000 year trajectory.

417 We searched the resulting 50.8 million trajectories for those that connected pairs of Tara Oceans
418 stations. To ensure robustness of our results, we only included pairs of stations that were connected
419 by more than 1,000 trajectories. For each pair of stations, Tmin was defined as the minimum travel time
420  of all trajectories (if any) connecting the two stations. The travel time matrix we produced (measured
421  in years) is available as Supplementary Table 15. Standard minimum geographic distance without
422  traversing land®2is available as Supplementary Table 16.

423

424  Correlations of B-diversity, Tmin and environmental parameters

425 We excluded stations that were not from open ocean locations from correlation analyses to avoid
426  sitesimpacted by coastal processes (those numbered 54, 61, 62, 79, 113, 114, 115, 116,117, 118, 119,
427 120, and 121). In analyses where Southern Ocean (including Antarctic) stations were considered
428  independently from other stations, the following were considered Southern Ocean (including
429  Antarctic) stations: 82, 83, 84, 85, 86, 87, 88, 89. We calculated rank-based Spearman correlations
430  between B-diversity, Tmin and environmental parameters (either differences in temperature or the
431 Euclidean distance composed of differences in NO.NOs, PO, and Fe, see above) for surface samples
432  with a Mantel test with 1,000 permutations and a nominal significance threshold of p < 0.01. For the
433 correlations presented in Fig. 2a, Fig. 3 and Supplementary Fig. 9 correlation values were derived from
434 pairs of stations connected by Tmin up to the value on the x-axis. We calculated partial correlations of
435 metagenomic and OTU dissimilarity and Tmin by controlling for differences in temperature and for
436  differences in nutrient concentrations, and partial correlations of dissimilarity with temperature or
437 nutrient variation by controlling for Trmin.

438

439  Community turnover in the North Atlantic

440 Tara Oceans stations numbered 72, 76, 142, 143, 144, and all stations from 146 to 151 were located
441  alongthe main current system connecting South Atlantic and North Atlantic oceans and continuing to
442 the strait of Gibraltar. In addition, we included stations 4, 7, 18, and 30 located on the main current
443  system in the Mediterranean Sea (Supplementary Fig. 10). As the Tara Oceans samples within the
444  subtropical gyre of the North Atlantic and in the Mediterranean Sea were all collected in winter,
445  seasonal variations should not play a role in the variability in community composition that we
446  observed (see Supplementary Table 2). We calculated genomic e-folding times (the time after which
447  the detected genomic similarity between plankton communities changes by 63%) over scales from
448 months to years based on an exponential fit of metagenomic dissimilarity to Tmin With the formy = Co
449 e*/* (where Cp is a constant and T the folding time). Exponential fits for size fractions 0-0.2 pm and 5-
450 20 um were not calculated due to an insufficient number of sampled stations in the North Atlantic
451  (Supplementary Information 6).

452  The synthetic map (Supplementary Fig. 10a) was generated with the R packages maps_3.0.0.2,
453 mapproj 1.2.4, gplots_2.17.0 and mapplots_1.5. We derived dynamic sea surface height from the Csiro
454  Atlas of Regional Seas (CARS2009, http://www.cmar.csiro.au/cars) using the hgt2000_cars2009a.nc
455  file and plotted with the R package RNetCDF.
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652 S 2 e ,
653 Figure 1 | Plankton biogeography, environmental variation and ocean transport among Tara Oceans
654 stations. Major currents are represented by solid arrows. a, Genomic provinces of Tara Oceans surface
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655 samples for the 0.8-5 um size fraction, each labeled with a letter prefix (‘C’ represents the 0.8-5 um size

656 fraction) and a number; samples not assigned to a genomic province are labeled with ‘-’. Maps of all six size
657 fractions and including DCM samples are available in Supplementary Fig. 4. Station colors are derived from an
658 ordination of metagenomic dissimilarities; more dissimilar colors indicate more dissimilar communities (see
659 Methods). b, Stations colored based on an ordination of temperature and the ratio of NO;NOs to PO, (replaced
660 by 10° for 3 stations where the measurement of PO, was 0) and of NO,NOjs to Fe. Colors do not correspond
661 directly between maps; however, the geographical partitioning among stations is similar between the two
662 maps. ¢, Simulated trajectories corresponding to the minimum travel time (Tmin) for pairs of stations (black
663  dots) connected by Tmin < 1.5 years. Directionality of trajectories is not represented.
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665 Figure 2 | Metagenomic dissimilarity and travel time of plankton are maximally correlated up to ~1.5 years.
666  a, Spearman rank-based correlation by size fraction between metagenomic dissimilarity and minimum travel
667 time along ocean currents (Tmin) for pairs of Tara Oceans samples separated by a minimum travel time less
668  than the value of Tmin on the x axis. Brown line: 0-0.2 um size fraction, red: 0.22-1.6/3 um, blue: 0.8-5 pum,
669 green: 5-20 um, purple: 20-180 pum, orange: 180-2000 um. Shaded colored areas represent 95% confidence
670 intervals. Tmin >1.5 years is shaded in grey. See plots for OTU dissimilarity in Supplementary Fig. 9. b, Pairs of
671 Tara stations connected by Tmin <1.5 years in blue/black and >1.5 years in grey. Shading reflects metagenomic
672 similarity from the 0.8-5 um size fraction. ¢, The relationship of metagenomic similarity to Tmin With an

673 exponential fit (black line, grey 95% Cl), for pairs of surface samples in the 0.8-5 um size fraction within the
674 North Atlantic and Mediterranean current system (see map and plots for other size fractions and OTUs in
675 Supplementary Fig. 10, and Supplementary Information 1 for a discussion of metagenomic similarity).
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Figure 3 | Plankton travel time, metagenomic dissimilarity and environmental differences show different
temporal patterns of pairwise correlation. Spearman rank-based correlations between metagenomic
dissimilarity and minimum travel time (Tmin, blue), metagenomic dissimilarity and differences in NO,NOs, PO,
and Fe (pink), metagenomic dissimilarity and differences in temperature (red), Tmin and differences in NO2NOs,
PO, and Fe (pink, dashed), and Tmin and differences in temperature (red, dashed) for pairs of Tara Oceans
samples separated by a minimum travel time less than the value of Tmin 0N the x axis. Shaded regions represent
standard error of the mean. Correlations represent averages across four of six size fractions represented in Fig.
2a; the 0-0.2 um and 5-20 um size fractions are excluded due to a lack of samples at the global level. Individual
size fractions, partial correlations, and correlations with OTU data are in Supplementary Fig. 9.
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Supplementary Figure 1 | The seascape, plankton transport and community metagenomic samples of Tara
Oceans stations. a, A community sampled at a given location (A) changes over time as it travels along ocean
currents (dashed bold line) to a second location (B). It is affected by numerous external processes, including
mixing with water containing other communities and changes in local nutrient concentration, and by internal
processes, such as biotic interactions. In this study, the Tara schooner followed a sampling route (orange
dashed line) leading to an elapsed time between the 2 sampling sites A and B that was independent of
plankton travel time. b, Location, station number, and sequenced surface metagenomic samples.
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695 Supplementary Figure 2 | B-diversity estimates from metagenomic and OTU-based dissimilarity are

696 correlated. Scatter plots of metagenomic dissimilarity versus OTU community dissimilarity for six organismal
697 size fractions. Each point represents a pairwise comparison between two samples. a, 0-0.2 um size fraction. b,
698 0.22-1.6/3 um size fraction. ¢, 0.8-5 um size fraction. d, 5-20 um size fraction. e, 20-180 um size fraction. f,
699 180-2000 um size fraction. Global rank-based correlations (Spearman, p < 10*) are indicated in the bottom
700  right of each plot.
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701
702 Supplementary Figure 3 | Global dissimilarity and OTU occupancy. a, Distributions of dissimilarity for six

703 organismal size fractions (measured either as metagenomic or OTU dissimilarity; see Supplementary
704 Information 1). One colored point represents one pair of stations. Violin plots (horizontal line: median)
705 summarize each distribution. The number of stations in common between the metagenomic/OTU data sets
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706 within each size fraction is indicated above. b-e, OTU occupancy for different proportions of total abundance.
707 Fraction of stations present (occupancy) for the minimum number of OTUs (indicated above) necessary to
708 represent different proportions of the total abundance within each organismal size fraction. A relatively small
709 number of abundant and cosmopolitan taxa represents the majority of the abundance within each size

710 fraction; this effect is more pronounced with increasing organismal size. b, OTUs representing 50% of the total
711 abundance within each size fraction. ¢, 80%. d, 95%. e, 100% (all OTUs).
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Supplementary Figure 4 | Genomic provinces in comparison to previous ocean divisions, and ordination
maps of environmental parameters. a-f, Geographical maps of genomic provinces by organismal size fraction
(see Supplementary Information 2). Circles denote stations with data available for the size fraction and contain
the corresponding genomic province identifiers (one letter prefix per size fraction (A-F); stations not assigned
to genomic provinces are shown as ‘-’). The top portion of each circle represents samples collected at the
surface and the bottom portion represents the deep chlorophyll maximum (stations missing metagenomic
data for one of the two depths are drawn as half circles). Colors are based on PCoA-RGB (Methods) and do not
correspond among size fractions. Major currents are shown with solid black arrows, wind transport with
dashed grey arrows. Blue zones indicate temperature < 14 °C. Hashed zones indicate phosphate concentration
> 0.4 mmol. Hierarchical dendrograms that were used to build genomic provinces are shown in Supplementary
Fig. 6. Maps with colors based on OTU dissimilarity are shown in Supplementary Fig. 5. a, ‘A’ prefix, 0-0.2 um
size fraction. b, ‘B’ prefix, 0.22-1.6/3 um. c, ‘C’ prefix, 0.8-5 um. d, ‘D’ prefix, 5-20 um. e, ‘E’ prefix, 20-180 um.
f, ‘F’ prefix, 180-2000. Insets, Results of ANOSIM to determine, independently for each size fraction, the ability
of three nested levels of ocean partitioning to explain metagenomic dissimilarities among stations (blue,
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727 Longhurst biomes; red, Longhurst biogeochemical provinces; green, Oliver and Irwin objective provinces; see
728 Methods and Supplementary Information 3). g, The distribution of temperature and nutrient variations

729 matches the biogeography of small plankton (< 20 um). Stations are colored based on an ordination of

730 Euclidean distances in temperature, NO,NOs, PO, and Fe. h, The distribution of temperature matches the

731 biogeography of large plankton (> 20 um). Stations are colored following a Box-Cox transformation (Methods).
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Supplementary Figure 5 | Biogeography based on an ordination of OTU dissimilarity. a-f, Principal
coordinates analysis (PCoA)-RGB color maps for OTUs (see Methods). The top of each half circle represents
samples collected at the surface and the bottom portion represents the deep chlorophyll maximum (stations
missing OTU data for one of the two depths are drawn as half circles). Station colors do not correspond among
size fractions. a, 0-0.2 um size fraction. b, 0.22-1.6/3 um. ¢, 0.8-5 um. d, 5-20 um. e, 20-180 um. f, 180-2000
pum.
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Supplementary Figure 6 | Hierarchical trees illustrating how samples were partitioned into genomic
provinces. Dendrograms resulted from UPGMA clustering. Each sample (SUR: surface, DCM: deep chlorophyll
maximum) is shown as a leaf. Genomic provinces are shown with their identifiers in blue polygons; identifiers
are composed of one letter prefix per size fraction (A-F) and a number. Bootstrap values in red show the
support at the key nodes that separate genomic provinces from one another. See also Supplementaryt
Information 2 on the robustness of genomic provinces. a, ‘A’ prefix, 0-0.2 um size fraction. b, ‘B’ prefix, 0.22-
1.6/3 um. ¢, ‘C’ prefix, 0.8-5 um. d, ‘D’ prefix, 5-20 um. e, ‘E’ prefix, 20-180 um. f, ‘F’ prefix, 180-2000 pm.
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Supplementary Figure 7 | Environmental parameters that distinguish genomic provinces. a-b, Environmental
parameters that significantly differentiate among genomic provinces (Kruskal-Wallis test, grey box indicates p
values > 10). SI = Seasonality Index. a, all stations. b, Antarctic stations removed (see Methods). Eliminating
Antarctic stations does not result in a large change in the parameters that significantly differentiate among
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752 provinces. c-h, Two types of visualizations of the relationships between genomic provinces and environmental
753 parameters. Sample colors are those from Supplementary Fig. 4. Top plots within panels c-h: principal

754 components analysis-based visualization. Samples, and environmental parameters differing significantly (p <
755 10°) among genomic provinces, are projected onto the first two axes of variation. Grey polygons enclose

756 different genomic provinces. Bottom plots within panels c-h: network-based visualization. Each genomic

757 province is represented as a node, with the individual samples composing the province within the node. Edges
758 between nodes represent differences in temperature, nitrate, phosphate and iron that significantly

759 differentiate (p < 10°°) among genomic provinces, that are statistically significantly different between

760 individual pairs of genomic provinces (post hoc Tukey test, p < 0.01) and whose difference in median

761 parameter values is > 1 standard deviation (calculated from the parameter values of all samples in the size
762 fraction). Thicker edges represent larger differences. ¢, 0-0.2 um size fraction. d, 0.22-1.6/3 um. e, 0.8-5 um. f,
763  5-20 um. g, 20-180 pm. h, 180-2000 pm.
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Supplementary Figure 8 | Global correlations of dissimilarity with minimum travel time (Tmi). Scatter plots
of dissimilarity versus Tmin. One point represents a pair of samples. a, metagenomic dissimilarity. b, OTU
dissimilarity. Global Spearman correlation values are indicated within each panel.
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768
769 Supplementary Figure 9 | Plankton travel time, dissimilarity, environmental distance and geographic

770 distance show different temporal patterns of pairwise correlation. Spearman correlation values are shown
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771 separately by organismal size fraction. Non-significant correlations (p > 0.01) are shown with dashed lines. a-e,
772 Correlations for pairs of Tara Oceans samples separated by a minimum travel time less than the value of Tmin
773 on the x axis. Tmin >1.5 years is shaded in grey. Left panels: correlation of dissimilarity with Tmin; middle panels,
774 dissimilarity with temperature; right panels: dissimilarity with differences in NO,NOs, PO4 and Fe. a-c,

775  metagenomic dissimilarity. d-e, OTU dissimilarity. There is a maximum correlation of dissimilarity with Tmin
776 (and, for most size fractions, of dissimilarity with nutrients) for Tmin <~1.5 years, but the correlation between
777 dissimilarity and temperature does not display a similar maximum. b displays only the 0.8-5 um (blue) and 180-
778 2000 um (orange) size fractions from a, to highlight that for smaller plankton, correlations with differences in
779 nutrient concentrations were stronger for Tmin Up to ~1.5 years, but for larger plankton, correlations were
780 stronger with temperature variations for Tnin beyond ~1.5 years. ¢ and e, Partial correlations to estimate the
781 independent effects of Tmin and environmental distances on B-diversity. Left panels: controlling for differences
782 in temperature and for differences in NO2NOs, PO, and Fe; middle and right panels: controlling for Tmin. Partial
783 correlations do not affect the maximum correlation of dissimilarity with Tmin for Tmin <~1.5 years. f, Correlation
784 of geographic distance (without traversing land) with metagenomic dissimilarity for pairs of Tara Oceans

785 samples separated by a geographic distance less than the value on the x axis.
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Supplementary Figure 10 | Plankton community composition turnover through the North Atlantic. a, Map of
Tara Oceans stations, currents (solid lines), temperature by station (colored circles) and sea surface
climatological dynamic height from CARS2009 (http://www.cmar.csiro.au/cars). Each station label has a color
corresponding to a sub-region: South Atlantic in orange, Gulf Stream in red, Recirculation/Gyre in green and
Mediterranean Sea in blue. b-e, Scatter plots of metagenomic similarity versus minimum travel time (Tmin) for
these stations in the b, 0.22-3 um; ¢, 0.8-5 um; d, 20-180 um; and e, 180-2000 um size fractions. f-i, Scatter
plots of OTU community similarity for the f, 0.22-3 um; g, 0.8-5 um; h, 20-180 um; and i, 180-2000 um size
fractions. The black line represents an exponential fit, with a light grey shaded 95% confidence interval. The
resulting turnover times using metagenomic similarity are t=0.91y for 0.22-3 um, t=0.91y for 0.8-5 um, T =
2.22 y for 20-180 um and t = 1.99 y for 180-2000 um. Turnover times using the OTU community similarity are t
=4.23 yfor 0.22-3 um, T1=4.08 y for 0.8-5 um, T = 2.6 y for 20-180 um and t = 2.1 y for 180-2000 pum. The viral-
enriched 0-0.2 um and the nanoplanktonic 5-20 um size fractions are not shown due to insufficient sampling of
these stations.
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800  Supplementary Information

801

802  Supplementary Information 1. Comparison of metagenomes and OTUs

803

804 Metagenomic comparisons reflect fine-scale differences in genome content at the community level

805 as a function of diversity, genome size and organismal abundance, and also depend on the rate of
806  evolution of each specific lineage. With exhaustive sampling, metagenomic dissimilarity could
807  theoretically distinguish among genomes in a sample separated by a single mutation. However, our
808 metagenomic sequencing depth was likely not able to reach saturation due to the number of genomes
809 per sample and their putative large size (metatranscriptomes, which contain fewer sequences per
810  species than do metagenomes, did not reach saturation within Tara Oceans samples®3). For example,
811 if for a pair of samples we sequence 50% of the total amount of the unique genomic DNA present, we
812  expect the maximum similarity of the two samples to be roughly 25% (0.5 x 0.5). Therefore, the
813 pairwise metagenomic dissimilarities we calculated between samples probably reflected a
814  combination of genomic differences weighted towards more abundant organisms. In contrast, OTUs,
815  obtained by sequencing single marker genes, approach biodiversity saturation>*®°, However, OTU
816 resolution depends on the choice of the marker to be used, the threshold of similarity for the marker,
817 and its lineage-specific substitution rate, and may therefore confound evolutionarily and/or
818  ecologically distant organisms>*=8, We observed a significant agreement between the two proxies
819  (Supplementary Fig. 2), although dissimilarities based on OTUs were generally lower than those
820 computed from metagenomic data (Supplementary Fig. 3a).

821 Analyses of plankton biogeography produced consistent results based on metagenomic and OTU
822  data (Supplementary Fig. 4, Supplementary Fig. 5, Supplementary Fig. 8, Supplementary Fig. 9). For
823 simplicity, in the main text, we chose to highlight results based on metagenomes rather than on OTUs
824  for three reasons. First, the metagenomic sequencing protocol and subsequent measurement of
825 dissimilarity was uniform across size fractions, whereas OTUs were defined differently for the viral-
826  enriched, bacterial-enriched and eukaryote-enriched size fractions (Methods). Second, the
827 biogeographical patterns we obtained (see below) may be more evident in comparisons among
828 metagenomic sequences (our data source in identifying genomic provinces), as genomes, accumulate
829  single-base changes and other variants more quickly than a single ribosomal gene marker. Third, B-
830  diversity estimated by metagenomic dissimilarity generally displayed higher correlation values with
831 minimum travel time (Tmin; Supplementary Fig. 8).

832

833  Supplementary Information 2. Robustness of genomic provinces

834

835 We assessed the robustness of genomic provinces in five separate ways. First, we tested 5 different

836  hierarchical clustering algorithms from R-package pvclust_1.3-2% (UPGMA - Unweighted Pair Group
837 Method with Arithmetic mean; McQuitty’s method; Complete linkage; Ward’s method; Single linkage)
838 on the metagenomic pairwise dissimilarities produced by Simka separately for the six organismal size
839 fractions, followed by multiscale bootstrap resampling. We used the cophenetic correlation
840  coefficient from the R-package dendextend 1.5.2°° to measure how accurately the dendrograms
841  produced by each method preserved the pairwise distances within the input dissimilarity matrices®.,
842  The ranking of the cophenetic correlation coefficient for different clustering methods within each size
843  fraction was consistent with a published large-scale methodological comparison of clustering methods
844  for biogeography (Supplementary Table 17), which considered UPGMA agglomerative hierarchical
845 clustering to have consistently the best performance®. Second, we compared clustering results among
846  all size fractions using Baker’s Gamma Index® from the R-package corrplot_0.77%, which is a measure
847  of association (similarity) between two trees based on hierarchical clustering (dendrograms). The
848 Baker’s Gamma Index is defined as the rank correlation between the stages at which pairs of objects
849 combine in each of the two trees. For each type of correlation, the UPGMA was consistently the most
850  correlated with other clustering methods (Supplementary Table 18). This allowed us to conclude, in
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851  agreement with previous results®, that the UPGMA method is likely more robust than the other
852 methods we tested.

853 Third, we compared the genomic provinces found by our UPGMA hierarchical clustering approach
854  to those found by two different non-hierarchical methods: K-means on the positions found by
855 multidimensional scaling and spectral clustering on the nearest-neighbor graph. Both methods rely on
856 (i) a dissimilarity matrix and (ii) a tuning parameter (dimension of the projection space for K-means,
857 and number of neighbors for spectral clustering). K-means uses the numeric values of the
858  dissimilarities, whereas spectral relies only on their ordering (e.g., community A is closer to B than to
859 C). We compared the genomic provinces to clusters found by K-means and spectral clustering for all
860  values of the tuning parameter using the Rand Index (RI; from the GARI function of the loe R package
861  version 1.1%), a score of agreement between partitions. Results are reported as mean +/- s.d. of the
862 Rl: 1 means perfect agreement and O complete disagreement. Fourth, in order to assess the
863 significance of the genomic provinces, we performed a multivariate ANOVA to partition metagenomic
864  dissimilarity across regions, using the adonis function of the vegan R package version 2.5-4%", Note,
865 however, that since the same data were used both to construct the genomic provinces and to assess
866  their significance, the p-values estimated by ADONIS might be anti-conservative. The results of the
867  third and fourth analyses are presented in Supplementary Table 19.

868 Fifth, we found that clustering of samples in genomic provinces was consistent with a
869 complementary visualization based on the same data: RGB colors derived from the first three axes of
870  a principal coordinates analysis (PCoA-RGB) of B-diversity, in which similar colors represent similar
871 communities (Supplementary Fig. 4; see Methods). Samples within the same genomic province
872  generally shared the same range of PCoA-RGB colors. Because the clustering approach was
873 hierarchical, samples sharing some similarity could have been assigned to different genomic provinces
874  due to binary decisions during the clustering process. This was also reflected in the PCoA-RGB colors,
875  where the boundaries of genomic provinces did not indicate a complete change of communities
876  among genomic provinces (and, conversely, belonging to the same genomic province did not imply
877 identical community). Nonetheless, samples with similar PCOA-RGB colors were generally situated in
878  closely-related branches in the UPGMA tree (Supplementary Fig. 6). An illustrative example is genomic
879 province F5 (of the 180-2000 um size fraction; Supplementary Fig. 4f), which encompassed stations in
880  the Atlantic, Mediterranean Sea and some subtropical stations in the Indo-Pacific. In this wide region,
881  the PCoA-RGB colors indicate the variation in community composition within the genomic province,
882 and also reflect the relatedness of F5 to its adjacent samples, in particular those in the subtropical
883  Atlantic/Pacific region F4, its neighbor in the UPGMA tree (Supplementary Fig. 6f).

884

885  Supplementary Information 3. Comparison of genomic provinces to previous biogeographical

886  divisions

887

888 Current approaches in biogeographic theory divide the ocean into regions based either on expert
889 knowledge applied to satellite data, as in the hierarchical nesting by Longhurst® into biomes (macro-
890  scale, essentially representing a division of the world’s oceans into cold and warm waters, and coastal
891 upwelling zones) and biogeochemical provinces (BGCPs, areas within biomes defined by observable
892 boundaries and predicted ecological characteristics), or, alternatively, into the objective provinces of
893 Oliver and Irwin*®, which are based solely on statistical analyses. Longhurst BGCPs are based upon,
894 primarily, monthly variations of chlorophyll a, the geography of the seasonal cycle of physical factors
895  (such as the depth of the upper ocean mixed layer) and surface temperatures. In turn, these ocean
896 properties are strongly modulated by oceanic currents (for example, moderate to large mixed layer
897 depths are observed generally on the poleward side of the subtropical gyres). In contrast, the objective
898  global ocean biogeographic provinces proposed by Oliver and Irwin* were based upon clustering
899  temporal variability of chlorophyll concentration and surface temperatures, both measured from
900 satellite data. They combined a proxy for the intensity of primary productivity with water
901 temperature, therefore emphasizing regions similar in their temporal variability for both properties
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902  (which essentially corresponds to the seasonal cycle). None of these ocean partitionings directly
903  considered organismal community composition.

904 We tested whether genomic provinces were comparable with these partitionings by performing an
905 analysis of similarity (ANOSIM; Supplementary Fig. 4, insets; Methods). The four small size classes, O-
906 0.2 um, 0.22-1.6/3 um, 0.8-5 um, and 5-20 um (Supplementary Fig. 4a-d) were more consistent with
907 Longhurst BGCPs. In contrast, for the two larger size fractions 20-180 um and 180-2000 um, the three
908  biogeographical divisions were not strongly different within the ANOSIM (Supplementary Fig. 4e-f).
909 From an oceanographic point of view, plankton should be quasi-neutrally redistributed (i.e.,
910 homogenized) by currents and their biogeography should follow the structure of the main
911 recirculations, within a range of physiologically compatible temperatures. In this point of view, our
912 results are consistent with the large-scale geographic distributions found by Hellweger et al.* using a
913 neutral model.

914

915 Supplementary Information 4. Differences in genomic province sizes among organismal size

916  fractions

917

918 Globally, we obtained more numerous, smaller genomic provinces in the smaller size fractions and
919 fewer, larger genomic provinces in the larger size fractions (Supplementary Fig. 4, Supplementary Fig.
920 7). We observed a similar pattern using OTU data (Supplementary Fig. 5). Whereas smaller size
921 fractions generally lacked geographically widespread genomic provinces containing numerous Tara
922 Oceans samples, the two largest size fractions were both characterized by two very widespread
923  genomic provinces: F5 and F8 for the 180-2000 um size fraction, and E5 and E6 for the 20-180 um size
924  fraction. These large genomic provinces were latitudinally limited by the boundary between the
925 subtropics and subpolar regions, and spanned different oceanic basins. Notably, in the Southern
926 Hemisphere the subtropical gyres actually form a single supergyre®® and there are almost no metabolic
927 (mainly temperature) barriers between the northern and southern subtropical gyres (see
928 Supplementary Fig. 4), potentially explaining genomic provinces in the 20-180 um and 180-2000 um
929 size fraction that contain samples from the North and South Atlantic. For example, in the 180-2000
930 um size fraction, F5 mostly covered the North and South Atlantic Oceans and adjacent systems, and
931 F8 covered the Indo-Pacific low- and mid-latitudes. No clear correspondence existed with
932 biogeochemical patterns (e.g., nutrient ratios), except for the clusters coinciding with upwelling
933  systems (F3 for the California upwelling, F7 for the Chile-Peru upwelling and F2 for the Benguela
934  upwelling system) and for the samples collected at the deep chlorophyll maximum (DCM) in the Pacific
935  subtropical gyres (F5); this is consistent with the comparison of genomic provinces to previous
936 biographical divisions, in which the genomic provinces of smaller size fractions were more consistent
937  with Longhurst BGCPs, but those of larger size fractions were not (Supplementary Information 3). A
938 bimodal zooplankton species distribution (split into subtropical and subpolar communities, with
939  ubiquitous warm water species) was also detected by a recent study on copepod population dynamics
940 that used alternative approaches to analyze the same metagenomic dataset®® (see their Fig. 2). More
941 locally, within the North Atlantic (see also Supplementary Information 6), along the northern boundary
942 of the subtropical gyre, cold and warm copepod species overlapped because of cross-current
943 dispersal. Nonetheless, although both cold and warm species appeared to be able to travel long
944  distances, mixing among them was not sufficient to create a local genomic province in our data.

945 We interpret the difference in genomic province sizes between smaller and larger size fractions as
946  the result of various factors. Plankton smaller than 20 um (femto-, pico- and nanoplankton), which
947  represent most of the prokaryotic and eukaryotic phototrophs'®!®, are sensitive to a suite of
948 environmental factors (i.e., temperature®’, nutrients and trace elements?’; see also Supplementary
949 Fig. 7) and generally have a shorter life cycle, together leading to faster fluctuations in their relative
950 abundance in the communities we sampled. In contrast, larger plankton have longer life cycles and, if
951 theyare predators that are not strongly selective in their feeding, or are photosymbiotic hosts capable
952 of partnering with multiple different symbionts, may cope with local fluctuations in environmental
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953 conditions. Therefore, they should be affected primarily by large scale, mostly latitudinal, variations
954 in the environment, leading to larger genomic provinces, whereas smaller plankton are grouped into
955 smaller provinces more influenced by local environmental conditions. Overall, this difference in
956 biogeography suggests a size-based decoupling between smaller and larger plankton (which may also
957 extend to nekton such as tuna and billfish®), with implications for the structure and function of
958 oceanic food webs and other types of biotic interactions.

959

960  Supplementary Information 5. Genomic provinces as stable ecological continua

961

962 As plankton communities are transported by ocean currents, they change over time due to the
963  various processes that occur in the context of the seascape: variations in temperature, light and
964  nutrients (where changesin the latter may also be induced by plankton communities), intra- and inter-
965 individual and species biological interactions, and mixing with neighboring water masses. Thus, a
966  continuum of composition among nearby samples is expected as a natural consequence of community
967  turnover within the seascape over time. We observed the effects of continuous turnover in our
968 biogeographical analyses (Fig. 1a, Supplementary Fig. 4, Supplementary Fig. 5, Supplementary
969 Information 2) in which nearby samples often reflected gradual, but not complete changes in
970  community composition.

971 We measured the time window of transport by currents separating two samples during which the
972 changes in their community composition were maximally correlated with travel time, resulting in a
973  global average of Tmin < roughly 1.5 years. This represents the travel time during which predictable
974  continuous turnover occurs in our dataset. Notably, Tmin does not necessarily define the turnover rate
975 itself which depends on how strongly different seascape processes affect communities with differing
976  biological characteristics (see Supplementary Information 6).

977 The global ocean current system is composed of a series of large-scale main currents and associated
978 recirculations (which are also referred to as gyres). Therefore, we present the following hypothesis as
979 a potential explanation of our results: the average global timescale of 1.5 years is comparable to the
980  crossing time of an ocean gyre (i.e., the amount of time it takes a water parcel to travel from one side
981  of agyretothe other), e.g., to cross the North Atlantic basin while riding the Gulf Stream system. This
982  time scale of 1.5 years is probably an underestimate, since our sparse sampling did not cover all
983 current systems. Within different systems, the transport by main currents leads to stable, continuous
984 patterns of changes in community structure and nutrient concentrations, and also explains how
985  temporally stable genomic provinces can exist in the face of ocean circulation. Within each system we
986 have thus to expect that a community turnover is long enough to allow for this long range
987 predictability due to smooth, continuous changes. Significant heterogeneity in environmental
988 conditions among different circulation patterns means that moving from system to another (and
989 therefore, in our case here, beyond the 1.5 year timescale; Supplementary Fig. 9c¢-f) disrupts the
990 interlinked relationship among local seascape processes, leading to a global delimitation into separate
991 ecological continua among different gyre-scale current systems.

992

993  Supplementary Information 6. Community turnover in the North Atlantic

994

995 In order to characterize the impact of physical and biological processes on changes in metagenomic

996  composition during travel along currents, we focused on the well-known current systems crossing the
997 North Atlantic into the Mediterranean Sea (the Gulf Stream and other currents around the subtropical
998  gyre?®® 7L Supplementary Fig. 10a). Across this region, the piconanoplankton (0.8-5 um) were split
999 into three genomic provinces, C5, C8 and C3, each less than 5,000 km wide (~11 months of travel time;
1000  Supplementary Fig. 4c). In contrast, mesoplankton (180-2000 um) biogeography corresponded to a
1001 single province, F5, spanning from the Caribbean to Cyprus (> 9,700 km or ~18 months of travel time;
1002  Supplementary Fig. 4f; see also Supplementary Information 4). Metagenomic dissimilarity and Tmin
1003  were strongly correlated within the region (Spearman’s p between 0.44 and 0.86 depending on size
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1004  fraction, Supplementary Fig. 10b-e), which allowed us to explore the relationship of genomic province
1005 size, ocean transport and plankton community turnover over scales from months to years. We
1006  calculated metagenomic turnover times as e-folding times based on an exponential fit of
1007 metagenomic dissimilarity to Tmin (ranging from a few months to a few years, Methods). The
1008 metagenomic turnover time of smaller plankton (< 20 um) was approximately one year. In contrast,
1009 forthe larger size fractions, the metagenomic turnover time was approximately two years, suggesting
1010 that a lower turnover rate for larger plankton may explain their geographically larger genomic
1011 provinces.

1012 We note that our results on metagenomic turnover time appear different from a recently published
1013  study that also calculated turnover rates for plankton, which found faster rates for larger organisms2.
1014  This may be explained by two significant differences between our approach and theirs: first, their
1015 measurements of B-diversity were based on presence/absence (Jaccard) comparisons among either
1016  morphological species or OTUs, whereas our calculations of turnover time above were based on
1017 metagenomic sequences. As described above (Supplementary Information 1), there are significant
1018  differences in resolution between OTU-based and metagenomic data, and we would expect similar
1019 differences in resolution between organismal observation data and metagenomic sequences. In fact,
1020  due to these differences in resolution, our estimates of metagenomic time based on OTU rather than
1021 metagenomic data show a similar trend to those of Villarino et al.® (Supplementary Fig. 10f-i). Second,
1022  theirturnover rates were calculated separately for individual plankton groups (the 9 main groups were
1023 prokaryotes, coccolithophores, dinoflagellates, diatoms, all microbial eukaryotes, gelatinous
1024  zooplankton, mesozooplankton, macrozooplankton and myctophids), whereas our metagenomic data
1025  represent samples of the full plankton community within each size fraction. Among these, several
1026  groups (e.g., dinoflagellates or mesozooplankton) would be expected to be found across multiple Tara
1027 Oceans size fractions, blurring potential comparisons. Thus, our study and Villarino et al. calculated
1028 rates of change using broadly similar approaches, but based on very different underlying biological
1029  substrates.
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