

1 Variation in cell surface hydrophobicity among
2 *Cryptococcus neoformans* strains influences interactions
3 with amoeba

4 Raghav Vij¹✉, Conor J. Crawford^{1,2}, Arturo Casadevall¹

5 ¹Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg

6 School of Public Health, Baltimore

7 ²Centre for Synthesis and Chemical Biology, University College Dublin, Ireland

8 Running Head: Cell surface hydrophobicity of *C. neoformans* strains.

9 Corresponding author: Arturo Casadevall, acasade@jhu.edu

10

[✉]Current address: Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany

11 ABSTRACT

12 *Cryptococcus neoformans* and *Cryptococcus gattii* are pathogenic fungi that cause
13 significant morbidity and mortality. Cell surface hydrophobicity (CSH) is a biophysical
14 parameter that influences the adhesion of fungal cells or spores to biotic and abiotic
15 surfaces. *C. neoformans* is encased by polysaccharide capsule that is highly hydrophilic
16 and is a critical determinant of virulence. In this study, we report large differences in the
17 CSH of some *C. neoformans* and *C. gattii* strains. The capsular polysaccharides of *C.*
18 *neoformans* strains differ in repeating motifs, and therefore vary in the number of
19 hydroxyl groups, which along with higher-order structure of the capsule, may contribute
20 to the variation in hydrophobicity that we observed. For *C. neoformans*, CSH correlated
21 with phagocytosis by natural soil predator *Acanthamoeba castellani*. Furthermore,
22 capsular binding of the protective antibody (18B7), but not the non-protective (13F1)
23 antibody altered the CSH of *C. neoformans* strains. Variability in CSH could be an
24 important characteristic when comparing the biological properties of cryptococcal
25 strains.

26 IMPORTANCE

27 The interaction of a microbial cell with its environment is influenced by the biophysical
28 properties of a cell. The affinity of the cell surface for water, defined by the Cell Surface
29 Hydrophobicity (CSH), is a biophysical parameter that varied amongst different strains
30 of *Cryptococcus neoformans*. The CSH influenced the phagocytosis of the yeast by its
31 natural predator in the soil, Amoeba. Studying variation in biophysical properties like
32 CSH gives us insight into the dynamic host-predator interaction, and host-pathogen
33 interaction in a damage-response framework.

34 **KEYWORDS** Cell surface hydrophobicity (CSH), *Cryptococcus neoformans*,
35 *Cryptococcus gattii*, *Acanthamoeba castellanii*, capsular antibody, polysaccharide
36 capsule

37 **INTRODUCTION**

38 The encapsulated basidiomycetes that comprise of the *Cryptococcus* species complex
39 include several pathogenic species including *C. neoformans* and *C. gattii*. *Cryptococcus*
40 spp. have a worldwide geographic distribution and are unusual among fungal
41 pathogens, in that they have polysaccharide capsules that are essential for mammalian
42 virulence.

43 Human infection usually begins in the lung. Infectious propagules of *C. neoformans*, in
44 the form of spore or yeast, may be inhaled to cause a pulmonary infection that is usually
45 cleared in immunocompetent hosts, or becomes latent. Conditions that impair
46 immunity, such as HIV infection, are associated with disseminated disease, which
47 usually manifests clinically as a meningoencephalitis. Recent evidence suggests that the
48 nature of the infectious propagule has a significant effect on the outcome of the
49 infection, as spores from *C. neoformans* cause significantly higher fungal burden in the
50 brain of a murine model in comparison to small encapsulated yeast (1).

51 *C. neoformans* have been isolated from avian guano, soil, or arboreal sources. *C. gattii*
52 has been isolated from trees, soil, freshwater, and seawater. There are three serotypes of
53 *C. neoformans*, now referred to as *Cryptococcus neoformans* var. *neoformans*
54 (Serotype D), *Cryptococcus neoformans* var. *grubii* (Serotype A) and hybrid (Serotype
55 AD). Phylogenetic evidence suggests that they may be classified as separate species, *C.*
56 *neoformans*, *C. deneoformans* and hybrid, respectively (2). Interestingly, *C.*

57 *neoformans* var. *grubii* has been isolated from 63% of clinical samples collected world-
58 wide, followed by *C. neoformans* hybrid (6%), and *C. neoformans* var *neoformans* (5%)
59 (3, 4). The genomic diversity in the Cryptococcal species complex may contribute to
60 differences in the biophysical properties of cell surfaces within the *Cryptococcus* species
61 complex.

62 *C. neoformans* and *C. gattii* cells are surrounded by a polysaccharide capsule that can
63 dramatically vary in size during infection (5), and helps the pathogen evade the
64 mammalian immune system. Highly branched polysaccharides (6) radiate outward from
65 the cell wall, to form a dense matrix whose porosity increases with the distance from the
66 cell wall (7). The capsule is primarily composed of glucuronoxylomannan (GXM, 98%),
67 along with minor components galactoxylomannan and mannoproteins. GXM contains a
68 core repeating structure of a α -(1 \rightarrow 3)-mannose triad, with a β -(1 \rightarrow 2) glucuronic acid
69 branch on every third mannose (8). The capsule of different serotypes of *C. neoformans*
70 and *C. gattii* have distinguishable polysaccharide motifs characterized by a varied
71 degree of β -(1 \rightarrow 2) or β -(1 \rightarrow 4) xylose substitutions, and 6-*O*-acetyl substitutions along
72 the mannan backbone (9). Polysaccharides are highly enriched in hydroxyl groups and
73 form an extensive network of intramolecular and intermolecular hydrogen bonds, which
74 includes bonding with water molecules. Therefore, polysaccharides are intrinsically
75 hydrophilic molecules, which could provide an explanation for approximately 95% of
76 the capsule's weight (10). Branching and substitution of polysaccharides effects the
77 intra- and intermolecular hydrogen bonds and rigidity of the polymer, thereby effecting
78 the polysaccharide's ability to form hydrogen bonds with water, which results in variation
79 in hydrophobicity (11–13).

80 Natural variation in biophysical parameters of the microbial surface of the *Cryptococcus*
81 species complex has been previously described. Melanization, capsule induction, and
82 binding of capsular antibody alter the cell surface charge, which also varies by strain
83 (14). Chronological aging of the yeast and antibody binding alter the elasticity of the
84 polysaccharide capsule that surrounds the *C. neoformans* cell (15, 16).

85 CSH is a property of a microbial surface that reflects the affinity of components of the
86 microbe's cell surface for water and, is calculated by estimating the affinity of cell
87 surfaces to hydrophobic substances like hydrophobic columns, solvents, or polystyrene
88 beads (figure 1). The biological role of the CSH has been studied in bacteria such as
89 *Staphylococcus aureus* and some fungi, and has succinctly reviewed in (17). Previous
90 studies of *Candida albicans* have established the importance of CSH for the interaction
91 of the pathogen with the host tissue (18). Furthermore, strain-specific variation in CSH
92 of clinical isolates, and variation between species of *Candida* species complex have been
93 reported (19).

94 The biophysical properties of the infectious propagule of *C. neoformans* in the form of
95 yeast or spore influence the interaction of the yeast with its environment, and inside the
96 host during infection. For example, during infection, *C. neoformans* interacts with lung
97 epithelial cells, macrophages and can pass through the blood-brain barrier. In the
98 environment, *Cryptococcus* species complex is believed to interact with amoeba (20)
99 and, nematodes (21). Furthermore, hydrophobicity may influence the phagocytosis of
100 microbial cells or particles by Amoeba (22).

101 In this study, we report variation in CSH of *C. neoformans* and *C. gattii* strains using
102 two independent methods. Further, we observed that CSH correlated positively with

103 phagocytosis by *A. castellani*. Additionally, the higher order structure of the capsule is
104 affected by the different capsular polysaccharide motifs, that vary between serotypes of
105 *C. neoformans* and *C. gattii*, which may influence the CSH. We also found that binding
106 of protective, but not non-protective antibodies altered the hydrophobicity of *C.*
107 *neoformans* grown in capsule induction medium.

108 **RESULTS**

109 ***Cryptococcal* spp. manifest significant differences in CSH.**

110 Measuring CSH by the MATH and hydrophobic microsphere techniques (figure 1)
111 revealed considerable variability among cells of *C. neoformans* and *C. gattii* strains
112 cultured in Sabouraud Dextrose Broth (figure 2). By MATH assay, we found that
113 serotype D strains B3501 and JEC21 were significantly more hydrophobic than the
114 reference strain H99 (figure 2A). By the hydrophobic microsphere assay, we found that
115 all strains of serotype D for which CSH was estimated, including B3501, ATCC24067
116 and JEC21, were significantly more hydrophobic than the reference strain H99 (figure
117 2B). However, there was considerable strain-to-strain variation and no pattern emerged
118 regarding differences between serotypes or species, except for the notable finding that
119 the most strains manifesting highest CSH were *C. neoformans* serotype D.

120 ***C. neoformans* capsule and CSH.**

121 The capsule is highly hydrophilic and is primarily composed of water (10). Hence, we
122 sought to ascertain its contribution to CSH in *C. neoformans* strain H99 (serotype A) by
123 comparing encapsulated H99, and non-encapsulated strain *CAP59*. To our surprise, we
124 observed no major difference in CSH between H99 and *CAP59* cells grown in

125 Sabouraud-dextrose broth, by the MATH assay ($p = 0.9988$, figure 2A, table S1).
126 However when grown in capsule inducing minimum medium (23), the non-
127 encapsulated strain bound more hydrophobic beads than the encapsulated strains
128 (figure 2B). Next, we compared the CSH of *C. neoformans* strain B3501 (serotype D) to
129 the un-encapsulated strain *CAP67*, which has a mutation in *CAP59* gene of B3501 strain
130 (24). We observed a significant decrease in the CSH by MATH assay ($p = 0.0078$, figure
131 2A, table S1).

132 Different strains and serotypes of *C. neoformans* and *C. gattii* have different dominant
133 carbohydrate motifs in their capsule (9) that may influence the experimentally observed
134 variation in CSH. To test this hypothesis, we used *in silico* method described by
135 Mannhold *et. al* (25), to calculate and compare the lipophilicity ($\log P$) of the four
136 dominant GXM motifs. We observed the following trend in the predicted lipophilicity of
137 GXM carbohydrate motifs; M4 (dominant in serotype C, $\log P 2.12$) > M3 (dominant in
138 serotype B, $\log P 2.01$) > M2 (dominant in serotype A, $\log P 1.9$) > M1 (dominant in
139 serotype D, $\log P 1.79$).

140 Based on the rationale that polysaccharides enriched in greater number of hydroxyl
141 groups would have higher hydrophilicity, we counted the number of hydroxyl groups of
142 each dominant GXM motif (figure 3). The M4 motif (dominant in serotype C) contained
143 the highest number of hydroxyl groups, 21, followed by 19 hydroxyl groups in M3
144 (dominant in serotype B), 17 hydroxyl groups in M2 (dominant in serotype A) and 15
145 hydroxyl groups in M1 (dominant in serotype D).

146 **CSH of unopsonized *C. neoformans* correlates with phagocytosis by *A.***
147 ***castellani***

148 To test whether CSH influences phagocytosis by soil predators like the amoeba, we
149 incubated fungal and protozoal cells and estimated the phagocytosis index. We found a
150 positive and linear correlation between CSH of *C. neoformans* strains and phagocytosis
151 index of *C. neoformans* strains by *A. castellanii* (figure 4).

152 **Effect of antibody binding on CSH**

153 Previous studies have demonstrated that capsule antibody binding alters capsule
154 structure and changes the surface charge of *C. neoformans* (14, 15). This led us to
155 investigate the effect of binding of capsular antibodies to *C. neoformans* on the CSH. We
156 demonstrated that binding of capsular antibody 18B7 (26) increases CSH in a
157 concentration-dependent manner, while binding of non-protective antibody 13F1 has no
158 significant effect on the CSH of *C. neoformans* cells grown in the capsule induction
159 medium (figure 5).

160

161 **DISCUSSION**

162 In this study, we measured the CSH of *C. neoformans* and found considerable inter-
163 strain variation. When CSH was estimated by hydrophobic microsphere assay, *C.*
164 *neoformans* serotype D strains were likely to be more hydrophobic than *C. neoformans*
165 serotype A strain, with the caveat that we analyzed a relatively small set of strains from
166 each serotype. We also demonstrated that CSH is a biophysical parameter that may
167 influence the interaction of yeast cells with the environmental predator *Acanthamoeba*
168 *castellani*. Finally, we demonstrated that the binding of a protective capsular antibody
169 alters the CSH.

170 An earlier study suggested that capsule and protective anti-sera binding influenced
171 hydrophobicity of *C. neoformans* (27). They reported no correlation between CSH and
172 phagocytosis of *C. neoformans* by mouse peritoneal macrophages (27). The difference
173 between our observations and the prior report may be attributed to the differences in
174 methodologies. In the prior study, hydrophobicity was estimated from the number of
175 cells that bound to hydrophobic columns. The cells were fixed with formalin, which may
176 have altered surface properties of the yeast. In this study, we have used MATH assay
177 that relies on the interaction of microbe with hydrophobic solvents to calculate CSH
178 (figure 1A) (28). In addition, we have used hydrophobic microsphere assay that
179 quantitates the interaction between hydrophobic beads and the yeast, visualized under a
180 bright field microscope, to estimate the CSH (figure 1B) (18).

181 *C. neoformans* polysaccharide, like GXM, are essential components required in the
182 formation of microbial communities called biofilms that are protective for the fungi
183 (29). *C. neoformans* biofilms have been reported on medical devices (30, 31). Biofilm

184 associated cells have been associated with increased tolerance against antifungal drugs
185 and phagocytic cells, as they upregulate proteins associated with host defense (32–34).
186 In-vivo, *C. neoformans* form biofilm-like structures called cryptococcomas that could
187 play a role in its neurotropism (35). The surface property of cells may affect the
188 aggregation of microbial communities in biofilms. Interestingly, ATCC24067 and B3501
189 strains, that are highly hydrophobic also form biofilm more easily when compared to
190 H99 strain that is relatively less hydrophobic (figure 1) (32, 33). A similar correlation
191 between the formation of biofilm and CSH was observed a in *Candida* spp. (19, 36, 37)
192 and in bacteria (38). Flocculation, another multicellular phenotype observed in yeasts,
193 has been observed in *C. neoformans* cells during growth in certain medium (39), and
194 could be caused by changes in CSH, as reported for brewer's yeast (40).

195 Amoebas are natural predators of *Cryptococcus* species (20, 41) and have emerged as a
196 powerful tool for studying mechanism of intracellular pathogenesis and evolution of
197 virulence (42, 43). A growing body of evidence suggests that virulence traits have
198 emerged in environmental fungi, including *Cryptococcus* species, because of the
199 selection pressure that results from fungi-amoeba interaction (44). Our finding that the
200 more hydrophobic cryptococcal strains were more readily phagocytosed is congruent
201 with the observation that Amoeba can phagocytose hydrophobic particles (22), although
202 these mechanisms are not well understood. There is a remarkable correspondence
203 between *C. neoformans* virulence traits that influence phagocytosis and enable survival
204 of the fungi in *A. castellanii* and in human macrophages (42). For instance, the capsule
205 of *C. neoformans* masks cell wall components that are recognized by innate immune
206 receptors (45), and the absence of capsule leads to poor survival of *C. neoformans*

207 incubated with *A. castellanii* (42). In-vitro studies of macrophage and *C. neoformans*
208 interaction usually require opsonins such as capsular antibodies, and complement (46,
209 47) for phagocytosis by innate immune cells. As a result, what is known about the
210 immune response and phagocytosis of *C. neoformans* is greatly influenced by our
211 understanding of host cell receptor-opsonization agent interactions. Studying the effect
212 of CSH on phagocytosis in amoeba may give insights into factors independent of
213 opsonin-receptor interaction, which may influence phagocytosis in macrophages.

214 Murine antibodies that recognize capsular epitopes of *C. neoformans* can confer passive
215 protection to the host and enhance macrophage activity (48, 49). In addition to
216 facilitating phagocytosis of the yeast, the murine IgG antibody 18B7 (26) alters capsule
217 stiffness and impairs cellular replication of the yeast (15), significantly alters the cell
218 surface charge (14) and has a catalytic activity that breaks down the capsule (50). In this
219 study, we report that mAb 18B7 binding significantly increases the hydrophobicity of
220 *Cryptococcal* cell surface in a concentration-dependent manner, while non-protective
221 antibody, IgM 13F1, did not alter the CSH. We may attribute the differential effect of
222 changes in CSH induced by mAb 13F1 and 18B7 to the pattern of mAb binding, since
223 mAb18B7 binds near the surface in an annular pattern (15, 26, 51), while mAb 13F1
224 binds throughout the capsule in a punctate pattern (52, 53). There is precedence for our
225 observation in the encapsulated bacteria, *Klebsiella aerogenes*, where the pattern of
226 diffusion of some mAbs through the polysaccharide capsule has been shown to influence
227 the cell surface hydrophobicity (54, 55).

228 A surprising result in our study was that some *C. neoformans* strains manifest a
229 considerably higher CSH relative to others, despite being surrounded by a hydrophilic

230 capsule. The origin and mechanism for variability in CSH in these strains is not
231 understood. Glycans are intrinsically hydrophilic molecules. Lipophilicity for glycans
232 may be described by the partition coefficient (P), that is quantified as the distribution of
233 a compound between two immiscible solvents, like water and octanol (56). While prior
234 studies have compared the lipophilicity for monosaccharides, these efforts are not
235 standardized in the field (13). For small molecules, $\log P$ can be accurately predicted by
236 an equation proposed by Mannhold *et al.*, although the accuracy of the prediction
237 decreases with an increase in non-hydrogen atoms (25). In this study we used this
238 calculation to predict and compare the lipophilicity of capsular carbohydrate motifs
239 (25), with the caveat that the suitability of these equations for molecules larger than
240 monosaccharides is uncertain. The predicted calculated lipophilicity of GXM
241 oligosaccharides motifs was positive, suggesting that the polymers would preferentially
242 partition into an organic solvent. The M1 motif, which is dominant on the *C.*
243 *neoformans* serotype D strains, was found to be less lipophilic in comparison to M3 and
244 M4 motifs that are dominant in *C. gattii* serotype B and *C. neoformans* serotype A
245 strains respectively (figure 3). This goes against our experimental observation that some
246 *C. neoformans* serotype D strains were more hydrophobic than serotype B and A strains
247 (figure 2) and implies that simple calculations of lipophilicity do not explain our
248 findings. Instead, we suspect that discrepancy stems from higher-order polysaccharide
249 structures that could present different molecular surfaces in their interaction with the
250 solvent.

251 The dynamic nature of polysaccharides makes it challenging to obtain defined
252 structures, and to relate the structure of glycans with their activity and biological roles.

253 Yet we know that the flexibility of the oligosaccharide polymer is influenced by intra-
254 and intermolecular hydrogen bonds. Theoretical predictions suggest that α -(1 \rightarrow 3)-
255 mannan form weak intermolecular hydrogen bonds, resulting in a polymer with a
256 flexible structure, that allows for many hydroxyl groups to interact with water (11). The
257 primary component in the capsule of *C. neoformans*, is built upon repeating α -(1 \rightarrow 3)-
258 mannose triads, which would contribute to the observation that 95% of capsule's weight
259 comes from water (10). We also found that the number of hydroxyl groups in each motif
260 (figure 3), was inversely related to the observed CSH. The dominant motif M1 in the
261 capsule of *C. neoformans* serotype D had fewer hydroxyl groups and the strains of
262 serotype D tend to have higher CSH, when compared to the number hydroxyl group
263 dominant motifs M2 and M3 of serotype A and B, whose strains had comparatively
264 lower CSH. Fewer hydroxyl groups result in fewer opportunities for hydrogen bonding
265 between the polysaccharide and water, which could translate into less hydrophilic
266 structures with higher CSH.

267 It is also important to note that the motifs that enrich the capsule may differ between
268 strains of the same serotype (9). For example, *C. neoformans* serotype D strain 24067 a
269 capsular polysaccharide chemotyping suggests that M1 motif dominates 100% of the
270 strain, while *C. neoformans* serotype D strain B3502 is composed of the dominant M1
271 (52%) motif, and M6 (48%) motif (9). This may contribute to the variation of CSH
272 within strains grouped in serotype D (figure 2, Table S1).

273 Lipophilic structures have been reported in the capsule, which might extend to the
274 surface and influence the hydrophobicity of the cell surface (11, 57). In addition, the
275 composition of the cell wall, in particular the chitin-chitosan content in the cell wall,

276 that is regulated by CDA genes (58), may influence the hydrophobicity and adhesion of
277 the yeast to various surface (59), a phenomenon that has also been reported in the plant
278 pathogenic fungi *Magnaporthe orzaye* (60). The chemical structures responsible for the
279 high CSH of some strains presents new puzzle for future study.

280 In summary, we report that CSH of *Cryptococcus* species can differ significantly
281 depending on the strain. We have also demonstrated the correlation of the biophysical
282 parameter CSH, with the phagocytosis by *A. castellanii* and that protective antibodies
283 that bind to the capsule of *C. neoformans* may influence the hydrophobicity of *C.*
284 *neoformans*. The finding that *C. neoformans* strain differ in CSH, and that changes to
285 this cell-surface property correlates with biological properties, suggests the investigation
286 of how this parameter is established and maintained could provide new insights into
287 capsular structure.

288

289 **MATERIALS AND METHODS**

290 **Strains and culture of *C. neoformans* and *C. gattii***

291 *Cryptococcus neoformans* and *gattii* strains (Table 1) stored as frozen stocks at -80 °C
292 were streaked onto Sabouraud Agar plates and incubated at 30 °C for 48 hours. The
293 plates were stored at 4 °C for use up to 1 week. Multiple colonies were selected and
294 inoculated into 5 ml of liquid media, Sabouraud broth and incubated at 30 °C with
295 shaking. For capsule induction, 10⁶ cells/ ml were washed 2X in PBS and inoculated into
296 MM (10 mM MgSO₄, 29.3 mM KH₂PO₄, 13 mM glycine, 3 µM thiamine-HCl, and
297 15 mM dextrose, with pH adjusted to 5.5).

298 **Antibody incubation**

299 *C. neoformans* (H99) grown in MM were washed 2X in PBS. Protective and non-
300 protective capsular antibodies, 18B7, 12A1, and 13F1 (61) respectively, were incubated
301 for 1 hour at 30 °C shaking. The CSH% was determined by MATH and microsphere
302 assays, as detailed below.

303 **Estimation of CSH by MATH**

304 CSH was estimated by MATH assay described in (28). Yeast cultures were washed 2X in
305 PBS and resuspended in 3 mL of PBS at an estimated Initial OD 0.2-0.4 recorded as A₀.
306 0.4 ml of n-Hexadecane was added, and the mixture was vortexed for 30 s and
307 incubated at 30 °C to allow the layers to separate. Final OD (A₁) of the aqueous layer was
308 recorded estimated as an average of 3 technical replicates in a 96 well plate read by
309 EMax Plus Microplate Reader (Molecular Devices). CSH% was estimated as [1 –
310 (A₀/A₁)] × 100.

311 **Estimation of CSH by hydrophobic microsphere assay**

312 CSH of *C. neoformans* and *C. gattii* were estimated method detailed in (18) by
313 resuspending 100 μ L of 2×10^6 cells/ ml with 9.02×10^8 0.8 μ m green hydrophobic
314 beads (Bang Laboratories) in 2 mL of sodium phosphate buffer (0.05 M, pH 7.2) in
315 clean glass tubes. After equilibration at RT for 2 minutes, the mixture was vortexed
316 vigorously for 30 s. One hundred cells were counted, and the percentage of cells having
317 >3 attached microspheres was considered as the CSH% value.

318 ***Acanthamoeba castellanii* culture and phagocytosis index**

319 *Acanthamoeba castellanii* strain 30234 was obtained from the American Type Culture
320 Collection (ATCC). Cultures were maintained in PYG broth (ATCC medium 712) at 25°C
321 according to instructions from ATCC.

322 ***Acanthamoeba castellanii* phagocytosis index**

323 The phagocytosis index was estimated as detailed in (62) with minor modifications.
324 Briefly, 5×10^5 cells/ ml cells of *A. castellanii* were incubated in 35 mm No. 1.5 coverslip
325 MatTek dishes with DPBS (Ca²⁺ and Mg²⁺) for 3-4 hours. *C. neoformans* or *C. gattii*
326 strains were incubated with 10 μ g/mL Uvitex (fungal cell wall dye) and inoculated at
327 MOI 1 and incubated for 2 hours at 25°C. The cells were imaged using Zeiss Axiovert
328 200M inverted microscope with 20 \times phase objective. Phagocytosis index was estimated
329 by counting the number of *C. neoformans* or *C. gattii* engulfed per 100 amoeboid cells.

330 **Estimation of lipophilicity and number of hydroxyl groups in carbohydrate
331 motifs**

332 Lipophilicity of the carbohydrate motif dominant in the capsule of *C. neoformans*
333 serotype was estimated by method described by Mannhold *et al.* (25), as the log of the
334 partition coefficient (P).

335
$$\log P = 1.46(\pm 0.02) + 0.11(\pm 0.001)NC - 0.11(\pm 0.001)NHET$$

336 Where NC is the number of carbon atoms in a molecule and NHET is the number of
337 hetero atoms.

338 The number of hydroxyl groups in each motif of *C. neoformans* capsule was counted
339 manually, as proxy for the number of hydrogen bond donor and acceptor atoms.

340 **ACKNOWLEDGMENTS**

341 A.C. was supported by grant 5R01HL059842. C.J.C. was funded by Irish Research
342 Council postgraduate award (GOIPG/2016/998)

343 R.V. designed and conducted the experiments, analyzed the data, and wrote the
344 manuscript. C.J.C. performed computation and theoretical analysis and wrote the
345 manuscript. A.C. contributed to the experimental design, supervised the experiments,
346 and edited and wrote parts of the manuscript. Special thanks to Radames JB Cordero for
347 valuable discussions of experimental design and edits to the manuscript, and to Daniel
348 Quinn Smith for the valuable contribution of editing the figures.

349

350 **REFERENCES**

351 1. Walsh NM, Botts MR, McDermott AJ, Ortiz SC, Wüthrich M, Klein B, Hull CM. 2019.
352 Infectious particle identity determines dissemination and disease outcome for the inhaled
353 human fungal pathogen *Cryptococcus*. *PLOS Pathog* 15:e1007777.

354 2. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, Bicanic
355 TA, Castañeda E, Chang YC, Chen J, Cogliati M, Dromer F, Ellis D, Filler SG, Fisher MC,
356 Harrison TS, Holland SM, Kohno S, Kronstad JW, Lazera M, Levitz SM, Lionakis MS, May
357 RC, Ngamskulrungroj P, Pappas PG, Perfect JR, Rickerts V, Sorrell TC, Walsh TJ,
358 Williamson PR, Xu J, Zelazny AM, Casadevall A. 2017. The Case for Adopting the “Species
359 Complex” Nomenclature for the Etiologic Agents of Cryptococcosis. *mSphere* 2:e00357-16.

360 3. Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A, Bahn Y-S. 2014.
361 *Cryptococcus neoformans* and *Cryptococcus gattii*, the Etiologic Agents of Cryptococcosis.
362 *Cold Spring Harb Perspect Med* 4.

363 4. Meyer W, Gilgado F, Ngamskulrungroj P, Trilles L, Hagen F, Castañeda E, Boekhout T.
364 2011. Molecular Typing of the *Cryptococcus neoformans*/*Cryptococcus gattii* Species
365 Complex. *Cryptococcus* 327–357.

366 5. Charlier C, Chrétien F, Baudrimont M, Mordelet E, Lortholary O, Dromer F. 2005. Capsule
367 Structure Changes Associated with *Cryptococcus neoformans* Crossing of the Blood-Brain
368 Barrier. *Am J Pathol* 166:421–432.

369 6. Cordero RJB, Frases S, Guimarães AJ, Rivera J, Casadevall A. 2011. Evidence for
370 branching in cryptococcal capsular polysaccharides and consequences on its biological
371 activity. *Mol Microbiol* 79:1101–1117.

372 7. Gates MA, Thorkildson P, Kozel TR. 2004. Molecular architecture of the *Cryptococcus*
373 *neoformans* capsule. *Mol Microbiol* 52:13–24.

374 8. Cherniak R, Morris LC, Belay T, Spitzer ED, Casadevall A. 1995. Variation in the structure
375 of glucuronoxylomannan in isolates from patients with recurrent cryptococcal meningitis.
376 *Infect Immun* 63:1899–1905.

377 9. Cherniak R, Valafar H, Morris LC, Valafar F. 1998. *Cryptococcus neoformans* Chemotyping
378 by Quantitative Analysis of ^1H Nuclear Magnetic Resonance Spectra of
379 Glucuronoxylomannans with a Computer-Simulated Artificial Neural Network. *Clin Diagn
380 Lab Immunol* 5:146–159.

381 10. Maxson ME, Cook E, Casadevall A, Zaragoza O. 2007. The volume and hydration of the
382 *Cryptococcus neoformans* polysaccharide capsule. *Fungal Genet Biol FG B* 44:180–186.

383 11. Almond A. 2005. Towards understanding the interaction between oligosaccharides and
384 water molecules. *Carbohydr Res* 340:907–920.

385 12. Yu Y, Tyrikos Ergas T, Zhu Y, Fittolani G, Bordoni V, Singhal A, Fair RJ, Grafmüller A,
386 Seeberger PH, Delbianco M. 2019. Systematic Hydrogen-Bond Manipulations To Establish
387 Polysaccharide Structure–Property Correlations. *Angew Chem* 131:13261–13266.

388 13. Fu DT, O'Neill RA. 1995. Monosaccharide Composition Analysis of Oligosaccharides and
389 Glycoproteins by High-Performance Liquid Chromatography. *Anal Biochem* 227:377–384.

390 14. Nosanchuk JD, Casadevall A. 1997. Cellular charge of *Cryptococcus neoformans*:
391 contributions from the capsular polysaccharide, melanin, and monoclonal antibody
392 binding. *Infect Immun* 65:1836–1841.

393 15. Cordero RJB, Pontes B, Frases S, Nakouzi AS, Nimrichter L, Rodrigues ML, Viana NB,
394 Casadevall A. 2013. Antibody Binding to *Cryptococcus neoformans* Impairs Budding by
395 Altering Capsular Mechanical Properties. *J Immunol Author Choice* 190:317–323.

396 16. Cordero RJB, Pontes B, Guimarães AJ, Martinez LR, Rivera J, Fries BC, Nimrichter L,
397 Rodrigues ML, Viana NB, Casadevall A. 2011. Chronological Aging Is Associated with
398 Biophysical and Chemical Changes in the Capsule of *Cryptococcus neoformans*. *Infect*
399 *Immun* 79:4990–5000.

400 17. Krasowska A, Sigler K. 2014. How microorganisms use hydrophobicity and what does this
401 mean for human needs? *Front Cell Infect Microbiol* 4.

402 18. Hazen KC, Brawner DL, Riesselman MH, Jutila MA, Cutler JE. 1991. Differential
403 adherence of hydrophobic and hydrophilic *Candida albicans* yeast cells to mouse tissues.
404 *Infect Immun* 59:907–912.

405 19. Borecká-Melkusová S, Bujdáková H. 2008. Variation of cell surface hydrophobicity and
406 biofilm formation among genotypes of *Candida albicans* and *Candida dubliniensis* under
407 antifungal treatment. *Can J Microbiol* 54:718–724.

408 20. Castellani A. 1930. An amoeba growing in cultures of a yeast. *J Trop Med Hyg* 33:188–191.

409 21. Mylonakis E, Ausubel FM, Perfect JR, Heitman J, Calderwood SB. 2002. Killing of
410 *Caenorhabditis elegans* by *Cryptococcus neoformans* as a model of yeast pathogenesis.
411 *Proc Natl Acad Sci* 99:15675–15680.

412 22. Vogel G, Thilo L, Schwarz H, Steinhart R. 1980. Mechanism of phagocytosis in
413 *dictyostelium discoideum*: phagocytosis is mediated by different recognition sites as
414 disclosed by mutants with altered phagocytotic properties. *J Cell Biol* 86:456–465.

415 23. Zaragoza O, Casadevall A. 2004. Experimental modulation of capsule size in *Cryptococcus*
416 *neoformans*. *Biol Proced Online* 6:10–15.

417 24. Vaishnav VV, Bacon BE, O'Neill M, Cherniak R. 1998. Structural characterization of the
418 galactoxylomannan of *Cryptococcus neoformans* Cap67. *Carbohydr Res* 306:315–330.

419 25. Mannhold R, Poda GI, Ostermann C, Tetko IV. 2009. Calculation of Molecular
420 Lipophilicity: State-of-the-Art and Comparison of LogP Methods on more than 96,000
421 Compounds. *J Pharm Sci* 98:861–893.

422 26. Casadevall A, Cleare W, Feldmesser M, Glatman-Freedman A, Goldman DL, Kozel TR,
423 Lendvai N, Mukherjee J, Pirofski LA, Rivera J, Rosas AL, Scharff MD, Valadon P, Westin
424 K, Zhong Z. 1998. Characterization of a murine monoclonal antibody to *Cryptococcus*
425 *neoformans* polysaccharide that is a candidate for human therapeutic studies. *Antimicrob*
426 *Agents Chemother* 42:1437–1446.

427 27. Kozel TR. 1983. Dissociation of a hydrophobic surface from phagocytosis of encapsulated
428 and non-encapsulated cryptococcus *neoformans*. *Infect Immun* 39:1214–1219.

429 28. Rosenberg M. 1984. Bacterial adherence to hydrocarbons: a useful technique for studying
430 cell surface hydrophobicity. *FEMS Microbiol Lett* 22:289–295.

431 29. Martinez LR, Casadevall A. 2007. *Cryptococcus neoformans* Biofilm Formation Depends
432 on Surface Support and Carbon Source and Reduces Fungal Cell Susceptibility to Heat,
433 Cold, and UV Light. *Appl Environ Microbiol* 73:4592–4601.

434 30. Banerjee U, Gupta K, Venugopal P. 1997. A case of prosthetic valve endocarditis caused by
435 *Cryptococcus neoformans* var. *neoformans*. *J Med Vet Mycol Bi-Mon Publ Int Soc Hum*
436 *Anim Mycol* 35:139–141.

437 31. Walsh TJ, Schlegel R, Moody MM, Costerton JW, Salcman M. 1986. Ventriculoatrial shunt
438 infection due to *Cryptococcus neoformans*: an ultrastructural and quantitative
439 microbiological study. *Neurosurgery* 18:373–375.

440 32. Martinez LR, Casadevall A. 2005. Specific antibody can prevent fungal biofilm formation
441 and this effect correlates with protective efficacy. *Infect Immun* 73:6350–6362.

442 33. Martinez LR, Casadevall A. 2006. Susceptibility of *Cryptococcus neoformans* biofilms to
443 antifungal agents in vitro. *Antimicrob Agents Chemother* 50:1021–1033.

444 34. Santi L, Beys-da-Silva WO, Berger M, Calzolari D, Guimarães JA, Moresco JJ, Yates JR.
445 2014. Proteomic profile of *Cryptococcus neoformans* biofilm reveals changes in metabolic
446 processes. *J Proteome Res* 13:1545–1559.

447 35. Aslanyan L, Sanchez DA, Valdebenito S, Eugenin EA, Ramos RL, Martinez LR. 2017. The
448 Crucial Role of Biofilms in *Cryptococcus neoformans* Survival within Macrophages and
449 Colonization of the Central Nervous System. *J Fungi* 3.

450 36. Bujdáková H, Didiášová M, Drahovská H, Černáková L. 2013. Role of cell surface
451 hydrophobicity in *Candida albicans* biofilm. *Cent Eur J Biol* 8:259–262.

452 37. Silva-Dias A, Miranda IM, Branco J, Monteiro-Soares M, Pina-Vaz C, Rodrigues AG. 2015.
453 Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic
454 susceptibility: relationship among *Candida* spp. *Front Microbiol* 6.

455 38. Mirani ZA, Fatima A, Urooj S, Aziz M, Khan MN, Abbas T. 2018. Relationship of cell
456 surface hydrophobicity with biofilm formation and growth rate: A study on *Pseudomonas*
457 *aeruginosa*, *Staphylococcus aureus*, and *Escherichia coli*. *Iran J Basic Med Sci* 21:760–769.

458 39. Li L, Zaragoza O, Casadevall A, Fries BC. 2006. Characterization of a flocculation-like
459 phenotype in *Cryptococcus neoformans* and its effects on pathogenesis. *Cell Microbiol*
460 8:1730–1739.

461 40. Smit G, Straver MH, Lugtenberg BJ, Kijne JW. 1992. Flocculence of *Saccharomyces*
462 *cerevisiae* cells is induced by nutrient limitation, with cell surface hydrophobicity as a
463 major determinant. *Appl Environ Microbiol* 58:3709–3714.

464 41. Castellani A. 1955. [Phagocytic and destructive action of *Hartmanella castellanii* (Amoeba
465 *castellanii*) on pathogenic encapsulated yeast-like fungi *Torulopsis neoformans*
466 (*Cryptococcus neoformans*)]. *Ann Inst Pasteur* 89:1–7.

467 42. Steenbergen JN, Shuman HA, Casadevall A. 2001. *Cryptococcus neoformans* interactions
468 with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy
469 in macrophages. *Proc Natl Acad Sci* 98:15245–15250.

470 43. Rizzo J, Albuquerque PC, Wolf JM, Nascimento R, Pereira MD, Nosanchuk JD, Rodrigues
471 ML. 2017. Analysis of multiple components involved in the interaction between
472 *Cryptococcus neoformans* and *Acanthamoeba castellanii*. *Fungal Biol* 121:602–614.

473 44. Casadevall A, Fu MS, Guimaraes AJ, Albuquerque P. 2019. The ‘Amoeboid Predator-
474 Fungal Animal Virulence’ Hypothesis. *J Fungi* 5:10.

475 45. O’Meara TR, Alspaugh JA. 2012. The *Cryptococcus neoformans* capsule: a sword and a
476 shield. *Clin Microbiol Rev* 25:387–408.

477 46. Kelly RM, Chen J, Yauch LE, Levitz SM. 2005. Opsonic Requirements for Dendritic Cell-
478 Mediated Responses to *Cryptococcus neoformans*. *Infect Immun* 73:592–598.

479 47. Zhong Z, Pirofski LA. 1996. Opsonization of *Cryptococcus neoformans* by human
480 anticyptococcal glucuronoxylomannan antibodies. *Infect Immun* 64:3446–3450.

481 48. Mukherjee J, Scharff MD, Casadevall A. 1992. Protective murine monoclonal antibodies to
482 *Cryptococcus neoformans*. *Infect Immun* 60:4534–4541.

483 49. Mukherjee S, Lee SC, Casadevall A. 1995. Antibodies to *Cryptococcus neoformans*
484 glucuronoxylomannan enhance antifungal activity of murine macrophages. *Infect Immun*
485 63:573–579.

486 50. Bowen A, Wear MP, Cordero RJB, Oscarson S, Casadevall A. 2017. A Monoclonal Antibody
487 to *Cryptococcus neoformans* Glucuronoxylomannan Manifests Hydrolytic Activity for Both
488 Peptides and Polysaccharides. *J Biol Chem* 292:417–434.

489 51. Larsen RA, Pappas PG, Perfect J, Aberg JA, Casadevall A, Cloud GA, James R, Filler S,
490 Dismukes WE. 2005. Phase I evaluation of the safety and pharmacokinetics of murine-
491 derived anticyptococcal antibody 18B7 in subjects with treated cryptococcal meningitis.
492 *Antimicrob Agents Chemother* 49:952–958.

493 52. Feldmesser M, Rivera J, Kress Y, Kozel TR, Casadevall A. 2000. Antibody Interactions with
494 the Capsule of *Cryptococcus neoformans*. *Infect Immun* 68:3642–3650.

495 53. MacGill TC, MacGill RS, Casadevall A, Kozel TR. 2000. Biological Correlates of Capsular
496 (Quellung) Reactions of *Cryptococcus neoformans*. *J Immunol* 164:4835–4842.

497 54. Held TK, Jendrike NRM, Rukavina T, Podschun R, Trautmann M. 2000. Binding to and
498 Opsonophagocytic Activity of O-Antigen-Specific Monoclonal Antibodies against
499 Encapsulated and Nonencapsulated *Klebsiella pneumoniae* Serotype O1 Strains. *Infect*
500 *Immun* 68:2402–2409.

501 55. Williams P, Lambert PA, Brown MRW. 1988. Penetration of immunoglobulins through the
502 Klebsiella capsule and their effect on cell-surface hydrophobicity. *J Med Microbiol* 26:29–
503 35.

504 56. Chiou CT, Freed VH, Schmedding DW, Kohnert RL. 1977. Partition coefficient and
505 bioaccumulation of selected organic chemicals. *Environ Sci Technol* 11:475–478.

506 57. Nicola AM, Frases S, Casadevall A. 2009. Lipophilic dye staining of *Cryptococcus*
507 *neoformans* extracellular vesicles and capsule. *Eukaryot Cell* 8:1373–1380.

508 58. Upadhyay R, Baker LG, Lam WC, Specht CA, Donlin MJ, Lodge JK. 2018. *Cryptococcus*
509 *neoformans* Cda1 and Its Chitin Deacetylase Activity Are Required for Fungal
510 Pathogenesis. *mBio* 9.

511 59. Teixeira PAC, Penha LL, Mendonça-Previato L, Previato JO. 2014. Mannoprotein MP84
512 mediates the adhesion of *Cryptococcus neoformans* to epithelial lung cells. *Front Cell*
513 *Infect Microbiol* 4.

514 60. Geoghegan IA, Gurr SJ. 2016. Chitosan Mediates Germling Adhesion in *Magnaporthe*
515 *oryzae* and Is Required for Surface Sensing and Germling Morphogenesis. *PLOS Pathog*
516 12:e1005703.

517 61. Mukherjee J, Casadevall A, Scharff MD. 1993. Molecular characterization of the humoral
518 responses to *Cryptococcus neoformans* infection and glucuronoxylomannan-tetanus toxoid
519 conjugate immunization. *J Exp Med* 177:1105–1116.

520 62. Fu MS, Casadevall A. 2018. Divalent Metal Cations Potentiate the Predatory Capacity of
521 Amoeba for *Cryptococcus neoformans*. *Appl Environ Microbiol* 84:eo1717-17.

522 63. Steenbergen JN, Casadevall A. 2000. Prevalence of *Cryptococcus neoformans* var.
523 *neoformans* (Serotype D) and *Cryptococcus neoformans* var. *grubii* (Serotype A) Isolates
524 in New York City. *J Clin Microbiol* 38:1974–1976.

525 64. Cleare W, Casadevall A. 1998. The Different Binding Patterns of Two Immunoglobulin M
526 Monoclonal Antibodies to *Cryptococcus neoformans* Serotype A and D Strains Correlate
527 with Serotype Classification and Differences in Functional Assays. *Clin Diagn Lab*
528 *Immunol* 5:125–129.

529 65. Heitman J, Allen B, Alspaugh JA, Kwon-Chung KJ. 1999. On the Origins of Congenic
530 MAT α and MAT α Strains of the Pathogenic Yeast *Cryptococcus neoformans*. *Fungal Genet*
531 *Biol* 28:1–5.

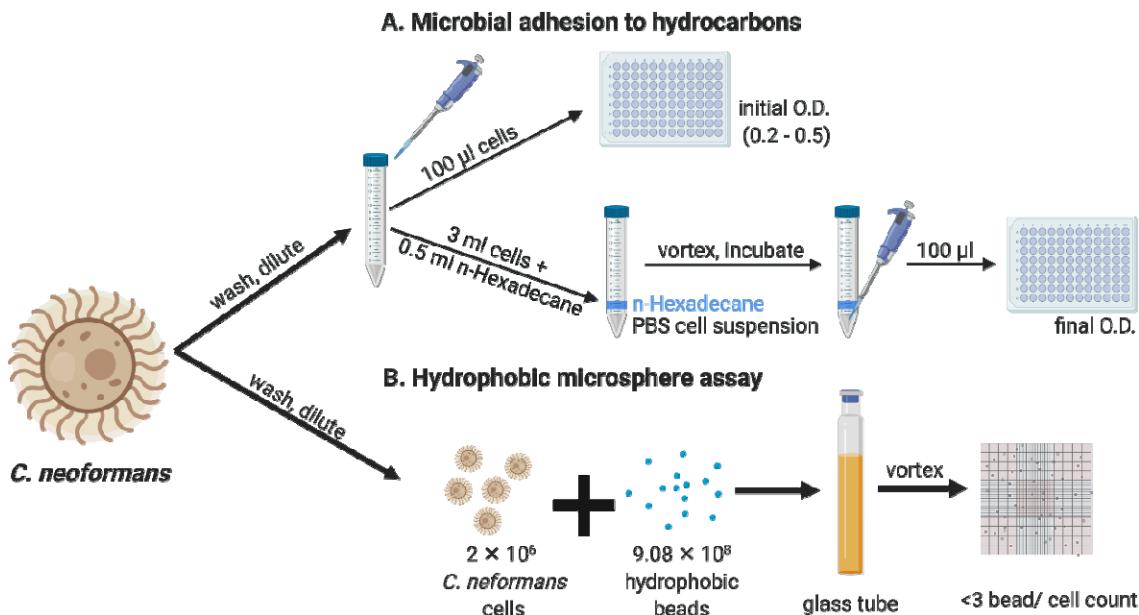
532 66. Freij JB, Fu MS, De Leon Rodriguez CM, Dziedzic A, Jedlicka AE, Dragotakes Q, Rossi
533 DCP, Jung EH, Coelho C, Casadevall A. 2018. Conservation of Intracellular Pathogenic
534 Strategy among Distantly Related Cryptococcal Species. *Infect Immun* 86.

535 67. Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, Stanley P, Hart G,
536 Darvill A, Kinoshita T, Prestegard JJ, Schnaar RL, Freeze HH, Marth JD, Bertozzi CR,
537 Etzler ME, Frank M, Vliegenthart JF, Lütteke T, Perez S, Bolton E, Rudd P, Paulson J,
538 Kanehisa M, Toukach P, Aoki-Kinoshita KF, Dell A, Narimatsu H, York W, Taniguchi N,
539 Kornfeld S. 2015. Symbol Nomenclature for Graphical Representations of Glycans.
540 *Glycobiology* 25:1323–1324.

541

542

543 **TABLES**

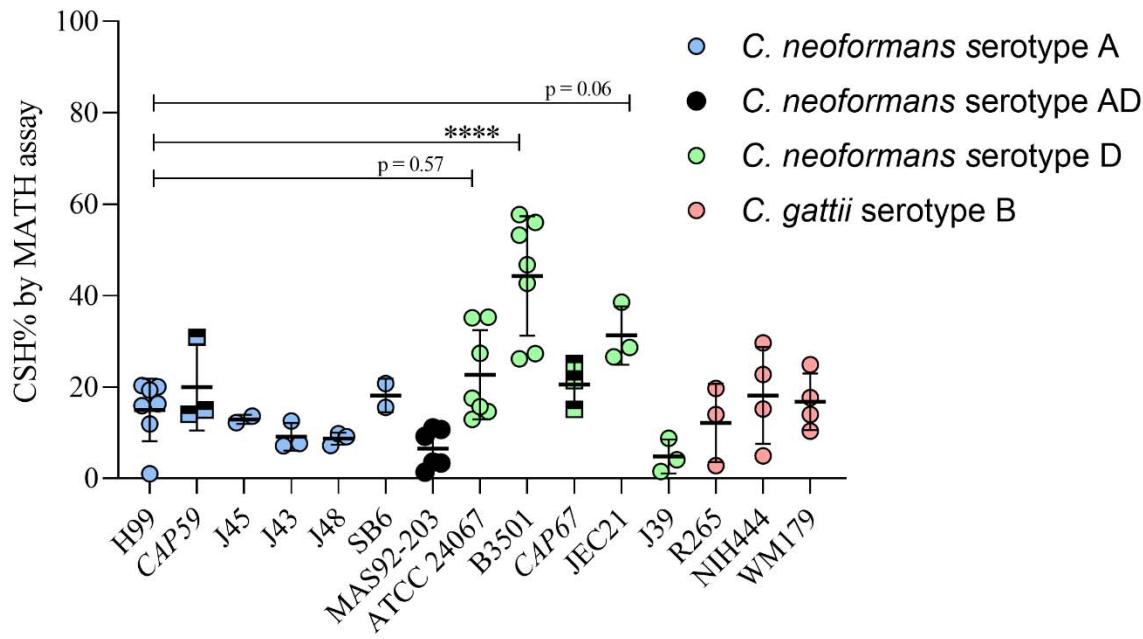

544 **Table 1:** Strains of *C. neoformans* and *C. gattii* used in the present study. The
545 references indicate the study in which the strains were serotyped, or the study in which
546 the strains used had been characterized by serotype.

Species	Mutant	Serotype	Source
<i>Cryptococcus neoformans</i>	H99	A	John Perfect (Durham, NC)
	<i>CAP59</i>		
	J45		(63)
	J10		(63)
	J43		(63)
	J48		(63)
	SB6		(64)
	MAS92-203	AD	(6)
	ATCC24067		D
	B3501	<i>CAP67</i>	(6)
	JEC21		(65)
	J39		(63)
<i>Cryptococcus gattii</i>	R265	B	ATCC (Manassas, VA) (66)
	NIH444		(6)
	WM179		ATCC (Manassas, VA) (66)

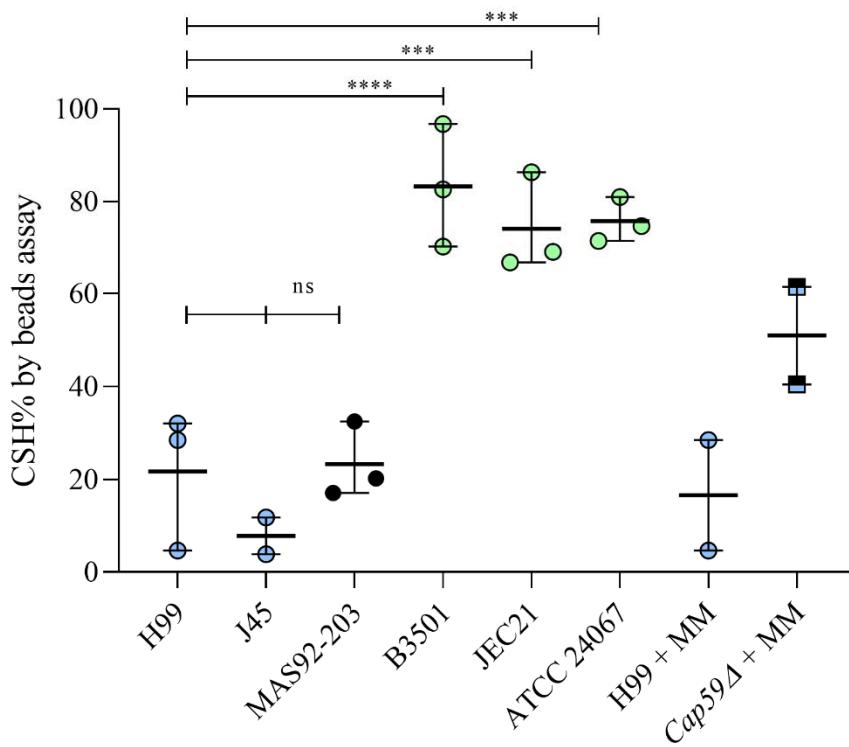
547

548

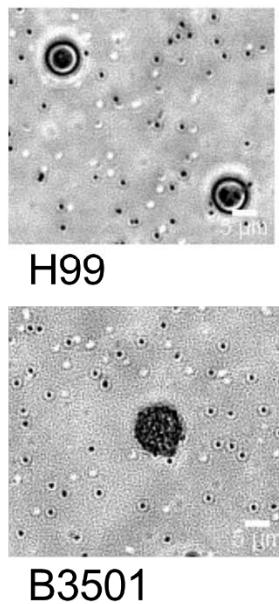
549 **FIGURES**



550


551 **Figure 1: Methods for estimation of *C. neoformans* CSH. A.** CSH estimated by
552 MATH assay that quantifies the interaction of *C. neoformans* cells in a suspension with the
553 hydrocarbon solvent n-Hexadecane. CSH% was calculated as the percentage change in OD of a
554 *C. neoformans* cell suspension after vortexing the mixture of cells with n-Hexadecane. **B.** In
555 addition, we estimated CSH by visualizing the interaction between *C. neoformans* cells and
556 hydrophobic beads (0.8 μ m) in a hemocytometer and counting cells that had >3 beads/ 100 cells
557 to calculate CSH%. Image created with BioRender.

558


A

B

C

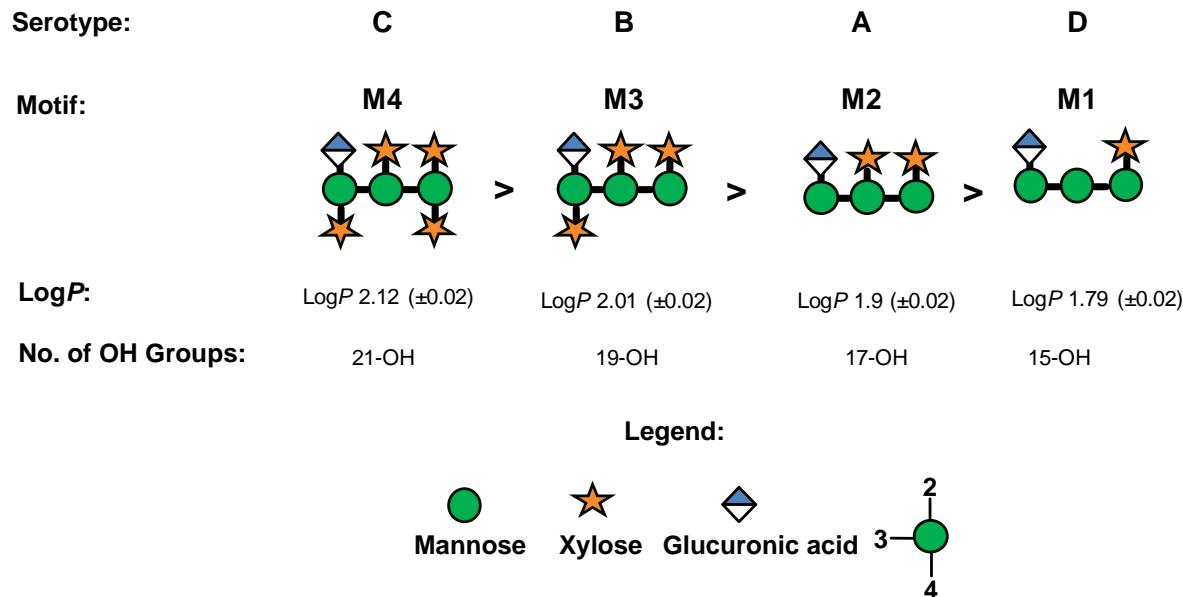
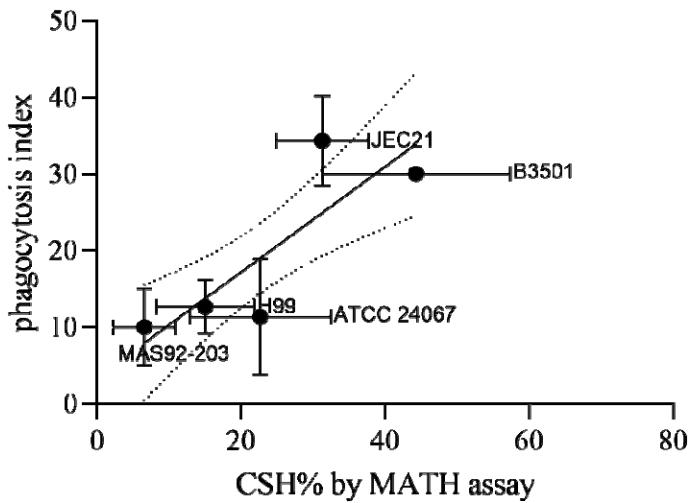

559
560

Figure 2: CSH of *C. neoformans* differs by strain. Graphical representation of

561 CSH of *C. neoformans* and *C. gattii* strains. **A.** Graphical representation of CSH
562 estimated by MATH assay. **B.** Graphical representation of CSH estimated by
563 hydrophobic microsphere assay (left). Experiments have been performed 2-6 times
564 independently, as indicated by individual data points. (○) Indicates a data point of CSH
565 of an encapsulated strain of *C. neoformans* and *C. gattii*, while, (□) indicates the CSH of
566 an acapsular mutant of the preceding *C. neoformans* strain (starting from the y-axis).
567 Error bar represents the standard deviation about of mean. **C.** Representative image of a
568 mixture hydrophobic beads with *C. neoformans* strain H99 (upper right) and relatively
569 hydrophobic *C. neoformans* strain B3501 (lower right) used for the assay. Hydrophobic
570 beads (small spheres, approximately 0.8 μ m in diameter) adhere to the cell surface due
571 to the high hydrophobicity of B3501 cell, covering it almost completely. The
572 hydrophobic beads are all but absent from the surface of H99 cells. Ordinary one-way
573 ANOVA was used to compare the CSH of *C. neoformans* strain H99 with the CSH of *C.*
574 *neoformans* and *C. gattii* strains (supplementary materials table S2). The following
575 symbols were used to annotate the statistical significance of the results: ns, p > 0.05;
576 *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001.

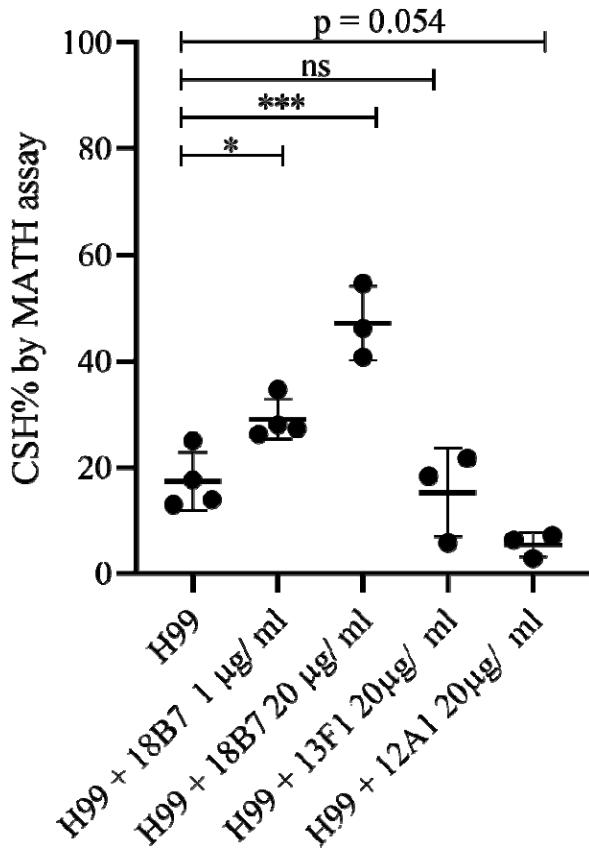
577

578



579

580 **Figure 3: Comparison of hydrophobicity between different capsule motifs**
581 **dominant in *C. neoformans* and *C. gattii*.** Lipophilicity, $\log P$, of dominant
582 carbohydrate motifs in the carbohydrate was predicted by an equation proposed by
583 Mannhold *et. al* (25). M4 was found to be the most hydrophobic motif and M1 the least.
584 The number of hydroxyl groups on each polysaccharide motif was calculated (below).
585 Glycan nomenclature followed the Symbol Nomenclature for Glycans (SNFG) (67).


586

587

588

589 **Figure 4: CSH of *C. neoformans* correlates with phagocytosis of *C. neoformans* by natural predator *A. castellani*.** Significant positive linear
590 correlation ($R^2 = 0.5722$) between CSH of *C. neoformans* strains and phagocytosis index
591 by *A. castellanii*. Phagocytosis index is estimated by fluorescence microscopy as the
592 number of *C. neoformans* labeled by Uvitex internalized per 100 *A. castellanii*. Error
593 bar represents the standard deviation of the mean.
594

595

596 **Figure 5: Binding of protective capsule antibodies influences CSH.**

597 Incubation of *C. neoformans* strain H99 grown in the capsule induction medium (MM)
598 with protective capsular antibodies 18B7 significantly increase CSH in a concentration-
599 dependent manner, while 12A1 decreased CSH and 13F1 had no significant effect on
600 CSH. CSH was determined by MATH assay in 2-3 biological replicates, as indicated by
601 data points. Error bar represents the standard deviation about the mean. Ordinary one-
602 way ANOVA was used to compare the CSH of untreated *C. neoformans* strain H99 with
603 the CSH of H99 cells treated with different antibodies. The following symbols were used
604 to annotate the statistical significance of the results: ns, $p > 0.05$; *, $p \leq 0.05$; **,
605 $p \leq 0.01$; ***, $p \leq 0.001$; ****, $p \leq 0.0001$.

606 **SUPPLEMENTARY MATERIAL**

607 **Supplementary Table S1:** Table summarizing the results of multiple comparison of
608 CSH% by MATH assay by ordinary one-way ANOVA, where mean of each column was
609 compared to the mean of the other, (graphical representation in figure 2A).

Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value
B3501 vs. H99	29.28	13.80 to 44.76	Yes	****	<0.0001
B3501 vs. ATCC 24067	21.62	6.141 to 37.10	Yes	***	0.0008
B3501 vs. MAS92-203	37.74	21.62 to 53.85	Yes	****	<0.0001
B3501 vs. R265	32.13	12.14 to 52.11	Yes	****	<0.0001
B3501 vs. WM179	27.53	9.382 to 45.69	Yes	***	0.0002
B3501 vs. NIH444	26.13	7.975 to 44.28	Yes	***	0.0005
B3501 vs. J43	35.15	15.17 to 55.13	Yes	****	<0.0001
B3501 vs. SB6	26.12	2.905 to 49.34	Yes	*	0.0149
B3501 vs. JEC21	13.01	-6.970 to 33.00	No	ns	0.5717
B3501 vs. J45	31.36	8.136 to 54.57	Yes	**	0.0013
B3501 vs. J48	35.57	15.58 to 55.55	Yes	****	<0.0001
B3501 vs. J39	39.49	19.51 to 59.47	Yes	****	<0.0001
B3501 vs. CAP59	24.32	4.335 to 44.30	Yes	**	0.0057
B3501 vs. CAP67	23.73	3.743 to 43.71	Yes	**	0.0078
H99 vs. ATCC 24067	-7.659	-23.14 to 7.820	No	ns	0.896
H99 vs. MAS92-203	8.456	-7.656 to 24.57	No	ns	0.8496
H99 vs. R265	2.846	-17.14 to 22.83	No	ns	>0.9999
H99 vs. WM179	-1.747	-19.90 to 16.40	No	ns	>0.9999
H99 vs. NIH444	-3.154	-21.31 to 15.00	No	ns	>0.9999
H99 vs. J43	5.87	-14.11 to 25.85	No	ns	0.999

H99 vs. SB6	-3.156	-26.38 to 20.06	No	ns	>0.9999
H99 vs. JEC21	-16.27	-36.25 to 3.718	No	ns	0.227
H99 vs. J45	2.075	-21.14 to 25.29	No	ns	>0.9999
H99 vs. J48	6.285	-13.70 to 26.27	No	ns	0.9979
H99 vs. J39	10.21	-9.774 to 30.19	No	ns	0.8723
H99 vs. CAP59	-4.961	-24.95 to 15.02	No	ns	0.9998
H99 vs. CAP67	-5.553	-25.54 to 14.43	No	ns	0.9994
ATCC 24067 vs. MAS92-203	16.11	0.003366 to 32.23	Yes	*	0.0499
ATCC 24067 vs. R265	10.51	-9.479 to 30.49	No	ns	0.8481
ATCC 24067 vs. WM179	5.913	-12.24 to 24.06	No	ns	0.9969
ATCC 24067 vs. NIH444	4.505	-13.65 to 22.66	No	ns	0.9998
ATCC 24067 vs. J43	13.53	-6.455 to 33.51	No	ns	0.509
ATCC 24067 vs. SB6	4.503	-18.72 to 27.72	No	ns	>0.9999
ATCC 24067 vs. JEC21	-8.607	-28.59 to 11.38	No	ns	0.9619
ATCC 24067 vs. J45	9.734	-13.48 to 32.95	No	ns	0.9693
ATCC 24067 vs. J48	13.94	-6.040 to 33.93	No	ns	0.4594
ATCC 24067 vs. J39	17.87	-2.114 to 37.85	No	ns	0.1243
ATCC 24067 vs. CAP59	2.698	-17.29 to 22.68	No	ns	>0.9999
ATCC 24067 vs. CAP67	2.106	-17.88 to 22.09	No	ns	>0.9999
MAS92-203 vs. R265	-5.61	-26.09 to 14.87	No	ns	0.9995
MAS92-203 vs. WM179	-10.2	-28.90 to 8.491	No	ns	0.8115
MAS92-203 vs. NIH444	-11.61	-30.30 to 7.084	No	ns	0.6453
MAS92-203 vs. J43	-2.586	-23.06 to 17.89	No	ns	>0.9999
MAS92-203 vs. SB6	-11.61	-35.26 to 12.03	No	ns	0.9011
MAS92-203 vs. JEC21	-24.72	-45.20 to -4.244	Yes	**	0.0063
MAS92-203 vs. J45	-6.381	-30.03 to 17.26	No	ns	0.9996

MAS92-203 vs. J48	-2.171	-22.65 to 18.31	No	ns	>0.9999
MAS92-203 vs. J39	1.755	-18.72 to 22.23	No	ns	>0.9999
MAS92-203 vs. CAP59	-13.42	-33.89 to 7.061	No	ns	0.5621
MAS92-203 vs. CAP67	-14.01	-34.49 to 6.469	No	ns	0.4919
R265 vs. WM179	-4.592	-26.71 to 17.53	No	ns	>0.9999
R265 vs. NIH444	-6	-28.12 to 16.12	No	ns	0.9996
R265 vs. J43	3.024	-20.62 to 26.67	No	ns	>0.9999
R265 vs. SB6	-6.002	-32.44 to 20.43	No	ns	>0.9999
R265 vs. JEC21	-19.11	-42.76 to 4.534	No	ns	0.2361
R265 vs. J45	-0.7708	-27.21 to 25.67	No	ns	>0.9999
R265 vs. J48	3.439	-20.21 to 27.08	No	ns	>0.9999
R265 vs. J39	7.365	-16.28 to 31.01	No	ns	0.9981
R265 vs. CAP59	-7.807	-31.45 to 15.84	No	ns	0.9965
R265 vs. CAP67	-8.399	-32.04 to 15.25	No	ns	0.9929
WM179 vs. NIH444	-1.407	-21.88 to 19.07	No	ns	>0.9999
WM179 vs. J43	7.616	-14.50 to 29.73	No	ns	0.9947
WM179 vs. SB6	-1.41	-26.49 to 23.67	No	ns	>0.9999
WM179 vs. JEC21	-14.52	-36.64 to 7.599	No	ns	0.559
WM179 vs. J45	3.822	-21.26 to 28.90	No	ns	>0.9999
WM179 vs. J48	8.031	-14.09 to 30.15	No	ns	0.9912
WM179 vs. J39	11.96	-10.16 to 34.08	No	ns	0.8213
WM179 vs. CAP59	-3.214	-25.33 to 18.90	No	ns	>0.9999
WM179 vs. CAP67	-3.806	-25.92 to 18.31	No	ns	>0.9999
NIH444 vs. J43	9.024	-13.09 to 31.14	No	ns	0.9755
NIH444 vs. SB6	- 0.00231	-25.08 to 25.08	No	ns	>0.9999
NIH444 vs. JEC21	-13.11	-35.23 to 9.006	No	ns	0.7118

NIH444 vs. J45	5.229	-19.85 to 30.31	No	ns	>0.9999
NIH444 vs. J48	9.439	-12.68 to 31.56	No	ns	0.9646
NIH444 vs. J39	13.36	-8.754 to 35.48	No	ns	0.6853
NIH444 vs. CAP59	-1.807	-23.93 to 20.31	No	ns	>0.9999
NIH444 vs. CAP67	-2.399	-24.52 to 19.72	No	ns	>0.9999
J43 vs. SB6	-9.026	-35.46 to 17.41	No	ns	0.9951
J43 vs. JEC21	-22.14	-45.78 to 1.510	No	ns	0.0879
J43 vs. J45	-3.795	-30.23 to 22.64	No	ns	>0.9999
J43 vs. J48	0.4152	-23.23 to 24.06	No	ns	>0.9999
J43 vs. J39	4.341	-19.30 to 27.99	No	ns	>0.9999
J43 vs. CAP59	-10.83	-34.48 to 12.81	No	ns	0.9392
J43 vs. CAP67	-11.42	-35.07 to 12.22	No	ns	0.9114
SB6 vs. JEC21	-13.11	-39.55 to 13.33	No	ns	0.8945
SB6 vs. J45	5.231	-23.73 to 34.19	No	ns	>0.9999
SB6 vs. J48	9.441	-17.00 to 35.88	No	ns	0.9925
SB6 vs. J39	13.37	-13.07 to 39.80	No	ns	0.8805
SB6 vs. CAP59	-1.805	-28.24 to 24.63	No	ns	>0.9999
SB6 vs. CAP67	-2.397	-28.83 to 24.04	No	ns	>0.9999
JEC21 vs. J45	18.34	-8.095 to 44.78	No	ns	0.4688
JEC21 vs. J48	22.55	-1.094 to 46.20	No	ns	0.0756
JEC21 vs. J39	26.48	2.831 to 50.12	Yes	*	0.0157
JEC21 vs. CAP59	11.31	-12.34 to 34.95	No	ns	0.9175
JEC21 vs. CAP67	10.71	-12.93 to 34.36	No	ns	0.9439
J45 vs. J48	4.21	-22.23 to 30.65	No	ns	>0.9999
J45 vs. J39	8.136	-18.30 to 34.57	No	ns	0.9983
J45 vs. CAP59	-7.036	-33.47 to 19.40	No	ns	0.9996
J45 vs. CAP67	-7.628	-34.06 to 18.81	No	ns	0.9991

J48 vs. J39	3.926	-19.72 to 27.57	No	ns	>0.9999
J48 vs. <i>CAP59</i>	-11.25	-34.89 to 12.40	No	ns	0.9204
J48 vs. <i>CAP67</i>	-11.84	-35.48 to 11.81	No	ns	0.8878
J39 vs. <i>CAP59</i>	-15.17	-38.82 to 8.474	No	ns	0.5953
J39 vs. <i>CAP67</i>	-15.76	-39.41 to 7.882	No	ns	0.534
<i>CAP59</i> vs. <i>CAP67</i>	-0.5919	-24.24 to 23.05	No	ns	>0.9999

610

611

612 **Supplementary Table S2:** Table summarizing the results of multiple comparison of
613 mean CSH% by MATH assay by ordinary one-way ANOVA, where mean of each column
614 was compared to the mean of *C. neoformans* strain H99 (graphically representation in
615 figure 2A).

Dunnett's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value
H99 vs. B3501	-29.28	-42.24 to -16.32	Yes	****	<0.0001
H99 vs. ATCC 24067	-7.659	-20.62 to 5.298	No	ns	0.5766
H99 vs. MAS92-203	8.456	-5.031 to 21.94	No	ns	0.4971
H99 vs. R265	2.846	-13.88 to 19.57	No	ns	0.9994
H99 vs. WM179	-1.747	-16.94 to 13.45	No	ns	0.9996
H99 vs. NIH444	-3.154	-18.35 to 12.04	No	ns	0.9992
H99 vs. J43	5.87	-10.86 to 22.60	No	ns	0.9738
H99 vs. SB6	-3.156	-22.59 to 16.28	No	ns	0.9994
H99 vs. JEC21	-16.27	-32.99 to 0.4622	No	ns	0.0615
H99 vs. J45	2.075	-17.36 to 21.51	No	ns	0.9996
H99 vs. J48	6.285	-10.44 to 23.01	No	ns	0.9567
H99 vs. J39	10.21	-6.518 to 26.94	No	ns	0.5337
H99 vs. CAP59	-4.961	-21.69 to 11.77	No	ns	0.9908
H99 vs. CAP67	-5.553	-22.28 to 11.18	No	ns	0.9837

616