

1 Title

2 Adaptation to transients disrupts spatial coherence in binocular 3 rivalry

4 Marnix Naber, Sjoerd Stuit, Yentl de Kloet, Stefan Van der Stigchel, & Chris L.E. Paffen

5

6 Experimental Psychology, Helmholtz Institute, Faculty of Social and Behavioral Sciences, Utrecht
7 University, Heidelberglaan 1, 3584CS Utrecht, The Netherlands

8

9 Short title

10 Adaptation to transients mixes perception in binocular rivalry

11

12

13 Abstract

14 When the two eyes are presented with incompatible images, the visual system fails to create a single,
15 fused, coherent percept. Instead, it creates an ongoing alternation between each eye's image; a
16 phenomenon dubbed binocular rivalry (BR). Such alternations in awareness are separated by brief,
17 intermediate states during which a spatially mixed (incoherent) pattern of both images is perceived. A
18 recent study proposed that the precedence of mixed percepts positively correlates with the degree of
19 adaptation to conflict between the eyes. However, it neglected the role of visual transients, which
20 covaried with the degree of conflict in the stimulus design. We here study whether the presence of visual
21 transients drive adaptation to interocular conflict and explain incidence rates of spatially incoherent BR.
22 Across three experiments we created several adaptation conditions in which we systematically varied
23 the frequency of transients and the degree of conflict between the eyes. Transients consisted of grating
24 orientation reversals, blanks, and plaids. The results showed that the pattern of variations in the fractions
25 mixed percepts across conditions was best explained by variations in the frequency of visual transients,
26 rather than the degree of conflict between the eyes. We propose that the prolonged presentation of
27 transients to both eyes evokes a chain of events consisting of (1) the exogenous allocation of attention
28 to both images, (2) the increase in perceptual dominance of both rivalling images, (3) the speed up of
29 adaptation of interocular suppression, and eventually (4) the facilitation of mixed perception during BR
30 after adaptation.

31

32

33 Author summary

34 When one eye is presented with an image that is distinct from the image presented to the other eye, the
35 eyes start to rival and suppress each other's image. Binocular rivalry leads to perceptual alternations
36 between the images of each eye, during which only one of the images is perceived at a time. However,
37 when the eyes exert weak and shallow mutual suppression, observers tend to perceive both images
38 intermixed more often. Here we designed an experiment and a model to investigate how stereoscopic
39 stimuli can be designed to alter the degree of interocular suppression. We find that prolonged and
40 repeated observations of strong visual transients, such as sudden changes in contrast, can facilitate the
41 adaptation to suppression between the eyes, resulting in that observers report more mixed percepts.
42 This novel finding is relevant to virtual- and augmented reality for which it is crucial to design
43 stereoscopic environments in which binocular rivalry is limited.

44

45 Keywords

46 Exclusive dominance; piecemeal; binocular rivalry; adaptation; orientation conflict; interocular
47 suppression

48

49 Corresponding Author

50 Dr. Marnix Naber
51 Room H0.25
52 Heidelberglaan 1
53 3584CS Utrecht

54 The Netherlands

55 Phone: +31631172793

56 Email: marnixnaber@gmail.com

57

58

59 **Additional Information**

60 Author Contributions

61 All authors designed the experiments. Author YdK collected the data. MN, SS, and YdK programmed
62 the experiments and analyzed data. Author MN & CP wrote the concept paper and all other authors
63 contributed to the final paper.

64

65 Competing Financial Interest

66 The authors declare no competing financial interests.

67

68

69

1. Introduction

70 1.1 Studying the dynamics of visual awareness with binocular rivalry

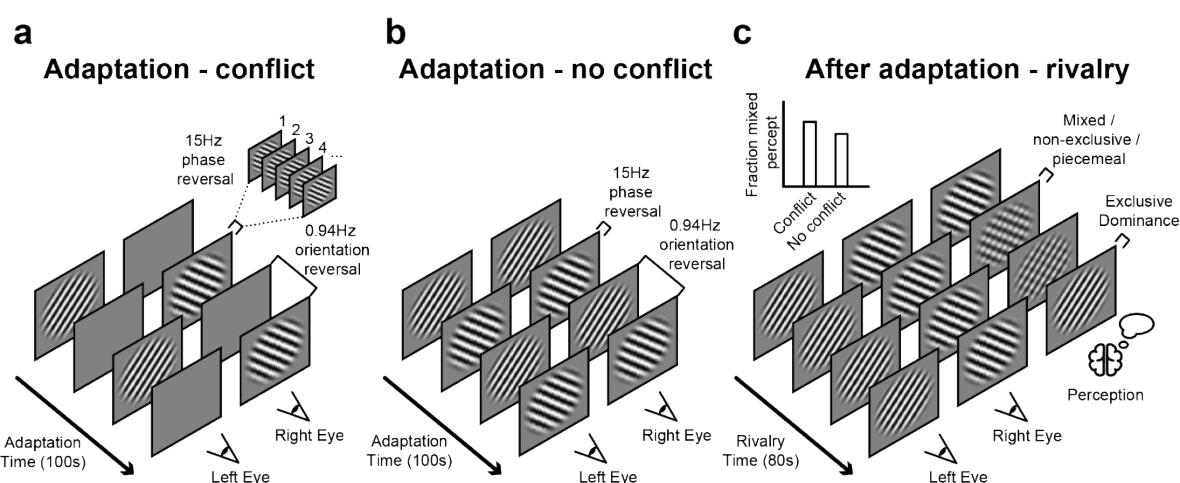
71 Binocular rivalry (BR) is a primary method in the scientific fields of cognitive psychology and
72 neurosciences to study visual awareness. It consists of the presentation of separate images to each eye.
73 When the two images are distinct, the visual system is unable to fuse them into a coherent percept.
74 Instead, the distinct mental representations of both eyes compete for priority to visual awareness. This
75 results in the perception of unending perceptual alternations between the two images over time, a purely
76 internally (mentally) driven process because the physical environment is kept stable.

77 BR has been heavily exploited by psychologists, neuroscientists, and philosophers for a variety of
78 reasons. One reason is that the dynamic properties of BR provide information on what type of images
79 dominate more strongly or break into visual awareness faster (e.g., 1, 2). Such research is necessary in
80 order to understand why people sometimes fail to notice objects (e.g., in traffic), how image-parts are
81 grouped into ensemble objects (i.e., Gestalt principles), and why certain objects in the visual
82 environment receive sensory priority (e.g., advertisements). BR is also the primary method used to study
83 the interaction between the sensory processing of stimulus properties and other cognitive high-level
84 functions such as attention, numerosity and emotions (3-7). Furthermore, studies have revealed that a
85 variety of brain regions and processes underlie changes in the content of visual awareness during BR
86 (8-11). Using BR to find the neural loci of consciousness and to identify the distinct processing stages
87 of the stream of consciousness remains an ongoing line of research. Lastly, BR serves as a tool to
88 examine to what degree information, that falls outside the scope of awareness, is processed and affects
89 behavior (e.g., 12). Following the iceberg-mind analogy in the sense that most of what an iceberg's
90 constitutes is submerged under water, most stimuli in a visual environment are not consciously perceived
91 but may still have a determinative effect on decision-making (13). In sum, BR has been shown to be a
92 valuable method to examine perceptual selection, the neurobiological underpinnings of awareness, and
93 unconscious processing (14). However, there is more to be learned from BR. While often overshadowed
94 by discussions surrounding consciousness, BR also reflects how the eyes interact and strive for a stable,
95 coherent percept. It is therefore necessary to understand under which circumstances dichoptic images

96 fuse and when they engage in binocular rivalry (e.g., 15, 16-18). Especially now, with the rise of virtual
97 and augmented reality goggles, it is of importance to understand how images can be best designed to
98 prevent BR, enhance the fusion of representations of both eyes, and create realistic depth perception.
99 The experience of a coherent percept is important for effort-free viewing and the feeling of immersion
100 when wearing stereoscopic goggles (19). BR may thus also be utilized to determine the level of
101 “cooperation” between the eyes.

102 1.2 Exclusive versus nonexclusive, mixed episodes in binocular rivalry

103 How can BR serve as a tool to determine to what degree information of both eyes integrates rather than
104 competes? To answer this question, it helps to focus on the spatio-temporal dynamics rather than merely
105 the temporal dynamics of BR. Temporal dynamics include the rate at which switches in awareness occur
106 and the ratio of left versus right eye dominance durations in perception. These measures indicate when
107 and how often a change in awareness occurs and how strong, conspicuous, and relevant each image is
108 to the visual system. Spatio-temporal dynamics embrace the local nature of binocular conflict and
109 include episodes in which BR is in an intermediate, unstable state, in which perception exists of a
110 mixture of the images of both eyes across image locations (i.e., piecemeal or non-exclusive rivalry).
111 This latter measure indicates to what degree information of both eyes is integrated. However, this aspect
112 of BR has received relatively little scientific attention, mainly because the spatio-temporal dynamics of
113 binocular rivalry are typically operationalized as stemming from a discrete on-off process (i.e., the image
114 of the left or right eye is visible) by means of measurements of binary responses (i.e., press either one
115 of two buttons to report dominance of the two images). Only a handful of papers have looked at the non-
116 binary properties of rivalry. For example, Naber et al. (20) instructed observers to report mixed percept
117 episodes of moving gratings with a joystick and observed that the reported spatio-temporal dynamics
118 matched the same dynamics measured objectively with the optokinetic nystagmus. Other studies
119 examined so-called traveling dominance waves, described best as the gradual emergence of a suppressed
120 image as it flows over the other, dominant image within a relatively short time span (21-23). These
121 waves tend to have a local starting point in the visual field and move with a certain velocity (24-29). A
122 few more studies inspected what type of images proliferate mixed percepts during rivalry (30-32). For


123 example, the more similar the images are across the eyes, the weaker the interocular suppression and
124 the higher the chance of observing mixed rivalry (31). Similarly, gratings which are relatively similar
125 with locally overlapping features, exhibit more mixed percepts as compared to complex, coherent
126 objects such as houses and faces, which are more dissimilar (32). This means that when images mutually
127 exert weak, shallow interocular suppression (i.e., a weak competition between the eyes) due to a local
128 overlap of features between both eyes, exclusive (monocular) percepts are rarer and mixed episodes last
129 longer. A recent adaptation study additionally showed that the durations of mixed episodes can be
130 lengthened by first adapting observers to episodes of strong interocular conflict in orientation (33). The
131 explanation for this finding is that the visual system includes neurons that detect conflict between the
132 eyes and drive interocular suppression (34). When these conflict detectors become less responsive due
133 to adaptation, interocular suppression presumably becomes weak (i.e., shallow), resulting in more or
134 longer episodes of mixed rivalry. However, adaptation to interocular conflict may not be the only
135 plausible explanation for the reported effects on mixed percepts during rivalry. The current study
136 investigates whether the weaker suppression (reflected by a larger incidence of mixed percepts)
137 following adaptation in the study of Said and Heeger was due to adaptation to conflict, or whether other
138 factors contribute to weaker suppression following adaptation.

139 1.3 Binocular conflict detectors versus visual transients

140 Although Said & Heeger (33) elegantly applied the method of adaptation to support their model
141 including conflict detectors, the authors may have overlooked the possibility that additional or
142 alternative mechanisms may drive the occurrence of mixed episodes. Here we propose that the presence
143 of strong transients affects binocular rivalry and, in the context of the findings of Said and Heeger, could
144 be the principal underlying factor for the facilitation of mixed percepts in rivalry after adaptation. To
145 clarify, let us first describe how visual transients affect binocular rivalry: It is known that an intermittent
146 stimulus presentation (i.e., interleaving content-rich image presentations with content-absent blanks)
147 strongly reduces the alternation rate of binocular rivalry. Depending on the duration of the blank
148 episodes, an image of one eye can remain dominant for minutes rather than seconds (35, 36). Such
149 changes in the temporal domain of rivalry dynamics suggest that intermittent presentation enhances

150 interocular suppression. We here propose that intermittent presentation (i.e., a strong visual transient)
151 also affects the spatio-temporal rivalry dynamics. As for the study of Said & Heeger (33), their conflict
152 condition (producing strong adaptation) included an intermittent presentation paradigm while their weak
153 adaptation condition did not (see Figure 1, a modification of Figure 6 in Said & Heeger). In other words,
154 the implementation of blanks, and thus of transient onsets and offsets of the images, may have facilitated
155 adaptation to interocular suppression rather than conflict.

156 In three separate experiments we demonstrate that the presence of visual transients during adaptation
157 explains the degree of mixed percepts better than the presence of orientation conflict between the eyes.
158 By manipulating the rate of changes in monocular contrast and changes in orientations, we are able to
159 show that these transients affect interocular suppression, resulting in decreased spatio-temporal stability
160 of binocular rivalry.

162 **Figure 1. Procedural design by Said & Heeger.** In the design of Said & Heeger's (33), a single trial
163 consisted of an adaptation period (a-b) that lasted for 100s and a rivalry test period (c) that lasted 80s.
164 Observers experienced regular binocular rivalry and indicated the onsets of exclusive and non-exclusive
165 percepts with keyboard buttons during the subsequent test period (c). During the preceding adaptation
166 period, observers passively viewed alternations in oriented gratings (a-b). The gratings' phase reversed
167 at a rate of 15Hz to prevent local brightness adaptation. More importantly, the perceived orientation
168 alternated (counter-)clockwise at a rate of 0.94 times per second. According to Said & Heeger (33),
169 prolonged presentation of different orientations to the eyes (a) adapt opponency neurons that detect

170 interocular conflict and drive interocular suppression (i.e., the degree the left eye's image is inhibited
171 by the right eye's image and vice versa). However, when identical orientations are presented to both
172 eyes at any point in time (b), they argue that no conflict between the eyes is present and neural conflict
173 detectors do not adapt. Adaptation and therewith weaker interocular suppression subsequently leads to
174 unstable perception, that is, a higher precedence of mixed (nonexclusive, piecemeal) percepts. A mixed
175 percept consists of the presence of parts of two images from both eyes rather than a single exclusive
176 image of one eye (c).

177

178 **2. Experiment 1**

179 2.1 Introduction

180 As described in the introduction, incoherent rivalry after adaptation (i.e., more mixed percepts) may be
181 caused by the presence of transients, rather than the presence of interocular conflict. Such transients can
182 be of any type, including changes in contrast and orientation. Here we extended the original conflict and
183 no conflict conditions of Said & Heeger with novel conditions that either included or excluded the
184 different transient types described above (see **Figure 2a**; for details, see *Stimulus and conditions*), and
185 investigated their individual contributions to the degree of mixed percepts following adaptation.

186 2.2 Methods

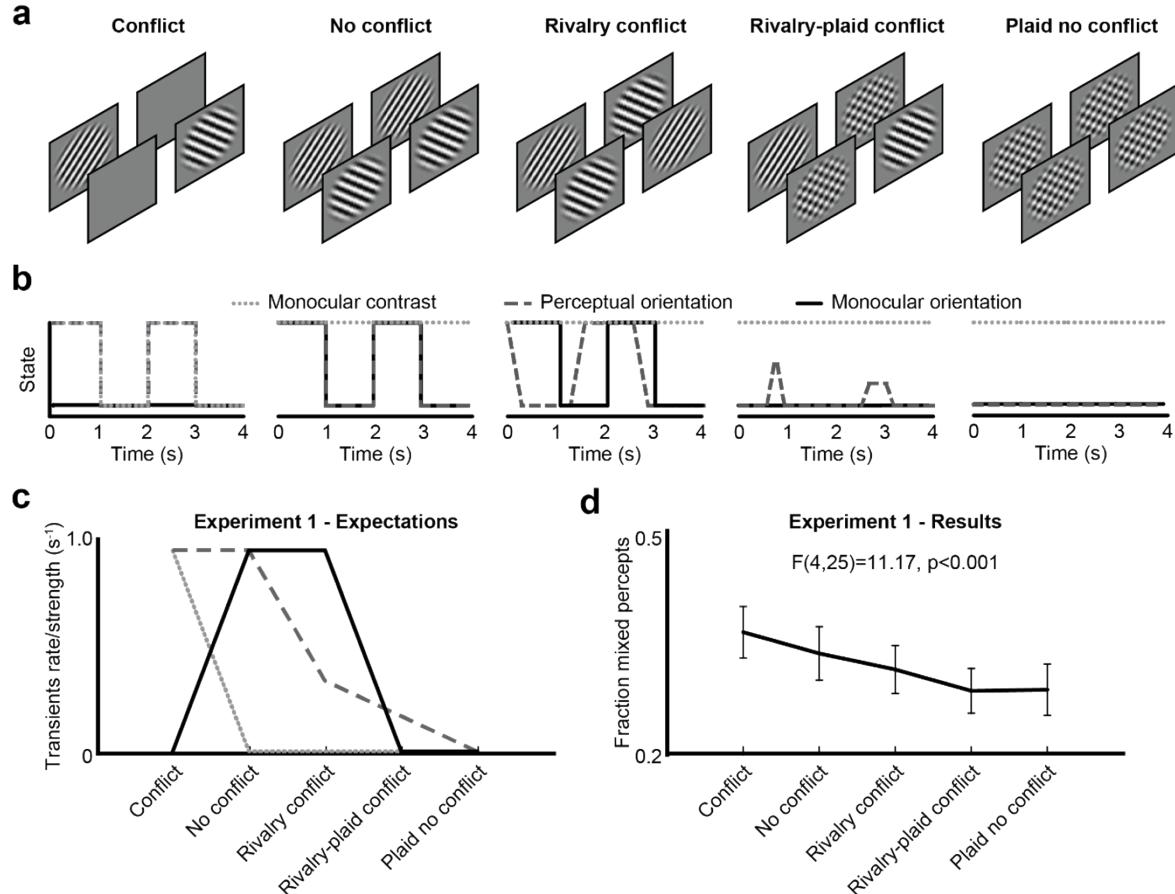
187 2.2.1 *Participants*

188 Twenty-six human individuals, all right-handed, young students (age: $M = 23.4$, $SD = 4.5$; 21 females)
189 and with normal or corrected-to-normal vision, participated in Experiment 1. Participants were naïve to
190 the purpose of the experiment, gave informed written consent before participation, and received either
191 study credit or money (€6 per hour; Experiment lasted approximately 3 hours) after participation. The
192 experiments conformed to the ethical principles of the Declaration of Helsinki and were approved by
193 the local ethical committee of Utrecht University.

194 2.2.2 *Apparatus*

195 Stimuli were generated on two 24-inch ASUS VG248QE monitors (AsusTek, Taipei, Taiwan) with a
196 dell computer (Dell, Round Rock, TX, USA) operating Windows 7 (Microsoft, Redmond, WA, USA)
197 and MatLab version r2010a (Mathworks, Natick, MA, USA). The presentation monitors displayed 1920
198 by 1080 pixels at a 60-Hz refresh rate. Each screen size was 53cm in width and 30cm in height (51 by
199 29 visual degrees), and the participant's viewing distance to the screen was fixed with a chin and
200 forehead rest at 57cm. Each eye of an observer was presented with stimuli through a Wheatstone-
201 inspired (37) mirror stereoscope (for details, see (38)). Observers used the arrow buttons on a Logitech
202 keyboard (Logitech International S.A., Lausanne, Swiss) to report their percept (left for exclusive

203 dominance of counter-clockwise-oriented gratings, down for non-exclusive dominance, and right for
204 exclusive dominance of clockwise-orientated gratings).


205 *2.2.3 Stimuli and conditions*

206 We used stimuli and conditions similar to those of Said & Heeger (33) by including an adaptation phase
207 (**Figure 1a-b**) to affect perceptual stability in a subsequent rivalry phase (**Figure 1c**). Stimuli had a 0.6°
208 radius in visual angle, a spatial frequency of 6.6 cycles/°, and edges softened by a cosine ramp of 0.1°
209 in width. To prevent ocular vergence responses and thus to promote binocular fusion (i.e., to achieve
210 perception of two spatially overlapping images), the stimuli were surrounded by a fusion stimulus. The
211 fusion stimulus consisted of a 0.3° wide annulus (not shown in the figures) with a random noise pattern
212 that was identical for each eye's image and located at 2.25° eccentricity.

213 Besides incorporating Said and Heeger's two original adaptation conditions in our design (first two
214 panels from the left in **Figure 2a**), we added an adaptation condition called "rivalry conflict" (panel
215 three in **Figure 2a**). In contrast to the conflict condition (panel one in **Figure 2a**), this condition did not
216 include monocular contrast transients (i) but did include monocular orientation transients (ii) and could
217 potentially adapt opponency neurons due to the conflicting information between the eyes.

218 Note that both the conflict and no conflict condition produce clearly visible transients in orientation at
219 a fixed rate of approximately one reversal per second. However, the rivalry conflict condition also
220 induces alternations between the eyes at a rate dependent on the perception of the observer. This
221 condition thus adds another research opportunity, namely to investigate to what degree the rate of
222 perceived, binocular transients affect the stability of binocular rivalry. Therefore, to manipulate and
223 weaken conflict between the eyes even further in an incremental manner, and therewith the rate of
224 perceived orientation alternations, we added two more conditions with plaids (see panel four and five in
225 **Figure 2a**). These conditions serve as a baseline in which hardly any transients in terms of contrast and
226 orientation are produced.

227

228

229 **Figure 2. Adaptation conditions, transient profiles, predictions, and results of Experiment 1.**

230 Experiment 1 tested five adaptation conditions with different stimuli (a). Each condition induced
231 changes in stimulus states as a function of time (b), including monocular (solid black) and perceptual
232 orientation (dashed dark gray) transients, and contrast transients (dotted light gray). We included the
233 original conditions of Said & Heeger in which orientation and contrast (first panel from left) or only
234 orientation (second panel) changes at a rate of 0.94Hz (solid black lines at (b)). We extended the original
235 design by including a rivalry condition (third panel) with less frequently perceived orientation reversals
236 (dashed dark gray lines at (b)) and a continuous orientation conflict between the eyes that excludes a
237 monocular contrast conflict (dotted light gray lines at (b)). Another condition similar to the first panel
238 was added but with a plaid rather than a blank screen in the other eye (fourth panel). A fifth condition
239 with plaids presented to both eyes and thus no transients served as a baseline. Note that the perceptual
240 orientation transients (dashed dark gray) are visible to the observer while the monocular transients
241 (dotted light gray and solid black) are not (b). The pattern of expected fraction mixed percepts across

242 conditions per feature (c) is based on the number and strength of transients within a normalized time
243 interval (for legend, see panel b). The actual pattern of fraction mixed percepts as indicated by observers
244 (d) did not perfectly match the patterns predicted by each individual adaptation type but matched a
245 combination of monocular contrast and perceptual orientation factors (c).

246

247 While the rate of *physical* stimulus changes was kept constant at 0.94Hz in the original two conflict and
248 no conflict conditions, the three novel conditions were expected to differ in the number of evoked
249 *perceptual* changes in orientation. Specifically, the rivalry conflict condition (third panel in **Figure 2a**)
250 should evoke perceptual rivalry as probed in the test phase. The rivalry-plaid conflict condition (fourth
251 panel) should cause even fewer perceptual reversals because the images of the plaid and the oriented
252 grating are typically merged in a single percept during binocular rivalry (16). Note that the rivalry-plaid
253 condition was similar to the original conflict condition of Said and Heeger but included the presentation
254 of a plaid rather than a blank screen to the other eye as the oriented grating. The plaid no conflict
255 condition (fifth panel) should cause no rivalry (16, 33). As the observers did not report alternation rates
256 during the adaptation phase, authors MN and YdK independently confirmed that the orientation reversal
257 rate and perceptual appearances were indeed manipulated as intended. In addition to the perceptual
258 orientation transients, the five conditions also differed with regard to the presence of monocular contrast
259 transients. Only the original conflict condition included intermittent blank presentations. The other four
260 conditions thus contained no contrast transients (i.e., second-order, nonluminance contrast).

261 As shown in **Figure 2b**, the frequency and strength of each type of transient should differ considerably
262 across the five conditions. For each transient type we plotted a hypothetical pattern of results (**Figure 2c**)
263 assuming that each specific transient type independently affected the fraction mixed percepts during the
264 test phase. Later in this paper we modelled weighted combinations of multiple transient types to
265 investigate which of these best explain the fraction across all conditions and experiments (see last result
266 section).

267 2.2.4 *Procedure*

268 The task for an observer was to attentively view the stimuli during the adaptation phase. Next they
269 indicated their percept during the binocular rivalry phase as either exclusive (i.e., the majority of the
270 surface of a single image was dominant) or mixed. The observers knew when to start reporting
271 perceptions because the start of the rivalry test phase was marked by a sudden offset of phase reversals
272 (i.e., the stimuli were contrast reversed at a rate of 15Hz during the adaptation phase to prevent local
273 brightness adaptation; see **Figure 1a-b**). The observers kept their gaze on the fixation point at the center
274 of the stimuli and screen.

275 Each condition was tested with six trials. The conditions were counterbalanced and the trials were
276 divided into two experimental sessions held at different days, because the experiment took more than 3
277 hours in total. Both sessions of the experiment started by having the observers align the stimuli on the
278 screens to achieve best fusion, that is, the observers made sure the rivaling stimuli overlapped when
279 viewed through the mirror stereoscope. Next, observers performed one rivalry test trial during which
280 the contrast of the gratings was adjusted with the goal to counterbalance eye dominance by annulling
281 between eye differences in dominance durations. Next, participants performed 30 trials and initiated the
282 start of each trial with a button press.

283 2.2.5 *Analysis*

284 We refer to the independent variable as *adaptation type*. The dependent variable was the *fraction mixed*
285 *percepts*, that is, the fraction of the total duration of perceptual episodes consisting of mixed dominance,
286 as indicated by the observer. To investigate whether the factor adaptation type significantly affected the
287 fraction mixed percept, we conducted a repeated measures ANOVA as a statistical test of significance
288 (see figures for statistical outcomes). As post-hoc tests, we compared the fraction mixed percepts
289 between each possible pair of conditions with two-tailed dependent t-tests (see tables in supplementary
290 materials for statistical outcomes). We also examined the significance of effects of three transient types,
291 namely that of (i) the presence versus absence of *monocular contrast* transients, (ii) the frequency of
292 *perceptual orientation* transients, and (iii) the presence versus absence of *monocular orientation*
293 transients.

294 2.3 Results & Discussion

295 We first aimed to test whether the adaptation type in the preceding adaptation phase affected the spatial
296 stability of rivalry in the test phase. Indeed, the fraction mixed percepts during rivalry significantly
297 varied across adaptation types (**Figure 2d**; repeated measures ANOVA: $F(4,25) = 11.17, p < .001$).
298 Qualitative inspection of the pattern of results suggested that the original conflict adaptation condition
299 produced the highest fraction mixed percepts while the conditions with a plaid produced the lowest
300 fraction.

301 Next, we determined whether we statistically replicated the findings by Said & Heeger (33). While the
302 direction of the effect appeared similar to these previous findings, the conflict and no conflict conditions
303 did not differ significantly according to a two-sided t-test (see **Supplementary table 1**). A one-sided t-
304 test, which can be argued to be appropriate in case of a prediction based on previous findings, *did* result
305 in a significant effect ($t(25) = 1.870, p = .037$). Not surprisingly, the fraction mixed percepts in the first
306 half of the test phase, that is directly after the adaptation phase when effects of adaptation are typically
307 strongest before fading off (39), differed significantly between the conflict and no conflict condition,
308 when tested with a two-sided t-test ($t(25) = 3.726, p = .001$).

309 Next we continued to examine all conditions, including the novel three conditions, in order to determine
310 which transient types drove the adaptation effects. When comparing the patterns of **Figure 2c** and **2d**,
311 the decrease in perceptual orientations and monocular contrast across conditions matched the decrease
312 in mixed percepts. To explore their individual significance of contribution to the pattern of results, we
313 compared the effects of the presence versus absence of each transient type across conditions on the
314 fraction mixed percepts. The first two conditions were the only conditions that included frequent and
315 repetitive perceptual orientation transients and when pooled together they produced significantly higher
316 fraction mixed percepts than the other three conditions, which included less frequent to no orientation
317 transients (Difference: $M = 0.054, SD = 0.051; t(25) = 5.389, p < .001$) The first conflict condition was
318 the only condition that included monocular contrast transients and it produced significantly higher
319 fractions mixed percepts than the other four conditions, which did not include monocular contrast
320 transients (Difference: $M = 0.059, SD = 0.075; t(25) = 3.986, p < .001$). The second and third conditions

321 were the only conditions which included monocular orientation transients and they did not produce
322 higher fractions mixed percepts than the other conditions without monocular orientation transients
323 (Difference: $M = 0.013$, $SD = 0.044$; $t(25) = 1.480$, $p = .151$). Lastly, the first, second, and fourth
324 conditions were the only conditions which included an orientation conflict between the eyes and they
325 *did* produce higher fractions mixed percepts than the conditions without orientation conflict, but the
326 effect was ~50% weaker than that of perceptual orientation and monocular contrast transients
327 (Difference: $M = 0.028$, $SD = 0.036$; $t(25) = 3.908$, $p = .001$).

328 To summarize the results of Experiment 1, the pattern of destabilization rates across all conditions is
329 best explained by adaptation to both monocular contrast and perceptual orientation transients. Note that
330 the third and fourth conflict rivalry(-plaid) conditions exhibited a conflict between the eyes but produced
331 a lower fraction mixed percept than the first conflict condition. This latter finding cannot be explained
332 by the conflict detector model of Said & Heeger (33) because conflict was clearly present in the rivalry(-
333 plaid) conditions, predicting an increase rather than the observed decrease in the fraction mixed percepts.
334 Because the manipulations of perceptual transients and monocular contrast (and conflict) were to some
335 degree correlated across conditions, our next goal was to further disentangle the transient types and
336 measure their individual contributions. As such, we continued to test the effects of monocular contrast
337 transients independently from the other transient types in Experiment 2.

338 **3. Experiment 2**

339 **3.1 Introduction**

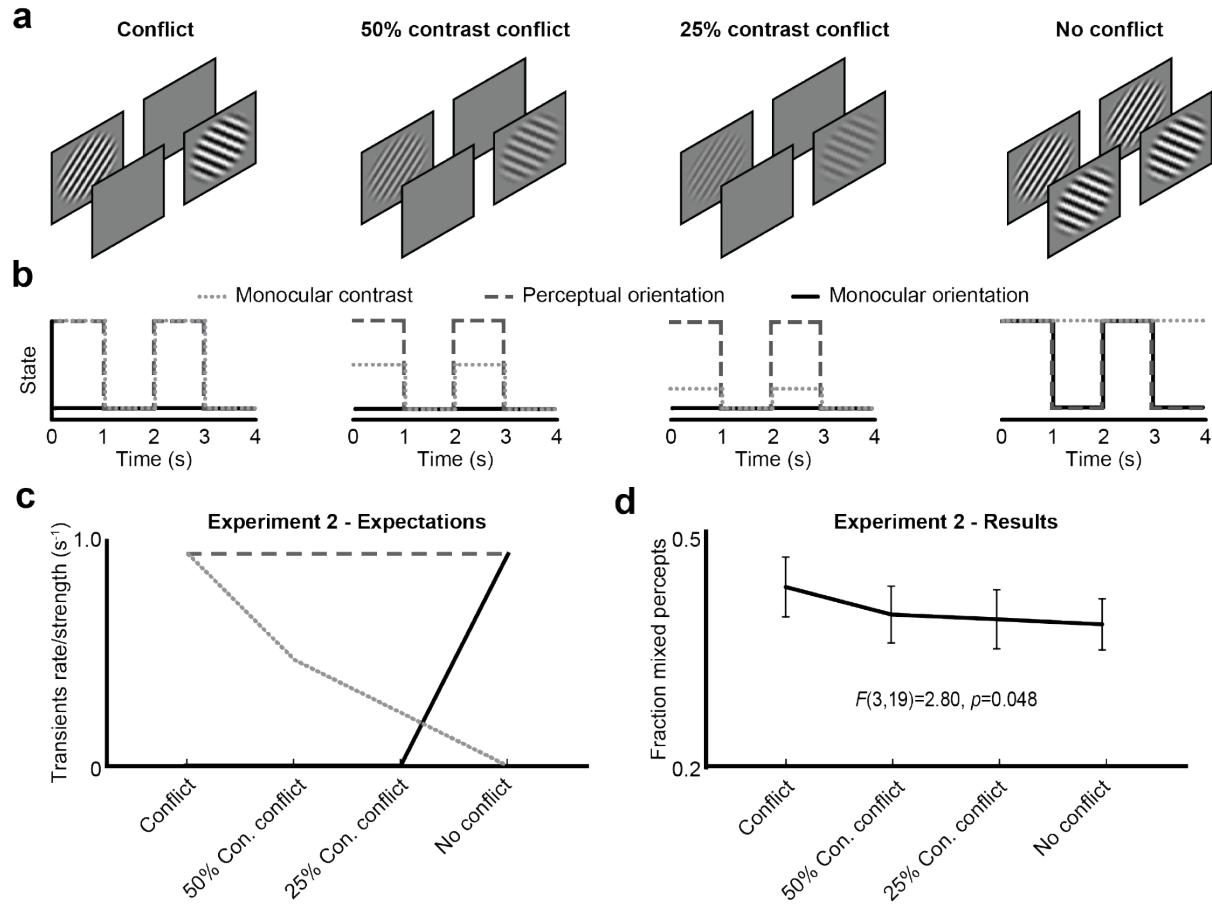
340 We have learned from Experiment 1 that it is likely that the presence of both perceptual orientation and
341 monocular contrast transients in the adaptation phase disrupted the spatial coherency in binocular rivalry
342 (i.e., increased the fraction mixed percepts) in the subsequent test phase. However, these two transients
343 types co-varied across the conditions of Experiment 1. In Experiment 2 we manipulated the strength of
344 contrast transients in isolation to further assess to what degree they contributed to incoherent perception
345 during rivalry. We took a slightly different approach as compared to Experiment 1 by manipulating the
346 contrast of the rivalling gratings rather than adding distracting information in the other eye. Based on

347 the findings in Experiment 1, we predicted that a low, compared to a high, grating contrast leads to
348 relatively weak monocular contrast transients during adaptation, eventually resulting in relatively weak
349 adaptation and more coherent rivalry, as characterized by less mixed percepts.

350 3.2 Methods

351 All aspects of the methods were identical to Experiment 1, except for the participants, duration of the
352 rivalry test phase, and adaptation type conditions. A new group of twenty individuals (age: $M = 21.9$,
353 $SD = 2.3$; 14 females) participated in Experiment 2. The rivalry test phase was shortened from 80s to
354 40s, because of the prominent effects of adaptation in the first 40s. We again included the original two
355 adaptation conditions of Said & Heeger (33) in the conditional design as a reference (see outmost left
356 and right panel in **Figure 3a**), as well as two novel conditions for which the contrast of tilted gratings
357 were set at 50% and 25% (see second and third panel in **Figure 3a**). These two conditions specifically
358 affected the degree of perceptual orientation and monocular contrast transients (see dotted and dashed
359 lines in **Figure 3b**) and, based on the findings in Experiment 1, we predict that the decrease in contrast
360 should weaken adaptation and decrease the fraction mixed percepts (**Figure 3c**).

361 3.1 Results & Discussion


362 The fraction mixed percepts significantly differed across the four adaptation types ($F(3,19) = 2.80$,
363 $p = .048$), showing a decreasing pattern across conditions (**Figure 3d**; for post-hoc tests, see
364 **Supplementary Table 2**). The original conflict adaptation condition produced the highest fraction
365 mixed percepts ($M = .43$, $SD = .17$) while the other conditions with a lower grating contrast or no
366 monocular contrast produced significantly lower fractions ($M = .39$, $SD = .15$; $t(19) = 2.529$, $p = .020$).

367 Furthermore, the first conflict condition was the only condition that included 100% monocular contrast
368 transients and it produced significantly higher fractions mixed percepts than the other four conditions
369 (Difference: $M = 0.041$, $SD = 0.073$; $t(19) = 2.529$, $p = .020$). The first three conditions were the only
370 conditions which included an orientation conflict between the eyes (and monocular orientation
371 transients) and they did *not* produce higher fractions mixed percepts than the fourth condition without
372 orientation conflict (Difference: $M = 0.022$, $SD = 0.066$; $t(19) = 1.516$, $p = .146$).

373 In sum, we replicated the findings by Said & Heeger and in addition observed that a weaker adaptation
374 contrast decreased the occurrence of mixed percepts during rivalry. The pattern of results of
375 Experiment 2 most closely matched the pattern predicted by the monocular contrast transients, although
376 the flatter and higher pattern than in Experiment 1 suggested that adaptation was again driven by a
377 weighted combination of perceptual orientation transients and monocular contrast transients (i.e., an
378 average of the dotted and dashed line in **Figure 3c**).

379 The results of Experiment 1 and 2 together favor a model that combines the effects of perceptual
380 orientation and monocular contrast transients. It remains, however, unclear which of these transient
381 types affects adaptation most. The final Experiment 3 was designed to extract the individual effects of
382 monocular contrast versus perceptual orientation transients.

383

384

385 **Figure 3. Adaptation conditions, transient profiles, predictions, and results of experiment 2.** The
386 design of Experiment 2 contained two original adaptation (first and fourth panel from the left) conditions
387 and two novel conditions (second and third panel) with different time functions of monocular contrast
388 (b). The new conditions varied the strength of monocular contrast transients (c) and the pattern of results
389 followed this manipulation (d).

390

391 4. Experiment 3

392 4.1 Introduction

393 Experiment 3 disentangled the effects of monocular contrast transients and perceptual orientation
394 transients by manipulating their presence and absence in opposite manners across conditions.

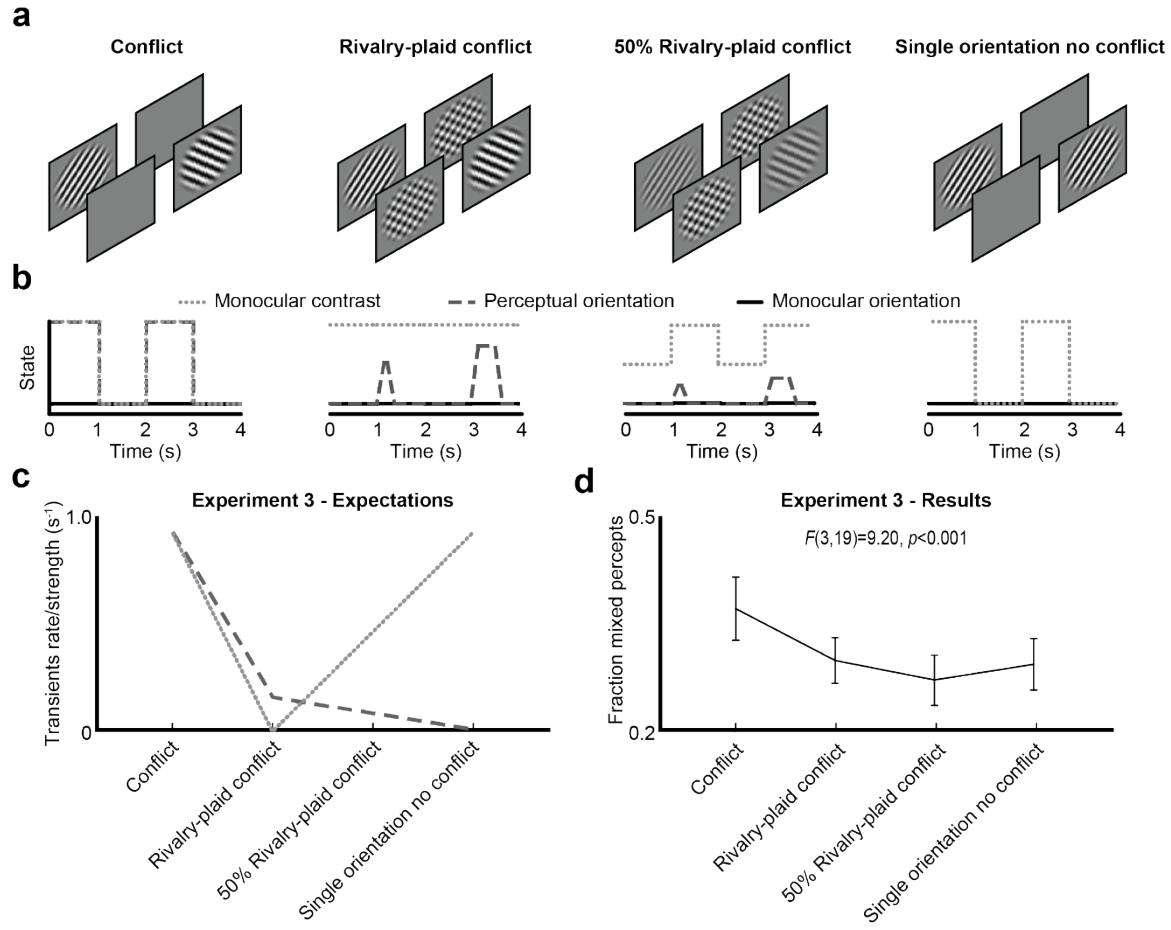
395 4.2 Methods

396 All aspects of the methods were identical to Experiment 2, except for the participants and adaptation
397 type conditions. A new group of twenty human individuals (age: $M = 21.4$, $SD = 2.8$; 16 females)
398 participated in experiment 3. The original conflict condition of Said & Heeger again served as a baseline
399 (first panel from the left in **Figure 4a**) as well as the rivalry-plaid conflict condition from Experiment 1
400 (second panel in **Figure 4a**). One novel condition consisted of a rivalry-plaid conflict condition in which
401 the grating's contrast was lowered by 50% (see third panel in **Figure 4a**). This manipulation created
402 monocular contrast transients but decreased the frequency of perceived orientation reversals. If both
403 transient types equally strong adapt interocular suppression, both factors should cancel each other and
404 no difference is expected between the full and 50% rivalry-plaid conflict.

405 We further disentangled the effects of perceptual orientation and monocular contrast transients by solely
406 removing perceptual orientation transients in the last condition (see fourth panel in **Figure 4a**). This
407 condition consisted of the presentation of a single, non-rotating tilted grating that switched between eyes
408 over time.

409 The latter three conditions affected the degree of perceptual orientation and monocular contrast
410 transients in opposite manners (see lines in **Figure 4b**) and each transient type predicted a different
411 pattern of results (**Figure 4c**).

412 4.1 Results & Discussion


413 The fraction mixed percepts significantly differed across the four adaptation types ($F(3,19) = 9.20$,
414 $p < .001$), showing a U-shaped pattern across conditions (**Figure 4d**). The original conflict adaptation
415 condition produced the highest fraction mixed percepts, the rivalry-plaid conflict and single orientation
416 no conflict conditions scored medium fractions, and the 50% rivalry-plaid had the lowest fraction (for

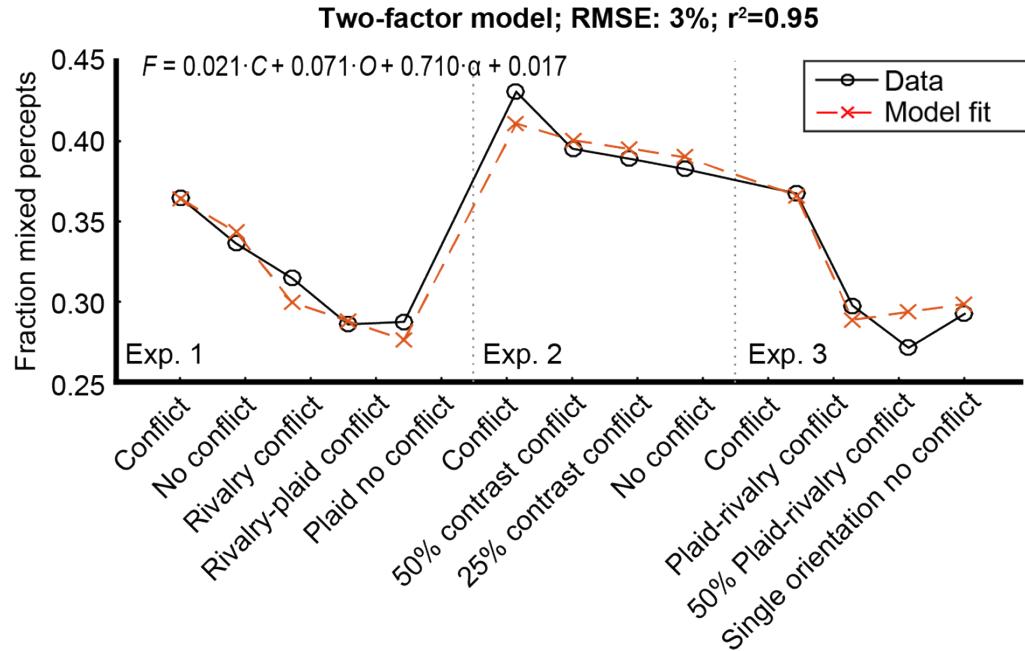
417 post-hoc tests, see **Supplementary Table 3**). The pattern of results most closely matched a pattern
418 predicted by the combination of perceptual orientation and monocular contrast transients. However, the
419 effects of a weaker perceptual orientation transients and stronger monocular contrast transients in the
420 50% as compared to 100% rivalry-plaid condition did not cancel each other out. In fact, the 50% contrast
421 rivalry-plaid condition resulted in a significantly lower fraction mixed percepts than the 100% contrast
422 rivalry-plaid condition ($t(19)=1.787, p = .045$), indicating that the weakening of perceptual orientation
423 transients had a stronger effect than the strengthening of the monocular contrast transients. In line with
424 this finding, the full removal of perceptual orientation transients with the single orientation no conflict
425 condition decreased the fraction mixed percepts (compared to conflict condition: $M = .10, SD = .14$) to
426 a similar degree as the removal of half the monocular contrast transients ($M = .07, SD = .10$;
427 $t(19) = 1.524, p = .144$).

428 Furthermore, the first and fourth condition were the only conditions that included 100% monocular
429 contrast transients and they produced significantly higher fractions mixed percepts than the other two
430 conditions (Difference: $M = 0.045, SD = 0.066; t(19) = 3.045, p = .007$). The first condition was the
431 only conditions that included frequent perceptual orientation transients and it produced significantly
432 higher fractions mixed percepts than the other conditions (Difference: $M = 0.080, SD = 0.100;$
433 $t(19) = 3.584, p = .002$). The first three conditions were the only conditions which included an
434 orientation conflict between the eyes and they did *not* produce higher fractions mixed percepts than the
435 condition without orientation conflict (Difference: $M = 0.020, SD = 0.048; t(19) = 1.817, p = .085$).

436 In sum, the results of Experiment 3 suggest that mainly adaptation to perceptual orientation transients
437 and to some extent adaptation to monocular contrast transients cause higher fractions of mixed percepts,
438 indicating more non-exclusive dominance and spatially incoherent rivalry. Note again that almost all
439 conditions included orientation conflict but did not produce similar fractions of mixed percepts. This is
440 in contrast with suggestions by Said & Heeger (33).

441

442


443 **Figure 4. Adaptation conditions, transient profiles, predictions, and results of Experiment 3.** Same
444 plots as in **Figure 2 and 3** but now for Experiment 3 with two novel conditions (panel 3-4 at plots (a)
445 and (b)). The pattern of results again reflected a combined weight of monocular contrast and perceptual
446 orientation transients.

447

448 **5. Model – Weighted combinations of transient types**

449 The patterns of results in Experiment 1-3 indicated that the spatial instability of rivalry, measured as the
450 fraction mixed percepts, is most likely enhanced after adaptation to a combination of monocular contrast
451 transients and perceptual orientation transients, but not by monocular orientation transients and not by
452 the presence of orientation conflict between the eyes. To further support this interpretation and to
453 determine the degree of contribution of each individual transient type, we created a step-wise general
454 linear model with the three transient types (monocular contrast, perceptual orientation, and monocular
455 orientation) as well as conflict as predictors of the fraction mixed percepts. The model also included an
456 experiment-dependent intercept α to take into account variance created by differences in the groups of
457 participants across experiments. The fraction mixed percept of the conflict condition, which was
458 included in each experiment, served as the intercept α (Experiment 1: $M = .36$; Experiment 2: $M = .43$;
459 Experiment 1: $M = .37$). The fitted model predicted the results very well, with a root mean squared error
460 (RMSE) of 3% and an r^2 of .95 (**Figure 5**). The betas (i.e., slopes) of the factors monocular orientation
461 transients ($\beta = 0.004, p = .824$) and conflict ($\beta = 0.005, p = .657$) were not significant and therefore
462 removed from the model. The final model's betas for monocular contrast ($\beta_c = 0.021, p = .041$),
463 perceptual orientation ($\beta_o = 0.071, p < .001$) transients, and experiment-dependent intercept ($\beta_g = 0.710,$
464 $p = .001$) were significant. We conclude from this model that the presence of transients during the
465 adaptation phase, whether produced by a change in grating orientation or contrast, and whether
466 perceived or not, adapted and weakened interocular suppression, and disrupted the spatial coherence of
467 the percept in subsequent binocular rivalry.

468

469

470 **Figure 5. General linear model results.** Modelled fraction mixed percepts (dashed red crosses) across
471 the conditions for all experiments as compared to ground truth results (solid black circles) with the
472 factors monocular contrast and perceptual orientation (and an intercept per experiment). The formula is
473 the result of a general linear model with F as fraction mixed percepts, C as the presence (1) or absence
474 (0) of monocular contrast, O as the presence or absence of perceptual orientation transients, and α as the
475 fraction mixed percepts of the conflict condition per experiment (see most left panels in plots (d) in
476 Figure 2-4) that served as an intercept to take into account group differences across experiments.

477

478 **6. General discussion**

479 With a set of three experiments we have assessed whether the precedence of mixed percepts during BR
480 is affected by adaptation to the frequency and strength of stimulus transients or to the degree of
481 interocular conflict as suggested by previous research. The visual transients during adaptation consisted
482 of changes in monocular contrast, perceptual (binocular) orientation, and monocular orientation as a
483 function of time. The fraction mixed percepts, used as a proxy of the degree of the weakening of
484 interocular suppression and spatial destabilization of BR, showed a pattern across a total of 9 distinct
485 conditions that was almost perfectly explained by incidence rates of monocular contrast and perceptual
486 orientation transients. Monocular orientation transients and the presence of a conflict between the eyes
487 as defined in previous work (33) did not explain variance in the pattern of fraction mixed percepts to
488 that degree. We conclude that visual transients affect the depth of interocular suppression during
489 adaptation, resulting in weak, shallow, spatially incoherent binocular rivalry thereafter. Even though
490 monocular contrast transients were inherent to conflict between the eyes in one critical condition (i.e., a
491 blank in one eye and an oriented grating in the other eye), the fact that perceptual orientation transients
492 affected the fraction mixed percepts in the absence of conflict, deems the explanation of visual transients
493 the most parsimonious.

494 The question remains how transients relate to interocular suppression. We suggest that exogenous,
495 involuntary attention may mediate the link between transients and the adaptation of interocular
496 suppression. Even subtle transients (i.e., cues) to one eye automatically draw attention and can bias
497 perceptual dominance towards that eye (3, 40-44). Similarly, subtle difference between the eyes also
498 attract attention, as demonstrated with a change blindness (45) and visual search paradigm (46-48). As
499 dominance of both eyes is strengthened when attention is drawn to both eyes, the mutual, reciprocal
500 suppression between the eyes is also strengthened (49). Our suggestion therefore is the following: the
501 (visual) transients during the adaptation phase attract attention towards the images and, as a result,
502 increase their mutual inhibition (and thus the amount of interocular suppression). As a result, the strength
503 of mutual inhibition is decreased after adaptation, leading to more shallow rivalry (and hence more
504 mixed percepts) during the following adaptation phase.

505 An alternative explanation is related to working memory. Sterzer & Rees (50) identified a brain network
506 including parietal and prefrontal areas involved in working memory to become active when dominance
507 in binocular rivalry was temporally stabilized using intermittent blank presentations as strong transients.
508 In line with this knowledge and an initial proposal (35), they suggested that the sudden disappearance
509 of an image during binocular rivalry activates mnemonic processes dedicated to hold the previously seen
510 image in memory and prioritize it for visual awareness the moment it reappears. This memory process
511 is not restrained to only the most recent image but likely holds and biases perception based on images
512 that are observed for at least the last sixty seconds (51). As an image is prioritized, it will also exert
513 stronger suppression to the rivalling image. As the case in the current study, when both images are
514 subject to transients, both will be prioritized and will mutually inhibit each other, that is strengthen
515 interocular suppression and proliferate its adaptation.

516 It is not unlikely that the effects of working memory and attention on interocular suppression interact.
517 The sudden aspect of transients may (involuntarily and unconsciously) both draw attention and
518 strengthen the (mnemonic) representations of previously seen images, therewith enhancing their
519 inhibitory influence on competing images. However, neither explanation requires adaptation of a
520 specialized conflict detection mechanism. In the model put forth in Said & Heeger, this mechanism is
521 based on the idea of ocular opponency neurons (34, 52, 53). Although such neurons appear likely
522 candidates for involvement in binocular rivalry, and the initial prediction of the model by Said & Heeger
523 that included a conflict detection mechanism explained their data well, the results reported here cannot
524 be unified under that model. As such, we currently see no evidence that mechanisms based on ocular
525 opponency neurons should be included in models of binocular rivalry.

526 It is important to note that in our study the intermittent presentation of blanks had a stronger effect on
527 adaptation than the intermittent presentation of plaids. A similar effect has been reported before (54),
528 showing that the presentation of interleaved blanks enhanced the temporal stabilization of rivalry more
529 than plaids. As blanks are more distinct from the orthogonal images and therefore more conspicuous, it
530 makes sense that intermittent presentation of blanks adapted interocular suppression stronger than
531 plaids. This conclusion may appear at odds with our observation that the monocular contrast transients

532 (i.e., blanks) disrupted the spatial coherence of rivalry slightly weaker than perceptual orientation
533 transients. Note however that the monocular contrast transients were not visible but the perceptual
534 orientation transients *were* visible to the observer. As the visibility of transients is positively linked to
535 the degree of drawing attention exogenously (55) and the suppressive strength of an evoked traveling
536 dominance wave (26), it is not unexpected that the perceptually visible orientation transients adapted
537 interocular suppression most. Our observation that a relatively high rate of orientation transients (e.g.,
538 see rivalry condition) increased the fraction mixed percepts more than a relatively low rate (e.g., see
539 plaid-rivalry condition) further confirms the modulatory effect of transient visibility on the adaptation
540 of interocular suppression. Although out of the scope of the current study, it would be interesting to
541 investigate whether perceptual (and thus visible) contrast transients adapt interocular suppression to a
542 similar degree as the perceptual orientation transients that we investigated here. A useful paradigm to
543 test this would be intermittent presentation in which conflicting gratings disappear and appear as a
544 function of time (35, 56),
545 To conclude, perceptual stability as expressed in the precedence of mixed percepts and traveling waves
546 during rivalry is weakened when the eyes are stimulated beforehand with many, strong transients. Future
547 work may shed light on the effect of visible and invisible transients on maintaining and adapting to
548 visual representations.

549 **7. Acknowledgments**

550 Not applicable

551 8. References

552 1. Blake R, Logothetis NK. Visual competition. *Nat Rev Neurosci*. 2002;3(1):13-21.

553 2. Brascamp JW, Klink PC, Levelt WJM. The 'laws' of binocular rivalry: 50 years of Levelt's
554 propositions. *Vision research*. 2015;109:20-37.

555 3. Mitchell JF, Stoner GR, Reynolds JH. Object-based attention determines dominance in
556 binocular rivalry. *Nature*. 2004;429(6990):410.

557 4. Pasley BN, Mayes LC, Schultz RT. Subcortical discrimination of unperceived objects during
558 binocular rivalry. *Neuron*. 2004;42(1):163-72.

559 5. Brascamp JW, Blake R. Inattention abolishes binocular rivalry: Perceptual evidence.
560 *Psychological Science*. 2012;23(10):1159-67.

561 6. Paffen CL, Alais D, Verstraten FA. Attention speeds binocular rivalry. *Psychol Sci*.
562 2006;17(9):752-6.

563 7. Paffen CL, Plukaard S, Kanai R. Symbolic magnitude modulates perceptual strength in
564 binocular rivalry. *Cognition*. 2011;119(3):468-75.

565 8. Frässle S, Sommer J, Jansen A, Naber M, Einhäuser W. Binocular rivalry – frontal activity
566 relates to introspection and action, but not to perception. *Journal of Neuroscience*.

567 9. Leopold DA, Logothetis NK. Multistable phenomena: changing views in perception. *Trends
568 Cogn Sci*. 1999;3(7):254-64.

569 10. Tong F, Meng M, Blake R. Neural bases of binocular rivalry. *Trends Cogn Sci*.
570 2006;10(11):502-11.

571 11. Engel AK, Fries P, König P, Brecht M, Singer W. Temporal binding, binocular rivalry, and
572 consciousness. *Consciousness and cognition*. 1999;8(2):128-51.

573 12. Jiang Y, Costello P, Fang F, Huang M, He S. A gender-and sexual orientation-dependent
574 spatial attentional effect of invisible images. *Proceedings of the National Academy of Sciences*.
575 2006;103(45):17048-52.

576 13. Lin Z, He S. Seeing the invisible: The scope and limits of unconscious processing in binocular
577 rivalry. *Nature Precedings*. 2008;1-.

578 14. Carmel D, Arcaro M, Kastner S, Hasson U. How to create and use binocular rivalry. *JoVE*
579 (Journal of Visualized Experiments). 2010(45):e2030.

580 15. Julesz B, Miller JE. Independent spatial-frequency-tuned channels in binocular fusion and
581 rivalry. *Perception*. 1975;4(2):125-43.

582 16. Blake R, Boothroyd K. The precedence of binocular fusion over binocular rivalry. *Perception*
583 & *Psychophysics*. 1985;37(2):114-24.

584 17. Wolfe JM. Influence of spatial frequency, luminance, and duration on binocular rivalry and
585 abnormal fusion of briefly presented dichoptic stimuli. *Perception*. 1983;12(4):447-56.

586 18. Riesen G, Norcia AM, Gardner JL. Humans perceive binocular rivalry and fusion in a tristable
587 dynamic state. *Journal of Neuroscience*. 2019;39(43):8527-37.

588 19. Moreau G, editor *Visual immersion issues in Virtual Reality: a survey*. 2013 26th Conference
589 on Graphics, Patterns and Images Tutorials; 2013: IEEE.

590 20. Naber M, Frässle S, Einhäuser W. Perceptual rivalry: reflexes reveal the gradual nature of
591 visual awareness. *PLoS One*. 2011;6(6):e20910.

592 21. Lee SH, Blake R, Heeger DJ. Traveling waves of activity in primary visual cortex during
593 binocular rivalry. *Nat Neurosci*. 2005;8(1):22-3.

594 22. Kang MS, Blake R. An integrated framework of spatiotemporal dynamics of binocular rivalry.
595 *Front Hum Neurosci*. 2011;5:88.

596 23. Wilson HR, Blake R, Lee SH. Dynamics of travelling waves in visual perception. *Nature*.
597 2001;412(6850):907-10.

598 24. Knapen T, van Ee R, Blake R. Stimulus motion propels traveling waves in binocular rivalry.
599 *PLoS One*. 2007;2(8):e739.

600 25. Paffen CL, Naber M, Verstraten FA. The spatial origin of a perceptual transition in binocular
601 rivalry. *PLoS One*. 2008;3(6):e2311.

602 26. Naber M, Carter O, Verstraten FA. Suppression wave dynamics: visual field anisotropies and
603 inducer strength. *Vision Res*. 2009;49(14):1805-13.

604 27. Stuit SM, Verstraten FA, Paffen CL. Saliency in a suppressed image affects the spatial origin
605 of perceptual alternations during binocular rivalry. *Vision Res*. 2010.

606 28. Arnold DH, James B, Roseboom W. Binocular rivalry: Spreading dominance through complex
607 images. *Journal of Vision*. 2009;9(13):4-.

608 29. Kang MS, Lee SH, Kim J, Heeger D, Blake R. Modulation of spatiotemporal dynamics of
609 binocular rivalry by collinear facilitation and pattern-dependent adaptation. *Journal of vision*.
610 2010;10(11):3-.

611 30. Blake R, O'Shea RP, Mueller TJ. Spatial zones of binocular rivalry in central and peripheral
612 vision. *Vis Neurosci*. 1992;8(5):469-78.

613 31. Knapen T, Kanai R, Brascamp J, van Boxtel J, van Ee R. Distance in feature space determines
614 exclusivity in visual rivalry. *Vision Res*. 2007;47(26):3269-75.

615 32. Alais D, Melcher D. Strength and coherence of binocular rivalry depends on shared stimulus
616 complexity. *Vision research*. 2007;47(2):269-79.

617 33. Said CP, Heeger DJ. A model of binocular rivalry and cross-orientation suppression. *PLoS
618 computational biology*. 2013;9(3):e1002991.

619 34. Poggio GF, Talbot WH. Mechanisms of static and dynamic stereopsis in foveal cortex of the
620 rhesus monkey. *The Journal of physiology*. 1981;315(1):469-92.

621 35. Leopold DA, Wilke M, Maier A, Logothetis NK. Stable perception of visually ambiguous
622 patterns. *Nat Neurosci*. 2002;5(6):605-9.

623 36. Orbach J, Ehrlich D, Heath HA. Reversibility of the Necker cube: I. An examination of the
624 concept of “satiation of orientation”. *Perceptual and motor skills*. 1963;17(2):439-58.

625 37. Wheatstone C. Contributions to the physiology of vision. Part the first: On some remarkable,
626 and hitherto unobserved, phænomena of binocular vision. *Philos Trans R Soc Lond*. 1838;128:371–94.

627 38. Brascamp JW, Naber M. Eye tracking under dichoptic viewing conditions: a practical solution.
628 *Behavior research methods*. 2017;49(4):1303-9.

629 39. Webster MA. Visual adaptation. *Annual review of vision science*. 2015;1:547-67.

630 40. Hancock S, Andrews TJ. The role of voluntary and involuntary attention in selecting
631 perceptual dominance during binocular rivalry. *Perception*. 2007;36(2):288-98.

632 41. Paffen CL, Van der Stigchel S. Shifting spatial attention makes you flip: Exogenous visual
633 attention triggers perceptual alternations during binocular rivalry. *Atten Percept Psychophys.*
634 2010;72(5):1237-43.

635 42. Ooi TL, He ZJ. Binocular rivalry and visual awareness: The role of attention. *Perception.*
636 1999;28(5):551-74.

637 43. Paffen CL, Alais D. Attentional modulation of binocular rivalry. *Frontiers in Human*
638 *Neuroscience.* 2011;5:105.

639 44. Dieter KC, Melnick MD, Tadin D. When can attention influence binocular rivalry? *Attention,*
640 *Perception, & Psychophysics.* 2015;77(6):1908-18.

641 45. Paffen CL, Hessels RS, Van der Stigchel S. Interocular conflict attracts attention. *Attention,*
642 *Perception, & Psychophysics.* 2012;74(2):251-6.

643 46. Wolfe JM, Franzel SL. Binocularity and visual search. *Perception & Psychophysics.*
644 1988;44(1):81-93.

645 47. Paffen CL, Hooge ITC, Benjamins JS, Hogendoorn H. A search asymmetry for interocular
646 conflict. *Attention, Perception, & Psychophysics.* 2011;73(4):1042-53.

647 48. Zou B, Utochkin IS, Liu Y, Wolfe JM. Binocularity and visual search—Revisited. *Attention,*
648 *Perception, & Psychophysics.* 2017;79(2):473-83.

649 49. Tsuchiya N, Koch C, Gilroy LA, Blake R. Depth of interocular suppression associated with
650 continuous flash suppression, flash suppression, and binocular rivalry. *Journal of vision.* 2006;6(10):6-
651 .

652 50. Sterzer P, Rees G. A neural basis for percept stabilization in binocular rivalry. *Journal of*
653 *cognitive neuroscience.* 2008;20(3):389-99.

654 51. Brascamp JW, Knapen TH, Kanai R, Noest AJ, van Ee R, van den Berg AV. Multi-timescale
655 perceptual history resolves visual ambiguity. *PLoS One.* 2008;3(1):e1497.

656 52. Ohzawa I, Freeman RD. The binocular organization of simple cells in the cat's visual cortex.
657 *Journal of Neurophysiology.* 1986;56(1):221-42.

658 53. Smith EL, Chino YM, Ni J, Ridder WH, Crawford MLJ. Binocular spatial phase tuning
659 characteristics of neurons in the macaque striate cortex. *Journal of Neurophysiology*. 1997;78(1):351-
660 65.

661 54. Kanai R, Knapen TH, van Ee R, Verstraten FA. Disruption of implicit perceptual memory by
662 intervening neutral stimuli. *Vision Res*. 2007;47(20):2675-83.

663 55. Fuller S, Park Y, Carrasco M. Cue contrast modulates the effects of exogenous attention on
664 appearance. *Vision Research*. 2009;49(14):1825-37.

665 56. Maier A, Wilke M, Logothetis NK, Leopold DA. Perception of temporally interleaved
666 ambiguous patterns. *Curr Biol*. 2003;13(13):1076-85.

667

668

669 9. Supplementary materials

670 **Supplementary Table 1.** Post-hoc, paired, two-tailed t-test comparisons of fraction mixed percepts
671 between conditions for Experiment 1.

	No conflict ($M = 0.34$; $SD = 0.18$)	Rivalry conflict ($M = 0.31$; $SD = 0.16$)	Rivalry-plaid ($M = 0.29$; $SD = 0.15$)	Plaid no conflict ($M = 0.29$; $SD = 0.17$)
Conflict	$t = 1.870$, ($M = 0.36$; $SD = 0.18$)	$t = 3.291$, $p = .003$	$t = 4.350$, $p < .001$	$t = 4.443$, $p < .001$
No conflict		$t = 1.924$, $p = .066$	$t = 4.013$, $p < .001$	$t = 4.088$, $p < .001$
Rivalry conflict			$t = 2.231$, $p = .035$	$t = 1.908$, $p = .068$
Rivalry-plaid				$t = -0.140$, $p = .890$

672

673 **Supplementary Table 2.** Post-hoc, paired, one-tailed t-test comparisons of fraction mixed percepts
674 between conditions for Experiment 2.

	50% Contrast ($M = 0.39$; $SD = 0.16$)	25% Contrast ($M = 0.39$; $SD = 0.17$)	No conflict ($M = 0.38$; $SD = 0.15$)
Conflict	$t = 2.065$, ($M = 0.43$; $SD = 0.17$)	$t = 1.874$, $p = .038$	$t = 2.695$, $p = .007$
50% Contrast		$t = 0.433$, $p = .335$	$t = 0.821$, $p = .211$
25% Contrast			$t = 0.315$, $p = .378$

675

676 **Supplementary Table 3.** Post-hoc, paired, one-tailed t-test comparisons of fraction mixed percepts
677 between conditions for Experiment 3.

	100% Rivalry plaid conflict ($M = 0.30$; $SD = 0.14$)	50% Rivalry plaid conflict ($M = 0.27$; $SD = 0.15$)	Single orientation no conflict ($M = 0.29$; $SD = 0.15$)
Conflict	$t = 2.700$, ($M = 0.37$; $SD = 0.19$)	$t = 4.079$, $p < .001$	$t = 3.446$, $p = .001$
100% Rivalry- plaid conflict		$t = 1.787$, $p = .045$	$t = 0.400$, $p = .347$
50% Rivalry- plaid conflict			$t = -1.524$, $p = .072$

678

Two-factor model; RMSE: 3%; $r^2=0.95$

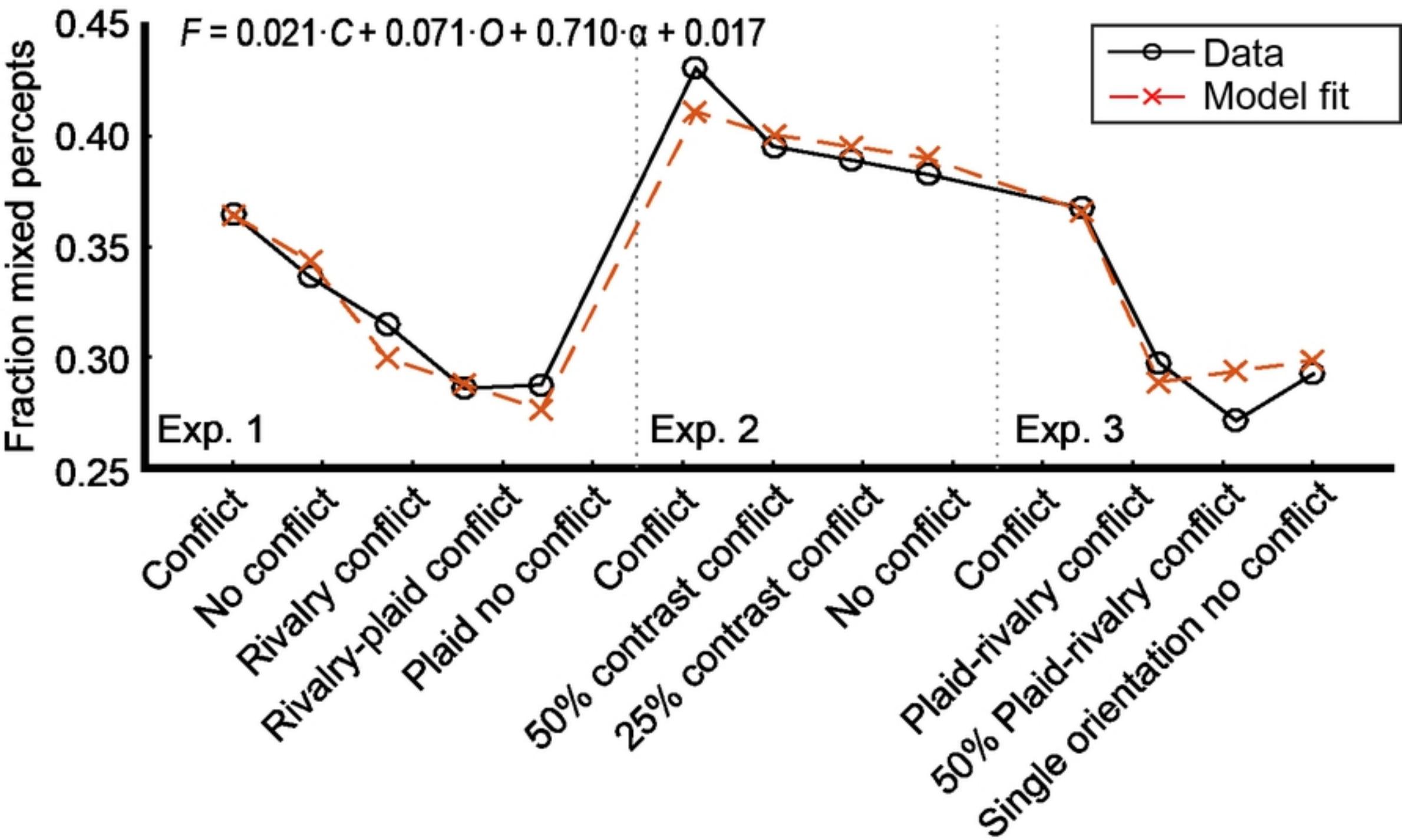


Figure 5

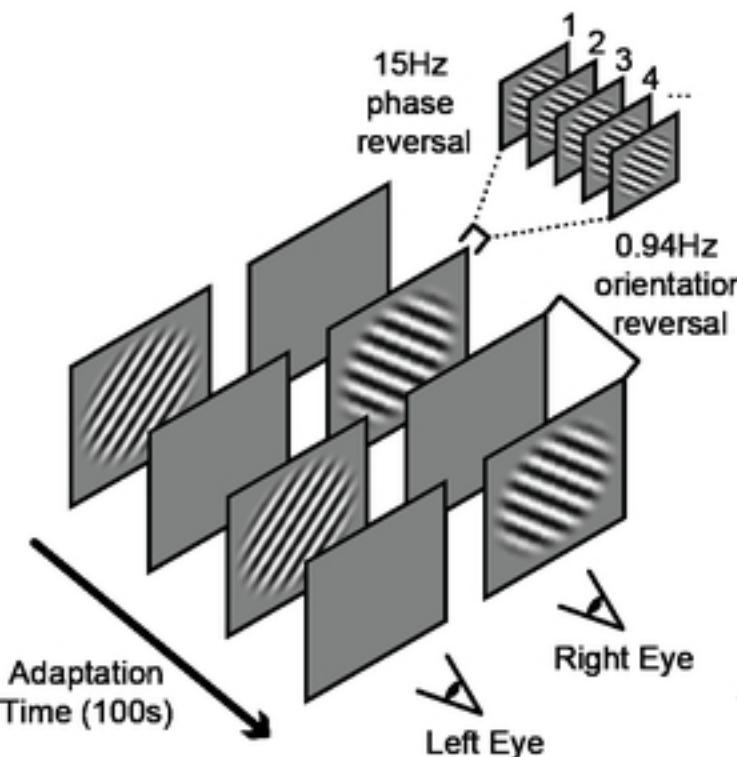
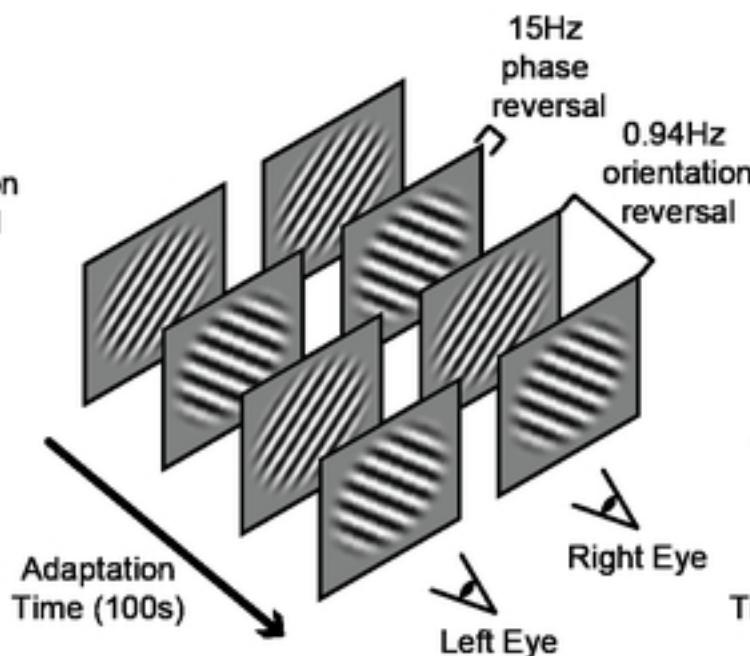
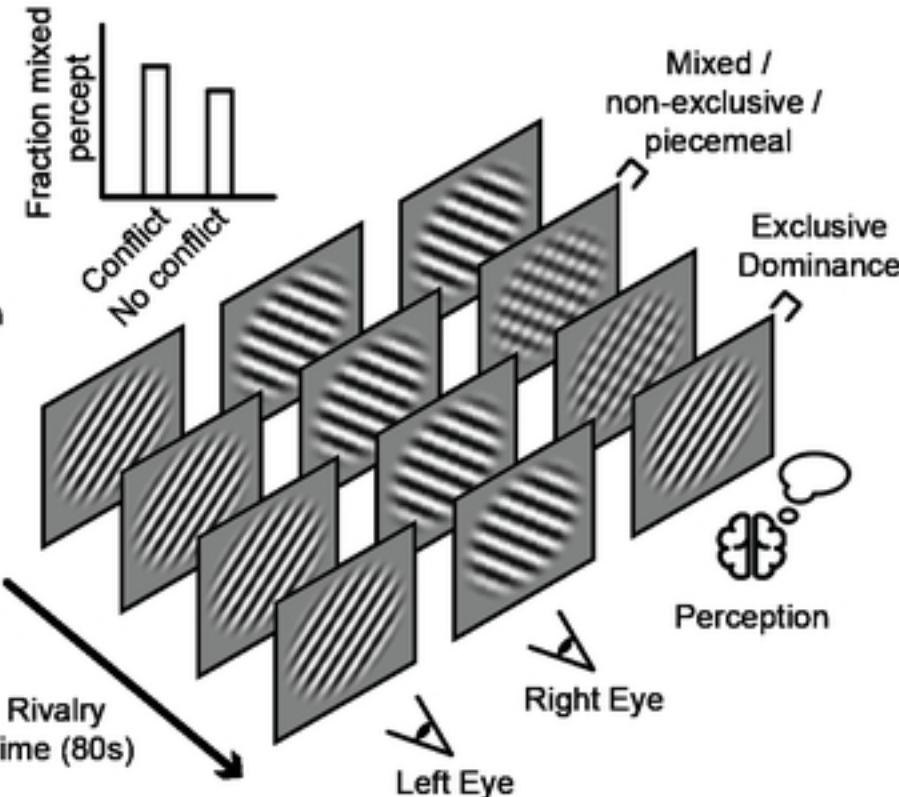



a**Adaptation - conflict****b****Adaptation - no conflict****c****After adaptation - rivalry****Figure 1**

Figure 2

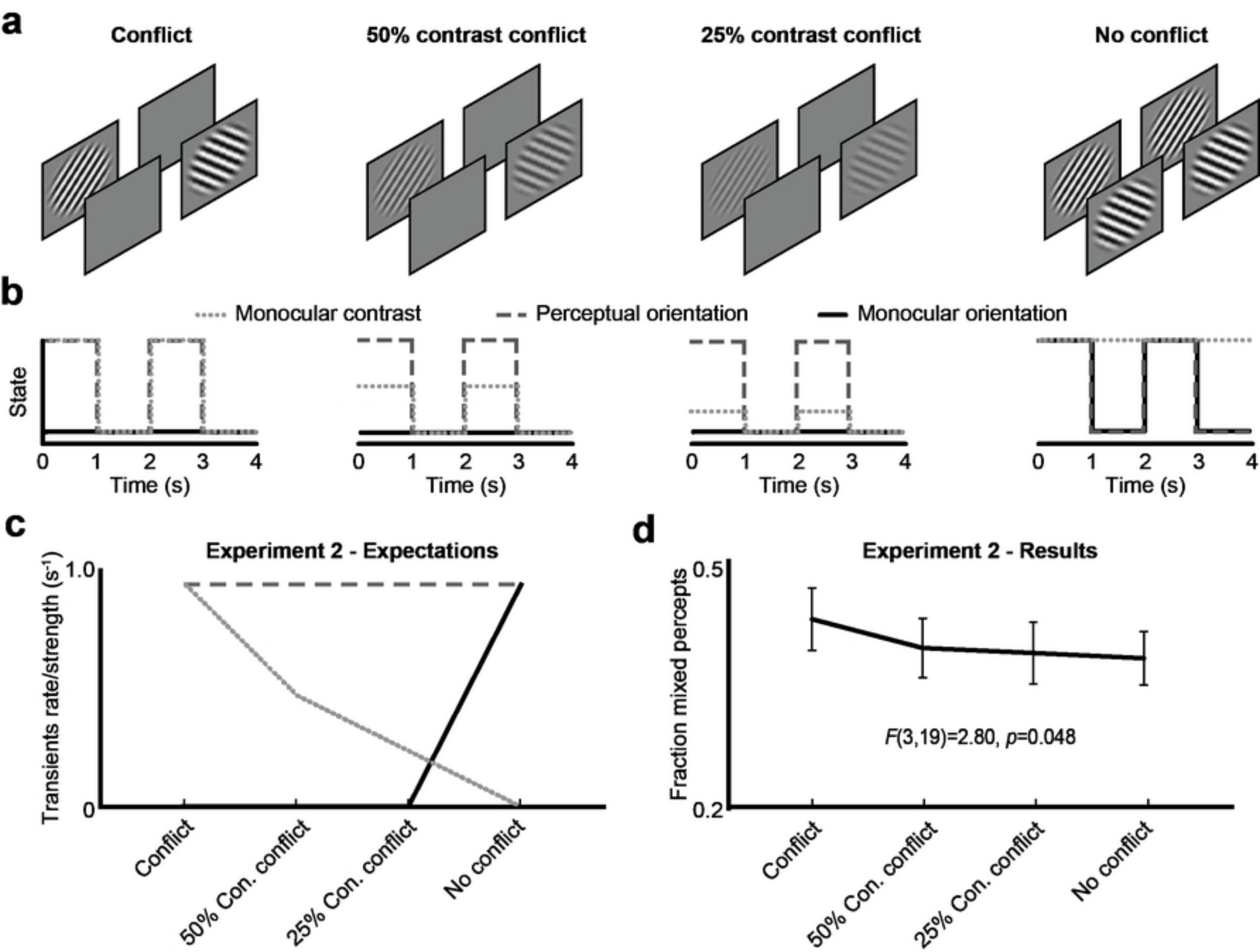
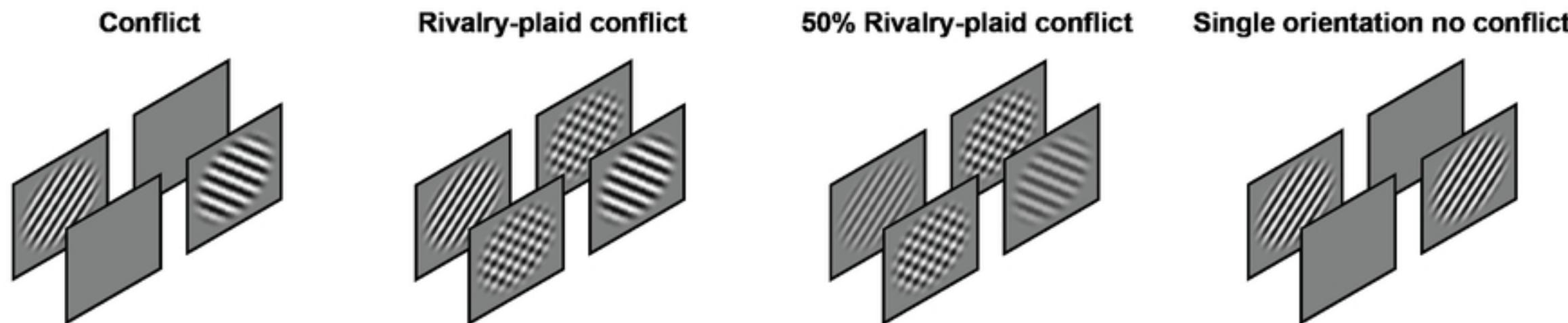
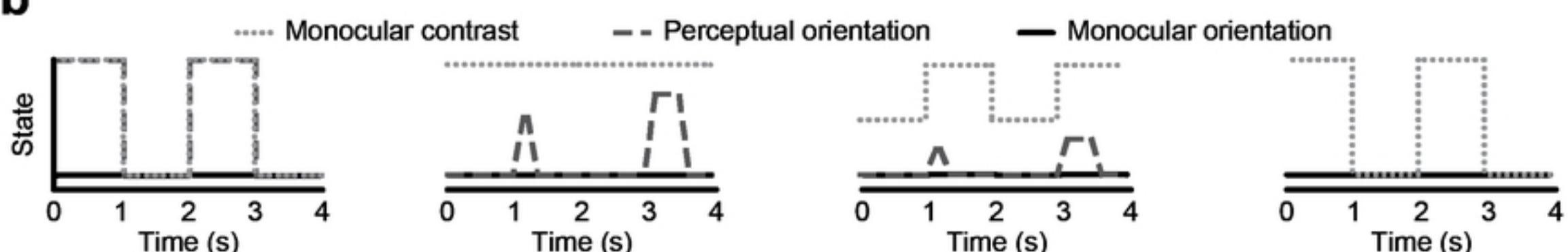
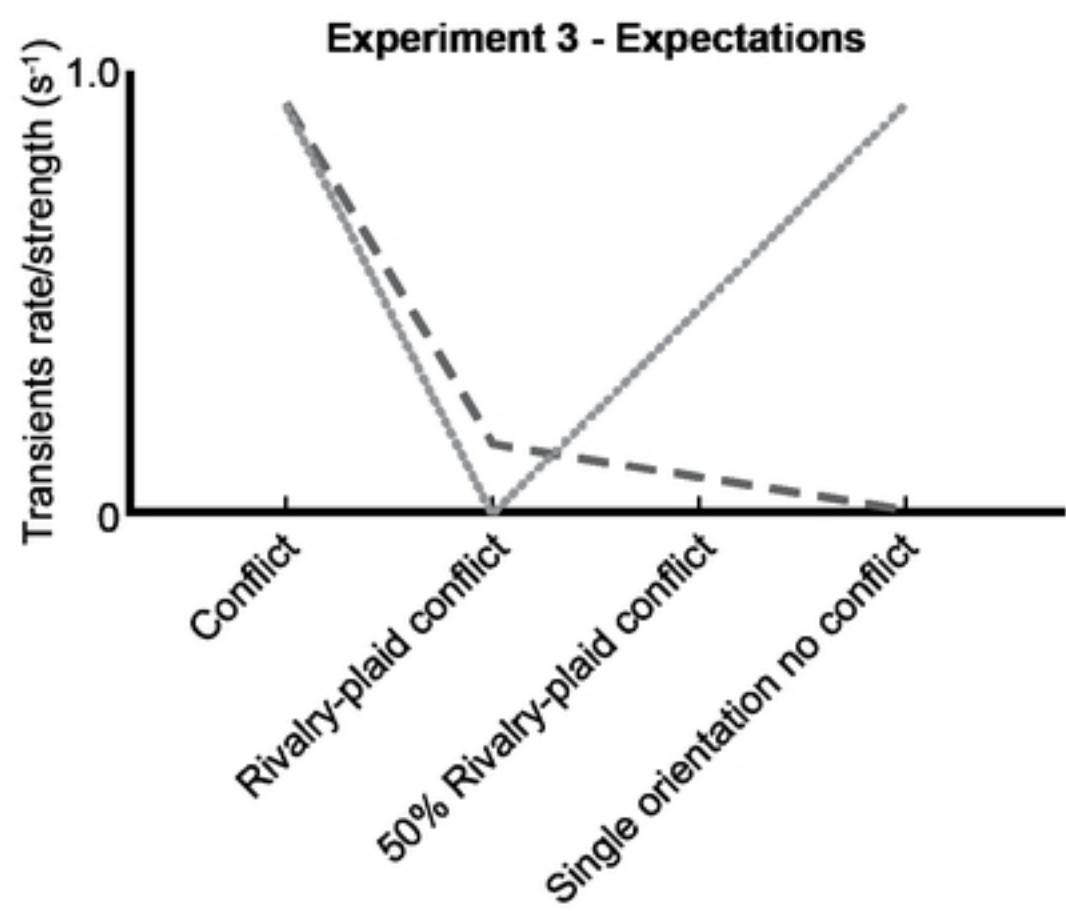
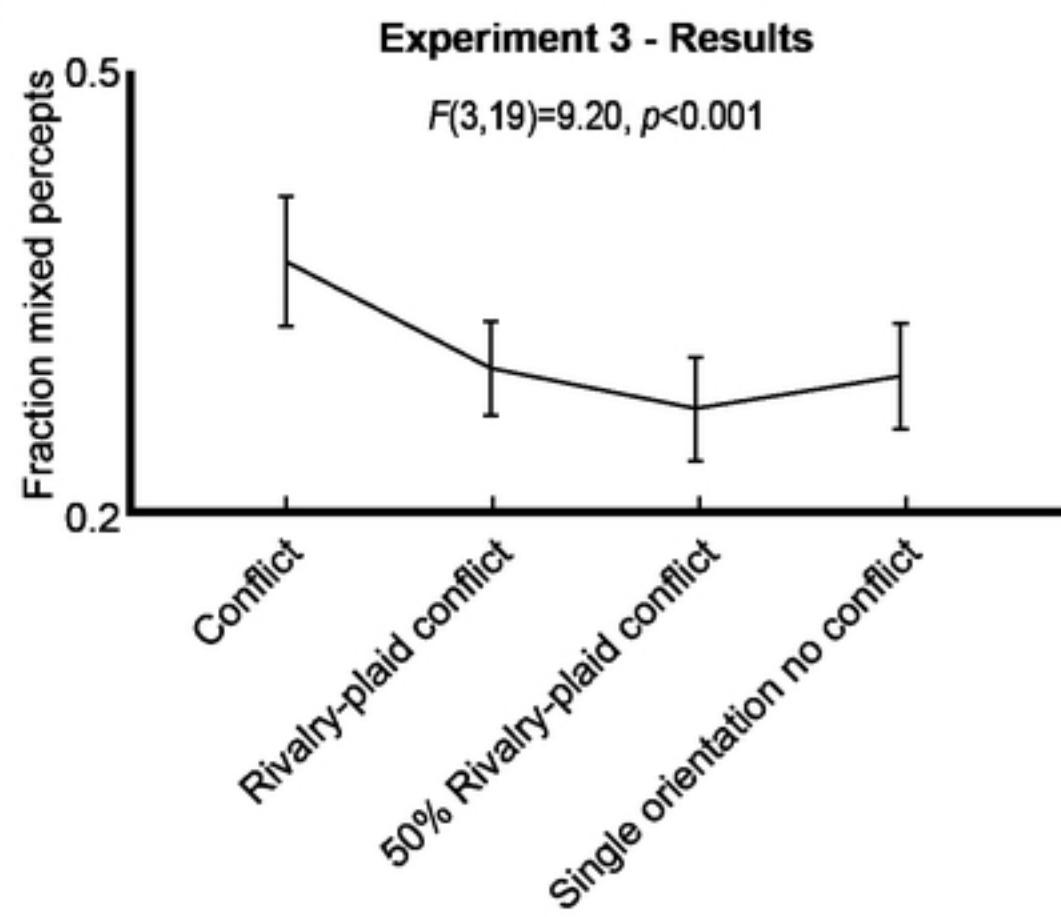






Figure 3

a**b****c****d****Figure 4**