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Incorporating deep learning in the image analysis pipeline has opened the possibility of introducing precision
phenotyping in the field of agriculture. However, to train the neural network, a sufficient amount of training
data must be prepared, which requires a time-consuming manual data annotation process that often becomes
the limiting step. Here, we show that an instance segmentation neural network (Mask R-CNN) aimed to
phenotype the barley seed morphology of various cultivars, can be sufficiently trained purely by a
synthetically generated dataset. Our attempt is based on the concept of domain randomization, where a large
amount of image is generated by randomly orienting the seed object to a virtual canvas. After training with
such a dataset, performance based on recall and the average Precision of the real-world test dataset achieved
96% and 95%, respectively. Applying our pipeline enables extraction of morphological parameters at a large
scale, enabling precise characterization of the natural variation of barley from a multivariate perspective.
Importantly, we show that our approach is effective not only for barley seeds but also for various crops
including rice, lettuce, oat, and wheat, and thus supporting the fact that the performance benefits of this
technique is generic. We propose that constructing and utilizing such synthetic data can be a powerful method
to alleviate human labor costs needed to prepare the training dataset for deep learning in the agricultural

domain.
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Introduction

Deep learning is a process that involves neural network parameter optimization to solve a specific task of
interest'. While traditional machine learning requires a user predefined feature extraction, the neural network
itself can learn the most suitable representation from the dataset and can therefore exert its power on high
content data. In ImageNet Large Scale Visual Recognition Challenge of 20122, a convolutional neural
network (CNN)-based architecture, namely AlexNet, outperformed the human image classification accuracy
to classify 1000 categories®. Since then, deep learning has gathered wide attraction in both the scientific and
industrial communities. Initially, deep learning was actively applied to image classification, however in
recent years, it has been further developed to process various tasks in computer vision, such as semantic
segmentation®>, object detection®’, and instance segmentation®.

Such deep-learning-based image analysis has also been influencing the field of agriculture. This
involves image-based phenotyping including weed detection’, crop disease diagnosis'®!!, fruit detection'?,
and many other applications as listed in the recent review'®>. Meanwhile, not only features from images but
also with that of environmental variables, functionalized a neural network to predict plant water stress for
automated control of greenhouse tomato irrigation'*. Utilizing the numerous and high context data generated
in the relevant field seems to have high affinity with deep learning.

However, one of the drawbacks of using deep learning is the need to prepare a large amount of
labeled data. The ImageNet dataset as of 2012 consists of 1.2 million and 150,000 manually classified images
in the training dataset and validation/test dataset, respectively?. Meanwhile, the COCO 2014 Object Detection
Task constitutes of 328,000 images containing 2.5 million labeled object instances of 91 categories'®. This
order of annotated dataset is generally difficult to prepare for an individual or a research group. In the
agricultural domain, it has been reported that sorghum head detection network can be trained with a dataset
consisting of 52 images with an average of 400 objects per image'®, while a crop stem detection network was
trained starting from 822 images'”. These case studies imply that the amount of data required in a specialized
task may be less compared to a relatively generalized task such as ImageNet classification and COCO
detection challenges. Nonetheless, the necessary and sufficient amount of annotation data to train a neural
network is generally unknown. The annotation process is highly stressful for researchers, as it is like running
a marathon without knowing the goal.

In such cases, domain adaptation (e.g. using ImageNet trained weights as initial network parameter
for the tasks in different domains; also known as transfer learning or fine-tuning) and image augmentation
(e.g. image flipping and rotating) have been the most commonly adopted techniques to compensate for the
lack of data. More recently, several reports have highlighted the challenges with incorporating active learning
or other approaches that loops the annotation and model training to minimize the labor cost!32°.

On the lines of domain adaptation and data augmentation, learning from synthetic (e.g. CG-
generated) images has been highlighted, which is occasionally referred to as the sim2real transfer. One of the
important advantages of using synthetic dataset for training is that the ground truth annotations can be
automatically obtained without the need for human labor. A successful example can be found in person image

analysis method, that uses the image dataset with synthetic human models®' for various uses such as person
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70  pose estimation’?. One drawback of the sim2real approach are the gaps between the synthesized images and
71  the real scenes, e.g. non-realistic appearances. To counter this problem, many studies attempt to generate
72 realistic images from synthetic datasets, such as by domain adaptation techniques using generative
73 adversarial networks (GAN)?. Although the methods for generating realistic images from synthetic images
74 were well studied in the CG community?*, GAN-based approaches are recently being paid attention for
75  generation of training dataset®.

76 While the GAN-based approaches still require a large set of real images, another set of approaches
77  that are bridging the sim2real gap domain randomization, which trains the deep networks using large
78  variations of synthetic images with randomly sampled physical parameters. Although domain randomization
79  is somewhat related to data augmentation, synthetic environment enables representation of variations under
80  many conditions, which is generally difficult to attain by straightforward data augmentation techniques for
81  real images. An early attempt at domain randomization was made by generating the images using different
82 camera positions, object location, and lighting conditions; which is similar to the technique applied to control
83  robots?. For object recognition tasks, Tremblay et al.>’ proposed a method to generate images with a
84  randomized texture on synthetic 3D models.

85 Such sim2real approaches have also been used for the preparation of training data for plant image

86  analysis. While Isokane et al*®

used the synthetic plant models for the estimation of branching pattern,
87  Giuffrida et al. used GAN-generated images to train a neural network for Arabidopsis leaf counting®.
88  Similarly, Arsenovic et al. used StyleGAN®® to create training images for the plant disease image
89  classification’'. Meanwhile, Ward et al. generated artificial images of Arabidopsis rendered from 3D models
90  and utilized them for neural network training in leaf segmentation®. As far as difficulties in the collection
91  and annotation of training datasets is concerned, the use of synthetic images has a huge potential in the plant
92 phenotyping research field.
93 Among various crop phenotypes, seed morphology has been one of the most important traits. This
94 is because the seed shape directly influences the crop yield**. Several studies report identification of genes
95  that enhance rice yield by utilizing Quantitative Trait Locus (QTL) involved in seed width**3>. Moreover,
96  several studies utilized elliptic Fourier descriptors which enables to handle the seed shape as variables
97  representing a closed contour, successfully characterizing the characters of various species*®*°. Focusing on
98  morphological parameters of seeds seems to be powerful metrics for both crop yield improvement and for
99  biological studies. However, including the said reports, many of the previous studies have evaluated the seed
100  shape either by qualitative metrics (e.g. whether the seeds are similar to the parental phenotype), by vernier
101 caliper, or by manual annotation using an image processing software. The phenotyping is generally labor-
102 intensive and cannot completely exclude the possibility of quantification errors that differ by the annotator.
103 To execute a precise and large-scale analysis, automation of the seed phenotyping step was preferred.
104 In recent years, several studies have been reported to systematically analyze the morphology of plant
105  seeds by image analysis. Ayoub et al. focused on barley seed characterization in terms of area, perimeter,
106 length, width, F-circle, and F-shape based on digital camera captured images*’. Herridge et al. utilized a
107  particle analysis function of ImageJ (https://imagej.nih.gov/ij/) to quantify and differentiate the seed size of
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108  Arabidopsis mutants from the background population*!. SmartGrain software has been developed to realize
109 the high throughput phenotyping of crop seeds, successfully identifying the QTL that is responsible for seed
110 length of rice*>. Moreover, commercially available products such as Germination Scanalyzer (Lemnatec,
111 Germany) and PT portable tablet tester (Greenpheno, China) also aim or have the ability to quantify the
112 morphological shape of seeds. However, the aforementioned approaches require the seeds to be sparsely
113 oriented for efficient segmentation. When seeds are physically touching or overlapping each other, they are
114 often detected as a unified region, leading to an abnormal seed shape output. This requires the user to reorient
115  the seeds in a sparse manner, which is a potential bar to secure sufficient amount of biological replicate in
116  the course of high throughput analysis. In such situations, utilizing deep learning-based instance
117  segmentation can be used to overcome such a problem by segmenting the respective seed regions regardless
118  of their orientation. Nonetheless, the annotation process as described previously was thought to be the
119 potential limiting step.

120 In this paper, we show that utilizing a synthetic dataset that the combination and orientation of seeds
121 are artificially rendered, is sufficient to train an instance segmentation of deep neural network to process real-
122 world images. Moreover, applying our pipeline enables us to extract morphological parameters at a large
123 scale with precise characterization of barley natural variation at a multivariate perspective. The proposed
124 method can alleviate the labor-intensive annotation process to realize the rapid development of deep learning-
125  based image analysis pipeline in the agricultural domain as illustrated in Fig. 1. Our method is largely related
126 to the sim2real approaches with the domain randomization, where we generate a number of training images

127 by randomly locating the synthetic seeds with actual textures by changing its orientation and location.

Conventional Method

Input

Input Images

)

bpJestenten e

\/\/\/\/

Proposed Method

Input
. Neural Network
-~ |/ J—
| Synthesis

Seed Image Pool
128 Training Dataset
129 Fig. 1 | Overview of the proposed training process of crop seed instance segmentation.
130
131

132 Contribution: The contribution of this study is two folds. First, this is the first attempt to utilize a synthetic
133 dataset (i.e., a sim2real approach) with domain randomization for the crop seed phenotyping, which can
134 significantly decrease the manual labor for data creation (Fig. 1). Second, we propose a first method that can
135  be used against the densely sampled (i.e., touching or overlapping) seeds using instance segmentation.

136
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137 Methods

138 Plant Materials

139 Barley seeds used in this research are 19 domesticated barley (Hordeum vulgare) accessions and one wild
140 barley (H. spontaneum) accession: B669, Suez (84); C319, Chichou; C346, Shanghai 1; C656, Tibet White
141 4; E245, Addis Ababa 40 (12-24-84); E612, Ethiopia 36 (CI 2225); 1304, Rewari; 1335, Ghazvin 1 (184);
142 1622, H.E.S. 4 (Type 12); 1626, Katana 1 (182); J064, Hayakiso 2; J247, Haruna Nijo; J647, Akashinriki;
143 K692, Eumseong Covered 3; K735, Natsudaikon Mugi; N009, Tilman Camp 1 (1398); T567, Goenen (997);
144 U051, Archer; U353, Opal; and H602, wild barley. All the details of the said cultivars can be obtained at the
145  National BioResource Project (NBRP) (https:/nbrp.jp). Meanwhile, seeds of rice (Oryza Sativa, cv.
146 Nipponbare), oat (Avena sativa, cv. Negusaredaiji), Lettuce (Lactuca sativa, cv. Great Lakes), and wheat
147 (Triticum aestivum cv. CS, Chinese Spring; N61, Norin 61; AL, Arina; and Syn01, a synthetic hexaploid
148  wheat line Ldn/KU-2076 which is generated by a cross between tetraploid wheat Triticum turgidum cv.
149 Langdon and Aegilops tauchii strain KU-2076)* were used in this report.

150 Image Acquisition

151 All the barley seeds were threshed using a commercial table-top threshing system (BGA-RH1, OHYA
152 TANZO SEISAKUSHO & Co., Japan). The seed images were captured on an EPSON GT-X900 A4 scanner
153 with the supplied software without image enhancement. Seeds were spread uniformly on the glass, scanned
154 at 7019 x 5100 px at 600 dpi using a blue colored paper background. For the image acquisition of seeds of
155 rice, oat, lettuce, and wheat, an overhead scanner ScanSnap SV600 (Fujitsu, Japan) was used with the image

156  size of 3508 x 2479 at 300 or 600 dpi.

157 Synthetic Image Generation

158 A total of 20 single seed images per cultivar were isolated and saved as an individual image file. The
159 background regions were removed such that the pixel value other than the area of the seed will be (0,0,0) in
160  RGB color value. As a result, a total of 400 (20 seed images for 20 cultivars) background clean images were
161  prepared to constitute a “seed image pool”. For the background image, four images at the fixed size of 1024
162 x 1024 were cropped from the actual background used in the seed scanning process and were prepared as a
163 “background image pool”.

164 The synthetic image generation process is described as follows. First, an image was randomly
165  selected from the background image pool and pasted to the virtual canvas of size 1024 x 1024. Second,
166  another image was randomly selected from the seed image pool. Image rotation angle was randomly set upon
167  selection. After rotation, the x and y coordinate at which the image was to be pasted was randomly determined,
168  however, the coordinate value was restricted to a certain range so that the image does not exceed the canvas

169  size, which its values were dependent on the selected seed image size and its rotation angle. Third, the seed
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170 image was pasted to the canvas according to the determined values described above. When pasting, alpha
171 masks were generated and utilized in alpha blending such that the area outside of the seed will be transparent
172 and does not affect the canvas image. Moreover, utilizing the alpha mask, the seed perimeter was gaussian
173 blurred to decrease the artifacts resulting from the background removal process of the seed image. Notably,
174 if the region where the image was to be pasted in the canvas already had a seed image, the overlapping
175 proportion of the area of the seeds was calculated. If the calculated value exceeded the ratio of 0.25, pasting
176 was canceled, and another coordinate was chosen again. A maximum of 70 pasting trials were performed to
177 generate a single image.

178 During the synthetic image generation, a mask that has the same image size as the synthetic image
179  was created by first creating a black canvas and coloring the seed region with unique colors based on the
180  coordinate of the placing object. The coloring was performed when the seed were randomly placed in the
181  synthetic image. If a seed to be placed were overlapping an existing seed, the colors in the corresponding
182 region in the mask image were replaced by the foreground color.

183 The above procedure generates an image size of 1024 x 1024 with seeds randomly oriented inside
184 the canvas region. While in real-world images, seeds that are adjacent to the border of the image are cut off.
185  To replicate such a situation, the borders of synthetic images were cropped to obtain the final image. The
186  generated synthetic dataset constitutes 1200 set of data pairs of synthetic and mask image, in which each

187  image has a size of 768 x 768, that were used for neural network training.

188 Model Training

189 We used a Mask R-CNN® implementation on the Keras/Tensorflow  backend
190 (https://github.com/matterport/Mask RCNN). Configuration predefined by the repository was used

1** was used for the feature

191  including the network architectures and losses. The residual network ResNet10
192 extraction. From the initial weights of ResNetl101 obtained by training using MS COCO dataset, we
193 performed fine-tuning using our synthetic seed image dataset for 40 epochs by stochastic gradient descent
194  optimization with a learning rate of 0.001 and batch size of 2. Within the 1200 images of the synthetic dataset,
195 989 were used for training, 11 for validation, and 200 for the test dataset. No image augmentation was
196  performed during training. The synthetic training data has a fixed image size of 768 x 768; however, the input
197  image size for the network was not exclusively defined such that variable sizes of the image can be fed upon

198  inference. The network outputs a set of bounding boxes and seed candidate mask regions with a probability

199  value. A threshold value of 0.5 was defined to isolate the final mask regions.

200 Test dataset for Model Evaluation

201  We prepared a test dataset consisting of 20 images and each image contained seeds derived from a
202 homogeneous population (Fig. 3a). Each image had a size of 2000 x 2000. APso, AP7s, and AP@)].5:.95] per
203  image (cultivar), as well as the mean AP of all images, was calculated. As the seeds to be detected per image
204  averages to approximately 100 objects per image and images itself were acquired under the same

205  experimental condition, we used one image per cultivar for model evaluation. For reference, we also prepared
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200 synthetic images for testing (synthetic test dataset), which were not used for the model training or

validation.

Metrics for Model Evaluation

To assess the accuracy of object detection using Mask R-CNN, we evaluated using two metrics, which were
also used in the evaluation of the original report®. While they are commonly-used measures in object
recognition and instance segmentation, such as in MS COCO'® and Pascal VOC* dataset, we briefly recap
our evaluation metrics for clarity. During the experiment, the evaluation metrics were calculated using the

Mask R-CNN distribution.

Ground truth

—— — _B-l Mask ToU MgnMy, <Large class (seed)
ask IoU = ———— score
9 MguM, 1.0 Detected instances
| _| - S (red: correct, )
| 1 B u=2e 3
I I I Bg UBp g
-r
L 0.0_
Predicted recall 1.0

Fig. 2 | Evaluation metrics for object detection accuracy. (a) The intersection-over-union (IoU) definitions
for bounding boxes and masks. (b) The average precision (AP) defined as the area under the curves (AUC);

shown as the area marked with slanted lines.

Recall. We first measured the recall, which evaluates how well the objects (i.e., seeds) are detected, which
can be obtained by the ratio of true positive matches over the total number of ground-truth objects. To
calculate the recall values, we determined the correct detection when the detection threshold of the
intersection-over-union (IoU) between the ground-truth and predicted bounding boxes is over 0.5 (Fig. 2a).
In other words, for each ground-truth bounding box, if a detected bounding box overlaps over 50%, it was

counted as the true positive. Hereafter, we denote the recall measures as Recalls.

Average precision (AP) using mask IoUs. The drawbacks of the recall measure include penalizing the false
positive detections and evaluating using the overlaps of bounding boxes that are poor approximation of the
object shape. We, therefore, calculated the average precision (AP) using mask loUs, which can be a measure
of the detection accuracy (in terms of both recall and precision) as well as providing a rough measure of mask
generation accuracy. During the computation of APs, we first compute the IoU between the instance masks
(mask 1oU), as shown in Fig. 2a. AP can be obtained based on the number of correct (i.e., true positive) and

wrong (i.e., false positive) detection determined using a certain threshold of mask IoUs. Fig. 2b summarizes
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the computation of the AP. We sort the detected instances using the class score (i.e., the confidence that the
detected object is a seed, in our case) in the descending order. For the n-th instance, the precision and recall,
based on the mask IoU threshold, are calculated for the subset of instances from 1st to n-th detections. By
repeating the process for each of the instances, we obtain a receiver operating characteristics (ROC) curve
shown in Fig. 2b. The AP is defined as the ratio of the rectangle approximations of the area under the curve
(AUC), which is shown as the area marked by slanted lines in the figure. APs thus takes the value from 0.0
to 1.0 (i.e., 100%). We evaluated APs using multiple mask IoU thresholds. APso and AP7s are computed using
the mask IoU threshold of 0.5 and 0.75, respectively. AP7s becomes a stricter measure than APso, because
AP7s requires the correct matches with more accurate instance masks. Similar to MS COCO evaluation, we
also measured AP@ [.5:.95], which is the average value of APs with IoU thresholds from 0.5 to 0.95 with
the interval of 0.05.

Quantification of Seed Morphology

The main application of the seed instance segmentation is to quantify phenotypes of seeds for analyzing and
comparing morphological traits. In the mask image, morphological variables of seed shape such as area,
width, and height were calculated using the measure.regionprops module of the scikit-image library,
respectively. To analyze the characteristics of seeds across different cultivars, principal component analysis
(PCA) was applied to the variables. In the result section, we briefly present the analysis using different types
of descriptors, computed by elliptic Fourier descriptors (EFD) and variational autoencoder (VAE) both of

which are described below.

Post-processing: Selection of isolated seeds. The instance segmentation network outputs a set of bounding
boxes and seed area candidates as mask images, where some seeds overlap with each other. To analyze the
seed morphology (or use for further phenotyping applications), it is required to select the seeds that are
isolated (i.e., not partly hidden) from neighboring seed instances. To select such seeds, post-processing step
was introduced. First, the bounding box coordinates were checked whether it resides inside the 5 px margin
of the image. The bounding boxes that protrude the margin were removed. Second, using the solidity (ratio
of the region of interest area against its convex hull area) of the respective mask as a metric, the 25% lower
quantile threshold was determined and used to remove the outliers. Similarly, further outliers were removed
by a 5% lower and 95% higher quantile threshold of length-to-width ratio. The threshold was empirically

determined during the analysis.

Elliptic Fourier descriptors (EFD). EFD* has been used to quantify the contour shape of seeds*®, which
approximate the contour shape as the set of different ellipses. During the computation of EFD, segmented
seed images were first converted to binary mask image where the background pixel value was 0 and the seed
area is 1. Next, the contour of the seed was detected by the find contours module of the scikit-image library.
The detected contours were converted to EFD coefficients using the elliptic_fourier descriptors module of

pyefd library (https://github.com/hbldh/pyefd) under the condition of harmonics 20 and with normalization
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s0 as to be rotation and size-invariant. The output was flattened, which converted the shape of the array from
4 x 20 to 80. As the first three coefficients are always or nearly equal to 1, 0, 0 due to the normalization
process, they were discarded upon further analysis. A total of 77 variables were used as descriptors for

principal component analysis (PCA).

Variational autoencoder (VAE). Autoencoder (AE) is a type of neural network with an encoder-decoder
architecture that embeds a high-dimensional input data (e.g., images) to a low-dimensional latent vector, to
correctly decode the input data from the low-dimensional vector. Variational autoencoder (VAE)* is a variant
of AE, where the distribution in the latent space is generated to fit a prior distribution (e.g., Gaussian
distribution, N(0,1)). In a generative model, the low-dimensional parameters in the latent space is often used
as the nonlinear approximation (i.e., dimensional reduction) of the dataset. Similar to other approximation
methods like PCA, the parameters in the latent space estimated by VAE can be used for interpolation for the
data distribution; the input data with different characteristics (e.g., different species) is often well separated
in the space*® compared to the conventional methods (e.g., PCA), without using the ground-truth labels for
the classes during the training. We used a VAE with a CNN-based encoder-decoder network to visualize the
latent space. In brief, the network receives an RGB image which has a shape of 256 x 256 x 3. For the encoder,
input data were first passed through 4 layers of convolution with a filter number of 32, 64, 128, 256,
respectively. Since we fit the latent space to the Gaussian distribution, the log variance and the mean of the
latent space are computed after full-connection layers. For the decoder, the output of the encoder was passed
through 4 layers of deconvolution with filter number 0f 256, 128, 64, 32, respectively. Finally, the convolution
layer with 3 filters was added to convert the data back to an RGB image with its shape identical to the input
image. In our analysis, we utilized the two-dimensional latent space (i.e., the final output of the encoder of

VAE) to visualize the compressed features of the input image.

Software Libraries and Hardware

Computational analysis in this study was performed using Python 3.6. Keras (ver.2.2.4) with Tensorflow (ver.
1.14.0) backend for deep learning related processes. OpenCV3 (ver. 3.4.2) and scikit-image (ver. 0.15.0) was
used for operations in morphological calculations of the seed candidate regions as well as basic image
processing. A single GPU was used for network training and inference. R (ver. 3.5.1) was used for ANOVA

and Tukey post hoc HSD test analysis.
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Results

Preparation of Barley Seed Synthetic Dataset

Examples of seed images captured by the scanner are shown in Fig. 3a. The morphology of barley seeds is
highly variable between cultivars, in terms of size, shape, color, and texture. Moreover, the seeds randomly
come in contact with or partially overlap each other. Determination of the optimal threshold for binarization
may enable isolation of the seed region from the background; however, conventional segmentation methods
such as watershed fail to segment the seed area for morphological quantification (see the results shown in
Fig. S1), indicating that employing a sophisticated segmentation method (in our case, instance segmentation
using Mask R-CNN?®) is indeed required for successful separation of the individual seeds. However, Mask R-
CNN requires annotations of bounding boxes—which circumscribes the seed—and mask images that
necessarily and sufficiently cover the seed area (Fig. S2). Given that the numbers of seeds per image are

abundant (Fig. 3a), the annotation process has been predicted to be labor-intensive.

Seed Image Pool

- | ')
— = “

Image

Mask

Fig. 3 | Data prepared in this study. (a) Images of barley seeds scanned from 20 cultivars. Cultivar names
are described in white text in each image. These images were also used as a real-world test dataset shown in
Table 1. (b) Scheme of generating synthetic images. Images are generated by combining real images of
scanned seeds with the background images on to the virtual canvas. Simultaneously generated ground truth

label (Mask) is shown at the bottom, wherein each seed area is marked with a unique color.

Fig. 3b shows the seed image pool and synthesized dataset obtained using the proposed method (see

Methods for details). Instead of labeling real-world images for use as a training dataset, Mask R-CNN was
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trained using the synthetic dataset (examples shown at the bottom of Fig. 3b), which is generated from the

seed image pool and background image pool (Fig. 3b top) using a domain randomization technique.

Model Evaluation

We show herein the visual results and a quantitative evaluation of object detection and instance segmentation
by Mask R-CNN. The trained Mask R-CNN model outputs a set of bounding box coordinates and masks
images of seed regions (Raw Output) (Fig. 4a top row). Examples of visualized raw output obtained from the
real-world images show that the network can accurately locate and segment the seeds regardless of their
orientation (Fig. 4b and Fig. S3). Table 1 summarizes the quantitative evaluation using the recall and AP
measures (see Method section for details). The efficacy of seed detection was evaluated using the recall
values computed for bounding box coordinates at 50% Intersection of Union (IoU) threshold (Recallso). The
model achieved an average of 95% and 96% on the synthetic and real-world test datasets, respectively. This
indicates that the trained model can locate the position of seeds with very low false negative rate. From the
Average Precision (AP) values, which were computed based on mask regions at varying mask IoU thresholds,
comparable APso were achieved between the synthetic (96%) and real-world (95%) datasets. For higher loU
threshold (AP@ [.5:.95] and AP7s), the values of the synthetic test dataset (73%) exceeded that of the real-
world test dataset (59%). These results suggest that the model’s ability to segment the seed region is better in
the case of the synthetic than the real-world images; however, considering the visual output interpretation
(Fig. 4B) and the values of APso (95%), we judged that seed morphology can be sufficiently determined from
real-world images. The relatively low AP in high IoU in the real-world test dataset is possibly derived from

the subtle variation in the manual annotation of seed mask regions.
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Object Detection

Mask Region

Metric Metrics
Recallso AP@[.5:.95] APso AP7s
Synthetic Test 0.95 0.73 09 093
Dataset
B669 0.92 0.56 0.92 0.84
C319 0.95 0.62 0.91 0.86
C346 0.98 0.64 0.97 0.89
C656 0.96 0.61 0.95 0.92
E245, 0.95 0.63 0.94 0.84
§ E612 0.96 0.66 0.98 0.89
% H602 0.87 0.42 0.78 0.41
) 1304 0.99 0.64 0.98 0.88
@ 1335 0.97 0.67 0.93 0.92
- 1622 0.93 0.62 0.93 0.87
5 1626 0.96 0.65 0.95 0.89
= 1064 0.93 0.65 0.97 0.86
©
e 1247
1647,
K692
K735
NOO9|
T567
U051
......... U3s3

Average|

Table 1 | Model Evaluation. Table describing the evaluation result of the trained Mask R-CNN raw output.
Recall values at the IoU threshold of 50% (Recallso) and Average Precision (AP) at the IoU 50% (APso),
75% (AP7s), and the mean value from IoU 50% to 95% with the step size of 5% (AP@ [.5:.95]) are shown.
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1 1
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Mask R-CNN 1 Mask Region Metrics | i
locoocopoooo |l cocoocoocoocooooooooa a

Post Processing Filtered Output

T e e e e e Rl L] [l
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: : ! Bounding Box :
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! Mask Removal Outlier Removal | 1 | Analysis
! 1 Mask i
1

b Real World Visualized  ©
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d e
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Fig. 4 | Image Analysis pipeline. (2) Summary of the image analysis pipeline. (b) Examples of graphical
output of the trained Mask R-CNN on real-world images. Different colors indicate an individual segmented
seed region. Note that even though the seeds overlap or touch each other, the network can still distinguish
them as independent objects. (c) Examples of detected candidate regions to be filtered in the post-processing
step, indicated using red arrows. Black arrowheads indicate the input image boundary. () Probability density

of the seed areas of the raw output and filtered output. (f) Scatterplot describing the correlation of the seed
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area that was measured by the pipeline (Inferenced Seed Area) and by manual annotation (Ground Truth Seed
Area). Each dot represents the value of a single seed. Black and gray lines indicate the identity line and the
10% error threshold line, respectively. The proportion of the seeds exhibiting error lower or higher than the

10% mark is also displayed.

Post-Processing

As described in the Methods section, we introduced a post-processing step to the raw output to eliminate
detections that are not suitable for further analysis. This process removes seed occlusion due to physical
overlap, incomplete segmentation by the neural network, non-seed objects such as dirt or awn debris, or the
seeds which were partly hidden due to the location being outside the scanned area (Fig. 4c). Fig. 4d and 4e
show the distribution of the seed area before and after post processing. Even though the seed area itself was
not used as a filtering criterion, the area values in the respective cultivars shift from a long-tailed to a normal
distribution, which well reflects the characteristics of a homogenous population (Fig. 4d). A comparison of
the filtered output (Inferenced Seed Area) and hand-measured (Ground Truth Area) values displays a strong
correlation, where the Pearson correlation value is 0.97 (Fig. 4¢). These results suggest that the filtered output

values obtained from our pipeline are reliable for further phenotypic analyses.

Morphological Characterization of Barley Natural Variation

Our pipeline learns from synthetic images, which eases the training dataset preparation process. This pipeline
enables large-scale analysis across multiple cultivars or species. To highlight the important advantages of the
proposed pipeline, we herein demonstrate an array of analyses to morphologically characterize the natural
variation of barley seeds, which highlights the crucial biological features that will provide guidance for
further investigation. We selected 19 out of 20 cultivars which were used to train the neural network; however,
we have acquired a new image that was not used for training or testing in further analysis. One accession,
H602, was excluded from the analysis because the rachis could hardly be removed by husk threshing;
therefore, the detected area did not reflect the true seed shape. From the pipeline, we obtained 4,464
segmented seed images in total (average of 235 seeds per cultivar).

As simple and commonly used morphological features, the seed area, width, length, and length-to-
width ratio per cultivar were extracted from the respective images and are summarized in Fig. 5a-d. With a
sufficient number of biological replicates, we can not only compare the inter-cultivar difference (e.g. median
or average) but also consider the intra-cultivar variance. We applied the Analysis of variance (ANOVA) with
Tukey’s post-hoc test to calculate the statistical difference between cultivars. Interestingly, many cultivars
that visually display similar distribution patterns or medians are grouped into statistically different clusters
(e.g., K735 and K692 in Fig. 5a). The categorization into numbers of clusters in the respective morphological
features suggest that they are regulated by multiple quantitative trait loci. To gain further insight into the

morphology of barley cultivars characterized by various descriptors, we performed a multivariate analysis.
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Fig. 5 | Analysis of natural variation of barley seed morphology. Whiskerplot overlaid with a swarmplot
(colored dot) grouped by barley cultivars. (a) Seed area, (b) seed width, (c) length, and (d) length-to-width
ratio. Diamonds represent outliers. Statistical differences were determined by one-way ANOVA followed by

Tukey post-hoc analysis. Different letters indicate significant differences (p < 0.05).

First, we show the results of a principal component analysis (PCA) using eight predefined descriptors
(area, width, length, length-to-width ratio, eccentricity, solidity, perimeter length, and circularity). The first
two principal components (PC) could explain 88.5% of the total variation (Fig. 6a, b). Although there were
no discrete boundaries, the data points tended to form a cluster unique to the cultivar in the latent space,
indicating that cultivars can be classified to a certain extent according to the said descriptors. (Fig. 6a).
Variables such as seed length (L) and perimeter length (PL) mainly constituted the first PC, with seed
circularity (CS) oriented towards the opposite direction, while seed width (W) and length-to-width ratio had
a major influence in PC2 (Fig. 6b). This is exemplified by the distribution of the slenderest B669 and the
circular-shaped J647 at the far-right and far-left orientation in the latent space. Notably, while width (W)
mainly constituted PC2, the direction of its eigenvector differs from that of length (L). Along with the
moderate value of Pearson’s correlation between length and width (0.5, p < 0.01) (Fig. S4), it is implied that
genes that control both or either of size and length may coexist in the determination of barley seed shape, as

reported in rice®.
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Fig. 6 | Multivariate analysis of barley seed morphology. (a,b) Principal Component analysis (PCA) with
morphological parameters of barley seeds. Each point represents the data point of the respective seed. The
colors correspond to those defined in the color legend displayed below (e). Mean PC1 and PC2 values of
each cultivar are plotted as large circles with text annotations in (a). Eigenvectors of each descriptor are
drawn as arrows in (b). LWR, length-to-width ratio; E, eccentricity; L, seed length; PL, seed perimeter length;
AS, seed area; W, seed width; S, solidity; CS, seed circularity. (c,d) PCA with elliptic Fourier descriptors
(EFD). The colors and point annotated in (c) follow those of (a). Interpolation of the latent space followed
by reconstruction of the contours are displayed in (d). (e,f) Latent space visualization of Variational

Autoencoders (VAE). The colors and point annotated in (e) follows those of (a). Interpolation of the latent
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space followed by image generation using the generator of VAE are displayed in (f).

Next, we extracted the contour shapes of seeds using elliptic Fourier descriptors (EFDs) followed
by PCA (Fig. 6b,c), which is also used in other studies for seed morphological analysis***’. Compared to the
PCA based on the eight morphological descriptors in Fig. 6a, the distributions of respective seeds were
relatively condensed, while the clusters by cultivars were intermixed (Fig. 6¢), possibly because the size
information is lost upon normalization; therefore, EFD can utilize only the contour shape. Interpolating the
latent space in the PC1 axis direction clearly highlights the difference in slenderness of the seed (Fig. 6d and
Fig. S4a, left). PC2 did not show an obvious change in shape when compared to PC1 (Fig. 6d); however, it
seemed to be involved in the sharpness of the edge shape in the longitudinal direction (Fig. S5a, right).
Although further verification is required, rendering the average contours which represent the shapes of the
respective cultivars implies the difference in such metrics (Fig. S5b).

Finally, we trained a variational autoencoder (VAE) for latent space visualization*’. Unlike other
methods using the shape descriptors (i.e., eight simple features or EFDs), the VAE inputs the segmented seed
images, which can thus obtain a representation that well describes the dataset without feature predefinition
(see Methods for details). The learned representation can be visualized into a two-dimensional scatterplot
similar to a PCA (Fig. 6e). Compared to the PCA-based methods, VAE seems to cluster the cultivar in the
latent space more explicitly. While the predefined morphological descriptors extract a limited amount of
information from an image, VAE can handle an entire image itself; hence, the latter theoretically can learn
more complex biological features. Overall, Z1 tend to be involved in the seed color (i.e. brightness) and size,
while Z2 is in seed length (Fig. 6f). Generally, unsupervised learning, utilizing deep neural networks such as
VAE, requires a sufficient amount of data to fully exert its power to learn the representation of the dataset.
The large-scale analysis across various cultivars provides researchers with a novel option to execute such

analyses as demonstrated.

Application in various crop seeds

We further extended our method to verify the efficacy of our approach for other crop seeds. In this report, we
newly trained our model to analyze the seed morphology of wheat, rice, oat, and lettuce, with the respectively
generated synthetic datasets (Fig. 7, top row). Processing the real-world images resulted in a clear
segmentation of each species, regardless of seed size, shape, texture, or color, and background (Fig. 7 middle
and bottom rows). In conclusion, these results strongly suggest the high generalization ability of our presented

method.
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Fig. 7 | Application of our proposed pipeline to seeds of various species. Synthetic data of respective
species were generated (top row) and the neural networks were independently trained. The inference result
against the real-world input images (middle row) were visualized (bottom row). The name of the cultivar per

species is overlaid, respectively.

Discussions

In this research, we showed that utilizing a synthetic dataset can successfully train the instance segmentation
neural network to analyze the real-world images of barley seeds. The values obtained from the image analysis
pipeline was comparable to that of manual annotation (Fig. 4¢), thus achieving high throughput quantification
of seed morphology in various analysis. Moreover, our pipeline requires a limited number of synthesized
images to be added to the pool for creating a synthetic dataset. This is labor cost-efficient and practical
compared to labeling numerous amounts of images required for deep learning.

To completely understand the use of synthetic data for deep learning, we must have a precise
understanding of “what type of features are critical to represent the real world dataset”. In the case of seed
instance segmentation, we presumed that the network must learn the representation that is important for
segregating physically touching or overlapping seeds into an individual object. Therefore, in the course of
designing synthetic images, we prioritized the dataset to contain numerous patterns of seed orientation, rather
than to contain massive patterns of seed textures. Based on the result that the model showed sufficient result
against the test dataset (Fig. 4B, S3, and Table 1), it is suggested that our presumption was legitimate to a
certain extent. However, because the neural network itself is a black box, we cannot discuss more than ex

post facto reasoning. Recently, there have been challenges to understand the representation of biological
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context by various interpretation techniques, exemplified in plant disease classification!'*°. Extending such
techniques applicable to an instance segmentation neural network as used in our study will help verify the
authenticity of both the synthesized dataset and the trained neural network in future studies.

We introduced post-processing to exclude nonintegral mask regions prior to phenotypic analysis (Fig.
4a, bottom row and 4c,d). Theoretically, if we can add a category label to the synthetic dataset to determine
whether the respective regions are suitable for analysis, the neural network may acquire the classification
ability to discriminate such integrity. However, the complexity of synthetic data generation increases, and
miss-detected or incomplete mask regions cannot be excluded. We presume heuristic-based post-processing
is a simple yet powerful approach. Nonetheless, our outlier removal process is based on the assumption that
the seed population is homogeneous. It is important to verify if such filtering is valid against the
heterogeneous population. Notably, SmartGrain also introduces a post-processing step, involving a repetitive
binary dilation and erosion. Those processes were reported to be effective in analyzing the progenies of two
cultivars in rice upon QTL analysis*?. As the post-processing is independent of the neural network in our
pipeline, designing and verifying various methods are important for expanding the functionality of the
analysis pipeline.

The shape and size of seeds (grains) are important agronomic traits that determine the quality and
the yield of crops 3. In recent years, a number of genes have been identified and characterized through genetic
approach, accompanied by laborious phenotyping. In previous studies, researchers manually measured the
shape and size of seeds, which is time-consuming and erroneous; it restricts the number of seeds that the
researcher can analyze. The researchers used to manually select several seeds that seemed to represent the
population in a subjective manner and for this reason, small phenotypic differences between genotypes could
not be detected. Our pipeline can phenotype a large number of seeds without the need to consider the seed
orientation to be sparse in image acquisition and thereby can obtain large amount of data in a short period of
time. This allows easy and sensitive detection of both obvious and subtle phenotypic differences between
cultivars supported by statistical verification (Fig. 5). This will be a breakthrough in identifying
agronomically important genes, especially for molecular genetic research such as genome-wide association
study (GWAS), quantitative trait locus (QTL) analysis, and mutant screening. Thus, will open a new path to
identify genes that were difficult to isolate by conventional approaches.

Moreover, the application of our pipeline is not restricted to barley but can be extended to various
crops such as seeds of wheat, rice, oats, and lettuce (Fig. 7). Our results strongly suggest that our approach
is applicable to any varieties or species in principle, thus is expected to accelerate research in various fields
with similar laborious issues. One example can be an application in characterization of and gene isolation
from seeds of wild species. Cultivated lines possess limited genetic diversity due to bottlenecks in the process
of domestication and breeding, therefore many researchers face challenges to identify agronomically
important genes from wild relatives as a source of genes for improving agronomic traits. As the appearance
of the seeds of wild species is generally more diverse than that of cultivated varieties, development of a
universal method to measure both traits were difficult. Another example is in understanding the development

of seed morphology of wheat. Although the shapes of small florets can be manually quantified from the image
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of a scanned spikelet, the automated quantification has not been realized owing to excess non-seed objects
(e.g., glume, awn, and rachis) in the image. Applying another domain of randomization for synthesizing a
training dataset can be utilized to functionalize a neural network to quantify seed phenotype from such images.

Collectively, we have shown the efficacy of utilizing the synthetic data, based on the concept of
domain randomization to train the neural network for real-world tasks. Recent technical advances in the
computer vision domain have enabled us to generate a realistic image, or even a realistic “virtual reality”
environment, thus will provide more possibilities to give solutions to current image analysis involved
challenges in the agricultural domain. We envision that a collaboration with plant and computer scientists
will open a new point of view for generating a workflow that is valuable for plant phenotyping, leading to a
further understanding of the biology of plants through the complete use of machine learning/deep learning

methods.

Data Availability

Synthetically generated datasets and real-world test datasets can be obtained from the following Github

repository  (https://github.com/totti0223/crop_seed_instance segmentation). Code to reproduce the

deployment of the trained Mask R-CNN and multivariate analysis is formatted as IPython notebooks and can
also be obtained from the same repository. Other data and information regarding the manuscript are available

upon reasonable request.
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Figure Legends

Fig. 1 | Overview of the proposed training process of crop seed instance segmentation.

Fig. 2 | Evaluation metrics for object detection accuracy. (a) The intersection-over-union (IoU) definitions
for bounding boxes and masks. (b) The average precision (AP) defined as the area under the curves (AUC);
shown as the area marked with slanted lines.

Fig. 3 | Data prepared in this study. (a) Images of barley seeds scanned from 20 cultivars. Cultivar names
are described in white text in each image. These images were also used as a real-world test dataset in Table
1. (b) Scheme of generating synthetic images. Images are generated by combining actual scanned seed images
over the background images on to the virtual canvas. Simultaneously generated ground truth label (Mask) is
shown at the bottom in which each seed area is marked with a unique color.

Fig. 4 | Image Analysis pipeline. (2) Summary of the image analysis pipeline. (b) Examples of graphical
output of the trained Mask R-CNN on real-world images. Different colors indicate an individual segmented
seed region. Note that even if the seeds are overlapping or touching each other, the network can discriminate
them as an independent object. (c) Examples of detected candidate regions to be filtered in the post-
processing step indicated in red arrows. Black arrowheads indicate the input image boundary. (¢) Probability
density of the seed areas of the raw output and filtered output. (f) Scatterplot describing the correlation of the
seed area that was measured by the pipeline (Inferenced Seed Area) and by manual annotation (Ground Truth
Seed Area). Each dot represents the value by a single seed. Black and gray lines indicate the identity line and
the 10% error threshold line, respectively. The proportion of the seeds that have lower or higher than the 10%
error is also displayed.

Fig. 5 | Analysis of natural variation of barley seed morphology. Whiskerplot overlaid with a swarmplot
(colored dot) grouped by barley cultivars. (a) Seed area, (b) seed width, (c) length, and (d) length to width
ratio. Diamonds represent outliers. Statistical differences were determined by one-way ANOVA followed by
Tukey post hoc analysis. Different letters indicate significant differences (p<0.05).

Fig. 6 | Multivariate analysis of barley seed morphology. (a,b) Principal Component analysis (PCA) with
morphological parameters of barley seeds. Each point represents the data point of respective seed. The colors
correspond to that defined in the color legend displayed below (e). Mean PC1 and PC2 values of each cultivar
are plotted as large circle with text annotations in (a). Eigenvectors of each descriptor are drawn as arrows in
(b). LWR, length to width ratio; E, eccentricity; L, seed length; PL, seed perimeter length; AS, seed area; W,
seed width; S, solidity; CS, seed circularity. (c,d) PCA with elliptic Fourier descriptors (EFD). The colors
and point annotated of (c) follows that of (a). Interpolation of the latent space followed by reconstruction of
the contours are displayed in (d). (e,f) Latent space visualization of Variational Autoencoders (VAE). The
colors and point annotated of (e) follows that of (a). Interpolation of the latent space followed by image
generation using the generator of VAE are displayed in (f).

Fig. 7 | Application of our proposed pipeline to seeds of various species. Synthetic data of respective
species were generated (top row) and the neural networks were independently trained. The inference result

against the real-world input images (middle row) were visualized (bottom row). The name of the cultivar per
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593  species is overlaid, respectively.

594  Table 1 | Model Evaluation. Table describing the evaluation result of the trained Mask R-CNN raw output.
595 Recall values at the IoU threshold of 50% (Recallso) and Average Precision (AP) at the IoU 50% (APso), 75%
596  (AP7s), and the mean value from IoU 50% to 95% with the step size of 5% (AP@ [.5:.95]) are shown.

597
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