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Incorporating deep learning in the image analysis pipeline has opened the possibility of introducing precision 16 
phenotyping in the field of agriculture. However, to train the neural network, a sufficient amount of training 17 
data must be prepared, which requires a time-consuming manual data annotation process that often becomes 18 
the limiting step. Here, we show that an instance segmentation neural network (Mask R-CNN) aimed to 19 
phenotype the barley seed morphology of various cultivars, can be sufficiently trained purely by a 20 
synthetically generated dataset. Our attempt is based on the concept of domain randomization, where a large 21 
amount of image is generated by randomly orienting the seed object to a virtual canvas. After training with 22 
such a dataset, performance based on recall and the average Precision of the real-world test dataset achieved 23 
96% and 95%, respectively. Applying our pipeline enables extraction of morphological parameters at a large 24 
scale, enabling precise characterization of the natural variation of barley from a multivariate perspective. 25 
Importantly, we show that our approach is effective not only for barley seeds but also for various crops 26 
including rice, lettuce, oat, and wheat, and thus supporting the fact that the performance benefits of this 27 
technique is generic. We propose that constructing and utilizing such synthetic data can be a powerful method 28 
to alleviate human labor costs needed to prepare the training dataset for deep learning in the agricultural 29 
domain. 30 
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 2 

Introduction 32 

Deep learning is a process that involves neural network parameter optimization to solve a specific task of 33 
interest1. While traditional machine learning requires a user predefined feature extraction, the neural network 34 
itself can learn the most suitable representation from the dataset and can therefore exert its power on high 35 
content data. In ImageNet Large Scale Visual Recognition Challenge of 20122, a convolutional neural 36 
network (CNN)-based architecture, namely AlexNet, outperformed the human image classification accuracy 37 
to classify 1000 categories3. Since then, deep learning has gathered wide attraction in both the scientific and 38 
industrial communities. Initially, deep learning was actively applied to image classification, however in 39 
recent years, it has been further developed to process various tasks in computer vision, such as semantic 40 
segmentation4,5, object detection6,7, and instance segmentation8. 41 
 Such deep-learning-based image analysis has also been influencing the field of agriculture. This 42 
involves image-based phenotyping including weed detection9, crop disease diagnosis10,11, fruit detection12, 43 
and many other applications as listed in the recent review13. Meanwhile, not only features from images but 44 
also with that of environmental variables, functionalized a neural network to predict plant water stress for 45 
automated control of greenhouse tomato irrigation14. Utilizing the numerous and high context data generated 46 
in the relevant field seems to have high affinity with deep learning. 47 

However, one of the drawbacks of using deep learning is the need to prepare a large amount of 48 
labeled data. The ImageNet dataset as of 2012 consists of 1.2 million and 150,000 manually classified images 49 
in the training dataset and validation/test dataset, respectively2. Meanwhile, the COCO 2014 Object Detection 50 
Task constitutes of 328,000 images containing 2.5 million labeled object instances of 91 categories15. This 51 
order of annotated dataset is generally difficult to prepare for an individual or a research group. In the 52 
agricultural domain, it has been reported that sorghum head detection network can be trained with a dataset 53 
consisting of 52 images with an average of 400 objects per image16, while a crop stem detection network was 54 
trained starting from 822 images17. These case studies imply that the amount of data required in a specialized 55 
task may be less compared to a relatively generalized task such as ImageNet classification and COCO 56 
detection challenges. Nonetheless, the necessary and sufficient amount of annotation data to train a neural 57 
network is generally unknown. The annotation process is highly stressful for researchers, as it is like running 58 
a marathon without knowing the goal. 59 

In such cases, domain adaptation (e.g. using ImageNet trained weights as initial network parameter 60 
for the tasks in different domains; also known as transfer learning or fine-tuning) and image augmentation 61 
(e.g. image flipping and rotating) have been the most commonly adopted techniques to compensate for the 62 
lack of data. More recently, several reports have highlighted the challenges with incorporating active learning 63 
or other approaches that loops the annotation and model training to minimize the labor cost18–20.  64 

On the lines of domain adaptation and data augmentation, learning from synthetic (e.g. CG-65 
generated) images has been highlighted, which is occasionally referred to as the sim2real transfer. One of the 66 
important advantages of using synthetic dataset for training is that the ground truth annotations can be 67 
automatically obtained without the need for human labor. A successful example can be found in person image 68 
analysis method, that uses the image dataset with synthetic human models21 for various uses such as person 69 
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pose estimation22. One drawback of the sim2real approach are the gaps between the synthesized images and 70 
the real scenes, e.g. non-realistic appearances. To counter this problem, many studies attempt to generate 71 
realistic images from synthetic datasets, such as by domain adaptation techniques using generative 72 
adversarial networks (GAN)23. Although the methods for generating realistic images from synthetic images 73 
were well studied in the CG community24, GAN-based approaches are recently being paid attention for 74 
generation of training dataset25.  75 

While the GAN-based approaches still require a large set of real images, another set of approaches 76 
that are bridging the sim2real gap domain randomization, which trains the deep networks using large 77 
variations of synthetic images with randomly sampled physical parameters. Although domain randomization 78 
is somewhat related to data augmentation, synthetic environment enables representation of variations under 79 
many conditions, which is generally difficult to attain by straightforward data augmentation techniques for 80 
real images. An early attempt at domain randomization was made by generating the images using different 81 
camera positions, object location, and lighting conditions; which is similar to the technique applied to control 82 
robots26. For object recognition tasks, Tremblay et al.27 proposed a method to generate images with a 83 
randomized texture on synthetic 3D models. 84 

Such sim2real approaches have also been used for the preparation of training data for plant image 85 
analysis. While Isokane et al28 used the synthetic plant models for the estimation of branching pattern, 86 
Giuffrida et al. used GAN-generated images to train a neural network for Arabidopsis leaf counting29. 87 
Similarly, Arsenovic et al. used StyleGAN30 to create training images for the plant disease image 88 
classification31. Meanwhile, Ward et al. generated artificial images of Arabidopsis rendered from 3D models 89 
and utilized them for neural network training in leaf segmentation32. As far as difficulties in the collection 90 
and annotation of training datasets is concerned, the use of synthetic images has a huge potential in the plant 91 
phenotyping research field. 92 

Among various crop phenotypes, seed morphology has been one of the most important traits. This 93 
is because the seed shape directly influences the crop yield33. Several studies report identification of genes 94 
that enhance rice yield by utilizing Quantitative Trait Locus (QTL) involved in seed width34,35. Moreover, 95 
several studies utilized elliptic Fourier descriptors which enables to handle the seed shape as variables 96 
representing a closed contour, successfully characterizing the characters of various species36–39. Focusing on 97 
morphological parameters of seeds seems to be powerful metrics for both crop yield improvement and for 98 
biological studies. However, including the said reports, many of the previous studies have evaluated the seed 99 
shape either by qualitative metrics (e.g. whether the seeds are similar to the parental phenotype), by vernier 100 
caliper, or by manual annotation using an image processing software. The phenotyping is generally labor-101 
intensive and cannot completely exclude the possibility of quantification errors that differ by the annotator. 102 
To execute a precise and large-scale analysis, automation of the seed phenotyping step was preferred. 103 

In recent years, several studies have been reported to systematically analyze the morphology of plant 104 
seeds by image analysis. Ayoub et al. focused on barley seed characterization in terms of area, perimeter, 105 
length, width, F-circle, and F-shape based on digital camera captured images40. Herridge et al. utilized a 106 
particle analysis function of ImageJ (https://imagej.nih.gov/ij/) to quantify and differentiate the seed size of 107 
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Arabidopsis mutants from the background population41. SmartGrain software has been developed to realize 108 
the high throughput phenotyping of crop seeds, successfully identifying the QTL that is responsible for seed 109 
length of rice42. Moreover, commercially available products such as Germination Scanalyzer (Lemnatec, 110 
Germany) and PT portable tablet tester (Greenpheno, China) also aim or have the ability to quantify the 111 
morphological shape of seeds. However, the aforementioned approaches require the seeds to be sparsely 112 
oriented for efficient segmentation. When seeds are physically touching or overlapping each other, they are 113 
often detected as a unified region, leading to an abnormal seed shape output. This requires the user to reorient 114 
the seeds in a sparse manner, which is a potential bar to secure sufficient amount of biological replicate in 115 
the course of high throughput analysis. In such situations, utilizing deep learning-based instance 116 
segmentation can be used to overcome such a problem by segmenting the respective seed regions regardless 117 
of their orientation. Nonetheless, the annotation process as described previously was thought to be the 118 
potential limiting step. 119 

In this paper, we show that utilizing a synthetic dataset that the combination and orientation of seeds 120 
are artificially rendered, is sufficient to train an instance segmentation of deep neural network to process real-121 
world images. Moreover, applying our pipeline enables us to extract morphological parameters at a large 122 
scale with precise characterization of barley natural variation at a multivariate perspective. The proposed 123 
method can alleviate the labor-intensive annotation process to realize the rapid development of deep learning-124 
based image analysis pipeline in the agricultural domain as illustrated in Fig. 1. Our method is largely related 125 
to the sim2real approaches with the domain randomization, where we generate a number of training images 126 
by randomly locating the synthetic seeds with actual textures by changing its orientation and location. 127 

 128 
Fig. 1 | Overview of the proposed training process of crop seed instance segmentation. 129 

 130 
 131 

Contribution: The contribution of this study is two folds. First, this is the first attempt to utilize a synthetic 132 
dataset (i.e., a sim2real approach) with domain randomization for the crop seed phenotyping, which can 133 
significantly decrease the manual labor for data creation (Fig. 1). Second, we propose a first method that can 134 
be used against the densely sampled (i.e., touching or overlapping) seeds using instance segmentation. 135 
  136 
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Methods 137 

Plant Materials  138 

Barley seeds used in this research are 19 domesticated barley (Hordeum vulgare) accessions and one wild 139 

barley (H. spontaneum) accession: B669, Suez (84); C319, Chichou; C346, Shanghai 1; C656, Tibet White 140 
4; E245, Addis Ababa 40 (12-24-84); E612, Ethiopia 36 (CI 2225); I304, Rewari; I335, Ghazvin 1 (184); 141 
I622, H.E.S. 4 (Type 12); I626, Katana 1 (182); J064, Hayakiso 2; J247, Haruna Nijo; J647, Akashinriki; 142 
K692, Eumseong Covered 3; K735, Natsudaikon Mugi; N009, Tilman Camp 1 (1398); T567, Goenen (997); 143 
U051, Archer; U353, Opal; and H602, wild barley. All the details of the said cultivars can be obtained at the 144 
National BioResource Project (NBRP) (https://nbrp.jp). Meanwhile, seeds of rice (Oryza Sativa, cv. 145 
Nipponbare), oat (Avena sativa, cv. Negusaredaiji), Lettuce (Lactuca sativa, cv. Great Lakes), and wheat 146 
(Triticum aestivum cv. CS, Chinese Spring; N61, Norin 61; AL, Arina; and Syn01, a synthetic hexaploid 147 
wheat line Ldn/KU-2076 which is generated by a cross between tetraploid wheat Triticum turgidum cv. 148 
Langdon and Aegilops tauchii strain KU-2076)43 were used in this report. 149 

Image Acquisition 150 

All the barley seeds were threshed using a commercial table-top threshing system (BGA-RH1, OHYA 151 
TANZO SEISAKUSHO & Co., Japan). The seed images were captured on an EPSON GT-X900 A4 scanner 152 
with the supplied software without image enhancement. Seeds were spread uniformly on the glass, scanned 153 
at 7019 x 5100 px at 600 dpi using a blue colored paper background. For the image acquisition of seeds of 154 
rice, oat, lettuce, and wheat, an overhead scanner ScanSnap SV600 (Fujitsu, Japan) was used with the image 155 
size of 3508 x 2479 at 300 or 600 dpi.  156 

Synthetic Image Generation 157 

A total of 20 single seed images per cultivar were isolated and saved as an individual image file. The 158 
background regions were removed such that the pixel value other than the area of the seed will be (0,0,0) in 159 
RGB color value. As a result, a total of 400 (20 seed images for 20 cultivars) background clean images were 160 
prepared to constitute a “seed image pool”. For the background image, four images at the fixed size of 1024 161 
x 1024 were cropped from the actual background used in the seed scanning process and were prepared as a 162 
“background image pool”. 163 

The synthetic image generation process is described as follows. First, an image was randomly 164 
selected from the background image pool and pasted to the virtual canvas of size 1024 x 1024. Second, 165 
another image was randomly selected from the seed image pool. Image rotation angle was randomly set upon 166 
selection. After rotation, the x and y coordinate at which the image was to be pasted was randomly determined, 167 
however, the coordinate value was restricted to a certain range so that the image does not exceed the canvas 168 
size, which its values were dependent on the selected seed image size and its rotation angle. Third, the seed 169 
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image was pasted to the canvas according to the determined values described above. When pasting, alpha 170 
masks were generated and utilized in alpha blending such that the area outside of the seed will be transparent 171 
and does not affect the canvas image. Moreover, utilizing the alpha mask, the seed perimeter was gaussian 172 
blurred to decrease the artifacts resulting from the background removal process of the seed image. Notably, 173 
if the region where the image was to be pasted in the canvas already had a seed image, the overlapping 174 
proportion of the area of the seeds was calculated. If the calculated value exceeded the ratio of 0.25, pasting 175 
was canceled, and another coordinate was chosen again. A maximum of 70 pasting trials were performed to 176 
generate a single image. 177 

During the synthetic image generation, a mask that has the same image size as the synthetic image 178 
was created by first creating a black canvas and coloring the seed region with unique colors based on the 179 
coordinate of the placing object. The coloring was performed when the seed were randomly placed in the 180 
synthetic image. If a seed to be placed were overlapping an existing seed, the colors in the corresponding 181 
region in the mask image were replaced by the foreground color.  182 

The above procedure generates an image size of 1024 x 1024 with seeds randomly oriented inside 183 
the canvas region. While in real-world images, seeds that are adjacent to the border of the image are cut off. 184 
To replicate such a situation, the borders of synthetic images were cropped to obtain the final image. The 185 
generated synthetic dataset constitutes 1200 set of data pairs of synthetic and mask image, in which each 186 
image has a size of 768 x 768, that were used for neural network training. 187 

Model Training 188 

We used a Mask R-CNN8 implementation on the Keras/Tensorflow backend 189 
(https://github.com/matterport/Mask_RCNN). Configuration predefined by the repository was used 190 
including the network architectures and losses. The residual network ResNet10144 was used for the feature 191 
extraction. From the initial weights of ResNet101 obtained by training using MS COCO dataset, we 192 
performed fine-tuning using our synthetic seed image dataset for 40 epochs by stochastic gradient descent 193 
optimization with a learning rate of 0.001 and batch size of 2. Within the 1200 images of the synthetic dataset, 194 
989 were used for training, 11 for validation, and 200 for the test dataset. No image augmentation was 195 
performed during training. The synthetic training data has a fixed image size of 768 x 768; however, the input 196 
image size for the network was not exclusively defined such that variable sizes of the image can be fed upon 197 
inference. The network outputs a set of bounding boxes and seed candidate mask regions with a probability 198 
value. A threshold value of 0.5 was defined to isolate the final mask regions. 199 

Test dataset for Model Evaluation 200 

We prepared a test dataset consisting of 20 images and each image contained seeds derived from a 201 
homogeneous population (Fig. 3a). Each image had a size of 2000 x 2000. AP50, AP75, and AP@[.5:.95] per 202 
image (cultivar), as well as the mean AP of all images, was calculated. As the seeds to be detected per image 203 
averages to approximately 100 objects per image and images itself were acquired under the same 204 
experimental condition, we used one image per cultivar for model evaluation. For reference, we also prepared 205 
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200 synthetic images for testing (synthetic test dataset), which were not used for the model training or 206 
validation. 207 

Metrics for Model Evaluation 208 

To assess the accuracy of object detection using Mask R-CNN, we evaluated using two metrics, which were 209 
also used in the evaluation of the original report8. While they are commonly-used measures in object 210 
recognition and instance segmentation, such as in MS COCO15 and Pascal VOC45 dataset, we briefly recap 211 
our evaluation metrics for clarity. During the experiment, the evaluation metrics were calculated using the 212 
Mask R-CNN distribution. 213 
 214 

 215 
Fig. 2 | Evaluation metrics for object detection accuracy. (a) The intersection-over-union (IoU) definitions 216 
for bounding boxes and masks. (b) The average precision (AP) defined as the area under the curves (AUC); 217 
shown as the area marked with slanted lines. 218 
 219 
 220 
Recall. We first measured the recall, which evaluates how well the objects (i.e., seeds) are detected, which 221 
can be obtained by the ratio of true positive matches over the total number of ground-truth objects. To 222 
calculate the recall values, we determined the correct detection when the detection threshold of the 223 
intersection-over-union (IoU) between the ground-truth and predicted bounding boxes is over 0.5 (Fig. 2a). 224 
In other words, for each ground-truth bounding box, if a detected bounding box overlaps over 50%, it was 225 
counted as the true positive. Hereafter, we denote the recall measures as Recall50. 226 
 227 
Average precision (AP) using mask IoUs. The drawbacks of the recall measure include penalizing the false 228 
positive detections and evaluating using the overlaps of bounding boxes that are poor approximation of the 229 
object shape. We, therefore, calculated the average precision (AP) using mask IoUs, which can be a measure 230 
of the detection accuracy (in terms of both recall and precision) as well as providing a rough measure of mask 231 
generation accuracy. During the computation of APs, we first compute the IoU between the instance masks 232 
(mask IoU), as shown in Fig. 2a. AP can be obtained based on the number of correct (i.e., true positive) and 233 
wrong (i.e., false positive) detection determined using a certain threshold of mask IoUs. Fig. 2b summarizes 234 
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the computation of the AP. We sort the detected instances using the class score (i.e., the confidence that the 235 
detected object is a seed, in our case) in the descending order. For the n-th instance, the precision and recall, 236 
based on the mask IoU threshold, are calculated for the subset of instances from 1st to n-th detections. By 237 
repeating the process for each of the instances, we obtain a receiver operating characteristics (ROC) curve 238 
shown in Fig. 2b. The AP is defined as the ratio of the rectangle approximations of the area under the curve 239 
(AUC), which is shown as the area marked by slanted lines in the figure. APs thus takes the value from 0.0 240 
to 1.0 (i.e., 100%). We evaluated APs using multiple mask IoU thresholds. AP50 and AP75 are computed using 241 
the mask IoU threshold of 0.5 and 0.75, respectively. AP75 becomes a stricter measure than AP50, because 242 
AP75 requires the correct matches with more accurate instance masks. Similar to MS COCO evaluation, we 243 
also measured AP@ [.5:.95], which is the average value of APs with IoU thresholds from 0.5 to 0.95 with 244 
the interval of 0.05.  245 

Quantification of Seed Morphology 246 

The main application of the seed instance segmentation is to quantify phenotypes of seeds for analyzing and 247 
comparing morphological traits. In the mask image, morphological variables of seed shape such as area, 248 
width, and height were calculated using the measure.regionprops module of the scikit-image library, 249 
respectively. To analyze the characteristics of seeds across different cultivars, principal component analysis 250 
(PCA) was applied to the variables. In the result section, we briefly present the analysis using different types 251 
of descriptors, computed by elliptic Fourier descriptors (EFD) and variational autoencoder (VAE) both of 252 
which are described below. 253 
 254 
Post-processing: Selection of isolated seeds. The instance segmentation network outputs a set of bounding 255 
boxes and seed area candidates as mask images, where some seeds overlap with each other. To analyze the 256 
seed morphology (or use for further phenotyping applications), it is required to select the seeds that are 257 
isolated (i.e., not partly hidden) from neighboring seed instances. To select such seeds, post-processing step 258 
was introduced. First, the bounding box coordinates were checked whether it resides inside the 5 px margin 259 
of the image. The bounding boxes that protrude the margin were removed. Second, using the solidity (ratio 260 
of the region of interest area against its convex hull area) of the respective mask as a metric, the 25% lower 261 
quantile threshold was determined and used to remove the outliers. Similarly, further outliers were removed 262 
by a 5% lower and 95% higher quantile threshold of length-to-width ratio. The threshold was empirically 263 
determined during the analysis. 264 
 265 
Elliptic Fourier descriptors (EFD). EFD46 has been used to quantify the contour shape of seeds36, which 266 
approximate the contour shape as the set of different ellipses. During the computation of EFD, segmented 267 
seed images were first converted to binary mask image where the background pixel value was 0 and the seed 268 
area is 1. Next, the contour of the seed was detected by the find_contours module of the scikit-image library. 269 
The detected contours were converted to EFD coefficients using the elliptic_fourier_descriptors module of 270 
pyefd library (https://github.com/hbldh/pyefd) under the condition of harmonics 20 and with normalization 271 
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so as to be rotation and size-invariant. The output was flattened, which converted the shape of the array from 272 
4 x 20 to 80. As the first three coefficients are always or nearly equal to 1, 0, 0 due to the normalization 273 
process, they were discarded upon further analysis. A total of 77 variables were used as descriptors for 274 
principal component analysis (PCA). 275 
 276 
Variational autoencoder (VAE). Autoencoder (AE) is a type of neural network with an encoder-decoder 277 
architecture that embeds a high-dimensional input data (e.g., images) to a low-dimensional latent vector, to 278 
correctly decode the input data from the low-dimensional vector. Variational autoencoder (VAE)47 is a variant 279 
of AE, where the distribution in the latent space is generated to fit a prior distribution (e.g., Gaussian 280 
distribution, N(0,1)). In a generative model, the low-dimensional parameters in the latent space is often used 281 
as the nonlinear approximation (i.e., dimensional reduction) of the dataset. Similar to other approximation 282 
methods like PCA, the parameters in the latent space estimated by VAE can be used for interpolation for the 283 
data distribution; the input data with different characteristics (e.g., different species) is often well separated 284 
in the space48 compared to the conventional methods (e.g., PCA), without using the ground-truth labels for 285 
the classes during the training. We used a VAE with a CNN-based encoder-decoder network to visualize the 286 
latent space. In brief, the network receives an RGB image which has a shape of 256 x 256 x 3. For the encoder, 287 
input data were first passed through 4 layers of convolution with a filter number of 32, 64, 128, 256, 288 
respectively. Since we fit the latent space to the Gaussian distribution, the log variance and the mean of the 289 
latent space are computed after full-connection layers. For the decoder, the output of the encoder was passed 290 
through 4 layers of deconvolution with filter number of 256, 128, 64, 32, respectively. Finally, the convolution 291 
layer with 3 filters was added to convert the data back to an RGB image with its shape identical to the input 292 
image. In our analysis, we utilized the two-dimensional latent space (i.e., the final output of the encoder of 293 
VAE) to visualize the compressed features of the input image.  294 

Software Libraries and Hardware 295 

Computational analysis in this study was performed using Python 3.6. Keras (ver.2.2.4) with Tensorflow (ver. 296 
1.14.0) backend for deep learning related processes. OpenCV3 (ver. 3.4.2) and scikit-image (ver. 0.15.0) was 297 
used for operations in morphological calculations of the seed candidate regions as well as basic image 298 
processing. A single GPU was used for network training and inference. R (ver. 3.5.1) was used for ANOVA 299 
and Tukey post hoc HSD test analysis. 300 

  301 
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Results 302 

Preparation of Barley Seed Synthetic Dataset 303 

Examples of seed images captured by the scanner are shown in Fig. 3a. The morphology of barley seeds is 304 
highly variable between cultivars, in terms of size, shape, color, and texture. Moreover, the seeds randomly 305 
come in contact with or partially overlap each other. Determination of the optimal threshold for binarization 306 
may enable isolation of the seed region from the background; however, conventional segmentation methods 307 
such as watershed fail to segment the seed area for morphological quantification (see the results shown in 308 
Fig. S1), indicating that employing a sophisticated segmentation method (in our case, instance segmentation 309 
using Mask R-CNN8) is indeed required for successful separation of the individual seeds. However, Mask R-310 
CNN requires annotations of bounding boxes—which circumscribes the seed—and mask images that 311 
necessarily and sufficiently cover the seed area (Fig. S2). Given that the numbers of seeds per image are 312 
abundant (Fig. 3a), the annotation process has been predicted to be labor-intensive.  313 
 314 

 315 
Fig. 3 | Data prepared in this study. (a) Images of barley seeds scanned from 20 cultivars. Cultivar names 316 
are described in white text in each image. These images were also used as a real-world test dataset shown in 317 
Table 1. (b) Scheme of generating synthetic images. Images are generated by combining real images of 318 
scanned seeds with the background images on to the virtual canvas. Simultaneously generated ground truth 319 
label (Mask) is shown at the bottom, wherein each seed area is marked with a unique color. 320 
 321 
 322 

Fig. 3b shows the seed image pool and synthesized dataset obtained using the proposed method (see 323 
Methods for details). Instead of labeling real-world images for use as a training dataset, Mask R-CNN was 324 
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trained using the synthetic dataset (examples shown at the bottom of Fig. 3b), which is generated from the 325 
seed image pool and background image pool (Fig. 3b top) using a domain randomization technique.  326 

Model Evaluation 327 

We show herein the visual results and a quantitative evaluation of object detection and instance segmentation 328 
by Mask R-CNN. The trained Mask R-CNN model outputs a set of bounding box coordinates and masks 329 
images of seed regions (Raw Output) (Fig. 4a top row). Examples of visualized raw output obtained from the 330 
real-world images show that the network can accurately locate and segment the seeds regardless of their 331 
orientation (Fig. 4b and Fig. S3). Table 1 summarizes the quantitative evaluation using the recall and AP 332 
measures (see Method section for details). The efficacy of seed detection was evaluated using the recall 333 
values computed for bounding box coordinates at 50% Intersection of Union (IoU) threshold (Recall50). The 334 
model achieved an average of 95% and 96% on the synthetic and real-world test datasets, respectively. This 335 
indicates that the trained model can locate the position of seeds with very low false negative rate. From the 336 
Average Precision (AP) values, which were computed based on mask regions at varying mask IoU thresholds, 337 
comparable AP50 were achieved between the synthetic (96%) and real-world (95%) datasets. For higher IoU 338 
threshold (AP@ [.5:.95] and AP75), the values of the synthetic test dataset (73%) exceeded that of the real-339 
world test dataset (59%). These results suggest that the model’s ability to segment the seed region is better in 340 
the case of the synthetic than the real-world images; however, considering the visual output interpretation 341 
(Fig. 4B) and the values of AP50 (95%), we judged that seed morphology can be sufficiently determined from 342 
real-world images. The relatively low AP in high IoU in the real-world test dataset is possibly derived from 343 
the subtle variation in the manual annotation of seed mask regions.  344 
 345 
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 346 
Table 1 | Model Evaluation. Table describing the evaluation result of the trained Mask R-CNN raw output. 347 

Recall values at the IoU threshold of 50% (Recall50) and Average Precision (AP) at the IoU 50% (AP50), 348 
75% (AP75), and the mean value from IoU 50% to 95% with the step size of 5% (AP@ [.5:.95]) are shown. 349 

Object Detection
Metric

Mask Region
Metrics

Recall50 AP@[.5:.95] AP50 AP75

Synthetic Test 
Dataset

0.95 0.73 0.96 0.93

B669 0.92 0.56 0.92 0.84

C319 0.95 0.62 0.91 0.86

C346 0.98 0.64 0.97 0.89

C656 0.96 0.61 0.95 0.92

E245 0.95 0.63 0.94 0.84

E612 0.96 0.66 0.98 0.89

H602 0.87 0.42 0.78 0.41

I304 0.99 0.64 0.98 0.88

I335 0.97 0.67 0.93 0.92

I622 0.93 0.62 0.93 0.87

I626 0.96 0.65 0.95 0.89

J064 0.93 0.65 0.97 0.86

J247 0.94 0.65 0.97 0.86

J647 0.98 0.62 0.98 0.92

K692 0.98 0.69 0.98 0.93

K735 0.95 0.62 0.92 0.86

N009 0.99 0.63 0.99 0.91

T567 0.98 0.63 0.98 0.88

U051 0.96 0.65 0.96 0.89

U353 1.00 0.65 0.98 0.89

Average 0.96 0.59 0.95 0.86
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 350 
Fig. 4 | Image Analysis pipeline. (a) Summary of the image analysis pipeline. (b) Examples of graphical 351 
output of the trained Mask R-CNN on real-world images. Different colors indicate an individual segmented 352 
seed region. Note that even though the seeds overlap or touch each other, the network can still distinguish 353 
them as independent objects. (c) Examples of detected candidate regions to be filtered in the post-processing 354 
step, indicated using red arrows. Black arrowheads indicate the input image boundary. (e) Probability density 355 
of the seed areas of the raw output and filtered output. (f) Scatterplot describing the correlation of the seed 356 
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area that was measured by the pipeline (Inferenced Seed Area) and by manual annotation (Ground Truth Seed 357 
Area). Each dot represents the value of a single seed. Black and gray lines indicate the identity line and the 358 
10% error threshold line, respectively. The proportion of the seeds exhibiting error lower or higher than the 359 
10% mark is also displayed. 360 
 361 

Post-Processing 362 

As described in the Methods section, we introduced a post-processing step to the raw output to eliminate 363 
detections that are not suitable for further analysis. This process removes seed occlusion due to physical 364 
overlap, incomplete segmentation by the neural network, non-seed objects such as dirt or awn debris, or the 365 
seeds which were partly hidden due to the location being outside the scanned area (Fig. 4c). Fig. 4d and 4e 366 
show the distribution of the seed area before and after post processing. Even though the seed area itself was 367 
not used as a filtering criterion, the area values in the respective cultivars shift from a long-tailed to a normal 368 
distribution, which well reflects the characteristics of a homogenous population (Fig. 4d). A comparison of 369 
the filtered output (Inferenced Seed Area) and hand-measured (Ground Truth Area) values displays a strong 370 
correlation, where the Pearson correlation value is 0.97 (Fig. 4e). These results suggest that the filtered output 371 
values obtained from our pipeline are reliable for further phenotypic analyses. 372 

Morphological Characterization of Barley Natural Variation 373 

Our pipeline learns from synthetic images, which eases the training dataset preparation process. This pipeline 374 
enables large-scale analysis across multiple cultivars or species. To highlight the important advantages of the 375 
proposed pipeline, we herein demonstrate an array of analyses to morphologically characterize the natural 376 
variation of barley seeds, which highlights the crucial biological features that will provide guidance for 377 
further investigation. We selected 19 out of 20 cultivars which were used to train the neural network; however, 378 
we have acquired a new image that was not used for training or testing in further analysis. One accession, 379 
H602, was excluded from the analysis because the rachis could hardly be removed by husk threshing; 380 
therefore, the detected area did not reflect the true seed shape. From the pipeline, we obtained 4,464 381 
segmented seed images in total (average of 235 seeds per cultivar).  382 

As simple and commonly used morphological features, the seed area, width, length, and length-to-383 
width ratio per cultivar were extracted from the respective images and are summarized in Fig. 5a-d. With a 384 
sufficient number of biological replicates, we can not only compare the inter-cultivar difference (e.g. median 385 
or average) but also consider the intra-cultivar variance. We applied the Analysis of variance (ANOVA) with 386 
Tukey’s post-hoc test to calculate the statistical difference between cultivars. Interestingly, many cultivars 387 
that visually display similar distribution patterns or medians are grouped into statistically different clusters 388 
(e.g., K735 and K692 in Fig. 5a). The categorization into numbers of clusters in the respective morphological 389 
features suggest that they are regulated by multiple quantitative trait loci. To gain further insight into the 390 
morphology of barley cultivars characterized by various descriptors, we performed a multivariate analysis. 391 
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 392 
Fig. 5 | Analysis of natural variation of barley seed morphology. Whiskerplot overlaid with a swarmplot 393 
(colored dot) grouped by barley cultivars. (a) Seed area, (b) seed width, (c) length, and (d) length-to-width 394 
ratio. Diamonds represent outliers. Statistical differences were determined by one-way ANOVA followed by 395 
Tukey post-hoc analysis. Different letters indicate significant differences (p < 0.05). 396 
 397 
 398 

First, we show the results of a principal component analysis (PCA) using eight predefined descriptors 399 
(area, width, length, length-to-width ratio, eccentricity, solidity, perimeter length, and circularity). The first 400 
two principal components (PC) could explain 88.5% of the total variation (Fig. 6a, b). Although there were 401 
no discrete boundaries, the data points tended to form a cluster unique to the cultivar in the latent space, 402 
indicating that cultivars can be classified to a certain extent according to the said descriptors. (Fig. 6a). 403 
Variables such as seed length (L) and perimeter length (PL) mainly constituted the first PC, with seed 404 
circularity (CS) oriented towards the opposite direction, while seed width (W) and length-to-width ratio had 405 
a major influence in PC2 (Fig. 6b). This is exemplified by the distribution of the slenderest B669 and the 406 
circular-shaped J647 at the far-right and far-left orientation in the latent space. Notably, while width (W) 407 
mainly constituted PC2, the direction of its eigenvector differs from that of length (L). Along with the 408 
moderate value of Pearson’s correlation between length and width (0.5, p < 0.01) (Fig. S4), it is implied that 409 
genes that control both or either of size and length may coexist in the determination of barley seed shape, as 410 
reported in rice49.  411 
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 412 
Fig. 6 | Multivariate analysis of barley seed morphology. (a,b) Principal Component analysis (PCA) with 413 
morphological parameters of barley seeds. Each point represents the data point of the respective seed. The 414 
colors correspond to those defined in the color legend displayed below (e). Mean PC1 and PC2 values of 415 
each cultivar are plotted as large circles with text annotations in (a). Eigenvectors of each descriptor are 416 
drawn as arrows in (b). LWR, length-to-width ratio; E, eccentricity; L, seed length; PL, seed perimeter length; 417 
AS, seed area; W, seed width; S, solidity; CS, seed circularity. (c,d) PCA with elliptic Fourier descriptors 418 
(EFD). The colors and point annotated in (c) follow those of (a). Interpolation of the latent space followed 419 
by reconstruction of the contours are displayed in (d). (e,f) Latent space visualization of Variational 420 
Autoencoders (VAE). The colors and point annotated in (e) follows those of (a). Interpolation of the latent 421 
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space followed by image generation using the generator of VAE are displayed in (f). 422 
 423 
 424 
Next, we extracted the contour shapes of seeds using elliptic Fourier descriptors (EFDs) followed 425 

by PCA (Fig. 6b,c), which is also used in other studies for seed morphological analysis36,37. Compared to the 426 
PCA based on the eight morphological descriptors in Fig. 6a, the distributions of respective seeds were 427 
relatively condensed, while the clusters by cultivars were intermixed (Fig. 6c), possibly because the size 428 
information is lost upon normalization; therefore, EFD can utilize only the contour shape. Interpolating the 429 
latent space in the PC1 axis direction clearly highlights the difference in slenderness of the seed (Fig. 6d and 430 
Fig. S4a, left). PC2 did not show an obvious change in shape when compared to PC1 (Fig. 6d); however, it 431 
seemed to be involved in the sharpness of the edge shape in the longitudinal direction (Fig. S5a, right). 432 
Although further verification is required, rendering the average contours which represent the shapes of the 433 
respective cultivars implies the difference in such metrics (Fig. S5b). 434 

Finally, we trained a variational autoencoder (VAE) for latent space visualization47. Unlike other 435 
methods using the shape descriptors (i.e., eight simple features or EFDs), the VAE inputs the segmented seed 436 
images, which can thus obtain a representation that well describes the dataset without feature predefinition 437 
(see Methods for details). The learned representation can be visualized into a two-dimensional scatterplot 438 
similar to a PCA (Fig. 6e). Compared to the PCA-based methods, VAE seems to cluster the cultivar in the 439 
latent space more explicitly. While the predefined morphological descriptors extract a limited amount of 440 
information from an image, VAE can handle an entire image itself; hence, the latter theoretically can learn 441 
more complex biological features. Overall, Z1 tend to be involved in the seed color (i.e. brightness) and size, 442 
while Z2 is in seed length (Fig. 6f). Generally, unsupervised learning, utilizing deep neural networks such as 443 
VAE, requires a sufficient amount of data to fully exert its power to learn the representation of the dataset. 444 
The large-scale analysis across various cultivars provides researchers with a novel option to execute such 445 
analyses as demonstrated. 446 

Application in various crop seeds 447 

We further extended our method to verify the efficacy of our approach for other crop seeds. In this report, we 448 
newly trained our model to analyze the seed morphology of wheat, rice, oat, and lettuce, with the respectively 449 
generated synthetic datasets (Fig. 7, top row). Processing the real-world images resulted in a clear 450 
segmentation of each species, regardless of seed size, shape, texture, or color, and background (Fig. 7 middle 451 
and bottom rows). In conclusion, these results strongly suggest the high generalization ability of our presented 452 
method. 453 
 454 
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 455 
Fig. 7 | Application of our proposed pipeline to seeds of various species. Synthetic data of respective 456 
species were generated (top row) and the neural networks were independently trained. The inference result 457 
against the real-world input images (middle row) were visualized (bottom row). The name of the cultivar per 458 
species is overlaid, respectively. 459 
 460 

Discussions 461 

In this research, we showed that utilizing a synthetic dataset can successfully train the instance segmentation 462 
neural network to analyze the real-world images of barley seeds. The values obtained from the image analysis 463 
pipeline was comparable to that of manual annotation (Fig. 4e), thus achieving high throughput quantification 464 
of seed morphology in various analysis. Moreover, our pipeline requires a limited number of synthesized 465 
images to be added to the pool for creating a synthetic dataset. This is labor cost-efficient and practical 466 
compared to labeling numerous amounts of images required for deep learning. 467 

 To completely understand the use of synthetic data for deep learning, we must have a precise 468 
understanding of “what type of features are critical to represent the real world dataset”. In the case of seed 469 
instance segmentation, we presumed that the network must learn the representation that is important for 470 
segregating physically touching or overlapping seeds into an individual object. Therefore, in the course of 471 
designing synthetic images, we prioritized the dataset to contain numerous patterns of seed orientation, rather 472 
than to contain massive patterns of seed textures. Based on the result that the model showed sufficient result 473 
against the test dataset (Fig. 4B, S3, and Table 1), it is suggested that our presumption was legitimate to a 474 
certain extent. However, because the neural network itself is a black box, we cannot discuss more than ex 475 
post facto reasoning. Recently, there have been challenges to understand the representation of biological 476 
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context by various interpretation techniques, exemplified in plant disease classification11,50. Extending such 477 
techniques applicable to an instance segmentation neural network as used in our study will help verify the 478 
authenticity of both the synthesized dataset and the trained neural network in future studies. 479 

We introduced post-processing to exclude nonintegral mask regions prior to phenotypic analysis (Fig. 480 
4a, bottom row and 4c,d). Theoretically, if we can add a category label to the synthetic dataset to determine 481 
whether the respective regions are suitable for analysis, the neural network may acquire the classification 482 
ability to discriminate such integrity. However, the complexity of synthetic data generation increases, and 483 
miss-detected or incomplete mask regions cannot be excluded. We presume heuristic-based post-processing 484 
is a simple yet powerful approach. Nonetheless, our outlier removal process is based on the assumption that 485 
the seed population is homogeneous. It is important to verify if such filtering is valid against the 486 
heterogeneous population. Notably, SmartGrain also introduces a post-processing step, involving a repetitive 487 
binary dilation and erosion. Those processes were reported to be effective in analyzing the progenies of two 488 
cultivars in rice upon QTL analysis42. As the post-processing is independent of the neural network in our 489 
pipeline, designing and verifying various methods are important for expanding the functionality of the 490 
analysis pipeline. 491 

The shape and size of seeds (grains) are important agronomic traits that determine the quality and 492 
the yield of crops 33. In recent years, a number of genes have been identified and characterized through genetic 493 
approach, accompanied by laborious phenotyping. In previous studies, researchers manually measured the 494 
shape and size of seeds, which is time-consuming and erroneous; it restricts the number of seeds that the 495 
researcher can analyze. The researchers used to manually select several seeds that seemed to represent the 496 
population in a subjective manner and for this reason, small phenotypic differences between genotypes could 497 
not be detected. Our pipeline can phenotype a large number of seeds without the need to consider the seed 498 
orientation to be sparse in image acquisition and thereby can obtain large amount of data in a short period of 499 
time. This allows easy and sensitive detection of both obvious and subtle phenotypic differences between 500 
cultivars supported by statistical verification (Fig. 5). This will be a breakthrough in identifying 501 
agronomically important genes, especially for molecular genetic research such as genome-wide association 502 
study (GWAS), quantitative trait locus (QTL) analysis, and mutant screening. Thus, will open a new path to 503 
identify genes that were difficult to isolate by conventional approaches. 504 

Moreover, the application of our pipeline is not restricted to barley but can be extended to various 505 
crops such as seeds of wheat, rice, oats, and lettuce (Fig. 7). Our results strongly suggest that our approach 506 
is applicable to any varieties or species in principle, thus is expected to accelerate research in various fields 507 
with similar laborious issues. One example can be an application in characterization of and gene isolation 508 
from seeds of wild species. Cultivated lines possess limited genetic diversity due to bottlenecks in the process 509 
of domestication and breeding, therefore many researchers face challenges to identify agronomically 510 
important genes from wild relatives as a source of genes for improving agronomic traits. As the appearance 511 
of the seeds of wild species is generally more diverse than that of cultivated varieties, development of a 512 
universal method to measure both traits were difficult. Another example is in understanding the development 513 
of seed morphology of wheat. Although the shapes of small florets can be manually quantified from the image 514 
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of a scanned spikelet, the automated quantification has not been realized owing to excess non-seed objects 515 
(e.g., glume, awn, and rachis) in the image. Applying another domain of randomization for synthesizing a 516 
training dataset can be utilized to functionalize a neural network to quantify seed phenotype from such images. 517 

Collectively, we have shown the efficacy of utilizing the synthetic data, based on the concept of 518 
domain randomization to train the neural network for real-world tasks. Recent technical advances in the 519 
computer vision domain have enabled us to generate a realistic image, or even a realistic “virtual reality” 520 
environment, thus will provide more possibilities to give solutions to current image analysis involved 521 
challenges in the agricultural domain. We envision that a collaboration with plant and computer scientists 522 
will open a new point of view for generating a workflow that is valuable for plant phenotyping, leading to a 523 
further understanding of the biology of plants through the complete use of machine learning/deep learning 524 
methods. 525 
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Figure Legends 555 

 556 
Fig. 1 | Overview of the proposed training process of crop seed instance segmentation. 557 
Fig. 2 | Evaluation metrics for object detection accuracy. (a) The intersection-over-union (IoU) definitions 558 
for bounding boxes and masks. (b) The average precision (AP) defined as the area under the curves (AUC); 559 
shown as the area marked with slanted lines. 560 
Fig. 3 | Data prepared in this study. (a) Images of barley seeds scanned from 20 cultivars. Cultivar names 561 
are described in white text in each image. These images were also used as a real-world test dataset in Table 562 
1. (b) Scheme of generating synthetic images. Images are generated by combining actual scanned seed images 563 
over the background images on to the virtual canvas. Simultaneously generated ground truth label (Mask) is 564 
shown at the bottom in which each seed area is marked with a unique color.  565 
Fig. 4 | Image Analysis pipeline. (a) Summary of the image analysis pipeline. (b) Examples of graphical 566 
output of the trained Mask R-CNN on real-world images. Different colors indicate an individual segmented 567 
seed region. Note that even if the seeds are overlapping or touching each other, the network can discriminate 568 
them as an independent object. (c) Examples of detected candidate regions to be filtered in the post-569 
processing step indicated in red arrows. Black arrowheads indicate the input image boundary. (e) Probability 570 
density of the seed areas of the raw output and filtered output. (f) Scatterplot describing the correlation of the 571 
seed area that was measured by the pipeline (Inferenced Seed Area) and by manual annotation (Ground Truth 572 
Seed Area). Each dot represents the value by a single seed. Black and gray lines indicate the identity line and 573 
the 10% error threshold line, respectively. The proportion of the seeds that have lower or higher than the 10% 574 
error is also displayed. 575 
Fig. 5 | Analysis of natural variation of barley seed morphology. Whiskerplot overlaid with a swarmplot 576 
(colored dot) grouped by barley cultivars. (a) Seed area, (b) seed width, (c) length, and (d) length to width 577 
ratio. Diamonds represent outliers. Statistical differences were determined by one-way ANOVA followed by 578 
Tukey post hoc analysis. Different letters indicate significant differences (p<0.05). 579 
Fig. 6 | Multivariate analysis of barley seed morphology. (a,b) Principal Component analysis (PCA) with 580 
morphological parameters of barley seeds. Each point represents the data point of respective seed. The colors 581 
correspond to that defined in the color legend displayed below (e). Mean PC1 and PC2 values of each cultivar 582 
are plotted as large circle with text annotations in (a). Eigenvectors of each descriptor are drawn as arrows in 583 
(b). LWR, length to width ratio; E, eccentricity; L, seed length; PL, seed perimeter length; AS, seed area; W, 584 
seed width; S, solidity; CS, seed circularity. (c,d) PCA with elliptic Fourier descriptors (EFD). The colors 585 
and point annotated of (c) follows that of (a). Interpolation of the latent space followed by reconstruction of 586 
the contours are displayed in (d). (e,f) Latent space visualization of Variational Autoencoders (VAE). The 587 
colors and point annotated of (e) follows that of (a). Interpolation of the latent space followed by image 588 
generation using the generator of VAE are displayed in (f). 589 
Fig. 7 | Application of our proposed pipeline to seeds of various species. Synthetic data of respective 590 
species were generated (top row) and the neural networks were independently trained. The inference result 591 
against the real-world input images (middle row) were visualized (bottom row). The name of the cultivar per 592 



 23 

species is overlaid, respectively. 593 
Table 1 | Model Evaluation. Table describing the evaluation result of the trained Mask R-CNN raw output. 594 
Recall values at the IoU threshold of 50% (Recall50) and Average Precision (AP) at the IoU 50% (AP50), 75% 595 
(AP75), and the mean value from IoU 50% to 95% with the step size of 5% (AP@ [.5:.95]) are shown. 596 

  597 
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