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1 Abstract

2 The brain is an endocrine organ, sensitive to the rhythmic changes in sex hormone

s production that occurs in most mammalian species. In rodents and nonhuman primates,
+ estrogen and progesterone’s impact on the brain is evident across a range of

s spatiotemporal scales. Yet, the influence of sex hormones on the functional architecture of
¢ the human brain is largely unknown. In this dense-sampling, deep phenotyping study, we
7 examine the extent to which endogenous fluctuations in sex hormones alter intrinsic brain
s networks at rest in a woman who underwent brain imaging and venipuncture for 30

¢ consecutive days. Standardized regression analyses illustrate estrogen and progesterone’s
10 widespread influence on cortical dynamics. Time-lagged analyses examined the

11 directionality of these relationships and reveal estrogen’s ability to drive connectivity

12 across major functional brain networks, including the Default Mode and Dorsal Attention
13 Networks, whose hubs are densely populated with estrogen receptors. These results

14 reveal the rhythmic nature in which brain networks reorganize across the human

15 menstrual cycle. Neuroimaging studies that densely sample the individual connectome
16 have begun to transform our understanding of the brain’s functional organization. As

17 these results indicate, taking endocrine factors into account is critical for fully

18 understanding the intrinsic dynamics of the human brain.
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Introduction

The brain is an endocrine organ whose day-to-day function is intimately tied to the action
of neuromodulatory hormones™™. Yet, the study of brain-hormone interactions in human
neuroscience has often been woefully myopic in scope: the classical approach of
interrogating the brain involves collecting data at a single time point from multiple
subjects and averaging across individuals to provide evidence for a
hormone-brain-behavior relationship. This cross-sectional approach obscures the rich,
rhythmic nature of endogenous hormone production. A promising trend in network
neuroscience is to flip the cross-sectional model by tracking small samples of individuals
over timescales of weeks, months, or years to provide insight into how biological,
behavioral, and state-dependent factors influence intra- and inter-individual variability in
the brain’s intrinsic network organization®*. Neuroimaging studies that densely sample
the individual connectome are beginning to transform our understanding of the dynamics
of human brain organization. However, these studies commonly overlook sex steroid
hormones as a source of variability—a surprising omission given that sex hormones are
powerful neuromodulators that display stable circadian, infradian, and circannual
rhythms in nearly all mammalian species. In the present study, we illustrate robust,
time-dependent interactions between the sex steroid hormones 173-estradiol and
progesterone and the functional network organization of the brain over a complete
menstrual cycle, offering compelling evidence that sex hormones drive widespread

patterns of connectivity in the human brain.
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40 Converging evidence from rodent*“®, non-human primate®*”, and human

s neuroimaging studies’ " has established the widespread influence of 173-estradiol and
2 progesterone on regions of the mammalian brain that support higher level cognitive

s functions. Estradiol and progesterone signaling are critical components of cell survival

« and plasticity, exerting excitatory and inhibitory effects that are evident across multiple
s spatial and temporal scales*®. The dense expression of estrogen and progesterone

s receptors (ER; PR) in cortical and subcortical tissue underscores the widespread nature of
s hormone action. For example, in non-human primates ~50% of pyramidal neurons in

s prefrontal cortex (PFC) express ER™ and estradiol regulates dendritic spine proliferation
% in this region”. In rodents, fluctuations in estradiol across the estrous cycle enhance

0 spinogenesis in hippocampal CA1 neurons and progesterone inhibits this effect™.

51 During an average human menstrual cycle, occurring every 25-32 days, women

2 experience a ~12-fold increase in estradiol and an ~800-fold increase in progesterone.

s Despite this striking change in endocrine status, we lack a complete understanding of how
s« the large-scale functional architecture of the human brain responds to rhythmic changes in
s sex hormone production across the menstrual cycle. Much of our understanding of

1820 comes from rodent

s cycle-dependent changes in brain structure!” and function
7 studies, since the length of the human menstrual cycle (at least 5x longer than rodents’)
ss presents experimental hurdles that make longitudinal studies challenging. A common

o solution is to study women a few times throughout their cycle, targeting stages that

so roughly correspond to peak/trough hormone concentrations. Using this ‘sparse-sampling’
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approach, studies have examined resting-state connectivity in discrete stages of the
cycleP#21523; however, some of these findings are undermined by inconsistencies in cycle
staging methods, lack of direct hormone assessments, or limitations in functional
connectivity methods.

In this dense-sampling, deep-phenotyping study, we assessed brain-hormone
interactions over 30 consecutive days representing a complete menstrual cycle. Our
results reveal that intrinsic functional connectivity is influenced by hormone dynamics
across the menstrual cycle at multiple spatiotemporal resolutions. Estradiol and
progesterone conferred robust time-synchronous and time-lagged effects on the brain,
demonstrating that intrinsic fluctuations in sex hormones drive changes in the functional
network architecture of the human brain. Together, these findings provide insight into
how brain networks reorganize across the human menstrual cycle and suggest that
consideration of the hormonal milieu is critical for fully understanding the intrinsic

dynamics of the human brain.

Results

A healthy, naturally-cycling female (author L.P.; age 23) underwent venipuncture and MRI
scanning for 30 consecutive days. The full dataset consists of daily mood, diet, physical
activity, and behavioral assessments; task-based and resting-state fMRI; structural MRI;

and serum assessments of pituitary gonadotropins and ovarian sex hormones.
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s Neuroimaging data, analysis code, and daily behavioral assessments will be publicly

&1 accessible upon publication.

Table 1. Gonadal and pituitary hormones by cycle stage.

Follicular Ovulatory Luteal

Mean (SD) Mean (SD) Mean (SD)

standard range standard range standard range

. 37.9 (15.9) 185.3 (59.0) 85.4 (26.4)
Estradiol (pg/mL) 12.5-166.0 85.8-498.0 43.8-210.0
0.2 (0.2 0.2 (0.2 9.5 (4.8

Progesterone (ng/mL) 0.1(-0.9) 0.1£123 1.8—(23.;
5.9 (0.7) 21.7 (16.4) 5.5 (2.0)

LH (mIU/mL) 2.4-12.6 14.0-95.6 1.0-11.4

6.5 (1.2) 8.1 (3.6) 4.8 (1.3)

FSH (mIU/mL) 3.5-12.5 4.7-21.5 1.7-7.7

Note. Standard reference ranges based on aggregate data from Labcorb (https://www.
labcorp.com/).

22 Endocrine assessments

s Analysis of daily sex hormone (by liquid-chromatography mass-spectrometry; LC-MS)

s« and gonadotropin (by chemiluminescent immunoassay) concentrations confirmed the

s expected rhythmic changes of a typical menstrual cycle, with a total cycle length of 27

ss days. Serum levels of estradiol and progesterone were lowest during menses (day 1-4) and
&7 peaked in late follicular (estradiol) and late luteal (progesterone) phases (Figure (1} Table
s [I). Progesterone concentrations surpassed 5 ng/mL in the luteal phase, signaling an

s ovulatory cycle®.
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Figure 1. Participant’s hormone concentrations plotted by day of cycle. 173-
estradiol, progesterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH)
concentrations fell within standard ranges.

Time-synchronous associations between sex hormones and
whole-brain functional connectivity

To begin, we tested the hypothesis that whole-brain functional connectivity at rest is
associated with intrinsic fluctuations in estradiol and progesterone in a time-synchronous
(i.e. day-by-day) fashion. Based on the enriched expression of ER in PFC1?, we predicted
that the Default Mode, Frontoparietal Control, and Dorsal Attention Networks would be
most sensitive to hormone fluctuations across the cycle. For each session, the brain was
parcellated into 400 cortical regions from the Schaefer atlas?” and 15 subcortical regions

from the Harvard-Oxford atlas (Figure[2C). A summary time-course was extracted from
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each parcel, data were temporally-filtered using a maximal overlap discrete wavelet
transform (scales 3-6; ~0.01-0.17 Hz), and 415 x 415 functional association matrices were
constructed via magnitude-squared coherence (FDR-thresholded at ¢ < .05; see Methods
and Materials for a full description of preprocessing and connectivity estimation). Next,
we specified edgewise regression models, regressing coherence against estradiol and
progesterone over the 30 days of the study. All data were Z-scored prior to analysis and
models were thresholded against empirical null distributions generated through 10,000
iterations of nonparametric permutation testing. Results reported below survived a
conservative threshold of p < .001.

We observed robust increases in coherence as a function of increasing estradiol across
the brain (Figure 2A). When summarizing across networks (computing the mean
association strength across network nodes, where strength was defined per graph theory
as the sum of positive and negative edge weights linked to each node, independently),
components of the Temporal Parietal Network had the strongest positive associations on
average, as well as the most variance (Figure 2D). With the exception of Subcortical nodes,
all networks demonstrated some level of significantly positive association strength (95%
CIs not intersecting zero). We observed a paucity of edges showing inverse associations
(connectivity decreasing while estradiol increased), with no networks demonstrating
significantly negative association strengths on average. These findings suggest that
edgewise functional connectivity is primarily characterized by increased coupling as

estradiol rises over the course of the cycle.
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Figure 2. Whole-brain functional connectivity at rest is associated with intrinsic
fluctuations in estradiol and progesterone. (A) Time-synchronous (i.e. day-by-day)
associations between estradiol and coherence. Hotter colors indicate increased coherence
with higher concentrations of estradiol; cool colors indicate the reverse. Results are
empirically-thresholded via 10,000 iterations of nonparametric permutation testing (p <
.001). Nodes without significant edges are omitted for clarity. (B) Time-synchronous
associations between progesterone and coherence. (C) Cortical parcellations were defined
by the 400-node Schaefer atlas (shown here). An additional 15 subcortical nodes were
defined from the Harvard-Oxford atlas. (D) Mean nodal association strengths by network
and hormone. Error bars give 95% confidence intervals. Abbreviations: DMN, Default
Mode Network; DorsAttn, Dorsal Attention Network; SalVentAttn, Salience/Ventral
Attention Network; SomMot, SomatoMotor Network; TempPar, Temporal Parietal
Network.
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Progesterone, by contrast, yielded a widespread pattern of inverse association across
the brain, such that connectivity decreased as progesterone rose (Figure 2B). Most
networks (with the exception of the Salience/Ventral Attention and SomatoMotor
Networks) still yielded some degree of significantly positive association over time;
however, the general strength of negative associations was larger in magnitude and
significantly nonzero across all networks (Figure 2ID). Together, these results align with
animal models suggesting excitatory and inhibitory roles for estradiol and progesterone,
respectively, manifested here as predominant increases and decreases in functional

connectivity across the cycle.

Time-lagged associations between estradiol and whole-brain functional
connectivity

We then employed time-lagged methods from dynamical systems analysis to further
elucidate the influence of hormonal fluctuations on intrinsic functional connectivity:
specifically, vector autoregression (VAR), which supports more directed, causal inference
than standard regression models. Here we chose to focus exclusively on estradiol for two
reasons: 1) the highly-bimodal time-course of progesterone confers a considerably longer
autocorrelative structure, requiring many more free parameters (i.e. higher-order models,
ultimately affording fewer degrees of freedom); and 2) progesterone lacks an appreciable
pattern of periodicity in its autocovariance with network timeseries, suggesting less
relevance for time-lagged analysis over a single cycle. In contrast, estradiol has a much

smoother time-course that is well-suited for temporal-evolution models such as VAR.

11
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141 In short, VAR solves a simultaneous system of equations that predicts current states of
12 the brain and estradiol from the previous states of each. We report results from

13 second-order VAR models: thus, in order to predict connectivity or hormonal states on a
14 given day of the experiment, we consider their values on both the previous day (hereafter
s referred to as ‘lag 1”) and two days prior (hereafter referred to as ‘lag 2’). See Methods

s and Materials for an additional mathematical description. Ultimately, if brain variance
147 over time is attributable to previous states of estradiol, this suggests that temporal

s dynamics in connectivity may be driven (in part) by fluctuations in hormonal states. Vector
149 autoregressive models were specified for each network edge; as before, all data were

150 Z-scored and models were empirically thresholded against 10,000 iterations of

15t nonparametric permutation testing. Surviving edges were significant at the p < .001 level.
152 When predicting edgewise connectivity states, a powerful disparity emerged between
153 the brain’s autoregressive effects and the effects of estradiol. We observed vast,

1sa  whole-brain associations with prior hormonal states, both at lag 1 and lag 2 (Figure 3A).
155 Perhaps most immediately striking, the sign of these brain-hormone associations inverts
155 between lags, such that it is predominantly positive at lag 1 and predominantly negative
157 at lag 2—this holds for all networks when considering their nodal association strengths
s (Figure[BB). We interpret this as a potential regulatory dance between brain states and

152 hormones over the course of the cycle, with estradiol perhaps playing a role in

10 maintaining both steady states (when estradiol is low) and transiently-high dynamics

11 (When estradiol rises). No such pattern emerged in the brain’s autoregressive effects, with

12
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Figure 3. Whole-brain functional connectivity is linearly dependent on previous states
of estradiol. (A) Time-lagged associations between coherence and estradiol at lag 1 (left)
and lag 2 (right), derived from edgewise vector autoregression models. Hotter colors
indicate a predicted increase in coherence given previous concentrations of estradiol; cool
colors indicate the reverse. Results are empirically-thresholded via 10,000 iterations of
nonparametric permutation testing (p < .001). Nodes without significant edges are omitted
for clarity. (B) Mean nodal association strengths by network and time lag. Error bars give
95% confidence intervals.
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sparse, low-magnitude, and predominantly negative associations at lag 1 and lag 2
(Supplementary Figure 1). The flow of effect between estradiol and edgewise
connectivity was partially unidirectional. Previous states of coherence predicted estradiol
across a number of edges, intersecting all brain networks. This emerged at both lag 1 and
lag 2; however, unlike the lagged effects of estradiol on coherence, association strengths
were predominantly negative and low-magnitude (on average) at both lags
(Supplementary Figure 2). Moreover—and importantly—none of the edges that predicted
estradiol were also significantly predicted by estradiol at either lag (i.e. there was no

evidence of mutual modulation at any network edge).

Time-lagged associations between estradiol and functional network
topologies

Given the findings above, we applied the same time-lagged framework to topological states
of brain networks in order to better capture the directionality and extent of brain-hormone
interactions at the network level. These states were quantified using common graph
theory metrics: namely, the participation coefficient (an estimate of between-network
integration) and global efficiency (an estimate of within-network integration). As before, all
data were Z-scored prior to VAR estimation, and model parameters/fit were compared
against 10,000 iterations of nonparametric permutation testing. We focus on significant
network-level effects below, but a full documentation of our findings is available in

Supplementary Tables 1 and 2.

14
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Table 2. VAR model fit: Between-network participation.

Network Outcome Predictor Estimate SE T (p)
Constant 0.08 0.16 0.49 (.099)

DAN, 0.15 0.18 0.84 (.405)

Participation Estradiol;.; -0.56 0.25 -2.27 (.035)

DAN;., -0.29 0.17 -1.71 (.093)

Estradiol;., 0.53 0.24 2.16 (.042)

R?=0.32 (p =.049); RMSE = 0.79 (p =.050)
Dorsal Attention

Constant 6.88 x 10° 0.12 0.001 (.998)
DAN; ;4 0.06 0.14 0.47 (.627)
Estradiol Estradiol;; 1.12 0.18 6.12 (<.0001)
DAN;., 0.03 0.13 0.24 (.806)
Estradiol;., -0.48 0.18 -2.65 (.007)

R2 = 0.67 (p = .0001); RMSE = 0.59 (p = .0009)

Note. p-values empirically-derived via 10,000 iterations of nonparametric permutation
testing.

1.2 Estradiol and between-network participation

13 As expected, estradiol demonstrated significant autoregressive effects across all models.
s Previous states of estradiol also significantly predicted between-network integration

185 across several intrinsic networks; however, overall model fit (variance accounted for, 22,
s and root mean-squared error, kM .S E) was at best marginal compared to empirical null
1e7 distributions of these statistics. For example, in the Dorsal Attention Network (DAN;

iws Figure[dA-B; Table 2), estradiol was a significant predictor of between-network

180 participation both atlag 1 (b = —0.56, SE' = 0.25,t = —2.27, p = .035) and at lag 2

10 (b=0.53, SE = 0.24,t = 2.16, p = .042). Overall fit for DAN participation, however,

101 rested at the classical frequentist threshold for significance, relative to empirical nulls

w2 (R?=0.32,p=.049; RMSE = 0.79, p = .050). We observed a similar pattern of results for

15
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the Default Mode Network (DMN) and Limbic Network, where lagged states of estradiol
significantly predicted cross-network participation, but model fit as a whole was low (see
Supplementary Table 1). Interestingly, for all three of these networks, there were no

significant autoregressive effects of brain states—previous states of network participation
also did not predict estradiol, suggesting that modulation of network topology likely goes

from hormones to brain, not the other way around.

A Dorsal Attention B C
- 2
2 2
S [0}
2 S
g1 5o
(8] —_
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© [e]
- ]
-1 -2
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52 52
8 1 8 1
7] 7]
-1 mensesi ovulatlion'-“,-' -1 menses - o;'/ulatlion‘.r/ ‘
1 10 20 30 1 10 20 30
Day of Experiment Day of Experiment

Figure 4. Dorsal Attention Network topology is driven by previous states of estradiol.
Observed data (solid lines) vs. VAR model fits (dotted lines) for between-network
participation (B, middle) and within-network efficiency (C, right) in the Dorsal Attention
Network (A, left). Timeseries for each network statistic are depicted above in (B,C) and
estradiol for each VAR is plotted below. Data are in standardized units and begin at
experiment day three, given the second-order VAR (lag of two days).

The single exception to this trend was the Visual Network. Prediction of its
between-network participation yielded a significant model fit (R* = 0.37, p = .024;
RMSE = 0.79, p = .044). However, this was primarily driven by autoregressive effects of

the network atlag 1 (b = —0.39, SE = 0.17,t = —2.30, p = .027) and lag 2 (b = —0.43,

16
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23 SE =0.17,¢t = —2.46, p = .024); estradiol yielded a marginal (but nonsignificant) effect
24 onlyatlag?2 (b=0.49, SE =0.24,t = 2.01, p = .058).

205 Estradiol and global efficiency

26 In contrast to between-network integration, estradiol was a strong predictor of

27 within-network integration, both in terms of parameter estimates and overall fit. Here, the
208 Default Mode Network provided the best-fitting model (R? = 0.50, p = .003;

200 RMSE =0.70, p = .022; Figure -B). As before, estradiol demonstrated significant

210 autoregressive effects atlag 1 (b = 1.15, SE = 0.19, ¢ = 6.15, p < .0001) and lag 2

2 (b= —048, SE =0.19, ¢t = —2.50, p = .012). When predicting DMN efficiency, previous
212 states of estradiol remained significant both atlag 1 (b = 0.98, SE = 0.23, ¢ = 3.37,

23 p=.0003) and atlag 2 (b = —0.93, SE = 0.23,t = —4.00, p = .002). Critically, these effects
214 were purely directional: prior states of Default Mode efficiency did not predict estradiol,
25 nor did they have significant autoregressive effects, supporting the conclusion that

216 vVariance in topological network states (perhaps within-network integration, in particular)
217 is primarily accounted for by estradiol—not the other way around (Table3).

218 We observed a similar pattern of results in the Dorsal Attention Network (R? = .37,
20 p=.022; RMSE = 0.77, p = .023; Figure [#C; Table 3). Estradiol again demonstrated

220 significant autoregressive effects atlag 1 (b = 1.17, SE = 0.19, ¢t = 6.30, p < .0001) and lag
21 2(b=—-048, SE =0.19,t = —2.49, p = .011), along with predicting DAN efficiency both

222 atlag1l(b=0.84, SE =0.25,t = 3.35,p = .002) and at lag 2 (b = —0.67, SE = 0.16,

17
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Table 3. VAR model fit: Global efficiency.

Network Outcome Predictor Estimate SE T (p)
Constant 0.04 0.15 0.28 (.279)
DMN}.q -0.04 0.16 -0.27 (.764)
Efficiency Estradiol;; 0.98 0.23 3.37 (.0003)
DMN;., -0.02 0.16 -0.11 (.907)
Estradiol;., -0.93 0.23 -4.00 (.002)
R? =0.50 (p = .003); RMSE = 0.70 (p = .022)
Default Mode
Constant 0.01 0.12 0.09 (.729)
DMN; 4 -0.12 0.13 -0.95 (.339)
Estradiol Estradiol;; 1.15 0.19 6.15 (<.0001)
DMN;., -0.01 0.13 -0.08 (.930)
Estradiol;., -0.48 0.19 -2.50 (.012)
R?* = 0.67 (p <.0001); RMSE = 0.58 (p = .0004)
Constant 0.01 0.16 0.08 (.783)
DAN;1 -0.11 0.18 -0.60 (.562)
Efficiency Estradiol;., 0.84 0.25 3.35 (.002)
DAN;., -0.10 0.18 -0.58 (.571)
Estradiol;., -0.67 0.16 -2.57 (.017)

R? = 0.37 (p = .002); RMSE = 0.77 (p = .023)
Dorsal Attention

Constant 0.01 0.12 0.06 (.808)
DAN;, -0.17 0.13 -1.29 (.207)
Estradiol Estradiol;; 1.17 0.19 6.30 (<.0001)
DAN;., -0.02 0.13 0.24 (.806)
Estradiol;., -0.48 0.18 -2.49 (.011)

R2 = 0.68 (p <.0001); RMSE = 0.57 (p = .0004)

Note. p-values empirically-derived via 10,000 iterations of nonparametric permutation
testing.

223 t = —2.57, p=.017). As above, Dorsal Attention efficiency had no significant effects on
224 estradiol, nor were there significant autoregressive effects of the network on itself.

225 The Control and Temporal Parietal networks also yielded partial support for

226 time-dependent modulation of efficiency by estradiol (Control R?>=0.34, p = .039;

227 Temporal Parietal R? = 0.36, p = .026). The time-lagged effects of estradiol followed the

18
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trends observed above; however, the overall model fit (with respect to prediction error)
was not significantly better than their empirical nulls (Control RMSE = 0.83, p = .133;
Temporal Parietal RMSE = 0.79, p = .057). Estradiol did not explain a significant
proportion of variance in efficiency for any other networks (see Supplementary Table 2

for a complete summary of VAR models for global efficiency).

A Default Mode B

)b

o

1
N

DMN Giobal Efficiency

Estradiol

vulation 3
menses < ° a|° ?

1 10 20 30
Day of Experiment

Figure 5. Default Mode Network topology is driven by previous states of estradiol.
Observed data (solid lines) vs. VAR model fits (dotted lines) for within-network efficiency
(B, right) in the Default Mode Network (A, left). The efficiency timeseries is depicted
above in (B) and estradiol is plotted below. Data are in standardized units and begin at
experiment day three, given the second-order VAR (lag of two days).
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- Discussion

234 In this dense-sampling, deep-phenotyping project, a naturally-cycling female underwent
25 resting state fMRI and venipuncture for 30 consecutive days, capturing the dynamic

26 endocrine changes that unfold over the course of a complete menstrual cycle.

27 Time-synchronous analyses illustrate estradiol’s widespread impact on cortical dynamics,
28 spanning all but one of the networks in our parcellation. Time-lagged vector

20 autoregressive models tested the temporal directionality of these effects, suggesting that
240 intrinsic network dynamics are driven by recent states of estradiol, particularly with

201 respect to within-network connectivity. Estradiol had the strongest predictive effects on
212 the efficiency of Default Mode and Dorsal Attention Networks, with model fit being

23 strongly driven by ovulation. In contrast to estradiol’s proliferative effects, progesterone
244 Was primarily associated with reduced coherence across the whole brain. These results
25 reveal the rhythmic nature of brain network reorganization across the human menstrual
246 CyCle.

247 The network neuroscience community has begun to probe functional networks over
25 the timescale of weeks, months, and years to understand the extent to which brain

s networks vary between individuals or within an individual over time™®%2%, These

250 studies indicate that functional networks are dominated by common organizational

251 principles and stable individual features, especially in frontoparietal control regions®#2625,

22 An overlooked feature of these regions is that they are populated with estrogen and

253 progesterone receptors and are exquisitely sensitivity to major changes in sex hormone

20


https://doi.org/10.1101/866913
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/866913; this version posted December 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

254

256

257

258

259

261

262

263

264

265

266

267

269

270

271

272

273

274

under aCC-BY-NC-ND 4.0 International license.

concentrations™M#2HeS0SL Oyr findings demonstrate significant effects of estradiol on
functional network nodes belonging to the DMN, DAN, and FCN that overlap with
ER-rich regions of the brain, including medial/dorsal PEC1%32, This study merges the
network neuroscience and endocrinology disciplines by demonstrating that higher-order
processing systems are modulated by day-to-day changes in sex hormones over the

timescale of one month.

Sex hormones regulate brain organization across species

Animal studies offer unambiguous evidence that sex steroid hormones shape the synaptic
organization of the brain, particularly in regions that support higher order cognitive
functions™™®. In rodents, estradiol increases fast-spiking interneuron excitability in deep
cortical layers®®. In nonhuman primates, whose reproductive cycle length is similar to
humans, estradiol increases the number of synapses in PFC®. Recently, this body of work
has also begun to uncover the functional significance of sinusoidal changes in estradiol.
For example, estradiol’s ability to promote PFC spinogenesis in ovariectomized animals
occurs only if the hormone add-back regime mirrors the cyclic pattern of estradiol release
typical of the macaque menstrual cycle®*. Pairing estradiol with cyclic administration of
progesterone blunts this increase in spine density™*. In the hippocampus, progesterone
has a similar inhibitory effect on dendritic spines, blocking the proliferative effects of
estradiol 6 hours after administration. Together, the preclinical literature suggests that
progesterone antagonizes the largely proliferative effects of estradiol (for review, see

Brinton and colleagues™®). We observed a similar relationship, albeit at a different

21
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spatiotemporal resolution, with estradiol enhancing coherence across cortical networks
and progesterone diminishing it. In sum, animal studies have identified estradiol’s
influence on regional brain organization at the microscopic scale. Here, we show that
estradiol and progesterone’s influence is also evident at the mesoscopic scale of
whole-brain activation, measured by spectral coherence, and macroscopic features of

network topology.

Resting-state network characteristics differ by cycle stage

Group-based and sparser-sampling neuroimaging studies provide further support that
cycle stage and sex hormones impact resting state networks™®1%. Arélin and colleagues™*
sampled an individual every 2-3 days across four cycles and found that progesterone was
associated with increased connectivity between the hippocampus, dorsolateral PFC, and
the sensorimotor cortex, providing compelling evidence that inter-regional connectivity
varies over the cycle. However, the sampling rate of this correlational study precluded the
authors from capturing the neural effects of day-to-day changes in sex steroid hormones
and from testing the temporal directionality of the effect with time-lagged models.
Estradiol has both rapid, non-genomic effects and slower, genomic effects on the central
nervous system. For example, over the rat estrous cycle, there is a dramatic 30% increase
in hippocampal spine density within the 24-hour window in which estradiol
concentrations peak. Here, we sought to capture both time-synchronous (rapid) and

time-lagged (delayed) effects of sex steroid hormones, sampling every 24 hours for 30

consecutive days. In contrast to Arélin and colleagues, we observed robust,

22
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206 spatially-diffuse negative relationships between progesterone and coherence across the
27 brain, while estradiol enhanced the global efficiency of discrete networks along with

28 between-network integration. Our results illuminate how simultaneous,

209 time-synchronous correlations and causal, time-lagged analysis reveal unique aspects of
s0 Where and how hormones exert their effect on the brain’s intrinsic networks. Time

01 synchronous analyses illustrate estrogen and progesterone’s widespread influence on

sz cortical coupling. Time-lagged models, which allowed us to examine the temporal

ss  direction of those relationships, show that estradiol is driving increased connectivity,

s4 particularly in DMN and DAN.

xs Neurobiological interpretations of hormonal effects and future studies

w6 The following considerations could enhance the interpretation of these data. First, this
27 study represents extensive neural phenotyping of a healthy participant with canonical
s hormone fluctuations over a reproductive cycle. To enrich our understanding of the

s00 relationship between sex hormones and brain function, examining network organization
si0 in a hormonally-suppressed female (i.e. an oral contraceptive user) would serve as a

a1t valuable comparison. Oral hormonal contraceptives suppress the production of ovarian
sz hormones. If dynamic changes in estradiol are indeed causing increases in resting

s1i3 - connectivity, we expect hormonally-suppressed individuals to show blunted functional
s14+  brain network dynamics over time. Given the widespread use of oral hormonal

s1s contraceptives (100 million users worldwide), it is critical to determine whether sweeping

23
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sie  changes to an individual’s endocrine state impacts brain states and whether this, in turn,
sz has any bearing on cognition.
318 Second, in normally-cycling individuals, sex hormones function as
s1o  proportionally-coupled nonlinear oscillators®”. Within-person cycle variability is almost as
220 large as between-person cycle variability, which hints that there are highly-complex
21 hormonal interactions within this regulatory system®”%%, The VAR models we have
22 explored reveal linear dependencies between brain states and hormones, but other
s dynamical systems methods (e.g. coupled latent differential equations) may offer more
24+ biophysical validity®”. Unfortunately, the current sample size precludes robust estimation
s of such a model. Our investigation deeply sampled a single individual across one
226 complete cycle; future studies should enroll a larger sample of women to assess whether
227 individual differences in hormone dynamics drive network changes.
328 Third, while coherence is theoretically robust to timing differences in the
220 hemodynamic response function, hormones can affect the vascular system39. Therefore,
so  changes in coherence may be due to vascular artifacts that affect the hemodynamic
s response in fMRI, rather than being neurally-relevant. Future investigations exploring the
sz assumptions of hemodynamics in relation to sex steroid hormone concentrations will add
s clarity as to how the vascular system’s response to hormones might influence large-scale
w4 brain function.
335 Fourth, these findings contribute to an emerging body of work on estradiol’s ability

se  to enhance the efficiency of PFC-based cortical circuits. In young women performing a
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working memory task, PFC activity is exaggerated under low estradiol conditions and
reduced under high estradiol conditions’?. The same pattern is observed decades later in
life: as estradiol production decreases over the menopausal transition, working
memory-related PFC activity becomes more exaggerated, despite no difference in working
memory performance’. Here, we show that day-to-day changes in estradiol drive the
global efficiency of functional networks, with the most pronounced effects in networks
with major hubs in the PFC. Together, these findings suggest that estradiol generates a
neurally efficient PFC response at rest and while engaging in a cognitive task. Estradiol’s
action may occur by enhancing dopamine synthesis and release*. The PFC is innervated
by midbrain dopaminergic neurons that form the mesocortical dopamine track*". Decades
of evidence have established that dopamine signaling enhances the signal-to-noise ratio of
PFC pyramidal neurons* and drives cortical efficiency®™°. In turn, estradiol enhances
dopamine synthesis and release and modifies the basal firing rate of dopaminergic

neurons*/ 42

, a plausible neurobiological mechanism by which alterations in estradiol
could impact cortical efficiency. Future multimodal neuroimaging studies in humans can
clarify the link between estradiol’s ability to stimulate dopamine release and the
hormone’s ability to drive cortical efficiency within PFC circuits.

Dense-sampling approaches to probe brain-hormone interactions could reveal
organizational principles of the functional connectome previously unknown, transforming

our understanding of how hormones influence brain states. Human studies implicate sex

steroids in the regulation of brain structure and function, particularly within ER-rich

25
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11012)15116/30,31150-52

sss  regions like the PFC and hippocampus , and yet, the neuroendocrine basis
9 Of the brain’s network organization remains understudied. Here, we used a network

s0 neuroscience approach to investigate how hormonal dynamics modulate the integration of
st functional brain networks, showing that estradiol is associated with increased coherence
ss2 across broad swaths of cortex. At the network level, estradiol enhances the efficiency of
s most functional networks (with robust effects in DAN and DMN) and, to a lesser extent,
4 Increases between-network participation. Moving forward, this network neuroscience

s approach can be applied to brain imaging studies of other major neuroendocrine

s6 transitions, such as pubertal development and reproductive aging (e.g. menopause).

% Implications of hormonally regulated network dynamics for cognition

ss An overarching goal of network neuroscience is to understand how coordinated activity
0 within and between functional brain networks supports cognition. Increased global

a0 efficiency is thought to optimize a cognitive workspace™, while between-network

st connectivity may be integral for integrating top-down signals from multiple higher-order
2 control hubs®. The dynamic reconfiguration of functional brain networks is implicated in

20 cognitive control™,

s performance across cognitive domains, including motor learning
o4 and memory™®. Our results demonstrate that within- and between-network connectivity
a5 of these large-scale networks at rest are hormonally regulated across the human menstrual
s cycle. Future studies should consider whether these network changes confer advantages

s77 to domain-general or domain-specific cognitive performance. Further, planned analyses

w78 from this dataset will incorporate task-based fMRI to determine whether the brain’s

26
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network architecture is hormonally regulated across the cycle when engaging in a
cognitive task, or in the dynamic reconfiguration that occurs when transitioning from rest

to task.

Implications of hormonally regulated network dynamics for clinical
diagnoses

Clinical network neuroscience seeks to understand how large-scale brain networks differ
between healthy and patient populations®". Disruptions in functional brain networks
are implicated in a number of neurodegenerative and neuropsychiatric disorders: intrinsic
connectivity abnormalities in the DMN are evident in major depressive disorder®! and
Alzheimer’s disease®. Notably, these conditions have a sex-skewed disease prevalence:
women are at twice the risk for depression and make up two-thirds of the Alzheimer’s
disease patient population®. Here, we show that global efficiency in the DMN and DAN
are hormonally regulated, with estradiol driving increases in within-network integration.
A long history of clinical evidence further implicates sex hormones in the development of
mood disorders®. For example, the incidence of major depression increases with
pubertal onset in females®”, chronic use of hormonal contraceptives®, the postpartum
period®, and perimenopause”’. Moving forward, a network neuroscience approach might
have greater success at identifying the large-scale network disturbances that underlie, or
predict, the emergence of disease symptomology. Incorporating sex-dependent variables
(such as endocrine status) into clinical models. This may be particularly true during

periods of profound neuroendocrine change (e.g. puberty, pregnancy, menopause, and use
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w0 of hormone-based medications, reviewed by Taylor and colleagues”") given that these

s hormonal transitions are associated with a heightened risk for mood disorders.

w2 Conclusion

w03 In sum, endogenous hormone fluctuations over the reproductive cycle have a robust

w4 impact on the intrinsic network properties of the human brain. Despite over 20 years of
ws evidence from rodent, nonhuman primate, and human studies demonstrating the

ws tightly-coupled relationship between our endocrine and nervous systems®“4%3, the field of
w7 network neuroscience has largely overlooked how endocrine factors shape the brain. The
w8 dynamic endocrine changes that unfold over the menstrual cycle are a natural feature of
w9 half of the world’s population. Understanding how these changes in sex hormones

s0 influence the large-scale functional architecture of the human brain is imperative for our

st basic understanding of the brain and for women’s health.
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Methods and Materials

Participants

The participant (author L.P.) was a right-handed Caucasian female, aged 23 years for
duration of the study. The participant had no history of neuropsychiatric diagnosis,
endocrine disorders, or prior head trauma. She had a history of regular menstrual cycles
(no missed periods, cycle occurring every 26-28 days) and had not taken hormone-based
medication in the prior 12 months. The participant gave written informed consent and the
study was approved by the University of California, Santa Barbara Human Subjects

Committee.

Study design

The participant underwent daily testing for 30 consecutive days, with the first test session
determined independently of cycle stage for maximal blindness to hormone status. The
participant began each test session with a daily questionnaire (see Behavioral
assessments), followed by an immersive reality spatial navigation task (not reported here)
(Figure [6). Time-locked collection of serum and whole blood started each day at 10:00am,
when the participant gave a blood sample. Endocrine samples were collected, at
minimum, after two hours of no food or drink consumption (excluding water). The
participant refrained from consuming caffeinated beverages before each test session. The

MRI session lasted one hour and consisted of structural and functional MRI sequences.
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Figure 6. Timeline of data collection for the 30 experiment sessions. Endocrine and MRI
assessments were collected at the same time each day to minimize time-of-day effects.

«s Behavioral assessments

15 'To monitor state-dependent mood and lifestyle measures over the cycle, the following

a7 scales (adapted to reflect the past 24 hours) were administered each morning: Perceived
us Stress Scale (PSS)”, Pittsburgh Sleep Quality Index (PSQI)?>, State-Trait Anxiety Inventory
«s  for Adults (STAI)?, and Profile of Mood States (POMS)“. We observed very few

w0 significant relationships between hormone and state-dependent measures following an
st FDR-correction for multiple comparisons (¢ < .05)—and critically, none of these

s  state-dependent factors were associated with estradiol (Figure[7]A). The participant had
13 moderate levels of anxiety as determined by STAI reference ranges; however, all other

s measures fell within the ‘normal’ standard range (Figure [7B).

s Endocrine procedures

6 A licensed phlebotomist inserted a saline-lock intravenous line into the dominant or

47 non-dominant hand or forearm daily to evaluate hypothalamic-pituitary-gonadal axis

48 hormones, including serum levels of gonadal hormones (173-estradiol, progesterone and
w9 testosterone) and the pituitary gonadotropins luteinizing hormone (LH) and follicle

w0 stimulating hormone (FSH). One 10cc mL blood sample was collected in a vacutainer SST

31


https://doi.org/10.1101/866913
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/866913; this version posted December 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Follicular phase Luteal phase
|

ow

Tension Anxiety Anger Stress
[+2]
[=]

0
L0 15
0--..l-l-'-—llll.--—-llllll.l-l
Estradiol o 10
4]
Progesterone Q lllll n .l [ llll EmEE_N
“ 0
Testosterone
= 20
Q
[
e o
-1 1 5 10 15 20 25 30

Day of Cycle

Figure 7. Behavioral variation across the 30 day experiment. (A) Correlation plot
showing relationships between mood, lifestyle measures, and sex steroid hormone
concentrations. Cooler cells indicate negative correlations, warm cells indicate positive
correlations, and white cells indicate no relationship. Asterisks indicate significant
correlations after FDR correction (¢ < .05). (B) Mood and lifestyle measures vary across the
cycle. ‘Day 1” indicates first day of menstruation, not first day of experiment. Abbreviations:
LH, Lutenizing hormone; FSH, Follicle-stimulating hormone.

w1 (BD Diagnostic Systems) each session. The sample clotted at room temperature for 45 min
w2 until centrifugation (2,000 x g for 10 minutes) and were then aliquoted into three 1 mL

w3 microtubes. Serum samples were stored at -20° C until assayed. Serum concentrations

w4 were determined via liquid chromatography-mass spectrometry (for all steroid hormones)
w5 and immunoassay (for all gonadotropins) at the Brigham and Women'’s Hospital Research
w6 Assay Core. Assay sensitivities, dynamic range, and intra-assay coefficients of variation
w7 (respectively) were as follows: estradiol, 1 pg/mL, 1-500 pg/mL, < 5% relative standard

w8 deviation (RSD); progesterone, 0.05 ng/mL, 0.05-10 ng/mL, 9.33% RS D; testosterone, 1.0
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we ng/dL, 1-2000 ng/dL, < 4% RSD; FSH and LH levels were determined via
a0 chemiluminescent assay (Beckman Coulter). The assay sensitivity, dynamic range, and the
sn  intra-assay coefficient of variation were as follows: FSH, 0.2 mIU/mL, 0.2-200 mIU/mL,

a2 3.1-4.3%; LH, 0.2 mIU/mL, 0.2-250 mIU/mL, 4.3-6.4%.

s+ fMRI acquisition and preprocessing

«7s The participant underwent a daily magnetic resonance imaging scan on a Siemens 3T

475 Prisma scanner equipped with a 64-channel phased-array head coil. First, high-resolution
e anatomical scans were acquired using a T}-weighted magnetization prepared rapid

77 gradient echo (MPRAGE) sequence (TR = 2500 ms, TE = 2.31 ms, TI = 934 ms, flip angle =
a8 7°; 0.8 mm thickness) followed by a gradient echo fieldmap (TR = 758 ms, TE; = 4.92 ms,
as TEy = 7.38 ms, flip angle = 60°). Next, the participant completed a 10-minute resting-state
w0 fMRI scan using a T -weighted multiband echo-planar imaging (EPI) sequence sensitive
ss1  to the blood oxygenation level-dependent (BOLD) contrast (TR = 720 ms, TE = 37 ms, flip
#2 angle = 56°, multiband factor = 8; 72 oblique slices, voxel size = 2 mm?). In an effort to

43 minimize motion, the head was secured with a custom, 3D-printed foam head case

w4 (https://caseforge.co/) (days 8-30). Overall motion (mean framewise

a5 displacement) was negligible (Supplementary Figure 3), with fewer than 130 microns of
w6 motion on average each day. Importantly, mean framewise displacement was also not

a7 correlated with estradiol concentrations (Spearman » = —0.06,p = .758).

488 Initial preprocessing was performed using the Statistical Parametric Mapping 12

s software (SPM12, Wellcome Trust Centre for Neuroimaging, London) in Matlab.
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Functional data were realigned and unwarped to correct for head motion and the mean
motion-corrected image was coregistered to the high-resolution anatomical image. All
scans were then registered to a subject-specific anatomical template created using
Advanced Normalization Tools” (ANTs) multivariate template construction
(Supplementary Figure 4). A 4 mm full-width at half-maximum (FWHM) isotropic
Gaussian kernel was subsequently applied to smooth the functional data. Further
preparation for resting-state functional connectivity was implemented using in-house
Matlab scripts. Global signal scaling (median = 1,000) was applied to account for transient
fluctuations in signal intensity across space and time, and voxelwise timeseries were
linearly detrended. Residual BOLD signal from each voxel was extracted after removing
the effects of head motion and five physiological noise components (CSF + white matter
signal). Motion was modeled based on the Friston-24 approach, using a Volterra
expansion of translational/rotational motion parameters, accounting for autoregressive
and nonlinear effects of head motion on the BOLD signal”®. All nuisance regressors were

detrended to match the BOLD timeseries.

Functional connectivity estimation

Functional network nodes were defined based on a 400-region cortical parcellation® and
15 regions from the Harvard-Oxford subcortical atlas
(http://www.fmrib.ox.ac.uk/fsl/). For each day, a summary timecourse was
extracted per node by taking the first eigenvariate across functional volumes”. These

regional timeseries were then decomposed into several frequency bands using a maximal
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overlap discrete wavelet transform. Low-frequency fluctuations in wavelets 3-6
(~0.01-0.17 Hz) were selected for subsequent connectivity analyses®. Finally, we
estimated the spectral association between regional timeseries using magnitude-squared
coherence: this yielded a 415 x 415 functional association matrix each day, whose
elements indicated the strength of functional connectivity between all pairs of nodes

(FDR-thresholded at g < .05).

Statistical analysis

First, we assessed time-synchronous variation in functional connectivity associated with
estradiol and progesterone through a standardized regression analysis. Data were
Z-transformed and edgewise coherence was regressed against hormonal timeseries to
capture day-by-day variation in connectivity relative to hormonal fluctuations. For each
model, we computed robust empirical null distributions of test-statistics via 10,000
iterations of nonparametric permutation testing—while this process has been shown to
adequately approximate false positive rates of 5%°!, we elected to report only those edges
surviving a conservative threshold of p < .001 to avoid over-interpretation of whole-brain
effects.

Next, we sought to capture causal linear dependencies between hormonal fluctuations
and network connectivity over time using vector autoregressive (VAR) models. A given
VAR model takes a set of variables at time, ¢, and simultaneously regresses them against
previous (time-lagged) states of themselves and each other. For consistency, we only

considered second-order VAR models, given a fairly reliable first zero-crossing of
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brain/hormone autocovariance at lag two. Fit parameters for each VAR therefore reflect
the following general form:

Braing = by g + by 1 Brain,_y + by 2 E'stradiol,_y + by s Brain,_o + by 4 Estradiol,_s + €

Estradiol, = by + by Brain,_y + by g Estradiol;_y + by s Brain,_o + by 4 Estradiol;_o + €
(1)

With respect to brain states, we modeled both edgewise coherence and factors related
to macroscale network topologies. Specifically, we computed measures of between-network
integration (the participation coefficient; i.e. the average extent to which network nodes
are communicating with other networks over time) and within-network integration (global
efficiency, quantifying the ostensible ease of information transfer across nodes inside a
given network). Regardless of brain measure, each VAR was estimated similarly to the
time-synchronous analyses described above: data were Z-scored, models were fit, and all
effects were empirically-thresholded against 10,000 iterations of nonparametric
permutation testing.

Finally, for each set of edgewise models (time-synchronous and time-lagged), we
attempted to disentangle both the general direction of hormone-related associations and
whether certain networks were more or less susceptible to hormonal fluctuations. Toward
that end, we estimated nodal association strengths per graph theory’s treatment of signed,
weighted networks—that is, positive and negative association strengths were computed
independently for each node by summing the positive and negative edges linked to them
(after empirical thresholding), respectively. We then simply assessed mean association

strengths across the various networks in our parcellation.
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Here, networks were defined by grouping the subnetworks of the 17-network
Schaefer parcellation, such that (for example), the A, B, and C components of the Default
Mode Network were treated as one network. We chose this due to the presence of a
unique Temporal Parietal Network in the 17-network partition, which is otherwise
subsumed by several other networks (Default Mode, Salience/Ventral Attention, and
SomatoMotor) in the 7-network partition. The subcortical nodes of the Harvard-Oxford
atlas were also treated as their own network, yielding a total of nine networks. These
definitions were subsequently used for computation of participation coefficients and

global efficiencies in network-level VAR models.

Brain data visualization

Statistical maps of edgewise coherence v. hormones were visualized using the Surf Ice

software (https://www.nitrc.org/projects/surfice/).
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