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Abstract

Humans are remarkably skilled at listening to one speaker out of an acoustic mixture of multiple
speech sources, even in the absence of binaural cues. Previous research on the neural
representations underlying this ability suggests that the auditory cortex primarily represents only
the unsegregated acoustic mixture in its early responses, and then selectively processes features
of the attended speech at longer latencies (from ~85 ms). The mechanism by which the attended
source signal is segregated from the mixture, however, and to what degree an ignored source
may also be segregated and separately processed, is not understood. We show here, in human
magnetoencephalographic responses to a two-talker mixture, an early neural representation of
acoustic onsets in the ignored speech source, over and above onsets of the mixture and the
attended source. This suggests that the auditory cortex initially reconstructs acoustic onsets
belonging to any speech source, critically, even when those onsets are acoustically masked by
another source. Overt onsets in the unseparated acoustic mixture were processed with a lower
latency (~70 ms) than masked onsets in either source (~90 ms), suggesting a neural processing
cost to the recovery of the masked onsets. Because acoustic onsets precede sustained source-
specific information in the acoustic spectrogram, these representations of onsets are cues
available for subsequent processing, including full stream segregation. Furthermore, these
findings suggest that even bottom-up saliency of objects in the auditory background may rely on
active cortical processing, explaining several behavioral effects of background speech.

Significance Statement

The ability to comprehend speech in the presence of multiple talkers is required frequently in
daily life, and yet it is compromised in a variety of populations, for example in healthy aging.
Here we address a longstanding question concerning the neural mechanisms supporting this
ability: to what extent does the auditory cortex process and represent an interfering speech
signal despite the fact that it is not being attended? We find that auditory cortex not only
represents acoustic onsets in an ignored speech source, it does so even when those onsets are
masked by the attended talker. This suggests that auditory cortex reconstructs and processes
acoustic features of ignored speech, even in its effort to selectively process the attended speech.
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Introduction

When listening to an acoustic scene, the acoustic signal that arrives at the ears is an additive
mixture of the different sound sources. Listeners trying to selectively attend to one of the sound
sources face the task of deciding which spectro-temporal features belong to that source. When
multiple speech sources are involved this is a nontrivial problem because the spectrograms of
the different sources often have strong overlap (see Figure 3-A). Nevertheless, human listeners
are remarkably skilled at focusing on one out of multiple talkers. Binaural cues can support
segregation of different sound sources based on their location (1), but are not necessary for this
ability, since listeners are able to selectively attend even when two speech signals are mixed into
a monophonic signal and presented with headphones (2).

The mechanisms involved in this ability are not well understood. Previous research suggests that
the auditory cortex dominantly represents features of the acoustic mixture in Heschl’s gyrus
(HG) starting before 50 ms, and more selectively processes features belonging to the attended
signal in the superior temporal gyrus (STG) starting around 85 ms latency (3-5). Furthermore,
time-locked processing of higher order linguistic features seems to be restricted to the attended
speech source (6, 7). It is not known whether, in the course of recovering features of the
attended source, the auditory cortex also segregates features of the ignored source from the
mixture. A conservative hypothesis is that primary auditory cortex represents acoustic features
of the mixture invariantly, and attentional mechanisms select only those representations that
are relevant for the attended stream. Alternatively, the auditory cortex could employ some
means to recover and represent potential speech features, even if obscured in the mixture,
regardless of what stream they belong to, and attentional mechanism could then selectively
process those features associated with the attended speech. An extreme possibility, discussed in
the scene analysis literature, is that different sound sources could be fully segregated and
individually represented, with attention merely selecting one of multiple readily available
auditory stream representations (8).

Here we aim to distinguish between these hypotheses by analyzing auditory cortical
representations of two concurrent speech sources. An important cue for segregating an acoustic
source from a mixture is temporal coherence of different acoustic features (9). We focus in
particular on acoustic onset features, i.e., acoustic edges corresponding to a frequency-specific
increase in acoustic energy. A simultaneous onset of acoustic elements in distinct frequency
bands is a strong cue that these different elements originate from the same speech source.
Accordingly, shared acoustic onsets promote perceptual grouping of acoustic components into a
single auditory object, such as a complex tone and, vice versa, separate onsets lead to
perceptual segregation (10, 11). For example, the onset of a vowel is characterized by a shared
onset at the fundamental frequency of the voice and its harmonics. If the onset of a formant is
artificially offset by as little as 80 ms, it is often perceived as a separate tone rather than as a
component of the vowel (12). Acoustic onsets are very prominently represented in auditory
cortex, both in naturalistic speech (13, 14) and in non-speech stimuli (15), and are important for
speech intelligibility (16).

We used human magnetoencephalographic (MEG) responses to a continuous two-talker mixture
to determine whether the auditory cortex reliably tracks acoustic onset or envelope features of
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91 theignored speech. Participants listened to 1-minute long continuous audiobook segments,

92  spoken by a male or a female speaker. Segments were presented in two conditions: as speech in
93  quiet, and as a two-talker mixture, in which a female and a male speaker were mixed at equal
94  loudness. MEG responses were analyzed as additive, linear response to multiple concurrent

95  stimulus features (see Figure 1). First, model comparison was used to determine which

96 representations significantly improved prediction of the responses. Then, spectro-temporal

97  response functions (STRFs) were analyzed to gain insight into the nature of the representations.
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99  Figure 1. Additive linear response model based on spectro-temporal response functions (STRFs).
100  A) MEG responses recorded during stimulus presentation were source localized with distributed
101  minimum norm current estimates. A single virtual source dipole is shown for illustration, with its
102  physiologically measured response and the response prediction of a model. Model quality was
103  assessed by the correlation between the measured and the predicted response. B) The model’s
104  predicted response is the sum of tonotopically separate response contributions generated by
105  convolving the stimulus envelope at each frequency (C) with the estimated temporal response
106  function (TRF) of the corresponding frequency (D). TRFs quantify the influence of a predictor
107  variable on the response at different time lags. The stimulus envelopes at different frequencies
108  can be considered multiple parallel predictor variables, as shown here by the gammatone
109  spectrogram (8 spectral bins); the corresponding TRFs as a group constitute the spectro-

110  temporal response function (STRF). Physiologically, the component responses (B) can be thought
111 of as corresponding to responses in neural subpopulations with different frequency tuning, with
112  MEG recording the sum of those currents.

113 Results and Discussion

114  Auditory cortex represents acoustic onsets

115  MEG responses to speech presented in quiet were predicted from the gammatone spectrogram
116  of the stimulus, as well as a spectrogram of acoustic onsets (Figure 2-A). Acoustic onsets were
117  derived from a neural model of auditory edge detection (17). Both predictors were binned into 8
118  frequency bands, for a total of 16 predictor time series. Each of the two predictors was assessed
119  based on how well the correct model predicted MEG responses, compared to null models in

120  which the relevant predictor was temporally misaligned with the responses. Both predictors

121  significantly improved predictions (p < 0.001), with an anatomical distribution consistent with
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122 sources in HG and STG bilaterally (Figure 2-B). Since this localization agrees with findings from
123 intracranial recordings (13), results were henceforth analyzed in a region of interest (ROI)
124 restricted to these two anatomical landmarks (Figure 2-C).

A Auditory edge detector model B Significant prediction D 20
delay  saturation receptive field Onsets
16 .05.01 .001
l& - / — _ p
| v . > _ 12
N
t g 8
| =
l,k—’ / ’ Envelope 5 Onsets
| o) £ 4
a (4 € 4
& 2 == " A T
Onsets 4,')\ 5 07 %/ ~—
4938 T = y A o
B ) o - 8
1674 l ’ | 7 » 5 g
4 & %)
455 P8 % £ £ t0 5 10 15 -8
20
2 4038 Envelope 4 Envelope
N
LT | = 4172 .
> 1674 Center C ROI for TRF analysis o ._'\ A —/
c J i >
§ 455 - - > g -~ j frequency e, i : \V
g — | 185 W o -4 .
£ 20 T T T T ' \- £/
0 0.2 0.4 0.6 0.8 1 oo =l 0 100 200 300 400
125 Time (s) Time (ms)

126  Figure 2. Acoustic onset responses to clean speech. A) Schematic illustration of the acoustic edge
127  detector model, along with an excerpt from a gammatone spectrogram (“envelope”) and the
128  corresponding onset representation. B) Regions of significant explanatory power of onset- and
129  envelope representations, consistent with a main source in auditory cortex bilaterally (p < .05,
130 corrected for whole brain analysis). C) Region of interest (ROI) used for the analysis of response
131  functions, including superior temporal gyrus and Heschl’s gyrus. An arrow indicates the average
132 current direction of the ROI (upward current), determined through the first principal component
133  of response power. D) Spectro-temporal response functions corresponding to onset and

134  envelope representations in the ROI. Different color curves reflect the frequency bins as

135 indicated next to the onset and envelope spectrograms in panel A. Shaded areas indicate the
136  within-subject standard error (18). Regions in which STRFs differ significantly from O (in any

137  band) are marked with horizontal gray bars.

138  Auditory cortical STRFs were generated separately for each participant and hemisphere using a
139  spatial filter based on principal component analyses of overall STRF power in the ROI. The

140  average direction of that spatial filter replicated the direction of the well-known auditory MEG
141  response with mainly vertical orientation (Figure 2-C). STRFs were initially analyzed by

142  hemisphere, but since none of the reported results interacted significantly with hemisphere the
143 results shown are collapsed across hemisphere to simplify presentation.

144 STRFs to acoustic onsets exhibited a well-defined two-peaked shape, consistent across frequency
145  bands (Figure 2-D). They closely resembled previously described auditory response functions to
146  envelope representations, when these were used without consideration of onsets (3). In

147  comparison, envelope STRFs in the present results were diminished and exhibited a less well-
148  defined structure. This is consistent with acoustic onsets explaining a large portion of the signal
149  usually attributed to the envelope; indeed, when the model was refitted with only the envelope
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150  predictor, excluding the onset predictor, the envelope STRFs exhibited that canonical pattern
151  and with larger amplitudes (not shown).

152  STRFs had disproportionately higher amplitude at lower frequencies (Figure 2-D). This is

153  consistent with tonotopic mapping of speech areas and may follow from the spectral distribution
154  of information in the speech signal (19, 20). An explanation based on signal properties is also
155  supported by our simulations, in which equal TRFs for each band were simulated, and yet higher
156  frequency bands resulted in lower amplitude responses (see Figure SI-1).

157  Auditory cortex represents onsets of ignored speech

158  MEG responses to a two-speaker mixture were then used to test for a neural representation of
159  ignored speech. Participants listened to an equal loudness mixture of a male and a female talker
160  and were instructed to attend to one talker and ignore the other. The speaker to be attended
161  was counterbalanced across trials and subjects. Responses were predicted using the onset and
162  envelope representations for the acoustic mixture, the attended speech source and the ignored
163  source (Figure 3-A). Taken together, including the two predictors representing the ignored

164  speech significantly improved predictions of the responses in the ROl (tmax = 8.32, p <.001). This
165 indicates that acoustic features of the ignored speech are represented neurally in addition to
166  features of the mixture and the attended source. Separate tests suggested that this result can be
167  ascribed specifically to onset representations (tmex = 4.89, p < .001), whereas envelope

168  representations of the ignored source did not significantly improve the model fit (tmex =-2.59, p =
169 1)

170  Taken individually, onsets in each of the three streams significantly improved predictions (tmax >
171  4.89, p <.001), but none of the envelope representations did (all tmex <-0.40, p = 1). This lack of
172  predictive power for the envelope predictors, when tested individually, is likely due to high

173 collinearity. Intuitively, the envelope of the mixture can be approximated relatively well by the
174 sum of the envelopes of the individual streams (cf. Figure 3-A). More formally, the proportion of
175  the variability in the mixture representations that cannot be predicted from the two sources is
176  small for the envelopes, but substantially larger for the onsets (Figure 3-C). Accordingly, when
177  the mixture envelope predictor was removed from the model, the two source envelope

178  predictors became significant individually (attended: tmax = 4.72, p = .002; ignored: tmax = 2.93, p
179  =.042). Thus, as far as the envelope representations are concerned, the nature of the stimulus
180  representations prevents a conclusive distinction between representations of the acoustic

181  mixture and the ignored source. In contrast, onset representations do indicate a reliable

182  representation of ignored speech over and above representations of the acoustic mixture and
183  the attended source.


https://doi.org/10.1101/866749
http://creativecommons.org/licenses/by-nc-nd/4.0/

184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

bioRxiv preprint doi: https://doi.org/10.1101/866749; this version posted December 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

A Acoustic mixture B Mixture onset STRF Source onset STRFs Envelope STRFs
R ',i & 5N 1 e~ 24 8 Attended source 8 Attended source
 — = ” - '
1 &=: v Sas? 20 4 A 4
] i % : 16 oL~ ~ANG
- ~12 -4 v -4 ‘ ;
Attended source §
T r » : g 8
q1 g e 3 g 4 8 Ignored source Ignored source
- §, 4
] £ o=
] 4‘5_ & . o 3 [ [ —
- — g 4 o= e
3
Ignored source 3
) a2 ‘ ' 3. 0 100 200 300 400
4 4 > e n - Time (ms)
S s < Attended - Ignored Attended - Ignored
4938 — 4 :
1674 - 4172 -— ‘
455 1 = O e e e Center e — T S 0= 2B
20 : (e —— frequency  .05.01 .001 w y
48 5 52 54 56 58 165 P -4
Time (s)
100 200 300 400 0 100 200 300 400
CUniquevariabiIity in mixture D Attended vs. mixture onsets Ignored vs. mixture onsets E Onset response functions
R - Comparison
_ Onsets Envelope 24 24
& 100 - g
£ 16 16
g w0 _| —
5 0 _I III' ik .t 8

Frequency bin

0 100 200 0 100 200 0 100 200
Time (ms) Time (ms)

Figure 3. Response functions to the two-speaker mixture, using the stream-based model. A) The
envelope and onsets of the acoustic mixture and the two speech sources were used to predict
MEG responses. B) Auditory cortex STRFs to onsets in the mixture exhibit a large positive peak
(72 ms) followed by a smaller negative peak (126 ms). STRFs to attended and ignored onsets
both exhibit an early positive peak (81 and 88 ms), followed only in attended onsets by a
negative peak (150 ms). This effect of attention on the negative peak is confirmed by the
attended —ignored STRF differences. C) Compared to envelope representations, acoustic onset
representations are better suited for distinguishing segregated sources from the mixture.
Colored portions indicate proportion of the variability of the mixture predictors that could not be
explained from the individual speech sources (with a -500 — 500 ms temporal integration
window). D) The major peaks to onsets in the speech sources are delayed compared to
corresponding peaks to the mixture. To determine latencies, mixture-based and individual-
speaker-based STRFs were averaged across frequency (lines with shading for 1 SE). Colored dots
represent the largest positive and negative peak for each participant between 20 and 200 ms;
the peaks corresponding to individual speakers are delayed with respect the corresponding
peaks for the mixture. Horizontal bars indicate average amplitude and latency +1 SE. D) Direct
comparison of onset response functions averaged across frequency, +1 SE.


https://doi.org/10.1101/866749
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/866749; this version posted December 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

202  Onset STRFs exhibited the same characteristic positive-negative pattern as for speech in quiet,
203  but with reliable distinctions between the mixture and the individual speech streams (Figure 3-B,
204  left and middle columns, Figure 3-D & E). The early, positive peak occurred earlier and had a

205 larger amplitude for onsets in the mixture than for onsets in either of the sources (latency

206  mixture: 72 ms; attended: 81 ms, t25 = 4.47, p <.001; ignored: 88 ms, t5 =6.92, p <.001;

207  amplitude mixture > attended: t;s = 8.60, p < .001; mixture > ignored: t;s = 7.92, p < .001). This
208  positive peak was followed by a negative peak only in responses to the mixture (126 ms) and the
209  attended source (150 ms; difference tz5 = 4.36, p < .001). In contrast to the corresponding

210  positive peak, the amplitude of these negative peaks was statistically indistinguishable (t25 =

211  0.36, p =.722). STRFs to the ignored source did not exhibit a detectable corresponding negative
212 peak, as seen in Figure 3-C where participants’ peaks cluster around the time window edges

213 instead of at a characteristic latency.

214 The fact that the mixture predictor is not orthogonal to the source predictors might raise a
215  concern that a true response to the mixture might cause spurious responses to the sources.
216  Simulations using the same predictors as used in the experiment suggest, however, that such
217  contamination is unlikely to have occurred (see Figure SI-1).

218 In contrast to onsets, the different envelope predictors did not contain enough independent

219 information to distinguish between a representation of the ignored source and a representation
220  of the mixture. A comparison of STRFs to the attended and the ignored source revealed a strong
221  effect of attention (Figure 3-B, right column). The attended-ignored difference wave exhibits a
222 negative peak at ~100, consistent with previous work (3), and an additional positive peak at ~200
223 ms. In contrast to previous work, however, a robust effect of attention on the envelope

224 representation starts almost as early as the earliest responses at all, suggesting that when onset
225  responses are accounted for separately from envelope responses, even early envelope

226  processing is influenced by attention.

227  Auditory cortex recovers masked onsets

228  The results using these stream-based predictors suggest that the auditory cortex represents
229  acoustic onsets in both speech sources separately, in addition to onsets in the acoustic mixture.
230  This suggests a marked degree of abstraction from the acoustic input, involving early

231  reconstruction of features of the inferred, underlying speech sources. This is further supported
232 by the latency analysis, which suggests that representations of reconstructed source onsets are
233 processed separately from onsets heard in the mixture. This latency difference might also be
234 indicative of some additional processing cost, as reflected in the delay of the representation of
235  reconstructed onsets. Such an added processing cost, however, might be larger for masked
236  onsets, i.e. onsets in one of the sources that are obscured in the mixture, compared to onsets
237  which are overt in the mixture. The model used in the last section is not well suited to capture
238  such an effect, since it does not differentiate between masked and overt source onsets.

239  To test for a distinct response associated with the recovery of masked onsets in speech sources,
240  we generated a new predictor to reflect masked onsets only, regardless of which source they
241  originated from. This predictor was implemented as an element-wise comparison-based

242  combination of onset spectrogram representations. Specifically, at each frequency- and time
243 point, the predictor uses the (larger) source onset value but only by the amount it is over and
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244 above the corresponding onset in the mixture, i.e., max(0, max(attended, ignored) — mixture).
245  This additional predictor improved predictions of brain responses in the ROl bilaterally (tmox =
246 8.12, p <.001), suggesting that responses in the auditory cortex indeed differentiate between
247  overt and masked onsets.

248  Masked onsets are processed with a delay

249  Model comparison thus indicates that the neural representation of masked onsets differs from
250 that of overt onsets. This implies that the influence of attention should also be assessed

251  separately for overt and masked onsets. The previously used predictors do not allow this in a
252  straight-forward manner, however, because the speech sources were modeled as unified

253  streams, combining overt and masked onsets. To separate effects of masking and attention, the
254  information from the previously used onset predictors was recombined to generate a new set of
255  predictors (Figure 4-A). Specifically, for each speech source, the new “overt onsets” predictor
256  models frequency- and time-points in which an onset in the source is also accompanied by an
257  onsetin the mixture (element-wise min(mixture, source)), and the “masked onset” predictor
258  models the degree to which an onset in the source is attenuated (masked) in the mixture (max(0,
259  source —mixture)). This model thus disentangles the effect of attention (attended vs ignored

260  source) from whether an onset is overt in the mixture or masked. All four predictors significantly
261  improved MEG response predictions (tmex < 4.87, p < .001). In particular, this was also true for
262  masked onsets in the ignored source (tmax = 4.87, p < .001), confirming that the auditory cortex
263 recovers masked onsets even when they occur in the ignored source.
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265  Figure 4. Response functions to overt and masked onsets. A) Spectrograms were transformed
266  using element-wise operations to distinguish between overt onset, i.e., onsets in a source that
267  are apparent in the mixture, and masked onsets, i.e., onsets in a source that are masked by the
268  other source. Two examples are marked by rectangles: The yellow rectangle marks a region with
269  a masked onset, i.e., an onset in the attended source which is not apparent in the mixture. The
270  red square marks an overt onset, with an onset in the attended source that also corresponds to
271  anonsetin the mixture. B) STRFs exhibited the previously described positive-negative two

272  peaked structure. For overt onsets, only the second, negative peak was modulated by attention.
273  For obscured onsets, even the first peak exhibited a small degree of attentional modulation. C)
274  Responses to masked onsets were consistently delayed compared to responses to overt onsets.
275  Details are analogous to Figure 3-D, except that the time window for finding peaks was extended
276  to 20—250 ms to account for the longer latency of masked onset response functions. D) Direct
277  comparison of the onset STRFs, averaged across frequency, +1 SE.

278  The STRFs to each stream’s overt onsets exhibited an early positive peak at ~74 ms that did not
279  differentiate between onsets originating from the attended and unattended source, followed by
280 a negative peak at ~140 ms with increased amplitude for the attended source (Figure 4-B, left
281  column). This suggests that the cortical processing stage corresponding to the first peak
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282  represents onsets in the acoustic mixture without regard to their acoustic source (4). By the time
283  of the second peak, however, the cortical representations distinguish between the two sources,
284  with onsets in the attended source being represented more reliably than onsets in the ignored
285  source.

286  STRFs to masked onsets exhibited a similar positive-negative pattern as STRFs to overt onsets,
287  but now with a consistent temporal delay of approximately 20 ms (Figure 4-C). The delay was
288  significant for both streams’ positive peak (attended overt: 71 ms, masked: 91 ms, t2s = 6.77, p <
289  .001; unattended overt: 77 ms, masked: 95 ms, t»5 = 7.23, p < .001), as well as for the negative
290 peakto attended onsets (overt: 136 ms, masked: 182 ms; t2s = 4.72, p < .001). For masked

291 onsetsin theignored source, there is no evidence for a consistent negative peak at all, as can be
292  seenin Figure 4-C where data points are spread throughout the time window. Even the earlier,
293  positive peak was significantly larger for attended compared to ignored onsets. Thus, auditory
294  cortex not only represents masked onsets, but these representations are substantively affected
295 by whether the onset belongs to the attended or the ignored source. While this might indicate
296  that the two sources are segregated at this level, it does not necessarily mean that both sources
297  arerepresented as individuated streams. Another explanation could be that masked onsets are
298  evaluated early on, based on some available features, as to their likelihood of belonging to the
299  attended source. Onsets that are more likely to belong to the attended source might then be
300 represented more strongly, without yet being ascribed to one or the other source exclusively.
301  Overall, the difference between the attended and ignored source suggests that information from
302 theignored source is represented to a lesser degree than information from the attended source.
303  This is consistent with evidence from psychophysics suggesting that the auditory background is
304 notas fully elaborated as the attended foreground (21).

305 Increasing abstraction over time

306 Responses to overt and masked onsets exhibited a comparable positive-negative two peak

307  structure. While the first, positive peak was much larger for overt compared to masked onsets,
308 the second, negative peak was of comparable magnitude (see Figure 4-D). This trend was

309 confirmed in a peak (positive, negative) by masking (overt, masked) ANOVA of attended STRF
310 peak amplitudes with a significant interaction (F1,25=33.45, p < .001; in order to compare

311  positive and negative peaks, peak amplitudes of the negative peak were multiplied by -1). One
312  may infer, then, that at the earlier stage the response is dominated by bottom-up processing of
313  the acoustic stimulus, with a much smaller contribution reflecting the internally generated,

314  recovered source properties. At the later stage, this distinction disappears, and the responses
315  reflecting overt and masked onsets are of comparable magnitude. Similarly, the earliest stage of
316  the mixture onset representations did not distinguish onsets in the attended source from onsets
317 intheignored source, but subsequent response peaks to overt and masked onsets showed

318 increasing attention-based separation. Broadly, this pattern of results is consistent with a

319  succession of processing stages, with early stages dominated by bottom-up activation from the
320 input signal, gradually leading to later stages with task-driven, internally generated

321  representations.
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322  Attentive processing is not strictly time-locked

323  While the response magnitude to overt and masked onsets thus seems to be adjusted at

324  subsequent processing stages, the response latency was not. Representations of masked onsets
325  were consistently delayed compared to those of overt onsets by approximately 20 ms (see

326  Figure 4-D). Previous research found that the latency of the representation of speech increased
327  with increasing levels of stationary noise (22), suggesting a processing cost to recovering acoustic
328  source information from noise. Our results suggest that this is not a uniform delay for a given
329  perceptual stream, but that the delay varies by whether an acoustic element is overt or locally
330 masked by the acoustic background. The delay might thus arise from a variable processing cost
331  that depends on the local acoustic environment.

332  This latency difference between representations of overt and masked onsets entails that

333  upstream speech processing mechanisms may receive different packages of information about
334  the attended speech source with some temporal desynchronization. While this could imply a
335 need for a higher order corrective mechanism, it is also possible that upstream mechanisms are
336  tolerant to this small temporal distortion. A misalignment of 20 ms is small compared to the
337 normal temporal variability encountered in speech (although there do exist phonetic contrasts
338  where a distortion of a few tens of milliseconds would be relevant). Indeed, in audio-visual

339  speech perception, temporal misalignment between auditory and visual input can actually be
340  tolerated up to more than 100 ms (23).

341  Processing of “ignored” acoustic sources

342  Theinterference in speech perception from a second talker can be very different from the

343  interference caused by non-speech sounds. Music is cortically segregated from speech even
344  when both signals are unattended, consistent with a more automatic segregation, possibly due
345  to distinctive differences in acoustic signal properties (24). At moderate signal to noise ratios
346 (SNRs), a second talker causes much more interference with speech perception than a

347  comparable non-speech masker and, interestingly, this interference manifests not just in the
348 inability to hear attended words, but in intrusions of words from the ignored talker (25). The
349  latter fact in particular has been interpreted as evidence that ignored speech might be

350 segregated and processed to a relatively high level. On the other hand, listeners seem to be

351  unable to access words in more than one speech source at a time, even when the sources are
352  spatially separated (26). Demonstrations of semantic processing of ignored speech are rare and
353  usually associated with specific perceptual conditions such as dichotic presentation (27).

354  Consistent with this, recent EEG/MEG evidence suggests that unattended speech is not

355  processed in a time-locked fashion at the lexical (6) or semantic (7) level. The results presented
356  here, showing systematic recovery of acoustic features from the ignored speech source, suggest
357  apotential explanation for the increased interference from speech as opposed to other maskers.
358  Representing onsets in two sources could be expected to increase cognitive load compared to
359  detecting onsets of a single source in stationary noise. These representations of ignored speech
360 might also act as bottom-up cues and cause the tendency for intrusions from the ignored talker.
361  They might even explain why a salient and overlearned word, such as one’s own name (28),

362  might sometimes capture attention, which could happen based on acoustic rather than lexical
363  analysis (29). Finally, at very low SNRs this behavioral pattern can invert, and a background talker
364  can be associated with better performance than stationary noise maskers (25). In such
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365  conditions, there might be a benefit of being able to segregate the ignored speech source and
366  use this information strategically (30).

367 Conclusions

368 How do listeners succeed in selectively listening to one of two concurrent talkers? Our results
369  suggest that representations of acoustic onsets play a critical role. Early responses in the

370 auditory cortex represent not only overt acoustic onsets, but also reconstruct acoustic onsets in
371  the speech sources that are masked in the mixture. This recovery of masked onsets seems to be
372  acognitively costly process, reflected in a temporal delay of about 20 ms compared to overt

373  onsets. Given the importance of temporal coherence for identifying auditory objects (31), it is
374  likely that the onset representations play a key role in linking concurrent onsets at different

375  frequency regions, and thus in segregating elements from the two auditory sources. While

376  acoustic onsets are themselves relevant features for some phonetic contrasts, they also often
377  precede informative regions in the spectrogram, such as the spectral detail of voiced segments.
378  The onsets might thus also serve as cues to spectral regions in which relevant information is

379  more likely to occur subsequently (10). Onsets might thus be used to decide which spectro-

380 temporal features to group into an auditory object, and to further analyze as a perceptual entity.
381 Inouranalysis, responses to these spectro-temporal features subsequent to onsets was modeled
382 inthe envelope predictors. If onsets are used to group features and allocate attention to

383  information in the envelope, then this might explain why responses to the envelope predictors
384  were affected by attention so early on.

385 Materials and Methods

386  Participants

387 The data analyzed here have been previously used in an unrelated analysis (6). MEG responses
388  were recorded from 28 native speakers of English, recruited by media advertisements from the
389  Baltimore area. Participants with medical, psychiatric or neurological illnesses, head injury, and
390 substance dependence or abuse were excluded. All subjects provided informed consent in

391  accordance with the University of Maryland Baltimore Institutional Review Board and were paid
392  for their participation. Data from two participants were excluded, one due to corrupted localizer
393  measurements, and one due to excessive magnetic artifacts associated with dental work,

394  resulting in a final sample of 18 male and 8 female participants with mean age 45.2 (range 22 -
395  61).

396  Stimuli

397  Two chapters were selected from an audiobook recording of A Child’s History of England by

398 Charles Dickens, one chapter read by a male and one by a female speaker (https://librivox.org/a-
399  childs-history-of-england-by-charles-dickens/, chapters 3 and 8). Four 1 minute long segments
400  were extracted from each chapters (referred to as male-1 through 4 and female 1 through 4).
401  Pauses longer than 300 ms were shortened to an interval randomly chosen between 250 and
402 300 ms, and loudness was matched perceptually. Two-talker stimuli were generated by

403  additively combining two segments, one from each speaker, with an initial 1 s period containing
404  only the to-be attended speaker (mix-1 through 4 were constructed by mixing male-1 and

405 female-1, through 4).
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406  Procedure

407  During MEG data acquisition, participants lay supine and were instructed to keep their eyes
408  closed to minimize ocular artifacts and head movement. Stimuli were delivered through foam
409  pad earphones inserted into the ear canal at a comfortably loud listening level.

410  Participants listened four times to mix-1, while attending to one speaker and ignoring the other
411  (which speaker they attended to was counterbalanced across subject), then 4 times to mix-2
412  while attending to the other speaker. After each segment, participants answered a question

413  relating to the content of the attended stimulus. Then, the four segments just heard were all
414  presented once each, as single talkers. The same procedure was repeated for stimulus segments
415 3and 4.

416  Data acquisition and preprocessing

417  Brain responses were recorded with a 157 axial gradiometer whole head MEG system (KIT,
418  Kanazawa, Japan) inside a magnetically shielded room (Vacuumschmelze GmbH & Co. KG,

419  Hanau, Germany) at the University of Maryland, College Park. Sensors (15.5 mm diameter) are
420  uniformly distributed inside a liquid-He dewar, spaced ~25 mm apart, and configured as first-
421  order axial gradiometers with 50 mm separation and sensitivity >5 fT-Hz /2 in the white noise
422  region (> 1 KHz). Data were recorded with an online 200 Hz low-pass filter and a 60 Hz notch
423 Afilter at a sampling rate of 1 kHz.

424 Recordings were pre-processed using mne-python (32). Flat channels were automatically

425  detected and excluded. Extraneous artifacts were removed with temporal signal space

426  separation (33). Data were filtered between 1 and 40 Hz with a zero-phase FIR filter (mne-

427  python 0.15 default settings). Extended infomax independent component analysis (34) was then
428  used to remove ocular and cardiac artifacts. Responses time-locked to the onset of the speech
429  stimuli were extracted and downsampled to 100 Hz. For responses to the two-talker mixture, the
430  first second of data, in which only the to-be attended talker was heard, was discarded.

431  Five marker coils attached to subjects’ head served to localize the head position with respect to
432  the MEG sensors. Two measurements, one at the beginning and one at the end of the recording
433  were averaged. The FreeSurfer (35) “fsaverage” template brain was coregistered to each

434 subject’s digitized head shape (Polhemus 3SPACE FASTRAK) using rotation, translation, and

435  uniform scaling. A source space was generated using four-fold icosahedral subdivision of the
436  white matter surface, with source dipoles oriented perpendicularly to the cortical surface.

437  Minimum €2 norm current estimates (36, 37) were computed for all data. Initial analysis was
438  performed on the whole brain as identified by the FreeSurfer “cortex” label. Subsequent

439  analyses were restricted to sources in the STG and Heschl’s gyrus as identified in the “aparc”
440  parcellation (38).

441  Predictor variables

442  Predictor variables were based on gammatone spectrograms sampled at 256 frequencies,

443 ranging from 20 to 5000 Hz in ERB space (39), resampled to 1 kHz and scaled with exponent 0.6
444 (40). At this point, different stimulus representations were computed. Spectrograms were then
445  binned into 8 frequency bands equally spaced in ERB space (omitting frequencies below 100 Hz
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446  because the female speaker had little power below that frequency) and resampled to match the
447  MEG data.

448  Acoustic onset representations were computed by applying an auditory edge detection model
449  (17) independently to each frequency band of the spectrogram. The model was implemented
450  with a delay layer with 10 delays ranging from 7, = 3 to 5 ms, a saturation scaling factor of C =
451 30, and a receptive field based on the derivative of a Gaussian window with SD = 2 ms.

452 Negative values in the resulting onset spectrogram were set to 0.

453  The linear dependence between different predictor variables (Figure 3-C) was estimated by

454 treating each predictor time series in turn as the dependent measure and predicting it from the
455  other predictors through a kernel with T = [=500, ..., 500) (see next section). For example,
456  segments [male-1, female-2, male-3. female-4] were combined, and each of the 8 bands in this
457  predictor were predicted from [[female-1, mix-1], [male-2, mix-2], ...] (including all 8 bands). The
458  same parameters were used as for fitting neural models, except that no temporal basis function
459  was used. The measure of interest was the proportion of the (£1) variability of the dependent
460  variable that could not be explained from a linear combination of the other variables.

461  Reverse correlation

462  Spectro-temporal response functions (STRFs) were computed independently for each virtual
463  current source (see 41). The neural response at time t, y: was predicted from the sum of N
464 predictor variables x, convolved with a corresponding response function h, of length T:

N T
465 Pe=D > hueXipe
n T

466  STRFs were generated from a basis of 50 ms wide Hamming windows and were estimated using
467  am iterative coordinate descent algorithm (42) to minimize the €1 error. Early stopping was
468  based on 4-fold split of the data, freezing each h, when it lead to an increase of error in the
469  testing data (see 43 for further details).

470  Model tests
471  Each spectrogram comprising of 8 time series (frequency bins) was treated as an individual
472  predictor. Speech in quiet was modeled using the (envelope) spectrogram and acoustic onsets:

473 MEG~o0 + e

474 Where o=onsets and e=envelope. Models were estimated with STRFs with T = [0, ..., 500) ms.
475  In order to test the predictive power of each predictor, three corresponding null models were
476  generated by temporally misaligning the predictor with the response by cyclically shifting the
477  predictor for each segment by 15, 30 and 45 seconds. Model quality was quantified as the

478  Pearson correlation between actual and predicted response. For each predictor, the model
479  quality of the full model was compared with the average model quality of the three

480  corresponding null models using a mass-univariate related measures t-test with threshold-free
481  cluster enhancement (44) and a null distribution based on 10,000 permutations (43 for further
482  details).

483 Initially, responses to speech in noise was predicted from:
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484 MEG~0p,ix + 04t + Oign + €mix + €qtt T €ign

485  Where mix=mixture, att=attended, ign=ignored. Based on evaluation of this model, e,;;, was
486  dropped (Figure 3). Masked onsets (Figure 4) were analyzed with:

487 MEGNOatt,overt + Oign,overt + Oattmasked + Oign,masked + €att + eign
488

489  STRF tests

490  To evaluate STRFs, the corresponding model (only correctly aligned predictors) was refit with
491 T =[-100,...,500) ms to include an estimate of baseline activity (due to occasional edge
492  artifacts, STRFs are displayed between -50 to 450 ms).

493  Auditory STRFs were computed for each subject and hemisphere as a weighted sum of STRFs in
494 the region of interest (ROI) encompassing the STG and Heschl’s gyrus. Weights were computed
495  separately for each subject and hemisphere. First, each source point was assigned a vector with
496  direction orthogonal to the cortical surface, and length equal to the total TRF power for

497  responses to clean speech (sum of squares over time, frequency and predictor). The ROI

498  direction was then determined as the first principal component of these vectors, with the sign
499  adjusted to be positive on the inferior-superior axis. A weight was then assigned to each source
500 asthe dot product of this direction with the source’s direction, and weights were normalized
501  across the ROI.

502  Inorder to make TRFs more comparable across subjects, they were smoothed on the frequency
503  axis with a Hamming window of width 7. STRFs were statistically analyzed in the time range

504 [0, ...,450) ms using mass-univariate t-tests and ANOVAs, with p-values calculated from null
505  distributions based on the maximum statistic (t, F) in 10,000 permutations (45).
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