

1 **α_{1A} -adrenoceptor inverse agonists and agonists modulate receptor signalling through a**
2 **conformational selection mechanism**

3

4 Feng-Jie Wu^{1,2,3}, Lisa M. Williams³, Alaa Abdul-Ridha³, Avanka Gunatilaka³, Tasneem M.
5 Vaid^{1,2,3}, Martina Kocan³, Alice R. Whitehead³, Michael D.W. Griffin^{1,2}, Ross A.D.
6 Bathgate^{1,3}, Daniel J. Scott^{1,3*}, Paul R. Gooley^{1,2*}

7

8 ¹Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville,
9 3052, VIC, Australia.

10 ²Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville,
11 3052, VIC, Australia.

12 ³The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville,
13 3052, VIC, Australia.

14

15 **Correspondence to:**

16 Paul R. Gooley
17 Department of Biochemistry and Molecular Biology
18 The University of Melbourne
19 Bio21 Molecular Science and Biotechnology Institute
20 Phone: +61 (0)3 8344 2273
21 Email: prg@unimelb.edu.au

22 Daniel J. Scott
23 The Florey Institute of Neuroscience and Mental Health
24 The University of Melbourne
25 Phone: +61 (0)3 9035 7584
26 Email: daniel.scott@florey.edu.au

29

30 **Abstract**

31 G-Protein Coupled Receptors (GPCRs) transmit signals across the cell membrane via
32 an allosteric network from the ligand-binding site to the G-protein binding site via a series of
33 conserved microswitches. Crystal structures of GPCRs provide snapshots of inactive and
34 active states, but poorly describe the conformational dynamics of the allosteric network that
35 underlies GPCR activation. Here we analyse the correlation between ligand binding and
36 receptor conformation of the α_{1A} -adrenoceptor, known for stimulating smooth muscle
37 contraction in response to binding noradrenaline. NMR of $^{13}\text{C}^\epsilon\text{H}_3$ -methionine labelled α_{1A} -
38 adrenoreceptor mutants, each exhibiting differing signalling capacities, revealed how
39 different classes of ligands modulate receptor conformational equilibria. $^{13}\text{C}^\epsilon\text{H}_3$ -methionine
40 residues near the microswitches revealed distinct states that correlated with ligand efficacies,
41 supporting a conformational selection mechanism. We propose that allosteric coupling
42 between the microswitches controls receptor conformation and underlies the mechanism of
43 ligand modulation of GPCR signalling in cells.

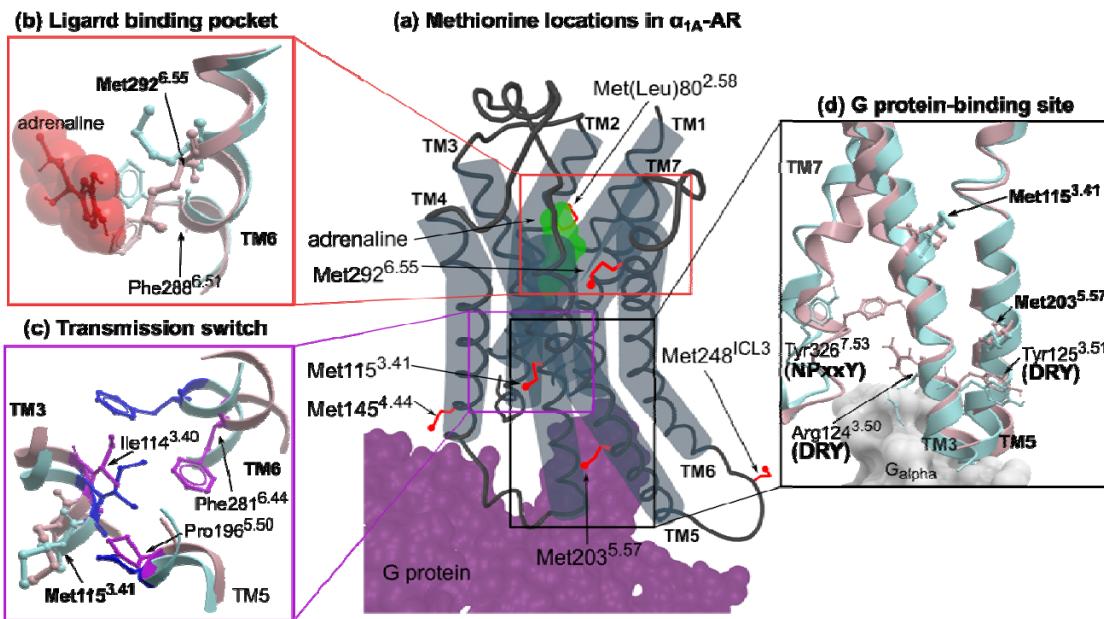
44

45

46

47

48


49 **Introduction**

50 G-protein coupled receptors (GPCRs) are integral membrane proteins sharing a common
51 seven-helix transmembrane domain (TMD). Conformational changes to the TMD are
52 required to transmit the extracellular stimuli intracellularly to activate signalling pathways.
53 Over the past 20 years X-ray crystal structures, and more recently cryo-EM structures, have
54 revealed a plethora of structural details on how functionally different ligands interact with
55 GPCRs and the conformational changes they induce. Most structures solved to date are of
56 GPCRs in inactive states, bound to inverse agonists or antagonists (Manglik and Kruse,
57 2017). A few have been crystalized with agonist alone (Manglik and Kruse, 2017), with
58 resultant structures similar to antagonist bound inactive states. Complexes of GPCRs with
59 active-state-stabilising nanobodies, engineered mini G proteins, G α C-terminal peptide or
60 heterotrimeric G proteins appear necessary to stabilise agonist bound GPCRs in active states
61 for X-ray and cryo-EM structure determination (Carpenter and Tate, 2017). Using these tools,
62 several active state GPCR structures have been solved (Carpenter and Tate, 2017; Garcia-
63 Nafria and Tate, 2019; Manglik and Kruse, 2017), revealing conserved conformational
64 changes that occur upon receptor activation. These include rearrangements in the ligand
65 binding site and a large outward movement at the cytoplasmic side of transmembrane (TM)
66 helix 6 (TM6) to accommodate G protein binding. While providing a wealth of structural
67 detail of static receptor conformations, these structures generally do not provide insight into
68 GPCR signalling complexities such as basal receptor activity, partial agonism and biased
69 agonism.

70 To address this shortfall, spectroscopic techniques, supported by molecular dynamic
71 simulations, have given insight into the conformational dynamics that underlie the activity of
72 a few diffusible ligand-activated GPCRs including β_2 adrenergic receptor (β_2 -AR) (Bokoch

73 et al., 2010; Eddy et al., 2016; Horst et al., 2013; Kofuku et al., 2012; Kofuku et al., 2014;
74 Liu, 2012; Manglik et al., 2015; Nygaard et al., 2013), β_1 adrenergic receptor (β_1 -AR) (Isogai
75 et al., 2016; Solt et al., 2017), adenosine A_{2A} receptor (A_{2A}R) (Clark et al., 2017; Eddy et al.,
76 2018; Ye et al., 2018; Ye et al., 2016), μ opioid receptor (μ OR) (Okude et al., 2015; Sounier
77 et al., 2015), leukotriene B4 receptor (BLT2)(Casiraghi et al., 2016), and the M2 muscarinic
78 acetylcholine receptor (M2R) (Xu et al., 2019). By far the most studied receptor in this regard
79 is β_2 -AR, for which ¹³C⁶H₃-methionine labelling NMR (Bokoch et al., 2010; Kofuku et al.,
80 2012; Kofuku et al., 2014; Nygaard et al., 2013), ¹⁹F NMR(Eddy et al., 2016; Horst et al.,
81 2013; Liu, 2012; Manglik et al., 2015) and electron paramagnetic resonance (EPR) (Manglik
82 et al., 2015) have been applied to characterise the conformational signatures of this receptor
83 when bound to various ligands and a G protein mimetic nanobody. These studies reveal that
84 GPCRs are highly dynamic, sampling inactive and active conformational states, and are
85 thought to predominantly function via a conformational selection mechanism (Shimada et al.,
86 2018). Such a mechanism posits that a GPCR constantly samples various inactive and active
87 conformations, all existing in equilibrium. Ligands preferentially bind to particular receptor
88 states, depending on their pharmacological characteristics, thus shifting the conformational
89 equilibrium towards these preferred states and modulating the signalling output of the system.
90 The extracellular orthosteric ligand binding site in adrenoceptors is connected to the
91 intracellular G protein binding site through a series of conserved microswitches (Ahuja and
92 Smith, 2009; Deupi and Standfuss, 2011; Trzaskowski et al., 2012) (Figure 1): a central
93 transmission switch (also called the connector region, CWxP motif or PIF motif (Latorraca et
94 al., 2017)), the NPxxY switch, and the intracellular G protein binding site, characterized by
95 the DRY motif (or switch). How these microswitches coordinate the transmission of the
96 extracellular signal is not clear, but molecular dynamics (MD) simulations and NMR data
97 have led to a mechanistic description of “loose allosteric coupling” (Latorraca et al., 2017).

98

99

100 **Figure 1. Methionine residues in α_{1A} -AR.** (a) The location of six methionines on a cartoon
101 representation of α_{1A} -AR. Methionine sidechains are highlighted as red sticks. Bound adrenaline and
102 G protein are coloured in green and purple respectively. (b-d) Homology models of α_{1A} -AR-A4 in the
103 inactive state (blue; modeled on the X-ray crystal structure of inactive β_2 -AR, pdb id: 5jqh) and
104 active state (pink; modeled on the X-ray crystal structure of active β_2 -AR, pdb id: 3sn6) are
105 superimposed showing inferred conformational changes that occur in the ligand binding pocket (b),
106 transmission switch (c) and G protein binding site (d).

107

108 This mechanism refers to each microswitch as conformationally independent from the others,
109 that is an active DRY motif state is not significantly dependent on an active state in the
110 transmission switch. That said, an active state in the transmission switch does increase the
111 probability of the DRY motif (and thus the receptor) to sample active states (thus, loose
112 allosteric coupling) (Latorraca et al., 2017). Put simply, the conformational changes that
113 occur in the microswitches are thought to drive the overall equilibrium state of the receptor

114 system. Despite recent work, it is not well understood how the binding of ligands such as
115 inverse agonists influence the microswitch state equilibria to decrease basal receptor activity.

116 α_1 -adrenoceptors (α_1 -ARs) comprise three G_q -coupled GPCR subtypes (α_{1A} -, α_{1B} - and
117 α_{1D} -AR) that bind and sense the endogenous catecholamines, adrenaline and noradrenaline,
118 to modulate a range of physiological processes. In the periphery, postsynaptic α_1 -AR
119 stimulation by catecholamines mediates smooth muscle contraction, thus α_1 -AR antagonists
120 and inverse agonists are clinically prescribed to treat hypertension and benign prostatic
121 hyperplasia (BPH) (Akinaga et al., 2019). α_1 -ARs are also widely expressed in the central
122 nervous system (CNS), but the lack of subtype-selective antibodies and ligands limits the
123 understanding of their role in neuroplasticity and neurodegeneration (Perez and Doze, 2011).
124 Currently there are no available crystal structures of an α_1 -AR family member, which limits
125 the rational design of more selective compounds to probe the physiological role of α_{1A} -AR in
126 the CNS.

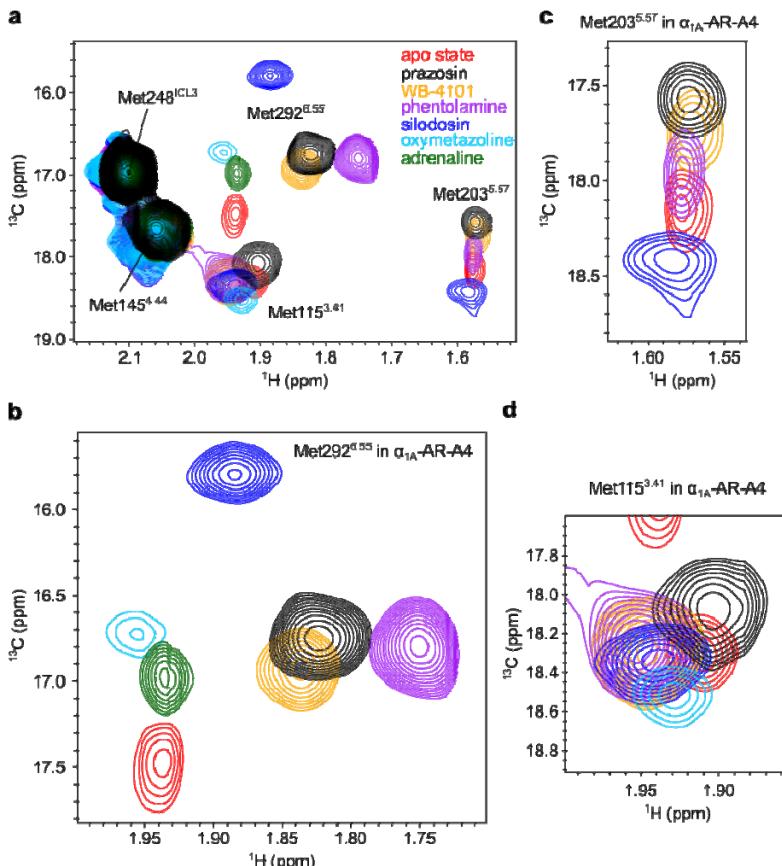
127 Recombinant α_{1A} -AR expresses poorly and the resultant protein is particularly
128 unstable when purified in detergent (Scott and Pluckthun, 2013), which has hindered
129 biochemical studies of this GPCR. Recently, we engineered an α_{1A} -AR variant, α_{1A} -AR-A4,
130 that can be expressed in *Escherichia coli* (*E. coli*) and exhibits improved stability when
131 purified in detergents (Yong et al., 2018). When expressed in COS-7 cells α_{1A} -AR-A4
132 exhibits no signalling efficacy in response to adrenaline stimulation (Yong et al., 2018). In
133 the present study, α_{1A} -AR-A4 was labelled with $^{13}\text{C}^\epsilon\text{H}_3$ -methionine at the five naturally
134 occurring methionine residues, providing NMR probes to assess how inverse agonists, partial
135 agonists and full agonists influence receptor conformational equilibria. Three of these
136 methionines are excellent probes of the ligand-binding site and the microswitches proposed to
137 be markers of signal transmission: Met292^{6,55} (superscript denotes GPCRdb numbering
138 (Isberg et al., 2015)) is located in the ligand binding site; Met115^{3,41} is proximal to the

139 transmission switch (Ile114^{3.40}, Pro196^{5.50}, Leu197^{5.51}, Phe281^{6.44}, Trp285^{6.48}); and Met203^{5.57}
140 sits above the tyrosine of the DRY motif (Asp130^{3.49}, Arg131^{3.50}, Tyr132^{3.51}). Using the
141 inactive α_{1A} -AR variant, α_{1A} -AR-A4, and by reverse mutation to an active receptor (α_{1A} -AR-
142 A4-active) we show that for Met115^{3.41} and Met203^{5.57} the chemical shifts and line-widths of
143 the $^{13}\text{C}^\epsilon\text{H}_3$ groups are dependent on ligand efficacy (from strong inverse agonist to full
144 agonist), suggesting that α_{1A} -AR activation proceeds primarily through a conformational
145 selection mechanism.

146

147 **Results**

148 **$^{13}\text{C}^\epsilon\text{H}_3$ methionine labelling and NMR signal assignment**


149 α_{1A} -AR-A4 is a thermostabilised variant of the human α_{1A} -AR that contains 15 amino acid
150 substitutions over wild type (WT) human α_{1A} -AR (Supplementary Figure 1). Excluding
151 Met1, α_{1A} -AR-A4 possesses six methionine residues, five of which are naturally occurring
152 (Met115^{3.41}, Met145^{4.44}, Met203^{5.57}, Met248^{ICL3}, Met292^{6.55}) and one, Met80^{2.58}, is a
153 thermostabilising mutation previously selected for (Yong et al., 2018) (Supplementary Figure
154 1). Homology models of α_{1A} -AR (Figure 1) built on in inactive- and active-states of X-ray
155 structures of β_2 -AR show that three of these methionines were particularly interesting as
156 conformational probes as they are located either within the adrenaline binding site
157 (Met292^{6.55}), immediately adjacent to the highly conserved Ile114^{3.40} of the transmission
158 switch (Met115^{3.41}), or sitting above Tyr125^{3.51} of the DRY motif within the G protein
159 binding site (Met203^{5.57}). These homology models of α_{1A} -AR suggest that each of these
160 regions undergo significant local rearrangements between inactive to active conformations
161 (Figure 1).

162 α_{1A} -AR-A4 was expressed and labelled with $^{13}\text{C}^\epsilon\text{H}_3$ -methionine using an adapted *E.*
163 *coli* methionine biosynthesis pathway inhibition protocol that we have previously used to

164 generate $^{13}\text{C}^\epsilon\text{H}_3$ -methionine-labeled neuropeptide Y receptor 1 (NTS₁) samples labelled with
165 96% incorporation efficiency(Bumbak et al., 2019; Bumbak et al., 2018). Using this method
166 α_{1A} -AR-A4 expressed well and could be purified, solubilized in n-dodecyl β -D-
167 maltopyranoside (DDM), with a yield of (0.5-1 mg/L culture). 40-60 μM samples of $^{13}\text{C}^\epsilon\text{H}_3$ -
168 methionine-labeled α_{1A} -AR-A4 were subsequently used to record 2D ^1H - ^{13}C SOFAST-
169 heteronuclear multiple quantum coherence (HMQC) spectra in the apo state, and in the bound
170 states for prazosin (full inverse agonist), WB-4101 (partial inverse agonist), phentolamine
171 (partial inverse agonist), silodosin (or KMD-3213, neutral antagonist), oxymetazoline (partial
172 agonist) and adrenaline (full agonist) (Figure 2 and Supplementary Figure 2). Individual
173 $^{13}\text{C}^\epsilon\text{H}_3$ -methionine resonances were assigned by expressing and analysing α_{1A} -AR-A4 M80L,
174 α_{1A} -AR-A4 M115I, α_{1A} -AR-A4 M203L, α_{1A} -AR-A4 M248I and α_{1A} -AR-A4 M292I mutants
175 in the same way. ^1H - ^{13}C SOFAST-HMQC spectra enabled clear assignment of mutated
176 methionines as the remaining five resonances in these spectra showed only small chemical
177 shift differences in the presence of the mutation (Supplementary Figure 3). The $^{13}\text{C}^\epsilon\text{H}_3$ -
178 methionine of the apo state of α_{1A} -AR-A4 showed clear single resonances for each methyl
179 with no significant heterogeneity, in contrast to many previously studied GPCRs (Casiraghi
180 et al., 2016; Kofuku et al., 2012; Nygaard et al., 2013; Okude et al., 2015; Solt et al., 2017;
181 Xu et al., 2019), (Figure 2). Met145^{4.44} and Met248^{ICL3} exhibited intense signals with ^1H and
182 ^{13}C chemical shifts of the methyl group indicative of solvent exposed, unrestrained methyl
183 groups. Met248^{ICL3}, located within ICL3 (Figure 1a), showed strong signal intensity most
184 likely due to the mobility of this loop and exposure to the bulk solvent. Met145^{4.44} is at the C-
185 terminal intracellular end of TM4, predicted to be exposed on the surface of the helix (Figure
186 1a) and thus also highly mobile. Met80^{2.58} was not unambiguously assigned (Supplementary
187 Figure 3a,f) as it either is significantly broadened and difficult to resolve in all receptor states
188 or may overlap with Met145^{4.44} and under some conditions with Met292^{6.55} (Supplementary

189 Figure 3e). The remaining methionines, Met115^{3.41}, Met203^{5.57} and Met292^{6.55}, were readily
190 assigned (Supplementary Figure 3b,c,e,g,h,j) and exhibited resolved chemical shifts for the
191 ¹³C^εH₃ that were sensitive to the bound ligand (Figure 2b-d).

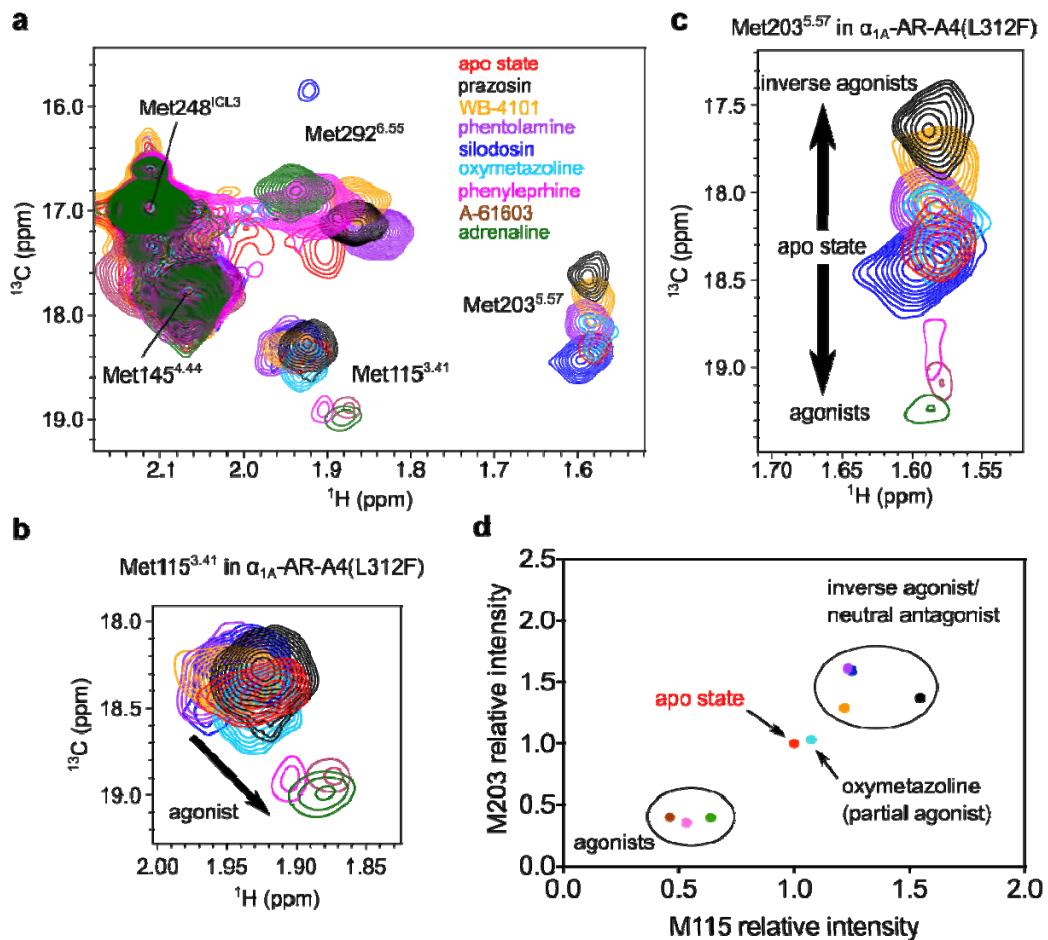
192

193

194 **Figure 2. ¹H-¹³C SOFAST-HMQC spectra of α_{1A}-AR-A4.** (a) Overlay of 2D ¹H-¹³C SOFAST-
195 HMQC spectra for [¹³C^εH₃-Met] α_{1A}-AR-A4 collected in the apo state (red) and bound to prazosin
196 (black, inverse agonist), WB-4101 (yellow, inverse agonist), phentolamine (purple, inverse agonist),
197 silodosin (blue, neutral antagonist), oxymetazoline (cyan, partial agonist) and adrenaline (green, full
198 agonist). (b) Close-up of the Met292^{6.55} resonance. (c) Close-up of the Met203^{5.57} resonance. (d)
199 Close-up of the Met115^{3.41} resonance. Spectra were acquired on ~50 μM α_{1A}-AR-A4 dissolved in
200 0.02-0.1% DDM micelle, pH 7.5 and 25 °C.

201

202 Based on homology models, Met292^{6,55} projects into the orthosteric ligand binding
203 pocket (Figure 1a) and mutational studies support a role for this residue in ligand binding
204 (Hwa et al., 1995). Thus, the ¹³C^εH₃ chemical shifts of Met292^{6,55} likely reflect a direct
205 interaction with chemical groups of each ligand. Interestingly, the resonance intensities of
206 Met292^{6,55} increased in the presence of antagonists and inverse agonists relative to the apo
207 state (Figure 2b), indicating that binding of these ligands reduces conformational dynamics in
208 the orthosteric binding site. Met115^{3,41} and Met203^{5,57} are distant from the orthosteric site, but
209 both the chemical shifts and linewidths of their ¹³C^εH₃ groups were sensitive to ligand
210 binding (Figure 2c,d), likely reflecting receptor conformational changes in the transmission
211 switch and G protein-binding site respectively (Figure 1c,d). The ¹H chemical shift of the
212 methyl of Met203^{5,57} was shifted upfield from typical small-peptide positions (2.1 ppm) to
213 1.58 ppm in agreement with our models, which predict ring-current induced effects from
214 Tyr125^{3,51} of the DRY motif (Supplementary Figure 4). Met203^{5,57} therefore serves as a
215 probe of conformational change within this region. Indeed, the resonances of the ¹³C^εH₃ of
216 Met203^{5,57} exhibited a significant linear chemical shift change depending on which ligand
217 was bound, demonstrating that allosteric coupling between the ligand binding site and the G
218 protein-binding site is retained in the inactive α_{1A} -AR-A4 in solution. Such a linear chemical
219 shift change is also expected for ligands modulating receptor state *via* conformational
220 selection. We postulate that the Met203^{5,57} signal reflects the average, equilibrium signal,
221 between inactive and active states undergoing fast exchange. Inverse agonists preferentially
222 bound to inactive states, shifting the Met203^{5,57} equilibrium to an upfield position (inactive
223 state) compared to apo state receptor, which can sample active-like states to a certain degree.


224 We were interested to see if an opposite trend could be observed for receptor agonists,
225 which we hypothesised would shift the position of the Met203^{5,57} resonance downfield. For
226 α_{1A} -AR-A4 however, the binding of the full agonist adrenaline to α_{1A} -AR-A4 resulted in

227 complete line broadening of the Met115^{3,41} and Met203^{5,57} resonances despite the promotion
228 of a distinct chemical shift for Met292^{6,55} in the binding site. Binding of the partial agonist
229 oxymetazoline resulted in substantial broadening of Met203^{5,57} and Met292^{6,55}, but not
230 Met115^{3,41}. The loss of these chemical shifts upon agonist binding was likely due to the
231 significantly weaker agonist affinities at α_{1A} -AR-A4 compared to unmutated, WT α_{1A} -AR, as
232 a result of the F312L stabilizing mutation (Yong et al., 2018). Thus, NMR experiments were
233 repeated on α_{1A} -AR-A4 (L312F), for which agonist affinities were largely restored to that of
234 WT α_{1A} -AR (Supplementary Figure 5 and Supplementary Table 1) (Yong et al., 2018).

235

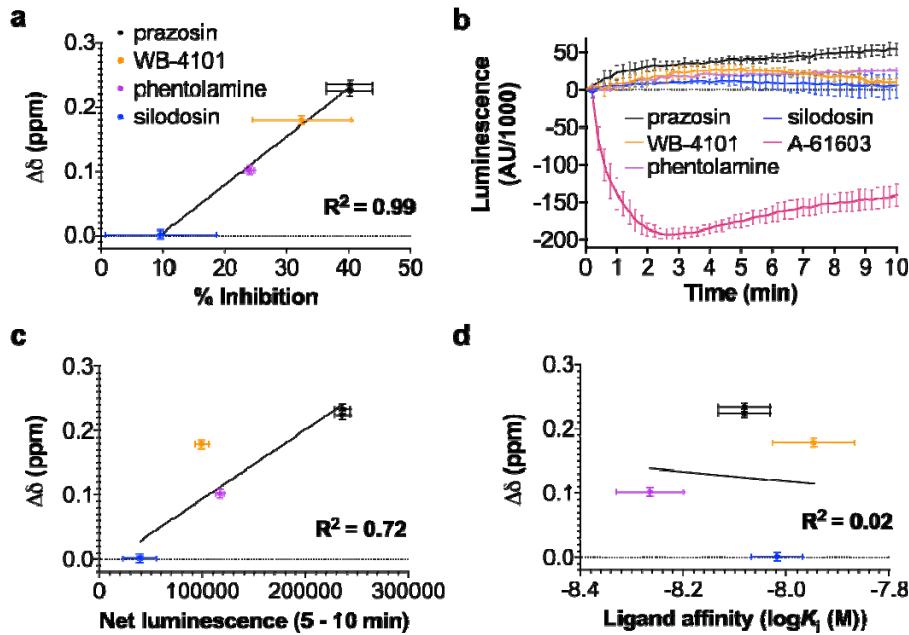
236 **Agonist induced chemical shifts of Met115^{3,41} and Met203^{5,57} resonances**

237 Despite the reduced thermostability of α_{1A} -AR-A4 (L312F) (Yong et al., 2018), we were able
238 to $^{13}\text{C}^\epsilon\text{H}_3$ -methionine-label and record ^1H - ^{13}C SOFAST-HMQC spectra for this receptor in
239 the apo state and bound to adrenaline (full agonist), phenylephrine (full agonist), A-61603
240 (full agonist), and oxymetazoline (partial agonist) in addition to the inverse agonists and
241 neutral antagonists tested on α_{1A} -AR-A4 (Figure 3a). Overall the ^1H - ^{13}C SOFAST-HMQC
242 spectra of the apo, antagonist and inverse agonist bound states of α_{1A} -AR-A4 (L312F) were
243 similar to those of α_{1A} -AR-A4. Again, single resonances for the $^{13}\text{C}^\epsilon\text{H}_3$ -methionine groups of
244 α_{1A} -AR-A4 (L312F) were observed for all ligands. The chemical shifts of Met292^{6,55} induced
245 by each ligand in α_{1A} -AR-A4 (L312F) were slightly different to those of α_{1A} -AR-A4, most
246 likely due to orthosteric binding site changes after the L312F reversion. Inverse agonist
247 binding increased the intensity of the Met292^{6,55} resonance in α_{1A} -AR-A4 (L312F), as was
248 seen with α_{1A} -AR-A4; whereas the neutral antagonist silodosin significantly decreased the
249 peak intensity and the partial agonist oxymetazoline and full agonist A-61603 highly
250 broadened the resonance of Met292^{6,55} in α_{1A} -AR-A4 (L312F) (Supplementary Figure 6).

251

252 **Figure 3. Ligand efficacy-dependent chemical shifts of Met115^{3.41} and Met203^{5.57} resonances.** (a) Overlay of 2D ^1H - ^{13}C SOFAST-HMQC spectra for $[^{13}\text{C}^6\text{H}_3\text{-Met}] \alpha_{1A}$ -AR-A4 (L312F) in the apo state (red) and bound to ligands: prazosin (black, inverse agonist), WB-4101 (orange, inverse agonist), phentolamine (purple, inverse agonist), silodosin (blue, neutral antagonist), oxymetazoline (cyan, partial agonist), phenylephrine (magenta, full agonist), A-61603 (maroon, full agonist), adrenaline (green, full agonist). (b) Close-up of the Met115^{3.41} resonance in α_{1A} -AR-A4 (L312F). (c) Close-up of the Met203^{5.57} resonance in α_{1A} -AR-A4 (L312F). The spectra for adrenaline, A-61603 and phenylephrine are plotted at a level 1.8-times lower than the main figure. (d) Normalized peak intensities of Met115^{3.41} and Met203^{5.57} of α_{1A} -AR-A4 (L312F) show differences between agonists, antagonists and partial agonists. Ligands are coloured as listed above. Spectra were acquired on ~ 50 μM α_{1A} -AR-A4 (L312F) dissolved in 0.02-0.1% DDM micelle, pH 7.5 and 25 °C.

263


264 The recovered agonist affinity for α_{1A} -AR-A4 (L312F) allowed the measurement of
265 ^1H - ^{13}C SOFAST-HMQC spectra where we were confident of full receptor-agonist saturation.
266 Binding of the full agonist adrenaline to α_{1A} -AR-A4 (L312F) produced a similar Met292^{6,55}
267 chemical shift to that seen with α_{1A} -AR-A4 (Figure 3a), and also weak peaks were now
268 observed for Met115^{3,41} and Met203^{5,57} (Figure 3b,c), which were completely broadened in
269 adrenaline-bound α_{1A} -AR-A4. Importantly, the binding of all agonists, adrenaline,
270 phenylephrine and A-61603 to α_{1A} -AR-A4 (L312F) induced distinct chemical shift and line
271 broadening changes to Met115^{3,41} and Met203^{5,57} compared to neutral antagonists and inverse
272 agonists (Figure 3b,c). The agonist-induced Met115^{3,41} resonances cluster together potentially
273 indicative of an active transmission switch conformation (Figure 3b). Binding of the partial
274 agonist oxymetazoline induced a chemical shift of Met115^{3,41} falling between the inverse
275 agonist and full agonist clusters, consistent with partial agonists promoting a weaker shift in
276 the inactive-active transmission switch state equilibrium. The linear change in Met203^{5,57}
277 chemical shift position upon inverse agonist binding seen with α_{1A} -AR-A4 was retained in
278 α_{1A} -AR-A4 (L312F), but as hypothesised, agonist binding promoted opposite, downfield
279 resonance shifts in the ^{13}C dimension along the same vector (Figure 3c). This change in
280 $^{13}\text{C}^\epsilon\text{H}_3$ -methionine chemical shift in the ^{13}C dimension reflects a change in the χ_3 dihedral
281 angle. The ^{13}C chemical shift dependence of this angle is about 19 ppm for trans and 16 ppm
282 for \pm gauche (Butterfoss et al., 2010). For the apo and antagonist states the chemical shift of
283 18.25 to 18.5 ppm suggests a trend toward trans, whereas in the full-inverse agonist state the
284 resonance shifts up-field to 17.7 ppm, indicative of an averaging between gauche and trans.
285 Consistent with our homology models (Supplementary Figure 4) for full agonist a further
286 downfield shift between 19 to 19.25 ppm infers an increase in the trans conformer.
287 Interestingly, the partial agonist oxymetazoline induced a small upfield $^{13}\text{C}^\epsilon$ shift of
288 Met203^{5,57}, similar to the inverse agonist phentolamine. The fact that full agonists induced

289 Met203^{5.57} chemical shifts to move in the opposite direction to inverse agonists suggests an
290 equilibrium shift away from inactive to active conformational states of the DRY motif.
291 Furthermore, the resonance intensities of both Met115^{3.41} and Met203^{5.57} in α_{1A} -AR-A4
292 (L312F), relative to the ligand-insensitive Met145^{4.44} resonance, were weakened upon agonist
293 binding compared to the intensity increases seen with antagonists and inverse agonists
294 (Figure 3d). The intensities of Met115^{3.41} and Met203^{5.57} upon binding of the partial agonist
295 oxymetazoline fell in between the antagonist- and agonist-induced intensities. The behaviour
296 of the ¹³C^εH₃ of Met115^{3.41} and Met203^{5.57} is consistent with the current concept that agonists
297 increase conformational heterogeneity in GPCRs, where agonists increase microsecond
298 timescale transitions to active receptor states, to increase the probability of engaging and
299 activating effector proteins (Kofuku et al., 2012; Manglik et al., 2015; Nygaard et al., 2013;
300 Shimada et al., 2018; Solt et al., 2017; Ye et al., 2016).

301

302 **Chemical shift changes of Met203^{5.57} correlate with ligand efficacy.**

303 In mammalian cells, α_{1A} -AR exhibits basal activity in the absence of bound ligands (Zhu et
304 al., 2000). Such basal activity is unaffected by the binding of neutral antagonists but is
305 reduced by the binding of inverse agonists to the receptor. In the case of α_{1A} -AR, by probing
306 the ability of various antagonists to reduce the signalling of a constitutively active receptor
307 mutant, the rank order of inverse agonist efficacies has been found to be: prazosin (strongest);
308 WB-4101; phentolamine (weakest); and silodosin being a neutral antagonist (Zhu et al.,
309 2000). To understand how the NMR signals of Met203^{5.57} in α_{1A} -AR-A4 (L312F) relate to
310 receptor conformational equilibria, the changes to the chemical shifts for the ¹³C^εH₃ of
311 Met203^{5.57} were plotted against the previously published relative efficacy values for the
312 inverse agonists, revealing a strong linear correlation ($R^2 = 0.99$, Figure 4a). To test if this
313 correlation is retained when probing inverse agonism at the wild-type α_{1A} -AR, we determined

314

315 **Figure 4. Correlation between the chemical shift positions of the $^{13}\text{C}^e\text{H}_3$ in $\text{Met}203^{5.57}$ and**

316 **inverse agonists efficacy.** (a) Linear regression analysis of the average chemical shift differences

317 ($\Delta\delta$) for the $^{13}\text{C}^e\text{H}_3$ of $\text{Met}203^{5.57}$ in α_{1A} -AR-A4 (L312F) when bound to prazosin (black circles), WB-

318 4101 (orange circles), and phentolamine (purple circles) compared to silodosin (blue circles) and the

319 published efficacy of each ligand in reducing the signaling of a constitutively active mutant of α_{1A} -AR

320 (Zhu et al., 2000). Published data were extracted using WebPlotDigitizer

321 (<https://automeris.io/WebPlotDigitizer>). Testing the resultant equation against the null hypothesis of a

322 slope of zero resulted in a P value of < 0.0001 (b) NanoBit G protein activity assay demonstrating

323 inverse agonism of prazosin, WB-4101, phentolamine and silodosin at WT α_{1A} -AR-expressing COS-7

324 cells. Each of these inverse agonist experiments were repeated in three independent biological

325 replicate experiments, with the mean \pm SEM of the resultant luminescence plotted for each timepoint.

326 To demonstrate the response from an agonist, A-61603 treatment was performed in two independent

327 biological replicate experiments. Each biological replicate comprised three technical replicates

328 measured in parallel. The grey shaded region indicates where the area under each biological replicate

329 curve was calculated for (c). (c) Linear regression analysis of the average chemical shift differences

330 ($\Delta\delta$) for the $^{13}\text{C}^e\text{H}_3$ of $\text{Met}203^{5.57}$ in α_{1A} -AR-A4 (L312F) and the increase in luminescence seen in the

331 NanoBit assay for each inverse agonist and neutral antagonist. Ligands are coloured as listed above

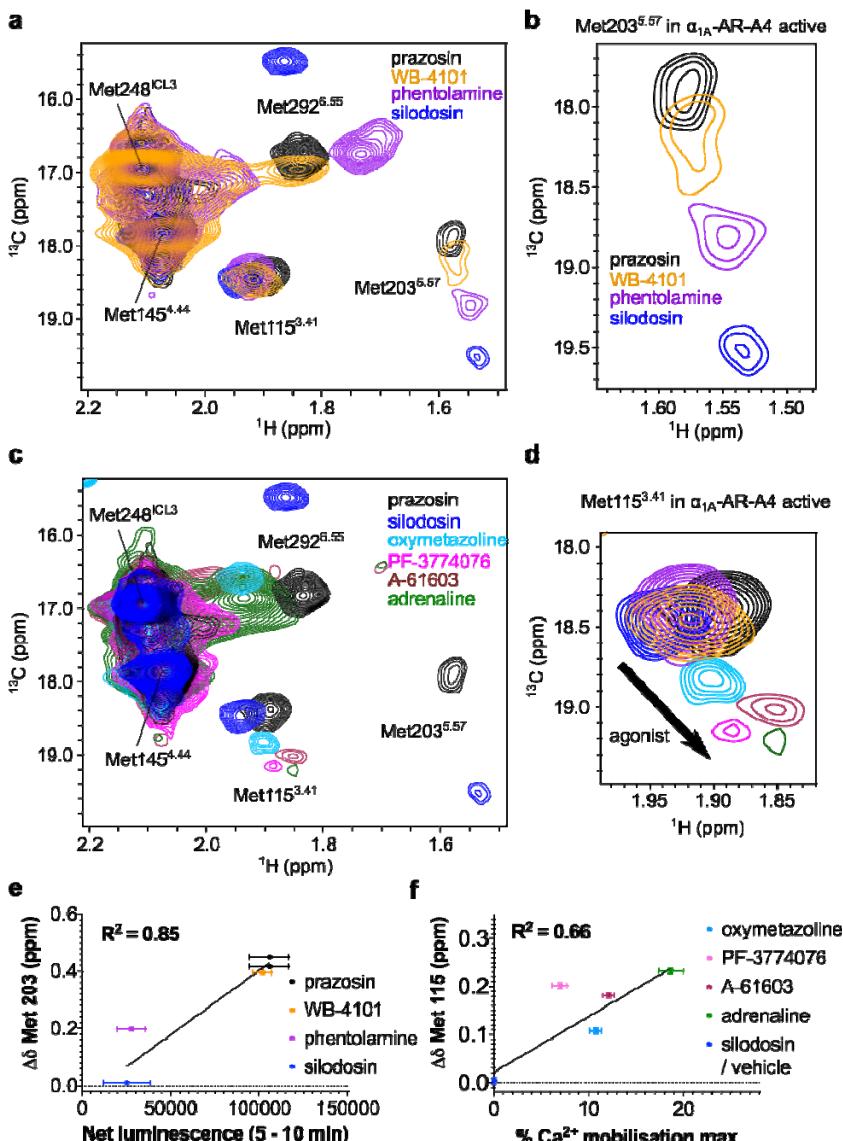
332 and the P value testing against a slope of 0 was 0.011 (d) Linear regression analysis of the average
333 chemical shift differences ($\Delta\delta$) for the $^{13}\text{C}^e\text{H}_3$ of Met203^{5,57} in α_{1A} -AR-A4 (L312F) and the affinities
334 of each inverse agonist and neutral antagonist. Ligands are coloured as listed above and the P value
335 testing against a slope of 0 was 0.89. In (a), (c) and (d) $\Delta\delta$ are plotted for two independent titrations of
336 prazosin and silodosin, and single experiments for WB-4101 and phentolamine. Average chemical
337 shift differences ($\Delta\delta$) were normalised using the equation $\Delta\delta=[(\Delta\delta_{1\text{H}})^2+(\Delta\delta_{13\text{C}}/3.5)^2]^{0.5}$ and error were
338 calculated by the formula $[\Delta\delta_{1\text{H}}*\text{R}_{1\text{H}}+\Delta\delta_{13\text{C}}*\text{R}_{13\text{C}}/(3.5)^2]/\Delta\delta$, where $\text{R}_{1\text{H}}$ and $\text{R}_{13\text{C}}$ are the digital
339 resolutions in ppm in the ^1H and ^{13}C dimensions respectively (Kofuku et al., 2012).

340

341 the relative inverse agonist efficacies of these ligands using a NanoBiT split luciferase assay
342 (Inoue et al., 2019). In this assay the 18 kDa Large BiT (LgBiT) fragment was fused to the N-
343 terminus of $\text{G}\alpha_q$ and the 1.3 kDa Small BiT (SmBiT) was fused to the N-terminus of $\text{G}\gamma_2$.
344 When co-expressed with $\text{G}\beta_1$, the formation of a $\text{G}\alpha_q(\text{LgBiT})\text{-G}\beta_1\text{-G}\gamma_2(\text{SmBiT})$ heterotrimer
345 results in bright luminescence. GPCR-induced stimulation of this G protein complex causes
346 dissociation of the heterotrimer and thus reduction in luminescence output, whereas inhibition
347 of basal GPCR activation would be predicted to increase luminescence output. COS-7
348 African green monkey kidney cells stably expressing wild-type (WT) α_{1A} -AR were
349 transfected with $\text{G}\alpha_q(\text{LgBiT})$, $\text{G}\beta_1$ and $\text{G}\gamma_2(\text{SmBiT})$ encoding expression plasmids, incubated
350 with luminescence substrate, and then treated with various α_{1A} -AR ligands while monitoring
351 cellular luminescence. A-61603 induced α_{1A} -AR activation led to heterotrimer dissociation of
352 the $\text{G}\alpha_q(\text{LgBiT})\text{-G}\beta_1\text{-G}\gamma_2(\text{SmBiT})$ complex and thus a reduction in luminescence output
353 (Figure 4b). Inverse agonists on-the-other-hand reduced basal activation of α_{1A} -AR,
354 maintaining the $\text{G}\alpha_q(\text{LgBiT})\text{-G}\beta_1\text{-G}\gamma_2(\text{SmBiT})$ complex leading to increase luminescence
355 output from the cells (Figure 4b). The specificity of these responses was probed by
356 conducting the same experiments on COS-7 cells not expressing α_{1A} -AR (Supplementary
357 Figure 7a-c). The observed changes in luminescence after α_1 -AR ligand treatments were

358 specific to α_{1A} -AR expressing cells except for WB-4101, which induced a short (5 min)
359 increase in luminescence in the control cells (Supplementary Figure 7a). To exclude this non-
360 specific effect the net luminescence change for each sample group was calculated as the area
361 under the luminescence curves between 5 and 10 min after ligand addition. A strong linear
362 correlation was found between the chemical shift changes for the $^{13}\text{C}^\epsilon\text{H}_3$ of Met203^{5,57} in α_{1A} -
363 AR-A4 (L312F) and the net luminescence increase generated by each inverse agonist over
364 the five-minute period in the WT α_{1A} -AR-expressing cells ($R^2 = 0.72$, Figure 4c).
365 Importantly, the Met203^{5,57} chemical shift positions of α_{1A} -AR-A4 (L312F) did not correlate
366 with the affinity of these antagonists for α_{1A} -AR (Figure 4d), demonstrating that the
367 differences in chemical shift were not due to varying receptor occupancy. Furthermore, no
368 correlation was seen between the $^{13}\text{C}^\epsilon\text{H}_3$ Met203^{5,57} chemical shift changes of α_{1A} -AR-A4
369 (L312F) and the net luminescence changes in COS-7 cells not expressing WT α_{1A} -AR
370 (Supplementary Figure 7b). Critically, the correlation between chemical shift changes of
371 $^{13}\text{C}^\epsilon\text{H}_3$ Met203^{5,57} in α_{1A} -AR-A4 (L312F) and WT α_{1A} -AR-specific luminescence increases in
372 the NanoBiT assay remained when the analysis window was extended to include the full 10
373 minutes after ligand addition (Supplementary Figure 7d).

374


375 **Improving signalling competency in α_{1A} -AR-A4**

376 When expressed in COS-7 cells, α_{1A} -AR-A4 is incapable of stimulating cellular increases in
377 IP₁ in response to adrenaline binding, or activation of a cyclic adenosine monophosphate
378 (cAMP) response element (CRE) reporter gene after treatment with another α_1 -AR agonist,
379 phenylephrine (Yong et al., 2018). To ensure biological relevance of our NMR studies we
380 thus sought α_{1A} -AR-A4 back-mutants that were able to stimulate canonical signalling
381 pathways in mammalian cells upon agonist treatment. Seven thermostabilising mutations
382 within the TMD of α_{1A} -AR-A4 were back-mutated (Y67N, M80L, A127G, F151W, K322N,

383 L327P and Y329S) as single changes or in combinations, and screened for phenylephrine and
384 oxymetazoline induced signalling with an IP₁ assay in transfected COS-7 cells
385 (Supplementary Figure 8a). While the back-mutant, α_{1A} -AR-A4 (Y67N, M80L, K322N,
386 L327P, Y329S) was able to facilitate significant oxymetazoline-induced cellular
387 accumulation of IP₁ compared to α_{1A} -AR-A4 and WT α_{1A} -AR (Supplementary Figure 8a) it
388 expressed poorly in bacteria. The back-mutant α_{1A} -AR-A4 (Y67N, K322N), termed α_{1A} -AR-
389 A4-active, however was able to stimulate IP₁ accumulation in response to both phenylephrine
390 and oxymetazoline treatment (Supplementary Figure 8a) and it expressed well in bacteria.
391 Importantly, α_{1A} -AR-A4 contains the N322K-stabilising mutation in the NPxxY
392 switch (Trzaskowski et al., 2012), which is hypothesised to form a stabilizing salt bridge with
393 Asp72^{2,50} to lock the NPxxY switch in an inactive and stable state. We thus expected that
394 reversion of this mutation (K322N) would restore the function of the NPxxY switch and the
395 signalling activity of α_{1A} -AR-A4. Interestingly, the Y67N mutation was required on top of
396 K322N to restore signalling activity in α_{1A} -AR-A4-active. N67^{2,45} is distant from the NPxxY
397 switch and its importance is not clear.

398 Using an intracellular calcium mobilisation assay, α_{1A} -AR-A4-active was able to be
399 activated by the full agonists adrenaline and A-61603, as well as the partial agonists
400 oxymetazoline and PF-3774076 (Supplementary Figure 8b-e). The affinity of QAPB for α_{1A} -
401 AR-A4-active was retained upon purification of the receptor in DDM (Supplementary Figure
402 9a). Competition binding assays revealed however, that the affinities of agonists for α_{1A} -AR-
403 A4-active (Supplementary Figure 9b and Supplementary Table 1) were weaker than WT α_{1A} -
404 AR due to the F312L stabilizing mutation, but stronger than at α_{1A} -AR-A4 (Yong et al.,
405 2018). When purified in DDM α_{1A} -AR-A4-active was significantly less stable than α_{1A} -AR-
406 A4 (Supplementary Figure 9c) and thus back-mutation of F312L to recover agonist potency
407 was not pursued as it was deemed unlikely that the resultant receptor would be stable enough

408 for NMR experiments.

418 Close-up of the Met115^{3.41} resonance. (e) Linear regression analysis of the average chemical shift
419 differences ($\Delta\delta$) for the $^{13}\text{C}^\epsilon\text{H}_3$ of Met203^{5.57} in $\alpha_{1\text{A}}$ -AR-A4-active when bound to prazosin (black
420 circles), WB-4101 (orange circles), and phentolamine (purple circles) compared to silodosin (blue
421 circles) and the increase in luminescence seen in the NanoBit assay with $\alpha_{1\text{A}}$ -AR-A4-active
422 expressing COS-7 cells treated with the same antagonist (from Supplementary Figure 11a). Testing
423 the resultant equation against the null hypothesis of a slope of zero resulted in a P value of 0.0041 (f)
424 Linear regression analysis of the average chemical shift differences ($\Delta\delta$) for the $^{13}\text{C}^\epsilon\text{H}_3$ of Met115^{3.41}
425 in $\alpha_{1\text{A}}$ -AR-A4-active when bound to oxymetazoline (cyan circles), PF-3774076 (pink circles), A-
426 61603 (dark red circles), adrenaline (green circles) and silodosin (blue circles) and the efficacy of
427 each agonist in triggering Ca^{2+} mobilization in $\alpha_{1\text{A}}$ -AR-A4-active expressing COS-7 cells (from
428 Supplementary Figure 8b-e). Testing the resultant equation against the null hypothesis of a slope of
429 zero resulted in a P value of 0.0154 In (e) and (f) $\Delta\delta$ are plotted for two independent titrations of
430 prazosin, silodosin and oxymetazoline, and single experiments for other ligands. In (a-d) spectra were
431 acquired on \sim 50 μM $\alpha_{1\text{A}}$ -AR-A4-active dissolved in 0.02-0.1% DDM micelle, pH 7.5 and 25 °C.
432 Average chemical shift differences ($\Delta\delta$) were normalised using the equation
433 $\Delta\delta=[(\Delta\delta_{1\text{H}})^2+(\Delta\delta_{13\text{C}}/3.5)^2]^{0.5}$ and errors were calculated by the formula
434 $[\Delta\delta_{1\text{H}}*\text{R}_{1\text{H}}+\Delta\delta_{13\text{C}}*\text{R}_{13\text{C}}/(3.5)^2]/\Delta\delta$, where $\text{R}_{1\text{H}}$ and $\text{R}_{13\text{C}}$ are the digital resolutions in ppm in the ^1H and
435 ^{13}C dimensions respectively (Kofuku et al., 2012).

436

437 $\alpha_{1\text{A}}$ -AR-A4-active was labelled with $^{13}\text{C}^\epsilon\text{H}_3$ -methionine and 2D ^1H - ^{13}C SOFAST-
438 HMQC spectra acquired as above (Figure 5a,c). Overall the ligand-perturbed chemical shifts
439 of the $^{13}\text{C}^\epsilon\text{H}_3$ -methionine resonances in $\alpha_{1\text{A}}$ -AR-A4-active were similar to those in $\alpha_{1\text{A}}$ -AR-
440 A4 and $\alpha_{1\text{A}}$ -AR-A4 (L312F), except for several key differences with the Met115^{3.41} and
441 Met203^{5.57} resonances. We acquired spectra of four independent preparations of apo $\alpha_{1\text{A}}$ -AR-
442 A4-active (four biological replicates) and found that in the absence of bound ligand the data
443 were not easily reproduced (Supplementary Figure 10a). The well resolved Met203^{5.57} varied

444 between an intense peak, two peaks of similar intensity, or a peak of weak intensity.

445 Met115^{3,41} persisted as a split peak, although the two components varied in intensity.

446 Importantly, in the presence of the most potent inverse agonist, prazosin, the resonances of

447 Met115^{3,41} and Met203^{5,57} were single peaks, and regardless of sample preparation, exhibited

448 the same chemical shifts. The ¹³C^εH₃ Met115^{3,41} resonance, as perturbed by prazosin, aligned

449 approximately with the upfield component of the resonance for apo α_{1A} -AR-A4-active

450 (Supplementary Figure 10b). In contrast, upon titration with the neutral antagonist, silodosin,

451 the peaks of Met115^{3,41} also collapsed to a single resonance with identical chemical shifts,

452 but now aligned best with the downfield component of apo α_{1A} -AR-A4-active

453 (Supplementary Figure 10b). For the two partial inverse agonists, WB-4101 and

454 phentolamine, the ¹³C^εH₃ resonance of Met115^{3,41} was a single resonance, positioned midway

455 between the ‘prazosin’ (upfield) and ‘silodosin’ (downfield) peaks (Figure 5d). These trends

456 for ligand-efficacy were present in α_{1A} -AR-A4 and α_{1A} -AR-A4 (L312F), but were not as

457 distinct as now observed for α_{1A} -AR-A4-active, and notably the apo states for α_{1A} -AR-A4

458 and α_{1A} -AR-A4 (L312F) did not show two discrete peaks for Met115^{3,41}. Such apo state

459 sample-to-sample heterogeneity may suggest the presence of misfolded contaminants, but

460 upon the addition of prazosin or silodosin each of these samples gave identical spectra

461 (Supplementary Figure 10a), supporting the binding competency of the α_{1A} -AR-A4-active

462 samples. The diversity of apo state spectra likely reflects diversity of conformational states of

463 similar free energy. The addition of agonist again resulted in , a single resonance for ¹³C^εH₃

464 Met115^{3,41} that shifts upfield in ¹H and downfield in ¹³C (Figure 5d). The trend in shifts of

465 these resonances, however, suggests they follow in a linear manner evolving from the

466 downfield (basal) signal of the apo state and reflects the selection of the active-like state.

467 A major difference between the spectra of α_{1A} -AR-A4 and α_{1A} -AR-A4-active,

468 however, was significantly increased line broadening of the Met203^{5,57} signal of α_{1A} -AR-A4-

469 active in the apo state (Supplementary Figure 10a) and when bound to antagonists (Figure 5b).
470 This broadening suggests that the DRY motif near the G protein-binding site of α_{1A} -AR-A4-
471 active is more dynamic compared to α_{1A} -AR-A4, consistent with a receptor that more readily
472 transitions between inactive and active-receptor states. Importantly, similar to α_{1A} -AR-A4
473 and α_{1A} -AR-A4 (L312F) variants, the $^{13}\text{C}^\epsilon\text{H}_3$ of Met203^{5,57} shows an efficacy-dependent
474 linear $^{13}\text{C}^\epsilon\text{H}_3$ chemical shift change in the presence of inverse agonist and neutral antagonist,
475 trending to an upfield ^{13}C position (χ_3 of \pm gauche) for the more potent inverse agonist
476 (Figure 5a,b). Unexpectedly, the addition of silodosin (neutral antagonist) resulted in a
477 significant ^{13}C downfield shift to near 19.5 ppm consistent with a trans χ_3 angle for
478 Met203^{5,57}. Furthermore, similar to α_{1A} -AR-A4, the Met203^{5,57} $^{13}\text{C}^\epsilon\text{H}_3$ resonance of α_{1A} -AR-
479 A4-active was near completely broadened in the presence of agonists.

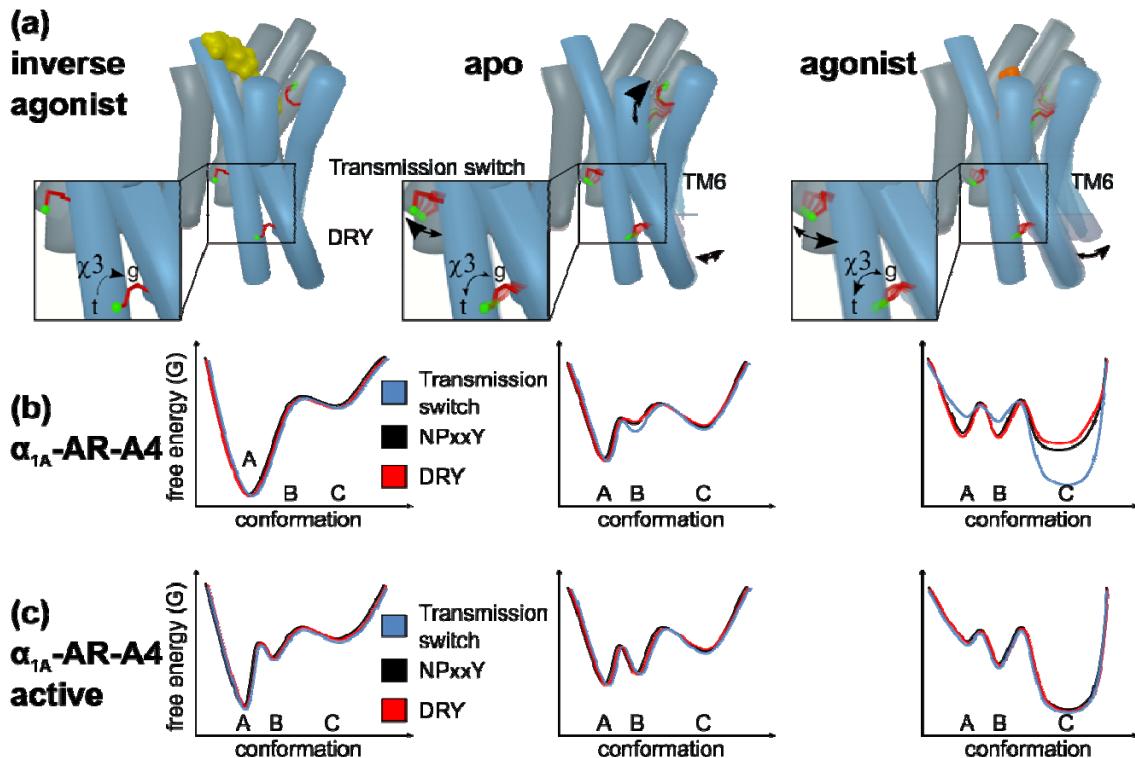
480 NanoBiT G protein activity assays were performed on COS-7 cells expressing α_{1A} -
481 AR-A4-active to determine relative inverse agonist efficacies. The inverse agonists reduced
482 basal Gq activity in α_{1A} -AR-A4-active in a similar way to WT α_{1A} -AR expressing cells
483 (Figure 4a and Supplementary Figure 11a). The net luminescence change induced by each
484 inverse agonist at α_{1A} -AR-A4-active expressing cells correlated well, in a linear fashion, with
485 the $^{13}\text{C}^\epsilon\text{H}_3$ chemical shift changes of Met203^{5,57} that each ligand induced at purified α_{1A} -AR-
486 A4-active, when analysed over two separate time periods (Figure 5e and Supplementary
487 Figure 11b). Interestingly, the agonist-induced chemical shift changes of $^{13}\text{C}^\epsilon\text{H}_3$ Met115^{3,41}
488 showed a linear correlation with the efficacy of each agonist in Ca^{2+} mobilization assays on
489 α_{1A} -AR-A4-active expressing COS-7 cells (Figure 5f) although the partial agonist PF-
490 3774076 was a notable outlier. Overall these cell-based assays with the ligand efficacy-
491 correlated chemical shift changes of Met115^{3,41} and Met203^{5,57} clearly demonstrate that a
492 conformational selection mechanism underlies receptor function in cells.

493

494

495 **Discussion**

496 Recent spectroscopic studies have demonstrated that different classes of GPCR ligands
497 distinctly alter the population of receptor states within the GPCR conformational
498 equilibrium(Shimada et al., 2018). GPCR conformational changes are driven by defined
499 structural changes in the microswitches (Ahuja and Smith, 2009; Deupi and Standfuss, 2011;
500 Latorraca et al., 2017; Trzaskowski et al., 2012) (Figure 1) and, thus, how particular ligands
501 affect the GPCR microswitch states likely underlies their pharmacological output as inverse,
502 partial, full or biased agonists. Observing these effects, however, remains challenging. α_{1A} -
503 AR was one of the first GPCRs to be cloned and pharmacologically characterised (Cotecchia
504 et al., 1988) and is clinically targeted with agonists as nasal decongestants and antagonists for
505 hypertension and BPH. Despite the importance of this receptor there are currently no three-
506 dimensional structures of α_{1A} -AR, reflecting the inherent instability of this protein. Here, we
507 demonstrate that prototypical ligands modulate the conformational equilibrium, as measured
508 at the microswitches, of α_{1A} -AR in defined and predictable ways by $^{13}\text{C}^\epsilon\text{H}_3$ -methionine
509 labelling α_{1A} -AR variants and monitoring the ^1H and ^{13}C chemical shifts of these methyl
510 resonances in the presence of ligands of different efficacy.,


511 It is well accepted that the NMR signals of methionine methyl groups are sensitive to
512 the local environment and the conformation of the methionine side chain (Kofuku et al., 2012;
513 Nygaard et al., 2013). Many of the conclusions made in this study rely on Met115^{3.41}, a probe
514 for the conformation of the transmission switch, and Met203^{5.57} as a probe of the DRY motif
515 that signifies intracellular TMD rearrangements for G-protein binding. In our model of α_{1A} -
516 AR, Met203^{5.57} sits over Tyr125^{3.51} of the DRY motif but is distant from Arg124^{3.50} which is
517 expected to undergo significant rotameric changes within this motif (Carpenter and Tate,
518 2017) (Figure 1d). Met115^{3.41} is sequential to the Ile114^{3.40} in TM3 but it points away and is
519 distant to transmission switch residue Phe281^{6.44} located on TM6 that is expected to undergo

520 significant rotameric changes (Figure 1c). While in the thermostabilized inactive α_{1A} -AR-A4
521 mutant the residues of the transmission switch and DRY motif are retained, the asparagine of
522 a third microswitch, the NPxxY motif, is mutated to lysine, which likely forms a salt bridge
523 with Asp72^{2.50} to lock this switch in an inactive state. The transmission switch and NPxxY
524 motif are proximal to each other and therefore Met115^{3.41}, while distant to NPxxY, is likely
525 to be sensitive to conformational changes involving both switches. In the reported active-state
526 GPCR structures, three conserved residues (Arg^{3.50} of the DRY motif, Tyr^{7.53} of the NPxxY
527 motif and Tyr^{5.58}) adopt near identical positions and connect these microswitches through
528 water-mediated hydrogen bonds(Carpenter and Tate, 2017; Manglik and Kruse, 2017).
529 Furthermore, in our model of active α_{1A} -AR which is based on structures of β_2 -AR,
530 Arg124^{3.50} of the DRY motif is in contact with Tyr326^{7.53} of the NPxxY motif (Figure 1d).

531 In our NMR experiments for all ligands the ¹³C^εH₃ group of both Met115^{3.41} and
532 Met203^{5.57} show significant directional chemical shift and line-width changes that are
533 correlated with ligand efficacy, not affinity. As a distinct peak is observed for the addition of
534 each ligand the chemical shift likely reflects an average population exchanging on a fast to
535 intermediate timescale. The chemical shift differences, however, reflect a shift in the
536 equilibrium, and specifically for the ¹³C^εH₃ of Met203^{5.57}, from a χ_3 of a gauche-trans
537 average (inverse agonist) towards a trans (agonist) average (Figure 6a). An NMR study using
538 ¹⁵N-labelled, thermostabilised β_1 AR observed substantial ligand efficacy-correlated backbone
539 chemical shift changes for V226^{5.57}, which is in the same position as Met203^{5.57} in α_{1A} -AR
540 (Isogai et al., 2016). The authors speculated that these changes were caused by TM5 bending
541 towards the active receptor state (Isogai et al., 2016), an idea that may also apply to α_{1A} -AR
542 and other GPCRs. Here, the linear chemical shift changes of Met203^{5.57}, and to a lesser
543 degree Met115^{3.41}, in response to ligands of different efficacy is strong evidence that agonists
544 activate α_{1A} -AR via a conformational selection mechanism. The line broadening of

545 Met115^{3,41} and Met203^{5,57} upon agonist binding supports an efficacy-driven shift in dynamics,
546 and thereby the equilibrium of conformational states, communicated allosterically by the
547 microswitches and sensed by these methionine residues (Figure 6).

548

549

550 **Figure 6. How ligands modulate the conformational landscape of the α_{1A} -AR microswitches.** (a)
551 Cartoon representations of α_{1A} -AR in the inverse agonist-bound, apo, and agonist-bound states. The
552 three probe methionines, Met292^{6,55} (binding site), Met115^{3,41} (transmission switch) and Met203^{5,57}
553 (DRY microswitch) are highlighted with red sticks and the labeled methyl group in green. The arrows
554 labeled χ_3 illustrate the ligand induced changes to the equilibrium between the trans (t) and gauche (g)
555 χ_3 dihedral angle of Met203^{5,57}. Other arrows indicate how different ligands alter the conformation
556 equilibria of Met292^{6,55}, Met115^{3,41} and TM6. Hypothetical free energy landscape diagrams of the
557 three microswitches in (b) the inactive α_{1A} -AR-A4 receptor compared to (c) α_{1A} -AR-A4-active. (A)
558 indicates the proposed inactive states, (B) represents basal states, and (C) represents active states of
559 the microswitches.

560 For our signalling incompetent receptors, α_{1A} -AR-A4 and α_{1A} -AR-A4 (L312F), the
561 NPxxY microswitch has been mutated (N322K) in a way that would bias the NPxxY switch
562 towards inactive states (K322 - D72 salt bridge). A consequence of this mutation is that for
563 α_{1A} -AR-A4 (L312F) the DRY motif probe, Met203^{5,57}, gives relatively intense chemical
564 shifts in the apo and antagonist-t-bound states (conformational equilibrium biased towards
565 inactive states) (Figure 6b). On restoration of the NPxxY microswitch in α_{1A} -AR-A4-active
566 however, the Met203^{5,57} chemical shifts broaden and shift towards the agonist bound position
567 (as defined for α_{1A} -AR-A4 (L312F)), even with neutral antagonist bound. Therefore,
568 restoring the NPxxY microswitch enables the DRY motif of α_{1A} -AR-A4-active to more
569 readily sample active-like states. The full trans (19.5 ppm in ^{13}C) populated by silodosin
570 indicates that we may observe the full-active state, although previous studies showed that the
571 full-active state is only populated in the presence of both agonist and nanobody (Manglik et
572 al., 2015; Nygaard et al., 2013; Solt et al., 2017; Sounier et al., 2015; Xu et al., 2019). Our
573 two methionine probes, Met115^{3,41} and Met203^{5,57}, retain similar ligand-induced behaviour in
574 α_{1A} -AR-A4-active compared to α_{1A} -AR-A4 and α_{1A} -AR-A4 (L312F), where the latter are
575 both essentially inactive. The chemical shift and line-broadening trends of Met115^{3,41} and
576 Met203^{5,57} suggest that the transmission switch and DRY motif, in the presence of an inactive
577 NPxxY motif, can independently adopt conformations representative of active and inactive
578 states. To fully adopt the conformational signatures of an active receptor, a functional NPxxY
579 motif is required (in α_{1A} -AR-A4-active) thus increasing the dynamics of the transmission
580 switch and DRY motif, suggesting that the interdependence of the three microswitches is a
581 consequence of their dynamic nature, and that this is required for full receptor function.

582 While the striking linear chemical shift dependence for the $^{13}\text{C}^\epsilon\text{H}_3$ of Met203^{5,57} on
583 ligand efficacy is consistent with a smooth change in equilibria from inactive to active, linear
584 trends for $^{13}\text{C}^\epsilon\text{H}_3$ of Met115^{3,41} were less clear. In the inactive variants α_{1A} -AR-A4 and α_{1A} -

585 AR-A4 (L312F) the resonance for apo, inverse agonist and neutral antagonist shows little
586 variation, but clear chemical shift changes and broadening are observed for agonists. The
587 most distinct changes for the $^{13}\text{C}^\epsilon\text{H}_3$ of Met115^{3,41} were for α_{1A} -AR-A4-active, where in the
588 apo-state two peaks were consistently observed, suggesting slow exchange (> millisecond)
589 between two distinct states, to which we attribute to restoring the NPxxY microswitch. On
590 the basis of chemical shift, we propose that the upfield peak of apo α_{1A} -AR-A4-active
591 represents fully inactive receptor (state A in Figure 6), expected for full inverse agonists, and
592 the downfield peak with a basal state receptor that is stabilized by the neutral antagonist (state
593 B in Figure 6). This downfield ‘basal’ peak shows approximate linear efficacy-dependent
594 chemical shift changes with agonist titrations. Therefore, the $^{13}\text{C}^\epsilon\text{H}_3$ of Met115^{3,41} reflects
595 three states, (inverse agonist) inactive, an intermediate (basal) and active states (state(s) C in
596 Figure 6), where the latter progressively shift from partial to full agonist states. Interestingly,
597 in a $^{13}\text{C}^\epsilon\text{H}_3$ -methionine labelled study on the M2R, Met112^{3,41}, which is equivalent to
598 Met115^{3,41} in α_{1A} -AR, did not display efficacy-dependent chemical shift changes. In the
599 presence of ligands, however, M2R Met112^{3,41} was resolved as two separate resonances,
600 consistent with a slow exchanging microswitch(Xu et al., 2019) and may highlight some
601 differences between how different rhodopsin family GPCRs function.

602 In this NMR study, by starting with a signalling incompetent variant of α_{1A} -AR and
603 subsequently restoring signalling activity through back mutations, we were able to study the
604 functional dynamics of the key GPCR microswitches and how different ligands modulate
605 this. Our NMR data for the transmission and DRY microswitches revealed ligand efficacy-
606 dependent changes to the microswitch conformational equilibria, supporting a conformational
607 selection mechanism for α_{1A} -AR modulation. This and the agonist-driven line broadening for
608 both microswitches suggest similar mechanistic actions on the different microswitches,
609 supporting ligand-driven allosteric communication between the microswitches. MD

610 simulations (Dror et al., 2011) of β_2 -AR suggest that these microswitches behaved
611 independently of each other, with only loose allosteric coupling. While this may be true over
612 the relatively short timescales of MD, we believe that over the course of an NMR experiment
613 such loose allosteric coupling culminates in significant coupled shifts to the microswitch
614 conformations and that this is likely how ligands modulate GPCR signalling in cells.

615

616 **Data Availability**

617 All data that support the conclusions are included in the published paper and its
618 supplementary information, or are available from the authors on request.

619

620 **Acknowledgements**

621 We thank Dr Fabian Bumbak (The Florey Institute of Neuroscience and Mental Health) for
622 assistance with optimising the expression and purification of receptor samples; Prof. Dmitry
623 Veprintsev (University of Nottingham) and Dr Franziska Heydenreich (Stanford University)
624 for suggesting back mutations for the generation of α_{1A} -AR-A4-active; Prof. Asuka Inoue
625 (Tohoku University) for supplying plasmids for the G protein activity assays; Sharon
626 Layfield (The Florey Institute of Neuroscience and Mental Health) and Dr Ashish Sethi (The
627 University of Melbourne) for assistance with cell-based assays and NMR data analysis
628 respectively; Dr David Chalmers (Monash University) and the Monash University Medicinal
629 Chemistry Computational Chemistry Facility for the assistance with computational modelling;
630 The Bio21 NMR facility for access to spectrometers. This work was supported by NHMRC
631 project grants 1081801 (D.J.S), 1081844 (P.R.G, D.J.S, R.A.D.B) and 1141034 (D.J.S, P.R.G,
632 R.A.D.B). D.J.S. is an NHMRC Boosting Dementia Research Leadership Fellow.

633

634

635

636 **Author contributions**

637 FJW performed cloning, mutagenesis, protein expression and purification, thermostability
638 assays, acquisition and analysis of NMR data; LMW competition binding assays and
639 saturation binding assays; AAR intracellular Ca^{2+} mobilization assays; AG, MK, and RADB
640 NanoBiT G protein activity assays; TV computational modelling; ARW IP_1 assays. DJS,
641 MDWG and PRG conceived the experiments and with FJW analysed, prepared figures and
642 wrote the manuscript. All authors contributed to the editing of the manuscript.

643

644 **Competing financial interests**

645 The authors declare no competing financial interests.

646

647 **Methods**

648 **α_{1A} -AR constructs**

649 The α_{1A} -AR-A4 variant is a thermostabilised human α_{1A} -AR, containing 15 stabilising
650 mutations (Yong et al., 2018). Met80²⁵⁸ in the spectra was introduced through the
651 stabilisation process in lieu of the naturally occurring amino acid leucine. As compared to
652 wild type, the carboxyl termini of the α_{1A} -AR-A4 variant was modified by truncation at
653 Ser351 and addition of a deca-His tag to facilitate purification (Supplementary Figure 1). For
654 expression, the α_{1A} -AR variants sequences were sub-cloned into the pQE30 derived vector,
655 pDS15, with a maltose-binding protein (MBP) and a methionine-free monomeric ultra-stable
656 green fluorescent protein (-Met-muGFP) (Scott et al., 2018) attached respectively to the N-
657 and C-termini of the receptor via HRV 3C protease cleavage sites. For the purpose of
658 Kingfisher binding assays, α_{1A} -AR variants were sub-cloned into a similar vector, pDS11, in
659 which muGFP was replaced with mCherry since the excitation and emission wavelengths of
660 fluorescent QAPB were overlapping with those of GFP. The final sequence of α_{1A} -AR-A4

661 after purification (with residues left from HRV 3C cleavage) is:
662 GPGSVFLSGNASDSSNSIQPPAPVNISKAILLGVLGGIILFGVLGNILVILSVACHRHLH
663 SVTHYYVVYLAVALLLTSTVMPFSAIYEVLYWAFGRVFCNIWAAVDVLCCTASI
664 MGLCIISIDRYIAVSYPLRYPTIVTQRRALMALLCVFALSLVISIGPLFGWRQPAPVDE
665 TICQINEEPGYVLFSALGSFYLPLAIILVMYCRVYVVAKRESRGLKSGLKTDKSDSEQ
666 VTLRIHRKNAPAGGSGMASAKTKTHFSVRLLKFSREKKAAKTLGIVVGCFVLCWLPF
667 FLVMPIGSFFPDFKPSETVFKIVLWLGYLNICKPIIYLCYSQEFKKAFQNVLRIQCLCR
668 KQSASHHHHHHHHHGTRSLRGGLEVLFQ

669 In the α_{1A} -AR-A4 (L312F) variant one stabilising mutation L312 was reversed to
670 phenylalanine to improve the affinity of ligands compared to α_{1A} -AR-A4. α_{1A} -AR-A4-active
671 (Y67N, K322N) is a signalling competent variant in which the two stabilizing mutations Y67
672 and K322 were reverted to the wild-type asparagines. α_{1A} -AR-A4 was used for NMR
673 assignment, where each methionine was substituted to either leucine or isoleucine. All
674 mutations were introduced through site-directed mutagenesis using PrimeSTAR DNA
675 polymerase (TaKaRa).

676

677 α_{1A} -AR expression

678 All α_{1A} -AR variants were expressed in *E. coli* C43 (DE3) cells (Lucigen, Middleton, WI). For
679 $^{13}\text{C}^\epsilon\text{H}_3$ -methionine labelled expressions, 5 mL LB pre-culture containing 100 mg/L ampicillin
680 and 1% (w/v) glucose was inoculated with a single colony of C43 cells freshly transformed
681 with the expression plasmid and incubated at 37 °C, 225 rpm for approx. 8 h. 2 mL of the LB
682 day culture was centrifuged (1700 rcf, 22 °C, 5 min) and the pellet was used to inoculate 100
683 mL of a defined minimal medium (M1 medium) (Bumbak et al., 2018) as overnight pre-
684 culture. 10 mL of the overnight pre-culture was used to inoculate 500 mL of M1 medium in 2
685 L flasks. The expression cultures were incubated at 37 °C, 225 rpm to reach OD₆₀₀ of 0.6, at

686 which point 50 mg/L $^{13}\text{C}^\epsilon\text{H}_3$ -methionine (Cambridge Stable Isotopes) was added along with
687 100 mg/L of each lysine, threonine, phenylalanine, and 50 mg/L of each leucine, isoleucine
688 and valine. The flasks were transferred to 20 °C and left shaking for 15 min prior to inducing
689 protein expression with 250 μM isopropyl β -D-1-thiogalactopyranoside (IPTG). After
690 overnight expression (15-18 h, 20 °C, 225 rpm), the culture was harvested by centrifugation
691 (2600 rcf, 4 °C, 15 min). The final pellet was snap frozen in liquid nitrogen and stored at -80
692 °C. For unlabelled expression 5 mL of LB pre-culture was used to inoculate 500 mL 2YT
693 medium containing 100 mg/L ampicillin and 0.4% (w/v) glucose. At OD₆₀₀ of 0.6 the culture
694 was chilled on ice for 2 min prior to inducing protein expression with 250 μM IPTG
695 overnight expression and harvesting were carried out as described above.

696

697 **$\alpha_{1\text{A}}$ -AR purification**

698 The frozen cell pellet was thawed at room temperature for 30 min. 10 mL pellet was gently
699 resuspended in 40 mL ice-cold solubilisation buffer [25 mM HEPES, pH 7.5, 200 mM NaCl,
700 10% glycerol, 1% DDM (Anatrace), 0.12% CHS (cholesterol hemi succinate, Anatrace),
701 0.6% CHAPS (Sigma), 50 mg lysozyme, 5 mg Dnase, one tablet of EDTA free complete
702 protease inhibitor cocktail (Roche), 0.2-0.4 mM PMSF (phenylmethylsulfonyl fluoride)] and
703 incubated on a turning wheel for 30 min at 4 °C. The cell membranes were then disrupted by
704 sonication device (Diagenode Bioruptor Plus, high power, 10s on/20s off for 30 cycles)
705 followed by another 1 h incubation at 4 °C on the turning wheel. The cell debris was removed
706 by centrifugation (12,000 rcf, 4 °C, 40 min) and the supernatant was filtered using a 45 μm
707 Durapore syringe filter (Merck Millipore). The cleared cell lysate was incubated with 3 mL
708 Talon metal affinity resin pre-equilibrated with 45 mL equilibrium buffer (20 mM HEPES,
709 pH 7.5, 300 mM NaCl, 10% glycerol, 0.05% DDM). After 1.5 h incubation at 4 °C, the resin
710 retaining the receptor was washed three times with washing buffer 1 (20 mM HEPES, pH 7.5,

711 500 mM NaCl, 10% glycerol, 0.05% DDM) and then the full-length protein was eluted by 30
712 mL elution buffer (20 mM HEPES, pH 7.5, 300 mM NaCl, 10% glycerol, 0.05% DDM, 250
713 mM Imidazole). The eluate was concentrated down to 0.5-1 mL using a 100 kDa cut-off
714 centrifugal filter device (Amicon Ultra, Millipore). Imidazole was removed by using a PD10
715 desalting column (GE Healthcare). Cleavage of fusion proteins from the receptor was carried
716 out overnight at 4 °C by adding 100 mM Na₂SO₄, 1 mM TCEP and 300 pmol GST-tagged
717 HRV 3C protease (made in house).

718 The cleaved mixture was incubated for 1 h with 2 mL of pre-equilibrated Talon resin.
719 The resin was washed using 30 mL washing buffer 2 (20 mM HEPES, pH 7.5, 300 mM
720 NaCl, 10% glycerol, 0.05% DDM, 30 mM Imidazole) and the receptor was eluted by 20 mL
721 elution buffer. The eluate was concentrated down to 450 µL by 30 kDa cut-off centrifugal
722 filter device (Amicon Ultra, Millipore) and it was loaded onto a Superdex 200 10/300
723 increase column (GE healthcare) equilibrated with SEC buffer (50 mM sodium phosphate,
724 pH 7.5, 100 mM NaCl, 0.02% DDM). Size exclusion chromatography (SEC) was carried out
725 at a flow rate of 0.5 mL/min. The peak fractions containing receptor were pooled and
726 concentrated down to 100 µL using a 30 kDa cut-off centrifugal filter device (Amicon Ultra,
727 Millipore). The sample buffer was exchanged twice to NMR buffer (50 mM sodium
728 phosphate, pH 7.5, 100 mM NaCl, 99.9% D₂O). Yields were generally between 0.5-1 mg
729 receptor per litre of expression culture. Protein concentration was measured by BCA protein
730 assay (Pierce, ThermoFisher).

731

732 **NMR spectroscopy**

733 NMR samples were prepared to 130 µL at 40-60 µM receptor in a 3 mm Shigemi NMR tubes
734 (Shigemi Inc, Allison Park, PA). Ligands were added at saturating concentrations that were 2
735 mM adrenaline for α_{1A} -AR-A4 and α_{1A} -AR-A4 (active), 400 µM prazosin, and 1 mM of other

736 ligands to all mutants (supplementary Table 1). Adrenaline was supplemented with 1 mM of
737 the anti-oxidant ascorbic acid. Samples containing low affinity agonists (phenylephrine and
738 adrenaline) were recycled via competition with high affinity ligands, exchange was judged
739 via the chemical shift of the Met292^{6,55} resonance. Experiments on α_{1A} -AR-A4 and α_{1A} -AR-
740 A4-L312F, apo and all ligands were performed at least twice on independent receptor
741 samples (biological replicates), except WB-4101 and phentolamine which were acquired
742 once. Experiments on apo α_{1A} -AR-A4-active and bound to prazosin, silodosin, and
743 oxymetazoline were performed at least twice on independent receptor samples, and for other
744 ligands were performed once.

745 All NMR spectra were collected at 25 °C on an 800-MHz Bruker Avance II
746 spectrometer equipped with a triple resonance cryoprobe. 2D ¹H-¹³C SOFAST-HMQC
747 (Schanda et al., 2005) spectra were recorded by excitation with a 2.25 ms PC9 120 degree ¹H
748 pulse and refocusing with a 1 ms r-SNOB shaped 180 degree ¹H pulse. The spectral widths
749 were set to 12 ppm and 25 ppm for ¹H and ¹³C dimensions respectively. For the spectra
750 recorded for α_{1A} -AR-A4 variant (Figure 2 and Supplementary Figure 3), 1024 x 128 complex
751 points were recorded with a 25% Poisson-gap sampling schedule and 2048 scans; an
752 acquisition time of 8.5 h. For the other spectra, 1024 x 200 complex points were recorded
753 with either traditional or 60% Poisson-gap sampling schedule and 368 scans resulting in
754 acquisition times of 10 h and 6 h respectively. Spectra were reconstructed with compressed
755 sensing using qMDD and processed using NMRpipe (Delaglio et al., 1995) where data were
756 multiplied by cosine bell functions and zero-filled once in each dimension. Spectra were
757 analysed in NMRFAM-Sparky (Lee et al., 2015) (Goddard, T.D. and Kneller, D.G, University
758 of California, San Francisco).

759 The average chemical shift differences, $\Delta\delta$, were normalised using the equation
760 $\Delta\delta=[(\Delta\delta_{1H})^2+(\Delta\delta_{13C}/3.5)^2]^{0.5}$. The error values were calculated by the formula

761 $[\Delta\delta_{1H}^*R_{1H} + \Delta\delta_{13C}^*R_{13C}/(3.5)^2]/\Delta\delta$, where R_{1H} and R_{13C} are the digital resolutions in ppm in
762 the 1H and ^{13}C dimensions respectively (Kofuku et al., 2012).

763

764 **Saturation and Competition binding assays**

765 1 nmol purified full-length α_{1A} -AR variant (mCherry attached) was resuspended in 10 mL
766 assay buffer (20 mM HEPES, pH 7.5, 100 mM NaCl, 0.02% DDM) and immobilized onto
767 200 μ L of Dynabeads (Streptavidin T1) for 30 min at 4 °C. 100 μ L of the suspension
768 containing beads with immobilized receptor was aliquoted to a 96-DeepWell plate from
769 which the beads transferred to another 96-DeepWell plate containing 100 μ L ligand solution
770 using a KingFisher Flex magnetic particle processor. For saturation binding, immobilized
771 receptors in each well were incubated with 100 μ L assay buffer containing increased
772 concentration (0, 3.125, 6.25, 12.5, 25, 50, 100, 200 nM) of QAPB (Quinazoline Piperazine
773 Bodipy) for 2 h at 22 °C. Nonspecific binding was determined by repeating the experiment
774 in the presence of 10 μ M of prazosin. For competition binding, immobilized receptors were
775 incubated with 100 μ L of assay buffer containing 10 nM QAPB with the addition of ligands
776 at various concentrations, as shown in the Supplementary Figures 5 and 8, for 2 h at 22 °C.
777 Immobilised receptors were subsequently washed with 200 μ L of assay buffer and
778 resuspended in 100 μ L assay buffer. 90 μ L of the final beads solution was transferred to a 96-
779 well Greiner Bio-One nonbinding black plate. Fluorescence of bound QAPB was measured
780 using a POLARstar OMEGA plate reader (BMG Labtech, Ortenburg, Germany) and
781 normalised to mCherry fluorescence which was detected simultaneously. Data represent the
782 mean \pm standard deviation (SD) of three independent biological replicate experiments each
783 performed in duplicate technical measurements. To compare ligand binding affinities at α_{1A} -
784 AR-A4 (L312F) and α_{1A} -AR-A4-active of to α_{1A} -AR-A4, raw data from our previously

785 published paper (Yong et al., 2018), were reanalysed and presented in Supplementary Table
786 1.

787

788 **Thermostability assay**

789 1 nM purified full-length α_{1A} -AR-A4 or α_{1A} -AR-A4-active (mCherry attached) was prepared
790 in base buffer (20 mM HEPES, 100 mM NaCl, 0.1% DDM). To measure thermostability of
791 receptors in the apo-state, 100 μ L of receptor solution was aliquoted into 24 wells of a 96-
792 well PCR plate. 10 of the 12 duplicates were heated in gradient temperatures for 30 min and
793 the two remaining duplicates were left at 4 °C for normalisation. After thermo-treatment, the
794 receptors were transferred to a KingFisher 96-DeepWell plate containing 2 μ L paramagnetic
795 Dynabeads per well (streptavidin T1, ThermoFisher Scientific). The following few steps were
796 automatically performed by using a KingFisher 96 magnetic particle processor. The receptor
797 was firstly incubated with magnetic beads for 30 min at 4 °C. Then, magnetic beads were
798 transferred to another 96-DeepWell plate containing 100 μ L ligand solution (20 mM HEPES,
799 100 mM NaCl, 0.1% DDM, 100 nM QAPB). The non-specific binding was determined by
800 competing QAPB with 100 μ L prazosin. After 1.5 h incubation, immobilised receptors were
801 subsequently washed with 200 μ L of assay buffer and resuspended in 100 μ L assay buffer. 90
802 μ L of the final beads solution was transferred to a 96-well Greiner Bio-One nonbinding black
803 plate. Fluorescence of bound QAPB was measured using a POLARstar OMEGA plate reader
804 (BMG Labtech, Ortenburg, Germany) and normalised to mCherry fluorescence which was
805 detected simultaneously. To measure the thermostability of α_{1A} -AR variants in the presence
806 of ligand, receptors were preincubated with 100 nM QAPB for 1 h on ice prior to be heated at
807 varying temperatures. The remaining steps were carried out as described for apo state
808 thermostability assay. Data represent the mean \pm SD of three independent biological replicate
809 experiments each performed in duplicate technical replicate measurements.

810

811 **IP₁ assay**

812 Gαq/11 signalling assays were carried out using the IP-One HTRF® Assay Kit (Cisbio
813 Bioassays, France) measuring inositol phosphate (IP₁) using the manufacturer's protocol.
814 COS-7 cells were seeded at 25,000 cells per well in a 96-well plate and incubated overnight
815 at 37 °C and 5% CO₂ in Dulbecco's modified Eagle medium (DMEM) (Gibco, Gaithersburg,
816 USA) supplemented with 10% FBS (Scientifix Life, Melbourne, Australia), 1% L-Glutamine
817 (Gibco) and 1% penicillin/streptomycin (Gibco). Cells were transfected with pcDNA3.1
818 constructs of WT or mutant α_{1A}-ARs using Lipofectamine 2000 (Invitrogen, Carlsbad, USA)
819 at 0.25 μg DNA per well. 24 h later, cells were stimulated with ligands for 2 h at 37 °C in 40
820 μL of Stimulation Buffer, then frozen at -80 °C. 14 μL of thawed sample were transferred to
821 a white HTRF® 384-well Optiplate (PerkinElmer, Waltham, USA), incubated with
822 development reagents in the dark for 1 h with shaking, and analysed by time-resolved
823 fluorescence using a POLARstar OMEGA plate reader (BMG Labtech, Ortenburg,
824 Germany). Data were analysed against the kit's standard curve. Data represent mean ± SD of
825 three independent biological replicate experiments each performed in triplicate technical
826 replicate measurements, unless otherwise stated in the figure legends.

827

828 **NanoBiT G Protein Activity Assay**

829 COS-7 cells grown in 10% fetal bovine serum (FBS), 1% L-Glutamine, 1%
830 penicillin/streptomycin DMEM media were seeded at 250,000 cells per well on a six-well
831 plate. Cells were then transiently co-transfected in the six-well plate, with 0.1 μg Gα_q-LgBiT
832 (GNAQ-11S) DNA, 0.5 μg Gβ-untagged (GNB1) DNA, 0.5 μg Gγ-SmBiT (114-GnG₂)
833 DNA, 0.2 μg Guanine Release Factor (RIC8A) DNA and 0.5 μg α_{1A}-AR (or respective AR
834 mutants) DNA using Lipofectamine 2000 transfection reagent as per the manufacturer's

835 instructions. The next day the cells were resuspended in Phenol-Red-free (PRF) DMEM
836 media containing 10% FBS, 1% L-Glutamine, 1% penicillin/streptomycin, 25 mM HEPES
837 and seeded at 50,000 cells per well to a white 96-well plate and incubated overnight. On the
838 day of the assay, plates were pre-incubated with 10 μ M Furimazine for 1 hour. Following
839 incubation, raw luminescence counts in each well were measured every 12 sec over the
840 course of the assay using a POLARstar Omega plate reader (BMG Labtech). Cells were
841 treated with either vehicle or a saturating concentration of each ligand (50 nM for A-61603
842 and 100 nM for antagonists). Luminescence counts were plotted against time, with the final
843 pre-incubation reading assigned as the zero-time point (time of vehicle/ligand addition). A
844 baseline correction was then performed by subtracting the luminescence counts in the
845 vehicle-treated samples from the ligand-treated samples which resulted in a time-course plot
846 of ligand-induced luminescence counts. Initial raw luminescence counts were used as a
847 readout of G protein expression levels. Data represent the mean \pm standard error (SEM) of
848 three independent biological replicate experiments each performed in triplicate technical
849 replicate measurements, unless otherwise stated in the figure legends.

850

851 **Intracellular Ca^{2+} Mobilization Assays**

852 COS-7 cells were seeded in 10 cm culture dishes at 3×10^6 cells per dish and allowed to grow
853 overnight at 37 °C, 5% CO_2 in Dulbecco's modified Eagle medium (DMEM) supplemented
854 with 10% FBS, 1% L-Glutamine and 1% penicillin/streptomycin (Life Technologies,
855 California, USA). The next day the cells were transfected with 30 μ g of receptor DNA
856 construct (pcDNA3.1 expression vector containing WT or mutant α_{1A} -ARs) using 60 μ l of
857 Lipofectamine 2000 (Invitrogen) transfecting reagent per dish. The following day, cells were
858 transferred to 96-well culture plates (5×10^4 cells per well) and allowed to grow overnight. On
859 the day of the experiment cells were washed twice with Ca^{2+} assay buffer [150 mM NaCl, 2.6

860 mM KCl, 1.2 mM MgCl₂, 10 mM D-glucose, 10 mM HEPES, 2.2 mM CaCl₂, 0.5% (w/v)
861 BSA, and 4 mM probenecid, pH 7.4] and incubated in Ca²⁺ assay buffer containing 1 mM
862 Fluo-4-AM for 1 h in the dark at 37 °C and 5% CO₂. After two washes with Ca²⁺ assay buffer,
863 fluorescence was measured for 1.5 min upon the addition of ligands in a Flexstation 3
864 (Molecular Devices, Sunnyvale, CA) using an excitation wavelength of 485 nm and emission
865 wavelength of 520 nm. Data were normalized to the peak response elicited by 3 μM
866 Ionomycin (Life Technologies). Data represent the mean ± SD of three independent
867 biological replicate experiments each performed in triplicate technical replicate
868 measurements, unless otherwise stated in the figure legends.

869

870 **Homology Modelling**

871 Homology models of inactive- and active-state α_{1A}-AR were built with I-TASSER (Zhang et
872 al., 2015) using crystal structures of β₂-AR as the templates. For inactive state models, the
873 structure of β₂-AR bound to the antagonist carazolol and the inactive-state stabilizing
874 nanobody, Nb60 (PDB ID: 5JQH) (Staus et al., 2016) was used as a template. For the active
875 state models, the crystal structure of a β₂-AR-Gs protein complex bound to the agonist BI-
876 167107 (PDB ID: 3SN6) (Rasmussen et al., 2011) was used as a template. The N- and C-
877 terminal regions as well as the ICL3 regions, which have no sequence similarity to the
878 template, were deleted from the model. Energy minimisation was performed using Minimize
879 tool in Maestro version 11.7.012 (Schrödinger, Inc.) under OPLS 2005 (Siu et al., 2012)
880 forcefield.

881

882

883

884 **References**

885 Ahuja, S., and Smith, S.O. (2009). Multiple switches in G protein-coupled receptor activation. *Trends Pharmacol Sci* 30, 494-502.

886 Akinaga, J., Garcia-Sainz, J.A., and Pupo, A.S. (2019). Updates in the Function and Regulation of alpha1 -Adrenoceptors. *Br J Pharmacol*.

887 Bokoch, M.P., Zou, Y., Rasmussen, S.G., Liu, C.W., Nygaard, R., Rosenbaum, D.M., Fung, J.J., Choi, H.J., Thian, F.S., Kobilka, T.S., Puglisi, J.D., Weis, W.I., Pardo, L., Prosser, R.S., Mueller, L., and Kobilka, B.K. (2010). Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. *Nature* 463, 108-112.

888 Bumbak, F., Bathgate, R.A.D., Scott, D.J., and Gooley, P.R. (2019). Expression and Purification of a Functional *E. coli* (13)CH3-Methionine-Labeled Thermostable Neurotensin Receptor 1 Variant for Solution NMR Studies. *Methods Mol Biol* 1947, 31-55.

889 Bumbak, F., Keen, A.C., Gunn, N.J., Gooley, P.R., Bathgate, R.A.D., and Scott, D.J. (2018). Optimization and (13)CH3 methionine labeling of a signaling competent neurotensin receptor 1 variant for NMR studies. *Biochim Biophys Acta* 1860, 1372-1383.

890 Butterfoss, G., DeRose, E., Gabel, S., Perera, L., Krahn, J., Mueller, G., Zheng, X., and London, R. (2010). Conformational dependence of 13C shielding and coupling constants for methionine methyl groups. *Journal of biomolecular NMR* 48, 31-47.

891 Carpenter, B., and Tate, C.G. (2017). Active state structures of G protein-coupled receptors highlight the similarities and differences in the G protein and arrestin coupling interfaces. *Curr Opin Struct Biol* 45, 124-132.

892 Casiraghi, M., Damian, M., Lescop, E., Point, E., Moncoq, K., Morellet, N., Levy, D., Marie, J., Guittet, E., Baneres, J.L., and Catoire, L.J. (2016). Functional Modulation of a G Protein-Coupled Receptor Conformational Landscape in a Lipid Bilayer. *J Am Chem Soc* 138, 11170-11175.

893 Clark, L.D., Dikiy, I., Chapman, K., Rodstrom, K.E., Aramini, J., LeVine, M.V., Khelashvili, G., Rasmussen, S.G., Gardner, K.H., and Rosenbaum, D.M. (2017). Ligand modulation of sidechain dynamics in a wild-type human GPCR. *Elife* 6.

894 Cotecchia, S., Schwinn, D.A., Randall, R.R., Lefkowitz, R.J., Caron, M.G., and Kobilka, B.K. (1988). Molecular cloning and expression of the cDNA for the hamster alpha 1-adrenergic receptor. *Proceedings of the National Academy of Sciences of the United States of America* 85, 7159-7163.

895 Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. *J Biomol NMR* 6, 277-293.

896 Deupi, X., and Standfuss, J. (2011). Structural insights into agonist-induced activation of G-protein-coupled receptors. *Curr Opin Struct Biol* 21, 541-551.

897 Dror, R.O., Arlow, D.H., Maragakis, P., Mildorf, T.J., Pan, A.C., Xu, H., Borhani, D.W., and Shaw, D.E. (2011). Activation mechanism of the beta2-adrenergic receptor. *Proc Natl Acad Sci U S A* 108, 18684-18689.

898 Eddy, M.T., Didenko, T., Stevens, R.C., and Wuthrich, K. (2016). beta2-Adrenergic Receptor Conformational Response to Fusion Protein in the Third Intracellular Loop. *Structure* 24, 2190-2197.

899 Eddy, M.T., Lee, M.Y., Gao, Z.G., White, K.L., Didenko, T., Horst, R., Audet, M., Stanczak, P., McClary, K.M., Han, G.W., Jacobson, K.A., Stevens, R.C., and Wuthrich, K. (2018). Allosteric Coupling of Drug Binding and Intracellular Signaling in the A2A Adenosine Receptor. *Cell* 172, 68-80 e12.

900 Garcia-Nafria, J., and Tate, C.G. (2019). Cryo-EM structures of GPCRs coupled to Gs, Gi and Go. *Mol Cell Endocrinol* 488, 1-13.

901 Horst, R., Liu, J., Stevens, R., and Wüthrich, K. (2013). β 2-Adrenergic Receptor Activation by Agonists Studied with 19F NMR Spectroscopy. *Angewandte Chemie* 125, 10962-10965.

902 Hwa, J., Graham, R.M., and Perez, D.M. (1995). Identification of critical determinants of alpha 1-adrenergic receptor subtype selective agonist binding. *J Biol Chem* 270, 23189-23195.

932 Inoue, A., Raimondi, F., Kadji, F.M.N., Singh, G., Kishi, T., Uwamizu, A., Ono, Y., Shinjo, Y., Ishida, S.,
933 Arang, N., Kawakami, K., Gutkind, J.S., Aoki, J., and Russell, R.B. (2019). Illuminating G-Protein-
934 Coupling Selectivity of GPCRs. *Cell*.

935 Isberg, V., de Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F., Mordalski, S., Pin, J.-P.,
936 Stevens, R., Vriend, G., and Gloriam, D. (2015). Generic GPCR residue numbers – aligning topology
937 maps while minding the gaps. *Trends in pharmacological sciences (Regular ed, Print)* 36, 22-31.

938 Isogai, S., Deupi, X., Opitz, C., Heydenreich, F.M., Tsai, C.J., Brueckner, F., Schertler, G.F., Veprintsev,
939 D.B., and Grzesiek, S. (2016). Backbone NMR reveals allosteric signal transduction networks in the
940 beta1-adrenergic receptor. *Nature* 530, 237-241.

941 Kofuku, Y., Ueda, T., Okude, J., Shiraishi, Y., Kondo, K., Maeda, M., Tsujishita, H., and Shimada, I.
942 (2012). Efficacy of the beta(2)-adrenergic receptor is determined by conformational equilibrium in
943 the transmembrane region. *Nat Commun* 3, 1045.

944 Kofuku, Y., Ueda, T., Okude, J., Shiraishi, Y., Kondo, K., Mizumura, T., Suzuki, S., and Shimada, I.
945 (2014). Functional dynamics of deuterated beta2 -adrenergic receptor in lipid bilayers revealed by
946 NMR spectroscopy. *Angew Chem Int Ed Engl* 53, 13376-13379.

947 Latorraca, N.R., Venkatakrishnan, A.J., and Dror, R.O. (2017). GPCR Dynamics: Structures in Motion.
948 *Chem Rev* 117, 139-155.

949 Lee, W., Tonelli, M., and Markley, J.L. (2015). NMRFAM-SPARKY: enhanced software for
950 biomolecular NMR spectroscopy. *Bioinformatics* 31, 1325-1327.

951 Liu, J.J., Horst, R, et al. (2012). biased signaling pathways in beta2-AR characterized by 19F-NMR
952 Science.

953 Manglik, A., Kim, T.H., Masureel, M., Altenbach, C., Yang, Z., Hilger, D., Lerch, M.T., Kobilka, T.S.,
954 Thian, F.S., Hubbell, W.L., Prosser, R.S., and Kobilka, B.K. (2015). Structural Insights into the Dynamic
955 Process of beta2-Adrenergic Receptor Signaling. *Cell* 161, 1101-1111.

956 Manglik, A., and Kruse, A.C. (2017). Structural Basis for G Protein-Coupled Receptor Activation.
957 *Biochemistry* 56, 5628-5634.

958 Nygaard, R., Zou, Y., Dror, R.O., Mildorf, T.J., Arlow, D.H., Manglik, A., Pan, A.C., Liu, C.W., Fung, J.J.,
959 Bokoch, M.P., Thian, F.S., Kobilka, T.S., Shaw, D.E., Mueller, L., Prosser, R.S., and Kobilka, B.K. (2013).
960 The dynamic process of beta(2)-adrenergic receptor activation. *Cell* 152, 532-542.

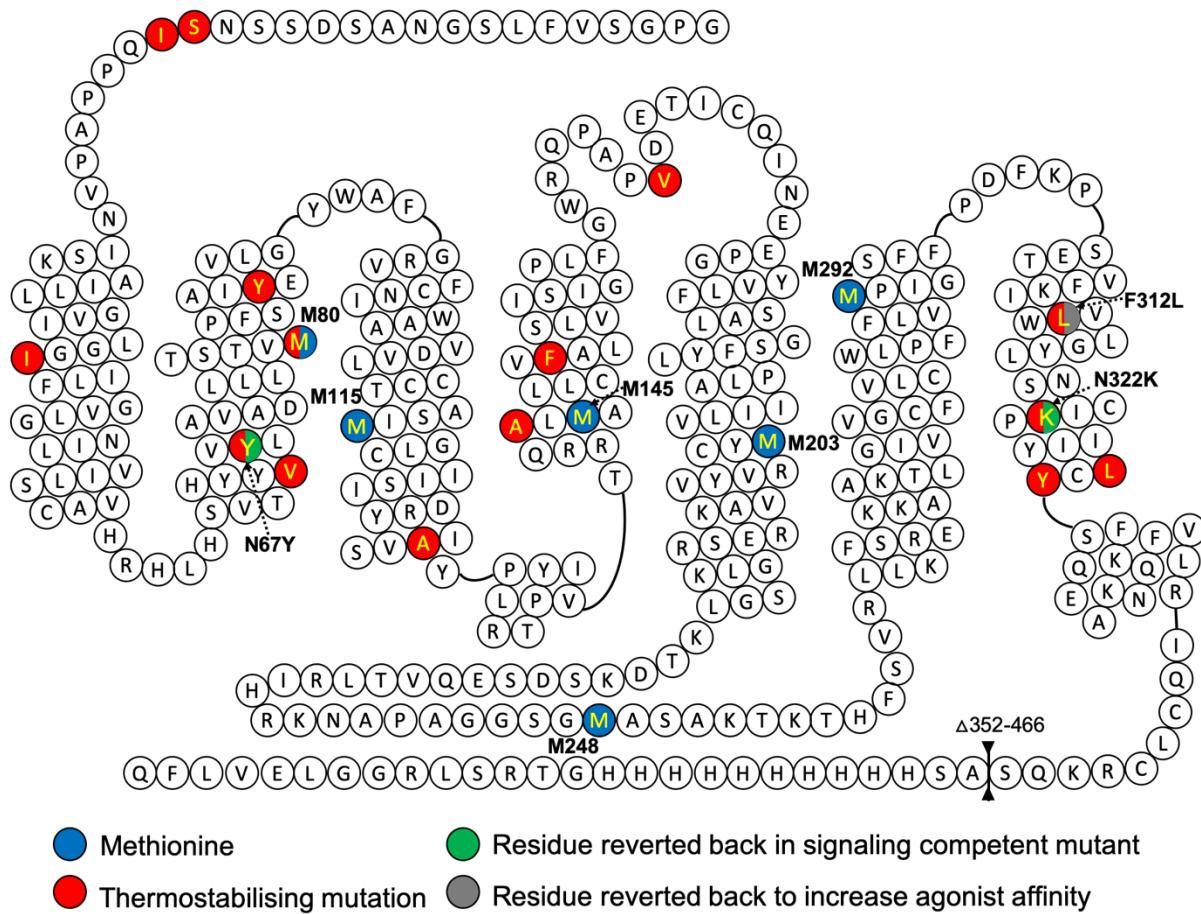
961 Okude, J., Ueda, T., Kofuku, Y., Sato, M., Nobuyama, N., Kondo, K., Shiraishi, Y., Mizumura, T., Onishi,
962 K., Natsume, M., Maeda, M., Tsujishita, H., Kuranaga, T., Inoue, M., and Shimada, I. (2015).
963 Identification of a Conformational Equilibrium That Determines the Efficacy and Functional
964 Selectivity of the mu-Opioid Receptor. *Angew Chem Int Ed Engl* 54, 15771-15776.

965 Perez, D., and Doze, V. (2011). Cardiac and neuroprotection regulated by alpha(1)-adrenergic
966 receptor subtypes. *Journal of receptor and signal transduction research* 31, 98-110.

967 Rasmussen, S.G., DeVree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., Thian, F.S., Chae, P.S.,
968 Pardon, E., Calinski, D., Mathiesen, J.M., Shah, S.T., Lyons, J.A., Caffrey, M., Gellman, S.H., Steyaert,
969 J., Skiniotis, G., Weis, W.I., Sunahara, R.K., and Kobilka, B.K. (2011). Crystal structure of the beta2
970 adrenergic receptor-Gs protein complex. *Nature* 477, 549-555.

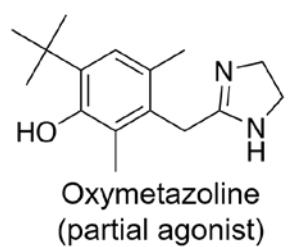
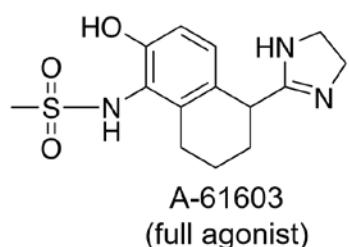
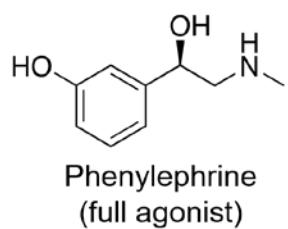
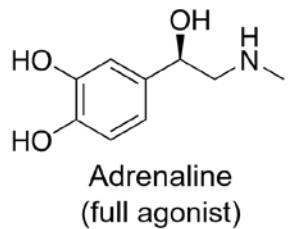
971 Schanda, P., Kupce, E., and Brutscher, B. (2005). SOFAST-HMQC experiments for recording two-
972 dimensional heteronuclear correlation spectra of proteins within a few seconds. *J Biomol NMR* 33,
973 199-211.

974 Scott, D.J., Gunn, N.J., Yong, K.J., Wimmer, V.C., Veldhuis, N.A., Challis, L.M., Haidar, M., Petrou, S.,
975 Bathgate, R.A.D., and Griffin, M.D.W. (2018). A Novel Ultra-Stable, Monomeric Green Fluorescent
976 Protein For Direct Volumetric Imaging of Whole Organs Using CLARITY. *Sci Rep* 8, 667.

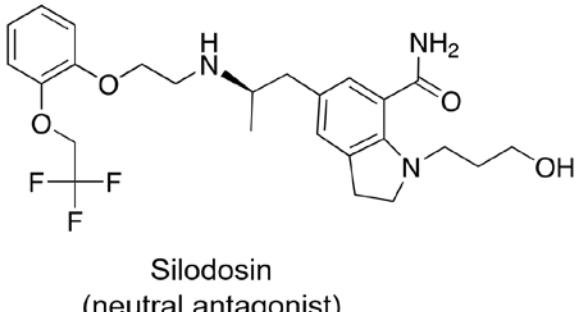
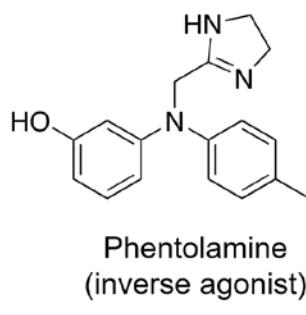
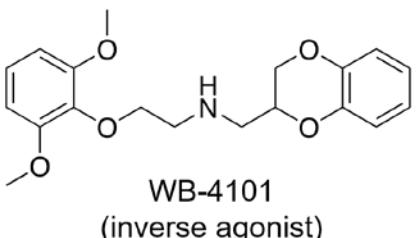
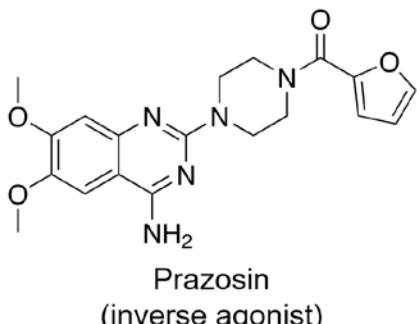

977 Scott, D.J., and Pluckthun, A. (2013). Direct molecular evolution of detergent-stable G protein-
978 coupled receptors using polymer encapsulated cells. *J Mol Biol* 425, 662-677.

979 Shimada, I., Ueda, T., Kofuku, Y., Eddy, M.T., and Wuthrich, K. (2018). GPCR drug discovery:
980 integrating solution NMR data with crystal and cryo-EM structures. *Nat Rev Drug Discov*.

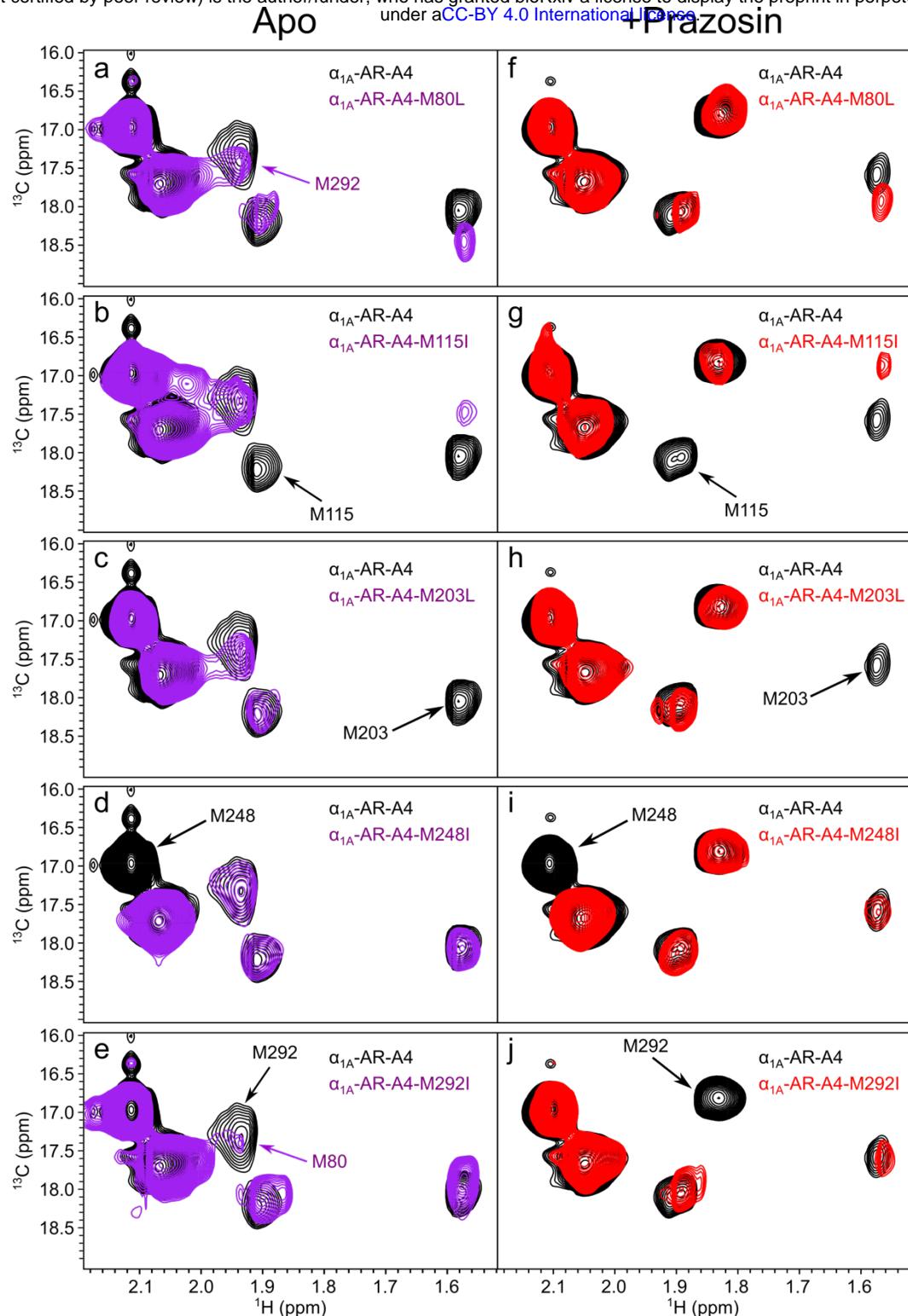
981 Siu, S.W., Pluhackova, K., and Bockmann, R.A. (2012). Optimization of the OPLS-AA Force Field for
982 Long Hydrocarbons. *J Chem Theory Comput* 8, 1459-1470.

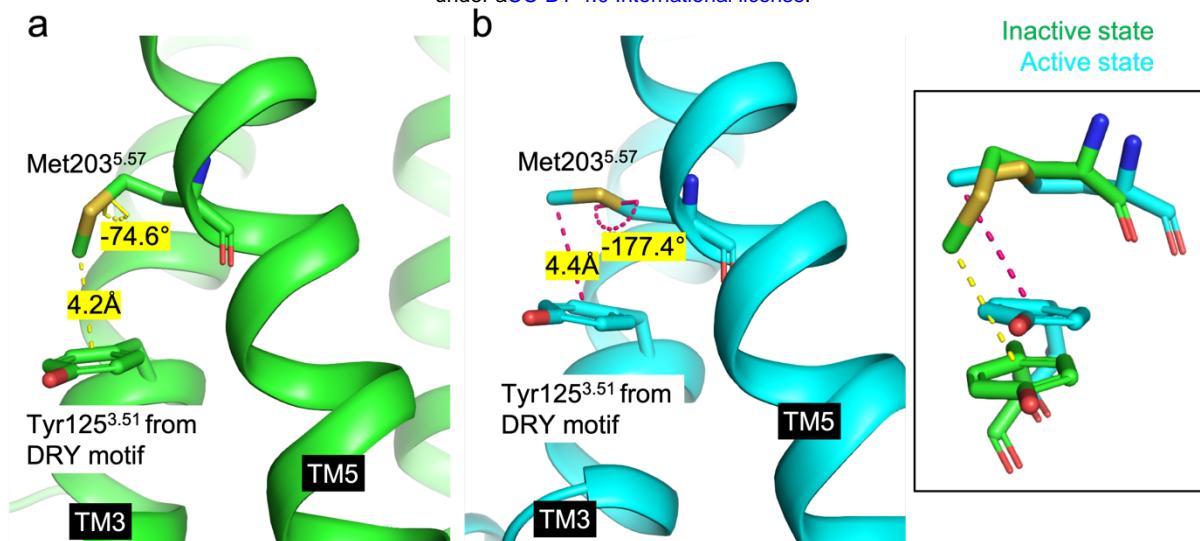





983 Solt, A.S., Bostock, M.J., Shrestha, B., Kumar, P., Warne, T., Tate, C.G., and Nietlispach, D. (2017).
984 Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic
985 nanobody-bound beta1-adrenergic receptor. *Nat Commun* 8, 1795.
986 Sounier, R., Mas, C., Steyaert, J., Laeremans, T., Manglik, A., Huang, W., Kobilka, B.K., Demene, H.,
987 and Granier, S. (2015). Propagation of conformational changes during mu-opioid receptor activation.
988 *Nature* 524, 375-378.
989 Staus, D.P., Strachan, R.T., Manglik, A., Pani, B., Kahsai, A.W., Kim, T.H., Wingler, L.M., Ahn, S.,
990 Chatterjee, A., Masoudi, A., Kruse, A.C., Pardon, E., Steyaert, J., Weis, W.I., Prosser, R.S., Kobilka,
991 B.K., Costa, T., and Lefkowitz, R.J. (2016). Allosteric nanobodies reveal the dynamic range and
992 diverse mechanisms of G-protein-coupled receptor activation. *Nature* 535, 448-452.
993 Trzaskowski, B., Latek, D., Yuan, S., Ghoshdastider, U., Debinski, A., and Filipek, S. (2012). Action of
994 molecular switches in GPCRs--theoretical and experimental studies. *Curr Med Chem* 19, 1090-1109.
995 Xu, J., Hu, Y., Kaindl, J., Risel, P., Hubner, H., Maeda, S., Niu, X., Li, H., Gmeiner, P., Jin, C., and
996 Kobilka, B.K. (2019). Conformational Complexity and Dynamics in a Muscarinic Receptor Revealed by
997 NMR Spectroscopy. *Mol Cell*.
998 Ye, L., Neale, C., Sljoka, A., Lyda, B., Pichugin, D., Tsuchimura, N., Larda, S.T., Pomes, R., Garcia, A.E.,
999 Ernst, O.P., Sunahara, R.K., and Prosser, R.S. (2018). Mechanistic insights into allosteric regulation of
1000 the A2A adenosine G protein-coupled receptor by physiological cations. *Nat Commun* 9, 1372.
1001 Ye, L., Van Eps, N., Zimmer, M., Ernst, O.P., and Prosser, R.S. (2016). Activation of the A2A adenosine
1002 G-protein-coupled receptor by conformational selection. *Nature* 533, 265-268.
1003 Yong, K.J., Vaid, T.M., Shilling, P.J., Wu, F.J., Williams, L.M., Deluigi, M., Pluckthun, A., Bathgate,
1004 R.A.D., Gooley, P.R., and Scott, D.J. (2018). Determinants of Ligand Subtype-Selectivity at alpha1A-
1005 Adrenoceptor Revealed Using Saturation Transfer Difference (STD) NMR. *ACS Chem Biol* 13, 1090-
1006 1102.
1007 Zhang, J., Yang, J., Jang, R., and Zhang, Y. (2015). GPCR-I-TASSER: A Hybrid Approach to G Protein-
1008 Coupled Receptor Structure Modeling and the Application to the Human Genome. *Structure* 23,
1009 1538-1549.
1010 Zhu, J., Taniguchi, T., Takaaji, R., Suzuki, F., Tanaka, T., and Muramatsu, I. (2000). Inverse agonism
1011 and neutral antagonism at a constitutively active alpha-1a adrenoceptor. *British Journal of
1012 Pharmacology* 131, 546-552.
1013
1014

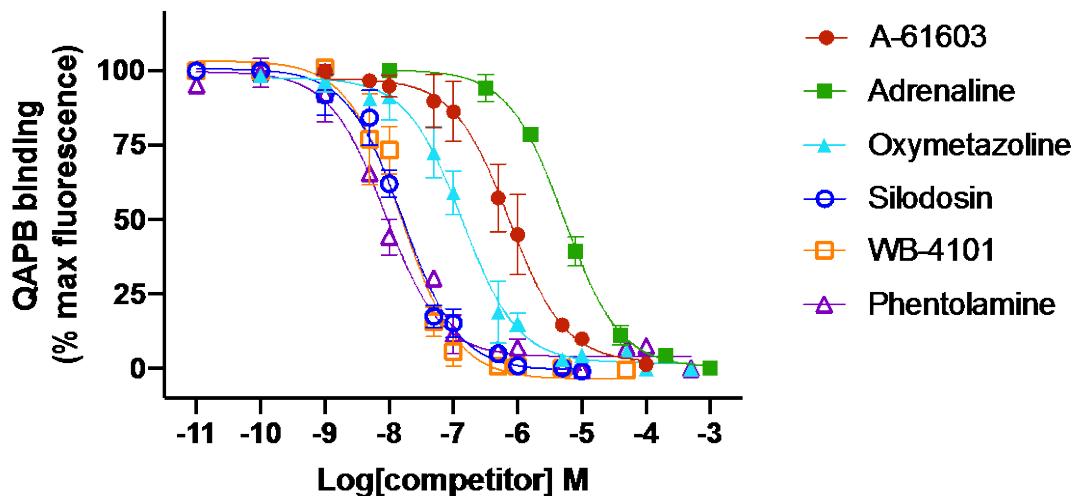
Supplementary Figures and Tables

Supplementary Figure 1. Secondary structure diagram of human α_{1A} -AR-A4. Methionine residues and thermostabilisation mutations are labelled in blue and red, respectively. Two thermostabilisation mutations (N67Y, N322K) labelled in both red and green were reverted back to natural residues in making signalling competent construct α_{1A} -AR-A4-active (Y67N, K322N). Residue labelled in grey is critical for ligand binding, α_{1A} -AR-A4 (L312F) construct was made to rescue affinities of agonists tested in this study.

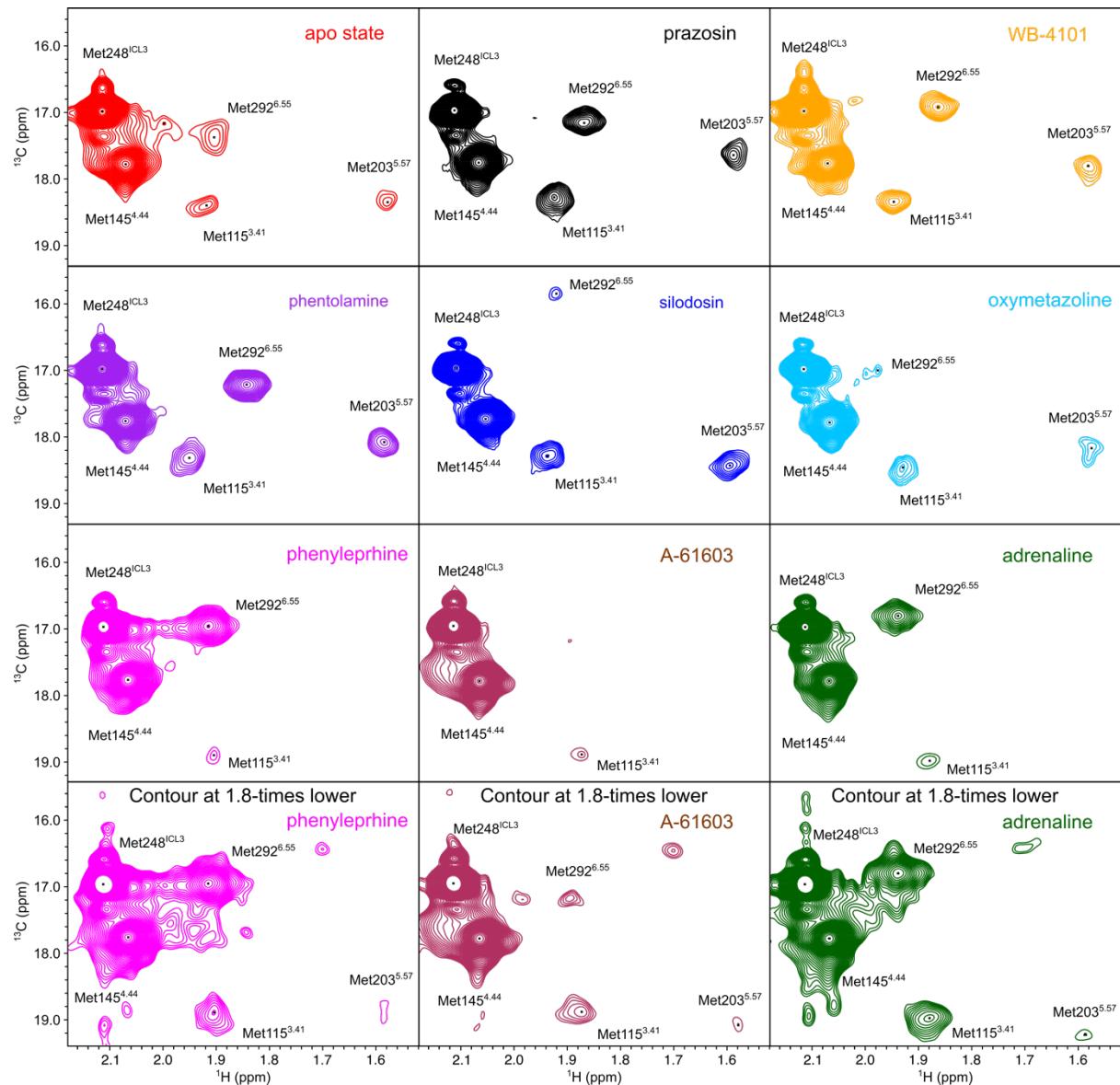

Agonist


Inverse agonist & Neutral antagonist

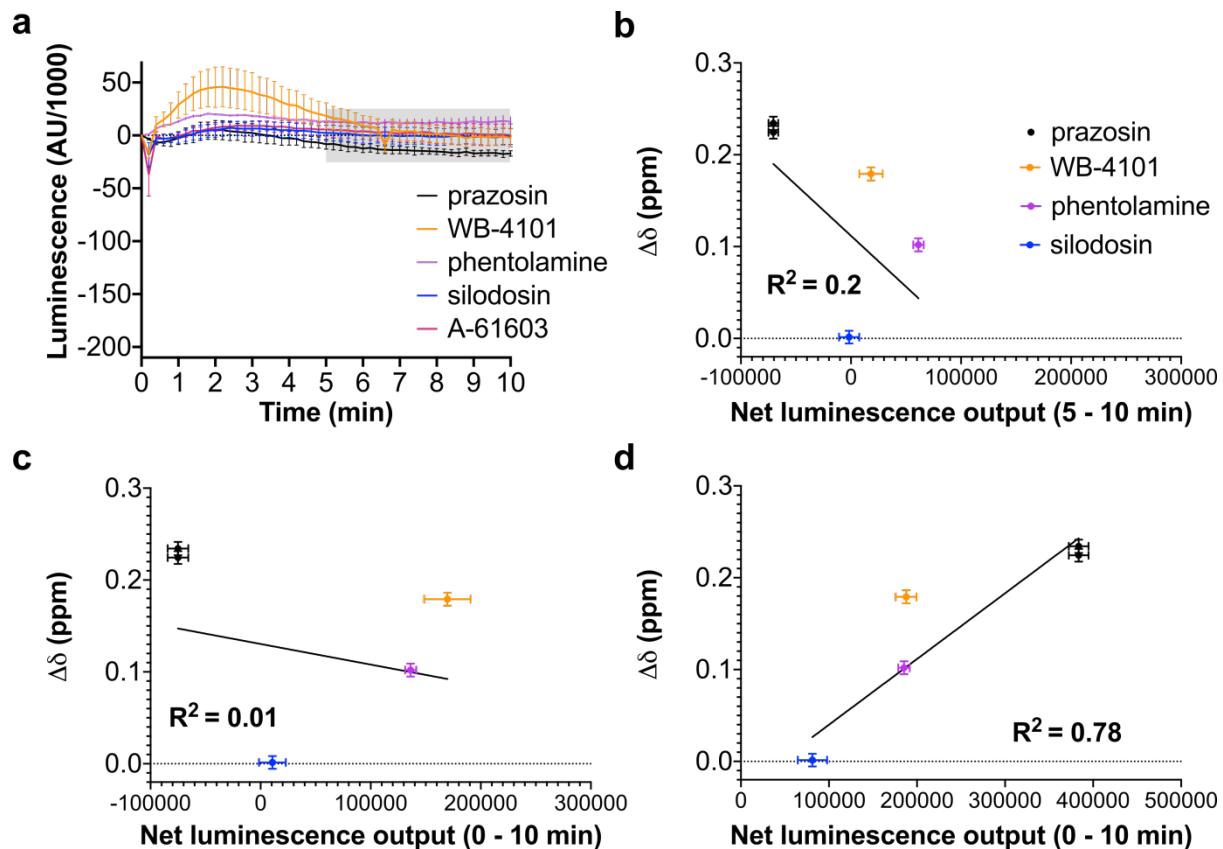

Supplementary Figure 2. Chemical structures of ligands used in this study.

Supplementary Figure 3. Assignment of ^{13}C methyl labelled methionine residues in $\alpha_{1\text{A}}$ -AR-A4. Five methionine residues in $\alpha_{1\text{A}}$ -AR-A4 were individually mutated to either Leucine or Isoleucine, M80L (a,f); M115I (b,g); M203L (c,h); M248I (d,i); M292I (e,j). The ^1H - ^{13}C SOFAST HMQC spectra of five $\alpha_{1\text{A}}$ -AR-A4 mutants were collected in apo state (a-e, purple) and prazosin-bound state (f-j, red). Spectra of all mutants overlay with the spectrum of $\alpha_{1\text{A}}$ -AR-A4 in the apo or prazosin-bound state (black).

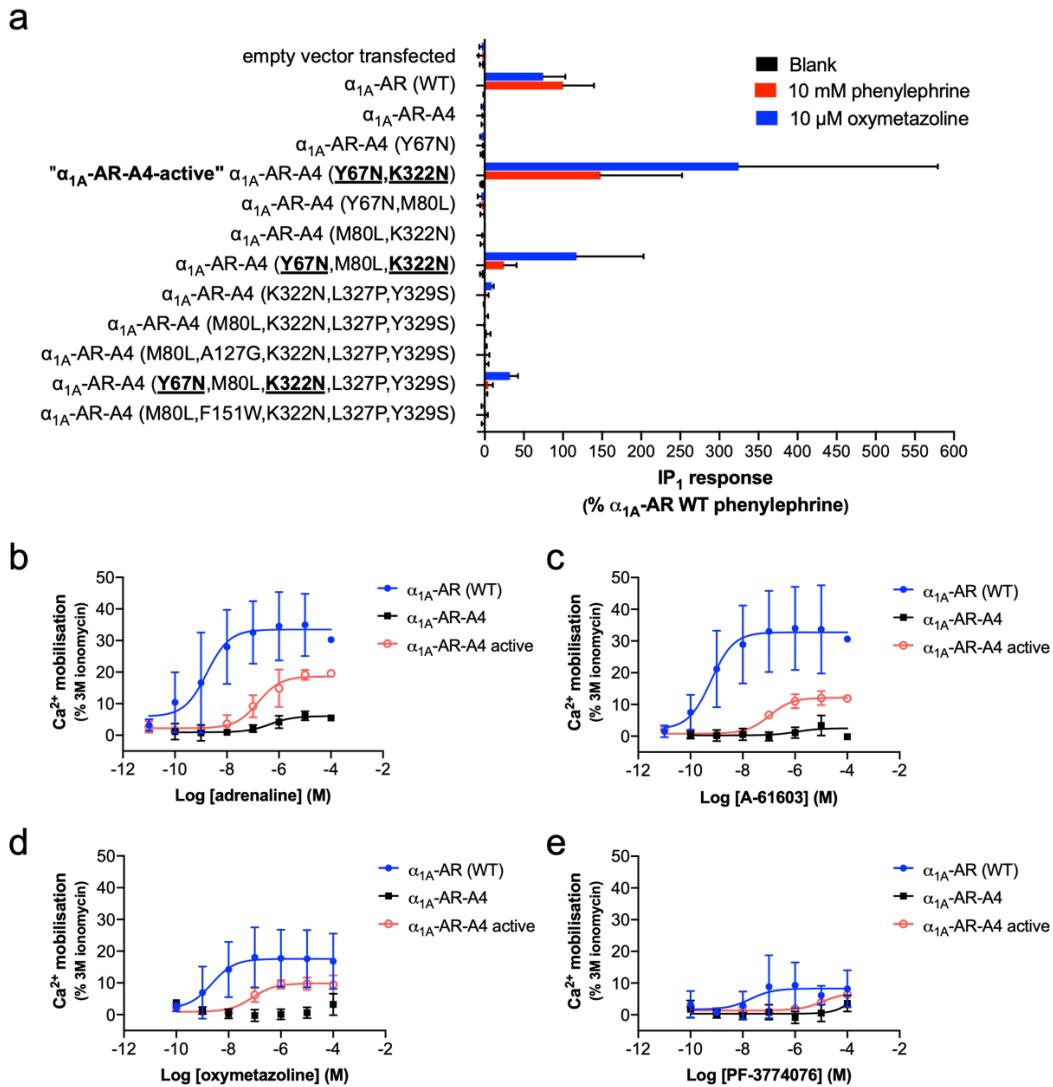
Supplementary Figure 4. The local environment of Met203^{5.57} and its χ_3 dihedral angle. The methyl group of Met203^{5.57} sits on top of Tyr125^{3.51} of the DRY motif as shown in the α_{1A} -AR-A4 homology models, and is expected to experience a ring current effect from Tyr125^{3.51}. (a) In the inactive state of α_{1A} -AR-A4 model (green), the distance between the methyl of Met203^{5.57} and the ring of Tyr125^{3.51} is 4.2 Å. The χ_3 dihedral angle of Met203^{5.57} is -74.6°, which means the χ_3 in the inactive state is averaging between gauche and trans conformers. (b) In the active state of α_{1A} -AR-A4 model (cyan), the distance between the methyl of Met203^{5.57} and the ring of Tyr125^{3.51} is 4.4 Å. The χ_3 dihedral angle of Met203^{5.57} is -177.4°, which means the χ_3 in the active state is in a near trans conformer.



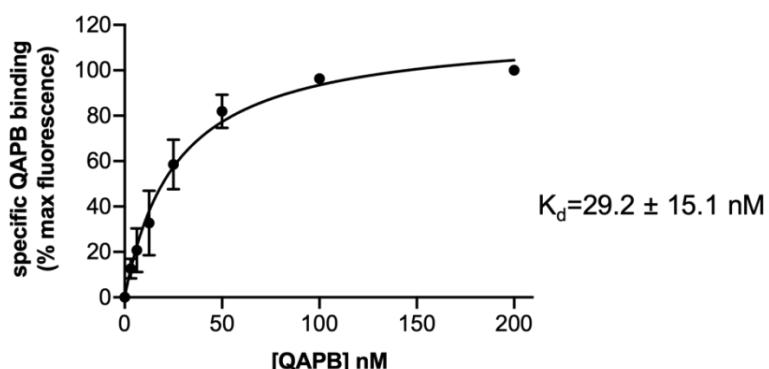
Supplementary Figure 5. Characterisation of ligand affinity to α_{1A} -AR-A4 (L312F). QAPB competition binding for 2 hours at 22 °C against purified α_{1A} -AR-A4 (L312F) with A-61603 (maroon, solid circles), adrenaline (green, solid squares), oxymetazoline (cyan, solid triangles), silodosin (blue, open circles), WB-4101 (orange, open squares) and phentolamine (purple, open triangles).


Supplementary Table 1. Measured affinities of ligands utilised in the present study.^a

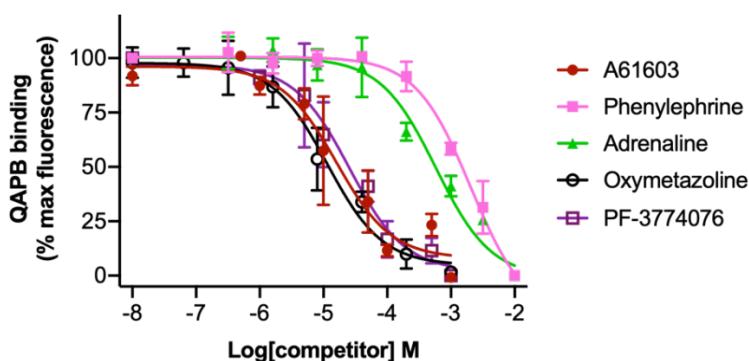
	α_{1A} -AR WT	α_{1A} -AR-A4	α_{1A} -AR-A4 (L312F)	α_{1A} -AR-A4-active
QAPB K_D (nM)	N.D	11.6 ± 2.0^1	30.3 ± 21.2	29.2 ± 15.1
	K_i^b	K_i	K_i	K_i
Adrenaline	$3.3 \pm 0.4 \mu M^2$	$>1.0 mM^1$	$2.7 \pm 0.5 \mu M$	$0.4 \pm 0.1 mM$
Phenylephrine	$6.2 \pm 1.5 \mu M^2$	$\sim 0.6 mM^1$	$41.9 \pm 26.6 \mu M^1$	$1.6 \pm 0.6 mM$
A-61603	$\sim 79.4 nM^3$	$113.5 \pm 47.2 \mu M^1$	$0.4 \pm 0.2 \mu M$	$18.4 \pm 18.9 \mu M$
Oxymetazoline	$6.7 \pm 0.9 nM^4$	$52.8 \pm 8.0 \mu M$	$65.7 \pm 24.4 nM$	$9.7 \pm 6.4 \mu M$
PF-3774076	$\sim 83.0 nM^5$	N.D	N.D	$19.4 \pm 12.9 \mu M$
Silodosin	$0.036 \pm 0.010 nM^4$	N.D	$8.4 \pm 1.9 nM$	N.D
Phentolamine	$2.7 \pm 0.1 nM^4$	N.D	$3.9 \pm 2.0 nM$	N.D
WB-4101	$0.21 \pm 0.03 nM^4$	N.D	$7.6 \pm 3.4 nM$	N.D
Prazosin	$0.17 \pm 0.02 nM^4$	$57.0 \pm 11.8 nM^1$	$7.5 \pm 3.8 nM^1$	N.D


^a Data are presented as mean $K_i \pm SD$ and mean $K_D \pm SD$, except for the data cited from the literature which are mean $K_i \pm SEM$ and mean $K_D \pm SEM$. Three independent biological replicate experiments (n=3) were done for all data. N.D, not determined. ^bThese K_i were measured on cells overexpressed with WT human α_{1A} -AR. K_i of ligands on α_{1A} -AR-A4, α_{1A} -AR-A4 (L312F) and α_{1A} -AR-A4-active were determined with purified receptors using Kingfisher binding assay (see methods). For some ligand-receptor pairings, full displacement in competition binding assays was not observed, and thus only approximate K_i values could be estimated (indicated with ~)

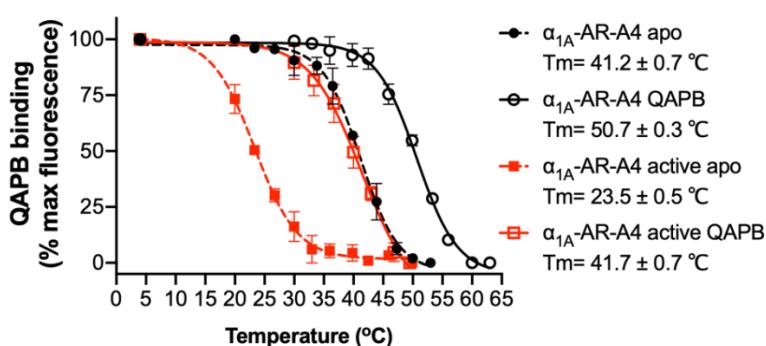
Supplementary Figure 6. ^1H - ^{13}C SOFAST-HMQC spectra of $\alpha_{1\text{A}}$ -AR-A4 (L312F). Individual NMR spectrum for $[^{13}\text{C}^2\text{H}_3\text{-Met}] \alpha_{1\text{A}}$ -AR-A4 (L312F) collected in the apo-state (red) and bound to prazosin (black, inverse agonist), WB-4101 (yellow, inverse agonist), phentolamine (purple, inverse agonist), silodosin (blue, neutral antagonist), oxymetazoline (cyan, partial agonist), phenylephrine (magenta, full agonist), A-61603 (maroon, full agonist), and adrenaline (green, full agonist).

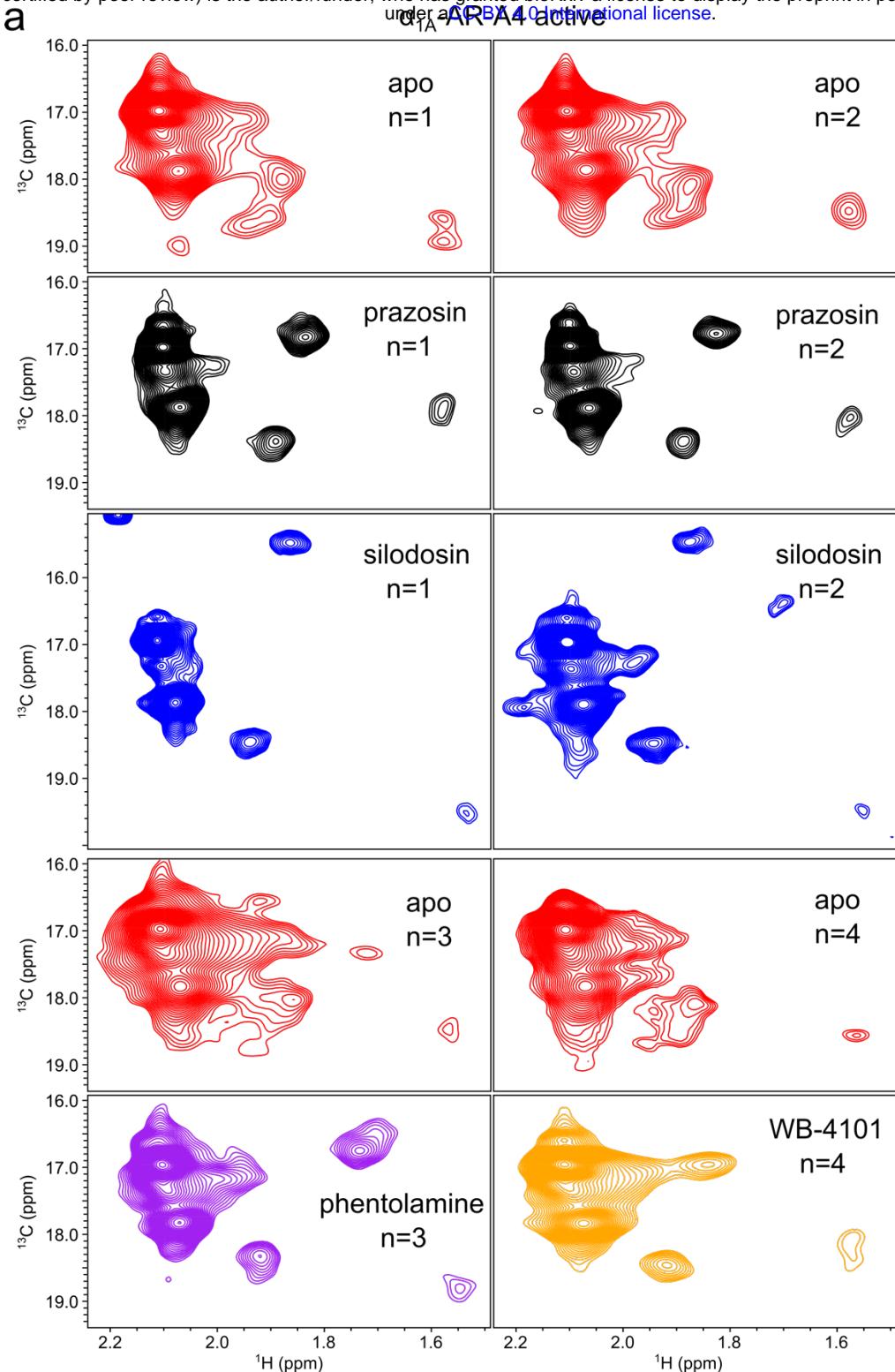


Supplementary Figure 7. Controls for NanoBit G protein activity assay. (a) NanoBit G protein activity assay on empty vector (pcDNA3.1/Zeo) transfected COS-7 cells treated with the same concentrations of prazosin, WB-4101, phentolamine and silodosin as in Figure 4b. The grey shaded region indicates where the area under the curve measurements were taken for (b). (b) Linear regression analysis of the average chemical shift differences ($\Delta\delta$) for the $^{13}\text{C}^e\text{H}_3$ of Met203 in α_{1A} -AR-A4 (L312F) and the increase in luminescence seen between 5 – 10 min after treatment in the NanoBit assay on empty vector (pcDNA3.1/Zeo) transfected COS-7 cells. A P value of 0.2663 was obtained when testing against the null hypothesis of a slope of 0 (c) Linear regression analysis of the average chemical shift differences ($\Delta\delta$) for the $^{13}\text{C}^e\text{H}_3$ of Met203 in α_{1A} -AR-A4 (L312F) and the increase in luminescence seen for the first 10 min after treatment in the NanoBit assay on empty vector (pcDNA3.1/Zeo) transfected COS-7 cells. Ligands are coloured as listed above and a P value of 0.6754 indicated slope not deviating significantly from 0. (d) Linear regression analysis of the average chemical shift differences ($\Delta\delta$) for the $^{13}\text{C}^e\text{H}_3$ of Met203 in α_{1A} -AR-A4 (L312F) and the increase in luminescence seen for the first 10 min after treatment in the NanoBit assay on COS-7 cells transfected with wild-type α_{1A} -AR (as in Figure 4b-c). A P value of 0.0071 suggested a significantly non-zero slope. Ligands are coloured as listed above. In (b), (c) and (d) $\Delta\delta$ are plotted for two independent titrations of prazosin and silodosin, and single experiments for WB-4101 and phentolamine. Average chemical shift differences ($\Delta\delta$) were normalised using the equation $\Delta\delta = [(\Delta\delta_{1\text{H}})^2 + (\Delta\delta_{13\text{C}}/3.5)^2]^{0.5}$ and errors were calculated by the formula $[\Delta\delta_{1\text{H}} * R_{1\text{H}} + \Delta\delta_{13\text{C}} * R_{13\text{C}} / (3.5)^2] / \Delta\delta$, where $R_{1\text{H}}$ and $R_{13\text{C}}$ are the digital resolutions in ppm in the ^1H and ^{13}C dimensions respectively.

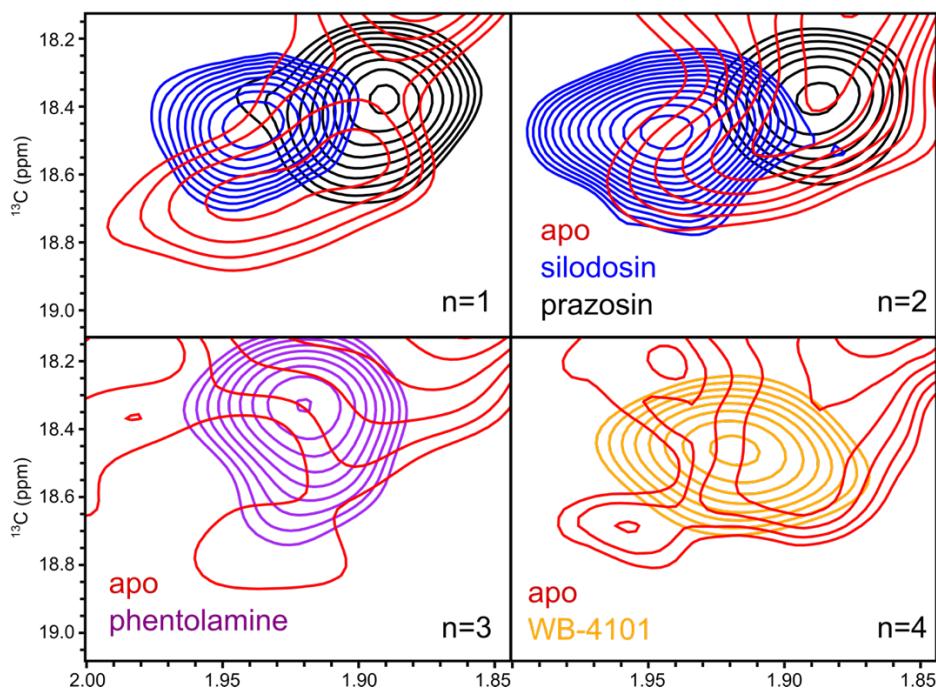


Supplementary Figure 8. Functional signalling assays performed on α_{1A} -AR-A4 active and other mutants. (a) Measurement of agonist (phenylephrine and oxymetazoline) induced accumulation of IP₁ in COS-7 cells transfected with WT α_{1A} -AR, α_{1A} -AR-A4 and mutants that were made with reverted mutations on α_{1A} -AR-A4. Y67N, M80L, A127G, F151W, K322N, L327P and Y329S are the predicted critical back mutations that were screened to recover the signaling ability of α_{1A} -AR-A4. All of α_{1A} -AR-A4 back mutants containing Y67N and K322N (highlighted with bold and underlined) displayed accumulation of IP₁ signal upon agonist activation. α_{1A} -AR-A4 (Y67N, K322N) is labelled as α_{1A} -AR-A4-active. In this screening assay some mutants were only measured in one biological replicate experiment (α_{1A} -AR-A4 (M80L, K322N, L327P, Y329S); α_{1A} -AR-A4 (K322N, L327P, Y329S); α_{1A} -AR-A4 (Y67N, M80L, K322N); α_{1A} -AR-A4 (M80L, K322N); α_{1A} -AR-A4 (Y67N, K322N); α_{1A} -AR-A4), with the others measured in two independent biological replicate experiments, with data plotted as mean \pm SD of replicate measurements. (b-e) Measurement of adrenaline (b), A-61603 (c), oxymetazoline (d) and PF-3774076 (e) induced Ca^{2+} mobilization in COS-7 cells transfected with α_{1A} -AR (blue, solid circles), α_{1A} -AR-A4 (black, solid squares) and α_{1A} -AR-A4 active (red, open circles). Data represent the mean \pm SD from three independent biological replicate experiments, each measured as three technical replicates.

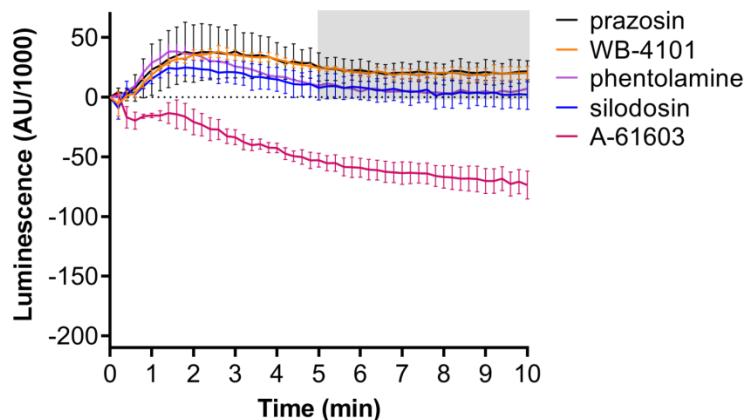

a


b

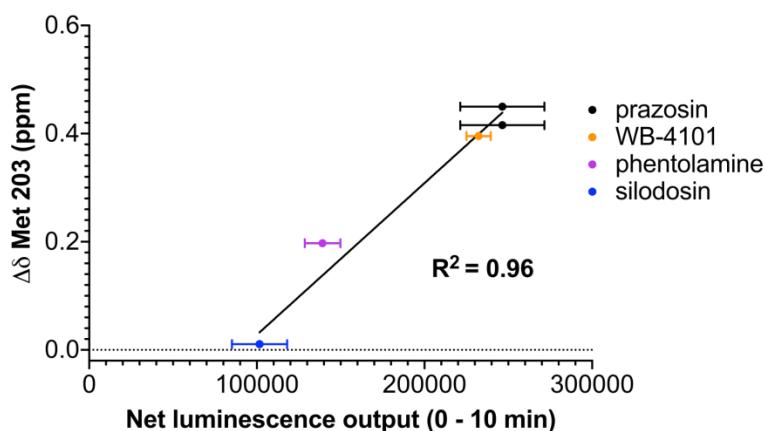
c



Supplementary Figure 9. Characterisation of α_{1A} -AR-A4-active. (a) Saturation binding of QAPB to purified α_{1A} -AR-A4 active. (b) QAPB competition binding for 2 hours at 22 °C against purified α_{1A} -AR-A4 active with A-61603 (maroon, solid circles), phenylephrine (pink, solid squares), adrenaline (green, solid triangles), oxymetazoline (black, open circles), PF-3774076 (purple, open squares). (c) Thermostability assay performed on α_{1A} -AR-A4 in the apo state (black solid circles and dash line), QAPB-bound state (black open circles and solid line) and α_{1A} -AR-A4-active in the apo state (red solid squares and dash line), QAPB-bound state (red open squares and solid line).


b

M115¹³C in α_{1A} -AR-A4-active



Supplementary Figure 10. ^1H - ^{13}C SOFAST-HMQC spectra of α_{1A} -AR-A4-active. (a) Four separate expressions and purifications of α_{1A} -AR-A4-active were conducted and data acquired for apo- (red), prazosin (black) and silodosin (blue), phentolamine (purple) and WB-4101 (orange). (b) Expansions and overlay of the region where the $^{13}\text{C}^6\text{H}_3$ of Met115 resonates.

a

b

Supplementary Figure 11. Correlation between the chemical shift position of Met203^{5,57} in α_{1A} -AR-A4-active and inverse agonists efficacy. (a) NanoBit G protein activity assay demonstrating inverse agonism of prazosin, WB-4101, phentolamine and silodosin at α_{1A} -AR-A4 active expressing COS-7 cells. The grey shaded region indicates where the area under the curve measurements were taken to make Figure 5e. (b) Linear regression analysis of the average chemical shift differences ($\Delta\delta$) for the $^{13}\text{C}^6\text{H}_3$ of Met203 in α_{1A} -AR-A4-active and the increase in luminescence seen over the first 10 minutes in the NanoBit assay for each antagonist. A P value of 0.0002 suggested that the slope was significantly different from zero. In (b) $\Delta\delta$ are plotted for two independent titrations of prazosin and silodosin, and single experiments for WB-4101 and phentolamine. Average chemical shift differences ($\Delta\delta$ Met 203) were normalised using the equation $\Delta\delta = [(\Delta\delta_{1\text{H}})^2 + (\Delta\delta_{13\text{C}}/3.5)^2]^{0.5}$ and errors were calculated by the formula $[\Delta\delta_{1\text{H}} * R_{1\text{H}} + \Delta\delta_{13\text{C}} * R_{13\text{C}} / (3.5)^2] / \Delta\delta$, where $R_{1\text{H}}$ and $R_{13\text{C}}$ are the digital resolutions in ppm in the ^1H and ^{13}C dimensions respectively.

Reference

1. Yong, K.J. et al. Determinants of Ligand Subtype-Selectivity at alpha1A-Adrenoceptor Revealed Using Saturation Transfer Difference (STD) NMR. *ACS Chem Biol* **13**, 1090-1102 (2018).
2. Hwa, J. & Perez, D.M. The unique nature of the serine interactions for alpha 1-adrenergic receptor agonist binding and activation. *Journal of Biological Chemistry* **271**, 6322-6327 (1996).
3. Willems, E.W. et al. A61603-induced vasoconstriction in porcine carotid vasculature: involvement of a non-adrenergic mechanism. *Eur J Pharmacol* **417**, 195-201 (2001).
4. Shibata, K. et al. KMD-3213, a novel, potent, alpha 1a-adrenoceptor-selective antagonist: characterization using recombinant human alpha 1-adrenoceptors and native tissues. *Mol Pharmacol* **48**, 250-8 (1995).
5. Conlon, K. et al. Pharmacological properties of 2-((R-5-chloro-4-methoxymethylindan-1-yl)-1H-imidazole (PF-3774076), a novel and selective alpha1A-adrenergic partial agonist, in in vitro and in vivo models of urethral function. *J Pharmacol Exp Ther* **330**, 892-901 (2009).