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Abstract 13 

Single-molecule sequencing technologies have emerged in recent years and revolutionized 14 

structural variant calling, complex genome assembly, and epigenetic mark detection. 15 

However, the lack of a highly accurate small variant caller has limited the new technologies 16 

from being more widely used. In this study, we present Clair, the successor to Clairvoyante, 17 

a program for fast and accurate germline small variant calling, using single molecule 18 

sequencing data. For ONT data, Clair achieves the best precision, recall and speed as 19 

compared to several competing programs, including Clairvoyante, Longshot and Medaka. 20 

Through studying the missed variants and benchmarking intentionally overfitted models, we 21 

found that Clair may be approaching the limit of possible accuracy for germline small variant 22 

calling using pileup data and deep neural networks. Clair requires only a conventional CPU 23 

for variant calling and is an open source project available at https://github.com/HKU-24 

BAL/Clair. 25 
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 2 

Introduction 26 

Fast and accurate variant calling is essential for both research and clinical applications of 27 

human genome sequencing1,2. Algorithms, best practices and benchmarking guidelines have 28 

been established for how to use Illumina sequencing to call germline small variants, 29 

including single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels)3-6. In 30 

recent years, single-molecule sequencing (SMS) technologies have emerged for a variety of 31 

important applications7. These technologies, which are also known as the third-generation 32 

sequencing technologies, generate sequencing reads two to three orders of magnitude 33 

longer than Illumina reads (10–100kbp versus 100–250bp). The long read length has made 34 

the new SMS technologies, including Pacific Biosciences (PacBio) and Oxford Nanopore 35 

Technology (ONT), unprecedentedly powerful for resolving complex genome assembly 36 

problems and for detecting large structural variants8. However, currently available SMS 37 

technologies also have a significantly higher base error rate of 3–15%9, making the variant 38 

calling methods previously designed for Illumina sequencing inapplicable to SMS 39 

technologies. The lack of accurate tools for efficient variant calling has limited SMS 40 

technologies from being applied to the many problems that require SNPs and small indels. 41 

 42 

In our previous work, we developed Clairvoyante10, a germline small variant caller for single 43 

molecule sequencing data. Clairvoyante does not require sequence assembly and calls 44 

variants directly from read alignments. Clairvoyante adopts a deep convolutional neural 45 

network, so that by using the truth variants called and orthogonally verified in seven human 46 

individuals by the Genome In A Bottle (GIAB) consortium11-13, Clairvoyante can be trained 47 

for variant calling on any new type of sequencing data without the need to look into its 48 
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error profile and build a hand-crafted model. Clairvoyante takes pileup data as input and 49 

runs quickly. However, Clairvoyante’s design is unable to call multiallelic variants or indels 50 

longer than four bases. These defects remain to be solved. Meanwhile, the limit of using 51 

pileup data and deep neural networks for variant calling remains to be explored. 52 

 53 

In this study, we present Clair, a fast and accurate system for germline small variant calling 54 

using single molecule sequencing data. With an entirely different network architecture and 55 

learning tasks (i.e. output components), Clair resolves the multiallelic and long indel variant 56 

calling problems that have prevented Clairvoyante from calling all types of small variants. 57 

We describe in detail the methods we tried that either worked or did not work for 58 

improving Clair’s performance. For ONT datasets14, our experiments on whole-genome 59 

variant calling in GIAB samples show that Clair outperforms Clairvoyante and other variant 60 

callers, including Longshot15 and Medaka16, in terms of precision, recall and speed. For high 61 

accuracy reads, including both PacBio CCS (Circular Consensus Sequencing)17 and Illumina 62 

datasets13, DeepVariant18 had modestly improved F1-scores over Clair by .11% to .13%, 63 

although Clair was seven times faster. Looking into the false positive (FP) and false negative 64 

(FN) variants of the three sequencing technologies showed that except for variants with 65 

insufficient coverage by chance, most of the others could be resolved using complete read 66 

alignments instead of pileup data or else could not be resolved at all, even with a manual 67 

inspection. 68 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2019. ; https://doi.org/10.1101/865782doi: bioRxiv preprint 

https://doi.org/10.1101/865782
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Results 69 

Overview of Clair 70 

Clair is a four-task, five-layer recurrent neural network with two bi-directional LSTM layers 71 

followed by three feedforward layers (Figure 1). Clair takes a BAM file as input to find 72 

candidate variants with any minor allele frequencies larger than a threshold (typically 73 

between 0.1 and 0.2), and then computes a pileup of the candidates and converts the 74 

summaries into a tensor. In a tensor, the allelic counts of bases and gaps on both strands of 75 

a candidate variant and its 16 flanking bases are encoded into 1,056 integer values. More 76 

details and pseudo code are available in the Methods section. As discussed in the 77 

Clairvoyante paper, one major unsolved problem was how to support the calling of multi-78 

allelic variants (i.e., variants with two alternative alleles). In Clair, the problem is solved by 79 

using four new (deep learning) tasks that are entirely different from Clairvoyante. These are: 80 

1) a 21-genotype probabilistic model with 21 probability outputs; 2) the use of three 81 

probabilities for the input, including a homozygous reference (0/0 genotype), a 82 

heterozygous variant (0/1) or a homozygous variant (1/1); 3) the length of the first indel 83 

allele, with 33 probabilities representing a length of ‘<-15bp’, ‘-15bp’, ‘-14bp’, …, ‘-1bp’, 84 

‘0bp’, ‘1bp’, …, ‘15bp’, ‘>15bp’; and 4) the length of the second indel allele. The 21-genotype 85 

probabilistic model can represent all possible genotypes of a diploid sample at the genome 86 

position. The length of indels longer than 15bp cannot be directly inferred from the third 87 

and fourth tasks, so Clair includes an additional step that re-scans the alignments. More 88 

details on each of these steps can be found in the Methods section. The four tasks make 89 

their own decisions and are designed to cross-validate each other. For example, task two is 90 

a coarse-grained version of task one and can veto the decision made by task one. Tasks 91 
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three and four should indicate 0bp indel length if an SNP variant is decided by task one. 92 

More details on how the four tasks make a joint decision are available in the Methods 93 

section. We used the ‘focal loss’ deep-learning technique to solve the problem of 94 

unbalanced variant types in training data. We used the ‘cyclical learning rate’ deep learning 95 

technique to achieve the maximum possible variant calling performance and speed up the 96 

training process to be able to handle larger training datasets. To improve Clair’s 97 

performance at lower sequencing coverages, we augmented the training data with 10 98 

subsampled coverages of each dataset. The parameters of these three new techniques are 99 

in the Methods section. 100 

 101 

Clair has 2,377,818 parameters, which is 45.7% more than Clairvoyante (1,631,496 102 

parameters) but only one tenth as many as DeepVariant (23,885,392 parameters). In terms 103 

of variant calling speed, Clair takes about 30 minutes, 1.5 hour, and 5 hours for a 50-fold 104 

coverage WGS sample using Illumina, PacBio CCS and ONT data, respectively, using 24 CPU 105 

cores. In our experiments, Clair was 10–20% slower than Clairvoyante, but significantly 106 

faster than DeepVariant, Longshot and Medaka. 107 

 108 

The Methods section includes a description of procedures to augment the training data or 109 

improve Clair’s network architecture that we tested but that did not improve precision and 110 

recall of variant calling. Developers working on further improving Clair’s performance can 111 

save time by avoiding the same methods, or the same settings in a method. 112 

 113 
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Performance on ONT 114 

ONT datasets are currently available for two GIAB samples, HG001 and HG002. The HG001 115 

rel6 dataset generated by the Nanopore WGS Consortium14 contains approximately 44.3-116 

fold coverage of human genome (the dataset is also referred to as 1:44x, where '1' means 117 

the sample suffix and '44x' means the coverage). The rel6 dataset was base-called with 118 

Guppy 2.3.8, using the HAC (High-ACcuracy) model. In addition to the rel6 dataset, we 119 

obtained a separate 124.1-fold coverage dataset for HG001 (1:124x) directly from Oxford 120 

Nanopore (Philipp Rescheneder, personal communication). That dataset was base-called 121 

with Guppy 2.2.3 using the Flip-Flop model. In some experiments, we combined 1:44x and 122 

1:124x to form a new dataset 1:168x to maximize the coverage. For HG002, we used a 123 

dataset with ~64-fold coverage (2:64x) from the GIAB consortium, which was base-called 124 

with Guppy 2.3.5 using the Flip-Flop model. The links to the datasets are available in the 125 

Supplementary Notes. The details about "the GIAB truth variant datasets", "removing 126 

GA4GH (The Global Alliance for Genomics and Health) low-complexity regions6 from 127 

benchmarking", and "the benchmarking methods and metrics" are available in "Methods – 128 

Benchmarking". 129 

 130 

Figure 2 shows the precision and recall of Clair and other variant callers on SNPs and indels 131 

in multiple experiments with ONT data. Supplementary Table 1 contains more details, 132 

including precision, recall and F1-score in five categories, including overall, SNP, indel, 133 

insertion, and deletion. Our results show that Clair not only outperformed other variant 134 

callers, including Clairvoyante, Longshot, and Medaka, but also ran much faster. Using 135 

1:168x|2:64x (i.e., test variant calling using HG002 with 64-fold coverage against a model 136 

trained using HG001 with 168-fold coverage) as Clair’s primary result, Clair achieved 98.36% 137 
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precision, 96.46% recall, and 97.40% F1-score overall performance. In terms of SNPs, the 138 

three metrics were 99.29%, 97.78% and 98.53%, respectively. For indels, they were 139 

somewhat lower at 81.15%, 73.88%, and 77.34%. Clair significantly outperformed its 140 

predecessor Clairvoyante on both SNP and indel calling (overall F1-score 97.40% versus 141 

93.45%). Clair had a slightly higher F1-score on SNPs than Longshot (98.53% versus 98.41%), 142 

but Longshot detects only SNPs, and Clair ran five times faster than Longshot (320 versus 143 

1,797 minutes). Clair had a better performance than Medaka (overall F1-score 97.40% 144 

versus 94.81%) and ran 30 times faster (320 versus 10,817 minutes). It is worth mentioning 145 

that we didn’t benchmark Nanopolish19, which is also capable of variant calling on ONT data, 146 

because it also requires raw signals as input, which are not publicly available for HG002. 147 

 148 

We ran further experiments to answer five additional questions about Clair, as follows. 149 

 150 

Is the Clair model reference-genome specific? In our experiments, performance did not 151 

depend on whether we used GRCh37 or GRCh38. The performance of 1:168x|2:64x and 152 

1:168x|2:64x(b37) was similar; the latter experiment tested HG002 GRCh37 read alignments 153 

on a model trained using HG001 GRCh38 read alignments. Actually, 1:168x|2:64x(b37) 154 

performed slightly better than 1:168x|2:64x, with a 0.18% better F1-score on SNPs, and 155 

1.4% on indels.  156 

 157 

Does higher coverage in the test sample helps improve variant calling performance? Yes, 158 

but improvement seems to asymptote at ~60-fold coverage. In a comparison of 159 

1:168x|2:64x to 1:168x|2:32x, the overall F1-score increased from 94.10% to 97.40% 160 

(+3.30%), the SNP from 95.51% to 98.53% (+3.02%), and the indel from 68.87% to 77.34% 161 
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(+8.47%). Further increasing the coverage in the test sample will note significantly increase 162 

the variant calling performance as we discuss below. 163 

 164 

Does higher coverage for model training help improve variant calling performance? Yes, 165 

but it depends on the coverage of the test sample. In a comparison of 1:124x|2:64x to 166 

1:44x|2:64x, the overall F1-score increased from 96.84% to 97.51% (+0.67%), the SNP from 167 

98.01% to 98.54% (+0.53%), and the indel from 75.78% to 78.44% (+2.66%). In a comparison 168 

of 1:168x|2:64x to 1:124x|2:64x, the performance was similar, or even slightly dropped 169 

from 97.51% to 97.40% overall. One possible reason is that the lower coverage test sample 170 

cannot benefit from the much higher coverage used for model training. We propose how to 171 

deal with excessively high coverage in test samples (i.e., coverage exceeding that used in 172 

model training) in the Discussion section below. 173 

 174 

Does multiple subsampled coverage for model training improved variant calling 175 

performance? Yes. in a comparison of 1:44x|2:64x to ‘1:44x (single cov.)|2:64x’, the latter 176 

used only the full coverage 44-fold in model training; the overall F1-score increased from 177 

95.47% to 96.84% (+1.37%), the SNP from 96.94% to 98.01% (+1.07%), and the indel from 178 

75.78% to 78.44% (+2.86%). The results show that even without sufficient coverage for 179 

model training, using multiple subsampled coverage still improved the variant calling 180 

performance significantly. 181 

 182 

What is the upper bound on performance? 183 

To determine Clair’s performance cap using the current ONT data, we intentionally 184 

overfitted Clair by adding the samples we are going to test to the model training. Even 185 
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though Clair is designed with multiple generalization techniques, including ‘dropout’ and ‘L2 186 

regularization’, exposing the test samples to model training is a biased evaluation, and if a 187 

true variant is not called even after this biased training, this suggests the input signal is 188 

simply too weak. The two tests we did were 1:168x+2:64x|2:64x and 1:168x+2:64x|1:168x. 189 

Although the test sample coverage in the first test was much lower than that in the second 190 

(64-fold against 168-fold), their performance was similar, with the overall F1-score at 191 

97.77% and 97.82%, SNP at 98.75% and 98.77%, and indel at 79.92% and 81.37%. The 192 

biased test 1:168x+2:64x|2:64x did not significantly outperform 1:168x|2:64x; the overall 193 

F1-score increased from 97.40% to 97.77% (+0.33%), SNP from 98.53% to 98.75% (+0.22%), 194 

and indel from 77.34% to 79.92% (+2.58%). Even with this biased experiment, we observed 195 

that the performance of using Clair on the current ONT data was capped at about 97.8% F1-196 

score overall, 98.8% on SNPs, and 80% on indels. We consider how the new ONT chemistry 197 

that provides a lower base error rate can raise the upper bound of Clair’s variant calling 198 

performance in the Discussion section below. 199 

 200 

We analyzed and categorized the FP and FN results of Clair on ONT data. We randomly 201 

extracted 100 FPs and 100 FNs from the 1:168x|2:64x experiment. Figure 3 shows a 202 

summary and examples of different categories, and Supplementary Table 2 shows a detailed 203 

analysis of each FP and FN. Within the 100 FPs, the three largest categories are "Incorrect 204 

allele with AF≥0.2" (41/100), "Homopolymer" (25/100), and "Tandem repeat" (11/100). 205 

"Incorrect allele with AF≥0.2" means that at the FP variant, an incorrect allele dominates 206 

other alleles in the read alignments (including the correct one), and the incorrect allele has a 207 

frequency ≥20%. "Homopolymer", "Tandem repeat", and "Low complexity region" mean 208 

that the FP variant is in a repetitive region, which remains difficult for ONT base-calling. It is 209 
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 10 

worth mentioning that these repetitive regions are ≤10bp because we removed all GA4GH 210 

low-complexity regions longer than 10bp from benchmarking. It may not be possible to 211 

perfectly resolve these three categories for FP variants using pileup data for variant calling, 212 

although complete read alignments might help to provide better precision. Three out of 100 213 

FPs had "Incorrect insertion bases", while two out of 100 were categorized as "Overlapping 214 

insertions", which means that the alleles of two consecutive insertions overlapped each 215 

other in an input tensor; thus, the correct allele cannot be resolved for both insertions. 216 

These two categories of errors can be resolved using the '--pysam_for_all_indel' option in 217 

Clair, but this slows down Clair for ONT data by a factor of up to ten times. Other errors, 218 

including "Incorrect indel length" and "Incorrect zygosity", are errors made by Clair's neural 219 

network. In the 100 FNs, the three major categories are "Correct allele with AF<0.25" 220 

(54/100), "Homopolymer" (18/100), and "Tandem repeat" (7/100). "Correct allele with 221 

AF<0.25" means that at the location of the missed (FN) variant, the signal of the correct 222 

allele is rather weak, with allele frequency lower than 25%. One FN categorized as "More 223 

than two possible alternative alleles" is an error due to an alignment error in segmental 224 

duplications, in which more than two alternative alleles seem correct. 225 

 226 

Performance on PacBio CCS 227 

In early 201917, PacBio developed a protocol based on single-molecule, circular consensus 228 

sequencing (CCS) to generate highly accurate (99.8%) long reads averaging as much as 229 

13.5kb. PacBio published CCS datasets for HG001 (in this section also referred to as 1:30x; 1 230 

as the sample suffix and 30x means 30-fold coverage), HG002 (2:33x) and HG005 (5:33x). All 231 

three samples are involved in model training. To demonstrate a possible overfitting 232 
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phenomenon on deep learning based variant callers, both HG002 and HG005 are used in 233 

benchmarking. 234 

 235 

Supplementary Table 3 shows the results of Clair and three other variant callers: 236 

Clairvoyante, Longshot, and DeepVariant. Testing on HG002, DeepVariant performed the 237 

best, with an overall F1-score of 99.96%, SNP of 99.97%, and indel of 99.92%. The primary 238 

result of Clair 1:30x+5:33x|2:33x had an overall F1-score of 99.83%, which was 0.13% lower 239 

than DeepVariant, but outperformed both Clairvoyante and Longshot. On SNP, 240 

1:30x+5:33x|2:33x had an F1-score of 99.88%, which was 0.09% lower than DeepVariant, 241 

0.43% higher than Longshot, and 0.17% higher than Clairvoyante. On indel, 242 

1:30x+5:33x|2:33x had an F1-score at 99.07%, which was 0.85% lower than DeepVariant, 243 

but 19.17% higher than Clairvoyante, showing that the new methods applied to Clair have 244 

effective solved the indel-calling problem in Clairvoyante. In terms of speed, Clair (147 245 

minutes) is slightly faster than Longshot (206 minutes), and about seven times faster than 246 

DeepVariant (1,072 minutes). We also tested HG005. Interestingly, while Clair, Clairvoyante, 247 

and Longshot all performed better on HG005 than HG002, DeepVariant performed worse. 248 

Comparing 1:30x|2:33x to 1:30x|5:33x, Clair's overall F1-score increased from 99.77% to 249 

99.80%. Clairvoyante's overall F1-score increased from 98.61% to 98.70%. Longshot's SNP 250 

F1-score increased from 99.45% to 99.46%. The performance of the three callers verifies the 251 

quality of the HG005 dataset. However, DeepVariant's F1-score dropped from 99.96% to 252 

99.92%, the SNP F1-score decreased from 99.97% to 99.93%, and the indel F1-score 253 

dropped most significantly, from 99.92% to 99.78%. The most probable reason is that, 254 

DeepVariant's current PacBio CCS model was trained completely using HG00220. We suggest 255 

using DeepVariant's result on HG005 as its real performance on PacBio CCS data. The biased 256 
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test 1:30x+2:33x+5:33x|2:33x found the performance cap of Clair at 99.88% on SNP, which 257 

was the same as 1:30x+5:33x|2:33x, and 99.28% on indel, which was 0.21% higher than 258 

1:30x+5:33x|2:33x. While in 1:30x+5:33x|2:33x, the highest coverage used for model 259 

training was only 33x, we expect to fill the performance gap on indel calling by using higher 260 

coverage for model training. The performance gap between Clair and DeepVariant on 261 

HG005 (99.28% against 99.78%, -0.5%) is the result of Clair using pileup data, while 262 

DeepVariant uses complete read alignments that contain information at a per-read level. 263 

This is also a reason DeepVariant runs slower than Clair. We discuss the possibility of 264 

improving Clair to use complete read alignments without slowing down performance in the 265 

Discussion section below. 266 

 267 

Performance on Illumina 268 

Approximately 300x coverage in 148-bp Illumina paired-end read data is available for five 269 

GIAB samples, including HG001, HG002, HG003, HG004 and HG00511. We used HG001, 270 

HG003, HG004, HG005 for model training, and HG002 for benchmarking. To resemble the 271 

typical coverage in whole genome sequencing, we used full coverage of HG001 (306-fold) 272 

and HG005 (352-fold), but down-sampled HG002, HG003 and HG004 to 52-, 57-, and 66-273 

fold. 274 

 275 

Supplementary Table 4 shows the results of Clair and DeepVariant. DeepVariant performed 276 

better, with an overall F1-score of 99.94%. The primary result of Clair 277 

1:306x+3:57x+4:66x+5:352x|2:52x was an overall F1-score of 99.83%, which was 0.11% 278 

lower than DeepVariant’s. For SNPs, the F1-score of Clair was 0.09% lower than that of 279 

DeepVariant (99.85% versus 99.94%). For Indel, the F1-score of Clair was 0.42% lower than 280 
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DeepVariant’s (99.48% versus 99.90%). In terms of speed, Clair was about seven times faster 281 

than DeepVariant (77 versus 537 minutes). The biased test 282 

1:306x+2:52x+3:57x+4:66x+5:352x|2:52x found the performance cap of Clair to be 99.87% 283 

for SNPs, which was 0.02% higher than the primary result, but 0.07% lower than that of 284 

DeepVariant, and 99.57% for indels, which was 0.09% higher than the primary result, but 285 

0.33% lower than that of DeepVariant. Similar to the ONT and PacBio CCS experiments, we 286 

expect to fill in the performance gap through partially making use of complete read 287 

alignments, as discussed in the Discussion section. 288 

Discussion 289 

In this paper we present Clair, a germline small variant caller for single molecule sequencing 290 

data. The name Clair means ‘clear’ in French, echoing its predecessor, named Clairvoyante, 291 

meaning ‘clear seeing’. Clair adds new methods to solve problems that Clairvoyante had 292 

trouble with, including multiallelic variant calling and long indel calling. In our experiments 293 

on ONT data, Clair outperformed all existing tools in terms of precision, recall and speed. On 294 

PacBio CCS and Illumina data, Clair performed slightly worse than DeepVariant, but ran 295 

about an order of magnitude faster. Looking closer at the FP and FN variants shows that 296 

Clair is approaching the limit on how accurately it can call variants using pileup data. Some 297 

of the erroneous variant calls can be corrected using complete read alignments instead of 298 

pileup data. However, dealing with complete read alignments requires a more powerful 299 

neural network design with much greater computational demands. In the future, we will 300 

explore using an ensemble method to handle the majority of the variants using Clair, while 301 

for the extremely tricky ones we will use a new, more sophisticated method. 302 

 303 
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The quality and sufficiency of training data is key to the performance of Clair, as well as 304 

other deep learning based variant callers, such as DeepVariant. To train a model for 305 

production purposes, we used five samples (HG001 to 5) for Illumina data, but only two 306 

samples (HG001 and HG002) for ONT, due to the limited availability of public high-coverage 307 

whole genome sequencing datasets for the GIAB samples. ONT sequencing of the other 308 

GIAB samples is ongoing, and more data will be available in the near future. With additional 309 

datasets, we expect to see even higher performance in Clair on ONT data. 310 

 311 

On ONT data, although Clair performed the best, its indel calling precision and recall were 312 

only about 80%, even excluding GA4GH low-complexity regions, which leaves substantial 313 

room for improvement. While the precision can be further improved by considering 314 

complete read alignments, the recall is bounded by input and can be improved only with a 315 

lower read-level base-calling error rate. Future improvements in ONT technology offer the 316 

possibility of reducing the error rate to 2-3%, which in turn should improve Clair’s ability to 317 

detect indels in these data. 318 

 319 

The GIAB datasets we used for model training have moderate whole-genome sequencing 320 

coverage. Although we can use samples with very high coverage (over 300-fold, which is 321 

sometimes seen in amplicon sequenced data) with Clair for variant calling, such samples 322 

might show degraded performance because very high coverage variants were not 323 

adequately observed in model training. To solve this problem, we propose two methods. 324 

One method is to do transfer learning using a trained model on additional datasets with 325 

very high coverage. Clair supports transfer learning and can be applied to additional 326 

datasets instantly. Another method is an ensemble method, which generates multiple 327 
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copies of randomly subsampled read alignments at a candidate variant for Clair to call 328 

variant. A majority vote or a decision tree can be used to make the final decision, using the 329 

results of each copy. 330 

 331 

A limitation of Clair is that it cannot be applied to polyploid species, which are inconsistent 332 

with its neural network design. For the same reasons, Clair is not applicable to somatic 333 

variant calling, where a single sample might hold multiple distinct populations of cells. Our 334 

next steps include extending Clair to support polyploid species and somatic variant calling. 335 

Method 336 

 337 

Clair's input/output 338 

Input 339 

For a truth variant for training or a candidate variant for calling, the read alignments that 340 

overlap or are adjacent to the variant are summarized (i.e. pile-up data) into a three-341 

dimensional tensor of shape 33 by 8 by 4, comprising 1056 integer numbers. The three 342 

dimensions correspond to the position, the count of four possible bases from two different 343 

strands, and four different ways of counting. In the first dimension, 33 positions include the 344 

starting position of a variant at the center and 16 flanking bases on both sides. The second 345 

dimension corresponds to the count of 'A+', 'A-', 'C+', 'C-', 'G+', 'G-', 'T+' or 'T-', with the 346 

symbols +/- denoting the count from the forward/reverse strand. The third dimension 347 

replicates the first two dimensions with four different ways of counting to highlight 1) the 348 

allelic count of the reference allele, 2) insertions, 3) deletions and 4) single nucleotide 349 

alternative alleles. "Supplementary Note – Pseudocode for generating the input tensor" 350 
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shows the pseudo code of the exact algorithm of how the input tensor is generated. 351 

Supplementary Figure 1 demonstrates how the tensors are look like for ONT data at a 352 

random ‘non-variant’, a ‘SNP’, an ‘Insertion’, and a ‘Deletion’. 353 

 354 

Output  355 

The output of Clair has four tasks (a.k.a. four output components, in total 90 probabilities), 356 

including 1) the 21-genotype probabilistic model (21 probabilities); 2) zygosity (3 357 

probabilities); 3) the length of the first indel allele (33 probabilities); and 4) the length of the 358 

second indel allele (33 probabilities). One of the breakthroughs in Clair is the invention of 359 

the 21-genotype probabilistic model. It comprises all of the possible genotypes of a diploid 360 

sample at a genome position, including 'AA', 'AC', 'AG', 'AT', 'CC', 'CG', 'CT', 'GG', 'GT', 'TT', 361 

'AI', 'CI', 'GI', 'TI', 'AD', 'CD', 'GD', 'TD', 'II', 'DD', and 'ID', where 'A', 'C', 'G', 'T', 'I' (insertion) 362 

and 'D' (deletion) denote the six possible alleles. The new model covers variants with two 363 

alternative alleles, which could not be called in Clairvoyante. The zygosity task outputs the 364 

probability of the input being 1) a homozygous reference (0/0); 2) heterozygous with 1 or 2 365 

alternative alleles (0/1 or 1/2); or 3) a homozygous variant (1/1). The zygosity task is 366 

partially redundant to the 21-genotype task, but it makes decisions independently, and it 367 

crosschecks the decision made by the 21-genotype task. Tasks three and four have the same 368 

design. They output the length of up to two indel alleles. Each task outputs 33 probabilities, 369 

including the likelihood of 1) more than 15bp deleted (<-15bp); 2) any number between -370 

15bp and 15bp, including 0bp, and; 3) more than 15bp inserted (>15bp). In training, the 371 

indel allele with a smaller number is set as the first indel allele. For example, for a 372 

heterozygous 1bp deletion, the first indel allele is set as -1bp, the second as 0bp (-1bp/0bp). 373 

For a heterozygous 1bp insertion, 0bp/1bp is set. This design makes the non-0bp training 374 
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variants for both tasks balanced. For a heterozygous indel with two alternative alleles, say, 375 

one -2bp and one 5bp, -2bp/5bp are set. For a homozygous indel, two indel alleles are set to 376 

the same value. For indels longer than 15bp, the exact length is determined using an 377 

additional step (Supplementary Note – New methods used in Clair – Dealing with indels 378 

longer than 15bp). The output of the two indel allele tasks are also used for crosschecking 379 

with the 21-genotype task, with 0bp supporting an SNP allele, and non-0bp supporting an 380 

indel allele. More details about how the four tasks crosscheck each other to come up with a 381 

result coherently are in "Method – New methods used in Clair – Determining the most 382 

probable variant type using the four tasks of Clair". 383 

 384 

New methods used in Clair 385 

Clair has been fully revamped while a few basic deep-learning techniques in Clairvoyante 386 

have been retained, including 1) model initialization; 2) activation function; 3) optimizer; 4) 387 

dropout; 5) regularization; and 6) combining multiple samples for model training. Below we 388 

discussed the new methods we have applied in Clair. 389 

 390 

Dealing with indels longer than 15bp 391 

For each candidate variant, Clair directly outputs the length of up to two alternative indel 392 

alleles. However, if an insertion goes beyond 15bp, or a deletion goes below -15bp, Clair 393 

runs an additional step to decide its exact length and allele. In the additional step, Clair 394 

gathers all possible insertion/deletion alleles longer than 15bp at a genome position 395 

through pysam (a wrapper around htslib and the samtools21 package). Depending on the 396 

genotype concluded by Clair, we choose 1) the insertion/deletion with the highest allelic 397 

count for 'AI', 'CI', 'GI', 'TI', 'AD', 'CD', 'GD' and 'TD'; 2) the insertions with the highest and/or 398 
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the second-highest allelic count for 'II'; 3) the deletions with highest and/or the second-399 

highest allelic count for 'DD', or; 4) both the insertion and deletion with the highest allelic 400 

count for 'ID'. The additional step is slow, but it is required only for indels longer than 15bp. 401 

We investigated HG001 and found 570,367 indels in its truth variant set; only 10,672 402 

(1.87%) were >15bp. In our experiments, we found the slowdown was acceptable. Users can 403 

set an option in Clair to enable this additional step for all indels, but our experiments found 404 

that while the improvement in precision is small, it slows down Clair by about two times 405 

with Illumina and PacBio CCS data, and by more than 10 times on ONT data. 406 

 407 

Determining the most probable variant type using the four Clair tasks 408 

Clair outputs data on four tasks. With an independent penultimate layer (Figure 1, FC5 409 

layer) immediately before each task, the output of each task is considered independent. We 410 

made two observations from our experiments: 1) for true positive variants, a random task 411 

or two will make a mistake occasionally, but usually, the best and the second-best 412 

probabilities are near and can be disambiguated if considered with other tasks; 2) for false 413 

positive variants, the tasks do not usually agree well with each other, leading to two or 414 

more possible decisions with similar probabilities. Thus, in Clair, we implemented a method 415 

as a submodule for making a decision using the output of all four tasks. Variants are divided 416 

into 10 categories: 1) a homozygous reference allele; 2) a homozygous 1 SNP allele; 3) a 417 

heterozygous 1 SNP allele, or heterozygous 2 SNP alleles; 4) a homozygous 1 insertion allele; 418 

5) a heterozygous 1 insertion allele, or heterozygous 1 SNP and 1 insertion alleles; 6) 419 

heterozygous 2 insertion alleles; 7) a homozygous 1 deletion allele; 8) a heterozygous 1 420 

deletion allele, or heterozygous 1 SNP and 1 deletion alleles; 9) heterozygous 2 deletion 421 

alleles; and 10) a heterozygous 1 insertion and 1 deletion alleles. The likelihood value of the 422 
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10 categories is calculated for each candidate variant, and the category with the largest 423 

likelihood value is chosen (Pseudocode in "Supplementary Note – Pseudo code for 424 

determining the most probable variant type"). The variant quality is calculated as the square 425 

of the Phred score of the distance between the largest and the second-largest likelihood 426 

values. 427 

 428 

Cyclical learning rate 429 

The "initial learning rate" and "how the learning rate decays" are two critical 430 

hyperparameters in training a deep neural network model. A model might be stuck at a local 431 

optimum (i.e. unable to achieve the best precision and recall) if the initial learning rate is 432 

too large, or the decay is too fast. But a large initial learning rate, and a slow decay rate 433 

make the training process either unstable or take too long to finish. So in common practice, 434 

a tediously long grid search that is very costly is needed to find the best hyperparameters. 435 

Furthermore, through a grid search, we found that different sequencing technologies differ 436 

in their best hyperparameters. This problem makes model training too complicated and 437 

largely impedes Clair from being applied to new datasets and sequencing technologies. To 438 

solve the problem, we implemented Cyclical Learning Rate (CLR)22 in Clair. CLR is a new deep 439 

learning technique that eliminates the need to find the best values of the two 440 

hyperparameters. CLR gives a way to schedule the learning rate in an efficient way during 441 

training, by cyclically varying between a lower and higher threshold. Following the CLR 442 

paper, we determined the higher threshold to be 0.03 and the lower threshold to be 0.0001. 443 

The two thresholds worked well on the training variants of all three sequencing 444 

technologies (Illumina, PacBio CCS and ONT). In terms of which CLR scheduler to use, we 445 

chose the triangular schedule with exponential decay. In our experiments, on PacBio CCS 446 
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and Illumina datasets, CLR decreased model training time by about 1–3 times, while often 447 

outperforming the three-step decay method introduced in Clairvoyante for both precision 448 

and recall. However, on ONT datasets, CLR has a lower, but almost negligible, performance 449 

than the three-step decay. We provide both CLR and three-step decay options in Clair. To 450 

train a model for production, we suggest users try both options and choose the best 451 

through benchmarking. In our results, we used CLR for PacBio CCS and Illumina datasets, 452 

and the three-step decay method for ONT datasets. 453 

 454 

Focal loss 455 

Our training data uses the truth variants from the GIAB consortium and is unbalanced in 456 

terms of variant type. For example, the number of heterozygous variants is nearly twice that 457 

of the homozygous variants. SNPs are about five times more numerous than indels. Worst 458 

of all, only ~1.1% (39,898 of 3,619,471 in HG001) of variants have two or more alternative 459 

alleles. And among them, only 884 (~0.024%) are multiallelic SNPs. This problem leads to 460 

degenerate models, as the numerous easy variants contribute no useful learning signals and 461 

overwhelm training. In our practice, if we leave the problem unaddressed, we observe a 462 

significant drop in recall for the underrepresented variant types. For multiallelic SNPs, the 463 

recall dropped to zero. To solve this problem, we used the "Focal loss" technique23, which 464 

applies a modulating term to the cross-entropy loss in Clair's output to focus training on 465 

underrepresented hard variants and down-weight the numerous easy variants. Focal loss 466 

calculates the loss as (1 − 𝑝%)' × 𝛼% × −log	(𝑝%), where 𝑝% = 𝑝, 𝛼% = 𝛼, if the prediction 467 

matches the truth, or 𝑝% = (1 − 𝑝), 𝛼% = (1 − 𝛼) otherwise. In addition to the traditional 468 

cross entropy loss, focal loss uses two more parameters: 𝛾 (the focusing parameter) to 469 

differentiate easy/hard training examples, and 𝛼 (the balancing parameter) to balance the 470 
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importance of positive/negative training examples. We determined 𝛾 = 2 and 𝛼 = 0.25 471 

work best for the GIAB truth variants with a 1:2 ratio of truth variant and non-variant. The 472 

use of focal loss significantly increases the performance of underrepresented variant types. 473 

It also allows us to be more lenient on variant type balance when augmenting the training 474 

data. 475 

 476 

Training data augmentation using subsampled coverage 477 

Lower coverage usually leads to lower precision and recall in variant calling. To train Clair to 478 

achieve better performance on variants with lower coverages, we subsampled each dataset 479 

into four or nine additional datasets with lower coverages. The subsampling factors f are 480 

determined as (√4 ÷ 𝑐8 )9, where c is full coverage of each sample, 4 is the minimal 481 

coverage, ℎ is either 4 or 9, and 𝑛 is from 1 to h. Using HG002 as an example, its full 482 

coverage is 63.68-fold, and the nine subsampled coverages are 46.82-, 34.43-, 25.31-, 483 

18.61-, 13.69-, 10.06-, 7.40-, 5.44- and 4.00-fold. If variant samples were lower than 4x after 484 

subsampling, we removed them from training. We used the command "samtools view -s f" 485 

to generate a subsampled BAM. A different seed counting from zero for random number 486 

generation was set for each coverage. The use of subsampled coverages improved the recall 487 

on indel significantly. 488 

 489 

Methods tested but showed no improvement to accuracy 490 

In this section we discuss methods we tested that had no effect on Clair’s performance. For 491 

researchers working on further improving the performance of Clair, these methods could be 492 

avoided or revised. 493 

 494 
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Extend input tensor from 33bp to 49bp and 65bp 495 

Intuitively, a larger input tensor with more flanking bases provides additional information 496 

on the surrounding read alignments, which might lead to better precision and recall. Our 497 

experiments show that extending the input tensor from 33bp (16bp flanking bases) to 49bp 498 

(24bp flanking bases) and 65bp (32bp flanking bases) slows down Clair by 5.4% and 12.6%, 499 

respectively. But the improvement was negligible in terms of precision or recall with both 500 

SNP and indel. 501 

 502 

Using non-variants adjacent to true variants as negative samples for model training 503 

Clair, by default, uses a ratio of 1:2 on true variants and non-variants for model training, and 504 

the non-variants are randomly selected from the genome, except for the positions with a 505 

true variant or insufficient coverage. We experimented using non-variants adjacent to true 506 

variants (we tried ±2bp, ±8bp and ±16bp) as negative samples for model training and 507 

adjusted the ratio to 1:1:1 on true variants adjacent non-variants and random non-variants. 508 

We used adjacent non-variants for training because their input is true variant alike, but a 509 

few bases shifted. The hypothesis was that using them as adversarial training samples 510 

against the true variants might improve Clair’s performance at high density variants and 511 

alignment errors. However, our experiments show that the method decreased recall slightly 512 

on both SNP and indel. 513 

 514 

Incorporating less confident GIAB variants for model training 515 

The GIAB HG001 truth variant dataset includes 3,619,471 truth variants passing all criteria 516 

(with the ‘PASS’ tag), and 2,264,796 variants failing one or more criteria. The criteria details 517 

were explained by Zook et al. in 201913. Among the failed variants, 310,113 had the 518 
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‘allfilteredbutagree’ tag, which means at the same position, the variants called in all the 519 

supporting datasets agreed with each other, even though none of them were in the callable 520 

regions, in which a range of coverage and minimum alignment quality are met. These 521 

variants are considered less confident than those passing all criteria, but might still 522 

contribute to training a better model because while a deep neural network can tolerate 523 

moderate errors in training data, if any new patterns are provided in additional data, it will 524 

be learned by the model and, in turn, improve the performance. We experimented adding 525 

the variants with the ‘allfilteredbutagree’ tag to training. However, our results show that the 526 

recall went down significantly on SNP, and the precision went down significantly on indel. 527 

 528 

Discarding homopolymer variants in model training  529 

Variant calling in homopolymer sequences is usually more challenging, and the problem is 530 

even worse in SMS technologies since the length of homopolymers is usually 531 

underestimated. At longer homopolymers, the signals are usually too discordant, so it is 532 

common for humans to make mistakes with them. From the feature engineering point of 533 

view, variants in homopolymer sequences are confusing and less informative, and might 534 

lead to a degenerate model. We tested model training without variants at homopolymer 535 

sequences longer than 5bp. Our results show that both precision and recall degrade 536 

significantly if homopolymer variants are not used in model training.  537 

 538 

Benchmarking 539 

The GIAB truth variant datasets 540 

We used the GIAB version 3.3.2 datasets as our truth variants. Depending on the availability 541 

of deep sequencing data, our ONT experiments used samples HG001 or HG001+HG002 for 542 
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model training, our PacBio CCS experiments used HG001 or HG001+HG005, and our Illumina 543 

experiments used HG001 or HG001+HG003+HG004+HG005. For benchmarking, ONT, PacBio 544 

CCS and Illumina experiments have used HG002, HG005, and HG002, respectively. The links 545 

to the truth variants and high-confidence regions are available in “Methods – Data sources – 546 

Truth variants”. Depending on the reference genome used in the already available read 547 

alignments, we used GRCh38 for our ONT and Illumina experiments, and GRCh37 for our 548 

PacBio CCS experiments. The links to the reference genomes we used are available in 549 

“Methods – Data sources – Reference genomes” 550 

 551 

Removing GA4GH low-complexity regions from benchmarking 552 

Krusche et al.6 from the GA4GH benchmarking team and the GIAB consortium published the 553 

low-complexity regions, including homopolymers, STRs, VNTRs, and other repetitive 554 

sequences for stratifying variants in their paper titled "Best practices for benchmarking 555 

germline small-variant calls in human genomes". In the low-complexity regions larger than 556 

10bp, ONT's performance degraded significantly (precision -11.41%, recall -55.33%), while 557 

that of PacBio CCS and Illumina dropped only 0.99–1.67% in precision and recall 558 

(Supplementary Table 5). Thus, when computing variant calling using ONT, we suggest 559 

removing the variants called in the low-complexity regions. In our benchmarks for all 560 

datasets, in addition to using the high-confidence regions of each sample provided by GIAB, 561 

we removed the low-complexity regions. The procedures are available in "Supplementary 562 

Note – Commands – Remove GA4GH low complexity regions from GIAB's high-confidence 563 

regions". There was retention of 92.61–93.47% high-confidence regions in GRCh38, and 564 

94.40–95.05% in GRCh37 of the five samples HG001 to 5 after removing the low-complexity 565 

regions (Supplementary Table 8). 566 
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 567 

Benchmarking methods and metrics 568 

Clair trains a model either for 30 epochs, using the Cyclical Learning Rate (used for PacBio 569 

CCS and Illumina datasets), or by decaying the learning rate three times (by one tenth each 570 

time) until the validation losses converge (used for ONT datasets). While the performance of 571 

last few epochs are generally similar, the best-performing one will be chosen for 572 

benchmarking. We did not run replications of model training because choosing from the 573 

best epoch actually resembles the process of having multiple replications. In ONT and 574 

Illumina experiments, the GRCh38 reference genome was used, while in PacBio CCS 575 

experiments, GRCh37 was used. For each variant calling experiment, we used the 576 

submodule vcfeval in RTG Tools24 version 3.9 to generate three metrics, ‘Precision’, ‘Recall’, 577 

and ‘F1-score’, for five categories of variants: ‘Overall’, ‘SNP’, ‘Indel’, ‘Insertion’, and 578 

‘Deletion’. All time consumptions were gauged on two 12-core Intel Xeon Silver 4116 (in 579 

total 24 cores), with 12 concurrent Clair processes, each with 4 Tensorflow threads. As Clair 580 

has some serial steps that use only one thread, we observed our setting sufficient to 581 

maximize the utilization of all 24 cores. For other variant callers, including DeepVariant, 582 

Longshot and Medaka, options were to set to use all 24 cores for the best speed. 583 

 584 

Computational performance 585 

Clair requires Python3, Pypy3 and Tensorflow. Variant calling using Clair requires only a 586 

CPU. For a typical 30-fold human WGS sample, Clair takes about an hour for Illumina data 587 

and PacBio CCS data, and five hours on ONT data, using two 12-core Intel Xeon Silver 4116 588 

processors. Memory consumption depends on both input data and concurrency. ONT data 589 

has a higher memory footprint than Illumina and PacBio CSS, while Clair is capped at 7GB 590 
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per process (helper scripts at 4.5GB and Tensorflow at 2.5GB). Model training requires a 591 

high-end GPU; we used the Nvidia Titan RTX 24GB in our experiment. Using Clair’s default 592 

parameters, generating 1 million training samples takes about 38 seconds. For example, the 593 

Illumina model with four samples (HG001, 3, 4, 5) and 30 coverages in total (10 for 1 and 5, 594 

5 for 2 and 3) has 284,367,735 training samples and takes about 11,000 seconds per epoch. 595 

In comparison, the Nvidia RTX 2080 Ti 11GB is about 15% slower, and the Nvidia GTX 1080 Ti 596 

11GB is about 35% slower. 597 

 598 

Code availability 599 

Clair is open source, available at https://github.com/HKU-BAL/Clair. 600 

 601 

Data availability 602 

The authors declare that all data supporting the findings of this study are available at the 603 

links in the paper and its supplementary information files. 604 
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Figures 678 

 679 

Figure 1. Clair network architecture and layer details. RNN: Recurrent Neural Network. FC: 680 

Fully Connected layer. Bi-LSTM: Bi-directional Long Short-Term Memory layer. 681 
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 683 

Figure 2. ONT benchmarking results. For Clair, the datasets used for model training and 684 

testing are separated with a vertical bar '|', and are written as ‘a:bx’, where a denotes the 685 

suffix of the GIAB sample ID (e.g., 1 means HG001), and b denotes the coverage of the 686 

dataset. Longshot calls only SNP variants, so it is not shown in the indel results. 687 
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 689 

Figure 3. The category distribution of FPs and FNs made by Clair in the 1:168x|2:64x 690 

experiment on ONT data, and six genome browser screen captures showing examples of 691 

different categories. In the screen captures, bases A, C, G, and T are green, blue, yellow, and 692 

red, respectively. Gaps (i.e., deletions) are dark gray. Insertions are purple dots between 693 

two bases and are wider when the insertion is longer. 694 
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