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Abstract

Single-molecule sequencing technologies have emerged in recent years and revolutionized
structural variant calling, complex genome assembly, and epigenetic mark detection.
However, the lack of a highly accurate small variant caller has limited the new technologies
from being more widely used. In this study, we present Clair, the successor to Clairvoyante,
a program for fast and accurate germline small variant calling, using single molecule
sequencing data. For ONT data, Clair achieves the best precision, recall and speed as
compared to several competing programs, including Clairvoyante, Longshot and Medaka.
Through studying the missed variants and benchmarking intentionally overfitted models, we
found that Clair may be approaching the limit of possible accuracy for germline small variant
calling using pileup data and deep neural networks. Clair requires only a conventional CPU

for variant calling and is an open source project available at https://github.com/HKU-

BAL/Clair.
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Introduction

Fast and accurate variant calling is essential for both research and clinical applications of
human genome sequencing®?. Algorithms, best practices and benchmarking guidelines have
been established for how to use Illumina sequencing to call germline small variants,
including single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels)3®. In
recent years, single-molecule sequencing (SMS) technologies have emerged for a variety of
important applications’. These technologies, which are also known as the third-generation
sequencing technologies, generate sequencing reads two to three orders of magnitude
longer than lllumina reads (10—100kbp versus 100-250bp). The long read length has made
the new SMS technologies, including Pacific Biosciences (PacBio) and Oxford Nanopore
Technology (ONT), unprecedentedly powerful for resolving complex genome assembly
problems and for detecting large structural variants®. However, currently available SMS
technologies also have a significantly higher base error rate of 3-15%°, making the variant
calling methods previously designed for lllumina sequencing inapplicable to SMS
technologies. The lack of accurate tools for efficient variant calling has limited SMS

technologies from being applied to the many problems that require SNPs and small indels.

In our previous work, we developed Clairvoyante®®, a germline small variant caller for single
molecule sequencing data. Clairvoyante does not require sequence assembly and calls
variants directly from read alignments. Clairvoyante adopts a deep convolutional neural
network, so that by using the truth variants called and orthogonally verified in seven human
individuals by the Genome In A Bottle (GIAB) consortium?*'3, Clairvoyante can be trained

for variant calling on any new type of sequencing data without the need to look into its
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error profile and build a hand-crafted model. Clairvoyante takes pileup data as input and
runs quickly. However, Clairvoyante’s design is unable to call multiallelic variants or indels
longer than four bases. These defects remain to be solved. Meanwhile, the limit of using

pileup data and deep neural networks for variant calling remains to be explored.

In this study, we present Clair, a fast and accurate system for germline small variant calling
using single molecule sequencing data. With an entirely different network architecture and
learning tasks (i.e. output components), Clair resolves the multiallelic and long indel variant
calling problems that have prevented Clairvoyante from calling all types of small variants.
We describe in detail the methods we tried that either worked or did not work for
improving Clair’s performance. For ONT datasets'#, our experiments on whole-genome
variant calling in GIAB samples show that Clair outperforms Clairvoyante and other variant
callers, including Longshot® and Medaka®®, in terms of precision, recall and speed. For high
accuracy reads, including both PacBio CCS (Circular Consensus Sequencing)!’ and Illumina
datasets3, DeepVariant!® had modestly improved F1-scores over Clair by .11% to .13%,
although Clair was seven times faster. Looking into the false positive (FP) and false negative
(FN) variants of the three sequencing technologies showed that except for variants with
insufficient coverage by chance, most of the others could be resolved using complete read
alignments instead of pileup data or else could not be resolved at all, even with a manual

inspection.
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Results

Overview of Clair

Clair is a four-task, five-layer recurrent neural network with two bi-directional LSTM layers
followed by three feedforward layers (Figure 1). Clair takes a BAM file as input to find
candidate variants with any minor allele frequencies larger than a threshold (typically
between 0.1 and 0.2), and then computes a pileup of the candidates and converts the
summaries into a tensor. In a tensor, the allelic counts of bases and gaps on both strands of
a candidate variant and its 16 flanking bases are encoded into 1,056 integer values. More
details and pseudo code are available in the Methods section. As discussed in the
Clairvoyante paper, one major unsolved problem was how to support the calling of multi-
allelic variants (i.e., variants with two alternative alleles). In Clair, the problem is solved by
using four new (deep learning) tasks that are entirely different from Clairvoyante. These are:
1) a 21-genotype probabilistic model with 21 probability outputs; 2) the use of three
probabilities for the input, including a homozygous reference (0/0 genotype), a
heterozygous variant (0/1) or a homozygous variant (1/1); 3) the length of the first indel
allele, with 33 probabilities representing a length of ‘<-15bp’, -15bp’, *-14bp’, ..., ‘-1bp’,
‘Obp’, ‘1bp’, ..., “15bp’, >15bp’; and 4) the length of the second indel allele. The 21-genotype
probabilistic model can represent all possible genotypes of a diploid sample at the genome
position. The length of indels longer than 15bp cannot be directly inferred from the third
and fourth tasks, so Clair includes an additional step that re-scans the alignments. More
details on each of these steps can be found in the Methods section. The four tasks make
their own decisions and are designed to cross-validate each other. For example, task two is

a coarse-grained version of task one and can veto the decision made by task one. Tasks
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three and four should indicate Obp indel length if an SNP variant is decided by task one.
More details on how the four tasks make a joint decision are available in the Methods
section. We used the ‘focal loss’ deep-learning technique to solve the problem of
unbalanced variant types in training data. We used the ‘cyclical learning rate’ deep learning
technique to achieve the maximum possible variant calling performance and speed up the
training process to be able to handle larger training datasets. To improve Clair’s
performance at lower sequencing coverages, we augmented the training data with 10
subsampled coverages of each dataset. The parameters of these three new techniques are

in the Methods section.

Clair has 2,377,818 parameters, which is 45.7% more than Clairvoyante (1,631,496
parameters) but only one tenth as many as DeepVariant (23,885,392 parameters). In terms
of variant calling speed, Clair takes about 30 minutes, 1.5 hour, and 5 hours for a 50-fold
coverage WGS sample using lllumina, PacBio CCS and ONT data, respectively, using 24 CPU
cores. In our experiments, Clair was 10-20% slower than Clairvoyante, but significantly

faster than DeepVariant, Longshot and Medaka.

The Methods section includes a description of procedures to augment the training data or
improve Clair’s network architecture that we tested but that did not improve precision and
recall of variant calling. Developers working on further improving Clair’s performance can

save time by avoiding the same methods, or the same settings in a method.
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114  Performance on ONT

115  ONT datasets are currently available for two GIAB samples, HGO01 and HG002. The HG001
116  rel6 dataset generated by the Nanopore WGS Consortium# contains approximately 44.3-
117  fold coverage of human genome (the dataset is also referred to as 1:44x, where '1' means
118  the sample suffix and '44x' means the coverage). The rel6 dataset was base-called with
119  Guppy 2.3.8, using the HAC (High-ACcuracy) model. In addition to the rel6 dataset, we

120 obtained a separate 124.1-fold coverage dataset for HG001 (1:124x) directly from Oxford
121  Nanopore (Philipp Rescheneder, personal communication). That dataset was base-called
122 with Guppy 2.2.3 using the Flip-Flop model. In some experiments, we combined 1:44x and
123 1:124xto form a new dataset 1:168x to maximize the coverage. For HG002, we used a

124  dataset with ~64-fold coverage (2:64x) from the GIAB consortium, which was base-called
125  with Guppy 2.3.5 using the Flip-Flop model. The links to the datasets are available in the
126  Supplementary Notes. The details about "the GIAB truth variant datasets"”, "removing

127  GAA4GH (The Global Alliance for Genomics and Health) low-complexity regions® from

128  benchmarking", and "the benchmarking methods and metrics" are available in "Methods —
129  Benchmarking".

130

131  Figure 2 shows the precision and recall of Clair and other variant callers on SNPs and indels
132  in multiple experiments with ONT data. Supplementary Table 1 contains more details,

133  including precision, recall and F1-score in five categories, including overall, SNP, indel,

134  insertion, and deletion. Our results show that Clair not only outperformed other variant
135 callers, including Clairvoyante, Longshot, and Medaka, but also ran much faster. Using

136  1:168x]2:64x (i.e., test variant calling using HG002 with 64-fold coverage against a model

137  trained using HG0O01 with 168-fold coverage) as Clair’s primary result, Clair achieved 98.36%
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138  precision, 96.46% recall, and 97.40% F1-score overall performance. In terms of SNPs, the
139  three metrics were 99.29%, 97.78% and 98.53%, respectively. For indels, they were

140 somewhat lower at 81.15%, 73.88%, and 77.34%. Clair significantly outperformed its

141  predecessor Clairvoyante on both SNP and indel calling (overall F1-score 97.40% versus

142 93.45%). Clair had a slightly higher F1-score on SNPs than Longshot (98.53% versus 98.41%),
143  but Longshot detects only SNPs, and Clair ran five times faster than Longshot (320 versus
144 1,797 minutes). Clair had a better performance than Medaka (overall F1-score 97.40%

145  versus 94.81%) and ran 30 times faster (320 versus 10,817 minutes). It is worth mentioning
146  that we didn’t benchmark Nanopolish'®, which is also capable of variant calling on ONT data,
147  because it also requires raw signals as input, which are not publicly available for HG002.
148

149  We ran further experiments to answer five additional questions about Clair, as follows.

150

151 Is the Clair model reference-genome specific? In our experiments, performance did not
152  depend on whether we used GRCh37 or GRCh38. The performance of 1:168x|2:64x and

153  1:168x]2:64x(b37) was similar; the latter experiment tested HG002 GRCh37 read alignments
154  ona model trained using HGO01 GRCh38 read alignments. Actually, 1:168x|2:64x(b37)

155  performed slightly better than 1:168x|2:64x, with a 0.18% better F1-score on SNPs, and
156  1.4% onindels.

157

158 Does higher coverage in the test sample helps improve variant calling performance? Yes,
159  but improvement seems to asymptote at ~60-fold coverage. In a comparison of

160  1:168x|2:64x to 1:168x|2:32x, the overall F1-score increased from 94.10% to 97.40%

161  (+3.30%), the SNP from 95.51% to 98.53% (+3.02%), and the indel from 68.87% to 77.34%
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(+8.47%). Further increasing the coverage in the test sample will note significantly increase

the variant calling performance as we discuss below.

Does higher coverage for model training help improve variant calling performance? Yes,
but it depends on the coverage of the test sample. In a comparison of 1:124x]|2:64x to
1:44x|2:64x, the overall F1-score increased from 96.84% to 97.51% (+0.67%), the SNP from
98.01% to 98.54% (+0.53%), and the indel from 75.78% to 78.44% (+2.66%). In a comparison
of 1:168x|2:64x to 1:124x|2:64x, the performance was similar, or even slightly dropped
from 97.51% to 97.40% overall. One possible reason is that the lower coverage test sample
cannot benefit from the much higher coverage used for model training. We propose how to
deal with excessively high coverage in test samples (i.e., coverage exceeding that used in

model training) in the Discussion section below.

Does multiple subsampled coverage for model training improved variant calling
performance? Yes. in a comparison of 1:44x|2:64x to ‘1:44x (single cov.)|2:64x’, the latter
used only the full coverage 44-fold in model training; the overall F1-score increased from
95.47% to 96.84% (+1.37%), the SNP from 96.94% to 98.01% (+1.07%), and the indel from
75.78% to 78.44% (+2.86%). The results show that even without sufficient coverage for
model training, using multiple subsampled coverage still improved the variant calling

performance significantly.

What is the upper bound on performance?
To determine Clair’s performance cap using the current ONT data, we intentionally

overfitted Clair by adding the samples we are going to test to the model training. Even
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186  though Clair is designed with multiple generalization techniques, including ‘dropout’ and ‘L2
187  regularization’, exposing the test samples to model training is a biased evaluation, and if a
188  true variant is not called even after this biased training, this suggests the input signal is

189  simply too weak. The two tests we did were 1:168x+2:64x|2:64x and 1:168x+2:64x|1:168x.
190 Although the test sample coverage in the first test was much lower than that in the second
191 (64-fold against 168-fold), their performance was similar, with the overall F1-score at

192  97.77% and 97.82%, SNP at 98.75% and 98.77%, and indel at 79.92% and 81.37%. The

193  biased test 1:168x+2:64x]|2:64x did not significantly outperform 1:168x|2:64x; the overall
194  Fl-score increased from 97.40% to 97.77% (+0.33%), SNP from 98.53% to 98.75% (+0.22%),
195 andindel from 77.34% to 79.92% (+2.58%). Even with this biased experiment, we observed
196 that the performance of using Clair on the current ONT data was capped at about 97.8% F1-
197  score overall, 98.8% on SNPs, and 80% on indels. We consider how the new ONT chemistry
198 that provides a lower base error rate can raise the upper bound of Clair’s variant calling

199 performance in the Discussion section below.

200

201  We analyzed and categorized the FP and FN results of Clair on ONT data. We randomly

202  extracted 100 FPs and 100 FNs from the 1:168x]|2:64x experiment. Figure 3 shows a

203  summary and examples of different categories, and Supplementary Table 2 shows a detailed
204  analysis of each FP and FN. Within the 100 FPs, the three largest categories are "Incorrect
205 allele with AF>0.2" (41/100), "Homopolymer" (25/100), and "Tandem repeat" (11/100).

206  "Incorrect allele with AF>0.2" means that at the FP variant, an incorrect allele dominates
207  other alleles in the read alignments (including the correct one), and the incorrect allele has a
208  frequency 220%. "Homopolymer", "Tandem repeat", and "Low complexity region" mean

209 that the FP variant is in a repetitive region, which remains difficult for ONT base-calling. It is
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worth mentioning that these repetitive regions are <10bp because we removed all GA4GH
low-complexity regions longer than 10bp from benchmarking. It may not be possible to
perfectly resolve these three categories for FP variants using pileup data for variant calling,
although complete read alignments might help to provide better precision. Three out of 100
FPs had "Incorrect insertion bases", while two out of 100 were categorized as "Overlapping
insertions", which means that the alleles of two consecutive insertions overlapped each
other in an input tensor; thus, the correct allele cannot be resolved for both insertions.
These two categories of errors can be resolved using the '--pysam_for_all_indel' option in
Clair, but this slows down Clair for ONT data by a factor of up to ten times. Other errors,
including "Incorrect indel length" and "Incorrect zygosity", are errors made by Clair's neural
network. In the 100 FNs, the three major categories are "Correct allele with AF<0.25"
(54/100), "Homopolymer" (18/100), and "Tandem repeat" (7/100). "Correct allele with
AF<0.25" means that at the location of the missed (FN) variant, the signal of the correct
allele is rather weak, with allele frequency lower than 25%. One FN categorized as "More
than two possible alternative alleles" is an error due to an alignment error in segmental

duplications, in which more than two alternative alleles seem correct.

Performance on PacBio CCS

In early 2019Y, PacBio developed a protocol based on single-molecule, circular consensus
sequencing (CCS) to generate highly accurate (99.8%) long reads averaging as much as
13.5kb. PacBio published CCS datasets for HG0O1 (in this section also referred to as 1:30x; 1
as the sample suffix and 30x means 30-fold coverage), HG002 (2:33x) and HGOO05 (5:33x). All

three samples are involved in model training. To demonstrate a possible overfitting

10
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phenomenon on deep learning based variant callers, both HG002 and HGOO5 are used in

benchmarking.

Supplementary Table 3 shows the results of Clair and three other variant callers:
Clairvoyante, Longshot, and DeepVariant. Testing on HG002, DeepVariant performed the
best, with an overall F1-score of 99.96%, SNP of 99.97%, and indel of 99.92%. The primary
result of Clair 1:30x+5:33x|2:33x had an overall F1-score of 99.83%, which was 0.13% lower
than DeepVariant, but outperformed both Clairvoyante and Longshot. On SNP,
1:30x+5:33x|2:33x had an F1-score of 99.88%, which was 0.09% lower than DeepVariant,
0.43% higher than Longshot, and 0.17% higher than Clairvoyante. On indel,
1:30x+5:33x|2:33x had an F1-score at 99.07%, which was 0.85% lower than DeepVariant,
but 19.17% higher than Clairvoyante, showing that the new methods applied to Clair have
effective solved the indel-calling problem in Clairvoyante. In terms of speed, Clair (147
minutes) is slightly faster than Longshot (206 minutes), and about seven times faster than
DeepVariant (1,072 minutes). We also tested HG0O05. Interestingly, while Clair, Clairvoyante,
and Longshot all performed better on HG0O05 than HG002, DeepVariant performed worse.
Comparing 1:30x]2:33x to 1:30x| 5:33x, Clair's overall F1-score increased from 99.77% to
99.80%. Clairvoyante's overall F1-score increased from 98.61% to 98.70%. Longshot's SNP
Fl-score increased from 99.45% to 99.46%. The performance of the three callers verifies the
quality of the HGOO5 dataset. However, DeepVariant's F1-score dropped from 99.96% to
99.92%, the SNP F1-score decreased from 99.97% to 99.93%, and the indel F1-score
dropped most significantly, from 99.92% to 99.78%. The most probable reason is that,
DeepVariant's current PacBio CCS model was trained completely using HG0022°, We suggest

using DeepVariant's result on HG0O5 as its real performance on PacBio CCS data. The biased

11


https://doi.org/10.1101/865782
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/865782; this version posted December 16, 2019. The copyright holder for this preprint (which

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

test 1:30x+2:33x+5:33x| 2:33x found the performance cap of Clair at 99.88% on SNP, which
was the same as 1:30x+5:33x|2:33x, and 99.28% on indel, which was 0.21% higher than
1:30x+5:33x]|2:33x. While in 1:30x+5:33x| 2:33x, the highest coverage used for model
training was only 33x, we expect to fill the performance gap on indel calling by using higher
coverage for model training. The performance gap between Clair and DeepVariant on
HGOO05 (99.28% against 99.78%, -0.5%) is the result of Clair using pileup data, while
DeepVariant uses complete read alignments that contain information at a per-read level.
This is also a reason DeepVariant runs slower than Clair. We discuss the possibility of
improving Clair to use complete read alignments without slowing down performance in the

Discussion section below.

Performance on lllumina

Approximately 300x coverage in 148-bp lllumina paired-end read data is available for five
GIAB samples, including HG0O01, HG002, HG003, HG004 and HGOO5. We used HG0O01,
HGO003, HG004, HGOO05 for model training, and HG002 for benchmarking. To resemble the
typical coverage in whole genome sequencing, we used full coverage of HG001 (306-fold)
and HGOO5 (352-fold), but down-sampled HG002, HGO03 and HGO04 to 52-, 57-, and 66-

fold.

Supplementary Table 4 shows the results of Clair and DeepVariant. DeepVariant performed
better, with an overall F1-score of 99.94%. The primary result of Clair
1:306x+3:57x+4:66x+5:352x| 2:52x was an overall F1-score of 99.83%, which was 0.11%
lower than DeepVariant’s. For SNPs, the F1-score of Clair was 0.09% lower than that of

DeepVariant (99.85% versus 99.94%). For Indel, the F1-score of Clair was 0.42% lower than

12
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DeepVariant’s (99.48% versus 99.90%). In terms of speed, Clair was about seven times faster
than DeepVariant (77 versus 537 minutes). The biased test
1:306x+2:52x+3:57x+4:66x+5:352x| 2:52x found the performance cap of Clair to be 99.87%
for SNPs, which was 0.02% higher than the primary result, but 0.07% lower than that of
DeepVariant, and 99.57% for indels, which was 0.09% higher than the primary result, but
0.33% lower than that of DeepVariant. Similar to the ONT and PacBio CCS experiments, we
expect to fill in the performance gap through partially making use of complete read

alignments, as discussed in the Discussion section.

Discussion

In this paper we present Clair, a germline small variant caller for single molecule sequencing
data. The name Clair means ‘clear’ in French, echoing its predecessor, named Clairvoyante,
meaning ‘clear seeing’. Clair adds new methods to solve problems that Clairvoyante had
trouble with, including multiallelic variant calling and long indel calling. In our experiments
on ONT data, Clair outperformed all existing tools in terms of precision, recall and speed. On
PacBio CCS and Illumina data, Clair performed slightly worse than DeepVariant, but ran
about an order of magnitude faster. Looking closer at the FP and FN variants shows that
Clair is approaching the limit on how accurately it can call variants using pileup data. Some
of the erroneous variant calls can be corrected using complete read alignments instead of
pileup data. However, dealing with complete read alignments requires a more powerful
neural network design with much greater computational demands. In the future, we will
explore using an ensemble method to handle the majority of the variants using Clair, while

for the extremely tricky ones we will use a new, more sophisticated method.
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The quality and sufficiency of training data is key to the performance of Clair, as well as
other deep learning based variant callers, such as DeepVariant. To train a model for
production purposes, we used five samples (HG0O01 to 5) for Illumina data, but only two
samples (HG001 and HG002) for ONT, due to the limited availability of public high-coverage
whole genome sequencing datasets for the GIAB samples. ONT sequencing of the other
GIAB samples is ongoing, and more data will be available in the near future. With additional

datasets, we expect to see even higher performance in Clair on ONT data.

On ONT data, although Clair performed the best, its indel calling precision and recall were
only about 80%, even excluding GA4GH low-complexity regions, which leaves substantial
room for improvement. While the precision can be further improved by considering
complete read alignments, the recall is bounded by input and can be improved only with a
lower read-level base-calling error rate. Future improvements in ONT technology offer the
possibility of reducing the error rate to 2-3%, which in turn should improve Clair’s ability to

detect indels in these data.

The GIAB datasets we used for model training have moderate whole-genome sequencing
coverage. Although we can use samples with very high coverage (over 300-fold, which is
sometimes seen in amplicon sequenced data) with Clair for variant calling, such samples
might show degraded performance because very high coverage variants were not
adequately observed in model training. To solve this problem, we propose two methods.
One method is to do transfer learning using a trained model on additional datasets with
very high coverage. Clair supports transfer learning and can be applied to additional

datasets instantly. Another method is an ensemble method, which generates multiple
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copies of randomly subsampled read alignments at a candidate variant for Clair to call
variant. A majority vote or a decision tree can be used to make the final decision, using the

results of each copy.

A limitation of Clair is that it cannot be applied to polyploid species, which are inconsistent
with its neural network design. For the same reasons, Clair is not applicable to somatic
variant calling, where a single sample might hold multiple distinct populations of cells. Our

next steps include extending Clair to support polyploid species and somatic variant calling.

Method

Clair's input/output

Input

For a truth variant for training or a candidate variant for calling, the read alignments that
overlap or are adjacent to the variant are summarized (i.e. pile-up data) into a three-
dimensional tensor of shape 33 by 8 by 4, comprising 1056 integer numbers. The three
dimensions correspond to the position, the count of four possible bases from two different
strands, and four different ways of counting. In the first dimension, 33 positions include the
starting position of a variant at the center and 16 flanking bases on both sides. The second
dimension corresponds to the count of 'A+', 'A-', 'C+', 'C-', 'G+', 'G-', 'T+' or 'T-', with the
symbols +/- denoting the count from the forward/reverse strand. The third dimension
replicates the first two dimensions with four different ways of counting to highlight 1) the
allelic count of the reference allele, 2) insertions, 3) deletions and 4) single nucleotide

alternative alleles. "Supplementary Note — Pseudocode for generating the input tensor"
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shows the pseudo code of the exact algorithm of how the input tensor is generated.
Supplementary Figure 1 demonstrates how the tensors are look like for ONT data at a

random ‘non-variant’, a ‘SNP’, an ‘Insertion’, and a ‘Deletion’.

Output

The output of Clair has four tasks (a.k.a. four output components, in total 90 probabilities),
including 1) the 21-genotype probabilistic model (21 probabilities); 2) zygosity (3
probabilities); 3) the length of the first indel allele (33 probabilities); and 4) the length of the
second indel allele (33 probabilities). One of the breakthroughs in Clair is the invention of
the 21-genotype probabilistic model. It comprises all of the possible genotypes of a diploid
sample at a genome position, including 'AA', 'AC', 'AG', 'AT', 'CC', 'CG', 'CT', 'GG', 'GT', 'TT,
‘Al','cl', 'Gl', 'TI', 'AD', 'CD', 'GD', 'TD', 'lI', 'DD', and 'ID', where 'A’, 'C', 'G", 'T', 'I' (insertion)
and 'D' (deletion) denote the six possible alleles. The new model covers variants with two
alternative alleles, which could not be called in Clairvoyante. The zygosity task outputs the
probability of the input being 1) a homozygous reference (0/0); 2) heterozygous with 1 or 2
alternative alleles (0/1 or 1/2); or 3) a homozygous variant (1/1). The zygosity task is
partially redundant to the 21-genotype task, but it makes decisions independently, and it
crosschecks the decision made by the 21-genotype task. Tasks three and four have the same
design. They output the length of up to two indel alleles. Each task outputs 33 probabilities,
including the likelihood of 1) more than 15bp deleted (<-15bp); 2) any number between -
15bp and 15bp, including Obp, and; 3) more than 15bp inserted (>15bp). In training, the
indel allele with a smaller number is set as the first indel allele. For example, for a
heterozygous 1bp deletion, the first indel allele is set as -1bp, the second as Obp (-1bp/0bp).

For a heterozygous 1bp insertion, Obp/1bp is set. This design makes the non-0bp training
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variants for both tasks balanced. For a heterozygous indel with two alternative alleles, say,
one -2bp and one 5bp, -2bp/5bp are set. For a homozygous indel, two indel alleles are set to
the same value. For indels longer than 15bp, the exact length is determined using an
additional step (Supplementary Note — New methods used in Clair — Dealing with indels
longer than 15bp). The output of the two indel allele tasks are also used for crosschecking
with the 21-genotype task, with Obp supporting an SNP allele, and non-Obp supporting an
indel allele. More details about how the four tasks crosscheck each other to come up with a
result coherently are in "Method — New methods used in Clair — Determining the most

probable variant type using the four tasks of Clair".

New methods used in Clair

Clair has been fully revamped while a few basic deep-learning techniques in Clairvoyante
have been retained, including 1) model initialization; 2) activation function; 3) optimizer; 4)
dropout; 5) regularization; and 6) combining multiple samples for model training. Below we

discussed the new methods we have applied in Clair.

Dealing with indels longer than 15bp

For each candidate variant, Clair directly outputs the length of up to two alternative indel
alleles. However, if an insertion goes beyond 15bp, or a deletion goes below -15bp, Clair
runs an additional step to decide its exact length and allele. In the additional step, Clair
gathers all possible insertion/deletion alleles longer than 15bp at a genome position
through pysam (a wrapper around htslib and the samtools?! package). Depending on the
genotype concluded by Clair, we choose 1) the insertion/deletion with the highest allelic

count for 'Al', 'Cl', 'GI', 'TI', 'AD', 'CD', 'GD' and 'TD'; 2) the insertions with the highest and/or
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the second-highest allelic count for 'll'; 3) the deletions with highest and/or the second-
highest allelic count for 'DD', or; 4) both the insertion and deletion with the highest allelic
count for 'ID". The additional step is slow, but it is required only for indels longer than 15bp.
We investigated HG001 and found 570,367 indels in its truth variant set; only 10,672
(1.87%) were >15bp. In our experiments, we found the slowdown was acceptable. Users can
set an option in Clair to enable this additional step for all indels, but our experiments found
that while the improvement in precision is small, it slows down Clair by about two times

with lllumina and PacBio CCS data, and by more than 10 times on ONT data.

Determining the most probable variant type using the four Clair tasks

Clair outputs data on four tasks. With an independent penultimate layer (Figure 1, FC5
layer) immediately before each task, the output of each task is considered independent. We
made two observations from our experiments: 1) for true positive variants, a random task
or two will make a mistake occasionally, but usually, the best and the second-best
probabilities are near and can be disambiguated if considered with other tasks; 2) for false
positive variants, the tasks do not usually agree well with each other, leading to two or
more possible decisions with similar probabilities. Thus, in Clair, we implemented a method
as a submodule for making a decision using the output of all four tasks. Variants are divided
into 10 categories: 1) a homozygous reference allele; 2) a homozygous 1 SNP allele; 3) a
heterozygous 1 SNP allele, or heterozygous 2 SNP alleles; 4) a homozygous 1 insertion allele;
5) a heterozygous 1 insertion allele, or heterozygous 1 SNP and 1 insertion alleles; 6)
heterozygous 2 insertion alleles; 7) a homozygous 1 deletion allele; 8) a heterozygous 1
deletion allele, or heterozygous 1 SNP and 1 deletion alleles; 9) heterozygous 2 deletion

alleles; and 10) a heterozygous 1 insertion and 1 deletion alleles. The likelihood value of the
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10 categories is calculated for each candidate variant, and the category with the largest
likelihood value is chosen (Pseudocode in "Supplementary Note — Pseudo code for
determining the most probable variant type"). The variant quality is calculated as the square
of the Phred score of the distance between the largest and the second-largest likelihood

values.

Cyclical learning rate

The "initial learning rate" and "how the learning rate decays" are two critical
hyperparameters in training a deep neural network model. A model might be stuck at a local
optimum (i.e. unable to achieve the best precision and recall) if the initial learning rate is
too large, or the decay is too fast. But a large initial learning rate, and a slow decay rate
make the training process either unstable or take too long to finish. So in common practice,
a tediously long grid search that is very costly is needed to find the best hyperparameters.
Furthermore, through a grid search, we found that different sequencing technologies differ
in their best hyperparameters. This problem makes model training too complicated and
largely impedes Clair from being applied to new datasets and sequencing technologies. To
solve the problem, we implemented Cyclical Learning Rate (CLR)?2 in Clair. CLR is a new deep
learning technique that eliminates the need to find the best values of the two
hyperparameters. CLR gives a way to schedule the learning rate in an efficient way during
training, by cyclically varying between a lower and higher threshold. Following the CLR
paper, we determined the higher threshold to be 0.03 and the lower threshold to be 0.0001.
The two thresholds worked well on the training variants of all three sequencing
technologies (lllumina, PacBio CCS and ONT). In terms of which CLR scheduler to use, we

chose the triangular schedule with exponential decay. In our experiments, on PacBio CCS
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and lllumina datasets, CLR decreased model training time by about 1-3 times, while often
outperforming the three-step decay method introduced in Clairvoyante for both precision
and recall. However, on ONT datasets, CLR has a lower, but almost negligible, performance
than the three-step decay. We provide both CLR and three-step decay options in Clair. To
train a model for production, we suggest users try both options and choose the best
through benchmarking. In our results, we used CLR for PacBio CCS and lllumina datasets,

and the three-step decay method for ONT datasets.

Focal loss

Our training data uses the truth variants from the GIAB consortium and is unbalanced in
terms of variant type. For example, the number of heterozygous variants is nearly twice that
of the homozygous variants. SNPs are about five times more numerous than indels. Worst
of all, only ~1.1% (39,898 of 3,619,471 in HG001) of variants have two or more alternative
alleles. And among them, only 884 (~0.024%) are multiallelic SNPs. This problem leads to
degenerate models, as the numerous easy variants contribute no useful learning signals and
overwhelm training. In our practice, if we leave the problem unaddressed, we observe a
significant drop in recall for the underrepresented variant types. For multiallelic SNPs, the
recall dropped to zero. To solve this problem, we used the "Focal loss" technique??, which
applies a modulating term to the cross-entropy loss in Clair's output to focus training on
underrepresented hard variants and down-weight the numerous easy variants. Focal loss
calculates the loss as (1 — p.)Y X a; X —log (p;), where p; = p, a; = «, if the prediction
matches the truth, or p; = (1 — p), a; = (1 — @) otherwise. In addition to the traditional
cross entropy loss, focal loss uses two more parameters: y (the focusing parameter) to

differentiate easy/hard training examples, and a (the balancing parameter) to balance the
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importance of positive/negative training examples. We determined y = 2 and a = 0.25
work best for the GIAB truth variants with a 1:2 ratio of truth variant and non-variant. The
use of focal loss significantly increases the performance of underrepresented variant types.
It also allows us to be more lenient on variant type balance when augmenting the training

data.

Training data augmentation using subsampled coverage
Lower coverage usually leads to lower precision and recall in variant calling. To train Clair to
achieve better performance on variants with lower coverages, we subsampled each dataset

into four or nine additional datasets with lower coverages. The subsampling factors f are

determined as (m)", where c is full coverage of each sample, 4 is the minimal
coverage, h is either 4 or 9, and n is from 1 to h. Using HG002 as an example, its full
coverage is 63.68-fold, and the nine subsampled coverages are 46.82-, 34.43-, 25.31-,
18.61-, 13.69-, 10.06-, 7.40-, 5.44- and 4.00-fold. If variant samples were lower than 4x after
subsampling, we removed them from training. We used the command "samtools view -s f*
to generate a subsampled BAM. A different seed counting from zero for random number
generation was set for each coverage. The use of subsampled coverages improved the recall

on indel significantly.

Methods tested but showed no improvement to accuracy

In this section we discuss methods we tested that had no effect on Clair’s performance. For
researchers working on further improving the performance of Clair, these methods could be

avoided or revised.
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Extend input tensor from 33bp to 49bp and 65bp

Intuitively, a larger input tensor with more flanking bases provides additional information
on the surrounding read alignments, which might lead to better precision and recall. Our
experiments show that extending the input tensor from 33bp (16bp flanking bases) to 49bp
(24bp flanking bases) and 65bp (32bp flanking bases) slows down Clair by 5.4% and 12.6%,
respectively. But the improvement was negligible in terms of precision or recall with both

SNP and indel.

Using non-variants adjacent to true variants as negative samples for model training

Clair, by default, uses a ratio of 1:2 on true variants and non-variants for model training, and
the non-variants are randomly selected from the genome, except for the positions with a
true variant or insufficient coverage. We experimented using non-variants adjacent to true
variants (we tried +2bp, +8bp and +16bp) as negative samples for model training and
adjusted the ratio to 1:1:1 on true variants adjacent non-variants and random non-variants.
We used adjacent non-variants for training because their input is true variant alike, but a
few bases shifted. The hypothesis was that using them as adversarial training samples
against the true variants might improve Clair’s performance at high density variants and
alignment errors. However, our experiments show that the method decreased recall slightly

on both SNP and indel.

Incorporating less confident GIAB variants for model training
The GIAB HGOO1 truth variant dataset includes 3,619,471 truth variants passing all criteria
(with the ‘PASS’ tag), and 2,264,796 variants failing one or more criteria. The criteria details

were explained by Zook et al. in 20193, Among the failed variants, 310,113 had the
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‘allfilteredbutagree’ tag, which means at the same position, the variants called in all the
supporting datasets agreed with each other, even though none of them were in the callable
regions, in which a range of coverage and minimum alignment quality are met. These
variants are considered less confident than those passing all criteria, but might still
contribute to training a better model because while a deep neural network can tolerate
moderate errors in training data, if any new patterns are provided in additional data, it will
be learned by the model and, in turn, improve the performance. We experimented adding
the variants with the ‘allfilteredbutagree’ tag to training. However, our results show that the

recall went down significantly on SNP, and the precision went down significantly on indel.

Discarding homopolymer variants in model training

Variant calling in homopolymer sequences is usually more challenging, and the problem is
even worse in SMS technologies since the length of homopolymers is usually
underestimated. At longer homopolymers, the signals are usually too discordant, so it is
common for humans to make mistakes with them. From the feature engineering point of
view, variants in homopolymer sequences are confusing and less informative, and might
lead to a degenerate model. We tested model training without variants at homopolymer
sequences longer than 5bp. Our results show that both precision and recall degrade

significantly if homopolymer variants are not used in model training.

Benchmarking

The GIAB truth variant datasets
We used the GIAB version 3.3.2 datasets as our truth variants. Depending on the availability

of deep sequencing data, our ONT experiments used samples HG001 or HGO01+HGO002 for
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543  model training, our PacBio CCS experiments used HG001 or HGO01+HGO0O05, and our lllumina
544  experiments used HG001 or HGO01+HG003+HGO004+HGOO05. For benchmarking, ONT, PacBio
545  CCS and lllumina experiments have used HG002, HG005, and HG002, respectively. The links
546  to the truth variants and high-confidence regions are available in “Methods — Data sources —
547  Truth variants”. Depending on the reference genome used in the already available read

548  alignments, we used GRCh38 for our ONT and lllumina experiments, and GRCh37 for our
549  PacBio CCS experiments. The links to the reference genomes we used are available in

550 “Methods — Data sources — Reference genomes”

551

552  Removing GA4GH low-complexity regions from benchmarking

553  Krusche et al.? from the GA4GH benchmarking team and the GIAB consortium published the
554  low-complexity regions, including homopolymers, STRs, VNTRs, and other repetitive

555  sequences for stratifying variants in their paper titled "Best practices for benchmarking

556  germline small-variant calls in human genomes". In the low-complexity regions larger than
557  10bp, ONT's performance degraded significantly (precision -11.41%, recall -55.33%), while
558 that of PacBio CCS and lllumina dropped only 0.99-1.67% in precision and recall

559  (Supplementary Table 5). Thus, when computing variant calling using ONT, we suggest

560 removing the variants called in the low-complexity regions. In our benchmarks for all

561 datasets, in addition to using the high-confidence regions of each sample provided by GIAB,
562  we removed the low-complexity regions. The procedures are available in "Supplementary
563 Note — Commands — Remove GA4GH low complexity regions from GIAB's high-confidence
564  regions". There was retention of 92.61-93.47% high-confidence regions in GRCh38, and
565  94.40-95.05% in GRCh37 of the five samples HGOO01 to 5 after removing the low-complexity

566 regions (Supplementary Table 8).
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Benchmarking methods and metrics

Clair trains a model either for 30 epochs, using the Cyclical Learning Rate (used for PacBio
CCS and lllumina datasets), or by decaying the learning rate three times (by one tenth each
time) until the validation losses converge (used for ONT datasets). While the performance of
last few epochs are generally similar, the best-performing one will be chosen for
benchmarking. We did not run replications of model training because choosing from the
best epoch actually resembles the process of having multiple replications. In ONT and
Illumina experiments, the GRCh38 reference genome was used, while in PacBio CCS
experiments, GRCh37 was used. For each variant calling experiment, we used the
submodule vcfeval in RTG Tools?* version 3.9 to generate three metrics, ‘Precision’, ‘Recall’,
and ‘F1-score’, for five categories of variants: ‘Overall’, ‘SNP’, ‘Indel’, ‘Insertion’, and
‘Deletion’. All time consumptions were gauged on two 12-core Intel Xeon Silver 4116 (in
total 24 cores), with 12 concurrent Clair processes, each with 4 Tensorflow threads. As Clair
has some serial steps that use only one thread, we observed our setting sufficient to
maximize the utilization of all 24 cores. For other variant callers, including DeepVariant,

Longshot and Medaka, options were to set to use all 24 cores for the best speed.

Computational performance

Clair requires Python3, Pypy3 and Tensorflow. Variant calling using Clair requires only a
CPU. For a typical 30-fold human WGS sample, Clair takes about an hour for Illumina data
and PacBio CCS data, and five hours on ONT data, using two 12-core Intel Xeon Silver 4116
processors. Memory consumption depends on both input data and concurrency. ONT data

has a higher memory footprint than [llumina and PacBio CSS, while Clair is capped at 7GB
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per process (helper scripts at 4.5GB and Tensorflow at 2.5GB). Model training requires a
high-end GPU; we used the Nvidia Titan RTX 24GB in our experiment. Using Clair’s default
parameters, generating 1 million training samples takes about 38 seconds. For example, the
[llumina model with four samples (HG001, 3, 4, 5) and 30 coverages in total (10 for 1 and 5,
5 for 2 and 3) has 284,367,735 training samples and takes about 11,000 seconds per epoch.
In comparison, the Nvidia RTX 2080 Ti 11GB is about 15% slower, and the Nvidia GTX 1080 Ti

11GB is about 35% slower.

Code availability

Clair is open source, available at https://github.com/HKU-BAL/Clair.

Data availability

The authors declare that all data supporting the findings of this study are available at the

links in the paper and its supplementary information files.
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680  Figure 1. Clair network architecture and layer details. RNN: Recurrent Neural Network. FC:
681  Fully Connected layer. Bi-LSTM: Bi-directional Long Short-Term Memory layer.
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684  Figure 2. ONT benchmarking results. For Clair, the datasets used for model training and
685  testing are separated with a vertical bar '|', and are written as ‘a:bx’, where a denotes the
686  suffix of the GIAB sample ID (e.g., 1 means HG001), and b denotes the coverage of the
687  dataset. Longshot calls only SNP variants, so it is not shown in the indel results.
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Figure 3. The category distribution of FPs and FNs made by Clair in the 1:168x|2:64x
experiment on ONT data, and six genome browser screen captures showing examples of
different categories. In the screen captures, bases A, C, G, and T are green, blue, yellow, and
red, respectively. Gaps (i.e., deletions) are dark gray. Insertions are purple dots between

two bases and are wider when the insertion is longer.
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