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Abstract

Antimicrobial resistance (AMR) in the nosocomial pathogen, Acinetobacter baumannii, is
becoming a serious public health threat. While some mechanisms of AMR have been reported,
understanding novel mechanisms of resistance is critical for identifying emerging resistance.
One of the first steps in identifying novel AMR mechanisms is performing genotype/phenotype
association studies. However, performing genotype/phenotype association studies is
complicated by the plastic nature of the A. baumannii pan-genome. In this study, we compared
the antibiograms of 12 antimicrobials associated with multiple drug families for 84 A. baumannii
isolates, many isolated in Arizona, USA. in silico screening of these genomes for known AMR
mechanisms failed to identify clear correlations for most drugs. We then performed a genome
wide association study (GWAS) looking for associations between all possible 21-mers; this
approach generally failed to identify mechanisms that explained the resistance phenotype. In
order to decrease the genomic noise associated with population stratification, we compared four
phylogenetically-related pairs of isolates with differing susceptibility profiles. RNA-Sequencing
(RNA-Seq) was performed on paired isolates and differentially expressed genes were identified.
In these isolate pairs, we identified four different potential mechanisms, highlighting the difficulty
of broad AMR surveillance in this species. To verify and validate differential expression,
amplicon sequencing was performed. These results suggest that a diagnostic platform based on
gene expression rather than genomics alone may be beneficial in certain surveillance efforts.
The implementation of such advanced diagnostics coupled with increased AMR surveillance will

potentially improve A. baumannii infection treatment and patient outcomes.
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Introduction:

Antimicrobial resistance (AMR) has the potential to become a global health emergency and
is expected to kill more people than cancer by the year 2050 (1). Multidrug resistance in
Acinetobacter baumannii is now recognized as a major public health concern, resulting in the
World Health Organization (WHO) declaring A. baumannii a priority 1 pathogen (2). A.
baumannii is primarily a nosocomial pathogen (3) that affects immunocompromised patients,
causing a variety of afflictions including pneumonia, septicemia, meningitis, and death (4, 5).
Treatment of A. baumannii infections has become increasingly difficult due to the emergence of
multidrug resistance; pan-resistant A. baumannii strains (6-8), including strains resistant to last-
resort drugs such as colistin (9), have been identified in Asia and Europe.

Known mechanisms that confer AMR in A. baumannii include penicillin binding proteins (10),
enzymes (11), porin defects (12), DNA methylation (13), and efflux pumps (14). Efflux pumps
that confer resistance in Acinetobacter are classified into four families: multidrug and toxic
compound extrusion (MATE), resistance—nodulation—division (RND) family, major facilitator
superfamily (MFS), and small multidrug resistance (SMR) (15). Additionally, mutations in
promoter regions can lead to overexpression of some efflux systems, including AdeFGH (14),
which has been shown to lead to resistance to multiple antimicrobial families.

Resistance mechanisms have also been reported for specific drug families used to treat A.
baumannii infections. Perhaps the most studied family is beta-lactams, including carbapenems
(e.g. meropenem and imipenem), which are used to treat nosocomial infections (16, 17).
Carbapenem resistance has been associated with the action of carbapenem-hydrolyzing class
D beta-lactamases (CHDLS), including blaoxa.23, blaoxa24, and blaoxass (18). The ampC
cephalosporinase is a class C beta-lactamase that is broadly conserved across A. baumannii
(19) and has been associated with resistance to narrow spectrum cephalosporins (20).
Additionally, blapxasiiike genes are highly conserved across the A. baumannii species, as well
as other Acinetobacter spp. (21); these genes confer resistance to carbapenems when in close
proximity to insertion element ISAbal (22).

Aminoglycoside resistance in A. baumannii has been associated with the actions of
aminoglycoside modifying enzymes (AMESs) including aacC1, aphA6, aadAl, and aadB (23), the
16S rRNA methyltransferase armA (24), as well as through efflux action of AdeABC and AbeM,
although the efflux effect was limited (23). Resistance to macrolides in A. baumannii has
primarily been associated with target site alteration in Dfr (25) encoded by folA, the presence

and activity of the tetM gene (26), and through the action of efflux pumps (27). Finally, quinolone
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69 resistance in A. baumannii has been linked to quinolone resistance-determining regions
70 (QRDRs) (28), including mutations in parC, gyrA, and gyrB. Specifically, the gyrA S82L mutation
71 has previously been shown to confer resistance to quinolones (29); two separate mutations,
72 S83L and G80V, have also been demonstrated to confer quinolone resistance in A. baumannii
73 (30).

74 In recent years, multiple databases have been developed and maintained that include
75 genomic regions associated with antimicrobial resistance. These databases include CARD (31),
76  ResFinder (32), ARG-ANNOT (33), ARDB (34), and MEGARes (35). To identify potential
77  resistance mechanisms, genomes are screened against these databases and if genes
78  associated with resistance are identified and conserved, then resistance patterns are inferred
79  (36). However, genomics doesn’t capture expression profiles, including gene expression
80 induction, which prevents accurate genotype to phenotype associations in some organisms
81 (37).

82 Current treatment regimens for A. baumannii infections start with broad spectrum
83  cephalosporins such as ceftazidime or cefepime, or a carbapenem (e.g. imipenem) (38). For
84  drug resistant pathogens, polymyxins such as colistin are used, although emerging resistance
85 has been reported (39) and the treatment can be toxic (40). Other drugs, including tigecycline
86 (41) and minocycline (42) have been used to treat resistant strains, although resistance to these
87 therapies has also been observed, prompting research into combination therapies (43) that
88 overcome these limitations. However, pan-resistance in A. baumannii (44) has the potential to
89 undermine all current treatment regimens and necessitates a better understanding of
90 genotype/phenotype associations for improved surveillance efforts and targeted therapy.

91 Research into genotype/phenotype associations in A. baumannii is complicated by the
92  highly plastic nature of the pan-genome (45). One example of this phenomenon is the biofilm
93 associated protein (Bap) (46, 47), which, based on an in silico screen of more than 117
94  complete A. baumannii genomes, is conserved in only 2 genomes (unpublished). This
95 demonstrates that mechanisms associated with a phenotype may not be broadly distributed
96  across diverse isolates of this species. While true for virulence, similar patterns exist for AMR
97 genes that are variably conserved within a highly plastic species (21).

98 In this study, we analyzed over 100 Acinetobacter isolates, largely isolated in Arizona, USA,
99 in an effort to identify broadly conserved as well as cryptic mechanisms of AMR. Implementing
100 an iterative approach, we searched common AMR gene databases for known mechanisms,
101 performed a genome wide association study (GWAS) to identify potentially new mechanisms,

102 and performed RNA-Sequencing (RNA-Seq) to compare gene expression profiles between
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103 isolates with variable AMR phenotypes. The results provide additional detail to understand AMR
104 mechanisms in A. baumannii and identify targets for advanced diagnostics that will provide
105  appropriate therapies for more effective patient treatment.

106

107 Methods:

108

109 Isolate description and growth: A total of 107, largely geographically confined isolates, were
110 identified for sequencing based on collection from different body sites and clinical matrices. All
111 isolates were classified as A. baumannii based on orthogonal, clinical laboratory techniques. A
112  description of all sequenced isolates is shown in Table S1. Samples were streaked from
113  glycerol stocks onto Mueller Hinton (MH) (Hardy Diagnostics, Santa Maria, CA) agar plates and
114  incubated at 37°C for 24 h. Inoculated plates were checked for appropriate colony growth and
115 morphology the following day prior to DNA extraction.

116

117 Genomic DNA extraction and Sequencing. Genomic DNA was extracted from a single
118 isolated colony for each sample using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA,
119 USA) following the recommended protocol for Gram-negative bacteria. Sample DNA was
120 fragmented using the QSonica 800 ultrasonic liquid processor (QSonica, Newtown, CT, USA).
121  Sonication parameters were optimized to produce fragment sizes of 600 to 700 base pairs
122  (time: 3 minutes, pulse: 15s (Pulse On), 15s (Pulse Off), amplitude: 20%). Libraries were size
123  selected using Agencourt AMPure XP beads (Beckman Coulter, Brea, CA) in order to remove
124  small and large fragments outside of the required size range. Genome libraries were prepared
125 using the KAPA Hyper Library Preparation Kit with Standard PCR Library Amplification (Kapa
126  Biosystems, Wilmington, MA) and sequenced on an lllumina MiSeq using V3 sequencing
127  chemistry (lllumina Inc., San Diego, CA).

128 For Minlon sequencing, DNA was extracted with the GenElute Bacterial Genomic DNA kit
129  (Sigma-Aldrich Inc., St. Louis, MO), taking care to limit DNA shearing. Long read sequencing
130 was performed using Oxford Nanopore technologies on a MK1B MinlON device using a R9.4
131 flow cell. The DNA library was prepared using the SQK-LSK109 Ligation Sequencing kit in
132  conjunction with the PCR-Free Native Barcode Expansion kit following manufacturer’s protocol

133 (downloaded from https://nanoporetech.com/resource-centre/protocols/ on March 20, 2019)

134  without the optional shearing steps to select for long reads.
135
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136 Sequence assembly and MLST typing. Illumina-derived whole genome sequence data was
137 assembled with SPAdes v3.10 (48). Contigs that aligned against known contaminants or
138 contained an anomalously low depth of coverage compared to the average depth of coverage
139 on a per genome basis were manually removed. The MLST profiles were extracted from whole
140 genome sequence (WGS) assemblies using BLAST-based methods (49) using both the Oxford
141 (50) and Pasteur systems (51). Annotation on all genomes was performed with Prokka v1.13
142 (52). Hybrid assemblies were generated with combined lllumina and MinlION data with Unicycler
143  v0.4.8-beta (53). Assemblies were polished with Pilon v1.22 (54).

144

145  Global phylogenetics of Acinetobacter: Acinetobacter genome assemblies were downloaded
146  from GenBank on March 13th, 2018. All genome assemblies were aligned against the A.
147  baumannii genome AB307-2094 (CP001172.1) with NUCmer v3.1 (55) in conjunction with
148 NASP v1.1.2 (56). SNPs that fell within duplicated regions, based on a reference self-alignment
149  with NUCmer, were filtered from downstream analyses. For rapid evaluation, an approximate
150 maximum likelihood phylogeny was inferred on a concatenation of 1,523,968 single nucleotide
151  polymorphisms (SNPs) with FastTree v2.1.8 (57); SNPs were retained if they were conserved in
152  >90% of all genomes.

153

154  Antimicrobial resistance profiling: Antimicrobial resistance phenotypic profiles were identified
155 for cefepime (PM), cefuroxime (XM), gentamicin (GM), ceftazidime (TZ), trimethoprim (TR),
156 azithromycin (AZ), ceftriazone (TX), aztreonam (AT), erythromycin (EM), piperacillin (PP),
157 levofloxacin (LE), and ciprofloxacin (CI). A list of all drugs and resistance breakpoints used are
158 shown in Table 1. Drugs were selected from published resistance patterns in the literature (58-
159 68). Samples were streaked from glycerol stocks onto Mueller Hinton (MH) (Hardy Diagnostics,
160 Santa Maria, CA) agar plates and incubated at 37°C for 24h. A single isolated colony was
161 picked and inoculated into 10mL of MH broth. Liquid cultures were incubated with shaking at
162  37°C overnight. The following morning, 100uL of each overnight culture were transferred into
163  9.9mL of fresh MH broth. Cultures were incubated with shaking at 37°C until optical density
164  (ODeoy) measurements reached 0.5-0.8, indicating log phase growth. 50uL of culture was
165 inoculated onto new 15 x 150mm MH agar plates and spread uniformly across the medium with
166  a sterile cell spreader. Six different antimicrobial E-test strips (bioMérieux, France) were applied
167 to the surface of the agar as directed by the manufacturer. Plates were incubated at 37°C for

168 16-18hrs and minimum inhibitory concentrations (MIC) were determined by visual inspection
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169 following the recommended manufacturer guidelines. For paired isolates, MIC tests were
170 performed on different days.

171

172  A. baumannii phylogeny and isolate pairing. Once the set of A. baumannii were identified, a
173  phylogeny was generated for confirmed genomes (n=84). Raw WGS data were aligned against
174  AB307-0294 with BWA-MEM v0.7.7 (69) and single nucleotide polymorphisms (SNPs) were
175 identified with the UnifiedGenotyper method in GATK v3.3.1 (70, 71). SNPs that fell into
176  duplicate regions of the reference, based on a NUCmer self-alignment, were removed from
177  downstream analyses. All SNP calling methods were wrapped by the NASP pipeline. A
178  maximum likelihood phylogeny was inferred on a concatenation of 182,766 SNPs with IQ-TREE
179 vl1.6.1, using the TVMe+ASC+R5 model. Paired genomes were identified by low phylogenetic
180 distance and variable antibiograms (Table S2).

181

182 Global phylogenetic analysis. All A. baumannii genomes (n=3,218) were downloaded from
183 the Assembly database in GenBank (72) on September 19th, 2018. Genomes were filtered if
184  they: 1) contained greater than 200 ambiguous nucleotides (n=860); 2) contained greater than
185 400 contigs (n=189); 3) had a genome assembly size <3684234 or >4297137 (n=51), or; 4) had
186 an average MASH (73) distance greater than 0.0252 (~97.5% average nucleotide identity)
187 (n=20). Genomes passing through all filters (n=2183) were aligned against A. baumannii
188 AB307-2094 (6) with NASP in conjunction with NUCmer. A maximum likelihood phylogeny was
189 inferred on a concatenation of 101,608 SNPs with IQ-TREE v1.6.1, using the
190 TVM+F+ASC+R10 model, and rooted with an A. nosocomialis genome sequenced in this study
191 (TG22170; RFEG00000000).

192

193 Comparative analysis of paired isolate genomes. To identify coding region differences
194  between paired isolates, the large-scale blast score ratio (LS-BSR) (74) tool was run on paired
195 genomes in conjunction with BLAT (75). The order of genes between isolates was visualized
196  with genoPIotR (76).

197

198 Genome wide association studies (GWAS). To identify genotype/phenotype associations,
199 regions identified by LS-BSR were compared between resistant/susceptible phenotypes from
200 each drug. Regions were first identified that had a blast score ratio (BSR) value (77) of >0.8 in
201 one phenotype and a BSR value of <0.4 in the other phenotype. Correlations between groups

202  was identified with a point biserial correlation method. In addition to differences in coding region
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203  seguences (CDSs), individual SNPs and indels were identified through the analysis of Kmers. In
204  this approach, the reverse complement was taken for all genomes so that both strands were
205 included in the analysis. All 21-mers were then identified with Ray-surveyor (78) and placed into
206 a presence absence matrix; the choice of 21-mers was to ensure a short enough length to
207  hopefully identify single mutations. The frequency of Kmers in each phenotype was then
208  calculated with a custom Python script
209  (https://gist.github.com/jasonsahl/e9516b2d940ad2474ba6e97f5b856440).

210

211  Machine learning approach for AMR mechanism identification. Associations of Kmers of
212 length 21 with each AMR mechanism were identified with Kover v2.0.0 (79) using default
213  parameters. Annotation for Kmers was performed by mapping Kmers against annotated coding
214  regions with BLASTN.

215

216 in silico screen of antimicrobial resistance elements. To find previously characterized
217  antimicrobial resistance mechanisms, we screened paired genomes with LS-BSR in conjunction
218 with Diamond (80) and the Comprehensive Antimicrobial Resistance Database (CARD) (31).
219 We also selected resistance genes from the literature associated with antimicrobials screened in
220  this study (Table S3) using the same methods.

221

222  Antimicrobial exposure and RNA extractions. Samples identified as paired isolates based on
223  phylogenetic relatedness and differing antibiogram profiles were streaked for isolation from
224 glycerol stocks onto MH agar plates and incubated overnight at 37°C. For each sample a single
225  colony was picked and inoculated into 10mL of MH broth and incubated with shaking at 37°C
226  overnight. The following morning 100uL of each culture was inoculated into 9.9mL of fresh
227 media and ODgyonm Was monitored until cultures reached log phase growth ODggonm Of
228  approximately 0.5-0.8. 500uL of each sample, as well as susceptible control strain
229  Staphylococcus aureus subsp. aureus (ATCC 29213), were aliquoted in triplicate into 2mL
230  microcentrifuge tubes. Each sample was treated with sub-MIC concentrations of the designated
231  antimicrobial, at one half of the previously recorded MIC value. Cultures were then incubated for
232  30min with shaking at 37°C. Two volumes of RNAprotect Bacteria Reagent (Qiagen, Valencia,
233 CA, USA) were added to all samples and incubated at room temperature for 5min, followed by
234  centrifugation for 10min at room temperature, at a speed of 5000 x g. The supernatant was
235 decanted and the treated cell pellets were stored at -80°C. Total RNA was extracted using the

236  RNeasy Mini Kit (Qiagen, Valencia, CA, USA) following recommended protocol #4 beginning at
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237  step 7 and continuing to protocol #7. A DNase | treatment was included for step 2 in protocol #7.
238  Extracted RNA was immediately stored at -80°C.

239

240 mRNA isolation. RNA quality and quantity were checked by Agilent 2100 Bioanalyzer with the
241  RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, CA, USA). mRNA was isolated from
242  total RNA using the MICROBEXxpress kit (Thermo Fisher Scientific, Waltham, MA) following the
243  manufacturer’s protocol. Isolated mMRNA was quantified and checked for rRNA depletion on the
244 Dbioanalyzer with an additional RNA Nano chip prior to sequencing.

245

246  RNA-seq preparation, sequencing, assembly. Previously isolated mRNA was prepared for
247  transcriptome sequencing using the TruSeq Stranded mRNA, HT kit (Illumina, San Diego, CA)
248  following the High Sample (HS) protocol. Prepared samples were quantified and checked for
249  quality, then pooled in equimolar concentrations. Library pools were loaded into an Illumina High
250 Output NextSeq 2 x 150bp kit, according to manufacturer recommendations for sequencing on
251 the lllumina NextSeq 550 platform. The transcriptomes were assembled with metaSPAdes (81)
252 using default settings. For targeted amplicon studies, complementary DNA (cDNA) was
253 generated with the SuperScript IV VILO RT-PCR Master Mix with ezDNase enzyme (Invitrogen,
254  Carlsbad, California), following manufacturer’s recommendations.

255

256  Differential expression (DE) analysis. For each isolate pair, coding and intergenic regions
257 identified with LS-BSR and prodigal were combined for complete genomes, then dereplicated
258  with USEARCH v10 at an ID of 0.98. RNA-Seq reads were aligned against these regions with
259 BWA-MEM and read counts were called on the resulting BAM file with Salmon v0.13.1 (82).
260 Differential expression (DE) analysis was performed with DESeq2 (83). The p-values were
261  corrected using the Benjamini-Hochberg (84) correction.

262

263 Amplicon sequencing (AmpSeq). Polymerase chain reaction (PCR) primers were designed
264  for differentially expressed regions identified in the RNA-Seq analysis (Table S4); a
265  constitutively expressed target (locus tag: 1X87_18340), based on analysis of RNA-Seq data,
266  was included for normalization. cDNA was amplified with the following protocol: 1X Promega
267 PCR Master Mix (Promega, Fitchburg, WI), 2.5uL cDNA template, and multiplexed primer
268  concentrations are listed in Table S4. Gene specific PCR parameters were as follows: initial
269 denaturation at 95°C for 2m, 30 cycles of denaturation at 95°C for 30s, annealing at 55°C for

270 30s, and extension at 72°C for 45s, with a final extension at 72°C for 5m. Included on each
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271  primer was a universal tail (85), which facilitated lllumina index ligation. Samples were indexed
272  with the following final concentrations: 1X HiFi HotStart Readymix (Kapa Biosystems Inc.,
273  Wilmington, MA), 0.4uM of each indexing primer, and 2uL of gene specific PCR product. The
274  indexing PCR parameters were as follows: initial denaturation at 98°C for 2m, 6 cycles of
275 denaturation at 98°C for 30s, annealing at 60°C for 20s, and extension at 72°C for 30s, with a
276 final extension at 72°C for 5m. Following each PCR, a 1X Agencourt AMPure bead (Beckman
277  Coulter, Brea, CA) clean-up was performed according to manufacturer’'s instructions. All
278 amplicons were normalized with SequalPrep (Thermo Fisher Scientific, Applied Biosystems),
279  pooled, and sequenced on the lllumina MiSeq platform (lllumina Inc., San Diego, CA).

280

281 AmpSeq analysis. Raw AmpSeq data were aligned against predicted amplicons with Kallisto
282  v0.45.0 (86). Counts were normalized based on the median read counts between all samples.
283  The difference between the raw read counts of the target and the housekeeping gene was
284 identified for each sample. The average delta was then identified for each set of resistant and
285 intermediate genomes and the delta Ct was calculated. The average deltas were compared
286  between resistant and intermediate samples and a p-value was calculated with a two-sided T-
287  test.

288

289 Data availability. All data were deposited to appropriate databases and linked under BioProject
290 PRJNA497581. Links to specific samples are shown in Table S1.

291

292 Results:

293

294  Identification of isolates analyzed in the current study. In this study, we sequenced 107
295 isolates identified by laboratory methods to be A. baumannii. These isolates were
296  retrospectively identified from our collection and sequenced to reflect a range of years and
297 isolation sources (Table S1). Of the 107 genomes sequenced in this study, only 84 were
298 confirmed A. baumannii (Table S1) isolates based on a global WGS phylogenetic analysis
299 (Figure 1). In order to define and add context to the phylogenetic diversity of genomes
300 sequenced in this study, more than 3,000 publicly available A. baumannii genomes were
301 included in the analysis (Figure S1).

302

303 Antimicrobial resistance profiles of isolates analyzed. AMR profiles were identified for 95 of

304 the isolates across 12 drugs, including all A. baumannii (Figure 1, Table S2). Twelve isolates
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305 were excluded due to either difficult to interpret MIC results or inconsistent results across
306 replicates. Some test strips were discontinued during the course of this experiment and were
307 therefore marked as missing in the antibiogram.

308 Antibiograms were obtained for the majority of isolates across all tested drugs (Table S2)
309 using E tests; selected drugs were chosen based on treatment suggestions in previous
310 publications (58-68). The MIC values were mapped against a phylogeny of A. baumannii
311 genomes (Figure 1) inferred from a concatenation of 182,916 SNPs. Resistant, susceptible, or
312 intermediate calls were determined based on identified breakpoints (Table 1). Four of the drugs
313 used in this study do not have an identified breakpoint for Acinetobacter. We applied
314  breakpoints for two of these drugs based on other organisms. For two additional drugs,
315 Dbreakpoints were applied that only includes the highest and lowest values of the E test range.
316  This conservative approach is potentially useful for grouping isolates into categories to identify
317 mechanisms associated with the largest differences in MIC values, but may not be clinically or
318  biologically relevant.

319 From the A. baumannii phylogeny, isolates were identified that were closely related based
320 on phylogenetic distance, but differed in their antibiograms. These isolate pairs (Figure 2, Table
321  2) were the subject of additional investigation in order to identify cryptic resistance mechanisms
322  based on a common genomic background.

323

324 in silico AMR profiling of all sequenced Acinetobacter isolates. All proteins from the CARD
325 database (n=2,420) were aligned against 107 sequenced genomes with LS-BSR in conjunction
326  with Diamond. Proteins that were highly conserved in at least 5 genomes were mapped against
327 the phylogeny and demonstrate variable conservation of AMR-associated proteins (Figure 3,
328 Table S5). Some proteins had a clear phylogenetic distribution, where they were either
329 conserved across almost all Acinetobacter (e.g. OXA-64 (OXA-51 family)), conserved across
330 phylogenetic groups in A. baumannii (e.g. aminoglycoside resistance genes (APH-6):
331 AAC23556.1), or were variably conserved (e.g. aminoglycoside adenyltransferase (ANT(2")-1a):
332 AAC64365.1), suggesting horizontal gene transfer.

333

334 in silico screening of paired isolate genomes. The 84 confirmed A. baumannii genomes
335 were screened for the presence of AMR-associated genes from the CARD database with LS-
336 BSR. For 2 isolate pairs, no obvious differences were observed in resistance genes between
337  variably resistant pairs (Figure S2, Table S5). For TG22182 (R) and TG22627 (l), one CARD

338 gene was differentially conserved (CAE51638) and is associated with an aminoglycoside
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339 phosphotransferase, although no differences were observed in resistance to the tested
340 aminoglycoside, gentamicin. Multiple differences were observed between the distribution of
341 CARD genes between TG22653 (R) and TG60155 (1) (Figure S2), although the antibiograms
342  only differed in the resistance to two antimicrobials and the genomes differed by only 27 core
343 genome SNPs.

344

345  Screen of previously described AMR mechanisms. A list of mechanisms associated with
346 AMR in A. baumannii (Table S3) were screened against genomes sequenced in this study with
347 LS-BSR (Figure S3). Genomes were also screened for mechanisms associated with resistance
348  to the following specific drugs:

349

350 Quinolones. The gyrA S82L mutation has previously been shown to confer resistance to
351 quinolones in Acinetobacter (29). Of the resistant A. baumannii strains (n=73), 72 (~99%)
352  contained the leucine (L) residue at position 82; the one exception was TG22162, which had the
353  serine (S) residue. All susceptible strains had the serine residue at this position, suggesting that
354  this mutation is the primary mechanism conferring quinolone resistance in analyzed strains.

355

356  Trimethoprim. All tested A. baumannii isolates were resistant to trimethoprim. An in silico screen
357 of folA (Figure S3), which has been associated with target site alteration and trimethoprim
358 resistance (25), demonstrated that all genomes contained this gene, although there was some
359 variation in the peptide identities. As susceptible strains were not identified through screening,
360 we cannot test the genotype/phenotype relationship for this compound, although based on
361  published results, folA appears to be the associated mechanism.

362

363 Beta-lactams: The ampC gene in A. baumannii is a class C beta-lactamase (87). A screen of
364 the ampC peptide sequence against A. baumannii isolates sequenced in this study indicates
365 that almost all genomes have a highly conserved ampC gene at the nucleotide level, but have
366 widely different antibiograms (Table S2, Figure S3). This demonstrates that the
367  presence/absence of this gene alone has little predictive value on beta-lactam resistance in A.
368  baumannii.

369 The insertion element ISAbal, in conjunction with blapgxasiike genes, has been shown to
370 confer resistance to carbapenems (22). Genomes in this study showed a correlation (>0.8
371  correlation coefficient) between ISAbal conservation and resistance to 2 beta-lactams (XM, TX).

372 Many of the ISAbal transposases were split across multiple contigs in lllumina assemblies,
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373 likely due to a repeat region that could not be resolved during assembly. Furthermore, copies of
374  this region were likely collapsed during the short read assembly. For example, for the 8 isolates
375 for which draft genomes and complete genomes were generated in this study, only a single
376 copy of ISAbal was observed in the draft genome, while 9-26 copies were observed in
377 complete genomes. Additionally, all of the paired isolates in this study contained ISAbal and a
378  Dblaoxa-si-ike geNe but showed variable antibiograms to at least one beta-lactam, suggesting that
379  the conservation of this region alone did not explain the resistance phenotype.

380 Some genes associated with efflux (adeA, adeB) were missing from several genomes
381  (Figure S3) that showed susceptibility to a number of drug families. Some genomes contained
382  these regions but were also susceptible to beta-lactams, suggesting multiple genotypes result in
383  the same resistance or susceptibility phenotype.

384

385 Macrolides. Although ermB has been associated with macrolide resistance in A. baumannii, the
386 gene was not detected in any genome sequenced in this study, based on a LS-BSR analysis
387 (Figure S3). The mefA gene was also screened, as it has been demonstrated to provide
388 macrolide resistance, but the gene was highly conserved, even in azithromycin susceptible
389 strains (Figure S3). Resistance to macrolides has also been associated with efflux, although
390 differences in efflux cannot be investigated with genomics alone.

391

392  Aminoglycosides. Four genes associated with aminoglycoside resistance were screened
393 against genomes with LS-BSR. None of the 4 regions (aacC1, aphA6, aadAl, aadB) previously
394  associated with aminoglycoside resistance showed any association (correlation coefficient <0.5
395  0) with resistance to gentamicin in genomes screened in this study (Figure S3).

396

397 Machine learning approaches. For most of the tested drugs, the machine learning method
398 Kover identified regions that were associated with resistance across the A. baumannii isolates
399 tested in this study (Table 3), based on all possible 21-mers. In almost all cases, the frequency
400 of these Kmers could not completely distinguish between resistant and susceptible phenotypes,
401  suggesting that the large number of associated Kmers identified by Kover are likely not
402  biologically meaningful.

403

404 Genome wide association study (GWAS). To identify genotype/phenotype associations, we
405 performed a GWAS analysis by splitting up isolates into resistant/susceptible groups for each

406  drug; for this analysis we ignored isolates with an intermediate phenotype in order to isolate the
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407 mechanism. Using CDS conservation, we failed to identify a clear genotype/phenotype
408 relationship across all Acinetobacter across all drugs. This suggests that genomic analyses
409 alone can fail to comprehensively identify AMR mechanisms in Acinetobacter. When the
410 analysis was repeated for only A. baumannii genomes using both coding regions and Kmers,
411  significant associations were identified (Table 4). For ceftriaxone (TX), all susceptible strains
412  (n=3) were missing ISAbal (ABLAC_32600), while 66 of 67 resistant strains contained this
413  region; the small number of genomes analyzed limits the power of this analysis. In spite of this
414  correlation, the lack of broadly conserved genomic regions associated with resistance directed a
415 paired genome analysis into the identification of novel or cryptic genotype/phenotype
416  associations.

417

418 RNA-Seq and differential expression (DE) analysis. For isolate pairs where a clear
419  genotype/phenotype relationship was not identified, RNA was extracted and cDNA was
420 sequenced. Despite implementing methods to enrich mRNA, ~20% rRNA+tRNA presence was
421  observed in all samples (Table S8). For each pair, all coding and intergenic sequences were
422 combined into a single file and de-replicated. Reads were mapped against these regions,
423 normalized, and differential expression was identified using DESeq2. Results were then
424  identified for the following isolate pairs:

425

426  Pair 1. Multiple differentially expressed genes were identified that were upregulated in the
427  resistant strain (TG22182) (Table 5). One of these regions was a PER-1 beta-lactamase gene
428  (blaper.1)(EA714_008075) that is not broadly conserved across ST368 genomes (Figure S3)
429 and appears to be present on a transposon. A screen of this gene against other ST368
430 genomes isolated from diverse geographic locations suggested that there was an acquisition of
431  this region in a single sequence type and a clear phylogenetic effect (Figure S4). Indeed, a
432 genomic island was identified in both the resistant and intermediate genomes between two
433  transposases (Figure 4a) that includes a Glutathione S-transferase gene (EA674_08405) that
434  was also upregulated in the resistant strain (11.2x up-regulation); this region has previously
435 been associated with beta-lactam resistance (88). The operon structure was similar between
436 resistant and intermediate strains, with the exception of an 1S91 transposon that was between
437  an IS26 transposon and blaper.1. The operon structure for the resistant strain that contained an
438 1S91 transposon was determined to be highly similar with an ISCR1 (Insertion sequence
439 Common Region) element. Within the ISCR1 element is an orilS (origin of replication) region

440 that allows for rolling-circle replication and transposition of the ISCR1 element. Within the orilS
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441  are two outward-oriented promoters (Poyr) that have been shown to affect downstream gene
442 expression (89). The resistant strain, TG22182, has both Poyr promoters associated with
443 increased gene expression directly upstream of the blaper.s gene (Figure 4a). The more
444  susceptible strain, TG22627, has neither of the Poyr promoters upstream of its blapgr.1 gene.
445  Additionally, the composition of the blaper1 gene between isolates was different, with a different
446  coding length as well as composition in the first 12 amino acids of the peptide.

447 Additionally, a glutathione S-transferase family gene (EA674_008405) and the carbapenem
448  susceptibility porin carO (EA674_000940) gene were highly expressed in TG22182 (R) in
449  comparison to TG22627 (1). Both of these genes have been shown to confer resistance to beta-
450 lactams and specifically carbapenems (90). Both isolates in Pair 1 also contain an OXA-51 beta-
451  lactamase gene (blaoxas:) (EA674_011070), although the gene is slightly up-regulated (4.5x) in
452  TG22627 (I). TG22627 also showed higher expression of other genes associated with AMR
453  including adel (EA674_003605)(11x), adeB (EA674_009735)(9.5x%), adeA
454  (EA674_009730)(9.6x), and adeJ (EA674_003600)(9.6x); however, the up-regulation of genes
455 in the AdeABC pump have previously been demonstrated to not confer aminoglycoside
456  resistance (23). This suggests that the action of the PER-1 beta-lactamase is more effective
457  than other proteins associated with efflux or other oxacillinases in resistance to ceftriaxone (TX)
458 and ceftazidime (TZ). The PER-1 beta-lactamase protein has also been associated with
459  virulence in A. baumannii (91) and has also been associated with resistance to beta-lactams
460 (92). The detection of the blapxas: and ISAbal regions in these genomes revealed nothing
461  about their susceptibility to TX or TZ.

462

463  Pair 2. Twenty-four differentially-expressed regions were observed between Pair 2 isolates
464  (TG31302, TG31986) at a Wald stat value of 10 (Table S6). None of these regions were
465  associated with known mechanisms of AMR in A. baumannii. The two isolates contained a
466 class-D beta-lactamase gene (blapxas1) and a class-C beta-lactamase gene (ampC). There was
467  no significant difference in gene expression of these regions between isolate pairs.

468 The composition of each beta-lactamase was determined at the nucleotide and peptide
469 level. A protein alignment of ampC between TG31302 (I) and TG31986 (R) revealed a single
470 amino acid difference (R to G) at position 172 (Figure S5) in the PAZ domain. This non-
471  synonymous mutation falls within the second of three characteristic conserved motifs, RxY %N,
472  for all class C serine beta-lactamase sequences (93). Although this mutation has not been

473  previously associated with increased activity or misfolding of the protein, other mutations in
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474  ampC gene have (94), suggesting that this mutation may confer increased hydrolyzing activity
475  against beta-lactams, although additional validation work is required to test this hypothesis.

476 A continuous stretch of 17 genes was upregulated in TG31986 (R) (EA743_011445 -
477 EA743_011530) (Table S7). Nine genes within this region were in the top 30 differentially
478 expressed genes in this analysis, including: recombinase recA (EA743_011455), outer
479 membrane protein assembly factor bamA (EA743_011495), 30S ribosomal protein S12
480 methylthiotransferase rimO (EA743_011530), UMP kinase gene pyrH (EA665_011490), RIP
481  metalloprotease rseP (EA743 _011500), a gene coding for an OmpH family outer membrane
482  protein (EA743_011490), a phosphatidate cytidylyltransferase gene (EA665_011475), a 1-
483  deoxy-D-xylulose-5phosphate reductoisomerase gene (EA665_011470), and a di-trans,poly-cis-
484  decaprenylcistransferase gene (EA665_011480). The outer membrane protein (OMP) H, a
485  homolog of the Skp protein in E. coli (95), has been classified as a chaperone protein involved
486 in the folding of BamA. Previous research has shown a correlation between upregulation of
487  molecular chaperones when exposed to antimicrobials and the bacterium’s improved ability to
488 tolerate antimicrobial stress (96). Researchers have demonstrated that the skp gene in E. coli is
489  an important stress-associated gene (97) that may be associated with AMR (98).

490

491  Pair 3. Of 94 genomic regions that were significantly differentially expressed (Walt stat >10 or <-
492 10) (Table S8) between this isolate pair, one of the significant differences was between an
493  blapxas: family (OXA-65) beta-lactamase gene (EA667 _019445), which showed 1.9x up-
494  regulation in the resistant strain. Interestingly, 79 bases separated the end of insertion element
495 ISAbal and the start codon of blaogxas: in sample TG29392 (R). Previous research has
496 demonstrated that this blapxasiiike g€NE is conserved across A. baumannii lineages, but only
497  genomes containing the ISAbal directly upstream of blapxa.s1 Show resistance to carbapenems.
498  ltis likely that ISAbal is acting as the promoter for blapgxa.s: in TG29392, conferring resistance to
499 carbapenems (22). The intermediate resistance strain, TG31307, has both ISAbal and blapxasi;
500 however, ISAbal is downstream of blapxas: and therefore not functioning as a strong promoter
501 for the beta-lactamase gene (Figure 4b). An analysis of the coding region of the blagxas: gene in
502 both isolates revealed no differences, suggesting that differences in expression are due to
503  expression.

504 Interestingly, several of the CDSs that were differentially expressed in the resistant strain in
505 Pair 2 were up-regulated in the intermediate Pair 3 strain (TG31307). For example, recA was

506 the most differentially expressed gene in Pair 3 genomes, but was up-regulated in TG31307
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507 (Table S8). This suggests that the mechanisms of resistance have complex interactions that
508 need to be investigated through targeted gene deletions.

509

510 Pair 4. Of the numerous differences in gene expression between the resistant (TG22653) and
511 intermediate strain (TG60155), perhaps the most striking is in the expression of carO
512 (EA719_004515), an outer membrane porin (Table S9). Previous analyses have demonstrated
513 that insertion sequences that disrupt carO are associated with decreased activity against beta-
514 lactams (99). The genome assembly of the intermediate strain, TG60155, shows that carO is
515 interrupted by the insertion sequence, ISAbal (EA720_015165) (Figure 4c). An analysis of the
516 transcriptome of TG60155 also failed to identify an intact carO transcript, which was present in
517 TG22653.

518

519 Antimicrobial resistance induction analysis. In an effort to observe induced antimicrobial
520 resistance in the four paired isolates, resistant strains were grown in sub-inhibitory
521  concentrations of select antimicrobials. Differential expression of each sub-inhibitory isolate was
522  compared to the isolate grown under inhibitory concentrations using the Wald statistic produced
523 from DESeq2. Additionally, the resistant isolate TG22653 was grown under two different sub-
524  inhibitory concentrations of antimicrobials (16 and 258); differential expression from these two
525 concentrations was also compared. No significant differential expression was observed in the
526 four analyses based on an FDR-adjusted p-value of 0.05. Likewise, using the Wald statistic from
527 these analyses also demonstrated no significant differential expression between the differing
528 antimicrobial concentrations using the chosen threshold. This suggests that differential
529  expression is due to constitutively expressed mechanisms that are not inducible.

530

531 AmpSeq validation. Amplicon sequencing was performed on cDNA to not only confirm the
532 RNA-Seq results, but also to provide a proof of concept as an advanced AMR diagnostic.
533 Comparative expression was identified through comparison of ratios of the number of read
534 counts of each targeted gene compared to a housekeeping gene (IX87_18340); the
535 housekeeping gene was identified as a gene with consistent, and relatively high, expression in
536 the RNA-Seq data. For pair 1, the blaper; and aphAl genes were significantly upregulated in
537 the resistant strain compared to the intermediate strain (Table 6). For pair 2, the expression of
538 the ampC gene was not significantly different, suggesting that differential expression of this
539 region doesn’t explain the resistance phenotype and is consistent with the RNA-Seq data. For

540 pair 3, the blapxasi gene was confirmed to be significantly up-regulated in the resistant strain
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541  compared to the intermediate strain. For pair 4, the carO gene was significantly up-regulated in
542  the resistant strain, which is consistent with the RNA-Seq results and is likely the primary
543  mechanism of resistance. A gene associated with the production of a spore-coat forming protein
544  (CsuA/B) was highly up-regulated in the resistant strain. While not directly associated with AMR,
545  this validation provides confidence in the RNA-Seq data.

546

547  General transcriptome screen. A LS-BSR analysis of previously described resistance
548 mechanisms (Table S3) between the genome and transcriptome demonstrated that some
549  genomic regions, such as the adeF gene, were highly conserved in the genome, but were
550 largely absent from the transcriptome (Table S10). This finding demonstrates the importance of
551 incorporating gene expression when trying to understand phenotypic differences.

552

553  Discussion:

554

555 Antimicrobial resistance (AMR) is a significant, emerging threat, with A. baumannii being
556 recently classified as a priority 1 pathogen (2). Some mechanisms associated with AMR in A.
557  baumannii are clearly understood, especially with regards to documented beta lactamases (100-
558 103) and efflux pumps (15, 104, 105). However, the highly plastic pan-genome of A. baumannii
559  (45) suggests that the identification of universal AMR mechanisms may be unlikely, even with
560 regard to the presence and activity of specific beta-lactamases. This same trend has been
561 observed in other highly plastic genomes, such as Pseudomonas aeruginosa (106), and
562  complicates surveillance and targeted therapy efforts. As such, A. baumannii is not only an
563  emerging threat, but represents a critical challenge to the development of both novel drugs and
564  molecular diagnostics.

565 In this study, we sequenced 107 genomes reported to be A. baumannii based on testing in
566 the clinical laboratory. Typing based on WGS analyses identified 23 of the genomes were
567 misclassified and belonged to other Acinetobacter species (Table S1). These incorrect clinical
568 laboratory typing results highlight the need for improved clinical diagnostics of A. baumannii. An
569 additional 35 genomes in the GenBank assembly database were incorrectly annotated as A.
570 baumannii and belonged to other species (not shown), which further demonstrates the difficulty
571 in typing as well as and the impact of mis-annotated genomes on population structure analysis
572 in Acinetobacter. Typing strains using WGS should be a first step in any large comparative

573  genomics study to limit the analysis to a targeted group, clade, or species.
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574 We generated antibiograms for 12 drugs, representing multiple drug families, across the 84
575 isolates confirmed to belong to A. baumannii by WGS analysis. Some of the drugs screened in
576 this study aren’t typically used in current treatment regimens for A. baumannii infections.
577  However, with growing resistance emerging to next generation drugs, clinicians are exploring
578  older drugs (e.g. chloramphenicol) to treat emerging threats (42, 107). In this study, we sought
579 to identify genomic differences that could explain the variable resistance phenotypes using
580 established antimicrobial resistance gene databases as a method to predict AMR from
581 genomics data (31, 32, 35, 60). A screen of regions from the Comprehensive Antimicrobial
582 Resistance Database (CARD) against genomes sequenced in this study failed to identify
583 characterized resistance mechanisms that largely explain the resistance phenotype. These
584  results demonstrate the limitations to this approach in highly plastic species, such as A.
585 baumannii, and suggest that alternative approaches including RNA-seq data may be required
586 for a comprehensive understanding of AMR mechanisms in A. baumannii.

587 We then employed reference independent, genome wide association study (GWAS)
588 methods to identify genomic differences between susceptible/intermediate/resistant phenotypes.
589 These types of associations have been used in other pathogens to identify genotype/phenotype
590 associations (108). In general, we failed to identify a clear association between the genotype
591 (21bp Kmers, coding regions, SNPs) and the resistance phenotype when comparing either all
592  Acinetobacter genomes or just A. baumannii genomes (Table 4). This result suggests that
593 diverse and independent mechanisms may be responsible for the AMR phenotype for some
594  drugs instead of single, highly conserved mechanisms.

595 Recent research has demonstrated difficulty identifying complex mechanisms, or under-or-
596 over-represented phenotypes, using a GWAS approach (109). As a way to focus on sparsely
597  distributed AMR mechanisms, a paired isolate approach was utilized in order to reduce noise in
598 the genomic background. In this analysis, four isolate pairs were individually compared across
599 four antimicrobials (Table 2). RNA-Sequencing (RNA-Seq) of these four paired
600 resistant/intermediate isolates that shared a common genetic background was employed. Using
601 this approach, several potential mechanisms were identified, some of which have been
602 identified previously in A. baumannii, but are difficult to identify with standard comparative
603 genomics approaches, requiring RNASeq for comprehensive surveillance. While we identified
604 known resistance mechanisms in the resistant strains, some of those regions were also
605 identified in intermediate strains; previous studies of A. baumannii transcriptomes have also
606 observed up-regulation of resistance and efflux genes in susceptible strains (5). RNASeq data

607 allowed for the identification of antimicrobial resistance mechanisms that while present in both
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608 the resistant and susceptible genomes, were differentially expressed due to an upstream
609 insertion element. These results also highlight the possibility that expression of a single AMR
610 gene does not always confer resistance and it is likely that combinations of genes are
611 responsible for observed resistance. Differential expression differences were confirmed using a
612 cDNA-AmpSeq approach and largely confirmed the differential expression of targeted regions.
613  Previous research has demonstrated a bias of differentially expressed regions when applying a
614  multiplexed PCR approach (110). We addressed this issue by optimizing primer concentrations
615 using genomic DNA and including a single copy number gene for normalization.

616 The results of this study demonstrate that, due to the plastic nature of A. baumannii’s pan-
617 genome, comprehensive AMR surveillance cannot solely be achieved through genomics
618 methods alone, especially with current AMR databases and commonly used analytical methods.
619 This study demonstrates that AMR genes are not conserved across A. baumannii lineages with
620 similar AMR profiles and that solely relying on genomics methods for AMR surveillance and
621 discovery, such as gene presence/absence, will fail to detect novel or recently acquired AMR
622 mechanisms. For instance, identifying only the position of insertion sequence (IS) elements
623 throughout a genome using genomic tools provides little resolution to inform of possible AMR
624  genes upregulated by the presence of upstream IS elements. Furthermore, identification of
625 these elements would provide little resolution of antimicrobial resistance profiles in a clinical
626  setting. However, by utilizing transcriptome data, we were able to identify AMR genes
627 upregulated by these elements as well as nhovel AMR mechanisms, and design rapid cDNA
628 amplicon sequencing targets for these mechanisms to improve surveillance and diagnostic
629 efforts.

630

631 Funding. Funding for this project was provided by an R21 grant awarded to JWS
632 (1R21AI121738-01). DME is supported in part by CDC contract 200-2016-92313.

633

634  Figure Legends

635 Figure 1: A maximum-likelihood phylogeny of genomes sequenced in this study based on a
636  concatenation of 50,869 core genome SNPs. Each genome is annotated with its antimicrobial
637  susceptibility profile across 12 drugs. The annotations were visualized with the Interactive tree
638  of life (111).

639 Figure 2: A maximum-likelihood phylogeny of A. baumannii genomes sequenced in this study,
640 based on a concatenation of 182,766 core genome SNPs. The resistance profiles are shown

641  across paired genomes.
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642 Figure 3. Screen of selected CARD proteins across all Acinetobacter baumannii genomes
643  sequenced in this study. The phylogeny is the same as is shown in Figure 1. The heatmap is
644  associated with the blast score ratio (BSR) (77) values of each region across each genome. The
645 BSR values were visualized with the Interactive tree of life (111).

646  Figure 4: Gene content comparisons between paired isolates in pair 1 (A), pair 3 (B), and pair 4
647  (C). All figures were generated with genoPIotR (76).

648  Figure S1: A maximume-likelihood phylogeny of global A. baumannii genomes inferred from an
649 alignment of 11,687 concatenated SNPs. Red dashes point to genomes sequenced in this
650  study.

651 Figure S2: A maximum-likelihood phylogeny of paired isolates. The conservation of selected
652 proteins from the CARD database, based on blast score ratio (BSR) values, is shown as a
653 heatmap. The BSR values were visualized with the Interactive tree of life (111).

654  Figure S3: A maximum likelihood phylogeny of A. baumannii genomes. The blast score ratio
655 (BSR) of genes associated with AMR (Table S3) were visualized as a heatmap with the
656 Interactive tree of life (111).

657 Figure S4: A maximum likelihood phylogeny of select A. baumannii genomes. The distribution
658 of the blaper.; beta-lactamase gene in ST368 genomes, based on blast score ratio (BSR)
659 values, was visualized as a heatmap with the Interactive tree of life (111).

660 Figure S5: A peptide alignment of ampC from pair 3 genomes. The variable residue is outlined
661  with a black box. The alignment was visualized with JalView (112).

662
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Table 1: A list of antimicrobials screened in the current study
Susceptible  Resistant

Antimicrobial ~ Abbreviation Family Publication breakpoint breakpoint Reference
cefepime PM B-lactam Endimiani et al. 2008 >=32 <=8 CLSI
cefuroxime XM B-lactam Ahmed etal. 2012 >=128 <=32 N/A
gentamicin GM aminoglycoside Hamidian et al. 2012 >=16 <=4 CLSI
ceftazidime TZ B-lactam Lee etal. 2006 >=16 <=4 CLSI
trimethoprim TR pyrimidine inhibitor McCracken et al. 2009 >=32 <=4 EUCAST"
azithromycin AZ macrolide Fernandez Cuenca et al. 2003 >=256 <=8 N/A
ceftriaxone ™ B-lactam Bush etal. 1995 >=64 <=8 CLSI
aztreonam AT B-lactam Xia etal. 2014 >=32 <=8 CLSI
erythromycin EM macrolide Damier-Piolle et al. 2008 >=8 <=0.5 cLSP
piperacillin PP B-lactam Shi etal. 1996 >=128 <=16 CLSI
levofloxacin LE fluroquinolone Lee etal. 2006 >1 <=0.5 EUCAST
ciprofloxacin Cl fluroquinolone Chiu etal. 2010 >=4 <=1 CLSI

'Enterobacteriaceae
%Enterococcus

995
996

997
998
999
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Table 2: Paired isolate antimicrobial susceptibility

Intermediate | Resistant Pair
isolate Isolate Drug | number | PubMLST/Pasteur | Resistant MIC | Other MIC
TG22627 TG22182 TX,TZ 1 ST368/ST2 >256, >256 48,8
TG31302 TG31986 PM 2 ST1961/ST78 >256 12
TG31307 | TG29392 | XM,TX 3 ST1961/ST78 >256, >256 64, 32
TG60155 | TG22653 PM 4 ST208/ST2 >256 16
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1013
1014
1015
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Table 3: Kover results for AMR across A. baumannii
#Resistant| #Susceptible Equivalent
Drug isolates isolates Importance| rules #loci
AT 57 7 1 105 9
TZ 68 9 1 10000 1922
PM 61 13 1 665 37
LE 71 12 1 55 8
GM 57 16 0.87 1 1
AZ 50 6 1 893 81
XM 67 11 0.86 2193 225
TR 84 0 N/A N/A N/A
TX 67 3 N/A N/A N/A
EM 81 0 N/A N/A N/A
PP 69 5 1 10000 2309
Cl 73 11 1 143 23
1027
1028
1029
1030
1031
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Table 4: Associated genotype/phentotype genomic regions
#Resistant #Susceptible #unique 21-mers #unique 21-mers  #unique #unique
Drug (R) (S) (R) (S) genes (R) genes (S)
AT 57 7 0 0 0 0
AZ 50 6 0 0 0 0
CL 73 11 0 0 0 0
EM 81 0 N/A N/A N/A N/A
GM 57 16 0 0 0 0
LE 71 12 0 0 0 0
PM 61 13 0 0 0 0
PP 70 5 0 3 0 0
X 67 3 3* 47 1* 0
TZ 68 9 0 0 0 0
XM 67 11 0 0 0 0
*Presentin n-1 genomes
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Table 5: Differentially-expressed regions based on RNA-Seq

Genome BSR |[Genome BSR | Avg Counts [ Avg Counts
Pair Locus Product (resistant) | (susceptible) [ (Resistant) [(Susceptible)| Wald stat
1 | EA674_08405 glutathione S-transferase 1.00 1.00 3331 349 42.62
1 | EA674_03600 [ mulidrug efflux permease AdeJ 1.00 1.00 1800 17112 41.74
1 | EA674_03605 [ mulidrug efflux adaptor Adel 1.00 1.00 651 7275 39.04
1 | EA674_08405 glutathione S-transferase 1.00 1.00 3834 349 42.62
1 |EA714 008075 Per-1 beta lactamase 1.00 0.96 6490 7 30.39
1 | EA674_03595 | multidrug efflux channel AdeK 1.00 1.00 883 5474 30.17
1 | EA674_11070 | OXA-51 family beta lactamase 1.00 1.00 2268 9618 23.07
1 | EA674_00940 | outer membrane protein carO 1.00 1.00 2742 1332 13.49
2 |EA665_008865| OXA-51 family beta lactamase 1.00 1.00 3386 3542 1.58
2 | EA743_11455 recombinase RecA 1.00 1.00 944 241 19.48
2 | EA743_11495 BamA 1.00 1.00 5350 3679 10.96
2 | EA743_11530 methylthiotransferase rimO 1.00 1.00 2996 2037 10.63
2 | EA743_11500 RIP metalloprotease rseP 1.00 1.00 1935 1305 9.81
2 | EA743_11490 | outer membrane protein OmpH 1.00 1.00 1691 1161 9.71
3 |EA667_019445| OXA-51 family beta lactamase 1.00 1.00 9710 5192 11.24
4 |EA719_004515| outer membrane protein carO 1.00 0.62 4926 100 45.44
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Table 6: AmpSeq results

Read Read Control | Control AVG AVG.

Pair Locus counts (R) [counts (1) [ counts (R) [counts (I) [delta (R)|delta (I) | delta-delta | p-value
1 PER-1 (EA714_008075) 30867 309 30007 62187 1549 | 61878 | 60329 |<0.0001
1 aphAl (EA674_13195) 9172 9 30007 62187 | 23832 | 62178 | 38346 [<0.0001
2 ampC (EA743_05675) 48550 45017 10047 10783 | 39002 | 34233 4769 0.240
3 |OXA_65 (EA746_016395)| 22818 24152 30446 40298 7078 [ 16146 9068 0.0003
4 carO (EA719_004515) 31632 25088 7067 30654 | 20926 | 5566 15360 |<0.0001
4 | CsuA/B (EA719 006180)| 23920 4 7067 30654 | 15309 | 30650 | 15341 |<0.0001
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Acinetobacter baumannii TG15434 environmental 2007
Acinetobacter baumannii TG22158 trach-asp 2010
Acinetobacter baumannii TG22162 sputum 2010
Acinetobacter baumnannii TG16790 unknown 2010
Acinelobacter baumannii TG21149 unknown 2011
Acinetobacter baumannii TG15464 wound 2008
Acinetobacter baumannii TG15479 blood 2007
Acinetobacter baumannii TG15443 wound 2008
Acinetobacter baumannii TG15452 sputum 2008
Acinetobacter baumannii TG31306 wound 2012
4|7—|::—7‘: Acinetobacter baumannii TG69784 urine 2013

baumannii TGB9548 eye 2015
baumannii TG31299 urine-void 2012
Acinelobacter baumannii TG15485 environmental 2007
Acinetobacter baumannii TG22168 sputum 2010

Acinetobacter baumannii TG16747 unknown 2010
Acinetobacter baumannii TG41245 urine-void 2012
| Acinetobacter baumannii TG4 1883 trach-asp 2012
Acinetobacter baumannii TG29392 blood 2011
Acinetobacter baumannii TG41016 trach-asp 2012
Acinetobacter baumannii TG29428 trach-asp 2012
Acinetobacter baumannii TG40982 trach-asp 2012
Acinetobacter baumannii TG28341 trach-asp 2011
— Acinetobacter baumannii TG31302 trach-asp 2012
Acinetobacter baumannii TG31986 trach-asp 2012
Acinetobacter baumannii TG31307 blood 2012
Acinetobacter baumannii TG31301 trach-asp 2012

inetobacter baumannii TGB9524 sputum 2015

baumannii TG28339 trach-asp 2011

baumannii TG41882 wound 2012
Acinetabacter baumannii TG15467 sputum 2008
Acinetobacter baumannii TG15470 environmental 2007
Acinetobacter baumannii TG15428 sputum 2007

-‘ Acinetobacter baumannii TG22627 trach-asp 2011

Acinetobacter baumannii TG22166 trach-asp 2010
baumannii TG22182 trach-asp 2011
Acinetobacter baumannii TG15437 sputum 2008
BSR values Acinetobacter baumannii TG16684 unknown 2010
Acinetobacter baumannii TGB9544 sputum 2015
0 Acinetobacter baumannii TG15476 BAL 2007
Acinetobacter baumannii TG15440 BAL 2008
0.1 Acinetobacter baumannii TG15449 unknown 2008
0.2 Acinetobacter baumannii TG83528 blood 2015
Acinetobacter baumannii TG91968 blood 2015
0.3 Acinetobacter baumannii TG81924 blood 2015
0.4 Acinetobacter baumannii TG91928 blood 2015
Acinetobacter baumannii TG91932 blood 2015
0.5 Acinetobacter baumannii TG31975 wound 2012
Acinetobacter baumannii TG29423 sputum 2012
0.6 Acinetobacter baumannii TG4 1558 trach-asp 2012
0.7 Acinetobacter baumnannii TG22172 sputum 2010
Acinetobacter baumannii TG28338 trach-asp 2011
0.8 Acinetobacter baumannii TG28340 trach-asp 2011
0.9 Acinetobacter baumannii TG41873 trach-asp 2012
Acinetobacter baumannii TG60017 trach-asp 2012
1 Acinetobacter baumannii TG60019 trach-asp 2012
Acinetobacter baumannii TG15461 wound 2007
Acinetobacter baumannii TG22653 BAL 2011
Acinetobacter baumannii TG40983 trach-asp 2012
Acinetobacter baumannii TG40843 blood 2012
Acinetobacter baumannii TG31871 urine-void 2012
Acinetobacter baumannii TG60155 sputum 2012
Acinetobacter baumannii TG29391 blood 2011
Acinetobacter baumannii TG60536 sputum 2012
Acinetobacter baumannii TGBS536 URT 2015
Acinetobacter baumannii TGBS540 blood 2015
Acinetobacter baumannii TG91920 blood 2015
Acinetabacter baumannii TG31982 wound 2012
Acinetobacter baumannii TGB0268 blood 2015
Acinetobacter baumannii TG15458 environmental 2008
Acinetobacter baumannii TG22180 wound 2006
Acinetobacter baumannii TG16750 unknown 2010
Acinetobacter baumannii TG22206 sputum 2008
Acinetobacter baumannii TG16732 unknown 2010
1 175 Acinetobacter baumannii TG27303 sputum 2005
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Reference

GCA 000805525.1 Acins L i T258 Contig ST368

GCA 900494915.1 Acinetobacter baumannii 4300STDY7045710 Scaffold ST368
GCA 900494995.1 Acinetobacter baumannii 4300STDY7045707 Scaffold ST368
GCA 002249225.1 Acinetobacter baumannii ABCRPSTHO7 Contig ST368

GCA 002249265.1 Acinetobacter baumannii ABCRPSTHO8 Contig ST368

AQ GCA 000805295.1 Acinetobacter baumannii 2011BJAB1 Scaffold ST368

GCA 000299655.1 Acinetobacter baumannii ZWS1122 Contig ST368
GCA 000299675.1 Acinetobacter baumannii ZWS1219 Contig ST368
Acinetobacter baumannii TG22627 trach-asp 2011 ST368
Acinetobacter baumannii TG22166 trach-asp 2010 ST368

BSR. values Acinetobacter baumannii TG22182 trach-asp 2011 ST368
L° GCA 000787355.1 Acinetobacter baumannii BJ8 Contig ST368
o1 GCA 002950495.1 Acinetobacter baumannii WCHABO005133 Complete Genome ST368
02 GCA 000804665.1 Acinetobacter baumannii 2011BJAB4 Scaffold ST368
03 GCA 000419385.1 Acinetobacter baumannii BJAB07104 Complete Genome ST368
04 GCA 0019023751 Acinetobacter baumannii XDR BJ83 Complete Genome ST368
05 GCA 000804735.1 Acinetobacter baumannii 2003BJAB12 Scaffold ST368
06 GCA 0008047 15.1 Acinetobacter baumannii 2004BJAB14 Scaffold ST368
o7 100 SNPs GCA 001573085.1 Acinetobacter baumannii XH859 Complete Genome ST368
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