

1 **Bacterial Genome wide association studies (bGWAS) and transcriptomics identifies
2 cryptic antimicrobial resistance mechanisms in *Acinetobacter baumannii***

3

4 **Authors:** Chandler Roe¹, Charles H.D. Williamson¹, Adam J. Vazquez¹, Kristen Kyger¹, Michael
5 Valentine², Jolene R. Bowers², Paul D. Phillips¹, Veronica Harrison², Elizabeth Driebe², David
6 M. Engelthaler², Jason W. Sahl¹

7

8 **Affiliations**

9 ¹Northern Arizona University, Flagstaff, AZ, USA

10 ²Translational Genomics Research Institute, Flagstaff, AZ, USA

11

12 **Abstract**

13

14 Antimicrobial resistance (AMR) in the nosocomial pathogen, *Acinetobacter baumannii*, is
15 becoming a serious public health threat. While some mechanisms of AMR have been reported,
16 understanding novel mechanisms of resistance is critical for identifying emerging resistance.
17 One of the first steps in identifying novel AMR mechanisms is performing genotype/phenotype
18 association studies. However, performing genotype/phenotype association studies is
19 complicated by the plastic nature of the *A. baumannii* pan-genome. In this study, we compared
20 the antibiograms of 12 antimicrobials associated with multiple drug families for 84 *A. baumannii*
21 isolates, many isolated in Arizona, USA. *in silico* screening of these genomes for known AMR
22 mechanisms failed to identify clear correlations for most drugs. We then performed a genome
23 wide association study (GWAS) looking for associations between all possible 21-mers; this
24 approach generally failed to identify mechanisms that explained the resistance phenotype. In
25 order to decrease the genomic noise associated with population stratification, we compared four
26 phylogenetically-related pairs of isolates with differing susceptibility profiles. RNA-Sequencing
27 (RNA-Seq) was performed on paired isolates and differentially expressed genes were identified.
28 In these isolate pairs, we identified four different potential mechanisms, highlighting the difficulty
29 of broad AMR surveillance in this species. To verify and validate differential expression,
30 amplicon sequencing was performed. These results suggest that a diagnostic platform based on
31 gene expression rather than genomics alone may be beneficial in certain surveillance efforts.
32 The implementation of such advanced diagnostics coupled with increased AMR surveillance will
33 potentially improve *A. baumannii* infection treatment and patient outcomes.

34

35 **Introduction:**

36

37 Antimicrobial resistance (AMR) has the potential to become a global health emergency and
38 is expected to kill more people than cancer by the year 2050 (1). Multidrug resistance in
39 *Acinetobacter baumannii* is now recognized as a major public health concern, resulting in the
40 World Health Organization (WHO) declaring *A. baumannii* a priority 1 pathogen (2). *A.*
41 *baumannii* is primarily a nosocomial pathogen (3) that affects immunocompromised patients,
42 causing a variety of afflictions including pneumonia, septicemia, meningitis, and death (4, 5).
43 Treatment of *A. baumannii* infections has become increasingly difficult due to the emergence of
44 multidrug resistance; pan-resistant *A. baumannii* strains (6-8), including strains resistant to last-
45 resort drugs such as colistin (9), have been identified in Asia and Europe.

46 Known mechanisms that confer AMR in *A. baumannii* include penicillin binding proteins (10),
47 enzymes (11), porin defects (12), DNA methylation (13), and efflux pumps (14). Efflux pumps
48 that confer resistance in *Acinetobacter* are classified into four families: multidrug and toxic
49 compound extrusion (MATE), resistance–nodulation–division (RND) family, major facilitator
50 superfamily (MFS), and small multidrug resistance (SMR) (15). Additionally, mutations in
51 promoter regions can lead to overexpression of some efflux systems, including AdeFGH (14),
52 which has been shown to lead to resistance to multiple antimicrobial families.

53 Resistance mechanisms have also been reported for specific drug families used to treat *A.*
54 *baumannii* infections. Perhaps the most studied family is beta-lactams, including carbapenems
55 (e.g. meropenem and imipenem), which are used to treat nosocomial infections (16, 17).
56 Carbapenem resistance has been associated with the action of carbapenem-hydrolyzing class
57 D beta-lactamases (CHDLs), including bla_{OXA-23}, bla_{OXA-24}, and bla_{OXA-58} (18). The *ampC*
58 cephalosporinase is a class C beta-lactamase that is broadly conserved across *A. baumannii*
59 (19) and has been associated with resistance to narrow spectrum cephalosporins (20).
60 Additionally, bla_{OXA-51-like} genes are highly conserved across the *A. baumannii* species, as well
61 as other *Acinetobacter* spp. (21); these genes confer resistance to carbapenems when in close
62 proximity to insertion element ISAb1 (22).

63 Aminoglycoside resistance in *A. baumannii* has been associated with the actions of
64 aminoglycoside modifying enzymes (AMEs) including *aacC1*, *aphA6*, *aadA1*, and *aadB* (23), the
65 16S rRNA methyltransferase *armA* (24), as well as through efflux action of AdeABC and AbeM,
66 although the efflux effect was limited (23). Resistance to macrolides in *A. baumannii* has
67 primarily been associated with target site alteration in Dfr (25) encoded by *folA*, the presence
68 and activity of the *tetM* gene (26), and through the action of efflux pumps (27). Finally, quinolone

69 resistance in *A. baumannii* has been linked to quinolone resistance-determining regions
70 (QRDRs) (28), including mutations in *parC*, *gyrA*, and *gyrB*. Specifically, the *gyrA* S82L mutation
71 has previously been shown to confer resistance to quinolones (29); two separate mutations,
72 S83L and G80V, have also been demonstrated to confer quinolone resistance in *A. baumannii*
73 (30).

74 In recent years, multiple databases have been developed and maintained that include
75 genomic regions associated with antimicrobial resistance. These databases include CARD (31),
76 ResFinder (32), ARG-ANNOT (33), ARDB (34), and MEGARes (35). To identify potential
77 resistance mechanisms, genomes are screened against these databases and if genes
78 associated with resistance are identified and conserved, then resistance patterns are inferred
79 (36). However, genomics doesn't capture expression profiles, including gene expression
80 induction, which prevents accurate genotype to phenotype associations in some organisms
81 (37).

82 Current treatment regimens for *A. baumannii* infections start with broad spectrum
83 cephalosporins such as ceftazidime or cefepime, or a carbapenem (e.g. imipenem) (38). For
84 drug resistant pathogens, polymyxins such as colistin are used, although emerging resistance
85 has been reported (39) and the treatment can be toxic (40). Other drugs, including tigecycline
86 (41) and minocycline (42) have been used to treat resistant strains, although resistance to these
87 therapies has also been observed, prompting research into combination therapies (43) that
88 overcome these limitations. However, pan-resistance in *A. baumannii* (44) has the potential to
89 undermine all current treatment regimens and necessitates a better understanding of
90 genotype/phenotype associations for improved surveillance efforts and targeted therapy.

91 Research into genotype/phenotype associations in *A. baumannii* is complicated by the
92 highly plastic nature of the pan-genome (45). One example of this phenomenon is the biofilm
93 associated protein (Bap) (46, 47), which, based on an *in silico* screen of more than 117
94 complete *A. baumannii* genomes, is conserved in only 2 genomes (unpublished). This
95 demonstrates that mechanisms associated with a phenotype may not be broadly distributed
96 across diverse isolates of this species. While true for virulence, similar patterns exist for AMR
97 genes that are variably conserved within a highly plastic species (21).

98 In this study, we analyzed over 100 *Acinetobacter* isolates, largely isolated in Arizona, USA,
99 in an effort to identify broadly conserved as well as cryptic mechanisms of AMR. Implementing
100 an iterative approach, we searched common AMR gene databases for known mechanisms,
101 performed a genome wide association study (GWAS) to identify potentially new mechanisms,
102 and performed RNA-Sequencing (RNA-Seq) to compare gene expression profiles between

103 isolates with variable AMR phenotypes. The results provide additional detail to understand AMR
104 mechanisms in *A. baumannii* and identify targets for advanced diagnostics that will provide
105 appropriate therapies for more effective patient treatment.

106

107 **Methods:**

108

109 **Isolate description and growth:** A total of 107, largely geographically confined isolates, were
110 identified for sequencing based on collection from different body sites and clinical matrices. All
111 isolates were classified as *A. baumannii* based on orthogonal, clinical laboratory techniques. A
112 description of all sequenced isolates is shown in Table S1. Samples were streaked from
113 glycerol stocks onto Mueller Hinton (MH) (Hardy Diagnostics, Santa Maria, CA) agar plates and
114 incubated at 37°C for 24 h. Inoculated plates were checked for appropriate colony growth and
115 morphology the following day prior to DNA extraction.

116

117 **Genomic DNA extraction and Sequencing.** Genomic DNA was extracted from a single
118 isolated colony for each sample using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA,
119 USA) following the recommended protocol for Gram-negative bacteria. Sample DNA was
120 fragmented using the QSonica q800 ultrasonic liquid processor (QSonica, Newtown, CT, USA).
121 Sonication parameters were optimized to produce fragment sizes of 600 to 700 base pairs
122 (time: 3 minutes, pulse: 15s (Pulse On), 15s (Pulse Off), amplitude: 20%). Libraries were size
123 selected using Agencourt AMPure XP beads (Beckman Coulter, Brea, CA) in order to remove
124 small and large fragments outside of the required size range. Genome libraries were prepared
125 using the KAPA Hyper Library Preparation Kit with Standard PCR Library Amplification (Kapa
126 Biosystems, Wilmington, MA) and sequenced on an Illumina MiSeq using V3 sequencing
127 chemistry (Illumina Inc., San Diego, CA).

128 For Minlon sequencing, DNA was extracted with the GenElute Bacterial Genomic DNA kit
129 (Sigma-Aldrich Inc., St. Louis, MO), taking care to limit DNA shearing. Long read sequencing
130 was performed using Oxford Nanopore technologies on a MK1B MinION device using a R9.4
131 flow cell. The DNA library was prepared using the SQK-LSK109 Ligation Sequencing kit in
132 conjunction with the PCR-Free Native Barcode Expansion kit following manufacturer's protocol
133 (downloaded from <https://nanoporetech.com/resource-centre/protocols/> on March 20, 2019)
134 without the optional shearing steps to select for long reads.

135

136 **Sequence assembly and MLST typing.** Illumina-derived whole genome sequence data was
137 assembled with SPAdes v3.10 (48). Contigs that aligned against known contaminants or
138 contained an anomalously low depth of coverage compared to the average depth of coverage
139 on a per genome basis were manually removed. The MLST profiles were extracted from whole
140 genome sequence (WGS) assemblies using BLAST-based methods (49) using both the Oxford
141 (50) and Pasteur systems (51). Annotation on all genomes was performed with Prokka v1.13
142 (52). Hybrid assemblies were generated with combined Illumina and MinION data with Unicycler
143 v0.4.8-beta (53). Assemblies were polished with Pilon v1.22 (54).

144
145 **Global phylogenetics of *Acinetobacter*.** *Acinetobacter* genome assemblies were downloaded
146 from GenBank on March 13th, 2018. All genome assemblies were aligned against the *A.*
147 *baumannii* genome AB307-2094 (CP001172.1) with NUCmer v3.1 (55) in conjunction with
148 NASP v1.1.2 (56). SNPs that fell within duplicated regions, based on a reference self-alignment
149 with NUCmer, were filtered from downstream analyses. For rapid evaluation, an approximate
150 maximum likelihood phylogeny was inferred on a concatenation of 1,523,968 single nucleotide
151 polymorphisms (SNPs) with FastTree v2.1.8 (57); SNPs were retained if they were conserved in
152 >90% of all genomes.

153
154 **Antimicrobial resistance profiling:** Antimicrobial resistance phenotypic profiles were identified
155 for cefepime (PM), cefuroxime (XM), gentamicin (GM), ceftazidime (TZ), trimethoprim (TR),
156 azithromycin (AZ), ceftriazone (TX), aztreonam (AT), erythromycin (EM), piperacillin (PP),
157 levofloxacin (LE), and ciprofloxacin (CI). A list of all drugs and resistance breakpoints used are
158 shown in Table 1. Drugs were selected from published resistance patterns in the literature (58-
159 68). Samples were streaked from glycerol stocks onto Mueller Hinton (MH) (Hardy Diagnostics,
160 Santa Maria, CA) agar plates and incubated at 37°C for 24h. A single isolated colony was
161 picked and inoculated into 10mL of MH broth. Liquid cultures were incubated with shaking at
162 37°C overnight. The following morning, 100µL of each overnight culture were transferred into
163 9.9mL of fresh MH broth. Cultures were incubated with shaking at 37°C until optical density
164 (OD₆₀₀) measurements reached 0.5-0.8, indicating log phase growth. 50µL of culture was
165 inoculated onto new 15 x 150mm MH agar plates and spread uniformly across the medium with
166 a sterile cell spreader. Six different antimicrobial E-test strips (bioMérieux, France) were applied
167 to the surface of the agar as directed by the manufacturer. Plates were incubated at 37°C for
168 16-18hrs and minimum inhibitory concentrations (MIC) were determined by visual inspection

169 following the recommended manufacturer guidelines. For paired isolates, MIC tests were
170 performed on different days.

171
172 **A. baumannii phylogeny and isolate pairing.** Once the set of *A. baumannii* were identified, a
173 phylogeny was generated for confirmed genomes (n=84). Raw WGS data were aligned against
174 AB307-0294 with BWA-MEM v0.7.7 (69) and single nucleotide polymorphisms (SNPs) were
175 identified with the UnifiedGenotyper method in GATK v3.3.1 (70, 71). SNPs that fell into
176 duplicate regions of the reference, based on a NUCmer self-alignment, were removed from
177 downstream analyses. All SNP calling methods were wrapped by the NASP pipeline. A
178 maximum likelihood phylogeny was inferred on a concatenation of 182,766 SNPs with IQ-TREE
179 v1.6.1, using the TVM+ASC+R5 model. Paired genomes were identified by low phylogenetic
180 distance and variable antibiograms (Table S2).

181
182 **Global phylogenetic analysis.** All *A. baumannii* genomes (n=3,218) were downloaded from
183 the Assembly database in GenBank (72) on September 19th, 2018. Genomes were filtered if
184 they: 1) contained greater than 200 ambiguous nucleotides (n=860); 2) contained greater than
185 400 contigs (n=189); 3) had a genome assembly size <3684234 or >4297137 (n=51), or; 4) had
186 an average MASH (73) distance greater than 0.0252 (~97.5% average nucleotide identity)
187 (n=20). Genomes passing through all filters (n=2183) were aligned against *A. baumannii*
188 AB307-2094 (6) with NASP in conjunction with NUCmer. A maximum likelihood phylogeny was
189 inferred on a concatenation of 101,608 SNPs with IQ-TREE v1.6.1, using the
190 TVM+F+ASC+R10 model, and rooted with an *A. nosocomialis* genome sequenced in this study
191 (TG22170; RFE00000000).

192
193 **Comparative analysis of paired isolate genomes.** To identify coding region differences
194 between paired isolates, the large-scale blast score ratio (LS-BSR) (74) tool was run on paired
195 genomes in conjunction with BLAT (75). The order of genes between isolates was visualized
196 with genoPlotR (76).

197
198 **Genome wide association studies (GWAS).** To identify genotype/phenotype associations,
199 regions identified by LS-BSR were compared between resistant/susceptible phenotypes from
200 each drug. Regions were first identified that had a blast score ratio (BSR) value (77) of >0.8 in
201 one phenotype and a BSR value of <0.4 in the other phenotype. Correlations between groups
202 was identified with a point biserial correlation method. In addition to differences in coding region

203 sequences (CDSs), individual SNPs and indels were identified through the analysis of Kmers. In
204 this approach, the reverse complement was taken for all genomes so that both strands were
205 included in the analysis. All 21-mers were then identified with Ray-surveyor (78) and placed into
206 a presence absence matrix; the choice of 21-mers was to ensure a short enough length to
207 hopefully identify single mutations. The frequency of Kmers in each phenotype was then
208 calculated with a custom Python script
209 (<https://gist.github.com/jasonsahl/e9516b2d940ad2474ba6e97f5b856440>).
210

211 **Machine learning approach for AMR mechanism identification.** Associations of Kmers of
212 length 21 with each AMR mechanism were identified with Kover v2.0.0 (79) using default
213 parameters. Annotation for Kmers was performed by mapping Kmers against annotated coding
214 regions with BLASTN.
215

216 ***in silico* screen of antimicrobial resistance elements.** To find previously characterized
217 antimicrobial resistance mechanisms, we screened paired genomes with LS-BSR in conjunction
218 with Diamond (80) and the Comprehensive Antimicrobial Resistance Database (CARD) (31).
219 We also selected resistance genes from the literature associated with antimicrobials screened in
220 this study (Table S3) using the same methods.
221

222 **Antimicrobial exposure and RNA extractions.** Samples identified as paired isolates based on
223 phylogenetic relatedness and differing antibiogram profiles were streaked for isolation from
224 glycerol stocks onto MH agar plates and incubated overnight at 37°C. For each sample a single
225 colony was picked and inoculated into 10mL of MH broth and incubated with shaking at 37°C
226 overnight. The following morning 100µL of each culture was inoculated into 9.9mL of fresh
227 media and OD_{600nm} was monitored until cultures reached log phase growth OD_{600nm} of
228 approximately 0.5-0.8. 500µL of each sample, as well as susceptible control strain
229 *Staphylococcus aureus* subsp. *aureus* (ATCC 29213), were aliquoted in triplicate into 2mL
230 microcentrifuge tubes. Each sample was treated with sub-MIC concentrations of the designated
231 antimicrobial, at one half of the previously recorded MIC value. Cultures were then incubated for
232 30min with shaking at 37°C. Two volumes of RNAProtect Bacteria Reagent (Qiagen, Valencia,
233 CA, USA) were added to all samples and incubated at room temperature for 5min, followed by
234 centrifugation for 10min at room temperature, at a speed of 5000 x g. The supernatant was
235 decanted and the treated cell pellets were stored at -80°C. Total RNA was extracted using the
236 RNeasy Mini Kit (Qiagen, Valencia, CA, USA) following recommended protocol #4 beginning at

237 step 7 and continuing to protocol #7. A DNase I treatment was included for step 2 in protocol #7.
238 Extracted RNA was immediately stored at -80°C.

239
240 **mRNA isolation.** RNA quality and quantity were checked by Agilent 2100 Bioanalyzer with the
241 RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, CA, USA). mRNA was isolated from
242 total RNA using the MICROBExpress kit (Thermo Fisher Scientific, Waltham, MA) following the
243 manufacturer's protocol. Isolated mRNA was quantified and checked for rRNA depletion on the
244 bioanalyzer with an additional RNA Nano chip prior to sequencing.

245
246 **RNA-seq preparation, sequencing, assembly.** Previously isolated mRNA was prepared for
247 transcriptome sequencing using the TruSeq Stranded mRNA, HT kit (Illumina, San Diego, CA)
248 following the High Sample (HS) protocol. Prepared samples were quantified and checked for
249 quality, then pooled in equimolar concentrations. Library pools were loaded into an Illumina High
250 Output NextSeq 2 x 150bp kit, according to manufacturer recommendations for sequencing on
251 the Illumina NextSeq 550 platform. The transcriptomes were assembled with metaSPAdes (81)
252 using default settings. For targeted amplicon studies, complementary DNA (cDNA) was
253 generated with the SuperScript IV Vilo RT-PCR Master Mix with ezDNase enzyme (Invitrogen,
254 Carlsbad, California), following manufacturer's recommendations.

255
256 **Differential expression (DE) analysis.** For each isolate pair, coding and intergenic regions
257 identified with LS-BSR and prodigal were combined for complete genomes, then dereplicated
258 with USEARCH v10 at an ID of 0.98. RNA-Seq reads were aligned against these regions with
259 BWA-MEM and read counts were called on the resulting BAM file with Salmon v0.13.1 (82).
260 Differential expression (DE) analysis was performed with DESeq2 (83). The p-values were
261 corrected using the Benjamini-Hochberg (84) correction.

262
263 **Amplicon sequencing (AmpSeq).** Polymerase chain reaction (PCR) primers were designed
264 for differentially expressed regions identified in the RNA-Seq analysis (Table S4); a
265 constitutively expressed target (locus tag: IX87_18340), based on analysis of RNA-Seq data,
266 was included for normalization. cDNA was amplified with the following protocol: 1X Promega
267 PCR Master Mix (Promega, Fitchburg, WI), 2.5µL cDNA template, and multiplexed primer
268 concentrations are listed in Table S4. Gene specific PCR parameters were as follows: initial
269 denaturation at 95°C for 2m, 30 cycles of denaturation at 95°C for 30s, annealing at 55°C for
270 30s, and extension at 72°C for 45s, with a final extension at 72°C for 5m. Included on each

271 primer was a universal tail (85), which facilitated Illumina index ligation. Samples were indexed
272 with the following final concentrations: 1X HiFi HotStart Readymix (Kapa Biosystems Inc.,
273 Wilmington, MA), 0.4 μ M of each indexing primer, and 2 μ L of gene specific PCR product. The
274 indexing PCR parameters were as follows: initial denaturation at 98°C for 2m, 6 cycles of
275 denaturation at 98°C for 30s, annealing at 60°C for 20s, and extension at 72°C for 30s, with a
276 final extension at 72°C for 5m. Following each PCR, a 1X Agencourt AMPure bead (Beckman
277 Coulter, Brea, CA) clean-up was performed according to manufacturer's instructions. All
278 amplicons were normalized with SequalPrep (Thermo Fisher Scientific, Applied Biosystems),
279 pooled, and sequenced on the Illumina MiSeq platform (Illumina Inc., San Diego, CA).

280

281 **AmpSeq analysis.** Raw AmpSeq data were aligned against predicted amplicons with Kallisto
282 v0.45.0 (86). Counts were normalized based on the median read counts between all samples.
283 The difference between the raw read counts of the target and the housekeeping gene was
284 identified for each sample. The average delta was then identified for each set of resistant and
285 intermediate genomes and the delta Ct was calculated. The average deltas were compared
286 between resistant and intermediate samples and a p-value was calculated with a two-sided T-
287 test.

288

289 **Data availability.** All data were deposited to appropriate databases and linked under BioProject
290 PRJNA497581. Links to specific samples are shown in Table S1.

291

292 **Results:**

293

294 **Identification of isolates analyzed in the current study.** In this study, we sequenced 107
295 isolates identified by laboratory methods to be *A. baumannii*. These isolates were
296 retrospectively identified from our collection and sequenced to reflect a range of years and
297 isolation sources (Table S1). Of the 107 genomes sequenced in this study, only 84 were
298 confirmed *A. baumannii* (Table S1) isolates based on a global WGS phylogenetic analysis
299 (Figure 1). In order to define and add context to the phylogenetic diversity of genomes
300 sequenced in this study, more than 3,000 publicly available *A. baumannii* genomes were
301 included in the analysis (Figure S1).

302

303 **Antimicrobial resistance profiles of isolates analyzed.** AMR profiles were identified for 95 of
304 the isolates across 12 drugs, including all *A. baumannii* (Figure 1, Table S2). Twelve isolates

305 were excluded due to either difficult to interpret MIC results or inconsistent results across
306 replicates. Some test strips were discontinued during the course of this experiment and were
307 therefore marked as missing in the antibiogram.

308 Antibiograms were obtained for the majority of isolates across all tested drugs (Table S2)
309 using E tests; selected drugs were chosen based on treatment suggestions in previous
310 publications (58-68). The MIC values were mapped against a phylogeny of *A. baumannii*
311 genomes (Figure 1) inferred from a concatenation of 182,916 SNPs. Resistant, susceptible, or
312 intermediate calls were determined based on identified breakpoints (Table 1). Four of the drugs
313 used in this study do not have an identified breakpoint for *Acinetobacter*. We applied
314 breakpoints for two of these drugs based on other organisms. For two additional drugs,
315 breakpoints were applied that only includes the highest and lowest values of the E test range.
316 This conservative approach is potentially useful for grouping isolates into categories to identify
317 mechanisms associated with the largest differences in MIC values, but may not be clinically or
318 biologically relevant.

319 From the *A. baumannii* phylogeny, isolates were identified that were closely related based
320 on phylogenetic distance, but differed in their antibiograms. These isolate pairs (Figure 2, Table
321 2) were the subject of additional investigation in order to identify cryptic resistance mechanisms
322 based on a common genomic background.

323
324 ***in silico* AMR profiling of all sequenced *Acinetobacter* isolates.** All proteins from the CARD
325 database (n=2,420) were aligned against 107 sequenced genomes with LS-BSR in conjunction
326 with Diamond. Proteins that were highly conserved in at least 5 genomes were mapped against
327 the phylogeny and demonstrate variable conservation of AMR-associated proteins (Figure 3,
328 Table S5). Some proteins had a clear phylogenetic distribution, where they were either
329 conserved across almost all *Acinetobacter* (e.g. OXA-64 (OXA-51 family)), conserved across
330 phylogenetic groups in *A. baumannii* (e.g. aminoglycoside resistance genes (APH-6):
331 AAC23556.1), or were variably conserved (e.g. aminoglycoside adenyltransferase (ANT(2")-Ia):
332 AAC64365.1), suggesting horizontal gene transfer.

333
334 ***in silico* screening of paired isolate genomes.** The 84 confirmed *A. baumannii* genomes
335 were screened for the presence of AMR-associated genes from the CARD database with LS-
336 BSR. For 2 isolate pairs, no obvious differences were observed in resistance genes between
337 variably resistant pairs (Figure S2, Table S5). For TG22182 (R) and TG22627 (I), one CARD
338 gene was differentially conserved (CAE51638) and is associated with an aminoglycoside

339 phosphotransferase, although no differences were observed in resistance to the tested
340 aminoglycoside, gentamicin. Multiple differences were observed between the distribution of
341 CARD genes between TG22653 (R) and TG60155 (I) (Figure S2), although the antibiograms
342 only differed in the resistance to two antimicrobials and the genomes differed by only 27 core
343 genome SNPs.

344

345 **Screen of previously described AMR mechanisms.** A list of mechanisms associated with
346 AMR in *A. baumannii* (Table S3) were screened against genomes sequenced in this study with
347 LS-BSR (Figure S3). Genomes were also screened for mechanisms associated with resistance
348 to the following specific drugs:

349

350 *Quinolones.* The *gyrA* S82L mutation has previously been shown to confer resistance to
351 quinolones in *Acinetobacter* (29). Of the resistant *A. baumannii* strains (n=73), 72 (~99%)
352 contained the leucine (L) residue at position 82; the one exception was TG22162, which had the
353 serine (S) residue. All susceptible strains had the serine residue at this position, suggesting that
354 this mutation is the primary mechanism conferring quinolone resistance in analyzed strains.

355

356 *Trimethoprim.* All tested *A. baumannii* isolates were resistant to trimethoprim. An *in silico* screen
357 of *folA* (Figure S3), which has been associated with target site alteration and trimethoprim
358 resistance (25), demonstrated that all genomes contained this gene, although there was some
359 variation in the peptide identities. As susceptible strains were not identified through screening,
360 we cannot test the genotype/phenotype relationship for this compound, although based on
361 published results, *folA* appears to be the associated mechanism.

362

363 *Beta-lactams:* The *ampC* gene in *A. baumannii* is a class C beta-lactamase (87). A screen of
364 the *ampC* peptide sequence against *A. baumannii* isolates sequenced in this study indicates
365 that almost all genomes have a highly conserved *ampC* gene at the nucleotide level, but have
366 widely different antibiograms (Table S2, Figure S3). This demonstrates that the
367 presence/absence of this gene alone has little predictive value on beta-lactam resistance in *A.*
368 *baumannii*.

369 The insertion element ISAb1, in conjunction with *bla*_{OXA-51-like} genes, has been shown to
370 confer resistance to carbapenems (22). Genomes in this study showed a correlation (>0.8
371 correlation coefficient) between ISAb1 conservation and resistance to 2 beta-lactams (XM,TX).
372 Many of the ISAb1 transposases were split across multiple contigs in Illumina assemblies,

373 likely due to a repeat region that could not be resolved during assembly. Furthermore, copies of
374 this region were likely collapsed during the short read assembly. For example, for the 8 isolates
375 for which draft genomes and complete genomes were generated in this study, only a single
376 copy of ISAb1 was observed in the draft genome, while 9-26 copies were observed in
377 complete genomes. Additionally, all of the paired isolates in this study contained ISAb1 and a
378 bla_{OXA-51-like} gene but showed variable antibiograms to at least one beta-lactam, suggesting that
379 the conservation of this region alone did not explain the resistance phenotype.

380 Some genes associated with efflux (*adeA*, *adeB*) were missing from several genomes
381 (Figure S3) that showed susceptibility to a number of drug families. Some genomes contained
382 these regions but were also susceptible to beta-lactams, suggesting multiple genotypes result in
383 the same resistance or susceptibility phenotype.

384

385 *Macrolides*. Although *ermB* has been associated with macrolide resistance in *A. baumannii*, the
386 gene was not detected in any genome sequenced in this study, based on a LS-BSR analysis
387 (Figure S3). The *mefA* gene was also screened, as it has been demonstrated to provide
388 macrolide resistance, but the gene was highly conserved, even in azithromycin susceptible
389 strains (Figure S3). Resistance to macrolides has also been associated with efflux, although
390 differences in efflux cannot be investigated with genomics alone.

391

392 *Aminoglycosides*. Four genes associated with aminoglycoside resistance were screened
393 against genomes with LS-BSR. None of the 4 regions (*aacC1*, *aphA6*, *aadA1*, *aadB*) previously
394 associated with aminoglycoside resistance showed any association (correlation coefficient <0.5
395 0) with resistance to gentamicin in genomes screened in this study (Figure S3).

396

397 **Machine learning approaches**. For most of the tested drugs, the machine learning method
398 Kover identified regions that were associated with resistance across the *A. baumannii* isolates
399 tested in this study (Table 3), based on all possible 21-mers. In almost all cases, the frequency
400 of these Kmers could not completely distinguish between resistant and susceptible phenotypes,
401 suggesting that the large number of associated Kmers identified by Kover are likely not
402 biologically meaningful.

403

404 **Genome wide association study (GWAS)**. To identify genotype/phenotype associations, we
405 performed a GWAS analysis by splitting up isolates into resistant/susceptible groups for each
406 drug; for this analysis we ignored isolates with an intermediate phenotype in order to isolate the

407 mechanism. Using CDS conservation, we failed to identify a clear genotype/phenotype
408 relationship across all *Acinetobacter* across all drugs. This suggests that genomic analyses
409 alone can fail to comprehensively identify AMR mechanisms in *Acinetobacter*. When the
410 analysis was repeated for only *A. baumannii* genomes using both coding regions and Kmers,
411 significant associations were identified (Table 4). For ceftriaxone (TX), all susceptible strains
412 (n=3) were missing ISAb1 (ABLAC_32600), while 66 of 67 resistant strains contained this
413 region; the small number of genomes analyzed limits the power of this analysis. In spite of this
414 correlation, the lack of broadly conserved genomic regions associated with resistance directed a
415 paired genome analysis into the identification of novel or cryptic genotype/phenotype
416 associations.

417

418 **RNA-Seq and differential expression (DE) analysis.** For isolate pairs where a clear
419 genotype/phenotype relationship was not identified, RNA was extracted and cDNA was
420 sequenced. Despite implementing methods to enrich mRNA, ~20% rRNA+tRNA presence was
421 observed in all samples (Table S8). For each pair, all coding and intergenic sequences were
422 combined into a single file and de-replicated. Reads were mapped against these regions,
423 normalized, and differential expression was identified using DESeq2. Results were then
424 identified for the following isolate pairs:

425

426 *Pair 1.* Multiple differentially expressed genes were identified that were upregulated in the
427 resistant strain (TG22182) (Table 5). One of these regions was a PER-1 beta-lactamase gene
428 (bla_{PER-1})(EA714_008075) that is not broadly conserved across ST368 genomes (Figure S3)
429 and appears to be present on a transposon. A screen of this gene against other ST368
430 genomes isolated from diverse geographic locations suggested that there was an acquisition of
431 this region in a single sequence type and a clear phylogenetic effect (Figure S4). Indeed, a
432 genomic island was identified in both the resistant and intermediate genomes between two
433 transposases (Figure 4a) that includes a Glutathione S-transferase gene (EA674_08405) that
434 was also upregulated in the resistant strain (11.2x up-regulation); this region has previously
435 been associated with beta-lactam resistance (88). The operon structure was similar between
436 resistant and intermediate strains, with the exception of an IS91 transposon that was between
437 an IS26 transposon and bla_{PER-1}. The operon structure for the resistant strain that contained an
438 IS91 transposon was determined to be highly similar with an ISCR1 (Insertion sequence
439 Common Region) element. Within the ISCR1 element is an ori/S (origin of replication) region
440 that allows for rolling-circle replication and transposition of the ISCR1 element. Within the ori/S

441 are two outward-oriented promoters (P_{OUT}) that have been shown to affect downstream gene
442 expression (89). The resistant strain, TG22182, has both P_{OUT} promoters associated with
443 increased gene expression directly upstream of the bla_{PER-1} gene (Figure 4a). The more
444 susceptible strain, TG22627, has neither of the P_{OUT} promoters upstream of its bla_{PER-1} gene.
445 Additionally, the composition of the bla_{PER-1} gene between isolates was different, with a different
446 coding length as well as composition in the first 12 amino acids of the peptide.

447 Additionally, a glutathione S-transferase family gene (EA674_008405) and the carbapenem
448 susceptibility porin *carO* (EA674_000940) gene were highly expressed in TG22182 (R) in
449 comparison to TG22627 (I). Both of these genes have been shown to confer resistance to beta-
450 lactams and specifically carbapenems (90). Both isolates in Pair 1 also contain an OXA-51 beta-
451 lactamase gene (bla_{OXA-51}) (EA674_011070), although the gene is slightly up-regulated (4.5x) in
452 TG22627 (I). TG22627 also showed higher expression of other genes associated with AMR
453 including *adeI* (EA674_003605)(11x), *adeB* (EA674_009735)(9.5x), *adeA*
454 (EA674_009730)(9.6x), and *adeJ* (EA674_003600)(9.6x); however, the up-regulation of genes
455 in the AdeABC pump have previously been demonstrated to not confer aminoglycoside
456 resistance (23). This suggests that the action of the PER-1 beta-lactamase is more effective
457 than other proteins associated with efflux or other oxacillinases in resistance to ceftriaxone (TX)
458 and ceftazidime (TZ). The PER-1 beta-lactamase protein has also been associated with
459 virulence in *A. baumannii* (91) and has also been associated with resistance to beta-lactams
460 (92). The detection of the bla_{OXA-51} and ISAb1 regions in these genomes revealed nothing
461 about their susceptibility to TX or TZ.

462
463 *Pair 2*. Twenty-four differentially-expressed regions were observed between Pair 2 isolates
464 (TG31302, TG31986) at a Wald stat value of 10 (Table S6). None of these regions were
465 associated with known mechanisms of AMR in *A. baumannii*. The two isolates contained a
466 class-D beta-lactamase gene (bla_{OXA-51}) and a class-C beta-lactamase gene (*ampC*). There was
467 no significant difference in gene expression of these regions between isolate pairs.

468 The composition of each beta-lactamase was determined at the nucleotide and peptide
469 level. A protein alignment of *ampC* between TG31302 (I) and TG31986 (R) revealed a single
470 amino acid difference (R to G) at position 172 (Figure S5) in the PAZ domain. This non-
471 synonymous mutation falls within the second of three characteristic conserved motifs, RxY¹⁵⁰xN,
472 for all class C serine beta-lactamase sequences (93). Although this mutation has not been
473 previously associated with increased activity or misfolding of the protein, other mutations in

474 *ampC* gene have (94), suggesting that this mutation may confer increased hydrolyzing activity
475 against beta-lactams, although additional validation work is required to test this hypothesis.

476 A continuous stretch of 17 genes was upregulated in TG31986 (R) (EA743_011445 -
477 EA743_011530) (Table S7). Nine genes within this region were in the top 30 differentially
478 expressed genes in this analysis, including: recombinase *recA* (EA743_011455), outer
479 membrane protein assembly factor *bamA* (EA743_011495), 30S ribosomal protein S12
480 methylthiotransferase *rimO* (EA743_011530), UMP kinase gene *pyrH* (EA665_011490), RIP
481 metalloprotease *rseP* (EA743_011500), a gene coding for an OmpH family outer membrane
482 protein (EA743_011490), a phosphatidate cytidylyltransferase gene (EA665_011475), a 1-
483 deoxy-D-xylulose-5phosphate reductoisomerase gene (EA665_011470), and a di-trans,poly-cis-
484 decaprenylcistransferase gene (EA665_011480). The outer membrane protein (OMP) H, a
485 homolog of the Skp protein in *E. coli* (95), has been classified as a chaperone protein involved
486 in the folding of BamA. Previous research has shown a correlation between upregulation of
487 molecular chaperones when exposed to antimicrobials and the bacterium's improved ability to
488 tolerate antimicrobial stress (96). Researchers have demonstrated that the *skp* gene in *E. coli* is
489 an important stress-associated gene (97) that may be associated with AMR (98).

490
491 *Pair 3.* Of 94 genomic regions that were significantly differentially expressed (Walt stat >10 or <-
492 10) (Table S8) between this isolate pair, one of the significant differences was between an
493 *bla_{OXA-51}* family (OXA-65) beta-lactamase gene (EA667_019445), which showed 1.9x up-
494 regulation in the resistant strain. Interestingly, 79 bases separated the end of insertion element
495 ISAb1 and the start codon of *bla_{OXA-51}* in sample TG29392 (R). Previous research has
496 demonstrated that this *bla_{OXA-51-like}* gene is conserved across *A. baumannii* lineages, but only
497 genomes containing the ISAb1 directly upstream of *bla_{OXA-51}* show resistance to carbapenems.
498 It is likely that ISAb1 is acting as the promoter for *bla_{OXA-51}* in TG29392, conferring resistance to
499 carbapenems (22). The intermediate resistance strain, TG31307, has both ISAb1 and *bla_{OXA-51}*;
500 however, ISAb1 is downstream of *bla_{OXA-51}* and therefore not functioning as a strong promoter
501 for the beta-lactamase gene (Figure 4b). An analysis of the coding region of the *bla_{OXA-51}* gene in
502 both isolates revealed no differences, suggesting that differences in expression are due to
503 expression.

504 Interestingly, several of the CDSs that were differentially expressed in the resistant strain in
505 *Pair 2* were up-regulated in the intermediate *Pair 3* strain (TG31307). For example, *recA* was
506 the most differentially expressed gene in *Pair 3* genomes, but was up-regulated in TG31307

507 (Table S8). This suggests that the mechanisms of resistance have complex interactions that
508 need to be investigated through targeted gene deletions.

509
510 *Pair 4.* Of the numerous differences in gene expression between the resistant (TG22653) and
511 intermediate strain (TG60155), perhaps the most striking is in the expression of *carO*
512 (EA719_004515), an outer membrane porin (Table S9). Previous analyses have demonstrated
513 that insertion sequences that disrupt *carO* are associated with decreased activity against beta-
514 lactams (99). The genome assembly of the intermediate strain, TG60155, shows that *carO* is
515 interrupted by the insertion sequence, ISAb1 (EA720_015165) (Figure 4c). An analysis of the
516 transcriptome of TG60155 also failed to identify an intact *carO* transcript, which was present in
517 TG22653.

518
519 **Antimicrobial resistance induction analysis.** In an effort to observe induced antimicrobial
520 resistance in the four paired isolates, resistant strains were grown in sub-inhibitory
521 concentrations of select antimicrobials. Differential expression of each sub-inhibitory isolate was
522 compared to the isolate grown under inhibitory concentrations using the Wald statistic produced
523 from DESeq2. Additionally, the resistant isolate TG22653 was grown under two different sub-
524 inhibitory concentrations of antimicrobials (16 and 258); differential expression from these two
525 concentrations was also compared. No significant differential expression was observed in the
526 four analyses based on an FDR-adjusted p-value of 0.05. Likewise, using the Wald statistic from
527 these analyses also demonstrated no significant differential expression between the differing
528 antimicrobial concentrations using the chosen threshold. This suggests that differential
529 expression is due to constitutively expressed mechanisms that are not inducible.

530
531 **AmpSeq validation.** Amplicon sequencing was performed on cDNA to not only confirm the
532 RNA-Seq results, but also to provide a proof of concept as an advanced AMR diagnostic.
533 Comparative expression was identified through comparison of ratios of the number of read
534 counts of each targeted gene compared to a housekeeping gene (IX87_18340); the
535 housekeeping gene was identified as a gene with consistent, and relatively high, expression in
536 the RNA-Seq data. For pair 1, the *bla_{PER-1}* and *aphA1* genes were significantly upregulated in
537 the resistant strain compared to the intermediate strain (Table 6). For pair 2, the expression of
538 the *ampC* gene was not significantly different, suggesting that differential expression of this
539 region doesn't explain the resistance phenotype and is consistent with the RNA-Seq data. For
540 pair 3, the *bla_{OXA-51}* gene was confirmed to be significantly up-regulated in the resistant strain

541 compared to the intermediate strain. For pair 4, the *carO* gene was significantly up-regulated in
542 the resistant strain, which is consistent with the RNA-Seq results and is likely the primary
543 mechanism of resistance. A gene associated with the production of a spore-coat forming protein
544 (*CsuA/B*) was highly up-regulated in the resistant strain. While not directly associated with AMR,
545 this validation provides confidence in the RNA-Seq data.

546

547 **General transcriptome screen.** A LS-BSR analysis of previously described resistance
548 mechanisms (Table S3) between the genome and transcriptome demonstrated that some
549 genomic regions, such as the *adeF* gene, were highly conserved in the genome, but were
550 largely absent from the transcriptome (Table S10). This finding demonstrates the importance of
551 incorporating gene expression when trying to understand phenotypic differences.

552

553 **Discussion:**

554

555 Antimicrobial resistance (AMR) is a significant, emerging threat, with *A. baumannii* being
556 recently classified as a priority 1 pathogen (2). Some mechanisms associated with AMR in *A.*
557 *baumannii* are clearly understood, especially with regards to documented beta lactamases (100-
558 103) and efflux pumps (15, 104, 105). However, the highly plastic pan-genome of *A. baumannii*
559 (45) suggests that the identification of universal AMR mechanisms may be unlikely, even with
560 regard to the presence and activity of specific beta-lactamases. This same trend has been
561 observed in other highly plastic genomes, such as *Pseudomonas aeruginosa* (106), and
562 complicates surveillance and targeted therapy efforts. As such, *A. baumannii* is not only an
563 emerging threat, but represents a critical challenge to the development of both novel drugs and
564 molecular diagnostics.

565 In this study, we sequenced 107 genomes reported to be *A. baumannii* based on testing in
566 the clinical laboratory. Typing based on WGS analyses identified 23 of the genomes were
567 misclassified and belonged to other *Acinetobacter* species (Table S1). These incorrect clinical
568 laboratory typing results highlight the need for improved clinical diagnostics of *A. baumannii*. An
569 additional 35 genomes in the GenBank assembly database were incorrectly annotated as *A.*
570 *baumannii* and belonged to other species (not shown), which further demonstrates the difficulty
571 in typing as well as and the impact of mis-annotated genomes on population structure analysis
572 in *Acinetobacter*. Typing strains using WGS should be a first step in any large comparative
573 genomics study to limit the analysis to a targeted group, clade, or species.

574 We generated antibiograms for 12 drugs, representing multiple drug families, across the 84
575 isolates confirmed to belong to *A. baumannii* by WGS analysis. Some of the drugs screened in
576 this study aren't typically used in current treatment regimens for *A. baumannii* infections.
577 However, with growing resistance emerging to next generation drugs, clinicians are exploring
578 older drugs (e.g. chloramphenicol) to treat emerging threats (42, 107). In this study, we sought
579 to identify genomic differences that could explain the variable resistance phenotypes using
580 established antimicrobial resistance gene databases as a method to predict AMR from
581 genomics data (31, 32, 35, 60). A screen of regions from the Comprehensive Antimicrobial
582 Resistance Database (CARD) against genomes sequenced in this study failed to identify
583 characterized resistance mechanisms that largely explain the resistance phenotype. These
584 results demonstrate the limitations to this approach in highly plastic species, such as *A.*
585 *baumannii*, and suggest that alternative approaches including RNA-seq data may be required
586 for a comprehensive understanding of AMR mechanisms in *A. baumannii*.

587 We then employed reference independent, genome wide association study (GWAS)
588 methods to identify genomic differences between susceptible/intermediate/resistant phenotypes.
589 These types of associations have been used in other pathogens to identify genotype/phenotype
590 associations (108). In general, we failed to identify a clear association between the genotype
591 (21bp Kmers, coding regions, SNPs) and the resistance phenotype when comparing either all
592 *Acinetobacter* genomes or just *A. baumannii* genomes (Table 4). This result suggests that
593 diverse and independent mechanisms may be responsible for the AMR phenotype for some
594 drugs instead of single, highly conserved mechanisms.

595 Recent research has demonstrated difficulty identifying complex mechanisms, or under-or-
596 over-represented phenotypes, using a GWAS approach (109). As a way to focus on sparsely
597 distributed AMR mechanisms, a paired isolate approach was utilized in order to reduce noise in
598 the genomic background. In this analysis, four isolate pairs were individually compared across
599 four antimicrobials (Table 2). RNA-Sequencing (RNA-Seq) of these four paired
600 resistant/intermediate isolates that shared a common genetic background was employed. Using
601 this approach, several potential mechanisms were identified, some of which have been
602 identified previously in *A. baumannii*, but are difficult to identify with standard comparative
603 genomics approaches, requiring RNASeq for comprehensive surveillance. While we identified
604 known resistance mechanisms in the resistant strains, some of those regions were also
605 identified in intermediate strains; previous studies of *A. baumannii* transcriptomes have also
606 observed up-regulation of resistance and efflux genes in susceptible strains (5). RNASeq data
607 allowed for the identification of antimicrobial resistance mechanisms that while present in both

608 the resistant and susceptible genomes, were differentially expressed due to an upstream
609 insertion element. These results also highlight the possibility that expression of a single AMR
610 gene does not always confer resistance and it is likely that combinations of genes are
611 responsible for observed resistance. Differential expression differences were confirmed using a
612 cDNA-AmpSeq approach and largely confirmed the differential expression of targeted regions.
613 Previous research has demonstrated a bias of differentially expressed regions when applying a
614 multiplexed PCR approach (110). We addressed this issue by optimizing primer concentrations
615 using genomic DNA and including a single copy number gene for normalization.

616 The results of this study demonstrate that, due to the plastic nature of *A. baumannii*'s pan-
617 genome, comprehensive AMR surveillance cannot solely be achieved through genomics
618 methods alone, especially with current AMR databases and commonly used analytical methods.
619 This study demonstrates that AMR genes are not conserved across *A. baumannii* lineages with
620 similar AMR profiles and that solely relying on genomics methods for AMR surveillance and
621 discovery, such as gene presence/absence, will fail to detect novel or recently acquired AMR
622 mechanisms. For instance, identifying only the position of insertion sequence (IS) elements
623 throughout a genome using genomic tools provides little resolution to inform of possible AMR
624 genes upregulated by the presence of upstream IS elements. Furthermore, identification of
625 these elements would provide little resolution of antimicrobial resistance profiles in a clinical
626 setting. However, by utilizing transcriptome data, we were able to identify AMR genes
627 upregulated by these elements as well as novel AMR mechanisms, and design rapid cDNA
628 amplicon sequencing targets for these mechanisms to improve surveillance and diagnostic
629 efforts.

630

631 **Funding.** Funding for this project was provided by an R21 grant awarded to JWS
632 (1R21AI121738-01). DME is supported in part by CDC contract 200-2016-92313.

633

634 **Figure Legends**

635 **Figure 1:** A maximum-likelihood phylogeny of genomes sequenced in this study based on a
636 concatenation of 50,869 core genome SNPs. Each genome is annotated with its antimicrobial
637 susceptibility profile across 12 drugs. The annotations were visualized with the Interactive tree
638 of life (111).

639 **Figure 2:** A maximum-likelihood phylogeny of *A. baumannii* genomes sequenced in this study,
640 based on a concatenation of 182,766 core genome SNPs. The resistance profiles are shown
641 across paired genomes.

642 **Figure 3:** Screen of selected CARD proteins across all *Acinetobacter baumannii* genomes
643 sequenced in this study. The phylogeny is the same as is shown in Figure 1. The heatmap is
644 associated with the blast score ratio (BSR) (77) values of each region across each genome. The
645 BSR values were visualized with the Interactive tree of life (111).

646 **Figure 4:** Gene content comparisons between paired isolates in pair 1 (A), pair 3 (B), and pair 4
647 (C). All figures were generated with genoPlotR (76).

648 **Figure S1:** A maximum-likelihood phylogeny of global *A. baumannii* genomes inferred from an
649 alignment of 11,687 concatenated SNPs. Red dashes point to genomes sequenced in this
650 study.

651 **Figure S2:** A maximum-likelihood phylogeny of paired isolates. The conservation of selected
652 proteins from the CARD database, based on blast score ratio (BSR) values, is shown as a
653 heatmap. The BSR values were visualized with the Interactive tree of life (111).

654 **Figure S3:** A maximum likelihood phylogeny of *A. baumannii* genomes. The blast score ratio
655 (BSR) of genes associated with AMR (Table S3) were visualized as a heatmap with the
656 Interactive tree of life (111).

657 **Figure S4:** A maximum likelihood phylogeny of select *A. baumannii* genomes. The distribution
658 of the bla_{PER-1} beta-lactamase gene in ST368 genomes, based on blast score ratio (BSR)
659 values, was visualized as a heatmap with the Interactive tree of life (111).

660 **Figure S5:** A peptide alignment of *ampC* from pair 3 genomes. The variable residue is outlined
661 with a black box. The alignment was visualized with JalView (112).

662

663 **References**

- 664 1. O'Neill J. 2014. Antimicrobial resistance: tackling a crisis for the health and wealth of
665 nations. *Rev Antimicrob Resist* 20:1-16.
- 666 2. (WHO) WHO. 2018. Global priority list of antibiotic-resistant bacteria to guide research,
667 discovery, and development of new antibiotics.
- 668 3. Dijkshoorn L, Nemec A, Seifert H. 2007. An increasing threat in hospitals: multidrug-
669 resistant *Acinetobacter baumannii*. *Nat Rev Microbiol* 5:939-51.
- 670 4. Cisneros JM, Reyes MJ, Pachon J, Becerril B, Caballero FJ, Garcia-Garmendia JL, Ortiz
671 C, Cobacho AR. 1996. Bacteremia due to *Acinetobacter baumannii*: epidemiology,
672 clinical findings, and prognostic features. *Clin Infect Dis* 22:1026-32.
- 673 5. Qin H, Lo NW, Loo JF, Lin X, Yim AK, Tsui SK, Lau TC, Ip M, Chan TF. 2018.
674 Comparative transcriptomics of multidrug-resistant *Acinetobacter baumannii* in response
675 to antibiotic treatments. *Sci Rep* 8:3515.
- 676 6. Adams MD, Goglin K, Molyneaux N, Hujer KM, Lavender H, Jamison JJ, MacDonald IJ,
677 Martin KM, Russo T, Campagnari AA, Hujer AM, Bonomo RA, Gill SR. 2008.
678 Comparative genome sequence analysis of multidrug-resistant *Acinetobacter baumannii*.
679 *J Bacteriol* 190:8053-64.

680 7. Huang H, Yang ZL, Wu XM, Wang Y, Liu YJ, Luo H, Lv X, Gan YR, Song SD, Gao F.
681 2012. Complete genome sequence of *Acinetobacter baumannii* MDR-TJ and insights
682 into its mechanism of antibiotic resistance. *J Antimicrob Chemother* 67:2825-32.

683 8. Zhu L, Yan Z, Zhang Z, Zhou Q, Zhou J, Wakeland EK, Fang X, Xuan Z, Shen D, Li QZ.
684 2013. Complete genome analysis of three *Acinetobacter baumannii* clinical isolates in
685 China for insight into the diversification of drug resistance elements. *PLoS One*
686 8:e66584.

687 9. Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, Liolios L. 2006.
688 Heteroresistance to colistin in multidrug-resistant *Acinetobacter baumannii*. *Antimicrob
689 Agents Chemother* 50:2946-50.

690 10. Gehrlein M, Leying H, Cullmann W, Wendt S, Opferkuch W. 1991. Imipenem resistance
691 in *Acinetobacter baumanii* is due to altered penicillin-binding proteins. *Cancer Chemotherapy
692* 37:405-12.

693 11. Manchanda V, Sanchaita S, Singh N. 2010. Multidrug resistant acinetobacter. *J Glob
694 Infect Dis* 2:291-304.

695 12. Smani Y, Fabrega A, Roca I, Sanchez-Encinales V, Vila J, Pachon J. 2014. Role of
696 OmpA in the multidrug resistance phenotype of *Acinetobacter baumannii*. *Antimicrob
697 Agents Chemother* 58:1806-8.

698 13. Cho YJ, Moon DC, Jin JS, Choi CH, Lee YC, Lee JC. 2009. Genetic basis of resistance
699 to aminoglycosides in *Acinetobacter* spp. and spread of *armA* in *Acinetobacter
700 baumannii* sequence group 1 in Korean hospitals. *Diagn Microbiol Infect Dis* 64:185-90.

701 14. Coyne S, Rosenfeld N, Lambert T, Courvalin P, Perichon B. 2010. Overexpression of
702 resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in
703 *Acinetobacter baumannii*. *Antimicrob Agents Chemother* 54:4389-93.

704 15. Coyne S, Courvalin P, Perichon B. 2011. Efflux-mediated antibiotic resistance in
705 *Acinetobacter* spp. *Antimicrob Agents Chemother* 55:947-53.

706 16. Martinez Lacasa J, Garau J. 1997. [The role of carbapenems in the treatment of
707 nosocomial infection]. *Enferm Infect Microbiol Clin* 15 Suppl 1:78-85.

708 17. Bush K. 2018. Past and Present Perspectives on beta-Lactamases. *Antimicrob Agents
709 Chemother* 62.

710 18. Poirel L, Nordmann P. 2006. Carbapenem resistance in *Acinetobacter baumannii*:
711 mechanisms and epidemiology. *Clin Microbiol Infect* 12:826-36.

712 19. Liu Y, Liu X. 2015. Detection of AmpC beta-lactamases in *Acinetobacter baumannii* in
713 the Xuzhou region and analysis of drug resistance. *Exp Ther Med* 10:933-936.

714 20. Tian GB, Adams-Haduch JM, Taracila M, Bonomo RA, Wang HN, Doi Y. 2011.
715 Extended-spectrum AmpC cephalosporinase in *Acinetobacter baumannii*: ADC-56
716 confers resistance to cefepime. *Antimicrob Agents Chemother* 55:4922-5.

717 21. Sahl JW, Gillece JD, Schupp JM, Waddell VG, Driebe EM, Engelthaler DM, Keim P.
718 2013. Evolution of a pathogen: a comparative genomics analysis identifies a genetic
719 pathway to pathogenesis in *Acinetobacter*. *PLoS One* 8:e54287.

720 22. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, Pitt TL. 2006.
721 The role of ISAb1 in expression of OXA carbapenemase genes in *Acinetobacter
722 baumannii*. *FEMS Microbiol Lett* 258:72-7.

723 23. Sheikhalizadeh V, Hasani A, Ahangarzadeh Rezaee M, Rahmati-Yamchi M, Hasani A,
724 Ghotaslou R, Goli HR. 2017. Comprehensive study to investigate the role of various
725 aminoglycoside resistance mechanisms in clinical isolates of *Acinetobacter baumannii*. *J
726 Infect Chemother* 23:74-79.

727 24. Kim JW, Heo ST, Jin JS, Choi CH, Lee YC, Jeong YG, Kim SJ, Lee JC. 2008.
728 Characterization of *Acinetobacter baumannii* carrying bla(OXA-23), bla(PER-1) and
729 *armA* in a Korean hospital. *Clin Microbiol Infect* 14:716-8.

730 25. Mak JK, Kim MJ, Pham J, Tapsall J, White PA. 2009. Antibiotic resistance determinants
731 in nosocomial strains of multidrug-resistant *Acinetobacter baumannii*. *J Antimicrob
732 Chemother* 63:47-54.

733 26. Ribera A, Ruiz J, Vila J. 2003. Presence of the Tet M determinant in a clinical isolate of
734 *Acinetobacter baumannii*. *Antimicrob Agents Chemother* 47:2310-2.

735 27. Zhang T, Wang M, Xie Y, Li X, Dong Z, Liu Y, Wang L, Yang M, Song H, Cao H, Cao W.
736 2017. Active efflux pump adeB is involved in multidrug resistance of *Acinetobacter
737 baumannii* induced by antibacterial agents. *Exp Ther Med* 13:1538-1546.

738 28. Park S, Lee KM, Yoo YS, Yoo JS, Yoo JI, Kim HS, Lee YS, Chung GT. 2011. Alterations
739 of gyrA, gyrB, and parC and Activity of Efflux Pump in Fluoroquinolone-resistant
740 *Acinetobacter baumannii*. *Osong Public Health Res Perspect* 2:164-70.

741 29. Hujer KM, Hujer AM, Endimiani A, Thomson JM, Adams MD, Goglin K, Rather PN,
742 Pennella TT, Massire C, Eshoo MW, Sampath R, Blyn LB, Ecker DJ, Bonomo RA. 2009.
743 Rapid determination of quinolone resistance in *Acinetobacter* spp. *J Clin Microbiol*
744 47:1436-42.

745 30. Vila J, Ruiz J, Goni P, Marcos A, Jimenez de Anta T. 1995. Mutation in the gyrA gene of
746 quinolone-resistant clinical isolates of *Acinetobacter baumannii*. *Antimicrob Agents
747 Chemother* 39:1201-3.

748 31. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM,
749 Pereira S, Sharma AN, Doshi S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T,
750 Sardar D, Westman EL, Pawlowski AC, Johnson TA, Brinkman FS, Wright GD, McArthur
751 AG. 2017. CARD 2017: expansion and model-centric curation of the comprehensive
752 antibiotic resistance database. *Nucleic Acids Res* 45:D566-D573.

753 32. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup
754 FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. *J
755 Antimicrob Chemother* 67:2640-4.

756 33. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, Rolain
757 JM. 2014. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes
758 in bacterial genomes. *Antimicrob Agents Chemother* 58:212-20.

759 34. Liu B, Pop M. 2009. ARDB--Antibiotic Resistance Genes Database. *Nucleic Acids Res*
760 37:D443-7.

761 35. Lakin SM, Dean C, Noyes NR, Dettenwanger A, Ross AS, Doster E, Rovira P, Abdo Z,
762 Jones KL, Ruiz J, Belk KE, Morley PS, Boucher C. 2017. MEGARes: an antimicrobial
763 resistance database for high throughput sequencing. *Nucleic Acids Res* 45:D574-D580.

764 36. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, Jenney A,
765 Connor TR, Hsu LY, Severin J, Brisse S, Cao H, Wilksch J, Gorrie C, Schultz MB,
766 Edwards DJ, Nguyen KV, Nguyen TV, Dao TT, Mensink M, Minh VL, Nhu NT, Schultsz
767 C, Kuntaman K, Newton PN, Moore CE, Strugnell RA, Thomson NR. 2015. Genomic
768 analysis of diversity, population structure, virulence, and antimicrobial resistance in
769 *Klebsiella pneumoniae*, an urgent threat to public health. *Proc Natl Acad Sci U S A*
770 112:E3574-81.

771 37. Ruppe E, Cherkaoui A, Lazarevic V, Emonet S, Schrenzel J. 2017. Establishing
772 Genotype-to-Phenotype Relationships in Bacteria Causing Hospital-Acquired
773 Pneumonia: A Prelude to the Application of Clinical Metagenomics. *Antibiotics (Basel)* 6.

774 38. Karageorgopoulos DE, Falagas ME. 2008. Current control and treatment of multidrug-
775 resistant *Acinetobacter baumannii* infections. *Lancet Infect Dis* 8:751-62.

776 39. Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, Jacobs MR, Bonomo
777 RA. 2009. Resistance to colistin in *Acinetobacter baumannii* associated with mutations in
778 the PmrAB two-component system. *Antimicrob Agents Chemother* 53:3628-34.

779 40. Ordooei Javan A, Shokouhi S, Sahraei Z. 2015. A review on colistin nephrotoxicity. *Eur J
780 Clin Pharmacol* 71:801-10.

781 41. Metan G, Alp E, Yildiz O, Percin D, Aygen B, Sumerkan B. 2010. Clinical experience
782 with tigecycline in the treatment of carbapenem-resistant *Acinetobacter* infections. *J
783 Chemother* 22:110-4.

784 42. Goff DA, Bauer KA, Mangino JE. 2014. Bad bugs need old drugs: a stewardship
785 program's evaluation of minocycline for multidrug-resistant *Acinetobacter baumannii*
786 infections. *Clin Infect Dis* 59 Suppl 6:S381-7.

787 43. Aydemir H, Akduman D, Piskin N, Comert F, Horuz E, Terzi A, Kokturk F, Ornek T,
788 Celebi G. 2013. Colistin vs. the combination of colistin and rifampicin for the treatment of
789 carbapenem-resistant *Acinetobacter baumannii* ventilator-associated pneumonia.
790 *Epidemiol Infect* 141:1214-22.

791 44. Valencia R, Arroyo LA, Conde M, Aldana JM, Torres MJ, Fernandez-Cuenca F,
792 Garnacho-Montero J, Cisneros JM, Ortiz C, Pachon J, Aznar J. 2009. Nosocomial
793 outbreak of infection with pan-drug-resistant *Acinetobacter baumannii* in a tertiary care
794 university hospital. *Infect Control Hosp Epidemiol* 30:257-63.

795 45. Sahl JW, Johnson JK, Harris AD, Phillippe AM, Hsiao WW, Thom KA, Rasko DA. 2011.
796 Genomic comparison of multi-drug resistant invasive and colonizing *Acinetobacter
797 baumannii* isolated from diverse human body sites reveals genomic plasticity. *BMC
798 Genomics* 12:291.

799 46. Erntell M, Sjoberg U, Myhre EB, Kronvall G. 1988. Non-immune Fab- and Fc- mediated
800 interactions of avian Ig with *S. aureus* and group C and G streptococci. *APMIS* 96:239-
801 49.

802 47. Kumar A, Pattabiraman TN. 1988. Elimination of factors interfering in the estimation of
803 serum glycated albumin. *Indian J Biochem Biophys* 25:703-7.

804 48. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
805 Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G,
806 Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its
807 applications to single-cell sequencing. *J Comput Biol* 19:455-77.

808 49. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997.
809 Gapped BLAST and PSI-BLAST: a new generation of protein database search
810 programs. *Nucleic Acids Res* 25:3389-402.

811 50. Bartual SG, Seifert H, Hippler C, Luzon MA, Wisplinghoff H, Rodriguez-Valera F. 2005.
812 Development of a multilocus sequence typing scheme for characterization of clinical
813 isolates of *Acinetobacter baumannii*. *J Clin Microbiol* 43:4382-90.

814 51. Nemec A, Krizova L, Maixnerova M, Diancourt L, van der Reijden TJ, Brisse S, van den
815 Broek P, Dijkshoorn L. 2008. Emergence of carbapenem resistance in *Acinetobacter
816 baumannii* in the Czech Republic is associated with the spread of multidrug-resistant
817 strains of European clone II. *J Antimicrob Chemother* 62:484-9.

818 52. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*
819 30:2068-9.

820 53. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: Resolving bacterial genome
821 assemblies from short and long sequencing reads. *PLoS Comput Biol* 13:e1005595.

822 54. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q,
823 Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive
824 microbial variant detection and genome assembly improvement. *PLoS One* 9:e112963.

825 55. Delcher AL, Phillippy A, Carlton J, Salzberg SL. 2002. Fast algorithms for large-scale
826 genome alignment and comparison. *Nucleic Acids Res* 30:2478-83.

827 56. Sahl JW, Lemmer D, Travis J, Schupp JM, Gillece JD, Aziz M, Driebe EM, Drees KP,
828 Hicks ND, Williamson CHD, Hepp CM, Smith DE, Roe C, Engelthaler DM, Wagner DM,
829 Keim P. 2016. NASP: an accurate, rapid method for the identification of SNPs in WGS
830 datasets that supports flexible input and output formats. *Microbial Genomics* doi:DOI:
831 10.1099/mgen.0.000074.

832 57. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2--approximately maximum-likelihood
833 trees for large alignments. *PLoS One* 5:e9490.

834 58. Ahmed NH, Baba K, Clay C, Lekalakala R, Hoosen AA. 2012. In vitro activity of
835 tigecycline against clinical isolates of carbapenem resistant *Acinetobacter baumannii*
836 complex in Pretoria, South Africa. *BMC Res Notes* 5:215.

837 59. Bush K, Jacoby GA, Medeiros AA. 1995. A functional classification scheme for beta-
838 lactamases and its correlation with molecular structure. *Antimicrob Agents Chemother*
839 39:1211-33.

840 60. Chiu CH, Lee HY, Tseng LY, Chen CL, Chia JH, Su LH, Liu SY. 2010. Mechanisms of
841 resistance to ciprofloxacin, ampicillin/sulbactam and imipenem in *Acinetobacter*
842 *baumannii* clinical isolates in Taiwan. *Int J Antimicrob Agents* 35:382-6.

843 61. Damier-Piolle L, Magnet S, Bremont S, Lambert T, Courvalin P. 2008. AdelJK, a
844 resistance-nodulation-cell division pump effluxing multiple antibiotics in *Acinetobacter*
845 *baumannii*. *Antimicrob Agents Chemother* 52:557-62.

846 62. Endimiani A, Perez F, Bonomo RA. 2008. Cefepime: a reappraisal in an era of
847 increasing antimicrobial resistance. *Expert Rev Anti Infect Ther* 6:805-24.

848 63. Fernandez Cuenca F, Pascual A, Martinez Martinez L, Perea EJ. 2003. [In vitro activity
849 of azithromycin against clinical isolates of *Acinetobacter baumannii*]. *Rev Esp Quimioter*
850 16:204-8.

851 64. Hamidian M, Nigro SJ, Hall RM. 2012. Variants of the gentamicin and tobramycin
852 resistance plasmid pRAY are widely distributed in *Acinetobacter*. *J Antimicrob
853 Chemother* 67:2833-6.

854 65. Lee H, Yong D, Yum JH, Roh KH, Lee K, Yamane K, Arakawa Y, Chong Y. 2006.
855 Dissemination of 16S rRNA methylase-mediated highly amikacin-resistant isolates of
856 *Klebsiella pneumoniae* and *Acinetobacter baumannii* in Korea. *Diagn Microbiol Infect Dis*
857 56:305-12.

858 66. McCracken M, DeCorby M, Fuller J, Loo V, Hoban DJ, Zhanel GG, Mulvey MR. 2009.
859 Identification of multidrug- and carbapenem-resistant *Acinetobacter baumannii* in
860 Canada: results from CANWARD 2007. *J Antimicrob Chemother* 64:552-5.

861 67. Shi ZY, Liu PY, Lau Y, Lin Y, Hu BS, Shir JM. 1996. Antimicrobial susceptibility of
862 clinical isolates of *Acinetobacter baumannii*. *Diagn Microbiol Infect Dis* 24:81-5.

863 68. Xia J, Zhang D, Xu Y, Gong M, Zhou Y, Fang X. 2014. A retrospective analysis of
864 carbapenem-resistant *Acinetobacter baumannii*-mediated nosocomial pneumonia and
865 the in vitro therapeutic benefit of cefoperazone/sulbactam. *Int J Infect Dis* 23:90-3.

866 69. Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-
867 MEM. *arXiv.org*.

868 70. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del
869 Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY,
870 Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. 2011. A framework for variation discovery
871 and genotyping using next-generation DNA sequencing data. *Nature genetics* 43:491-8.

872 71. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K,
873 Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The Genome Analysis Toolkit: a
874 MapReduce framework for analyzing next-generation DNA sequencing data. *Genome
875 research* 20:1297-303.

876 72. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW. 2012.
877 GenBank. *Nucleic Acids Res* 40:D48-53.

878 73. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM.
879 2016. Mash: fast genome and metagenome distance estimation using MinHash.
880 *Genome Biol* 17:132.

881 74. Sahl JW, Caporaso JG, Rasko DA, Keim P. 2014. The large-scale blast score ratio (LS-
882 BSR) pipeline: a method to rapidly compare genetic content between bacterial genomes.
883 PeerJ 2:e332.

884 75. Kent WJ. 2002. BLAT--the BLAST-like alignment tool. Genome Res 12:656-64.

885 76. Guy L, Kultima JR, Andersson SG. 2010. genoPlotR: comparative gene and genome
886 visualization in R. Bioinformatics 26:2334-5.

887 77. Rasko DA, Myers GS, Ravel J. 2005. Visualization of comparative genomic analyses by
888 BLAST score ratio. BMC Bioinformatics 6:2.

889 78. Boisvert S, Laviolette F, Corbeil J. 2010. Ray: simultaneous assembly of reads from a
890 mix of high-throughput sequencing technologies. J Comput Biol 17:1519-33.

891 79. Drouin A, Letarte G, Raymond F, Marchand M, Corbeil J, Laviolette F. 2019.
892 Interpretable genotype-to-phenotype classifiers with performance guarantees. Sci Rep
893 9:4071.

894 80. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using
895 DIAMOND. Nat Methods 12:59-60.

896 81. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new versatile
897 metagenomic assembler. Genome Res 27:824-834.

898 82. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and
899 bias-aware quantification of transcript expression. Nat Methods 14:417-419.

900 83. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion
901 for RNA-seq data with DESeq2. Genome Biol 15:550.

902 84. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and
903 powerful approach to multiple testing. Journal of the Royal Statistical Society Series B
904 57:289-300.

905 85. Colman RE, Schupp JM, Hicks ND, Smith DE, Buchhagen JL, Valafar F, Crudu V,
906 Romancenco E, Noroc E, Jackson L, Catanzaro DG, Rodwell TC, Catanzaro A, Keim P,
907 Engelthaler DM. 2015. Detection of Low-Level Mixed-Population Drug Resistance in
908 Mycobacterium tuberculosis Using High Fidelity Amplicon Sequencing. PLoS One
909 10:e0126626.

910 86. Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq
911 quantification. Nat Biotechnol 34:525-7.

912 87. Jacoby GA. 2009. AmpC beta-lactamases. Clin Microbiol Rev 22:161-82, Table of
913 Contents.

914 88. Rossjohn J, Polekhina G, Feil SC, Allocati N, Masulli M, Di Illio C, Parker MW. 1998. A
915 mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary
916 implications. Structure 6:721-34.

917 89. Lallement C, Pasternak C, Ploy MC, Jove T. 2018. The Role of ISCR1-Borne POUT
918 Promoters in the Expression of Antibiotic Resistance Genes. Front Microbiol 9:2579.

919 90. Vuilleumier S. 1997. Bacterial glutathione S-transferases: what are they good for? J
920 Bacteriol 179:1431-41.

921 91. Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, Cha CJ, Jeong BC, Lee SH. 2017.
922 Biology of *Acinetobacter baumannii*: Pathogenesis, Antibiotic Resistance Mechanisms,
923 and Prospective Treatment Options. Front Cell Infect Microbiol 7:55.

924 92. Yong D, Shin JH, Kim S, Lim Y, Yum JH, Lee K, Chong Y, Bauernfeind A. 2003. High
925 prevalence of PER-1 extended-spectrum beta-lactamase-producing *Acinetobacter* spp.
926 in Korea. Antimicrob Agents Chemother 47:1749-51.

927 93. Brandt C, Braun SD, Stein C, Slickers P, Ehricht R, Pletz MW, Makarewicz O. 2017. In
928 silico serine beta-lactamases analysis reveals a huge potential resistome in
929 environmental and pathogenic species. Sci Rep 7:43232.

930 94. Lai JH, Yang JT, Chern J, Chen TL, Wu WL, Liao JH, Tsai SF, Liang SY, Chou CC, Wu
931 SH. 2016. Comparative Phosphoproteomics Reveals the Role of AmpC beta-lactamase

932 Phosphorylation in the Clinical Imipenem-resistant Strain *Acinetobacter baumannii*
933 SK17. *Mol Cell Proteomics* 15:12-25.

934 95. Schafer U, Beck K, Muller M. 1999. Skp, a molecular chaperone of gram-negative
935 bacteria, is required for the formation of soluble periplasmic intermediates of outer
936 membrane proteins. *J Biol Chem* 274:24567-74.

937 96. Eguale T, Marshall J, Molla B, Bhatiya A, Gebreyes WA, Engidawork E, Asrat D, Gunn
938 JS. 2014. Association of multicellular behaviour and drug resistance in *Salmonella*
939 enterica serovars isolated from animals and humans in Ethiopia. *J Appl Microbiol*
940 117:961-971.

941 97. Sklar JG, Wu T, Kahne D, Silhavy TJ. 2007. Defining the roles of the periplasmic
942 chaperones SurA, Skp, and DegP in *Escherichia coli*. *Genes Dev* 21:2473-84.

943 98. Poole K. 2012. Bacterial stress responses as determinants of antimicrobial resistance. *J*
944 *Antimicrob Chemother* 67:2069-89.

945 99. Ravasi P, Limansky AS, Rodriguez RE, Viale AM, Mussi MA. 2011. ISAb825, a
946 functional insertion sequence modulating genomic plasticity and bla(OXA-58) expression
947 in *Acinetobacter baumannii*. *Antimicrob Agents Chemother* 55:917-20.

948 100. Afzal-Shah M, Woodford N, Livermore DM. 2001. Characterization of OXA-25, OXA-26,
949 and OXA-27, molecular class D beta-lactamases associated with carbapenem
950 resistance in clinical isolates of *Acinetobacter baumannii*. *Antimicrob Agents Chemother*
951 45:583-8.

952 101. Danes C, Navia MM, Ruiz J, Marco F, Jurado A, Jimenez de Anta MT, Vila J. 2002.
953 Distribution of beta-lactamases in *Acinetobacter baumannii* clinical isolates and the
954 effect of Syn 2190 (AmpC inhibitor) on the MICs of different beta-lactam antibiotics. *J*
955 *Antimicrob Chemother* 50:261-4.

956 102. Kwon NY, Kim JD, Pai HJ. 2002. The resistance mechanisms of b-lactam antimicrobials
957 in clinical isolates of *Acinetobacter baumannii*. *Korean J Intern Med* 17:94-9.

958 103. Raible KM, Sen B, Law N, Bias TE, Emery CL, Ehrlich GD, Joshi SG. 2017. Molecular
959 characterization of beta-lactamase genes in clinical isolates of carbapenem-resistant
960 *Acinetobacter baumannii*. *Ann Clin Microbiol Antimicrob* 16:75.

961 104. Marchand I, Damier-Piolle L, Courvalin P, Lambert T. 2004. Expression of the RND-type
962 efflux pump AdeABC in *Acinetobacter baumannii* is regulated by the AdeRS two-
963 component system. *Antimicrob Agents Chemother* 48:3298-304.

964 105. Su XZ, Chen J, Mizushima T, Kuroda T, Tsuchiya T. 2005. AbeM, an H+-coupled
965 *Acinetobacter baumannii* multidrug efflux pump belonging to the MATE family of
966 transporters. *Antimicrob Agents Chemother* 49:4362-4.

967 106. Lister PD, Wolter DJ, Hanson ND. 2009. Antibacterial-resistant *Pseudomonas*
968 *aeruginosa*: clinical impact and complex regulation of chromosomally encoded
969 resistance mechanisms. *Clin Microbiol Rev* 22:582-610.

970 107. Sood S. 2016. Chloramphenicol - A Potent Armament Against Multi-Drug Resistant
971 (MDR) Gram Negative Bacilli? *J Clin Diagn Res* 10:DC01-3.

972 108. Chewapreecha C, Marttinen P, Croucher NJ, Salter SJ, Harris SR, Mather AE, Hanage
973 WP, Goldblatt D, Nosten FH, Turner C, Turner P, Bentley SD, Parkhill J. 2014.
974 Comprehensive identification of single nucleotide polymorphisms associated with beta-
975 lactam resistance within pneumococcal mosaic genes. *PLoS Genet* 10:e1004547.

976 109. Wheeler NE, Reuter S, Chewapreecha C, Lees JA, Blane B, Horner C, Enoch D, Brown
977 NM, Torok ME, Aanensen DM, Parkhill J, Peacock SJ. 2019. Contrasting approaches to
978 genome-wide association studies impact the detection of resistance mechanisms in
979 *Staphylococcus aureus*. *bioRxiv* doi:<https://doi.org/10.1101/758144>.

980 110. Mamedov IZ, Britanova OV, Zvyagin IV, Turchaninova MA, Bolotin DA, Putintseva EV,
981 Lebedev YB, Chudakov DM. 2013. Preparing unbiased T-cell receptor and antibody
982 cDNA libraries for the deep next generation sequencing profiling. *Front Immunol* 4:456.

983 111. Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display
984 and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242-5.
985 112. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. 2009. Jalview Version 2--
986 a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189-
987 91.
988
989
990
991
992
993
994

Table 1: A list of antimicrobials screened in the current study

Antimicrobial	Abbreviation	Family	Publication	Susceptible breakpoint	Resistant breakpoint	Reference
cefpime	PM	B-lactam	Endimiani et al. 2008	>=32	<=8	CLSI
cefuroxime	XM	B-lactam	Ahmed et al. 2012	>=128	<=32	N/A
gentamicin	GM	aminoglycoside	Hamidian et al. 2012	>=16	<=4	CLSI
ceftazidime	TZ	B-lactam	Lee et al. 2006	>=16	<=4	CLSI
trimethoprim	TR	pyrimidine inhibitor	McCracken et al. 2009	>=32	<=4	EUCAST ¹
azithromycin	AZ	macrolide	Fernandez Cuenca et al. 2003	>=256	<=8	N/A
ceftriaxone	TX	B-lactam	Bush et al. 1995	>=64	<=8	CLSI
aztreonam	AT	B-lactam	Xia et al. 2014	>=32	<=8	CLSI
erythromycin	EM	macrolide	Damier-Piolle et al. 2008	>=8	<=0.5	CLSI ²
piperacillin	PP	B-lactam	Shi et al. 1996	>=128	<=16	CLSI
levofloxacin	LE	fluroquinolone	Lee et al. 2006	>1	<=0.5	EUCAST
ciprofloxacin	CI	fluroquinolone	Chiu et al. 2010	>=4	<=1	CLSI

¹Enterobacteriaceae

²Enterococcus

995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010

Table 2: Paired isolate antimicrobial susceptibility

Intermediate isolate	Resistant Isolate	Drug	Pair number	PubMLST/Pasteur	Resistant MIC	
					Other MIC	
TG22627	TG22182	TX,TZ	1	ST368/ST2	>256, >256	48, 8
TG31302	TG31986	PM	2	ST1961/ST78	>256	12
TG31307	TG29392	XM,TX	3	ST1961/ST78	>256, >256	64, 32
TG60155	TG22653	PM	4	ST208/ST2	>256	16

1011
1012
1013
1014
1015

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

Table 3: Kover results for AMR across *A. baumannii*

Drug	#Resistant isolates	#Susceptible isolates	Importance	Equivalent rules	#loci
AT	57	7		105	9
TZ	68	9	1	10000	1922
PM	61	13	1	665	37
LE	71	12	1	55	8
GM	57	16	0.87	1	1
AZ	50	6	1	893	81
XM	67	11	0.86	2193	225
TR	84	0	N/A	N/A	N/A
TX	67	3	N/A	N/A	N/A
EM	81	0	N/A	N/A	N/A
PP	69	5	1	10000	2309
CI	73	11	1	143	23

1027
1028
1029
1030
1031

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

Table 4: Associated genotype/phentotype genomic regions

Drug	#Resistant (R)	#Susceptible (S)	#unique 21-mers (R)	#unique 21-mers (S)	#unique genes (R)	#unique genes (S)
AT	57	7	0	0	0	0
AZ	50	6	0	0	0	0
CL	73	11	0	0	0	0
EM	81	0	N/A	N/A	N/A	N/A
GM	57	16	0	0	0	0
LE	71	12	0	0	0	0
PM	61	13	0	0	0	0
PP	70	5	0	3	0	0
TX	67	3	3*	47	1*	0
TZ	68	9	0	0	0	0
XM	67	11	0	0	0	0

*Present in n-1 genomes

1043
1044
1045
1046
1047

1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Table 5: Differentially-expressed regions based on RNA-Seq

Pair	Locus	Product	Genome BSR (resistant)	Genome BSR (susceptible)	Avg Counts (Resistant)	Avg Counts (Susceptible)	Wald stat
1	EA674_08405	glutathione S-transferase	1.00	1.00	3331	349	42.62
1	EA674_03600	multidrug efflux permease AdeJ	1.00	1.00	1800	17112	41.74
1	EA674_03605	multidrug efflux adaptor AdeI	1.00	1.00	651	7275	39.04
1	EA674_08405	glutathione S-transferase	1.00	1.00	3834	349	42.62
1	EA714_008075	Per-1 beta lactamase	1.00	0.96	6490	7	30.39
1	EA674_03595	multidrug efflux channel AdeK	1.00	1.00	883	5474	30.17
1	EA674_11070	OXA-51 family beta lactamase	1.00	1.00	2268	9618	23.07
1	EA674_00940	outer membrane protein carO	1.00	1.00	2742	1332	13.49
2	EA665_008865	OXA-51 family beta lactamase	1.00	1.00	3386	3542	1.58
2	EA743_11455	recombinase RecA	1.00	1.00	944	241	19.48
2	EA743_11495	BamA	1.00	1.00	5350	3679	10.96
2	EA743_11530	methylthiotransferase rimO	1.00	1.00	2996	2037	10.63
2	EA743_11500	RIP metalloprotease rseP	1.00	1.00	1935	1305	9.81
2	EA743_11490	outer membrane protein OmpH	1.00	1.00	1691	1161	9.71
3	EA667_019445	OXA-51 family beta lactamase	1.00	1.00	9710	5192	11.24
4	EA719_004515	outer membrane protein carO	1.00	0.62	4926	100	45.44

1059
1060
1061
1062
1063

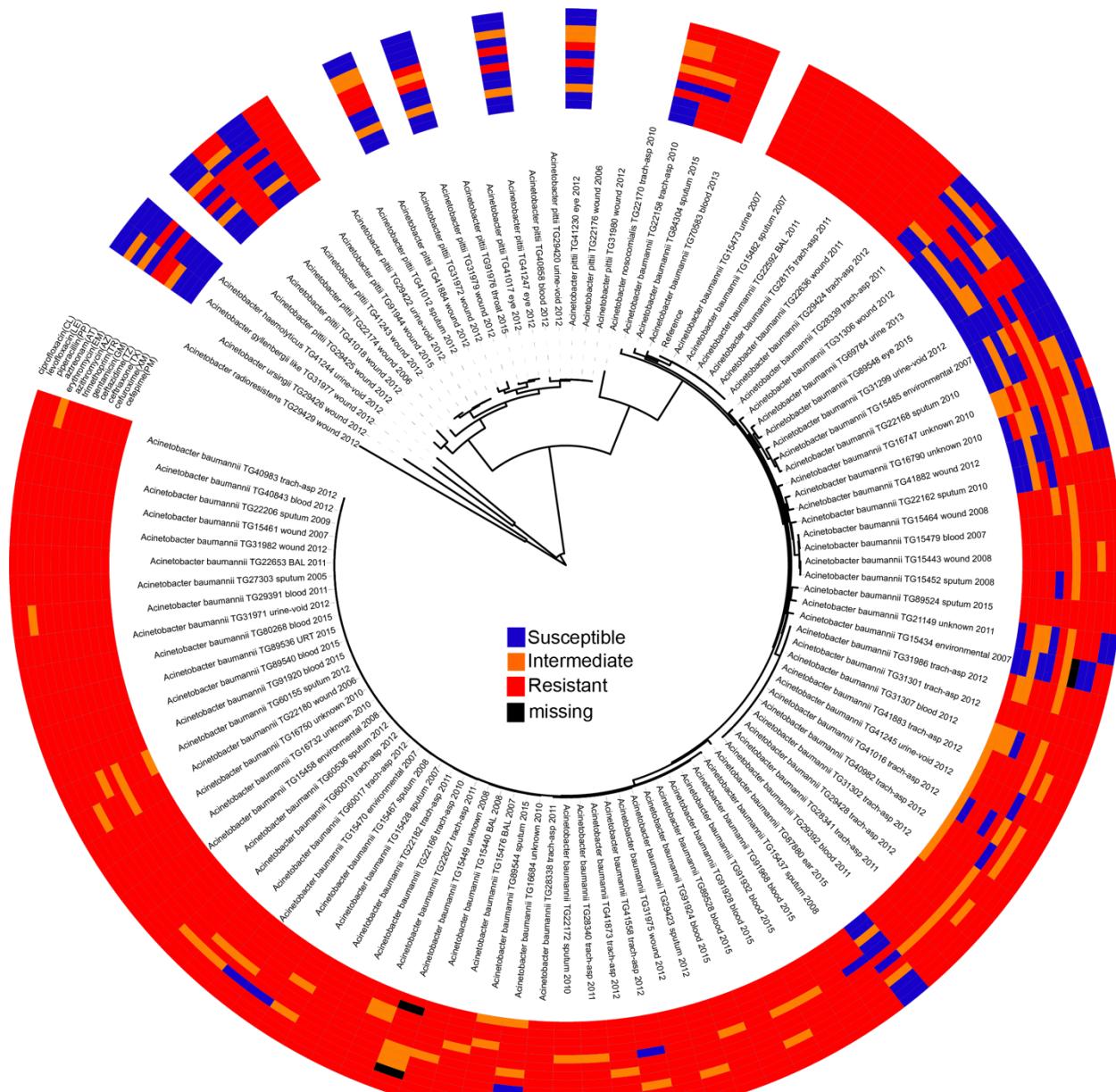

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

Table 6: AmpSeq results

Pair	Locus	Read counts (R)	Read counts (I)	Control counts (R)	Control counts (I)	AVG. delta (R)	AVG. delta (I)	delta-delta	p-value
1	PER-1 (EA714_008075)	30867	309	30007	62187	1549	61878	60329	<0.0001
1	aphA1 (EA674_13195)	9172	9	30007	62187	23832	62178	38346	<0.0001
2	ampC (EA743_05675)	48550	45017	10047	10783	39002	34233	4769	0.240
3	OXA_65 (EA746_016395)	22818	24152	30446	40298	7078	16146	9068	0.0003
4	carO (EA719_004515)	31632	25088	7067	30654	20926	5566	15360	<0.0001
4	CsuA/B (EA719_006180)	23920	4	7067	30654	15309	30650	15341	<0.0001

1075
1076
1077
1078
1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

1091

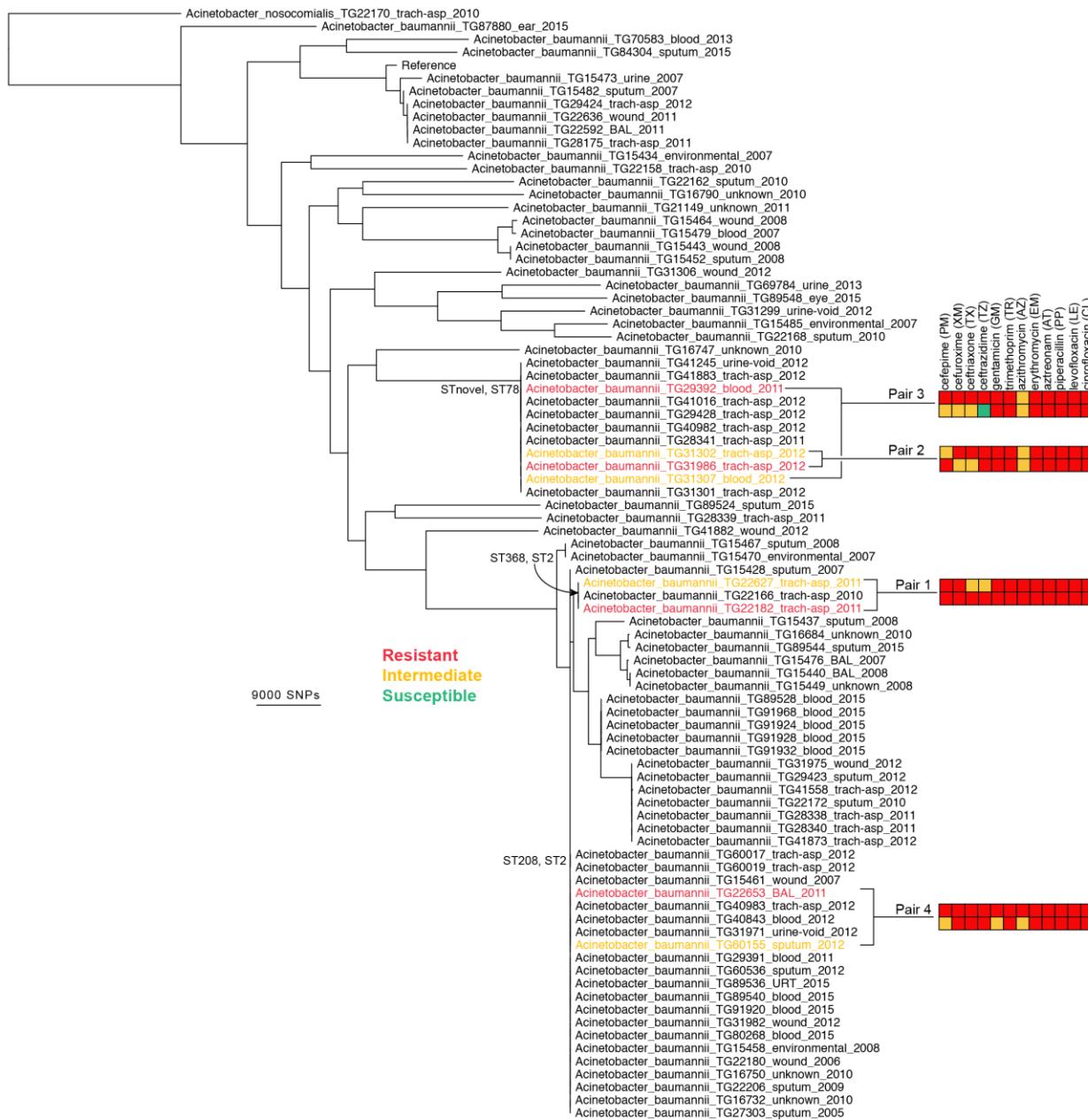
1092 *Figure 1*

1093

1094

1095

1096


1097

1008

1000

1100

1101

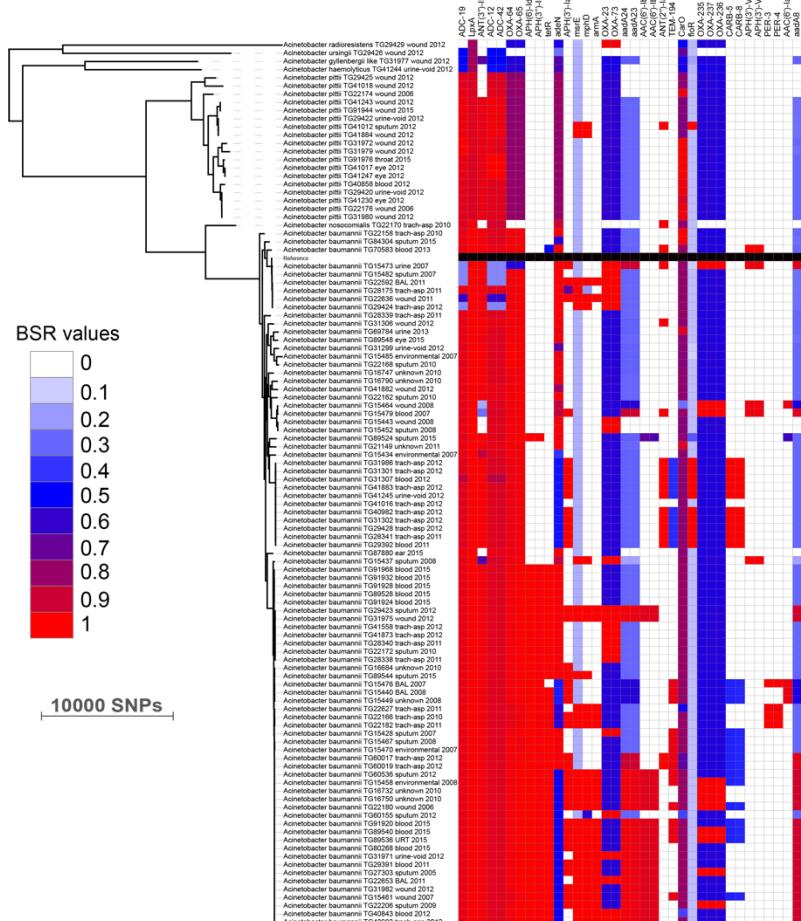
1102

1103 *Figure 2*

1104

1105

1106


1107

1108

1109

1110

1111

1112

1113 *Figure 3*

1114

1115

1116

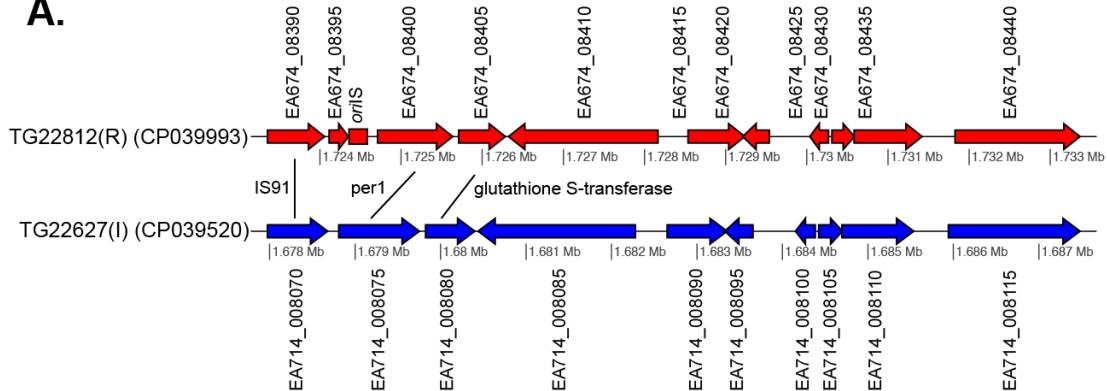
1117

118

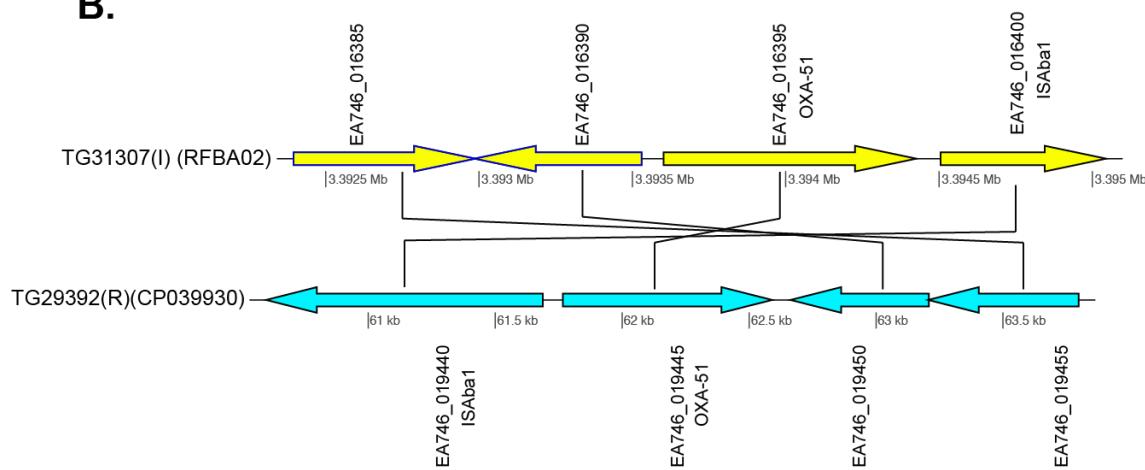
119

1120

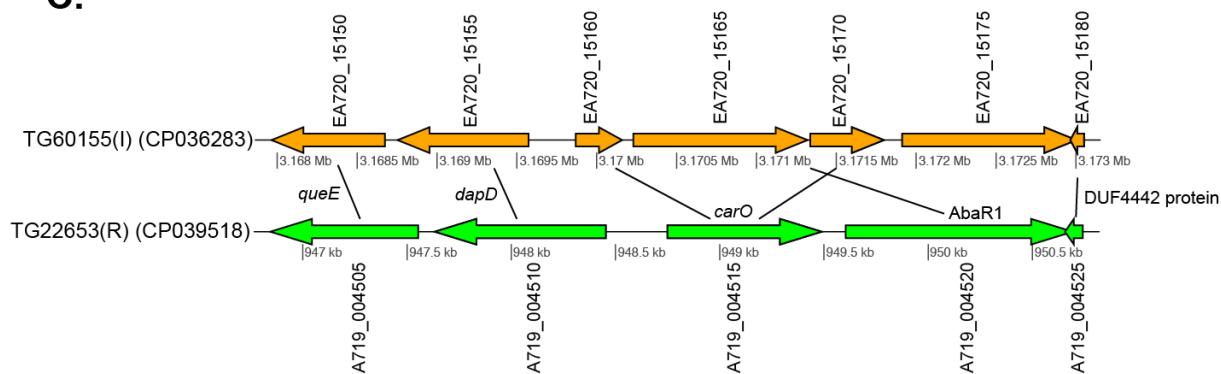
1168


1123

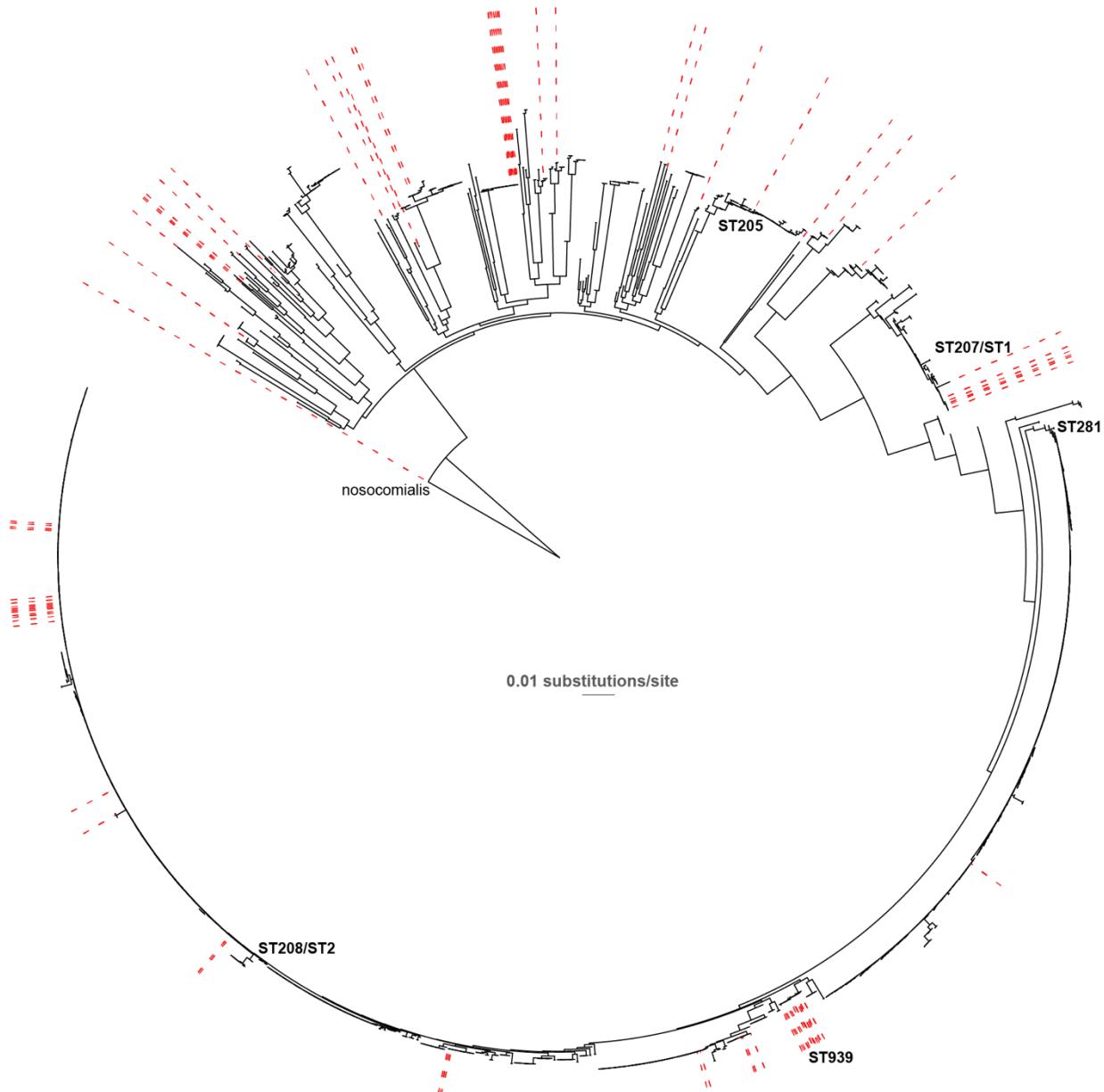
1121


1125

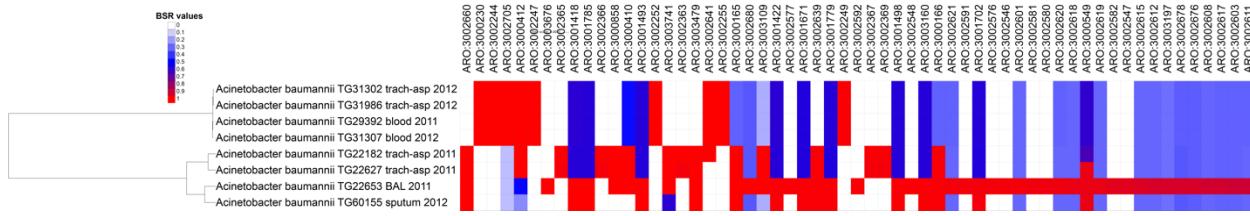
1126
1127
1128


A.

B.



C.


1129
1130 *Figure 4*
1131
1132
1133

1134
1135
1136
1137

1138
1139 *Supplemental Figure 1*
1140
1141
1142
1143

1144

1145

1146 *Supplemental Figure 2*

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

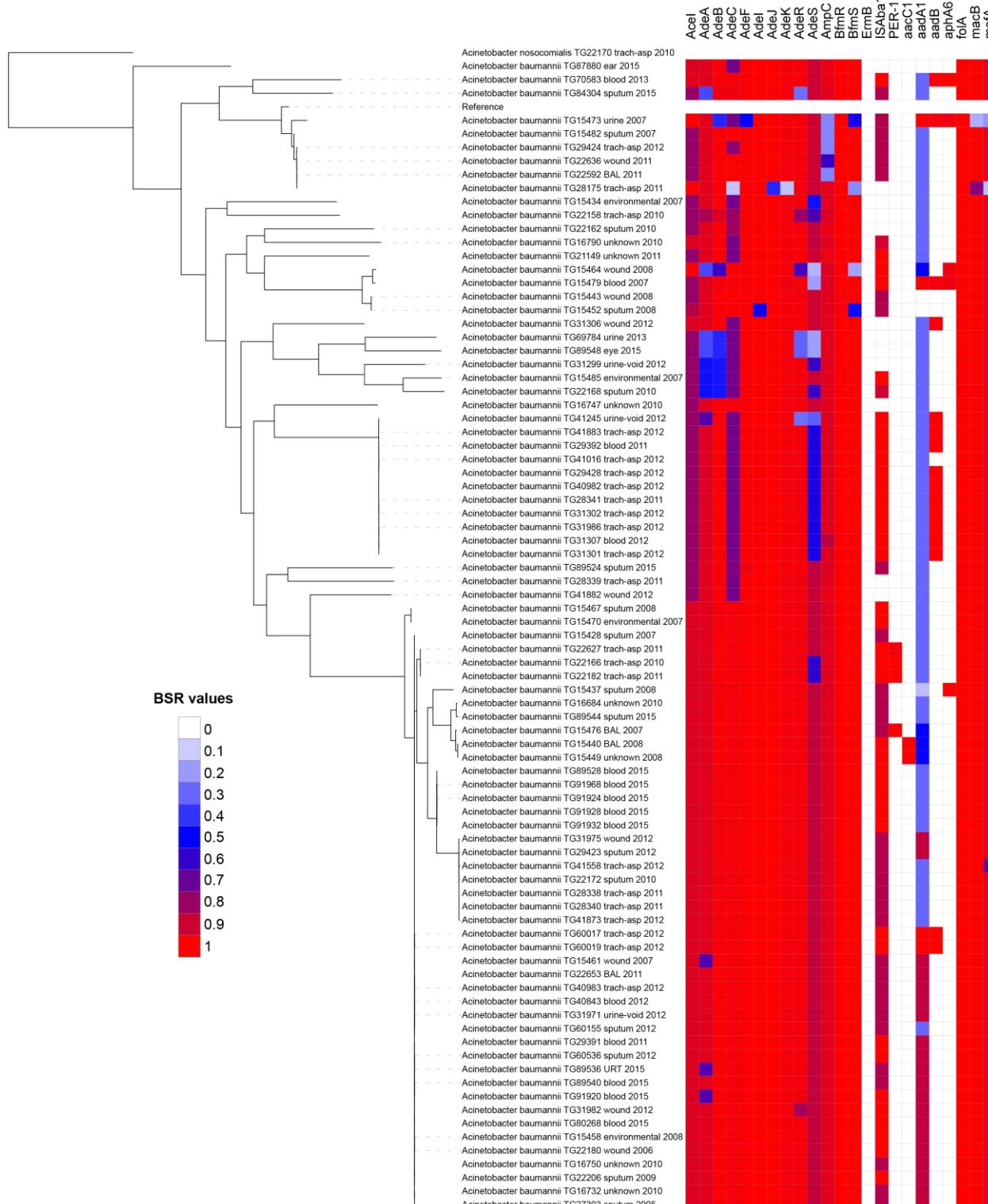
1165

1166

1167

1168

1169

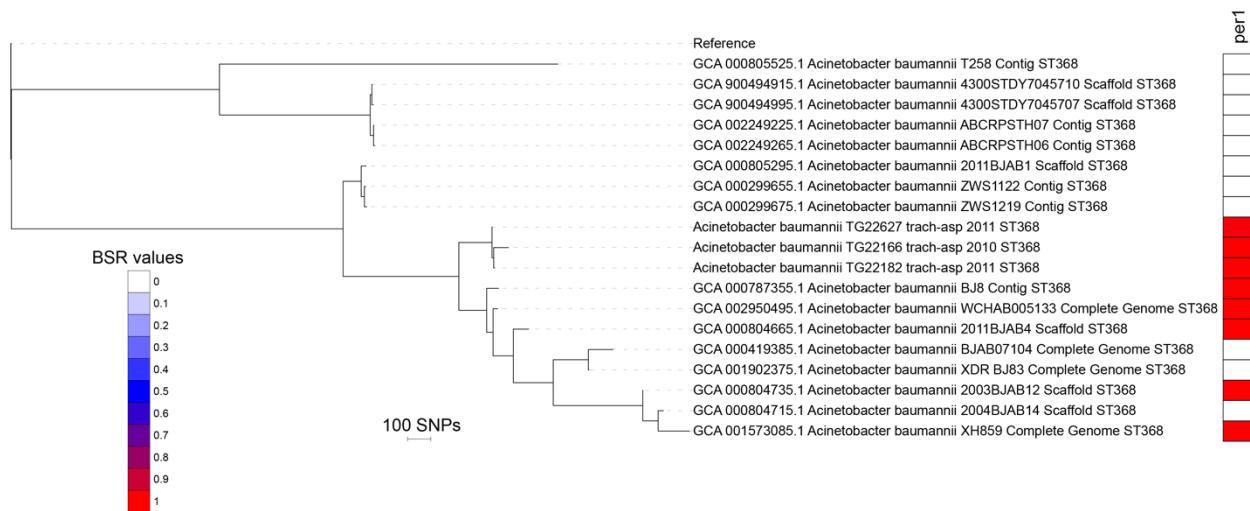

1170

1171

1172

1173

1174


1175

1176 *Supplemental Figure 3*

1177

1178

1179

1180

1181 *Supplemental Figure 4*

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207 *Supplemental Figure 5*

Supplemental Figure 5

Supplemental Figure 3