
Deep exploration networks for rapid engineering of functional DNA sequences 
 
Johannes Linder​1$​, Nicholas Bogard ​2​, Alexander B. Rosenberg ​2​ and Georg Seelig ​1,2 
 
1​ Paul G. Allen School of Computer Science & Engineering, University of Washington 
2​ Department of Electrical & Computer Engineering, University of Washington 
$​ Correspondence: jlinder2@cs.washington.edu 
 
Engineering gene sequences with defined functional properties is a major goal of            
synthetic biology. Deep neural network models, together with gradient ascent-style          
optimization, show promise for sequence generation. The generated sequences can          
however get stuck in local minima, have low diversity and their fitness depends             
heavily on initialization. Here, we develop deep exploration networks (DENs), a type of             
generative model tailor-made for searching a sequence space to minimize the cost of             
a neural network fitness predictor. By making the network compete with itself to             
control sequence diversity during training, we obtain generators capable of sampling           
hundreds of thousands of high-fitness sequences. We demonstrate the power of           
DENs in the context of engineering RNA isoforms, including polyadenylation and cell            
type-specific differential splicing. Using DENs, we engineered polyadenylation signals         
with more than 10-fold higher selection odds than the best gradient ascent-generated            
patterns and identified splice regulatory elements predicted to result in highly           
differential splicing between cell lines. 
 
Designing DNA sequences for a target cellular function is a difficult task, as the              
cis-regulatory information encoded in any stretch of DNA can be very complex and affect              
numerous mechanisms, including transcriptional and translational efficiency, chromatin        
accessibility, splicing, 3’ end processing, and more. Yet, sequence-level design of genetic            
components and proteins has been making rapid progress in the past few years. Part of this                
advancement can be attributed to the collection of large biological data sets and improved              
bioinformatics modeling. In particular deep learning has emerged as state-of-the-art in           
predictive modeling for many sequence-function problems (Alipanahi et. al., 2015; Zhou et.            
al., 2015; Quang et. al., 2019; Avsec et. al., 2019; Kelley et. al., 2016; Greenside et. al.,                 
2018; Kelley et. al., 2018; Jaganathan et. al., 2019; Cuperus et. al., 2017; Eraslan et. al.,                
2019). These models are now beginning to be combined with search heuristics and             
high-throughput assays to forward-engineer DNA and protein sequences (Rocklin et. al.,           
2017, Biswas et. al., 2018; Sample et. al., 2019; Bogard et. al., 2019). The ability to code                 
regulatory DNA and protein function could prove useful for a wide range of applications. For               
example, controlling cell type-specific transcriptional, translational and isoform activity would          
enable engineering of highly specific delivery vectors and gene circuits. Functional protein            
design, e.g. generating heterodimer binders or proteins with optimally stable 3D structures,            
could prove transformative in T-cell therapy, drug interaction and drug delivery. 
 
Discrete search heuristics such as genetic algorithms have long been considered the            
standard method for sequence design (Eiben & Smith, 2015; Shukla, Pandey & Mehrotra,             
2015; Mirjalili et. al., 2020). Recently, however, gradient ascent optimization of the input             
sequence through a neural network fitness predictor has been proposed as a promising             
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alternative. At its core, sequence generation via gradient ascent treats the input pattern as a               
position weight matrix (PWM). A neural network, pre-trained to predict a biological function,             
is used to evaluate the PWM fitness. The fitness score is used to compute a gradient with                 
respect to the PWM parameters and the sequence PWM is iteratively optimized by gradient              
ascent. This class of algorithms, applied to sequences, was first employed to visualize             
transcription factor binding motifs learned from ChiP-Seq data (Lanchantin et. al., 2016). A             
modified version of the algorithm, with gradient estimators to allow passing sampled one-hot             
coded patterns as input, was used to engineer alternative polyadenylation (APA) sites            
(Bogard et. al., 2019). Direct gradient ascent on the input has also been successful in               
generating protein 3D structures (Evans et. al., 2018). Finally, the method has been used to               
indirectly optimize sequences with respect to a fitness predictor by traversing a pre-trained             
generative model and iteratively updating its latent input. For example, it has been applied to               
the input seed of a generative adversarial network (GAN) trained on the genome to engineer               
synthetic sequences that mimic conserved genomic elements (Killoran et. al., 2017).  
 
Gradient ascent-style sequence optimization can be considered a continuous relaxation of           
discrete nucleotide-swapping searches, and as such makes efficient use of neural network            
differentiability; rather than naively trying out random changes, we follow a gradient to make              
stepwise local improvements on the fitness objective. Still, the basic method has a number              
of limitations. First, while the method makes incremental changes to all nucleotides            
simultaneously and may overcome some of the local minima a discrete search could not, it               
may nevertheless get stuck in local minima and the fitness of the converged patterns depend               
on PWM initialization (Bogard et. al., 2019). Second, it is computationally expensive to re-run              
gradient ascent for every sequence to generate. In fact, the method has no means of               
controlling the diversity of the optimized sequences, which may be required for generation of              
large candidate sequence sets. 
 
To address these limitations, we developed Deep Exploration Networks (DENs), a variant of             
generative neural network models. The base architecture consists of a generator network            
connected to a differentiable fitness predictor. The generator produces sequence patterns           
which the predictor evaluates on the basis of an objective function; the overall goal is to                
generate sequences maximizing the objective. The core contribution of DENs is to explicitly             
control the sequence diversity generated during training. By making the generator compete            
with itself and penalize any two generated sequences based on similarity, we force the              
model to explore a much larger region of the cost landscape and effectively maximize both               
sequence fitness and diversity (​Figure 1A​). The architecture shares similarities with (Killoran            
et. al., 2017) but instead of optimizing the input seed of a pre-trained GAN, we optimize the                 
weights of the generator to maximize both sequence fitness and diversity.  
 
Controlling pattern diversity enables DENs to sample multiple high-fitness outputs given a            
single input. To exemplify this idea, we construct “Inverse regression” models; given a             
real-valued regression target as input, the generator stochastically samples a sequence           
according to the target. This approach is conceptually similar to a variational autoencoder             
(Kingma & Welling, 2013) and conditioning by adaptive sampling (Brookes et. al., 2019), but              
rather than encoding the original pattern distribution or a conditional distribution, the model             
encodes the inverse of the predictor model while maximizing pattern variation. 

2 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 4, 2019. ; https://doi.org/10.1101/864363doi: bioRxiv preprint 

https://doi.org/10.1101/864363
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
We evaluate the utility of DENs on three synthetic biology applications (​Figure 1B​): First,              
we develop a basic model to generate 3’ UTR sequences with target APA isoform              
abundance. Second, we extend the model to do conditional multi-class generation in the             
context of guiding 3’ cleavage position. Finally, we use DENs to construct splice regulatory              
sequences that are predicted to result in maximal differential splicing between two cell types. 
 
Exploration In Deep Generative Models 
The predictor used in a DEN is a differentiable model capable of predicting some property                
of an input pattern. The generator is a neural network designed to produce a pattern which                 
can be passed as input to the predictor. Here, we are interested in generating DNA               
sequences; these patterns are typically represented as 1-hot-coded matrices, where the           
columns (length N) denote nucleotide position and rows (M channels) denote nucleotide            

identity. Hence, the pattern space is . The predictor output is used to define an               
objective (the ​cost function​), and the overall goal is to optimize the generator such that the                
generated sequences minimize the cost function (​Figure 1C​). The predictor thus provides            
gradients of the objective to the generator, which in turn can update its internal weights by                
gradient descent. At convergence, the generator is optimized to synthesize new patterns            
which are (locally) optimally minimizing the cost. Only the generator is optimized, having             
pre-trained the predictor network to accurately predict the targeted biological function. 
 
We first define the fitness objective in terms of the predictor’s output. For example, in the                
case of models that predict isoform abundances, we might want to minimize the             
KL-divergence between the predicted and target isoform proportion. However, if we only            
maximize the fitness objective, it is likely that the generator will learn to only produce one                
single pattern, even when feeding new input seeds to the generator. The generator can              
simply choose to ignore the entropy induced by the seed. In fact, if the cost function has                 
many local minima, there is nothing promoting exploration during training of the generator.             
Rather, it learns to always output the pattern located at the bottom of the local optimum we                 
started in. There may however exist other, better, local minima.  
 
The distinguishing feature of a DEN is to enforce exploration during training by controlling              
the degree of sequence diversity generated by the network. Diversity is explicitly controlled             
in the cost function by making the generator compete with itself; we penalize any two               
generated sequence patterns based on similarity, forcing the generator to maintain entropy            
in the weights from the input seed and constantly form new sequences. This mechanism is               
implemented by running the generator twice at each step of the optimization, with two              
random seeds, and penalizing the two patterns on the basis of a similarity metric. We refer to                 
the coefficient of the similarity loss in the cost function as the ​repel weight​. 
 
This cost function layout is quite different compared to a classical GAN (Goodfellow et. al.,               
2014), which is typically optimized to minimize some cost such that            
an adversarial discriminator can not distinguish between the real data and the distribution              
generated by . Here, we instead jointly minimize the fitness cost of an              
arbitrary predictor and an adversarial diversity cost of the           
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generator . Note that, in contrast to (Killoran et. al., 2017) where optimization is done on a                 
single input seed of a pre-trained GAN, , we optimize the generator            

 itself,  for all seeds . 
 
In the context of genomics, where the generator produces 1-hot-coded sequences, we            
penalize patterns using a multi-offset cosine similarity metric. We found empirically that            
minimizing a slack-bound cosine similarity gives the best results, where a fraction of the              
sequences can be identical up to a margin without incurring any loss. Given two patterns                

 and  generated by , we define the similarity loss as: 
 

 
 
The cost function now provides gradients rewarding diverse pattern generation and this            
exploration component is balanced by the exploitation component of maximizing the fitness            
objective. The generator can be trained to minimize the compound cost using a             
gradient-based optimizer. We built the DEN in Keras (Chollet et. al., 2015) and optimized the               
generator with Adam (Kingma et. al., 2014). 
 
Pattern Representation for Genomics 
A generator cannot output discrete 1-hot-coded patterns in and still maintain            
differentiability from the predictor to the generator. Two different methods have been            
proposed to address this issue: (1) representing the input pattern as a continuous,             
differentiable distribution, and (2) representing the pattern by discrete samples and           
approximating the gradient. Both methods are coupled with their own intrinsic artifacts and             
we show that using both representations together during training may enhance convergence. 
 
In both methods, the generator produces patterns in , representing nucleotide           
scores. By applying a column-wise Softmax transform, we turn these scores into nucleotide             
probabilities (a PWM). Finally, we multiply the PWM with a mask matrix, zeroing out all               
elements corresponding to fixed (non-changeable) sequence context, and add a template           
matrix which encodes the fixed sequence (​Figure 1D​). The first method has previously been              
demonstrated in the context of genomics (Killoran et. al., 2017; Stewart et. al. 2018) and we                
refer to it here as Relaxed Input Form Representation (RIFR). In RIFR, the PWM is directly                

passed to the predictor (as a continuous relaxation of the input). The predictor has               
never been trained on real-valued patterns and may perform poorly on high-entropy PWMs.             
However, we can push the PWMs toward a 1-hot-coded state during training by minimizing              
PWM entropy in the cost function. Empirically, we found that minimizing an absolute error              
between the average nucleotide entropy and a target entropy works well. Note that             
minimizing PWM entropy does not mean that we necessarily minimize generator entropy. On             
the contrary, if we promote a high degree of exploration by punishing similar PWMs, the               
generator learns to produce diverse, low-entropy PWMs. 
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RIFR has a fundamental drawback: The gradient propagated backward through the PWM            
quickly approaches zero as the nucleotide logits push the Softmax probabilities toward their             
extremes. The problem is exacerbated as we explicitly minimize PWM entropy. Put            
differently, we optimize the system for vanishing gradients, resulting in halted convergence.  
 
In the second method, which we here call Sampled Input Form Representation (SIFR), we              
circumvent the Softmax representation by taking advantage of sampling techniques and           
straight-through (ST) gradient estimators (​Figure 1D​; Bengio, Léonard & Courville, 2013;           
Courbariaux et. al., 2016; Bogard et. al., 2019 ​). We use the generated nucleotide logits as               
parameters of a multinomial probability distribution, from which we draw K independently            
sampled 1-hot-coded patterns. The K samples are used as input to the predictor and the               
average gradient is propagated backwards through the sampling distribution using ST           
estimation. While the increased sample variance is an obvious drawback, it can be mitigated              
by increasing the number of samples drawn at each step. However, optimization can be              
noisy even with infinitely many samples (K→inf), since gradients produced by ST estimation             
may at times be incorrectly approximated. As our results indicate below, combining both             
methods and walking down the average gradient (Dual Input Form Representation, or DIFR)             
can reduce variance and estimation artifacts while overcoming vanishing gradients. 
 
Engineering APA Isoforms 
We first demonstrate deep exploration nets in the context of Alternative Polyadenylation            
(APA). APA is a post-transcriptional 3’ end processing event where competing polyA signals             
(PAS) in the same 3’ UTR give rise to multiple mRNA isoforms (​Figure 2A​) (Di Giammartino                
et al., 2011; Tian and Manley, 2017). A typical PAS consists of a core sequence element                
(CSE), often the hexamer AATAAA, as well as diverse upstream and downstream sequence             
elements (USE, DSE). Cleavage and polyadenylation occurs approximately 17 nt          
downstream of the CSE within the DSE. In a competitive situation with multiple PASs in the                
same 3’UTR, the sequence of each PAS is the major determinant of isoform selection. 
 
We previously developed a neural network for predicting APA isoform abundance           
(APARENT; Bogard et. al., 2019), which we use here as the predictor (​Figure 2B​). The DEN                
was tasked with generating PASs with precisely defined target isoform abundances as well             
as maximally strong PASs. We have previously generated such sequences using direct            
gradient ascent and experimentally validated them (Bogard et. al., 2019), enabling           
benchmark comparisons. The generator chosen for this application follows a DC-GAN           
architecture (Radford et. al., 2015; ​Figure 2C ​). When training the generator, we pass both              
the PWM and a number of sampled one-hot patterns as input to the predictor, walking down                
the average loss gradient (DIFR). 
 
We trained 5 instances of the generator, each optimized to generate sequences according to              
the following target isoform proportions: 0%, 25%, 50%, 75% and maximal use (‘Max’).             
These objectives were encoded in the cost function by minimizing the KL-divergence            
between the predicted APA isoform proportion and the target proportion (F​igure S2A​). After             
training, each generator could produce sequence samples fulfilling its target isoform           
proportion with high precision (​Figure 2D Top): Each generated isoform distribution mean            
was within 1% from the target proportion, with a maximum standard deviation of 5.79%. The               
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generated sequences for the Max-objective were predicted to be extremely efficient PASs            
(on average 99.98% predicted use with less than 0.02% deviation). All five generators             
exhibited a high degree of diversity (​Figure 2D Bottom, ​S2B-C​); when sampling 100,000             
sequences per generator, no two sequences were ever identical (0% duplication rate) and all              
generators had a hexamer entropy of between 9.11 and 10.0 bits (of 12 bits maximum), with                
up to 3,203 unique hexamers in the first 1,000 sampled sequences. We replicated the entire               
analysis for polyA signals with a different 3’ UTR context (​Figure S2D​), showing that the               
method can easily be adapted to new contexts by re-configuring the generator; we simply              
changed the generator mask to zero out positions where the sequence is fixed, and changed               
the template to encode the new fixed sequence (​Figure 1D​). 
 
To evaluate the importance of promoting exploration while training, we re-trained the Max             
isoform-generator with two different parameter settings; in one training instance, we lowered            
the repel weight (the similarity loss coefficient) to a small value, and in another instance we                
increased the repel weight (​Figure 2E, S2E​). With a low repel weight, the generator only               
learns to sample few, low-diversity sequences, all of similar isoform log odds (​Figure 2E              
Left; mean isoform log odds = 6.06, 99.5% duplication rate at 100,000 samples). With an               
increased repel weight, generated sequences become much more diverse and the mean            
isoform odds increase almost 20-fold (​Figure 2E Right; mean isoform log odds = 8.91, 0%               
duplication rate at 100,000 samples). These results indicate that exploration during training            
drastically improves the final fitness of the generator. We further evaluated the Max-isoform             
generator when using one-hot samples (SIFR), the continuous PWM (RIFR), or a            
combination of both (DIFR) as input to the predictor (​Figure S2F​). Using DIFR, the loss               
significantly improves, with less than 50% the magnitude of the RIFR loss after 30 epochs.               
Finally, we validated the accuracy of the target-isoform generators against the MPRA            
datasets published in (Bogard et. al., 2019), by comparing the generated sequences against             
sequences with known isoform ratios estimated from RNA-Seq (​Figure S2G-H​). 
 
Experimental Validation of Deep Exploration-Sequences 
As suggested in ​Figure 2E ​, exploration increases the capability of generating high-fitness            
sequences. Next, we wanted to characterize experimentally whether DEN-generated PASs          
truly are stronger (more optimal) than sequences generated by the baseline gradient ascent             
method and, if so, how much stronger they are. To that end, we synthesized APA reporters                
with two adjacent PASs (​Figure 2F​): Each reporter contained one of the newly generated              
Max-target PASs, as well as one of the strongest gradient ascent-optimized signals from             
(Bogard et. al., 2019). In order to discount first-come-first-serve bias, we experimentally            
assayed both signal orientations for each reporter. The reporters were cloned onto plasmids             
and delivered to HEK293 cells. We quantified the expressed RNA isoform levels using a              
qPCR assay, measuring the Ct values of total and distal RNA respectively. Using Ct              
differences to estimate odds ratio lower bounds, we found that the DEN-generated            
sequences were on average 11.6-fold more preferred (usage odds increase) than the            
gradient ascent-generated sequences (​Figure 2F​). To put this in perspective, the strongest            
gradient ascent-sequence had usage odds of 127:1 (99.22%) relative to a distal bGH PAS              
separated by 200 nt. The DEN-sequences would have usage odds of 1481:1 (99.93%)             
relative to the same signal. 
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An Inverse Regression Model of APA 
Isoform prediction is a continuous regression problem (predicting proportions in the           
continuous range from 0 to 1), yet in the above modeling framework we discretize and               
hardcode one specific isoform proportion to target per generator network. However,           
exploration networks allow us to capture the entire distribution of isoform proportions by             
adding a “Target isoform proportion”-input, effectively turning the generator into an inverse            
regression model capable of stochastically sampling a sequence given a target regression            
value (​Figure 3A, S3A-B​). During training, we randomly sample target isoform proportions,            
feed it to the generator as input and simultaneously specify the same target isoform              
proportions in the loss function (which we compare the predictor model to). As a result, we                
train the generator to sample sequences which fulfill whatever target isoform proportion was             
supplied as input. Our results show that this training scheme works remarkably well (​Figure              
3B​); when sampling 10,000 sequences from the generator, the generated sequences’           
predicted isoform log odds were highly correlated with their corresponding targets (pearson r             
= .97, p = 0), and had a sequence duplication rate of 0%, meaning we could successfully                 
generate diverse sequences which, according to the predictor, satisfied the inverse           
regression objective. When projecting the sequences in two-dimensional space using tSNE           
(​Maaten et. al., 2008 ​), we find only a single cluster, where the sequences smoothly transition               
from one edge to the other based on the isoform log odds. 
 
Engineering 3’ Cleavage Position 
The next application is closely related to APA, but rather than multiple competing PASs, we               
here concern ourselves with the position of 3’ cleavage within a single signal (​Figure 4A​).               
Cleavage occurs downstream of the central polyadenylation element - the CSE hexamer -             
however the exact position and magnitude is tightly regulated by a complex code (​Elkon et               
al., 2013 ​). The predictor model used for APA above - APARENT - can also predict the 3’                 
cleavage distribution and so we re-use the model here (​Figure S4A-B​). Tasked with             
generating sequences which maximize cleavage at 9 distinct positions, we constructed a            
multi-class exploration network with a generator architecture similar to class-conditional          
GANs (Mirza et al., 2014; ​Figure 4B, S4C​), where an embedding layer transforms the class               
label (target cut position) into a high-dimensional vector which is concatenated onto every             
layer of the generator. The loss remains the same as before, except now the predicted               
cleavage distribution is used to minimize KL-divergence against the target distribution. 
 
After training, the generator could sample diverse sequences with highly specific cleavage            
distributions given an input target position (​Figure 4C-D​; Predicted vs. target cut position             
R^2 = 0.998, 0% duplication rate at 100,000 sampled sequences; S4D-F, Movie S1-S2).             
When clustering the sequences in tSNE (​Figure 4C​, bottom), we observe clearly separated             
clusters based on the target cleavage position. We further confirmed the function of the              
sequences by comparing them to a set of gradient ascent-optimized sequences which had             
previously been validated experimentally with RNA-Seq (​Figure 4E​; Nearest         
Neighbor-agreement = 87%) (Bogard et. al., 2019). 
 
Engineering Cell type-specific Differential Splicing 
While precise cis-regulatory control in a single cell type has important applications, one of              
the hardest yet perhaps most interesting problems in genomics and synthetic biology is to              
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code cis-regulatory functions which are differentially expressed across multiple cell types.           
Here we consider the task of engineering cell type-specific differential splice forms (​Figure             
5A​; Blencowe, 2006; Roca, Krainer & Eperon, 2013; Lee & Rio, 2015). Specifically, we              
define the task as maximizing the difference in splice donor usage for an alternative 5’               
splicing event in two different cell lines, by designing the regulatory sequences (25nt)             
downstream of each alternative donor. This particular splicing construct has been studied in             
the context of HEK293 cells (Rosenberg et. al., 2015), where MPRA data measuring             
hundreds of thousands of variants were collected. To study differential effects across cell             
types, we report new MPRA measurements of this splicing library in HELA, MCF7 and CHO               
cells, which we used together with the original HEK data to train a cell type-specific 5’ splice                 
site usage prediction network (​Figure 5B, S5A​). The trained network could accurately            
predict splicing isoform proportions on a held-out test (​Figure S5B​; mean R^2 = 0.88).              
Importantly, the predicted difference in splice site usage between cell types had a strong              
correlation with measured differences (​Figure S5C​; predicted vs. measured dPSI R^2           
ranged between 0.35 and 0.47 depending on cell type pair). We focused on MCF7 and               
CHO, as the largest average differential trend was observed between these two cell lines. 
 
Next, we trained an exploration network with the same generator architecture as in ​Figure              
2C to maximize the difference in predicted cell type-specific PSI between MCF7 and CHO              
(​Figure 5C​). We used the trained generator to sample 1,000 sequences, the majority of              
which were predicted by the neural net to be far more differentially spliced than any of the                 
test sequences from the MPRA (​Figure 5D​; mean predicted dPSI of generated sequences =              
0.56, compared to the average dPSI = 0.08 of the MPRA test set). For validation, we                
compared the generated sequences to the measured MPRA using a Nearest Neighbor            
search. We found that the DEN indeed learned to sample regulatory sequences centered on              
maximal differential splicing between the target cell lines (​Figure 5E, S5D​; mean NN-dPSI of              
generated sequences = 0.38, mean measured dPSI of MPRA sequences = 0.07). 
 
Finally, we replicated the analysis using a linear logistic regression model with hexamer             
counts as features rather than a convolutional neural network fitness predictor. By reducing             
the regression model to a set of differentiable tensor operations, we could seamlessly             
integrate the model in the DEN pipeline (​Figure S5E-F​). Allowing both high and low-variance              
models enable users to better tailor the predictor properties for their given task. In some               
applications it may even be suitable to compose predictor ensambles to increase rigidity. In              
our case, we could re-train the DEN to jointly maximize the neural network and hexamer               
regression predictors, striking a balance between the two models (​Figure S5G​). 
 
DISCUSSION 
We developed an end-to-end differentiable generative network architecture, Deep         
Exploration Networks (DENs), capable of synthesizing large, diverse sets of sequences with            
high fitness. The model could generate PASs which precisely conformed to target isoform             
ratios and 3’ cleavage positions, and even generated maximally used PASs that were far              
stronger than any previously designed sequence. Furthermore, the model could learn to            
generate maximally differentially spliced sequences.  
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DENs incorporate many techniques to improve its generative capabilities, but the single            
most important contribution was the control of exploration within the cost function during             
training. By having the generator sample two sequences given two random seeds, we             
developed a hinge-style loss which penalized sequence pairs that were similar above a             
certain threshold. Our analysis showed that the magnitude by which we punish sequence             
similarity (​repel weight​) almost entirely determines final generator diversity and, importantly,           
also largely determines the final fitness of the generated patterns. Taken as an expectation              
over all random input seeds sampled during training, the valley in the cost landscape to               
which our generator has access is enlarged by stochastically repelling similar sequences,            
and the expected width of the valley increases with a larger repel weight. During training, the                
optimizer trades off exploring (repelling similar patterns) with exploiting (maximizing pattern           
fitness) based on the temperature (repel weight) until convergence is reached. This scheme             
produces generative models which are (1)  highly optimal, and (2) controllably diverse. 
 
Another concern in sequence design is computational efficiency; for some applications, we            
may want to generate millions of candidate patterns, e.g. to synthesize in an oligo pool.               
Here, feed-forward models really outshine per-sequence optimization methods such as          
gradient ascent. In (Bogard et. al., 2019), it took roughly 2,000 updates (~150 seconds on a                
CPU) to optimize a single sequence. In contrast, we train a DEN for 25,000 updates, i.e.                
more than a 10-fold increase. However, once training is done, the DEN encodes the              
distribution of sequences conditioned on the objective, enabling sampling from the           
distribution with a single feed-forward pass (~0.010 seconds on a CPU). Hence, on a CPU               
with a trained DEN, we can generate 100,000 sequences in under 20 minutes, whereas it               
would take roughly 0.5 to 1 year to do it with gradient ascent. 
 
In future work, there are several technical aspects to explore. First, the sequence similarity              
loss coefficient (repel weight) is currently kept constant. While this efficiently enforces            
exploration, it may in some cases be too rigid and require tuning before striking a good                
balance with the fitness objective. In particular, certain cost landscapes might have “pointy” -              
deep but narrow - valleys. With an overly large repel weight, neither of the generated               
sequences may ever be allowed down the valley before being pushed away by other              
repelling sequences. Rather, we would like to discover the pointy valleys during a high              
temperature stage of the training where exploration gradients are weighted more, and then             
descend at a later, low-temperature exploitation stage. We can easily adapt DENs to this              
scheme by treating the repel weight as a simulated annealing temperature which we             
decrementally lower throughout training, creating a “Deep Annealing”-style model. 
 
We currently punish similarity by sequence-level comparison. But, depending on the           
application, the generated diversity may be sought in other metrics. We can easily             
generalize the similarity loss to allow any (differentiable) comparator function of the            
generated patterns, for example, we could penalize pattern similarity via a model of             
secondary structure. Another aspect is the method by which we pass the generated pattern              
to the predictor. Our results showed that dual input form representation, using both the              
continuous PWM and sampled one-hot patterns, can improve convergence. We          
approximated gradients with ST estimation, however, there may be more efficient estimators            
for multinomial sampling. In particular, training may improve using the Gumbel Softmax            
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approximation (Jang et. al., 2016). Or, instead of using discrete samples, we may want to               
rectify the PWM representation. Specifically, it may be possible to re-train the deep learning              
predictor to give appropriate responses not only on 1-hot patterns, but also on arbitrary              
PWMs. During predictor model training, we can simultaneously feed the model randomly            
generated PWMs and enforce in the loss function that the model predicts the weighted              
average response of what it would predict for 1-hot patterns sampled from the PWM. We               
further showed that we could train “Inverse regression” models; a continuous-valued target            
was passed as input together with a random seed to sample sequences conforming to the               
target. By explicitly enforcing diversity, DENs are capable of generating multiple candidate            
samples (e.g. sequences) given one target input. Hence, they may be useful as deep              
probabilistic decoders. For example, we could construct a DEN which, given random input             
seeds and a single amino acid sequence, samples a diverse set of highly likely 3D protein                
structures.  
 
We also showed in the case of differential splice sites that we could optimize generation for                
both a neural network and hexamer regression predictor. The hexamer regression model, by             
its low-variance design, provides regularization. However, we could provide more general           
regularization by inserting a customizable tensor model between the generator and           
predictor. For example, in concordance with (Killoran et. al, 2017), we may want to restrict               
generation to sequences that are conserved in the human genome. This could be achieved              
by placing a sequence GAN trained on the genome between the generator and predictor,              
such that the generator, given a random input seed, learns to generate optimal/high-fitness             
seeds for the GAN. The GAN in turn generates the final sequence passed to the predictor. 
 
Experimental assays provide us with powerful tools to validate generative models, by            
enabling generated sequences to be synthesized and measured. Here, we tested a subset             
of our generated PASs. Remarkably, we observed that the new PASs were orders of              
magnitude stronger than any previously known sequence. While this performance owes to            
the power of deep exploration nets, it also owes to the consistent accuracy of the predictor                
models, even at the extremes of the regulatory distributions. In some applications, the             
predictor may not be sufficiently accurate, and the generated samples may reveal incorrect             
predictions once tested in the lab. Similar to earlier work on generative models employed for               
molecular design (Segler et. al., 2017), we envision DENs to be part of an adaptive sampling                
scheme, where the network generates a set of sequences which, after synthesis and             
measurements, provide augmented training data for the predictor, and this cycle is repeated             
until the generated patterns are in concordance with real biology. 
 
Beyond splicing and 3’ end mRNA processing, there are many suitable biological            
applications for deep exploration networks. DENs could be used together with gene            
expression data to engineer cell type-specific enhancer or promoter sequences with           
differential affinities. DENs may also prove useful for generating candidate CRISPR Cas9            
guide RNA which minimize predicted off-target effects (Lin et. al. 2018; Chuai et. al., 2018;               
Wang et. al., 2019). Moving on to the world of proteins, we imagine a vast number of                 
application areas for deep exploration nets. Rational design of heterodimer pairs with            
orthogonal interaction has recently been demonstrated (Chen et. al., 2019). As more data is              
collected and used to train functional models of interaction, we would be able to use DENs                
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for generation of candidate orthogonal binder sets, or even generalized interaction graphs.            
We could further combine DENs with existing neural network predictors to engineer protein             
function (Biswas et. al., 2018) or target structure (​AlQuraishi et. al., 2019 ​), or even use DENs                
as a means of sampling maximally likely structure predictions (Evans et. al., 2018). Finally,              
DENs could be utilized for generation of stable protein structures as well as high-specificity              
aptamer candidate sets. 
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Figure 1. Deep Exploration Network Architecture 
(A) A sequence produced by an input seed to a generative model (red/blue) shares the cost                
landscape with other generated sequences (orange). Patterns are penalized by similarity           
during training, resulting in an updated generator which transforms the red/blue seed into a              
different sequence, away from other patterns and potentially towards a new local minimum. 
(B) Sequences are optimized on the basis of a pre-trained fitness predictor to achieve some               
target function. This work focuses on three RNA isoform engineering applications: APA            
isoforms, 3’ cleavage positions, and differential splicing between two cell types. 
(C) In Deep Exploration Nets (DENs), the generator is run twice on two random seeds,               
producing two sequence PWMs. One of the PWMs is evaluated by the fitness predictor,              
resulting in an objective function gradient. The two PWMs are also punished by similarity,              
resulting in an exploration gradient, and the generator is updated by both gradients. 
(D) The PWM is multiplied by a mask (zeroing fixed nucleotides) and a template is added                
(encoding fixed letters). 1-hot-coded patterns are outputted by sampling nucleotides from           
stochastic neurons, and gradients are propagated by straight-through estimation. 
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Figure 2. Engineering APA Isoforms 
(A) Two PASs in a 3’ UTR compete for cleavage and polyadenylation. The generative task is                
to design proximal PASs which are selected at a target proportion. 
(B) The APA predictor architecture. A set of convolutional, pooling, dropout and dense layers              
transform the 1-hot-coded input sequence into an APA isoform proportion prediction. 
(C) The generator follows a typical GAN architecture. Dense and (de-)convolutional layers            
transform the input seed vector into a sequence PWM of nucleotide log probabilities. 
(D) Evaluation of five separate DENs trained to generate sequences according to APA             
isoform targets: 5%, 25%, 50%, 75% and 100% (‘Max’). (Top) Predicted isoform proportions             
of 1,000 sampled sequences per target objective. Mean and Std dev of isoform log odds per                
target (proportions in parenthesis): (Target 5%) -2.99 +- 0.46 (= 5.25% +- 2.42%), (Target              
25%) -1.12 +- 0.30 (= 25.06% +- 5.66%), (Target 50%) 0.026 +- 0.26 (= 50.6% +- 6.3%),                 
(Target 75%) 1.08 +- 0.31 (74.2% +- 5.79%), (Target Max) 8.68 +- 0.72 (99.98% +- 0.02%). 
(Bottom) Generator sequence diversity, illustrated by 20 randomly sampled sequences per           
objective on a pixel grid where rows denote sequences and columns nucleotide position. 0%              
duplication rate at 100,000 sampled sequences by any of the generators. Hexamer entropy             
ranges between 9.11 and 10.0 bits depending on generator (of 12 bits maximum), with 2,134               
to 3,203 unique hexamers across the first 1,000 sequences depending on generator. 
(E) The sequence similarity loss was evaluated by re-training the Max-target APA isoform             
generator, in one instance with a low similarity loss coefficient (left) and in another instance a                
high coefficient (right). (Top) Predicted isoform proportions for 1,000 generated sequences,           
per generator instance. (Bottom) Sequence diversity illustrated by sampling 100 sequences. 
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Low repel weight (left): Mean predicted isoform log odds = 6.06 +- 0.12, and 99.5%               
duplication rate at 100,000 sampled sequences. High repel weight (right): Mean predicted            
isoform log odds = 8.91 +- 0.72, and 0% duplication rate at 100,000 samples. 
(F) Experiment validating the performance of the generated sequences. Two Max-target           
sequences generated by the DEN were synthesized as either the proximal or distal pA              
signals on a minigene reporter in competition with baseline gradient ascent-generated           
sequences using the same fitness predictor (Bogard et. al., 2019). Isoform odds ratios             
(preference fold changes) were assayed using qPCR and estimated from cycle threshold            
values. The newly generated sequences have on average 9.4-fold increased preference. 
 
 

 
 
Figure 3. An Inverse Regression Model 
(A) The DEN is trained by randomly sampling target isoform proportions and passing them to               
both the generator and objective. The generator is optimized to produce sequences which             
are predicted to conform to the sampled target proportions. 
(B) A deep exploration network, using the generator architecture of Figure 3A, is trained to               
generate PASs according to randomly sampled target isoform logits in the range -4 to 6.               
After training, the predicted isoform logits of the generated sequences strongly agree with             
their corresponding target logits (pearson r = 0.97, n = 10,000). The generated sequences              
are clustered in tSNE and colored according to their target isoform logits. 
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Figure 4. Engineering 3’ Cleavage Positions 
(A) The 3’ mRNA cleavage position is governed by a cis-regulatory code within the PAS. The                
generative task is formulated as designing PASs which maximize cleavage at target            
nucleotide positions downstream of the central hexamer (CSE) AATAAA. 
(B) The DEN is trained by randomly sampling cut positions along with the seeds, and               
passing the cut positions to both the generator and objective. The generator is optimized to               
produce sequences which are predicted to cleave according to the target cut positions. 
(C) Evaluation of a class-conditional DEN trained to generate sequences with maximal            
cleavage at 9 positions, +5 to +45nt downstream of the CSE. (Top) Mean predicted cleavage               
profile of 1,000 sampled sequences per target position. X-axis denotes nt position and             
Y-axis is cleavage %. Predicted vs. target cut position R^2 = 0.998. (Bottom) All 9,000               
sequences were clustered in tSNE and colored according to their target cleavage position.  
(D) Example sequences generated by the network for target positions +5, +15, +25 and +35.               
Sequence generation is highly diverse, with 0% duplication rate at 100,000 samples.            
Hexamer entropy = 9.07 of 12 bits, with 1,727 unique hexamers across 1,000 sequences. 
(E) The newly generated sequences were compared against gradient ascent-generated          
sequences for the same target (Bogard et. al., 2019), by defining each cluster centroid as               
the mean one-hot pattern of all DEN-generated sequences and assigning each gradient            
ascent-pattern to the closest centroid based on L1 distance. Agreement = 0.87. 
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Figure 5. Engineering Differential Splicing Across Cell Types 
(A) Two 5’ splice donors compete for splicing. The task is to design two sequence regions,                
Region A which is located between the donors and Region B which is located downstream of                
the 3’-most donor, to maximize differential usage (PSI) of donor 1 between two cell types. 
(B) Summary of the experimental pipeline. The MPRA of (Rosenberg et. al., 2015) was              
originally measured in HEK293 cells. Here, the library was transfected in additional cell lines              
HELA, MCF7 and CHO and measured by RNA-Seq. A neural network (CNN) was trained on               
all four cell line datasets to predict PSI per cell type given only the DNA sequence as input. 
(C) Left: The predicted MCF7 and CHO PSIs are used to maximize absolute difference.              
Right: Measured MPRA test set PSIs for MCF7 and CHO. Color indicates predicted dPSI              
(blue/red = more/less used in CHO). Predicted vs. measured dPSI R^2 = 0.47. 
(D) DEN evaluation on the basis of the prediction network. (Left) Predicted PSIs in MCF7               
and CHO for 1,000 sequences sampled from the trained generator, plotted together with             
predicted MPRA test set PSIs in MCF7 and CHO. Color indicates measured dPSI of test               
sequences. Purple dots indicate generated sequences. Mean predicted dPSI of test           
sequences = 0.08 (+- 0.07). Mean predicted dPSI of generated sequences = 0.56 (+- 0.07).               
(Right) Selection of maximally differentially spliced generated sequences. The generated          
sequences are diverse, with 0% duplication rate at 1,000 sampled sequences and 4%             
duplication rate at 100,000 samples. Hexamer entropy = 8.31 out of 12 bits. 
(E) Validation of 1,000 generated sequences against the RNA-Seq measured MPRA using            
nearest neighbors. The first dense layer of the fitness predictor was used as feature space               
(256 features). Measured PSIs of the entire MPRA (black dots) are plotted with the              
interpolated PSIs of the generated sequences (yellow dots), estimated from 10 neighbors.            
Mean MPRA dPSI = 0.07 (+- 0.10). Mean dPSI of generated sequences = 0.38 (+- 0.06). 
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Figure S2. Generation Examples, Validation Experiments and Sequence        
Representations. Related to Figure 2. 
(A) The 1-hot sequence outputted by the generator is passed as input to the APA fitness                
predictor, which in turn outputs an isoform proportion prediction. This prediction is used in a               
symmetric KL-divergence loss to fit the generator to a fixed target isoform proportion. 
(B) Example sequences generated by four of the five deep exploration network instances             
evaluated in Figure 2D: The 25%, 50%, 75% and 100% (‘Max’) generators. 
(C) Example sequences generated by the 100%-target (‘Max’) APA isoform exploration           
network, using four different random seeds as input to the generator. 
(C) The entire analysis of (Figure 2A-E, S2A-C) was replicated using a different 3’ UTR               
sequence template (the fixed sequence regions). (Top) Predicted isoform proportions of           
1,000 sampled sequences per target objective. Mean and Std dev of isoform log odds per               
target (proportions in parenthesis): (Target 5%) -3.40 +- 0.54 (= 3.70% +- 2.17%), (Target              
25%) -1.26 +- 0.40 (= 22.9% +- 6.78%), (Target 50%) -0.064 +- 0.36 (= 48.5% +- 8.70%),                 
(Target 75%) 1.13 +- 0.38 (75.0% +- 7.03%), (Target Max) 7.90 +- 0.68 (99.95% +- 0.04%).                
(Bottom) Five example sequences generated by the 100%-target (‘Max’) DEN, using random            
seeds as input to the generator. All five target APA generators are diverse, with 0%               
duplication rate at 100,000 sampled sequences by any of the generators. Hexamer entropy             
ranges between 8.87 and 9.20 bits depending on generator (of 12 bits maximum), with 1,970               
to 2,591 unique hexamers across the first 1,000 sequences depending on generator. 
(E) Continuing the replication of (Figure 2A-E, S2A-B), the 100%-target (‘Max’) generator            
was re-trained twice, once with low similarity loss coefficient (repel weight; left) and in              
another instance a high coefficient (right). (Top) Predicted isoform proportions for 1,000            
generated sequences, per generator instance. (Bottom) Sequence diversity illustrated by          
sampling 100 sequences. Low repel weight (left): Mean predicted isoform log odds = 5.78 +-               
0.0, and 100% duplication rate at 100,000 sampled sequences. High repel weight (right):             
Mean isoform log odds = 7.64 +- 0.65, and 0% duplication rate at 100,000 samples. 
(F) Evaluation of three different sequence pattern representations: (1) Sampling a number of             
discrete 1-hot-coded patterns from the generated PWM and using as input the predictor, (2)              
Passing the generated PWM directly as input or (3) passing both representations as input to               
the predictor and walking down the average gradient. The methods were evaluated by             
training a deep exploration network to generate maximally used (100%-target) polyA signals,            
and tracking a validation loss across the first 30 epochs. Each epoch consists of 1,000               
mini-batches of randomly generated input seeds. The validation loss is computed as the KL              
Divergence of the predicted isoform proportions compared against 100% usage on 500            
random mini batches. Note, the validation loss is always computed using the consensus             
1-hot-coded pattern extracted from the generated PWMs as input (guaranteeing well-formed           
input to the predictor). Reported are the median loss curves of five independent runs. 
(G) The deep exploration networks were validated against real RNA-Seq measurements           
using a nearest neighbor approximation. Five new generators were trained to produce polyA             
signals for the APA isoform targets 5%, 25%, 50%, 75%, 100%, but this time with a shorter                 
(60 nt) freely tunable sequence so as to reduce “curse of dimensionality”-effects in the              
nearest neighbor search. TOMM5 APA reporter sequences were collected from (Bogard et.            
al., 2019) and the first dense layer activations predicted by APARENT were used as features               
when storing the sequences in a nearest neighbor database. Next, 1,000 sequences were             
generated from each of the five deep exploration nets, and their corresponding nearest             
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neighbors were looked up. (Top) Measured isoform proportions (from RNA-Seq data) for the             
50 nearest neighbors of each of the generated sequences. Mean and Std dev of isoform               
proportions: (Target 5%) 6.00% +- 3.03%, (Target 25%) 25.1% +- 6.95%, (Target 50%)             
53.2% +- 7.05%, (Target 75%) 73.7% +- 7.18%, (Target Max) 88.05% +- 0.05%. (Bottom)              
Sequence diversity for each of the five generators, illustrated by sampling 20 sequences per              
target/generator and plotting the nucleotides on a 2-dimensional pixel grid. The first four             
target-isoform generators have 0% duplication rate at 100,000 sampled sequences, and the            
100%-target (‘Max’) generator has a 0.1% duplication rate at 100,000 samples. Hexamer            
entropy ranges between 7.89 and 9.00 bits depending on generator (of 12 bits max), with               
1,142 to 2,295 unique hexamers across the first 1,000 sequences depending on generator. 
(H) Example sequences generated by the five exploration networks trained in Figure S2G. 
 
 

 
 
Figure S3. 3’ Inverse APA Regression Generator and Predictor. Related to Figure 3. 
(A) A target isoform logit is passed as input to the generator in addition to the random seed.                  
The logit is transformed into a high-dimensional, trainable embedding. The embedding is            
concatenated to the input tensor of every layer, enabling conditional learning and generation. 
(B) The APA fitness predictor architecture. A set of convolutional layers, pooling layers,             
dropout layers and dense layers transform the 1-hot-coded input sequence into an APA             
isoform proportion. The logit of the proportion is computed and passed to the objective. 
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Figure S4. 3’ Cleavage Predictor Model and Example Sequences. Related to Figure 4. 
(A) The 3’ cleavage predictor architecture. A set of convolutional layers, pooling layers,             
dropout layers and dense layers transform the 1-hot-coded input sequence into a 3’             
cleavage distribution, predicting % Cleavage at nucleotide resolution. 
(B) Mean cut position prediction accuracy of the APARENT model. Shown are the predicted              
and measured mean cut positions of 5,854 test set sequences of the Alien2 APA reporter               
library from  (Bogard et. al., 2019). Predicted vs. measured mean cut position R^2 = 0.82. 
(C) A target cut position (class index) is passed as input to the generator. The class index is                  
transformed by a trainable embedding layer and concatenated onto every input tensor of             
every layer, enabling conditional generation. 
(D) Example sequences generated by the 3’ cleavage exploration network, using four            
different random seeds and the (+15 cut position)-class index as input to the generator. 
(E) Generator sequence diversity evaluated across all 9 target position classes, illustrated by             
randomly sampling 20 sequences per target position, and plotting them in a grid where rows               
denote sequences and columns denote nucleotide position. 0% duplication rate at 100,000            
sampled sequences. Hexamer entropy = 9.07 of 12 bits, with 1,727 unique hexamers across              
the first 1,000 sequences. 
(F) Predicted cleavage log odds of 1,000 sampled sequences per target cleavage position. 
Mean and Standard deviation of cleavage log odds at each target cut position, in order: 2.10                
(+- 0.34), 3.17 (+- 0.50), 3.54 (+- 0.47), 3.03 (+- 0.46), 2.93 (+- 0.38), 2.64 (+- 0.39), 1.73 (+-                   
0.32), 1.61 (+- 0.29), 1.31 (+- 0.24). 
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Figure S5. Cell Type-Specific Splicing Predictor Models and Sequence Generation          
Validation. Related to Figure 5. 
(A) The neural net predictor architecture. Convolutional, pooling, dropout and dense layers            
transform an input sequence into cell type-specific splice donor usage (PSI) predictions. 
(B) Predicted vs. measured PSI on a held-out test set of the splicing MPRA (n = ~13,000).                 
Predictions were made using a convolutional neural net with cell type-specific PSI outputs. 
(C) Comparison of measured PSIs between pairs of cell lines in the splicing MPRA test set                
(n = ~13,000). Measured PSIs are displayed on the X/Y axes, and color intensity indicates               
the neural network-predicted dPSIs (blue/red = more/less PSI in cell type X than Y). 
(D) The max-differential splicing DEN was validated against real RNA-Seq measurements of            
the measured splicing MPRA using a nearest neighbor approximation. All ~260,000           
sequences of the splicing MPRA were transformed into 256-dimensional feature vectors,           
using the fitness predictor up until the first dense layer as a feature transform, and then                
stored in a nearest neighbor database. The feature transform reduces “curse of            
dimensionality”-effects in the nearest neighbor search and provides a degree of local motif             
invariance. Next, 1,000 sequences sampled from the DEN were transformed into           
256-dimensional feature vectors according to the neural network predictor and looked up in             
the nearest neighbor database. The measured PSIs of the 10 nearest neighbors per             
generated sequence were used to estimate average PSIs. Shown are the measured and             
NN-interpolated MCF7-CHO dPSIs of the MPRA and generated sequences respectively.          
Mean MPRA dPSI = 0.07 (+- 0.10). Mean dPSI of generated sequences = 0.38 (+- 0.06). 
(E) A differentiable relaxation of a 6-mer logistic regression model. A convolutional layer with              
4096 filters, each encoding a distinct 6-mer (filter weight = 6, bias = -5), result in 4096                 
activation maps which after a summation over positions become hexamer counts. The            
counts are combined with cell type-specific weights and squashed through a sigmoid. 
(F) Evaluation of a deep exploration network, using a hexamer regression predictor, when             
tasked with generating 500 maximally differentially spliced sequences between cell lines           
MCF7 and CHO. (Left) Percent Spliced In (Splice donor usage) as predicted by the              
regression model on all MPRA test set sequences in MCF7 and CHO. Color intensity              
indicates measured dPSI. Purple dots indicate the 500 generated sequences. (Inline)           
Inverted scatter plot; Measured PSI between cell types for all MPRA test sequences are              
shown on the axes and color indicates predicted dPSI. Measured vs. Predicted dPSI R^2 on               
test set = 0.27. (Right) Selection of maximally differentially spliced generated sequences.            
The generator has learned to exploit the additive independence of hexamer scores, by             
populating the sequences with a very differential motif, GCATGC (RBFOX1 binding site).  
(G) Both the neural network and hexamer regression splicing models were used as fitness              
predictors, and the exploration network was retrained to maximize differential splicing           
between MCF7 and CHO according to the average response of both predictors. The             
generator was used to sample 1,000 sequences, and their average predicted PSIs (purple)             
were plotted alongside the predicted PSIs of the splicing MPRA test set (color intensity              
indicates measured dPSI). Mean predicted dPSI of test sequences = 0.08 (+- 0.07). Mean              
predicted dPSI of generated sequences = 0.54 (+- 0.04). (Right) The top four differentially              
spliced sequences generated by the DEN are shown with the neural net (CNN) and hexamer               
regression (LR) dPSI predictions. Shown above each sequence are the hexamer weights. 
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Movie S1. Random Sampling of Sequences during 3’ Cleavage DEN Training. Related            
to Figure 4. 
Evaluation of 20 randomly generated sequences per target cut objective by continuously            
sampling new input seeds during DEN training. For each generator weight update (each mini              
batch of seeds), 20 uniformly random seeds per cut objective are passed to the generator.               
The corresponding generated sequences are updated on a 2-dimensional pixel grid where            
nucleotides are represented as different colors (A = red, C = blue, G = orange, T = green).                  
The loss curve of each generated sequence is simultaneously tracked in real-time. One of              
the 20 randomly generated sequences is displayed to the right for each cut objective. The               
black-colored nucleotides in the PWMs are fixed (non-changeable) sequence regions. We           
fixed the CSE (‘AATAAA’) and target cut dinucleotide during optimization. 
 
Movie S2. Tracking a Fixed Sequence Set during 3’ Cleavage DEN Training. Related to              
Figure 4. 
Continuous evaluation of 20 fixed generator input seeds throughout 3’ Cleavage DEN            
training. For each weight update, the generator is tasked with generating the sequence set              
for a fixed set of seeds. The generated sequences are tracked through time during training               
and updated on a 2-dimensional pixel grid where nucleotides are represented as different             
colors (A = red, C = blue, G = orange, T = green). The loss curve of each generated                   
sequence is simultaneously tracked in real-time. One of the generated sequences is            
displayed to the right for each cut objective. The black-colored nucleotides in the PWMs are               
fixed (non-changeable) sequence regions. We fixed the CSE (‘AATAAA’) and target cut            
dinucleotide during optimization. 
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