bioRxiv preprint doi: https://doi.org/10.1101/864322; this version posted December 5, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Barcoding and demultiplexing Oxford Nanopore native RNA

sequencing reads with deep residual learning

Martin A. Smith"?34#” Tansel Ersavas'# James M. Ferguson'#, Huanle Liu"?®,
Morghan C Lucas™>%, Oguzhan Begik'??, Lilly Bojarski', Kirston Barton'?, Eva Maria

Novoa'#°¢”

" Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia

2 St-Vincent’s Clinical School, UNSW Sydney, Darlinghurst 2010, NSW, Australia

3 CHU Sainte-Justine Research Centre, Montreal, Canada

* Department of Biochemistry and Molecular Medicine, University of Montreal, Canada

5 Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr.
Aiguader 88, Barcelona 08003, Spain

8 Universitat Pompeu Fabra (UPF), Barcelona, Spain

# These authors contributed equally

"Correspondence to: Martin A. Smith (martinalexandersmith@gmail.com)

and Eva Maria Novoa (eva.novoa@crq.eu)



mailto:martinalexandersmith@gmail.com
mailto:eva.novoa@crg.eu
https://doi.org/10.1101/864322
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/864322; this version posted December 5, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

ABSTRACT

Nanopore sequencing has enabled sequencing of native RNA molecules without conversion to cDNA,
thus opening the gates to a new era for the unbiased study of RNA biology. However, a formal
barcoding protocol for direct sequencing of native RNA molecules is currently lacking, limiting the
efficient processing of multiple samples in the same flowcell. A major limitation for the development of
barcoding protocols for direct RNA sequencing is the error rate introduced during the base-calling
process, especially towards the 5’ and 3’ ends of reads, which complicates sequence-based barcode
demultiplexing. Here, we propose a novel strategy to barcode and demultiplex direct RNA sequencing
nanopore data, which does not rely on base-calling or additional library preparation steps.
Specifically, custom DNA oligonucleotides are ligated to RNA transcripts during library preparation.
Then, raw current signal corresponding to the DNA barcode is extracted and transformed into an array
of pixels, which is used to determine the underlying barcode using a deep convolutional neural
network classifier. Our method, DeePlexiCon, implements a 20-layer residual neural network model
that can demultiplex 93% of the reads with 95.1% specificity, or 60% of reads with 99.9% specificity.
The availability of an efficient and simple barcoding strategy for native RNA sequencing will enhance
the use of direct RNA sequencing by making it more cost-effective to the entire community. Moreover,
it will facilitate the applicability of direct RNA sequencing to samples where the RNA amounts are

limited, such as patient-derived samples.
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INTRODUCTION

The appearance of third generation sequencing (TGS) technologies has revolutionized our ability to
sequence genomes and transcriptomes (1, 2). In comparison to next-generation sequencing
technologies, TGS have the ability to produce long sequencing reads, avoiding the hassle of
fragmenting the RNA or DNA molecules into smaller pieces to then reassemble them back together.
Furthermore, TGS technologies have the ability to sequence DNA and RNA without a PCR
amplification step, thus allowing for direct detection of DNA and RNA modifications, with single

nucleotide and single molecule resolution.

Direct sequencing of native RNA molecules (dRNAseq) can be achieved using the platform offered by
Oxford Nanopore Technologies (ONT). This platform relies on the use of protein nanopores embedded
in a lipidic membrane that are subjected to an electric field. Characteristic disruptions in electric
current are measured as the charged molecule passes through the pore, enabling the observation of
single molecules. Low translocation velocity of the RNA molecule is achieved through the association
of motor proteins that regulate translocation of nucleic acid polymers, and the current intensity

measurements can in turn be converted into sequence information using base-calling algorithms (3).

The first direct RNA sequencing protocol developed by ONT (SQK-RNAQ001) became commercially
available in 2017 and was designed to sequence mRNAs (4), although later efforts have shown that
this protocol can be adapted to sequence non-polyAed RNAs, such as ribosomal RNAs (5). The
current ONT dRNAseq library preparation protocol comprises three main steps: (i) ligation of a
double-stranded, pre-annealed DNA RT Adapter (RTA), which contains an oligo-dT overhang to
anneal to poly(A)+ mRNAs; (ii) optional reverse transcription, which linearizes the RNA molecule into
an RNA-DNA duplex; and (iii) ligation of the RNA sequencing adapter (RMX), which contains the
motor protein that directs RNA molecules to the pores and regulates their translocation (Figure 1A).
Currently, there are no manufacturer-provided protocols for molecular barcoding of direct RNA
sequencing datasets, which would improve the cost-effectiveness of certain dRNAseq applications by
combining multiple samples on the same consumable flow cell. Moreover, it would allow the use of
dRNAseq in cases where the amount of RNA sample is limiting - current input RNA requirements for

dRNASeq is 500 ng, which greatly limits the applicability of the technology.


https://paperpile.com/c/Iq2UeA/o92s+P7tu
https://paperpile.com/c/Iq2UeA/6rze
https://paperpile.com/c/Iq2UeA/4GlX
https://paperpile.com/c/Iq2UeA/1kKg
https://doi.org/10.1101/864322
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/864322; this version posted December 5, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A RNAmolecule B e T
. L AMAAAAAAAAA . |Barcode 1: ]
(i) ligation of ds DNA RTA adaptor e AAAAAAAABAA |
TTTTT_\\ |
TTTTT_\ | P 20 3000 7500 100K 400 17500 20000

. \
AAAAAAAAAAA | y
TTTTT_\ H . S 1
TTTTT c— .

l (ii) reverse transcription

‘Barcode 3: .
i DAPAAAAAAAA S i s } :
— D AAAAAAAAAAA :

l (iii) ligation of RNA sequencing

ARl "'Bar'c;:')de 4:'

S— S AAAAAAAAAAA—J [ S AAAAAAAAAAA S

=TT TTTTTTTTéﬁﬁW\

Figure 1: Direct RNA barcoding and demultiplexing

(A) Overview of Oxford Nanopore sample preparation protocol for native RNA sequencing. (B)
Adaptation of (A) to include custom DNA barcodes. (C) Barcode segmentation and transformation,
where the electric current associated with a barcode adapter (highlighted in red) is extracted and
converted into an image using GASF transformation. (D) Deep learning is used to classify the
segmented and GASF-transformed squiggle signals into their corresponding bins, without the need of
base-calling the underlying sequence. The convolution architecture of the final residual neural network

classifier (ResNet-20) described in this work: FC = Fully Connected layer.

Here we propose a novel strategy to barcode and efficiently demultiplex dRNAseq data (Figure 1B).
Importantly, this strategy does not require additional ligation steps compared to the standard direct
RNA sequencing library preparation, as it relies on the use of shuffled DNA oligonucleotides that are
incorporated during the first ligation step. The DNA barcodes do not appear in the base-called fasta
sequence --which are inferred from RNA-specific models-- but their electronic signal is present in the
raw sequencing data, which is used as input for our demultiplexing algorithm. Demultiplexing is

performed via the transformation of raw FASTS signals into images using Gramian Angular
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Summation Field (GASF), followed by classification using a deep residual neural network learning
model (6). We demonstrate that our proposed methodology and algorithm is a highly effective strategy
to multiplex direct RNA sequencing reads, yielding 99.9% specificity, while recovering 60% of the
reads, -or 95.1% specificity with 93% of read recovery, if enhanced recovery is preferred-. The ability
to barcode and accurately demultiplex direct RNA sequencing reads opens new avenues to enable
nanopore native RNA sequencing of samples with limited RNA availability, such as patient-derived
samples, as well as improves the cost-effectiveness of sequencing low diversity samples, such as

target-enriched or in-vitro transcribed libraries.

RESULTS

Barcoding in vitro transcribed RNAs with shuffled DNA adapters

We designed three custom DNA barcode adapters by shuffling the double stranded sequence of the
default ONT RTA adapter (Figure 1B). The three custom barcodes as well as the standard ONT RTA
adapter were individually ligated to distinct in vitro transcribed RNA sequences (see Methods and
Table S1). We performed five sequencing runs with the RTA and custom adapters: replicates 1 and 3
contained four unique Sequins transcripts (7), while replicates 2, 4, and 5 contained four unique
Sequins and four unique Curlcake sequences (8), with one of each ligated to a single adapter (Table
1). In addition, replicate 3 was spiked-in with the manufacturer provided yeast ENOZ2 control strand
(RCS). Each run produced between 600,000-1,000,000 reads, which were basecalled and uniquely
aligned to the reference sequences (Table 1, see also Table S2). The reference alignments were
used to empirically demultiplex the sequences, thus establishing a truth set to train a barcode

classifier.

Table 1. Mapping statistics from direct RNA sequencing runs

Uniquely mapped reads
Barcode Barcode IVT product
ID sequence ligated to barcoded adapter
Rep 1* Rep 2* Rep 31 Rep 41 Rep 51
BC1 GGCTTCTTCTTGC | Sequin (R2_63) 17,643 18,244 44,329 922 1,566
TCTTAGG
Curlcake (CCT1, NA 45,489 NA 15,040 63,895

ccém_2244 T7_ecorv)

BC2 GTGATTCTCGICT | Sequin (R1_81) 3,278 12,236 22,331 22 39
TTCTGCG

Curlcake (CC2, NA 138,835 NA 10,789 16,509
ccém_2459 T7_ecorv)

BC3 GTACTTTTCTCTT | Sequin (R1_103) 692 6,684 21,192 124 273
TGCGCGG

Curlcake (CC3, NA 55,475 NA 17,930 35,014
ccém_2595 T7_ecorv)

BC4 GGTCTTCGCTCGG | Sequin (R2_117) 11,421 18,139 36,882 769 1,672
TCTTATT

Curlcake (CC4, NA 130,043 NA 15,411 20,706
ccém_2709 _T7_ecorv)
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TOTAL 33,034 425,145 124,734 61,007 139,674
* SQK RNA0O1 chemistry; T SQK RNA002 chemistry

Extraction of barcode signals from raw FAST5 reads

Raw nanopore barcode signal data, consisting of a time series of electric current values, were
extracted from the files corresponding to the uniquely mapped reads. Atomic structural differences
between DNA and RNA produce conspicuously different mean current signal intensities, which can
effectively be used to identify the boundaries of the proximal DNA adapter in the raw signal — a
process henceforth referred to as barcode segmentation. We modified the Segmenter utility of
SquiggleKit (9) to create an automated workflow for barcode segmentation (termed B_roll) that targets
the lower average current level of the DNA barcodes by comparing the current of a given window to
the average current of the read using a sliding window. We also tested a barcode segmentation
strategy that uses raw current signal smoothing followed by convolutional transformation of the data
(termed B_conv) to identify major current intensity change points along the read (see Methods). B_roll
extracted signal from 74 out of 100 reads at an average speed of 0.013s per read, while B_conv
extracted signal from 68/100 reads at an average speed of 2.45s per read (Figure S1). Although both
methods proved sufficient for training a classifier (not shown), the B_roll method for barcode

segmentation was chosen for subsequent analyses given its greater speed and recovery.

Transformation of segmented barcode signals into 2D images

We reasoned that conveying raw current signal into a higher dimension could facilitate the recognition
of similar patterns in the data by employing deep learning strategies for the downstream classification.
Indeed, supervised machine learning using deep Convolutional Neural Networks (CNNs) and, in
particular, deep Residual neural Networks (ResNet) have been shown to perform optimally for the
classification of images (6, 10). To leverage the power of ResNet classifiers, we converted the raw
signal corresponding to the extracted barcodes into an array of pixels using diverse image
transformation strategies previously shown to be effective for subsequent CNN ftraining and
classification, including recurrence plots (RP) (11), Markov Transition Fields (MTF), Gramian Angular
Difference Fields (GADF) and Gramian Angular Summation Fields (GASF) (12). An example of the
different image transformations for a given raw signal segment can be found in Figure S2. GASF
transformation was retained it was found to be substantially faster at computing images than the other
methods (Table 2). Furthermore, the symmetrical images GASF produces generated slightly more
accurate results than the non-symmetrical GADF images when tested in initial training experiments
(not shown). Figure 2 illustrates the conversion of segmented nanopore dRNAseq barcode signals

into GASF images that were subsequently used for deep learning.
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Table 2. Average speed® of signal to image conversions from 1000 runs

Gramian Angular Field - Summation (GASF) 0.00264 seconds
Gramian Angular Field - Difference (GADF) 0.00373 seconds
Recurrence plot 1.20834 seconds
Markov Transition Field 0.62948 seconds

@ Computing time determined using single core Intel Xeon Skylake 2194 MHz CPU
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Figure 2. Barcode segmentation and signal transformation. A randomly selected example of
barcode signal segmentation (red outline) for each of the four barcodes is shown with its
corresponding GASF image below. An additional 5 randomly selected segmented barcode signals and
their corresponding GASF images are shown for each of the four barcodes. Sequencing reads were

drawn from replicate 2. GASF: Gramian Angular Summation Field.
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Deep residual networks to accurately classify raw signal barcodes

We combined sequencing data from replicates 2, 3 and 4 to train different CNN architectures using the
GASF images generated from the segmented barcodes, which were previously disambiguated by
aligning the base-called sequences of the ligated RNA sequenced to the reference sequence of their
unique ligation templates. A total of 240k Images were divided into three groups of four barcodes for
training, testing and validation at a ratio of 4:1:1, respectively (160K training : 40K testing : 40K
withheld for validation). We compared a ResNet V2 implementation with 20 layers (ResNet-20, see
Figure 1D) to a ResNet V2 with 56 layers (ResNet-56). We found that ResNet-20 was slightly better

than ResNet-56 while being %5 smaller and three times faster (Table 3).

Table 3. Accuracy and training time of two residual neural networks on 4x Tesla V-100 GPUs

ResNet-20 ResNet-56
Training time 6:21:52 19:21:26
Accuracy/Loss® @ epoch 10 0.8956/0.3896 0.8825/0.4135
Accuracy/Loss® @epoch 30 0.9735/0.1583 0.9356/0.2537
Accuracy/Loss® @ epoch 45 0.9780/0.1448 0.9370/0.2489
Training/Inference time per barcode | 3/3ms 9/4ms

8Accuracy and loss are calculated by the Keras framework (13), being (amount of correct guesses)/(total amount of guesses)
and categorical cross entropy respectively.

The resulting ResNet-20 model was applied to the withheld validation set to assess its accuracy.
Receiving Operator Characteristic (ROC) analysis revealed an Area Under the Curve of 0.998, a
sensitivity of 98.9% and a false positive rate of 0.3% at maximal accuracy (99.4%) (Table 4, see also
Figure 3), suggesting that the ResNet-20 model is highly tuned to the input and potentially overfitted,

despite the latter being composed of three independent sequencing datasets.

Table 4. Accuracy and recovery of ResNet20 on the testing set, validation set, and two

independent replicates.

False positive rate (<) Deeplexicon cutoff Unclassified reads (%) Accuracy (%)

Testing Set (AUC=0.999)

0.01% 1.0 69.9 85.3
0.1% 0.9969 9.0 97.7
0.2%* 0.8893* 1.5% 99.8*
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0.4%* 0.0809* 0.8* 99.4*
1.0% 0.0139 0.7 99.1
Validation Set (AUC=0.998)
0.01% 1.0 68.3 85.4
0.1% 0.9991 17.2 95.6
0.3%* 0.8164* 1.1% 99.4#
0.4%* 0.4396* 1.4* 99.6*
1.0% 0.0152 0.7 99.1
Independent Replicate (Rep. 1; AUC=0.954 )
0.01% 1.0 97.5 75.6
0.1% 1.0 86.1 78.4
1% 0.9834 294 89.3
3.2%* 0.7550* 23.6* 91.7%
9.3%* 0.1914* 12.8* 89.8
Independent Replicate (Rep. 5; AUC=0.987)
0.01% 1 82.6 79.9
0.1% 0.9983 39.6 89.1
1% 0.8800 16.2 94.9
2.1%* 0.6424% 11.5% 95.6%
4.9%* 0.2143* 6.8* 94.6*

* Optimal cutoff (Youden’s J-statistic); * Maximum accuracy cutoff

To further evaluate the model’'s accuracy and assess potential overfitting, we applied the model to two
independent biological replicates (Table 4). The global accuracy of demultiplexing was slightly lower
than the other replicates, with AUC values of 0.954 and 0.987 for rep. 1 and rep. 5, respectively
(Figure 3). These slightly lower AUC values suggest that the ResNet-20 model may indeed be slightly
overfitted to the sequencing data used for training, but nonetheless remains highly accurate at
classifying reads from independent sequencing runs generated with different chemistries (RNA0O1
and RNAO002, see Discussion).
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Figure 3. Performance of 2D convolutional neural network barcode classifier. (A) Receiving
Operator Characteristic (ROC) analysis and Area Under the Curve (AUC) metrics of the final model on
three evaluation sets: (i) Replicates 2-4 validation set (left column), which was generated from the
same sequencing runs used to train the model, but were withheld from training; (ii) Replicate 1 set
(middle column), composed of reads generated using the RNAQOO1 library kit; and (iii) Replicate 5 set
(right column), derived from an independent sequencing run using the RNAOO2 kit. Optimal Youden
index (J statistic) is marked as a black cross on the ROC curve. (B) Accuracy (black) and percentage
of reads recovered (blue) in function of the scoring threshold (cutoff) emitted by the trained model, for

three different datasets presented in (A). (C) The associated precision recall curves on the 3 test sets.
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DISCUSSION

In the last decade, third generation sequencing technologies (TGS) have emerged as powerful
methods to comprehensively study the (epi)transcriptome (14). In contrast to next generation
sequencing technologies, TGS are not limited by read length, and consequently, do not require prior
fragmentation of the RNA or cDNA molecules, providing transcriptome-wide maps of full-length

molecules.

In 2017, the direct RNA sequencing (dRNAseq) technology appeared, making it possible for the first
time to sequence native RNA molecules. Importantly, this technology could also identify chemical RNA
modifications present in the native RNA molecules (4, 5, 8, 15), as well as estimations for their
polyA-tail lengths (16, 17). However, a major caveat of dRNAseq is the amount of poly(A)-selected
RNA material that is needed, i.e., typically 500ng of poly(A)+ RNA. Unfortunately, such amounts are
difficult to obtain from biological samples, greatly limiting the applicability of this technology. In this
regard, multiplexing samples in the same flow cell would allow this technology to be applied in
situations where the amount of input RNA is limiting, as well as decrease the sequencing cost per

sample. Unfortunately, ONT does not currently offer the possibility of multiplexing dRNAseq libraries.

In contrast to dRNAseq libraries, ONT does offer barcoding strategies for cDNA libraries, which rely on
direct ligation of DNA adapters to the cDNA sequences. In this scenario, both the barcode and the
cDNA sequence can be easily base-called under a DNA model. However, this is not possible in the
context of RNA reads, as the adapter is DNA, and therefore, cannot be properly base-called under an
RNA model. Alternatively, one could base-call the DNA adapter using the DNA model; however, this is
not possible because the translocation speed of RNA reads (70bp/s) differs from that of DNA reads
(450bp/s)

Here, we propose a novel strategy that relies on the use of deep Neural Networks (DNNs) to
demultiplex dRNAseq libraries without the need of base-calling. Specifically, our strategy relies on
conversion of the barcoded DNA adapter region into images, which are fed onto the trained DNNs to
determine the underlying barcode (Figure 1). DNNs have been widely used in signal and time-series
analysis problems, including speech recognition and electrical and optical signal coding-decoding (18).
Compounding this fact, many of the recently developed DNA base-callers for nanopore signals rely on
the use of DNNs, such as DeepNano (19), DeepSignal (20) or Chiron (21). Similarly, previous efforts
have shown that nanopore DNA barcodes can be correctly classified using 1D Convolutional Neural
Networks (CNNs) (22). Here we employ 2D CNNSs, which are widely used in computer vision and
pattern recognition (23), for direct classification of raw current intensity signals. Using this strategy, we
correctly classified 84% of reads at 99% specificity (Table 3), which corresponds to 96.5% precision

(positive predictive value) and 94.9% accuracy. The performance of DeePlexiCon is superior to the
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standard sequence-based strategies employed for DNA multiplexing and is comparable to the
signal-based DNA demultiplexing algorithm DeepBinner, which displays slightly higher sensitivity and
precision (92% and 98.5%, respectively) (22). This is most likely due to the longer barcodes employed
in DNA multiplexing compared to dRNAseq (40 nt vs 20 nt, respectively), providing twice as much
discriminative information. Albeit not the focus of this manuscript, the signal transformation and use of
2D CNNs for barcode demultiplexing would also be suitable for nanopore sequencing of DNA
molecules, which might offer an alternative to DeepBinner that employs a 1D-based deep learning
barcode classifier. Future efforts can increase the number of barcodes to allow multiplexing of

additional samples in the same flow cell.

We should note that in the library preparation of replicate 1, which was one of the two datasets used
for independent validation of the demultiplexing accuracy (Table 4), the 4 barcoded samples were
pooled after the first ligation step but prior to reverse transcription and clean up, which may lead to
spurious ligation events. Moreover, this library was loaded onto a R9.5 flowcell, which bears a
modified nanopore protein optimised for rapid adapter uptake, whereas the remaining replicates were
loaded onto R9.4 flowcells (Table S$2). Although observed sporadically in other sequencing runs,
replicate 1 revealed an increased frequency of spurious (equal barcode assignment probabilities),
chimera (multi-mapping reads) and dual barcode ligations (false-false positive assignments evidenced
by visual and algorithmic confirmation of dual barcodes in the raw signal), which likely explains the
lower—yet reasonable—accuracy for this sample (Figure S4). The presence of multiple barcodes in a
read might occur due to free floating adapters in solution in conjunction with minimal time between the
first adapter/barcode passage, and the next, with a true read attached. However, this may also be due
to the lack of clear open pore signal, causing MinKNOW to miss the segmentation, and thus produce a
single fast5 file with both events included. Nonetheless, DeePlexiCon was able to demultiplex the
sample with respectable accuracy (92-96%), demonstrating the power of deep learning for

disentangling noisy data.

METHODS

Synthetic sequences

‘Curlcake’ sequences (8) were ordered from General Biosystems. Curlcake plasmids were double
digested overnight with EcoRV-BamHI-HF. Sequin plasmid constructs (R2_117_1, R2 63 3,
R1_103_1 and R1_81_2), used commercially for RNA sequencing experiments as a spike-in control
(7), were a kind gift from Dr. Tim Mercer (https://www.sequinstandards.com/). ‘Sequin’ plasmids were
digested O/N with EcoRI-HF. After digestion, DNA was extracted with Phenol-Chloroform followed by

ethanol precipitation. Plasmid digestion was confirmed by agarose gel (Figure S3A). Digestion

product quality was assessed with Nanodrop before proceeding to in vitro transcription.

In vitro transcription, capping and polyadenylation
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Using 1 pg of purified digestion product as starting material, Curlcake in vitro transcribed (IVT)
sequences were produced using the Ampliscribe™ T7-Flash™ Transcription Kit (Lucigen-ASF3507).
Sequin IVT sequences were produced using SP6 Polymerase (NEB-M0207S), following the
manufacturer’'s recommendations. Each IVT reaction was incubated for 4 hours at 42 °C for Curlcake
sequences and at 40 °C for Sequin sequences. In vitro transcribed RNA was then incubated with
Turbo DNAse (Lucigen) for 15 minutes, followed by purification using the RNeasy Mini Kit
(Qiagen-74104). Correct IVT product lengths for Sequins were confirmed using Bioanalyzer (Figure
S83B). Each IVT product was 5’ capped using Vaccinia Capping Enzyme (NEB-M2080S) following the
manufacturer's recommendations. The capping reaction was incubated for 30 minutes at 37 °C.
Capped IVT products were purified using RNA Clean XP Beads (Beckman Coulter-A66514). Curlcake
IVT products were Poly(A)-tailed using the E. coli Poly(A) Polymerase kit (NEB-M0276S), following the
manufacturer’s recommendations. Poly(A)-tailed RNAs were purified using RNA Clean XP beads.
Correct IVT product lengths for Curlcakes were confirmed using TapeStation (Figure S3C).
Concentration of IVT products was determined using Qubit Fluorometric Quantitation and purity was

measured with NanoDrop 2000 Spectrophotometer (Table S3)

Direct RNA library preparation and sequencing

Custom RT adaptors (IDT) were annealed in following conditions. Oligo A and B were mixed in
annealing buffer (0.01M Tris-Cl pH7.5, 0.05M NaCl) to the final concentration of 1.4 uM each in a total
volume of 75 pl. The mixture was incubated at 94 °C for 5 minutes and slowly cooled down (-0.1 °C/s)
to room temperature. RNA library for direct RNA Sequencing (SQK-RNAOO1 for replicates 1 and 2;
SQK-RNAO0O2 for replicates 3, 4 and 5) was prepared following the ONT Direct RNA Sequencing
protocol (Version DRS 9026 _v1_revP_15Dec2016 for replicates 1 and 2;
DRS 9080 v2 revl_14Aug2019 for replicates 3, 4 and 5).

For replicates 2, 3, 4 and 5, 500 ng total of each IVT product (4 Curlcakes and/or 4 Sequins, as
described in Table 1) were individually ligated to pre-annealed custom RT adaptors (IDT) (Table S2)
in four separate eppendorfs, using concentrated T4 DNA Ligase (NEB-M0202T), and were reverse
transcribed using SuperScript 1l Reverse Transcriptase (Thermo Fisher Scientific-18080044). The
products were purified using 1.8X Agencourt RNAClean XP beads (Fisher Scientific-NC0068576),
washing with 70% freshly prepared ethanol. In total, 50 ng of reverse transcribed RNA from each
reaction was pooled, and RNA Adapter (RMX), composed of sequencing adapters with motor protein,
was ligated onto the RNA:DNA hybrid. The mix was purified using 1X Agencourt RNAClean XP beads,
washing with Wash Buffer twice. The sample was then eluted in Elution Buffer and mixed with RNA
Running Buffer prior to loading onto a primed R9.4.1 flow cell (replicates 2,3,4 and 5) or R9.5 flow cell
(replicate 1), and ran on either a GridlON (replicates 1 and 3) or MinlON (replicates 2, 4 and 5)

sequencer for 48h or less (until all pores were inactive).
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For replicate 1, library preparation steps were mainly performed as described above, but with slight
variations. Specifically, the pooling of barcoded samples was performed after ligation step with
pre-annealed custom RT adaptors, prior to reverse transcription. This strategy was discarded for the
subsequent replicates as we considered that there could be potential cross-ligation of barcodes and

IVT products if the pooling was performed prior to clean up.

Basecalling, mapping and organization of sequencing data

Reads were basecalled with Guppy version 3.1.5 on a GPU-enabled Sun Grid Engine high
performance computing server (parameters “--chunks_per_runner 1500 --gpu_runners_per_device 1
--cpu_threads_per caller 4 -x "cuda:0 cuda:1 cuda:2 cuda:3" -r and configuration
“rna_r9.4.1_70bps_hac.cfg”. Base called reads (fastq) were aligned to Sequin transcripts (R2_117_1,
R2 63 3, R1_103_1 and R1_81_2) (7) in replicate 1, and to both Sequin and ‘Curlcake’ constructs
(CC1, CC2, CC3 and CC4) in replicate 2, using minimap2 (24) with v.2.17-r943-dirty with parameters
“-k 14 --secondary=no”. Reference fasta sequences used to map both Sequin and Curicake reads can
be found in Table S4. Mapped reads were filtered for unique targets and mapping quality
(MAPQ==60), quantified and binned into four groups based on the ligated sequence against which
they mapped to, and the associated raw signal data was extracted using the fast5_fetcher and
SquigglePull modules from the SquiggleKit package (9). The resulting tab delimited files were used as
input for barcode segmentation, i.e., identifying and extruding the signal associated with DNA adapter

barcodes.

Extraction (segmentation) of raw signal associate with barcodes

Barcode segmentation from raw signal was performed using two strategies. The first strategy, which
we term B_roll, calculates the global mean of the signal over a rolling window (2000 signal points) and
identifies DNA barcode edges by setting a threshold of the mean, relative to the standard deviation.
This strategy was performed by running the dRNA_segmenter.py script from SquiggleKit, with default
parameters (9). The second strategy, which we term B_conv, consisted in applying the discrete
convolution operation of the numpy python package (25) to smooth the unidimensional signal data
and manifest large shifts in the data, which facilitates the identification of boundaries delimiting the
different sections of the sequencing read. The 2nd derivative of convolved signal was calculated using
a rolling window of 1001 points by applying the Savitzky-Golay filter (26). Maximal absolute values of
derivatives were considered as the most likely location of boundary signal points, i.e., adapter start
and end points. Mean and standard deviation of the current intensities were considered to further
refine the boundaries. The raw signal comprised between the two boundary points, identified by either
strategy, was used as input for the following steps. The efficiency and accuracy of both methods was
assessed by visually inspecting 100 start and stop sites in the segmentation output of both methods. It
was found that while B_conv had a bias in setting the end-point boundary too early, thus reducing the

number of viable full segments (Figure S1)
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Signal transformation and deep learning

The extracted raw signals were converted into 2D images using the Python PyTS package (27). We
implemented a model training method in Python that employs Tensorflow, Keras, Scikit, Pandas,
PyCM, and PyTS libraries (Table S5) (13, 25, 28-33). Keras implementations of ResNet-20 and
ResNet-56 were slightly modified to support multi-gpu training, to adjust the learning rate scheduler,
and to limit the channels to 1 and outputs to 4 classes (see Jupyter notebook in git repository v1.0.0
release source code). To drastically increase the speed of training, we employed Keras multi-GPU
processing with Tensorflow-1.32. A Jupyter notebook presenting all commands used for the ResNet
training protocol is available in the accompanying Github repository (release v1.0.0). Training was
performed on a server with 4x NVIDIA V100 GPUs with 16GB memory each using NVLink.

Data availability

Code, models, and scripts used demultiplex direct RNA reads—including example FAST5 data, data
processing, reference sequences, and benchmarking scripts can be found at:
https://github.com/Psy-Fer/deeplexicon. All FAST5 datasets used in this work will be made publicly
available in SRA, under accession number PRJNA545820.

Performance evaluation

ROC and precision metrics were performed using the ROCit package in R.

Code availability
Code to demultiplex direct RNA reads, including example FAST5 data, can be found at:

https://github.com/Psy-Fer/deeplexicon. All FAST5 datasets used in this work have been made

publicly available in SRA, under accession number PRINA545820.
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