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ABSTRACT 
 
Nanopore sequencing has enabled sequencing of native RNA molecules without conversion to cDNA,             

thus opening the gates to a new era for the unbiased study of RNA biology. However, a formal                  

barcoding protocol for direct sequencing of native RNA molecules is currently lacking, limiting the              

efficient processing of multiple samples in the same flowcell. A major limitation for the development of                

barcoding protocols for direct RNA sequencing is the error rate introduced during the base-calling              

process, especially towards the 5’ and 3’ ends of reads, which complicates sequence-based barcode              

demultiplexing. Here, we propose a novel strategy to barcode and demultiplex direct RNA sequencing              

nanopore data, which does not rely on base-calling or additional library preparation steps.             

Specifically, custom DNA oligonucleotides are ligated to RNA transcripts during library preparation.            

Then, raw current signal corresponding to the DNA barcode is extracted and transformed into an array                

of pixels, which is used to determine the underlying barcode using a deep convolutional neural               

network classifier. Our method, ​DeePlexiCon​, implements a 20-layer residual neural network model            

that can demultiplex 93% of the reads with 95.1% specificity, or 60% of reads with 99.9% specificity.                 

The availability of an efficient and simple barcoding strategy for native RNA sequencing will enhance               

the use of direct RNA sequencing by making it more cost-effective to the entire community. Moreover,                

it will facilitate the applicability of direct RNA sequencing to samples where the RNA amounts are                

limited, such as patient-derived samples.  
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INTRODUCTION 

The appearance of third generation sequencing (TGS) technologies has revolutionized our ability to             

sequence genomes and transcriptomes ​(1, 2)​. In comparison to next-generation sequencing           

technologies, TGS have the ability to produce long sequencing reads, avoiding the hassle of              

fragmenting the RNA or DNA molecules into smaller pieces to then reassemble them back together.               

Furthermore, TGS technologies have the ability to sequence DNA and RNA without a PCR              

amplification step, thus allowing for direct detection of DNA and RNA modifications, with single              

nucleotide and single molecule resolution.  

 

Direct sequencing of native RNA molecules (dRNAseq) can be achieved using the platform offered by               

Oxford Nanopore Technologies (ONT). This platform relies on the use of protein nanopores embedded              

in a lipidic membrane that are subjected to an electric field. Characteristic disruptions in electric               

current are measured as the charged molecule passes through the pore, enabling the observation of               

single molecules. Low translocation velocity of the RNA molecule is achieved through the association              

of motor proteins that regulate translocation of nucleic acid polymers, and the current intensity              

measurements can in turn be converted into sequence information using base-calling algorithms ​(3)​.  

 

The first direct RNA sequencing protocol developed by ONT (SQK-RNA001) became commercially            

available in 2017 and was designed to sequence mRNAs ​(4)​, although later efforts have shown that                

this protocol can be adapted to sequence non-polyAed RNAs, such as ribosomal RNAs ​(5)​. The               

current ONT dRNAseq library preparation protocol comprises three main steps: (i) ligation of a              

double-stranded, pre-annealed DNA RT Adapter (RTA), which contains an oligo-dT overhang to            

anneal to poly(A)+ mRNAs; (ii) optional reverse transcription, which linearizes the RNA molecule into              

an RNA-DNA duplex; and (iii) ligation of the RNA sequencing adapter (RMX), which contains the               

motor protein that directs RNA molecules to the pores and regulates their translocation (​Figure 1A​).               

Currently, there are no manufacturer-provided protocols for molecular barcoding of direct RNA            

sequencing datasets, which would improve the cost-effectiveness of certain dRNAseq applications by            

combining multiple samples on the same consumable flow cell. Moreover, it would allow the use of                

dRNAseq in cases where the amount of RNA sample is limiting - current input RNA requirements for                 

dRNASeq is 500 ng, which greatly limits the applicability of the technology.  
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Figure 1: Direct RNA barcoding and demultiplexing  

(A) ​Overview of Oxford Nanopore sample preparation protocol for native RNA sequencing. ​(B)             

Adaptation of (A) to include custom DNA barcodes. ​(C) Barcode segmentation and transformation,             

where the electric current associated with a barcode adapter (highlighted in red) is extracted and               

converted into an image using GASF transformation. (D) ​Deep learning is used to classify the               

segmented and GASF-transformed squiggle signals into their corresponding bins, without the need of             

base-calling the underlying sequence. The convolution architecture of the final residual neural network             

classifier (ResNet-20) described in this work: FC = Fully Connected layer. 

 

Here we propose a novel strategy to barcode and efficiently demultiplex dRNAseq data (​Figure 1B​).               

Importantly, this strategy does not require additional ligation steps compared to the standard direct              

RNA sequencing library preparation, as it relies on the use of shuffled DNA oligonucleotides that are                

incorporated during the first ligation step. The DNA barcodes do not appear in the base-called fasta                

sequence --which are inferred from RNA-specific models-- but their electronic signal is present in the               

raw sequencing data, which is used as input for our demultiplexing algorithm. Demultiplexing is              

performed via the transformation of raw FAST5 signals into images using Gramian Angular             
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Summation Field (GASF), followed by classification using a deep residual neural network learning             

model ​(6)​. We demonstrate that our proposed methodology and algorithm is a highly effective strategy               

to multiplex direct RNA sequencing reads, yielding 99.9% specificity, while recovering 60% of the              

reads, -or 95.1% specificity with 93% of read recovery, if enhanced recovery is preferred-. The ability                

to barcode and accurately demultiplex direct RNA sequencing reads opens new avenues to enable              

nanopore native RNA sequencing of samples with limited RNA availability, such as patient-derived             

samples, as well as improves the cost-effectiveness of sequencing low diversity samples, such as              

target-enriched or ​in-vitro​ transcribed libraries.  

 

RESULTS 

 

Barcoding ​in vitro ​ transcribed RNAs with shuffled DNA adapters 

We designed three custom DNA barcode adapters by shuffling the double stranded sequence of the               

default ONT RTA adapter (​Figure 1B​). The three custom barcodes as well as the standard ONT RTA                 

adapter were individually ligated to distinct ​in vitro ​transcribed RNA sequences (see ​Methods and              

Table S1 ​). We performed five sequencing runs with the RTA and custom adapters: ​replicates 1 ​and 3                 

contained four unique ​Sequins ​transcripts ​(7)​, while ​replicates 2​, ​4, and 5 contained four unique                

Sequins and four unique ​Curlcake ​sequences ​(8)​, with one of each ligated to a single adapter (​Table                 

1​). In addition, ​replicate 3 was spiked-in with the manufacturer provided yeast ​ENO2 control strand               

(RCS). Each run produced between 600,000-1,000,000 reads, which were basecalled and uniquely            

aligned to the reference sequences (​Table 1, ​see also ​Table S2 ​). The reference alignments were               

used to empirically demultiplex the sequences, thus establishing a truth set to train a barcode               

classifier.  

T​able 1. Mapping statistics from direct RNA sequencing runs 

Barcode 
ID  

Barcode 
sequence 

IVT product  
ligated to barcoded adapter 

Uniquely mapped reads 

Rep 1* Rep 2* Rep 3​†  Rep 4​† Rep 5​† 

BC1 
 

GGCTTCTTCTTGC

TCTTAGG 
 

Sequin (R2_63) 17,643 18,244  44,329 922 1,566 

Curlcake (CC1, 
cc6m_2244_T7_ecorv) 

NA 45,489 NA 15,040 63,895 

BC2 
 

GTGATTCTCGTCT

TTCTGCG 
 

Sequin (R1_81) 3,278 12,236 22,331 22 39 

Curlcake (CC2, 
cc6m_2459_T7_ecorv) 

NA 138,835 NA 10,789 16,509 

BC3 
 

GTACTTTTCTCTT

TGCGCGG 
 

Sequin (R1_103) 692 6,684  21,192 124 273 

Curlcake (CC3, 
cc6m_2595_T7_ecorv) 

NA 55,475 NA 17,930 35,014 

BC4 
 

GGTCTTCGCTCGG

TCTTATT 
 

Sequin (R2_117) 11,421 18,139 36,882 769 1,672 

Curlcake (CC4, 
cc6m_2709_T7_ecorv) 

NA 130,043 NA 15,411 20,706 
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TOTAL   33,034 425,145 124,734 61,007 139,674 

* SQK RNA001 chemistry; † SQK RNA002 chemistry 

 

Extraction of barcode signals from raw FAST5 reads  

Raw nanopore barcode signal data, consisting of a time series of electric current values, were               

extracted from the files corresponding to the uniquely mapped reads. Atomic structural differences             

between DNA and RNA produce conspicuously different mean current signal intensities, which can             

effectively be used to identify the boundaries of the proximal DNA adapter in the raw signal – a                  

process henceforth referred to as ​barcode segmentation​. We modified the ​Segmenter utility of             

SquiggleKit ​(9) to create an automated workflow for barcode segmentation (termed ​B_roll​) that targets              

the lower average current level of the DNA barcodes by comparing the current of a given window to                  

the average current of the read using a sliding window. We also tested a barcode segmentation                

strategy that uses raw current signal smoothing followed by convolutional transformation of the data              

(termed ​B_conv​) to identify major current intensity change points along the read (see ​Methods​). ​B_roll               

extracted signal from 74 out of 100 reads at an average speed of 0.013s per read, while ​B_conv                  

extracted signal from 68/100 reads at an average speed of 2.45s per read (​Figure S1​). Although both                 

methods proved sufficient for training a classifier (not shown), the ​B_roll method for barcode              

segmentation was chosen for subsequent analyses given its greater speed and recovery.  

 

Transformation of segmented barcode signals into 2D images 

We reasoned that conveying raw current signal into a higher dimension could facilitate the recognition               

of similar patterns in the data by employing deep learning strategies for the downstream classification.               

Indeed, supervised machine learning using deep Convolutional Neural Networks (CNNs) and, in            

particular, deep Residual neural Networks (ResNet) have been shown to perform optimally for the              

classification of images ​(6, 10)​. To leverage the power of ResNet classifiers, we converted the raw                

signal corresponding to the extracted barcodes into an array of pixels using diverse image              

transformation strategies previously shown to be effective for subsequent CNN training and            

classification, including recurrence plots (RP) ​(11)​, Markov Transition Fields (MTF), Gramian Angular            

Difference Fields (GADF) and Gramian Angular Summation Fields (GASF) ​(12)​. An example of the              

different image transformations for a given raw signal segment can be found in ​Figure S2 ​. GASF                

transformation was retained it was found to be substantially faster at computing images than the other                

methods (​Table 2​). Furthermore, the symmetrical images GASF produces generated slightly more            

accurate results than the non-symmetrical GADF images when tested in initial training experiments             

(not shown). ​Figure 2 ​illustrates the conversion of segmented nanopore dRNAseq barcode signals             

into GASF images that were subsequently used for deep learning.  
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Table 2. Average speed​a​ of signal to image conversions from 1000 runs  

Gramian Angular Field - Summation (GASF) 0.00264 seconds 

Gramian Angular Field - Difference (GADF) 0.00373 seconds 

Recurrence plot 1.20834 seconds 

Markov Transition Field 0.62948 seconds 
a ​Computing time determined using ​single core Intel Xeon Skylake 2194 MHz CPU 

 

 

Figure 2. Barcode segmentation and signal transformation. ​A randomly selected example of            

barcode signal segmentation (red outline) for each of the four barcodes is shown with its               

corresponding GASF image below. An additional 5 randomly selected segmented barcode signals and             

their corresponding GASF images are shown for each of the four barcodes. Sequencing reads were               

drawn from replicate 2. GASF: Gramian Angular Summation Field. 
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Deep residual networks to accurately classify raw signal barcodes 

We combined sequencing data from replicates 2, 3 and 4 to train different CNN architectures using the                 

GASF images generated from the segmented barcodes, which were previously disambiguated by            

aligning the base-called sequences of the ligated RNA sequenced to the reference sequence of their               

unique ligation templates. A total of 240k Images were divided into three groups of four barcodes for                 

training, testing and validation at a ratio of 4:1:1, respectively (160K training : 40K testing : 40K                 

withheld for validation). We compared a ResNet V2 implementation with 20 layers (ResNet-20, see              

Figure 1D ​) to a ResNet V2 with 56 layers (ResNet-56). We found that ResNet-20 was slightly better                 

than ResNet-56 while being ⅓ smaller and three times faster (​Table 3​). 

Table 3. Accuracy and training time of two residual neural networks on 4x Tesla V-100 GPUs 

  ResNet-20 ResNet-56 

Training time 6:21:52 19:21:26 

Accuracy/Loss​a ​ @ epoch 10 0.8956/0.3896 0.8825/0.4135 

Accuracy/Loss​a ​ @epoch 30 0.9735/0.1583 0.9356/0.2537 

Accuracy/Loss​a ​ @ epoch 45 0.9780/0.1448 0.9370/0.2489 

Training/Inference time per barcode 3/3ms 9/4ms 

a ​Accuracy and loss are calculated by the Keras framework ​(13)​, being (amount of correct guesses)/(total amount of guesses) 
and categorical cross entropy respectively. 

The resulting ResNet-20 model was applied to the withheld validation set to assess its accuracy.               

Receiving Operator Characteristic (ROC) analysis revealed an Area Under the Curve of 0.998, a              

sensitivity of 98.9% and a false positive rate of 0.3% at maximal accuracy (99.4%) (​Table 4, ​see also                  

Figure 3 ​), suggesting that the ResNet-20 model is highly tuned to the input and potentially overfitted,                

despite the latter being composed of three independent sequencing datasets.  

 

Table 4. Accuracy and recovery of ResNet20 on the testing set, validation set, and two               

independent replicates. 

False positive rate (≤) Deeplexicon cutoff Unclassified reads (%) Accuracy (%)  

Testing Set (AUC=0.999) 

0.01% 1.0 69.9 85.3 

0.1% 0.9969 9.0 97.7 

0.2%​# 0.8893​# 1.5​# 99.8​# 
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0.4%* 0.0809* 0.8* 99.4* 

1.0% 0.0139 0.7 99.1 

Validation Set (AUC=0.998) 

0.01% 1.0 68.3 85.4 

0.1% 0.9991 17.2 95.6 

0.3%​# 0.8164​# 1.1​# 99.4​# 

0.4%* 0.4396* 1.4* 99.6* 

1.0% 0.0152 0.7 99.1 

Independent Replicate (Rep. 1; AUC=0.954 ) 

0.01% 1.0 97.5 75.6 

0.1% 1.0 86.1 78.4 

1% 0.9834 29.4 89.3 

3.2%​# 0.7550​# 23.6​# 91.7​# 

9.3%* 0.1914* 12.8* 89.8 

Independent Replicate (Rep. 5; AUC=0.987) 

0.01% 1 82.6 79.9 

0.1% 0.9983 39.6 89.1 

1% 0.8800 16.2 94.9 

2.1%​# 0.6424​# 11.5​# 95.6​# 

4.9%* 0.2143* 6.8* 94.6* 

* Optimal cutoff (Youden’s J-statistic); ​#​ Maximum accuracy cutoff 

 

To further evaluate the model’s accuracy and assess potential overfitting, we applied the model to two                

independent biological replicates (​Table 4​). The global accuracy of demultiplexing was slightly lower             

than the other replicates, with AUC values of 0.954 and 0.987 for rep. 1 and rep. 5, respectively                  

(​Figure 3 ​). These slightly lower AUC values suggest that the ResNet-20 model may indeed be slightly                

overfitted to the sequencing data used for training, but nonetheless remains highly accurate at              

classifying reads from independent sequencing runs generated with different chemistries (RNA001           

and RNA002, see Discussion). 
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Figure 3. Performance of 2D convolutional neural network barcode classifier. ​(A) Receiving            

Operator Characteristic (ROC) analysis and Area Under the Curve (AUC) metrics of the final model on                

three evaluation sets: (i) Replicates 2-4 validation set (left column), which was generated from the               

same sequencing runs used to train the model, but were withheld from training; (ii) Replicate 1 set                 

(middle column), composed of reads generated using the RNA001 library kit; and (iii) Replicate 5 set                

(right column), derived from an independent sequencing run using the RNA002 kit. ​Optimal Youden              

index (J statistic) is marked as a black cross on the ROC curve. ​(B) Accuracy (black) and percentage                  

of reads recovered (blue) in function of the scoring threshold (cutoff) emitted by the trained model, for                 

three different datasets presented in (A).  ​(C)​ The associated precision recall curves on the 3 test sets.  

 

  

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 5, 2019. ; https://doi.org/10.1101/864322doi: bioRxiv preprint 

https://doi.org/10.1101/864322
http://creativecommons.org/licenses/by-nc/4.0/


DISCUSSION 

 

In the last decade, third generation sequencing technologies (TGS) have emerged as powerful             

methods to comprehensively study the (epi)transcriptome ​(14)​. In contrast to next generation            

sequencing technologies, TGS are not limited by read length, and consequently, do not require prior               

fragmentation of the RNA or cDNA molecules, providing transcriptome-wide maps of full-length            

molecules.  

 

In 2017, the direct RNA sequencing (dRNAseq) technology appeared, making it possible for the first               

time to sequence native RNA molecules. Importantly, this technology could also identify chemical RNA              

modifications present in the native RNA molecules ​(4, 5, 8, 15)​, as well as estimations for their                 

polyA-tail lengths ​(16, 17)​. However, a major caveat of dRNAseq is the amount of poly(A)-selected               

RNA material that is needed, i.e., typically 500ng of poly(A)+ RNA. Unfortunately, such amounts are               

difficult to obtain from biological samples, greatly limiting the applicability of this technology. In this               

regard, multiplexing samples in the same flow cell would allow this technology to be applied in                

situations where the amount of input RNA is limiting, as well as decrease the sequencing cost per                 

sample. Unfortunately, ONT does not currently offer the possibility of multiplexing dRNAseq libraries. 

 

In contrast to dRNAseq libraries, ONT does offer barcoding strategies for cDNA libraries, which rely on                

direct ligation of DNA adapters to the cDNA sequences. In this scenario, both the barcode and the                 

cDNA sequence can be easily base-called under a DNA model. However, this is not possible in the                 

context of RNA reads, as the adapter is DNA, and therefore, cannot be properly base-called under an                 

RNA model. Alternatively, one could base-call the DNA adapter using the DNA model; however, this is                

not possible because the translocation speed of RNA reads (70bp/s) differs from that of DNA reads                

(450bp/s) 

 

Here, we propose a novel strategy that relies on the use of deep Neural Networks (DNNs) to                 

demultiplex dRNAseq libraries without the need of base-calling. Specifically, our strategy relies on             

conversion of the barcoded DNA adapter region into images, which are fed onto the trained DNNs to                 

determine the underlying barcode (​Figure 1​). DNNs have been widely used in signal and time-series               

analysis problems, including speech recognition and electrical and optical signal coding-decoding ​(18)​.            

Compounding this fact, many of the recently developed DNA base-callers for nanopore signals rely on               

the use of DNNs, such as DeepNano ​(19)​, DeepSignal ​(20) or Chiron ​(21)​. Similarly, previous efforts                

have shown that nanopore DNA barcodes can be correctly classified using 1D Convolutional Neural              

Networks (CNNs) ​(22)​. Here we employ 2D CNNs, which are widely used in computer vision and                

pattern recognition ​(23)​, for direct classification of raw current intensity signals. Using this strategy, we               

correctly classified 84% of reads at 99% specificity (​Table 3​), which corresponds to 96.5% precision               

(positive predictive value) and 94.9% accuracy. The performance of ​DeePlexiCon is superior to the              
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standard sequence-based strategies employed for DNA multiplexing and is comparable to the            

signal-based DNA demultiplexing algorithm DeepBinner, which displays slightly higher sensitivity and           

precision (92% and 98.5%, respectively) ​(22)​. This is most likely due to the longer barcodes employed                

in DNA multiplexing compared to dRNAseq (40 nt vs 20 nt, respectively), providing twice as much                

discriminative information. Albeit not the focus of this manuscript, the signal transformation and use of               

2D CNNs for barcode demultiplexing would also be suitable for nanopore sequencing of DNA              

molecules, which might offer an alternative to DeepBinner that employs a 1D-based deep learning              

barcode classifier. Future efforts can increase the number of barcodes to allow multiplexing of              

additional samples in the same flow cell.  

We should note that in the library preparation of replicate 1, which was one of the two datasets used                   

for independent validation of the demultiplexing accuracy (​Table 4​), the 4 barcoded samples were              

pooled after the first ligation step but prior to reverse transcription and clean up, which may lead to                  

spurious ligation events. Moreover, this library was loaded onto a R9.5 flowcell, which bears a               

modified nanopore protein optimised for rapid adapter uptake, whereas the remaining replicates were             

loaded onto R9.4 flowcells (​Table S2​). Although observed sporadically in other sequencing runs,             

replicate 1 revealed an increased frequency of spurious (equal barcode assignment probabilities),            

chimera (multi-mapping reads) and dual barcode ligations (false-false positive assignments evidenced           

by visual and algorithmic confirmation of dual barcodes in the raw signal), which likely explains the                

lower–yet reasonable–accuracy for this sample (​Figure S4​). The presence of multiple barcodes in a              

read might occur due to free floating adapters in solution in conjunction with minimal time between the                 

first adapter/barcode passage, and the next, with a true read attached. However, this may also be due                 

to the lack of clear open pore signal, causing MinKNOW to miss the segmentation, and thus produce a                  

single fast5 file with both events included. Nonetheless, ​DeePlexiCon was able to demultiplex the              

sample with respectable accuracy (92-96%), demonstrating the power of deep learning for            

disentangling noisy data.  

  

METHODS 

 
Synthetic sequences 

‘Curlcake’ sequences ​(8) were ordered from General Biosystems. Curlcake plasmids were double            

digested overnight with EcoRV-BamHI-HF. Sequin plasmid constructs (R2_117_1, R2_63_3,         

R1_103_1 and R1_81_2), used commercially for RNA sequencing experiments as a spike-in control             

(7)​, were a kind gift from Dr. Tim Mercer (​https://www.sequinstandards.com/​). ‘Sequin’ plasmids were             

digested O/N with EcoRI-HF. After digestion, DNA was extracted with Phenol-Chloroform followed by             

ethanol precipitation. Plasmid digestion was confirmed by agarose gel (​Figure S3A​). Digestion            

product quality was assessed with Nanodrop before proceeding to ​in vitro ​transcription. 

  

In vitro ​transcription, capping and polyadenylation 
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Using 1 µg of purified digestion product as starting material, Curlcake ​in vitro transcribed (IVT)               

sequences were produced using the Ampliscribe™ T7-Flash™ Transcription Kit (Lucigen-ASF3507).          

Sequin IVT sequences were produced using SP6 Polymerase (NEB-M0207S), following the           

manufacturer’s recommendations. Each IVT reaction was incubated for 4 hours at 42 °C for Curlcake               

sequences and at 40 °C for Sequin sequences. ​In vitro ​transcribed RNA was then incubated with                

Turbo DNAse (Lucigen) for 15 minutes, followed by purification using the RNeasy Mini Kit              

(Qiagen-74104). Correct IVT product lengths for Sequins were confirmed using Bioanalyzer (​Figure            

S3B​). Each IVT product was 5’ capped using Vaccinia Capping Enzyme (NEB-M2080S) following the              

manufacturer’s recommendations. The capping reaction was incubated for 30 minutes at 37 °C.             

Capped IVT products were purified using RNA Clean XP Beads (Beckman Coulter-A66514). Curlcake             

IVT products were Poly(A)-tailed using the ​E. coli ​Poly(A) Polymerase kit (NEB-M0276S), following the              

manufacturer’s recommendations. Poly(A)-tailed RNAs were purified using RNA Clean XP beads.           

Correct IVT product lengths for Curlcakes were confirmed using TapeStation (​Figure S3C​).            

Concentration of IVT products was determined using Qubit Fluorometric Quantitation and purity was             

measured with NanoDrop 2000 Spectrophotometer (​Table S3​) 

  

Direct RNA library preparation and sequencing 

Custom RT adaptors (IDT) were annealed in following conditions. Oligo A and B were mixed in                

annealing buffer (0.01M Tris-Cl pH7.5, 0.05M NaCl) to the final concentration of 1.4 uM each in a total                  

volume of 75 µl. The mixture was incubated at 94 °C for 5 minutes and slowly cooled down (-0.1 °C/s)                    

to room temperature. RNA library for direct RNA Sequencing (SQK-RNA001 for replicates 1 and 2;               

SQK-RNA002 for replicates 3, 4 and 5) was prepared following the ONT Direct RNA Sequencing               

protocol (Version DRS_9026_v1_revP_15Dec2016 for replicates 1 and 2;        

DRS_9080_v2_revI_14Aug2019 for replicates 3, 4 and 5).  

 

For replicates 2, 3, 4 and 5, 500 ng total of each IVT product (4 ​Curlcakes and/or 4 ​Sequins​, as                    

described in ​Table 1 ​) were individually ligated to pre-annealed custom RT adaptors (IDT) (​Table S2​)               

in four separate eppendorfs, using concentrated T4 DNA Ligase (NEB-M0202T), and were reverse             

transcribed using SuperScript III Reverse Transcriptase (Thermo Fisher Scientific-18080044). The          

products were purified using 1.8X Agencourt RNAClean XP beads (Fisher Scientific-NC0068576),           

washing with 70% freshly prepared ethanol. In total, 50 ng of reverse transcribed RNA from each                

reaction was pooled, and RNA Adapter (RMX), composed of sequencing adapters with motor protein,              

was ligated onto the RNA:DNA hybrid. The mix was purified using 1X Agencourt RNAClean XP beads,                

washing with Wash Buffer twice. The sample was then eluted in Elution Buffer and mixed with RNA                 

Running Buffer prior to loading onto a primed R9.4.1 flow cell (replicates 2,3,4 and 5) or R9.5 flow cell                   

(replicate 1), and ran on either a GridION (replicates 1 and 3) or MinION (replicates 2, 4 and 5)                   

sequencer for 48h or less (until all pores were inactive).  
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For replicate 1, library preparation steps were mainly performed as described above, but with slight               

variations. Specifically, the pooling of barcoded samples was performed after ligation step with             

pre-annealed custom RT adaptors, prior to reverse transcription. This strategy was discarded for the              

subsequent replicates as we considered that there could be potential cross-ligation of barcodes and              

IVT products if the pooling was performed prior to clean up. 

 

Basecalling, mapping and organization of sequencing data 

Reads were basecalled with Guppy version 3.1.5 on a GPU-enabled Sun Grid Engine high              

performance computing server (parameters “--chunks_per_runner 1500 --gpu_runners_per_device 1        

--cpu_threads_per_caller 4 -x "cuda:0 cuda:1 cuda:2 cuda:3" -r” and configuration          

“rna_r9.4.1_70bps_hac.cfg”. Base called reads (fastq) were aligned to Sequin transcripts (R2_117_1,           

R2_63_3, R1_103_1 and R1_81_2) ​(7) in replicate 1, and to both Sequin and ‘Curlcake’ constructs               

(CC1, CC2, CC3 and CC4) in replicate 2, using minimap2 ​(24) with v.2.17-r943-dirty with parameters               

“-k 14 --secondary=no”. Reference fasta sequences used to map both ​Sequin and ​Curlcake reads can               

be found in ​Table S4 ​. Mapped reads were filtered for unique targets and mapping quality               

(MAPQ==60), quantified and binned into four groups based on the ligated sequence against which              

they mapped to, and the associated raw signal data was extracted using the fast5_fetcher and               

SquigglePull modules from the SquiggleKit package ​(9)​. The resulting tab delimited files were used as               

input for barcode segmentation, i.e., identifying and extruding the signal associated with DNA adapter              

barcodes.  

 

Extraction (segmentation) of raw signal associate with barcodes  

Barcode segmentation from raw signal was performed using two strategies. The first strategy, which              

we term ​B_roll, calculates the global mean of the signal over a rolling window (2000 signal points) and                  

identifies DNA barcode edges by setting a threshold of the mean, relative to the standard deviation.                

This strategy was performed by running the dRNA_segmenter.py script from SquiggleKit, with default             

parameters ​(9)​. The second strategy, which we term ​B_conv​, consisted in applying the discrete              

convolution operation of the numpy python package ​(25) to smooth the unidimensional signal data              

and manifest large shifts in the data, which facilitates the identification of boundaries delimiting the               

different sections of the sequencing read. The 2nd derivative of convolved signal was calculated using               

a rolling window of 1001 points by applying the ​Savitzky-Golay filter ​(26)​. Maximal absolute values of                

derivatives were considered as the most likely location of boundary signal points, i.e., adapter start               

and end points. Mean and standard deviation of the current intensities were considered to further               

refine the boundaries. The raw signal comprised between the two boundary points, identified by either               

strategy, was used as input for the following steps. ​The efficiency and accuracy of both methods was                 

assessed by visually inspecting 100 start and stop sites in the segmentation output of both methods. It                 

was found that while ​B_conv had a bias in setting the end-point boundary too early, thus reducing the                  

number of viable full segments (​Figure S1​) 
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Signal transformation and deep learning  

The extracted raw signals were converted into 2D images using the Python ​PyTS package ​(27)​. ​We                

implemented a model training method in Python that employs Tensorflow, Keras, Scikit, Pandas,             

PyCM, and PyTS libraries (​Table S5​) ​(13, 25, 28–33)​. Keras implementations of ResNet-20 and              

ResNet-56 were slightly modified to support multi-gpu training, to adjust the learning rate scheduler,              

and to limit the channels to 1 and outputs to 4 classes (see Jupyter notebook in git repository v1.0.0                   

release source code). To drastically increase the speed of training, we employed Keras multi-GPU              

processing with Tensorflow-1.32. A Jupyter notebook presenting all commands used for the ResNet             

training protocol is available in the accompanying Github repository (release v1.0.0). Training was             

performed on a server with 4x NVIDIA V100 GPUs with 16GB memory each using NVLink. 

 

Data availability 

Code, models, and scripts used demultiplex direct RNA reads—including example FAST5 data, data             

processing, reference sequences, and benchmarking scripts can be found at:          

https://github.com/Psy-Fer/deeplexicon ​. All FAST5 datasets used in this work will be made publicly            

available in SRA, under accession number ​PRJNA545820. 

 

Performance evaluation 

ROC and precision metrics were performed using the ROCit package in R.  

 

Code availability  

Code to demultiplex direct RNA reads, including example FAST5 data, can be found at:              

https://github.com/Psy-Fer/deeplexicon ​. All FAST5 datasets used in this work have been made           

publicly available in SRA, under accession number ​PRJNA545820. 
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