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8 Abstract

9 Mosquito control remains a central pillar of efforts to reduce malaria burden in
10 sub-Saharan Africa. However, insecticide resistance is entrenched in malaria vec-
11 tor populations, and countries with high malaria burden face a daunting challenge
12 to sustain malaria control with a limited set of surveillance and intervention tools.
13 Here we report on the second phase of a project to build an open resource of high
14 quality data on genome variation among natural populations of the major African
15 malaria vector species Anopheles gambiae and Anopheles coluzzii. We analysed whole
16 genomes of 1,142 individual mosquitoes sampled from the wild in 13 African countries,
17 and a further 234 individuals comprising parents and progeny of 11 lab crosses. The
18 data resource includes high confidence single nucleotide polymorphism (SNP) calls at
19 57 million variable sites, genome-wide copy number variation calls, and haplotypes
20 phased at biallelic SNPs. We used the SNP data to analyse genetic population struc-
21 ture, compute allele frequencies, and characterise genetic diversity within and between
2 populations. We illustrate the utility of these data by investigating species differences
23 in isolation by distance, genetic variation within proposed gene drive target sequences,
24 and patterns of resistance to pyrethroid insecticides. This data resource provides a
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25 foundation for developing new operational systems for molecular surveillance, and for

26 accelerating research and development of new vector control tools.

» Introduction

s The 10 countries with the highest malaria burden in Africa account for 65% of all malaria
20 cases globally, and attempts to reduce that burden are facing significant challenges [1].
30 Not least among these, resistance to pyrethroid insecticides is widespread throughout
st African malaria mosquito populations, potentially compromising the efficacy of mosquito
32 control interventions which remain a core tenet of global malaria strategy [2, 3]. There is a
33 broad consensus that further progress cannot be made if interventions are applied blindly,
3¢ but must instead be guided by data from epidemiological and entomological surveillance
35 [4]. Genome sequencing technologies are considered to be a key component of future
36 malaria surveillance systems, providing insights into evolutionary and demographic events
»7 in mosquito and parasite populations that are otherwise difficult to obtain [5]. Genomic
38 surveillance systems will not work in isolation, but will depend on high quality open ge-
s nomic data resources, including baseline data on genome variation from multiple mosquito
20 species and geographical locations, against which comparisons can be made and inferences
a  regarding new events can be drawn.

2 Better surveillance can increase the impact and longevity of available mosquito control
43 tools, but sustaining malaria control will also require the development and deployment of
s new mosquito control tools [4]. This includes repurposing existing insecticides not previ-
45 ously used in public health [6, 7], developing entirely new insecticide classes, and developing
46 tools that don’t rely on insecticides, such as genetic modification of mosquito populations
a7 [8]. Research and development of new mosquito control tools has been greatly facilitated
ss by the availability of open genomic data resources, including high quality genome assem-
s blies [9, 10], annotations [11], and more recently by high quality resources on genetic
so variation among natural mosquito populations [12]. Further expansion of these open data
st resources to incorporate unsampled mosquito populations and new types of genetic varia-
52 tion can provide new insights into a range of biological and ecological processes, and help

53 to accelerate scientific discovery from basic biology through to operational research.
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54 The Anopheles gambiae 1000 Genomes project! (Agl000G) was established in 2013 to
55 build a large scale open data resource on natural genetic variation in malaria mosquito
ss populations. The Agl000G project forms part of the Malaria Epidemiology Network?
57 (MalariaGEN), a data-sharing community of researchers investigating how genetic varia-
s tion in humans, mosquitoes and malaria parasites can inform the biology, epidemiology
5o and control of malaria. The first phase of the Agl000G project released data from whole
60 genome Illumina deep sequencing of mosquitoes from 8 African countries, including SNP
61 calls and phased haplotypes [12]. Mosquitoes were sampled from a broad geographical
62 range, spanning Guinea-Bissau in West Africa to Kenya in East Africa. Both Anopheles
63 gambiae and Anopheles coluzzii were sampled, two closely related sibling species within the
s« Anopheles gambiae species complex [13]. Genetic diversity was found to be high in most
65 populations, but there were marked patterns of population structure, and clear differences
66 between populations in the magnitude and architecture of genetic diversity, indicating
67 complex and varied demographic histories. However, both of these species have a large
es geographical range [14], and many countries and ecological settings are not represented in
60 the Agl000G phase 1 resource. Also, only SNPs were studied in Agl000G phase 1, but
70 other types of genetic variation are known to be important. In particular, copy number
7 variation (CNV) has long been suspected to play a key role in insecticide resistance [15,
72 16, 17], but no previous attempts to call genome-wide CNVs have been made in these
73 Species.

74 This paper describes the data resource produced by the second phase of the Ag1000G
75 project. Within this phase, sampling and sequencing was expanded to include additional
76 wild-caught mosquitoes collected from five countries not represented in phase 1. This
77 includes three new locations with Anopheles coluzzii, providing greater power for genetic
78 comparisons with Anopheles gambiae, and two island populations, providing a useful ref-
79 erence point to compare against mainland populations. Seven new lab crosses are also
so included, providing a substantial resource for studying genome variation and recombina-
g1 tion within known pedigrees. In this phase we studied both SNPs and CNVs, and rebuilt

82 a haplotype reference panel using all wild-caught specimens. Here we describe the data

"https://www.malariagen.net/projects/ag1000g
*https://www.malariagen.net


https://www.malariagen.net/projects/ag1000g
https://www.malariagen.net
https://doi.org/10.1101/864314
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/864314; this version posted December 9, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

83 resource, and use it to re-evaluate major population divisions and characterise genetic
s diversity. We also illustrate the broad utility of the data by comparing geographical pop-
ss ulation structure between the two mosquito species to investigate evidence for differences
ss in dispersal behaviour; analyse genetic diversity within a gene in the sex-determination
sz pathway currently targeted for gene drive development; and provide some preliminary

ss insights into the prevalence of different molecular mechanisms of pyrethroid resistance.

» Results

o Population sampling and sequencing

o1 We performed whole genome sequencing of 377 individual wild-caught mosquitoes, includ-
o2 ing individuals collected from 3 countries (The Gambia, Cote d’Ivoire, Ghana) and two
o3 oceanic islands (Bioko, Mayotte) not represented in the previous project phase. We also
9¢ sequenced 152 individuals comprising parents and progeny from seven lab crosses, where
os parents were drawn from the Ghana, Kisumu, Pimperena, Mali and Akron colonies. We
96 then combined these data with the sequencing data previously generated during phase
o7 1 of the project, to create a total resource of data from 1,142 wild-caught mosquitoes
s (1,058 female, 84 male) from 13 countries (Figure 1; Table S1) and 234 mosquitoes from
90 11 lab crosses (Table S2). As in the previous project phase, all mosquitoes were sequenced
100 individually on Illumina technology using 100 bp paired-end reads to a target depth of
101 30X, and only mosquitoes obtaining a mean depth above 14X were included in the final

102 resource.
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Figure 1. Agl000G phase 2 sampling locations. Colour of circle denotes species and area repre-
sents sample size. Species assignment is labelled as uncertain for samples from Guinea-Bissau, The
Gambia and Kenya, because all individuals from those locations carry a mixture of An. gambiae
and An. coluzzii ancestry informative markers, see main text and Figure S1 for details. Map
colours represent ecosystem classes, dark green designates forest ecosystems; see Figure 9 in [18]
for a compete colour legend.

103  Genome variation

104 Sequence reads from all individuals were aligned to the AgamP3 reference genome [9, 10]
w5 and SNPs were discovered using methods described previously [12]. In total, we discov-
106 ered 57,837,885 SNPs passing all variant quality filters. Of these high quality SNPs, 24%
107 were found to be multiallelic (three or more alleles), and 11% were newly discovered in
108 this project phase. We also analysed genome accessibility to identify all genomic positions
100 where read alignments were of sufficient quality and consistency to support accurate dis-
1o covery and genotyping of nucleotide variation. Similar to the previous project phase, we
m found that 61% (140 Mbp) of genome positions were accessible, including 91% (18 Mbp) of
12 the exome and 58% (121 Mbp) of non-coding positions. Overall we discovered an average
13 of one variant allele every 1.9 bases of the accessible genome. We then used high quality
14 biallelic SNPs to construct a new haplotype reference panel including all 1,142 wild-caught
us individuals, via a combination of read-backed phasing and statistical phasing as described
ue previously [12].

117 In this project phase we also performed a genome-wide CNV analysis, described in detail
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us elsewhere [19]. In brief, for each individual mosquito, we called CNVs by fitting a hidden
1o Markov model to windowed data on depth of sequence read coverage, then compared
120 calls between individuals to identify shared CNVs. The CNV callset comprises 31,335
121 distinct CNVs, of which 7,086 were found in more than one individual, and 1,557 were
122 present at at least 5% frequency in one or more populations. CNVs spanned more than
123 68 Mbp in total and overlapped 7,190 genes. CNVs were significantly enriched in gene
124 families associated with metabolic resistance to insecticides, with three loci in particular
15 (two clusters of cytochrome P450 genes Cyp6p/aa, Cyp9kl and a cluster of glutathione
16 S-transferase genes Gste) having a large number of distinct CNV alleles, multiple alleles
127 at high population frequency, and evidence that CNVs are under positive selection. CNVs
128 at these loci are thus likely to be playing an important role in adaptation to mosquito

120 control interventions.

130 Species assignment

131 The conventional molecular assay for differentiating An. gambiae from An. coluzzii is
1322 based on a fixed genetic difference at a single locus on the X chromosome [20]. In the first
133 phase of Agl000G, we compared the results of this assay with genotypes at 506 ancestry-
134 informative SNPs distributed across all chromosome arms, and found that in some cases
135 the conventional assay was not concordant with species ancestry at other genome locations.
16 In particular, all individuals from two sampling locations (Kenya, Guinea-Bissau) carried
137 a mixture of An. gambiae and An. coluzzii alleles, creating uncertainty regarding the
138 appropriate species assignment [12]. Applying the same analysis to the new samples in
130 Agl000G phase 2, we found that mosquitoes from The Gambia also carried a mixture
10 of alleles from both species, in similar proportions to mosquitoes from Guinea-Bissau
11 (Figure S1). In all other locations, alleles at ancestry-informative SNPs were concordant
12 with conventional diagnostics [21, 22, 20|, except on chromosome arm 2L where there
13 has been a known introgression event carrying an insecticide resistance allele from An.
s gambiae into An. coluzzii [23, 24, 25, 26]. We observed this introgression in An. coluzzii
145 from both Burkina Faso and Angola in the phase 1 cohort, and it was also present among

us  An. coluzzii from Cote d’Ivoire, Ghana and Guinea in the phase 2 cohort.
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Figure 2. Principal component analysis of wild-caught mosquitoes using biallelic SNPs from
euchromatic regions of Chromosome 3. (a) Bar-chart shows the percentage of variance explained
by each principal component. (b-e) Scatter plots show relationships of principle components 1-8
where each marker represents an individual mosquito. Marker shape and colour denotes population.

Population structure

We investigated genetic population structure within the cohort of wild-caught mosquitoes
by performing two principal components analyses (PCA), the first using biallelic SNPs
from euchromatic regions of Chromosome 3 (Figure 2), the second using CNVs from the
whole genome (Figure S2). To complement the PCAs, we fitted models of population
structure and admixture to the SNP data (Figure S3). We also used the SNP data to
compute two measures of genetic differentiation — average Fgr and rates of rare variant
sharing — between all pairs of 16 populations defined by country of origin and species, ex-
cluding An. coluzzii from Guinea due to small sample size (Figure 3). From these analyses,
three major groupings of individuals from multiple countries were evident: An. coluzzii
from West Africa (Burkina Faso, Ghana, Coéte d’Ivoire, Guinea); An. gambiae from West
and Central Africa (Burkina Faso, Ghana, Guinea, Cameroon, Bioko); individuals with
uncertain species status from far West Africa (Guinea-Bissau, The Gambia). Within each

of these groupings, samples clustered together in all principal components and in admix-
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161 ture models for up to K = 7 ancestral populations, and differentiation between countries
162 was weak, consistent with relatively unrestricted gene flow between countries. Each of the
163 remaining PCA clusters comprised samples from a single country and species (An. coluzzii
164 from Angola; An. gambiae from Uganda; An. gambiae from Gabon, An. gambiae from
s Mayotte; individuals with uncertain species status from Kenya), and each of these pop-
166 ulations was relatively strongly differentiated from all other populations, consistent with
167 a role for geographical factors limiting gene flow. The admixture analyses for Mayotte
168 and Kenya modelled individuals from both populations as a mixture of multiple ancestral
160 populations. This could represent some true admixture in these populations’ histories, but
170 could also be an artefact due to strong genetic drift [27], and requires further investigation.
i1 A comparison of the two An. gambiae island populations is interesting because Mayotte
172 was highly differentiated from all other populations, but individuals from Bioko clustered
173 closely with other West African An. gambiae, suggesting that Bioko is not isolated from

174 continental populations despite a physical separation of more than 30 km.
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Figure 3. Genetic differentiation between populations. (a) Average allele frequency differentiation
(Fsr) between pairs of populations. The bottom left triangle shows average Fgr values between
each population pair. The top right triangle shows the Z score for each Fgp value estimated via
a block-jackknife procedure. (b) Allele sharing in doubleton (f3) variants. For each population,
we identified the set of doubletons with at least one allele originating from an individual in that
population. We then computed the fraction of those doubletons shared with each other population
including itself. The height of the coloured bars represent the probability of sharing a doubleton
allele between or within populations. Heights are normalized row-wise for each population so that
the sum of coloured bars in each row equals 1.

175 The new locations sampled in this project phase allow more comparisons to be made

176 between An. gambiae and An. coluzzii, and there are many open questions regarding their
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177 behaviour, ecology and evolutionary history. For example, it would be valuable to know
17s  whether there are any differences in dispersal behaviour between the two species [28, 29].
179 Providing a comprehensive answer to this question is beyond the scope of this study, but
180 we performed a preliminary analysis by estimating Wright’s neighbourhood size for each
11 species [30]. This statistic is an approximation for the effective number of potential mates
182 for an individual, and can be viewed as a measurement of how genetic differentiation
183 between populations correlates with the geographical distance between them (isolation
1« by distance). We used Rousset’s method for estimating neighbourhood size based on a
15 regression of normalised Fgp against the logarithm of geographical distance [31]. To avoid
186 any confounding effect of major ecological discontinuities, we used only populations from
187 West Africa and Central Africa north of the equatorial rainforest. We found that average
18 neighbourhood sizes are significantly lower in An. coluzzii than in An. gambiae (Wilcoxon,
19 W = 1320, P < 2.2e — 16) (Figure 4), indicating stronger isolation by distance among
wo  An. coluzzii populations and suggesting a lower rate and/or range of dispersal. However,
191 we do not have representation of both species at all sampling locations, and so further

12 sampling will be needed to confirm this result.
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Figure 4. Comparison of isolation by distance between West/Central African An. coluzzii and
An. gambiae populations. Angola An. coluzzii and Gabon An. gambiae were excluded from
comparisons due to a high level of differentiation with all other conspecific populations. (a) Study
region and pairwise Fsr. (b) Regressions of average genome-wide Fgr against geographic distance,
following Rousset [31]. Neighbourhood size is estimated as the inverse slope of the regression line.
(c) Difference in neighbourhood size estimates by species. Box plots show medians and 95%
confidence intervals of the distribution of estimates calculated in 200 kbp windows across the
euchromatic regions of chromosome arms 3R and 3L.

13 Genetic diversity

19 The populations represented in the Ag1000G phase 2 cohort can serve as a reference point
105 for comparisons with populations sampled by other studies at other times and locations.
196 To facilitate population comparisons, we characterised genetic diversity within each of 16
197 populations in our cohort defined by country of origin and species by computing a variety
18 of summary statistics using SNP data from the whole genome. These statistics included
199 nucleotide diversity (6,; Figure ba), Watterson’s estimator (fy; Figure S4), Tajima’s
200 D (Figure 5b) and site frequency spectra (SFS; Figure S5). We also estimated runs
201 of homozygosity (ROH; Figure 5¢) within each individual and runs of identity by descent
22 (IBD; Figure 5d) between individuals, both of which provide additional information about

203 haplotype sharing and patterns of relatedness within populations.

10
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Figure 5. Genetic diversity within populations. (a) Nucleotide diversity (6, ) calculated in non-
overlapping 20-kb genomic windows. (b) Tajima’s D calculated in non-overlapping 20-kb genomic
windows. (c) Runs of homozygosity (ROH) in individual mosquitoes. (d) Runs of identity by
descent between individuals.

204 The two easternmost populations (Kenya, Mayotte) were outliers in all statistics calcu-
205 lated, with lower diversity, a deficit of rare variants relative to neutral expectation, and a
206 higher degree of haplotype sharing within and between individuals. The Kenyan popula-
207 tion was represented in Ag1000G phase 1, and we previously described how the patterns of
208 diversity in this population were consistent with a severe and recent population bottleneck
200 [12]. The similarities between Kenya and Mayotte suggest that the Mayotte population
210 has also experienced a population bottleneck, which would be expected given that Mayotte
211 is an oceanic island 310 km from Madagascar and 500 km from continental Africa, and
212 may have been colonised by An. gambiae via a small numbers of individuals. Although
213 ROH and IBD were elevated in both populations, Mayotte individuals had a larger num-
214 ber of shorter tracts than Kenyan individuals, which may reflect differences in the timing
215 and/or strength of a bottleneck. In contrast, the An. gambiae individuals from Bioko Is-
216 land had similar patterns of diversity to An. gambiae populations from West and Central

a7 Africa, supporting other analyses which suggest that this population is not strongly iso-

11
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213 lated from continental populations (Figures 2, 3). The additional An. coluzzii populations
219 (Ghana, Cote d’Ivoire) were similar to the previously sampled Burkina Faso An. coluzzii
20 population, and the newly sampled Gambian population with uncertain species status
21 was similar to the previously sampled Guinea-Bissau population, consistent with evidence
22 from PCA that these populations form groupings with shared demographic histories and

23 ongoing gene flow.

24 Design of Cas9 gene drives

25 Nucleotide variation data from this resource is being used to inform the development of
26 gene drives, a novel mosquito control technology using engineered selfish genetic elements
27 to cause mosquito population suppression or modification [32, 33, 34, 35, 8]. Promising
28 results have been obtained with a Cas9 homing endonuclease gene drive targeting a locus in
220 the doublesex gene (dsz), which is a critical component of the sex determination pathway
230 [8]. This locus was chosen in part because it has extremely low genetic diversity both
251 within and between species in the An. gambiae complex [12]. Low diversity is required
232 because any natural variation within the target sequence could inhibit association with
233 the Cas9 guide RNA and cause resistance to the gene drive [36]. We reviewed nucleotide
234 variation within dsz using the expanded cohort of wild-caught samples in the phase 2
235 cohort, and found no new nucleotide variants within the sequence targeted for Cas9 gene
236 drive, other than the previously known SNP at 2R:48,714,641, which has been shown not
237 to interfere with the gene drive process in lab populations [8]. To facilitate the search for
238 other potential gene drive targets in dsz and other genes, we computed allele frequencies
239 for all SNPs in all populations and included those data in the resource. We also compiled
20 a table of all potential Cas9 target sites (23 bp regions with a protospacer-adjacent motif)
21 in the genome that overlap a gene exon. This table includes a total of 20 Cas9 targets that
22 overlap dsz exon 5 and that contain at most one SNP within the Ag1000G phase 2 cohort
23 (Figure 6). Thus there may be multiple viable targets for gene drives disrupting the sex
244 determination pathway, providing opportunities to mitigate the impact of resistance due

25 to variation within any single target.

12


https://doi.org/10.1101/864314
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/864314; this version posted December 9, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

a
—
— — [ —] —
Cas9 targets _— ] [ B ]
| —] EEN BN W <— Kyrou etal. (2018)

< AGAP004050-RB

exon 5

4.0 =

3.5 =
3.0 —
25 —
20 —
1.5 —
1.0 —
0.5 —
0.0 =

SNPs “M M““AMW Awm AM A AMARA A

Nucleotide diversity (%)

|
48, 713 800 48, 714 000 48, 714 200 48, 714 400 48, 714 600 48,714,800

Chromosome 2R position (bp)

]
Cas9 targets — [—]
] ]
RE RE RE RE RE RE
< AGAP004050-RB - o E.

exon 5

4.0 =

35 =
3.0 —
25 —
2.0 —
15 —
1.0 —
0.5 =
0.0 =

SNPs LMM MA AMAA A AMBAMAAMM A M“AAW MMWAAMAM

Nucleotide diversity (%)

48, 712 800 48, 713 000 48, 713 200 48, 713 400 48, 713 600 48, 713 800
Chromosome 2R position (bp)

Figure 6. Nucleotide diversity within the female-specific exon 5 of the doublesex gene (dsx;
AGAP004050), a key component of the sex determination pathway and a gene targeted for Cas9-
based homing endonuclease gene drive [8]. In both plots, the location of exon 5 within the female-
specific isoform (AGAP004050-RB) is shown above (black = coding sequence; grey = untranslated
region), with additional annotations above to show the location of viable Cas9 target sequences
containing at most 1 SNP, and the putative exon splice enhancing sequences (“RE”) reported in
[37]. The main region of the plot shows nucleotide diversity averaged across all Agl000G phase
2 populations, computed in 23 bp moving windows. Regions shaded pale red indicate regions
not accessible to SNP calling. Triangle markers below show the locations of SNPs discovered in
Agl000G phase 2 (green = passed variant filters; red = failed variant filters). a, exon5/intron4
boundary. b, exon5/intron6 boundary.

246 The presence of highly conserved regions within dsx also provides an example of how
247 genetic variation data from natural populations can be relevant to the study of fundamental
28 molecular processes such as sex determination. The region of conservation containing the

29 Cas9 target site in fact extends over 200 bp, including 50 bp of untranslated sequence
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50  within exon 5, the entire coding sequence of exon 5, and 50 bp of intron 4 (Figure 6a).
251 Such conservation of both coding and non-coding sites suggests that purifying selection
252 is acting here on the nucleotide sequence and not just on the protein sequence. This in
253 turn suggests that the nucleotide sequence serves as an important target for factors that
254 bind to DNA or pre-mRNA molecules. This is plausible because sex determination in
255 insects depends on sex-specific splicing of dsz, with exon 5 being included in the female
256 transcript and excluded in the male transcript [38]. The upstream regulatory factors that
257 control this differential splicing are not known in An. gambiae [37, 39], but in Drosophila
s melanogaster it has been shown that female-specific factors bind to regulatory sequences
250 (dsxRESs) within the exon 5 region of the dsz pre-mRNA and promote inclusion of exon
20 5 within the final transcript [40, 38]. Putative homologs of these (dszRE) sequences are
261 present in An. gambiae [37], and five out of six dszREs are located in tracts of near-
262 complete nucleotide conservation in our data, consistent with purifying selection due to
23 pre-mRNA binding (Figure 6b). However, the 200bp region of conservation spanning
264 the intron 4/exon 5 boundary targeted for Cas9 gene drive remains mysterious, because
265 it is more than 1 kbp distant from any of these putative regulatory sequences. Overall
%6 these data add further evidence for fundamental differences in the molecular biology of
%7 sex determination between Anopheles and Drosophila and provide new clues for further

28 investigation of the molecular pathway upstream of dsz in An. gambiae [37, 39).

20 Resistance to pyrethroid insecticides

270 Malaria control in Africa depends heavily on mass distribution of long-lasting insecticidal
onn bed-nets (LLINs) impregnated with pyrethroid insecticides [41, 42, 43]. Entomological
a2 surveillance programs regularly test malaria vector populations for pyrethroid resistance
273 using standardised bioassays, and these data have shown that pyrethroid resistance has
o become widespread in An. gambiae [2, 3]. However, pyrethroid resistance can be con-
a5 ferred by different molecular mechanisms, and it is not well understood which molecular
276 mechanisms are responsible for resistance in which mosquito populations. The nucleotide
277 variation data in this resource include 67 non-synonymous SNPs within the Vgsc gene that
215 encodes the binding target for pyrethroid insecticides, of which two SNPs (L995F, L995S)

270 are known to confer a pyrethroid resistance phenotype, and one SNP (N1570Y) has been
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280 shown to substantially increase pyrethroid resistance when present in combination with
251 L995F [44]. These SNPs can serve as markers of target-site resistance to pyrethroids, but
282 knowledge of genetic markers of metabolic resistance in An. gambiae and An. coluzzii
283 is currently limited [45, 46]. Metabolic resistance to pyrethroids is mediated at least in
24 part by increased expression of cytochrome P450 (CYP) enzymes [47, 48, 49, 50], and we
255 found CNV hot-spots at two loci containing CYP genes [19]. One of these loci occurs on
286 chromosome arm 2R and overlaps a cluster of 10 CYP genes, including Cyp6p3 previously
257 shown to metabolise pyrethroids [51]. The second locus occurs on the X chromosome and
258 spans a single CYP gene, Cyp9k1, which has also been shown to metabolise pyrethroids
20 [50]. At each of these two loci we found a remarkable allelic heterogeneity, with at least
200 15 distinct CNV alleles, several of which were present in over 50% of individuals in some
201 populations and were associated with signatures of positive selection [19]. We also found
220 CNVs at two other CYP loci on chromosome arm 3R containing genes previously asso-
203 clated with pyrethroid resistance (Cyp6m2 [52], Cyp6z1 [53]), although there was only a
204 single CNV allele at each locus. The phenotype of these CNVs remains to be confirmed,
205 but given the multiple lines of evidence it seems reasonable to assume that CNVs at these

206 loci can serve as a molecular marker of CYP-mediated metabolic resistance to pyrethroids.
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Figure 7. Pyrethroid resistance genotypes. The geographical distribution of pyrethroid insecticide
resistance genotypes are shown by population. Pie chart colours represent resistance genotype
frequencies: purple - these individuals were either homozygous or heterozygous for one of the two
kdr pyrethroid target site resistance alleles Vgsc-L995F/S; yellow - these individuals carried a
copy number amplification within any of the Cyp6p/aa, Cyp6m, Cyp6z or Cyp9k gene clusters,
but no kdr alleles; orange - these individuals carried at least one kdr allele and one CYP gene
amplification; grey - these individuals carried no known pyrethroid resistance alleles (no kdr alleles
or CYP amplifications). The Guinea An. coluzzii population is omitted due to small sample size.

207 We constructed an overview of the prevalence of these two pyrethroid resistance mecha-
208 nisms — target-site resistance and CYP-mediated metabolic resistance — within the Ag1000G
200 phase 2 cohort by combining the data on nucleotide and copy number variation. The sam-
30 pling of these populations was conducted at different times in different locations, and
301 the geographical sampling is relatively sparse, so we cannot draw any general conclusions
32 about the current distribution of resistance from our data. However, some patterns were
303 clear. For example, West African populations of both species (Burkina Faso, Guinea, Cote
sa d’Ivoire) all had more than 84% of individuals carrying both target-site and metabolic re-
305 sistance markers. In Ghana, Cameroon, Gabon and Angola, target-site resistance was
36 nearly fixed in all populations, but metabolic resistance markers were at lower frequen-
307 cies, and the samples from Bioko Island carried no resistance markers at all. The Bioko
308 samples were collected in 2002, and so the lack of resistance may be related to the fact
300 that sampling predated any major scale-up of vector control interventions. However, the

s.0 Gabon samples were collected in 2000, and show that high levels of target-site resistance
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s were present in some populations at that time. In the far West (Guinea Bissau, The
siz Gambia), target-site resistance was absent, but CYP amplifications were present, and
313 thus any molecular surveillance that assays only target site resistance at those locations
314 could be missing an important signal of metabolic resistance. In East Africa, both Kenya
a5 and Uganda had high frequencies of target-site resistance, 88% and 100% respectively.
si6 However, 81% of Uganda individuals also had CYP amplifications, whereas only 4% of
si7 Kenyans (two individuals) carried these putative metabolic resistance markers. Denser
318 spatio-temporal sampling and sequencing will enable us to build a more complete picture
319 of the prevalence and spread of these different resistance mechanisms, and would be highly

320 relevant to the design of insecticide resistance management plans.

s Discussion

32 Insecticide resistance surveillance

323 The Agl000G phase 2 data resource incorporates both nucleotide and copy number varia-
324 tion from the whole genomes of 1,142 mosquitoes collected from 13 countries spanning the
35 African continent. These data provide a battery of new genetic markers that can be used
26 to expand our capabilities for molecular surveillance of insecticide resistance. Insecticide
327 resistance management is a major challenge for malaria vector control, but the availability
328 of new vector control products is opening up new possibilities. However, new products
320 may be more expensive than products currently in use, so procurement decisions have to
330 be justified, and resources targeted to areas where they will have the greatest impact. For
331 example, next-generation LLINs are now available which combine a pyrethroid insecticide
32 with either a second insecticide or a synergist compound (PBO) that partially ameliorates
3313 metabolic resistance by inhibiting CYP enzyme activity in the mosquito. However, CYP-
3¢ mediated metabolic resistance is only one of several possible mechanisms of pyrethroid
335 resistance that may or may not be present in vector populations being targeted. It would
336 therefore be valuable to survey mosquito populations and determine the prevalence of
337 different pyrethroid resistance mechanisms, both before and after any change in vector
;s control strategy. Our data resource includes CNVs at four CYP loci (Cyp6p/aa, Cyp6m,

330 Cypbz and Cyp9k) which could serve as molecular markers of CYP-mediated metabolic
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340 resistance. Glutathione S-transferase enzymes have also been associated with metabolic
s resistance to pyrethroids [54, 55] as well as to other insecticide classes [45, 56, 57]. We
32 found CNVs at the Gste locus which could serve as molecular markers of this alternative
343 resistance mechanism, which is not inhibited by PBO. Further work is needed to charac-
34 terise the resistance phenotype associated with these CNVs, but the allelic heterogeneity,
345 the high population frequencies, and the evidence for positive selection observed in our
us data, coupled with previous gene expression and functional studies [47, 48, 49, 50], all
347 support a metabolic role in insecticide resistance.

348 To illustrate the potential for improved molecular surveillance of pyrethroid resistance,
39 we combined the data on known SNP markers of target-site resistance and the novel puta-
350 tive CNV markers of CYP-mediated metabolic resistance, and computed the frequencies
st of these different resistance mechanisms in the populations we sampled (Figure 7). There
32 are clear heterogeneities, with some populations at high frequency for both resistance
353 mechanisms, particularly in West Africa. The presence of CYP-mediated pyrethroid resis-
354 tance in a population suggests that PBO LLINs might provide some benefit over standard
355 LLINs. However, if other resistance mechanisms are also at high frequency, the benefit of
356 the PBO synergist might be diminished. Current WHO guidance states that PBO LLINs
357 are recommended in regions with “intermediate levels” of pyrethroid resistance, but not
38 where resistance levels are high [58]. This guidance is based on modelling of bioassay data
350 and experimental hut trials, and it is not clear why PBO LLINs are predicted to provide
30 diminishing returns at higher resistance levels, although high levels of resistance presum-
31 ably correlate with the presence of multiple resistance mechanisms, including mechanisms
32 not inhibited by PBO [42]. Without molecular data, however, this guidance is hard to
363 evaluate or improve upon.

364 Ideally, molecular data on insecticide resistance mechanisms would be collected as part of
365 routine entomological surveillance, as well as in field trials of new vector control products,
366 alongside data from bioassays and other standard entomological monitoring procedures.
sz There are several options for scaling up surveillance of new genetic markers, including
sss  both whole genome sequencing (WGS) and targeted (amplicon) sequencing with several
360 choices of sequencing technology platform, as well as various PCR-based assays. Assays

30 that target specific genetic loci are attractive in the short term, because of the low cost

18


https://doi.org/10.1101/864314
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/864314; this version posted December 9, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

sn  and infrastructure requirements, and data from Agl000G have been used successfully to
sz design multiplex assays for the Agena Biosciences iPLEX platform [59] and for Illumina
s13 amplicon sequencing (manuscript in preparation). But targeted assays would need to be
s+ updated regularly to ensure all current forms of insecticide resistance are covered, and to
375 capture new forms of resistance as they emerge. None of the samples sequenced in this
sre  study were collected more recently than 2012, geographical sampling within each country
377 was limited, and many countries are not yet represented in the resource, therefore there
378 remain important gaps to be filled. The next phase of the Agl000G project will expand
379 the resource to cover 18 countries, and will include An. arabiensis in addition to An. gam-
0 biae and An. coluzzii, and so will address some of these gaps. Looking beyond Agl1000G,
381 genomic surveilance of insecticide resistance will require new sampling frameworks that
32 incorporate spatial and ecological modelling of vector distributions to improve future col-
3 lections and guide sampling at appropriate spatial scales [60]. To keep pace with vector
334 populations, regular whole genome sequencing of contemporary populations from a well-
35 chosen set of sentinel sites will be needed. Fortunately mosquitoes are easy to transport,
36 and the costs of whole genome sequencing continue to fall, so it is reasonable to consider

37 a mixed strategy that includes both whole genome sequencing and targeted assays.

s Gene flow

39 These data also cast some new, and in some cases contrasting, light on the question of gene
300 flow between malaria vector populations. The question is of practical interest, because
31 gene flow is enabling the spread of insecticide resistance between species and across large
sz geographical distances [12, 61], and needs to be quantified and modelled before any new
303 vector control interventions based on the release of genetically modified mosquitoes could
304 be considered [62]. It has also recently been shown that a variety of Anopheline species
305 engage in long-distance wind-assisted migration, including An. coluzzii, although data are
36 so far limited to a single area within the Sahelian region [63]. We found evidence that
307 isolation by distance is greater for An. coluzzii than for An. gambiae, at least within West
308 Africa, suggesting that the effective rate of migration is lower in An. coluzzii. However,
300 if An. coluzzii really has a lower rate and/or range of dispersal than An. gambiae, this is

a0 clearly not limiting the spread of insecticide resistance adaptations between countries. For
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a1 example, among the CNV alleles we discovered at the Cyp6p/aa, Cyp9kl and Gste loci,
w2 7/13 alleles found in An. coluzzii had spread to more than one country, compared with
a3 8/27 alleles in An. gambiae [19]. There is also an interesting contrast between the spread of
a4 pyrethroid target-site and metabolic resistance alleles. Our previous analysis of haplotypes
a5 carrying target-site resistance alleles in the Ag1000G phase 1 cohort found that resistance
a6 haplotypes had spread to countries spanning the equatorial rainforest and the Rift valley,
a7 and had moved between An. gambiae and An. coluzzii [12, 61]. In the most extreme
ws example, one haplotype (F1) had spread to countries as distant as Guinea and Angola.
a0 In contrast, although CNV alleles were commonly found in multiple countries, we did not
a0 observe any cases of CNV alleles crossing any of these ecological or biological boundaries,
a1 apart from a single allele found in both Gabon and Cameroon An. gambiae (Gste Dupb).
a2 There are multiple possible explanations for this difference, including differences in the
a3 strength, timing or spatial distribution of selective pressures, or intrinsic factors such as
as  differences in fitness costs in the absence of positive selection. Further work is required
a5 to investigate the selective forces and biological constraints affecting the spread of these
a6 different modes of adaptation to insecticide use.

a7 The two island populations sampled in this project phase also provide an interesting
a8 contrast. Samples from Mayotte are highly differentiated from mainland An. gambiae,
a0 have no pyrethroid resistance alleles, and also have patterns of reduced genetic diversity
a0 consistent with a reduction in population size, supporting strong isolation. Bioko samples,
a1 on the other hand, are closely related to West African An. gambiae, and have comparable
a2 levels of genetic diversity, suggesting ongoing gene flow. However, there are no pyrethroid
a3 resistance alleles in our Bioko samples and these were collected in 2000 at a time when
a4 target-site resistance alleles were present in mainland populations, so the rate of contem-
a5 porary migration between Bioko and mainland populations remains an open question. A
a6 recent study of An. gambiae populations on the Lake Victoria islands, separated from
227 mainland Uganda by 4-50 km, found evidence for isolation between island and mainland
28 populations, as well as between individual islands [64]. However, some selective sweeps
a0 at insecticide resistance loci had spread through both mainland and island populations,
a0 thus isolation is not complete and some contemporary gene flow occurs. Resolving these

a1 gene flow questions and apparent contradictions will require fitting quantitative models of
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a2 contemporary migration to genomic data. We previously fitted migration models to pairs
a33  of populations using site frequency spectra, but the approach provides poor resolution to
s differentiate recent from ancient migration rates [12]. In general, methods that leverage
435 information about haplotype sharing within and between populations should provide the
a6 greatest resolution to disentangle ancient from recent demographic events, as well as pro-
437 viding independent estimates for both migration rates and population densities. There is
138 promising recent work in this direction [65], but models have so far only been applied to
430 data from human populations, and the haplotype data we have generated should prove a
a0 useful resource for further work to evaluate whether the same models can be applied to
a1 malaria vector populations, with sufficient accuracy to support real-world planning of new

a2 vector control interventions.

43 Conclusions

a4 Malaria is becoming a stubborn foe, frustrating global efforts towards elimination in both
a5 low and high burden settings. However, new vector control tools offer hope, as does
ws  the renewed focus on improving surveillance systems and using data to tailor interven-
a7 tions. The genomic data resource we have generated provides a platform from which to
as  accelerate these efforts, demonstrating the potential for data integration on a continental
a9 scale. Nevertheless, work remains to fill gaps in these data, by expanding geographical
a0 coverage, including other malaria vector species and integrating genomic data collection
ss1 - with routine surveillance of contemporary populations using quantitative sampling design.
a2 We hope that the MalariaGEN data-sharing community and framework for international

43 collaboration can continue to serve as a model for coordinated action.

s« Methods

15 Population sampling

a6 Agl000G phase 2 mosquitoes were collected from natural populations at 33 sites in 13
57 sub-Saharan African countries (Figure 1 & Table S1). Throughout, we use species nomen-
w8 clature following Coetzee et al. [13]; prior to Coetzee et al., An. gambiae was known as

0 An. gambiae sensu stricto (S form) and An. coluzzii was known as An. gambiae sensu
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a0 stricto (M form). Details of the eighteen collection sites novel to Ag1000G phase 2 (dates,
a1 collection and DNA extraction methods) can be found below. Information pertaining to
a2 the collection of samples released as part of Agl000G phase 1 can be found in the supple-
163 mentary information of [12]. Unless otherwise stated, the DNA extraction method used
s6¢  for the collections described below was Qiagen DNeasy Blood and Tissue Kit (Qiagen
a5 Science, MD, USA).

466 Cote d’Ivoire: Tiassalé (5.898, -4.823) is located in the evergreen forest zone of south-
w67 ern Cote d’Ivoire. The primary agricultural activity is rice cultivation in irrigated fields.
ss  High malaria transmission occurs during the rainy seasons, between May and November.
a0 Samples were collected as larvae from irrigated rice fields by dipping between May and
a0 September 2012. All larvae were reared to adults and females preserved over silica for
ann DNA extraction. Specimens from this site were all An. coluzzii, determined by PCR assay
a2 [20]

473 Bioko: Collections were performed during the rainy season in September, 2002 by
ara - overnight CDC light traps in Sacriba of Bioko island (3.7, 8.7). Specimens were stored
a5 dry on silica gel before DNA extraction. Specimens contributed from this site were
ats - An. gambiae females, genotype determined by two assays [21, 66]. All specimens had
a7 the 2L /2172 karyotype as determined by the molecular PCR diagnostics [67]. These
478 MoOSquitoes represent a population that inhabited Bioko Island before a comprehensive
a9 malaria control intervention initiated in February 2004 [68]. After the intervention An.
10 gambiae was declining, and more recently almost only An. coluzzii can be found [69].

481 Mayotte: Samples were collected as larvae during March-April 2011 in temporary pools
2 by dipping, in Bouyouni (-12.738, 45.143), M’Tsamboro Forest Reserve (-12.703, 45.081),
13 Combani (-12.779, 45.143), Mtsanga Charifou (-12.991, 45.156), Karihani Lake forest re-
ssa serve (-12.797, 45.122), and Sada (-12.852, 45.104) in Mayotte island. Larvae were stored
a5 in 80% ethanol prior to DNA extraction. All specimens contributed to Ag1000G phase 2
i were An. gambiae [66] with the standard 2L7?/2L*? or inverted 2L*/2L* karyotype as
47 determined by the molecular PCR diagnostics [67]. The samples were identified as males
s or females by the sequencing read coverage of the X chromosome using LookSeq [70].

289 The Gambia: Indoor resting female mosquitoes were collected by pyrethrum spray

a0 catch from four hamlets around Njabakunda (-15.90, 13.55), North Bank Region, The
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a1 Gambia between August and October 2011. The four hamlets were Maria Samba Nyado,
a2 Sare Illo Buya, Kerr Birom Kardo, and Kerr Sama Kuma; all are within 1 km of each
a3 other. This is an area of unusually high hybridization rates between An. gambiae s.s. and
sa  An. coluzzii [71, 72]. Njabakunda village is approximately 30 km to the west of Farafenni
a5 town and 4 km away from the Gambia River. The vegetation is a mix of open savannah
a6  woodland and farmland.

497 Ghana: Mosquitoes were collected from Twifo Praso (5.609, -1.549), a peri-urban com-
a8 munity located in semi-deciduous forest in the Central Region of Ghana. It is an extensive
a9 agricultural area characterised by small-scale vegetable growing and large-scale commer-
so0 cial farms such as oil palm and cocoa plantations. Mosquito samples were collected as
sor larvae from puddles near farms between September and October, 2012. Madina (5.668,
sz -0.219) is a suburb of Accra within the coastal savanna zone of Ghana. It is an urban
s03 community characterised by numerous vegetable-growing areas. The vegetation consists
s04  of mainly grassland interspersed with dense short thickets often less than 5 m high with
sos a few trees. Specimens were sampled from puddles near roadsides and farms between
sos  October and December 2012. Takoradi (4.912, -1.774) is the capital city of Western Re-
s7  gion of Ghana. It is an urban community located in the coastal savanna zone. Mosquito
s08 samples were collected from puddles near road construction and farms between August
s0 and September 2012. Koforidua (6.094, -0.261) is a capital city of Eastern Region of
sio Ghana and is located in semi-deciduous forest. It is an urban community characterized
s by numerous small-scale vegetable farms. Samples were collected from puddles near road
512 construction and farms between August and September 2012. Larvae from all collection
513 sites were reared to adults and females preserved over silica for DNA extraction. Both
sie An. gambiae and An. coluzzii were collected from these sites, determined by PCR assay
sis [20].

516 Guinea-Bissau: Mosquitoes were collected in October 2010 using indoor CDC light
si7 - traps, in the village of Safim (11.957, -15.649), ca. 11 km north of Bissau city, the capital
si8 of the country. Malaria is hyperendemic in the region and transmitted by members of
sio. the Anopheles gambiae complex [73]. Anopheles arabiensis, An. melas, An. coluzzii and
s0 An. gambiae, as well as hybrids between the latter two species, are known to occur in the

sa1 region [74, 73]. Mosquitoes were preserved individually on 0.5ml micro-tubes filled with
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s22  silica gel and cotton. DNA extraction was performed by a phenol-chloroform protocol [75].

523 Lab crosses

524  The Agl000G phase 2 data release includes the genomes of seven additional lab colony
s2s - crosses, both parents and offspring (Table S2): cross 18-5 (Ghana mother x Kisumu/G3
so6  father, 20 offspring); 37-3 (Kisumu x Pimperena, 20 offspring); 45-1 (Mali x Kisumu, 20
s27 - offspring); 47-6 (Mali x Kisumu, 20 offspring); 73-2 (Akron x Ghana, 19 offspring); 78-
s2s 2 (Mali x Kisumu/Ghana, 19 offspring); 80-2 (Kisumu x Akron, 20 offspring). Father
s20 colonies with two names, e.g. "Kisumu/G3", signify that the father is from one of these
530 two colonies, but exactly which one is unknown. The colony labels, e.g. "18-5", are
531 identifiers used for each of the crosses within the project and have no particular meaning.
532 Information pertaining to the crosses released as part of Agl000G phase 1 can be found
s33  in the supplementary information of Agl000G Consortium (2017) alongside methods for

s cross creation and processing. [12].

555 Whole genome sequencing

53 Sequencing was performed on the Illumina HiSeq 2000 platform at the Wellcome Sanger
537 Institute. Paired-end multiplex libraries were prepared using the manufacturer’s proto-
s col, with the exception that genomic DNA was fragmented using Covaris Adaptive Fo-
539 cused Acoustics rather than nebulization. Multiplexes comprised 12 tagged individual
50 mosquitoes and three lanes of sequencing were generated for each multiplex to even out
sa1 variations in yield between sequencing runs. Cluster generation and sequencing were un-
s22  dertaken per the manufacturer’s protocol for paired-end 100 bp sequence reads with insert

543 size in the range 100-200 bp. Target coverage was 30X per individual.

s« Genome accessibility

55 For various population-genomic analyses, it is necessary to have a map of which positions
ss6  in the reference genome can be considered accessible (in which we can confidently call
ss7 - nucleotide variation). For phase 2 we repeated the phase 1 genome acccessibility analyses
sis [12] with 1,142 samples and the additional Mendelian error information provided by the

sa9 11 crosses (in phase 1 there were four crosses). These analyses constructed a number of
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ss0  annotations for each position in the reference genome, based on data from sequence read
ss1 alignments from all wild-caught samples, and additional data from repeat annotations.
ss2. These annotations were then analysed for their association with rates of variants with
553 one or more Mendelian errors in the crosses. Annotations and thresholds were chosen
554 to remove classes of variants that were enriched for Mendelian errors. Following these
555 analyses it was apparent that the accessibility classifications used in Agl000G phase 1 were
ss6  also appropriate in application to phase 2. Reference genome positions were classificed as
ss7  accessible if: Not repeat masked by DUST; No Coverage <= 0.1% (at most 1 individual
sss had zero coverage); Ambiguous Alignment <= 0.1% (at most 1 individual had ambiguous
ss0  alignments); High Coverage <= 2% (at most 20 individuals had more than twice their
se0  genome-wide average coverage); Low Coverage <= 10% (at most 114 individuals had less
se1  than half their genome-wide average coverage); Low Mapping Quality <= 10% (at most
se2 114 individuals had average mapping quality below 30).

563 We performed additional analyses to verify that there was no significant bias towards
se+ one species or another given the use of a single reference genome AgamP3 [9] for alignment
s6s  of reads from all individuals. We found that the genomes of An. coluzzii and An. gambiae
seo  individuals were similarly diverged from the reference genome (Fig. S6). The similarity in
se7 levels of divergence is likely to reflect the mixed ancestry of the PEST strain from which
sss  the reference genome was derived [9]. An exception to this was the pericentromeric region
seo  of the X chromosome, a known region of divergence between the two species [12] where
570 the reference genome is closer to An. coluzzii than to An. gambiae. The similarity of this
s region to An. coluzzii may be due to artificial selection for the X-linked pink eye mutation
s72 in the reference strain [9], as this originated in the An. coluzzii parent it may have led to

573 the removal of any An. gambiae ancestry in this region.

s Sequence analysis and variant calling

5752 SNP calling methods were unchanged from phase 1 of the Anopheles 1000 genomes
st project[12]. Briefly, sequence reads were aligned to the AgamP3 reference genome [10]
s77 using bwa v0.6.2, duplicate reads marked [76], reads realigned around putative indels,
sts and SNPs discovered using GATK Unified Genotyper 2.7.4 [77] following best practice

s79  recommendations.
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ss0 Variant Filtering

ss1 Following Agl000G phase 1 [12], we applied the following SNP filters to reduce the number
ss2  of false SNP discoveries. We filtered any SNP that occurred at a genome position classified
553 as inaccessible as described in the section on genome accessibility above, thus removing
ssa - SNPs with evidence for excessively high or low coverage or ambiguous alignment. We
sss  then applied additional filters using variant annotations produced by GATK based on an
sss analysis of Mendelian error in all 11 crosses present in phase 2 and Ti/Tv ratio, similar to
ss7 that described above for the genome accessibility analysis. We filtered any SNP that failed
ss any of the following criteria: QD <5; FS >100; ReadPosRankSum <-8; BaseQRankSum
ss9 <-50.

500 Of 105,486,698 SNPs reported in the raw callset, 57,837,885 passed all quality filters,
so1 13,760,984 (23.8%) of which were multi-allelic (>= 3 alleles). To produce an analysis-
s2 ready VCF file for each chromosome arm, we first removed all non-SNP variants. We
s3  then removed genotype calls for individuals excluded by the sample QC analysis described
s4  above, then removed any variants that were no longer variant after excluding individuals.
s5  We then added INFO annotations with genome accessibility metrics and added FILTER
s6 annotations per the criteria defined above. Finally, we added INFO annotations with

so7  information about functional consequences of mutations using SNPEFF version 4.1b [78].

s  Sample quality control

s00 A total of 1285 individual mosquitoes were sequenced as part of Agl000G phase 2 and
0 included in the cohort for variant discovery. After variant discovery, quality-control (QC)
eo1  steps using coverage and contamination filters alongside principal component analysis and
602 metadata concordance were performed to exclude individuals with poor quality sequence
03 and/or genotype data as detailed in [12]. A total of 143 individuals were excluded at this

604 stage, retaining 1142 individuals for downstream analyses.

ss Haplotype estimation

606 Haplotype estimation, also known as phasing, was performed on all phase 2 wild-caught

607 individuals using unchanged methodology from phase 1 of the Anopheles 1000 genomes
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s project[12]. In short, SHAPEIT?2 was used to perform statistical phasing with information
600 from sequence reads. Phasing performance was then evaluated by comparison with hap-

610 lotypes generated from the laboratory crosses and from male X chromosome haplotypes.

s Population structure

612 Ancestry informative marker (AIM), Fgr, doubleton sharing and SNP PCA were con-
613 ducted following methods defined in [12]. One population (Guinea An. coluzzii, n=4) was
14 excluded from Fgp analysis and three populations (Guinea An. coluzzii, n=4; Bioko An.
615 gambiae, n=9; Ghana An. gambiae, n=12) were excluded from doubleton sharing analysis
616 due to small sample size. All analyses of geographical population structure using SNP
s17  data were conducted on euchromatic regions of Chromosome 3 (3R:1-37 Mbp, 3L:15-41
618 Mbp), which avoids regions of polymorphic inversions, reduced recombination and unequal
s10  divergence from the reference genome [12]. Unscaled CNV variation PCAs were built from
s20 the CNV presence/absence calls [19], using the prcomp function in R [79].

21 Admixture models were fitted using the program LEA version 2.0 [80] in R version 3.6.1
22 [79]. Ten independent sets of SNPs were generated by selecting SNPs from euchromatic
623 regions of Chromosome 3 with minor allele frequency greater than 1%, then randomly
624 selecting 100,000 SNPs from each chromosome arm, then applying the same LD pruning
625 methodology as used for PCA, then combining back together remaining SNPs from both
626 chromosome arms. The resulting files were exported in .geno format, which were then
27 analyzed using the snmf method (sparse non-negative matrix factorization [81]) to obtain
s2s ancestry estimates to each cluster (K) tested. We tested all K values from 2 to 15. Ten
620 replicates of the analysis with snmf were run for each dataset, which meant that 100 runs
630 were performed for each K. We assessed the convergence and replicability of the results
31 across the 100 runs (ten different datasets, each one replicated ten times dataset) using
62 CLUMPAK [82]. CLUMPAK was used to summarize the results, identify the major and
633 minor clustering solutions identified at each K (if they occurred), and estimate the average
634« ancestry proportions for the major solution which was used to interpret the results. We
635 assessed how the clustering solution fitted with the data using the cross-entropy criterion.

63 The lower this criterion is, the better is the model fit to the data.
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s7  Genetic diversity

633  Analyses of genetic diversity, including nucleotide diversity, Tajima’s D, ROH and IBD
630 (identity by descent), were conducted following methods defined in [12] but using the
o0 phase 2 data release of 1,142 samples. In short, scikit-allel (’1.2.0’) was used to calculate
e1  windowed averages of nucleotide diversity and Tajima’s D [83], IBDseq version r1206 [84]
sz was used to calculate IBD and an HMM implemented in Python (available in scikit-allel)

s43  was used to calculate ROH.
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o0 Supplementary figures and tables
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Figure S1. Ancestry informative markers (AIM). Rows represent individual mosquitoes (grouped
by population) and columns represent SNPs (grouped by chromosome arm). Colours represent
species genotype. The column at the far left (“PCR”) shows the species assignment according
to the conventional molecular test based on a single marker on the X chromosome, which was
performed for all populations except The Gambia (GM) and Kenya (KE). The column at the far
right shows the genotype for kdr variants in Vgsc codon 995. Lines at the lower edge show the
physical locations of the AIM SNPs.
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Figure S2. Principal component analysis (components 1-8) of the 1142 wild-caught mosquitoes es-
timated using copy number variant diversity. Bar-chart shows the percentage of variance explained
by each component
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Figure S3. Analysis of population structure and admixture. Each row shows results of modelling
ancestry in sampled individuals assuming a given number K of ancestral populations [80]. Within
each row, individual mosquitoes are represented as vertical bars, grouped according to sampling
location and species, and coloured according to the proportion of the genome inherited from each
ancestral population. AOM=Angola An. coluzzii; CIM=Cote d’'Ivoire An. coluzzii; GHM=Ghana
An. coluzzii; GNM=Guinea An. coluzzii; BEM=Burkina Faso An. coluzzii; GWA=Guinea Bissau;
GMS=The Gambia; GNS=Guinea An. gambiae; BFS=Burkina Faso An. gambiae; GHS=Ghana
An. gambiae; CMS=Cameroon An. gambiae; GQS=Bioko An. gambiae; UGS=Uganda An.
gambiae; GAS=Gabon An. gambiae; FRS=Mayotte An. gambiae; KEA=Kenya. The subplot
below shows the cross-entropy criterion values obtained for each value of K ancestral populations,
where lower values imply a better fit of the model to the data.
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Figure S4. Watterson’s theta (fy) calculated in non-overlapping 20-kb genomic windows.
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Figure S5. SNP density. Plots depict the distribution of allele frequencies (site frequency spec-
trum) for each population, scaled such that a population with constant size over time is expected
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minor allele frequency

to have a constant SNP density over all allele frequencies.

35

minor allele frequency


https://doi.org/10.1101/864314
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/864314; this version posted December 9, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Dxy 2R 2L 3R 3L X
a 002 4
] = An. coluzzii
0.01 _: W = An. gambiae
0 —
b 002 A oy
1 , i i —— GHcol
= ) — AOCOI
0.01 M M — BFcol
0 —
€ 0.02 -
= ik y M : BFgam
0.01 — 1 / i UGgam
) 5 : = CMgam
0= [ - | 1 I | B [ E— Chromatin state

1 euchromatin
HEl heterochromatin

Figure S6. Divergence from the AgamP3 reference genome, calculated as Dzxy, is largely similar
for An. coluzzii and An. gambiae, with the exception of the centromere of the X chromosome (a).
Comparing three populations of An. coluzzii (b) or An. gambiae (c) highlights the strong effect of
the 2La chromosomal inversion on the accumulation of genetic variation.
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Table S1. Ag1000G phase 2 sampling locations.

Collection Sample size

Country Location Site Year Latitude Longitude Total Female Male
Angola Luanda 2009 -8.821 13.291 78 78 0
Burkina Faso Bana 2012 11.233 -4.472 60 40 20
Pala 2012 11.150 -4.235 56 48 8
Souroukoudinga 2012 11.235 -4.535 51 51 0
Cameroon Daiguene 2009 4.777 13.844 96 81 15
Gado Badzere 2009 5.747 14.442 73 58 15
Mayos 2009 4.341 13.558 105 91 14
Zembe Borongo 2009 5.747 14.442 23 23 0
Cote d’Ivoire Tiassale 2012 5.898 -4.823 71 71 0
Equatorial Guinea  Bioko 2002 3.700 8.700 9 9 0
France Mayotte Bouyouni 2011 -12.738 45.142 1 1 0
Combani 2011 -12.779 45.143 5 2 3
Karihani Lake 2011 -12.797 45.122 3 3 0
Mont Benara 2011 -12.857 45.155 2 1 1
Mtsamboro Forest Reserve 2011  -12.703 45.081 1 1 0
Mtsanga Charifou 2011 -12.991 45.156 8 3 5
Sada 2011 -12.852 45.104 4 1 3
Gabon Libreville 2000 0.384 9.455 69 69 0
Gambia, The Njabakunda Kerr Birom Kardo 2011 13.550 -15.900 19 19 0
Kerr Sama Kuma 2011 13.550 -15.900 8 8 0
Maria Samba Nyado 2011 13.550 -15.900 18 18 0
Sare Illo Buya 2011 13.550 -15.900 20 20 0
Ghana Koforidua 2012 6.094 -0.261 1 1 0
Madina 2012 5.668 -0.219 24 24 0
Takoradi 2012 4.912 -1.774 20 20 0
Twifo Praso 2012 5.609 -1.549 22 22 0
Guinea Koraboh 2012 9.250 -9.917 22 22 0
Koundara 2012 8.500 -9.417 22 22 0
Guinea-Bissau Antula 2010 11.891 -15.582 58 58 0
Safim 2010 11.957 -15.649 33 33 0
Kenya Kilifi Junju 2012 -3.862 39.745 16 16 0
Mbogolo 2012 -3.635 39.858 32 32 0
Uganda Tororo Nagongera 2012 0.770 34.026 112 112 0

"9SUd2I| [eUORUIBIU| 0% DN-AG-DD® lapun a|qe|ieAe
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Table S2. Colony crosses.

Cross ID  Mother Colony Father Colony N progeny

18-5 Ghana Kisumu/G3 20
29-2 Ghana Kisumu 20
36-9 Ghana Mali 20
37-3 Kisumu Pimperena 20
42-4 Mali Kisumu/Ghana 14
45-1 Mali Kisumu 20
46-9 Pimperena Mali 20
47-6 Mali Kisumu 20
73-2 Akron Ghana 19
78-2 Mali Kisumu/Ghana 19

80-2 Kisumu Akron 20
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