bioRxiv preprint doi: https://doi.org/10.1101/864298; this version posted December 4, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

© 00 N o 0o b~ W N PP

N NN RN R R R R R R R R R
W N B O © © N © U0 M W N P O

N
N

W W W W W W N N N N DN
ga A W N P O © 00N O O

under aCC-BY-NC-ND 4.0 International license.

Spatial, climate, and ploidy factors drive genomic diversity and resiliencein the

widespread grass Themeda triandra

Ahrens CW*?, James EA?, Miller AD?, Aitken NC*, Borevitz JO*, Cantrill DF, Rymer PD*

! Hawkesbury Institute for the Environment, Western Sydney University, Richmond NSW
? Royal Botanic Gardens Victoria, Melbourne, VIC, Australia

3 Deakin University, Warrnambool, VIC, Australia

* Research School of Biology, Australian National University, Canberra, ACT, Australia

Author Correspondence:

Collin Ahrens

Email: c.ahrens@westernsydney.edu.au
Phone: +61 2 4570 1862

Word Count:
Summary — 195
Introduction — 1393
Methods — 2352
Results— 711
Conclusions — 1896
Total — 6352

Summary

*Fragmented grassland ecosystems, and the species that shape them, are under immense pressure.
Restoration and management strategies should include genetic diversity and adaptive capacity to
improve success but these data are generally unavailable. Therefore, we use the foundational grass,
Themeda triandra, to test how spatial, environmental, and ploidy factors shape patterns of genetic
variation.

*We used reduced-representation genome sequencing on 487 samples from 52 locations to answer
fundamental questions about how the distribution of genomic diversity and ploidy polymorphism
supports adaptation to harsher climates. We explicitly quantified isolation-by-distance (IBD),
isolation-by-environment (IBE), and predicted population genomic vulnerability in 2070.


https://doi.org/10.1101/864298
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/864298; this version posted December 4, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

36
37
38
39
40
41
42
43
44
45

46

a7
48
49

under aCC-BY-NC-ND 4.0 International license.

*We found that a majority (54%) of the genomic variation could be attributed to I1BD, while 22% of
the genomic variation could be explained by four climate variables showing | BE. Resultsindicate
that heterogeneous patterns of vulnerability across populations are due to genetic variation, multiple
climate factors, and ploidy polymorphism, which lessened genomic vulnerability in the most

susceptible populations.

*These results indicate that restoration and management of T. triandra should incorporate knowledge
of genomic diversity and ploidy polymorphismsto increase the likelihood of population persistence
and restoration success in areas that will become hotter and more arid.

Key words
adaptation; genomic diversity; genomic vulnerability; landscape genomics; polyploidy; restoration;
Themeda triandra (kangaroo grass)
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Introduction

Grasses (Poaceae) are one of the most ecologically important vascular plant groups, making up 25%
of the world’ s vegetation (Shantz, 1954). They provide key ecosystem servicesthat underpin
environmental health (i.e. habitat and food sources for native wildlife, nutrient cycling and carbon
sequedtration), and carry significant economic value as they include four of the five mgjor cropsin
terms of global production (Raven & Thomas, 2010). Grasses are essential constituents of several
vegetation communities including grasslands, grassy woodlands, and alpine regions. However,
grasslands and grassy woodlands have historically been under immense pressure from rangeland and
agricultural uses (Eldridge et al., 2016; Hopkins & Holz 2006), leading to the fragmentation of natural
populations and reductions in genetic diversity (Harrison et al., 2015). Today, only about 4.6% of the
billions of hectares of grassland ecosystems remain worldwide (IUCN 2016). In Australia, grassland
systems are the most poorly conserved and degraded communities (Hobbs & Y ates, 2000), and are
likely to experience major negative long-term effects. Many regions of Australia that support
grasslands are becoming warmer, drier and increasingly fire prone under climate change, highlighting
the importance of preserving genetic diversity and evolutionary potential (Dunlop et al., 2012).
However, most research on genetic diversity in grass species has generally been undertaken on those
of agricultural importance (Buckler et al., 2001) such as wheat, corn, rice, and sorghum, or those that
are being developed for biofuels such as switchgrass (Panicum — Casler et al., 2007; Harrison et al .,
2015) and sugarcane (Miscanthus — Vermerris, 2008). While research on species such as switchgrass
have provided valuable insights into natural patterns of genetic diversity, adaptation across gradients,
and the role ploidy plays between these lines of enquiry (Morriset al., 2011; Lowry et al., 2014,
2019; Grabowski et al., 2014), major gaps in knowledge for other ecologically important grasses
persist and continue to inhibit effective conservation management.

Genetic diversity is maintained within a species by a combination of selective (such asrange shifts
and natural selection) and neutral processes (such as gene flow, mutation, and genetic drift) (Futuyma,
2013). However, grasses often have complex evolutionary histories (Stebbins, 1956) influenced by
factors such as clonality (Fischer & Van Kleunen, 2002), polyploidy (Keeler & Bradshaw, 1998),
intrageneric hybridization, genome size, and different physiologies such as photosynthetic
mechanisms (e.g. C3 versus C4) (Edwards et al., 2010). These complex and often lineage-specific life
histories can complicate our ability to project findings across species, meaning that the species-
specific data needed for practitioners to make informed management decisions is often lacking.
Perhaps the lack of research on ecologically important grass species and their complex life histories
are not mutually exclusive. Regardless, information about how genetic diversity is distributed across
habitats and environmental gradients, often reflecting selection and local adaptation, can help inform
management and restoration strategies (Hoffmann et al., 2015). Thisis particularly pertinent given

grassland communities are already showing signs of climate stress, and empirical datais urgently
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needed to support adaptive management strategies that prepare grasslands for new climate challenges
by maximising evolutionary potential. In addition, research that focuses on genetic diversity across
species ranges can help identify populations vulnerable to climate stress, allowing practitioners to
prioritise management that safeguards populationsat risk. For example, genomic signals of selection
can be used to predict climate-driven population declines (Bay et al., 2018). Specifically, ‘genomic
vulnerability’ of individual populations, defined as the mismatch between current and predicted future
genomic variation inferring population susceptibility to the loss of genetic diversity and/or
maladaptation, can help identify populations most at risk. Asour ability to integrate geospatial and
genomic resources continues to grow, o will the ability of researchersto identify genomic
vulnerability in ecologically important species, providing practitioners with improved management
frameworks for mitigating climate change effects on ecosystems by preserving patterns of endemism

and maximising adaptive potential.

Grasses often display ploidy differences among populations across their natural range. Indeed,
polyploidy is common among vascular plants with ¢. 35% of species characterised as having a recent
history of polyploidy (Wood et al., 2009). For many species, associations between ploidy and local
environmental conditions reflect adaptation, a pattern which has been studied extensively in crop
plants (Alix et al., 2017). Further, it has recently been shown that niche differentiation occursfaster in
polyploids than diploid relatives (Baniaga et al., 2019). While the causes of polyploidy are poorly
understood (Soltis et al., 2010), whole genome duplication events have been shown to coincide with
historical climate change events (Cai et al., 2019), and patterns of allopolyploidy have been linked to
changesin environment (Wagner et al., 2019). The effects of polyploidy are increasingly evident,
with gene expression levels shown to vary from tissue to tissue in polyploids compared to their
diploid counterparts (Adams et al., 2003), and polyploid species often having significant fitness
advantages (Petit & Thompson, 1997; Bretagnolle & Thompson, 2001; Ramsey, 2011; Hahn et al .,
2012; Hoffmann et al., 2015; Wel et al., 2019). Genome duplication may in itself be an advantage
because it buffersthe organism against deleterious alleles (Voigt-Zielinski et al., 2012; Wagner et al.,
2019), and higher rates of heterozygosity reduce risks associated with inbreeding effects (Ronfort,
1999). Despite the potential benefits of polyploidy, there are known disadvantages, including the
potential dilution of beneficial mutations (Stebbins, 1971) and disturbance of cellular functions such
as epigenetic regulation, mitosis, and meiosis (Comai, 2005). However, ploidy polymorphism may
provide an important evolutionary pathway for species to establish in previously unsuitable habitats or
adapt in situ (Grabowski et al., 2014).

Understanding patterns of genetic diversity and evolutionary mechanisms for adapting to new
environments is key to improving the conservation of intact grasslands and the restoration of degraded
grassland habitats. Globally, restoration practices largely advocate the use of seed sourced from local
provenances, based on the assumption that local genotypes are best matched to stable local
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126  environments and to avoid perceived risks associated with outbreeding (Thornhill, 1993; Edmands,
127  2006). Yet, in many cases local provenancing can lead to poor restoration outcomes (Broadhurst et
128  al., 2008; Prober et al., 2015). In highly modified landscapes the genetic integrity of many species has
129  been compromised, and local-provenancing can favour the selection of genetically depauperate and
130 maladapted seed (Jones, 2013). Also, local-provenancing gives little consideration to the persistence
131  of plantings under future climates, with growing evidence that genotypes from non-local sources may
132  outperform those sourced locally (Hoffmann et al., 2015; Prober et al., 2015; Breed et al., 2019). In
133  addition, foundation species are especially important during the restoration process because their
134  genetic variation can shape the networks of ecological interaction influencing community assembly,
135  dahility, and evolution (Gibson et al., 2012; Lau et al., 2016). Empirically derived restoration
136  dtrategiesare now being widely adopted around the world to support biodiversity, evolutionary
137  potential, and restoration success, and similar approaches should also be employed for ploidy
138  polymorphism.
139
140 Inthis study, we assess patterns of genetic structure, genotype-ploidy-environment associations, and
141 genomic vulnerability in a foundational grassland species. Themeda triandra, commonly known as
142  Kangaroo Grass, has a continent wide distribution, is characterised by ploidy polymorphisms
143  (Hayman 1960) and has limited seed dispersal (Everson et al. 2009). The species provides critical
144  ecosystem services supporting grassland habitats throughout Australia, and iswidely used in
145  grasdand restorations, but is suffering major declines, shows signs of climate stress, and isin need of
146  improved restoration guidelines. Notably, several studies suggest that re-establishment of T. triandra
147  isanimportant first step for the restoration of Australia’' s grasslands (Adair & McDougall 1987;
148  McDonald 2000; Cole & Lunt, 2005), highlighting the importance of research geared toward
149  assessing theresilience of remnant populations, and management approaches that incorporate
150 evolutionary potential. In this context, we assess the likely drivers of genetic structure across a portion
151  of T. triandra’srange, predicting both isolation-by-distance (IBD) and isolation-by-environment
152  (IBE) to be key drivers due to the species’ limited seed dispersal and broad climatic niche. Based on
153 estimates of gene flow and correlative measures of local adaptation, we test for genomic mismatches
154  between local gene poolsand future climatesto help identify populations likely to be most vulnerable
155 tonew climatic challenges. Lastly, wetest for associations between polyploidy and harsh climate
156  zones, to gain insights into the role of polyploidy in historical and future adaptive processes. These
157  resultswill provide clear pathways on how to incorporate genomic, environmental, and ploidy
158 information into improved guidance for adaptive management plansthat aim to protect these
159  dwindling grassland ecosystems.
160

161 Materials and Methods

162 Species and sampling
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Themeda triandra isa perennial C4 tussock grass, with ploidy variability, and occurs across three
continents (Australia, Asia, and Africa) (Dell’ Acquaet al., 2013; Snyman et al., 2013; Linder et al .,
2018). It is Australia’s most widespread species, being adapted to habitats as diverse as the semi-arid
interior and sub-alpine regions (Mitchell & Miller, 1990). In Australia, diploids and tetraploids are the
most common ploidy variants, but triploid, pentaploid, hexaploid and aneuploid individuals have also
been identified (Hayman, 1960). Past studies suggest that T. triandra originally evolved in tropical
Asiaand migrated through coastal corridorsto Australia (Hayman, 1960), with Audralian lineages
diverging 1.37 mya (0.79 - 3.07 mya) (Dunning et al., 2017). However, dating using secondary
calibrations, asin (Dunning et al., 2017) can lead to unreliable and overly young estimates of
divergence (Schenk, 2016). Themeda triandra is widely considered a foundation speciesfor three
reasons: 1) it defines particular ecosystems (Snyman et al., 2013), 2) it controls the distribution and
abundance of associated flora and fauna (Morgan, 1998), and 3) it regulates the core ecosystem
processes especially through fire (Morgan & Lunt, 1999). The speciesis also considered to be an
indicator of (agro)ecosystem health (Novellie & Kraaij, 2010) and itslong-term persistence provides
ecosystem stability, ecosystem services, resistance to plant invasions, and facilitates rehabilitation of
polluted and degraded habitat (Novellie & Kraaij, 2010; Dell’ Acqua et al., 2013). Furthermore, its
persistence is critical for the restoration of grasslandsin Australia and isreliant on recurring fireto
remove old tillers and for seedling establishment (McDougall 1989). The distribution of T. triandrais
suggestive of acomplex evolutionary history with high levels of genetic structuring throughout
Audralia. Although T. triandra itself isnot formally listed as an endangered species, it is an important
congtituent of temperate grassland communities, which have been declared as endangered in the
Ausdtralian Capital Territory and New South Wales, and threatened in Victoria. The grasslands are
under threat due to loss and fragmentation of habitats through inadequate land management practices.

Samples were collected between 2015 and 2017 from 52 populations spanning the heterogeneous
climate from its eastern Australian distribution, which deliberately coincides with the densest portion
of itsdistribution. Sampling was structured to ensure different environment combinations were
sampled between coastal and inland (west of the Great Dividing Range, see Fig S1) sites. Sites were
identified using records on the Atlas of Living Australia public database (ala.org.au) and chosen using
the following criteria: herbaria collection or observation was after the year 2000, location data was
within 50 m of accuracy, and occurred on land that was publicly accessible. Between 10 and 21 |eaf
samples were collected per location and placed directly into silica gel to rapidly dessicate leaf samples
for DNA preservation. Sampled plants were at least 5 m apart to ensure independence of genotypes by
minimising the chance of collecting clonal samples. Our collections comprised atota of 584
individual specimens, which were stored under laboratory conditions until required for genetic

analysis.
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200  Using the work of Hayman (1960), we created a predictive map of ploidy levelsfor populations

201  distributed across our sampling distribution. Hayman measured ploidy levels across Australia, with

202  most of his sites overlapping our sampling distribution. We interpolated his data using nearest

203  neighbor analysisusing QGIS v2.14 (Quantum GIS Development team), allowing usto extract

204  predicted ploidy level for each population location to provide us with the number of predicted

205  chromosomes (i.e. diploid = 20; tetraploid = 40; hexaploid = 60). A few individuals were equidistant

206  between two predicted ploidy levels and were assigned ploidy level between 20 and 40. Thiswas

207  interpreted asindicating a mixed ploidy population. Ploidy predictions were verified with population-

208 level heterozygosity, see below for details.

209

210 DNA extraction and library preparation

211  For reduced-representation library preparation and sequencing, genomic DNA from each individual
212  wasisolated from approximately 25 mg of silica-dried leaf tissue using the Stratec Invisorb DNA
213  Plant HTS 96 kit (Invitek, Berlin, Germany). Libraries were created smilarly to Ahrens et a. (2017).
214  Briefly, extracted DNA was digested with Pstl for genome complexity reduction, and ligated with a
215  uniquely barcoded sequencing adapter pair. We then amplified each sample individualy by PCR to
216  avoid sample bias. We pooled samplesin equimolar ratios and selected amplicons between 350 and
217 600 bp from an agarose gel. The library pool was sequenced on three Illumina NextSeg400 lanes
218  using a75bp paired-end protocol on a high output flowcell at the Biomolecular Resources Facility at
219  the Australian National University, generating ~864 million read pairs.

220

221  For long-reads viathe MinlON sequencer (Oxford Nanopore Technologies, UK), we used the open
222 access high molecular weight DNA extraction protocol developed by Jones & Borevitz (2019).

223  Briefly, 30 g of fresh leaf material from a known diploid individual was processed with 150 mL

224 nuclei isolation buffer using a high-powered blender. The homogenate was filtered repeatedly using a
225  funnel, through sequentially 2, 4 and 8 layers of Miracloth. Next, 100% Triton X-100 was added for
226  nuclei isolation and the mixture centrifuged to create a pellet of nuclei. The pellet was washed twice
227  with apre-chilled nuclei buffer. DNA extraction from the nuclei was initiated by adding fresh lysis
228  buffer with 3% Sodium dodecyl sulfate (SDS) at 50°C. Binding buffer was added to use Sera-Mag
229  beadsto remove the lysis buffer from the DNA solution, washing with 70% ethanol 3 times until the
230  beads were clean. The beads were removed by adding 220 uL of ultra-pure H,0 and resuspending the
231  beadswith attached DNA. The supernatant was removed and subsequently size selected for fragments
232 longer than 30 kb using a PippinHT (Sage Science, Beverly MA). MinlON library preparation and
233  sequencing was performed as per the manufacturer’ s instructions and specifications, and resulted in
234 412,906 reads (Fig S2). Median read length was 27,156 bases, and the longest read length was

235 144,466 bases, with an overall average read-quality of 10 (Fig S2).

236

237 SNP calling
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238  We checked the quality of the raw short-read sequencing reads with FastQC (v0.10.1, [Andrews,

239  2012]). Then, we demultiplexed the raw reads associated with each sample’ s unique combinatorial
240  barcode using AXE v0.2.6 (Murray & Borevitz, 2018). During this step we were unable to assign

241  19% of the reads. We trimmed each sequence to 64 basepairs while removing the barcodes and

242  ensured quality of the reads using trimmomatic v 0.38 (Bolger et al., 2014). Quality was assessed

243  using adliding window of 4 basepairs (the number of bases used to average quality) and a quality

244  scoreof 15 (the average quality required among the sliding window), and if the average quality

245  dropped below 15, the sequences were cut. Then we indexed the long-reads (Fig S2 for distribution of
246  length and number of reads sequenced) using the BWA software and the index argument. We aligned
247  the short-readsto the long-reads for more accurate SNP calling compared to a de novo pipeline. Short-
248  readswere aligned using BWA-mem (v0.7.17-r1198, [Li et al., 2013)]), as paired reads, with 82.5% of
249  reads successfully mapped. Samtoolsv 1.9 (Li et al., 2009) was used to transform the SAM filesto
250 BAM filesfor use within STACKSv 2.41 (Catchen et al., 2013). The argument gstacks and

251  populations were used in that order on the BAM filesto create aV CF file, minimum thresholds

252  (minor alelefrequency = 0.01; onerandom SNP per read was retained) were set here for further

253  cleaningin R (R core development team 2019). The mean coverage per sample was 15.8x with a

254  sandard deviation of 20x, thisresulted in many samples being dropped (see below for details). Lastly,
255  VCFtoolsv 0.1.16 (Danecek et al., 2011) was used to create a012 file for further cleaning of the snp
256  matrix inR.

257

258  The missing datathreshold was set to 50% per locus and individual which resulted in an average of
259  30% missing data from the whole SNP dataframe. Minor allele frequency was set to 0.05 to avoid
260 identifying patterns of population structure that may be dueto locally shared alleles (De la Cruz &
261  Raska, 2014). Then we removed SNPsin high linkage disequilibrium (>50% similar). We also

262  removed possible clones in Genodive v 2.0b27 (Meirmans & Van Tienderen, 2004) using the assign
263  clonesfunction, removing nine individuals. After conservative SNP filtering, we were left with 487
264  individualsfrom 52 populations.

265

266  Analysis

267  Genodive was used to estimate population summary statistics for the total number of aleles observed
268  acrossloci, total heterozygosity, and the inbreeding coefficient (Gis; Nei, 1987). We expected that the
269  degree of heterozygosity within populations would reflect ploidy status (i.e. higher heterozygosity
270  would imply polyploids) as described by Soltis & Soltis (2000). Consequently, we validated predicted
271  ploidy level among populations from Hayman’s map (see above for details) by comparing those

272  predictionsto population-level heterozygosity. Gis isthe same as Fs for asingle locus with two

273  dleles(Chakraborty & Leimar 1987), and is calculated by the ratio of observed heterozygosity within
274 subpopulationsto the expected heterozygosity and ranges from -1 (complete outbreeding) to 1

275  (complete inbreeding). Genodive was also used for an analysis of molecular variance (AMOVA)
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using the Excoffier method (Excoffier et a. 1995). Global Fsr with 95% confidence intervals was
calculated using the fstat argument and the population pairwise Fsr was calculated using the
pairwise.fst argument in the hierfstat package in R (Goudet, 2005).

Themeda triandra has a broad geographic distribution spanning a variety of environmental gradients,
therefore we wanted to estimate the amount of genetic variation that could be attributed to isolation-
by-distance (IBD) and -environment (IBE). First, we downloaded the 19 bioclim variables from
worldclim.org (Fick & Hijmans, 2017), and extracted all of the climate variables for each of the
sample locations in R using the package raster (Hijmans & van Etten 2012). A Principle Components
Analysis (PCA) was performed to determine potential correlations between the 19 climate variables
and produce an environmental dataset consisting of least correlated variables (Fig S3). We choseto
retain variables from six of the loose clusters (temperature mean diurnal range (Trance), Mmaximum
temperature of the warmest month (Tyax), precipitation seasonality (Pseas), mean annual temperature
(Tma), mean annual precipitation (Pya), and precipitation of the driest month (Pow)).

We used sSNMF (Frichot et al., 2014) in the LEA package in R (Frichot & Frangois, 2015) to
investigate the observed patterns of population structure that include contributions from both
geography (IBD) and environment (IBE). SNMF estimates ancestry coefficients based on sparse non-
negative matrix factorisation and least-squares optimisation. The sparse non-negative matrix
factorisation isrobust to departures from traditional population genetic model assumptions, making
this algorithm ideal to use with polyploid species such as T. triandra. We performed sNM F with the
following attributes: k = 1-10, 10 replications per k-value (number of ancestral clusters), and 1,000
iterations. Entropy scoresfor each k-value were compared to choose the optimal number of clusters
using the recommendations in the SNMF ingtruction manual. A consensus for the optimal k-value was
created by averaging the results over the 10 replicate runs using CLUMPP v1.1.2 (Jakobsson &
Rosenberg, 2007) and drawn using DISTRUCT v1.1 (Rosenberg, 2003).

We used Moran’s Eigenvector Maps (MEM) to test if IBD was a major determinant of the species
genetic diversity, as described in previous work (Dray et al., 2006; Legendre & Legendre, 2012) but
called PCNM in the first papers. Briefly, MEM calculates a matrix of pairwise Euclidean distances D
among the sampling sites, then transform the D matrix into a similarity matrix to produce the MEM.
Eigenvalues are produced corresponding to orthogonal vectors of similarity. To ascertain spatial
patterns of genetic diversity we used the R package memgene (Galpern et al., 2014). Memgene
identifies spatial neighbourhoodsin genetic distance datathat adopts a regression framework where
the predictors are generated using MEMs, this multivariate technique was developed for spatial
ecological analyses but is recommended for genetic applications. Memgene identifies variables

(eigenvalues) that represent significant spatial genetic patterns at multiple spatial scales. Each variable
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313  explainsaproportion of the total variance explained by spatial patterns. For this study, we show two
314  variables because it explains most of the variation described by I1BD.

315

316  Using the environmental data layers we employ a generalized dissimilarity model (GDM) to identify
317  theimportance of specific climate variables responsible for shaping observed patterns of genetic

318  structure within our dataset. Analyses were performed using the gdm package v 1.3.7 in R (Manion et
319 al., 2018) and apairwise Fsr matrix (based on all SNP loci) to estimate allelic turnover through

320 climatic space (deviations in allele frequency associated with environment type). Where GDM holds
321  all variablesin the model constant to identify the partial genomic distance associated with the climate
322  factor (Ferrier et al., 2007), whereby accounting for spatial patterns caused by demographic processes
323  (Fitzpatrick & Keller, 2015). After running the GDM analysis, only four of the climates remained
324 (Twmax, Pseas, Tma, @nd Pua), asthe other two climate factors were removed by a

325  backward Telimination procedure. The GDM output includes the deviance explained by the climate
326  and spatial variables, and a spline plot for each climate and spatial variable. Spline plots were

327  predicted across the study area and beyond for every 2.5km grid cell. These predicted grids were

328  mapped using ggplot in R (Wickham, 2011) to describe the relative IBE.

329

330 Wecalculated ‘genomic vulnerability’ for the sampling area following Bay et al. (2018), which

331  condgsts of three main components. exposure, sensitivity, and adaptive capacity (Dawson et al., 2011).
332  Genomic vulnerability is the amount of genomic change required to track environmental change over
333 timeandisinterpreted as expected population decline. To do this, we substituted predictive mapsin
334 2070 using the CCSM4 model with the representative concentration pathway 8.5 (worldclim.org),
335  whichisaprediction based on the anthropogenic carbon dioxide output not deviating fromits current
336 trgectory. These maps were also downloaded from worldclim and developed in the same way as

337  described above. Lastly, we subtracted the projected genomic differentiation from the current

338  genomic differentiation to get a difference between the two. We estimate genomic vulnerability twice,
339  with and without predicted ploidy levelsto understand how ploidy may affect population decline,

340  particularly in the most vulnerable areas.

341

342 Reaults

343  Weestimated patterns of population structure among 487 samplesfrom 52 sample locationsfor T.
344  triandra using adataset consisting of 3,443 polymorphic SNPs with a minor alele frequency (MAF)
345  of 0.05 and an average of 30% missing data. AMOVA indicated that a significant proportion of the
346  genetic variance (10%) could be attributed to difference among sample sites (P = 0.001; Fsr = 0.22),
347  whilethe mgjority of the variance (79.3%) was attributed to differences between individuals (P <
348 0.01; Fr =0.31). Large and significant positive inbreeding coefficients (G;s) were observed for many
349  sites, indicating an excess of homozygotes, while three populations had negative inbreeding

350 coefficientsindicating homozygote deficits (Table 1). Levels of genetic diversity (number of alleles
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and heterozygosity) was variable among populations, with a mean number of allelesof 1.082 (95%
Cl 1.078-1.086; range 1.109 - 1.366) and a mean heterozygosity within populations (Hs) of 0.074
(range 0.06 - 0.12; Table 1). Heterozygosity estimates reflect patterns that are consistent with the
hypothesisthat greater ploidy levels are present in the hotter regions of our sampling distribution (Fig
1). However, this linear model, although significant (r* = 0.086; P = 0.035), explains only a small
proportion of the variation. This pattern is likely driven by the three populationsin the hottest region.
Heterozygosity and predicted chromosome number were in agreeance for these three populations, the
populations with the highest Tuax (QLD, PR, SWC). Some populations with high heterozygosity
were predicted to be diploids (UL, GOR, NAM), but these populations were nearly equidistant to
tetraploid and diploid populations and are likely tetraploid populations (Fig 1).

General patterns of population structure show a clear delineation between southern and northern
populations (Fig 2) with an optimal k-value of 3 (Fig $4). Thethird k-value isfound in two
populations, and partially assigned in two other populations. These populations containing the third
ancestral cluster were generally found in the central area of the sampling region. Notably, there are
portions of populations, particularly in the south central portion of the sampling region, that have been
assigned to the northern ancestral cluster. While there are afew individuals in the north assigned to
the southern ancestral cluster.

| solation-by-distance (1BD) was found to be significant in T. triandra. In fact, IBD accountsfor 54%
of the total genomic variation (Fig 3). Two axes are shown in separate figures, and together they
explained 95% of the variation explained by IBD alone. The first axis shows a strong split between
the northern and southern sections of the sampling area (Fig 3a), similar to the population structure
identified in the SNMF results. A second pattern of IBD occurs in the northern part of the sampling
region and is between the inland and coastal populations, while the most westerly population is
slightly more similar to the northern sampling region (Fig 3b).

In addition to spatially driven genomic variation, isolation-by-environment (IBE) explains a
significant amount of variation. While we chose six independent climate variablesto explore I BE,
only four were found to be significant (Twa, Tmax, Pua, Pseas, maps for climate variables in Fig Sb).
The GDM analysis was able to identify that 31.3% of the variation was attributable to these climate
and spatial variables (Fig 4), and 22.0% of the variation was attributable directly to climate. When
performing the same analysis with the inclusion of ploidy level, the variation explained rose by only
0.4%, but under this model, the Tuax variable explained less variation (red linesin Fig 4) while all
other variables remained similar. In the current climate, the differences between the two models were
negligible (Fig 5a& c). However, when forecasting the differences in 2070, the outputs suggest a
heterogeneous population decline by 0 and 25% (Fig 5b) with the highest proportion of change
occurring inland of the eastern coast. Critically, the inclusion of ploidy polymorphism showed
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genomic vulnerability dropping by 5% in the most vulnerable areas (Fig 5b & d; ploidy map provided
in Fig Sb), inthis output, we find that genomic vulnerability occurs where the land transitions from
the alpine region to the inland region. The lowest probability of change (population decline or gene
pool turnover) is in the mountainous ecosystems in the southeastern portion of the sampling region.

Discussion

Our study indicates contemporary structuring of genomic diversity in Themeda triandra is being
driven largely by a combination of spatial and climate factors. These patterns are indicative of a
species with limited propagule dispersal and restricted gene flow. The apparent lack of connectivity
among remnant populations suggests gene flow is unlikely to help local populations adapt to future
climate challenges. Instead, their adaptive potential will rely on trait plagticity and standing genetic
variation that allows for adaptation in situ. Strong associations between gene pools and climate may
reflect patterns of local adaptation, and heterogeneity in climatic conditions at both local and regional
scales, suggests that the impacts of climate change on remnant populations are likely to be uneven.
Thisis supported by assessments of mismatches between current and predicted future genomic
variation, creating heterogeneous patterns of ‘genomic vulnerability’ across populations. We also
demonstrate polyploidy associations with harsh climate zones, suggesting polyploidy is potentially
linked to historical adaptation processes and may assist populations in overcoming future climate
challenges. This study highlights the need for adaptive management strategies that incorporate
evolutionary potential, including seed sourcing and popul ation mixing strategies that can help

overcome genomic vulnerability and maladaptation under future climates.

| solation-by-distance

The majority of genomic variation found in T. triandra could be explained by geographic isolation.
Thisislikely to be due to low levels of gene flow and seed dispersal between populations contributing
to strong genetic structuring, as found in South African populations (Everson et al., 2009). However,
this structure could also be driven by a partially apomictic reproductive systemin T. triandra (Brown
& Emery, 1957; Birari, 1980), with clonal reproduction inflating signals of population-level genetic
unigueness. We found some evidence of clonal T. triandra genotypes, but these individual s were
removed during the data filtering phase prior to analyses. While our data are unable to confirm the
relationship between clonality and polyploidy due to low replication, our data suggests that
polyploidy occurs infrequently at milder temperatures, while being dominant among populations
occurring in the highest temperature environments. These findings are consistent with Hayman (1960)
who arguesthat the diploid landrace is likely absent in the harsher climates, suggesting the presence

of positive selection for polyploid landraces in the hot and dry inland environments.

Perhaps the most germane work of this nature is that of the grass species Panicum virgatum. Similar
to T. triandra, P. virgatum's ploidy level increases with distance from the coast, with higher ploidy
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levelsfound in more arid inland environments (Zhang et al., 2011; Lowry et al., 2014; Grabowski et
al., 2014). As demonstrated in P. virgatum, we provide evidence for polyploidy evolution through
multiple, isolated eventsrather than the establishment and expansion of polyploids from one
duplication event. For example, some populations of predicted polyploids are more closely related to
diploid populations rather than other tetraploid populations. This suggests genome doubling can occur
spontaneously within populations and is both induced and maintained by selection under certain
environmental scenarios. Indeed, it has been shown that polyploids can have an increased fitness
advantage under heat- and water- stressed conditions (Rey et al., 2017).

|solation-by-environment and genomic vulnerability

Along with geography, climate factors describe alarge percentage of genomic variation found in T.
triandra. We found strong associations between gene pools and environments (particularly with Tyax
and Pseas), possibly reflecting adaptation to climate. While quantitative tests are needed to validate
these findings (e.g. common garden experiments — Sork, 2017), our results are consistent with the idea
that signals of adaptation are ubiquitous throughout genomes (Kern & Hahn, 2018). Maximum
temperature of the warmest month or week (Twax) has been found to be an important driving force of
selection in other Australian plants (Steane et al., 2017a,b; Jordan et al., 2017; Ahrens et al., 2019).
Interestingly, evidence suggeststhat climatic factors can have different impacts on patterns of genetic
diversity and adaptation in different grass species. For example, T. triandra and Andropogon gerardii
are both dominant C4 grass species, with temperature and precipitation factors being key selective
forcesdriving diversity in T. triandra, while lower precipitation suppresses genetic diversity in A.
gerardii (Avolio et al., 2013). Despite these differences, polyploidy appears dominant in harsher
regions in both species indicating there are ploidy based adaptive responsesto climate, enabling the
expansion of speciesinto habitats unsuitable or less suitable for diploids. The line of adaptation
demarcation is stronger for T. triandra, where persistence in the semi-arid landscape appears entirely
dependent on polyploids, compared to A. gerardii, where ploidy mixing occursin harsher parts of its
climate range (Keeler, 1990).

Our analyses of genomic vulnerability across the study area suggest that some populations of T.
triandra will be more adversely impacted by climate change than others. For example, the most inland
populations of our sampling are most vulnerable where we estimate that populations will need to
change by over 20%, this region includes both diploid and polyploid populations. The least vulnerable
populations are located in the southern and mountai nous regions where we would expect populations
to change by 0 to 5%. The future mismatch of predicted gene poolsin some regions suggests that a
change of as much as 25% will be necessary for adaption to the new challenges. Our predictions are
based only on correlative analyses, and caution should be taken when interpreting these findings given
the uncertainty associated with the genetic mechanisms (i.e. epistatic interactions (Juenger et al .,

2005), pleiotropy (Solovieff et al., 2013), chromosomal rearrangements (Juenger et al., 2005;

13


https://doi.org/10.1101/864298
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/864298; this version posted December 4, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

under aCC-BY-NC-ND 4.0 International license.

Y eaman, 2013), and polyploidy (Van de Peer et al., 2017)) and ecological interactionslikely to dictate
future adaptive responses (Fordyce, 2006). Indeed, our findings further highlight the need for
guantitative experiments (i.e. common garden) to validate these findings by testing the physiological

limits and safety margins of individual populations.

Not surprisingly, the genomic vulnerability of several populations was buffered by as much as 5% by
the presence of polyploids, and thisis likely to be an underestimation due to under-predicting which
populations are polyploids. Polyploidy is known to provide fitness advantagesin many plant species
persisting in hot and arid environments, including T. triandra populations (Godfree et al. 2017). The
increased heterozygosity associated with polyploidy may have the effect of slowing the loss of genetic
variation and providing more variants for selection to act upon (Comai, 2005). Elevated fithess may
also be influenced by duplicated genes and genomes, each set capable of independent selection and
evolving new functions (Soltis & Soltis, 2000) by retaining multiple gene copies and acquiring a new
function in one copy (Wendel, 2000). Further, increased performance could be due to differential
levels of expression between ploidy landraces (e.g. Cromie et al., 2017; Wang et al., 2018; Ligin et
al., 2019), and be partially dependent on different epigenetic patterns (Nagymihdly et al., 2017).
However, quantitative measures are needed to determine how differential expression between diploid
and tetraploid landraces may affect their ability to persist in their optimal climates. We argue that
these types of processes are likely occurring in T. triandra landraces, allowing polyploids to persist

and outperform their diploid counterpartsin hotter and drier climates.

Management and restoration implications

We are a acritical juncture in history where management and restoration of grassland ecosystemsis
necessary to preserve these ecosystems and their services. However, the interplay of habitat
fragmentation and rapid climate change poses a significant challenge for the conservation and
restoration of functionally important plant species. Prioritising investments requires an understanding
of species biology and ecology to apply frameworks for identifying the species and populations most
at risk. Themeda triandra, the most widely distributed speciesin Australia, is at a critical inflection
point dueto its use as afood crop (Pascoe, 2018), for native pasture (Fourie et al., 1985), asa
foundational species (Snyman et al., 2013), for selective breeding (e.g. Lolium/Festuca — Y amada et
al., 2005), and in the restoration of degraded lands (Cole & Lunt, 2005; Snyman et al., 2013). Our
results provide a critical first step and baseline information to support these new interests, future
studies and the development of empirically based management strategies that target grassland and
open woodland ecosystems. In Australia, research efforts have mostly focused on Eucalyptus species,
finding that eucalypt populations are often connected by high levels of gene flow and adapted to local
climates (e.g. Steane et al., 2015; Jordan et al., 2017; Supple et al., 2018; Ahrenset al., 2019). In one
of thefirst landscape-scale genomic studiesin Australia for an understory species, we show that the
iconic grass T. triandra has very different patterns of connectivity and adaptation compared with its
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503  Eucalyptus counterparts. Limited dispersal potential and high levels of genetic structuring among
504  remnant populations of T. triandra suggedts that their adaptability is likely to depend largely on trait
505 plagticity and standing genetic variation that allows for adaptation in situ. We provide evidence of
506  genetic and ploidy variation correlated with climate, suggesting that standing genetic variation may be
507 retained within some T. triandra popul ations enabling adaptation to warmer and drier environments
508 emerging under climate change. Indeed, our findings suggest the impacts of climate change may be
509 heterogeneous across the distribution of T. triandra. This emphasises the importance of accounting for
510 intraspecific variation, including ploidy, when predicting species responses to new climate challenges.
511  Variability in physiological response to thermal stresses between populations has been established for
512  many plant species (Moran et al., 2016), which may contribute to uneven population responses to
513  thermal stress(Miller et al., 2019). These findings have implications for predicting population
514  responsesto climate change, and highlight the importance of interventions (assisted migrations of pre-
515  adapted genotypes) to enhance the resilience of populations showing signs of climate stress given the
516  exigtence of relatively tolerant populations across the species range.
517
518  Conclusion
519  Successful establishment of T. triandra on three continents from its Asian centre-of-origin islikely
520 duetoitsability to swiftly meet the challenges of new environmental conditions through mechanisms
521  unique to the species. Genomic analysis of a species can elucidate broad patterns of structure and
522  provide information about how those patterns are distributed across the landscape. While spatial
523  dstructure wasthe major component of the species’ sanding genetic diversity, environmental
524  heterogeneity was also a major component driving patterns of diversity, and patterns of neutral
525  genetic diversity have been shown to be affected by natural selection (Phung et al., 2016). Thus, these
526  findingsillustrate that the standing genetic variation can provide a basis for adaptation to changing
527  climates and should be incorporated into restoration projects. We were also able to investigate long
528  sanding ploidy questions within a landscape genomics context. Notably, we were able to quantify
529  how ploidy might buffer the speciesfrom the most severe climate effects in the future. We found that
530 ploidy, along with standing genetic diversity, could be an important part of the puzzle that increases
531 theprobability of grassland ecosystem persistence during a period of dramatic change. Our data
532  suggest that we risk underestimating the adaptive capacity of a species if we do not correct for ploidy
533  polymorphisms and we propose that they should be an integral part of management strategies moving
534  forward. Management of multi-ploidy foundational species should focus on a combination of
535  attributes, including genetic variation, intraspecific ploidy polymorphisms, and trait characteristics to
536  deveop populationsthat areresilient to future climate scenarios ensuring ecosystem health, function,
537  andlong-term restoration success.
538
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Figure Legends

Figure 1. Within population heterozygosity (Hs) versus maximum temperature of the warmest month.
Colorsindicate diploid (blue), mixed populations (green; equidistant between tetraploid and diploid
populations), and tetraploid (red) based on Hayman's (1960) work. Ellipsoid outlines populations that
have high heterozygosity and may be tetraploids.

Figure 2. Sparse non-negative matrix factorization (SNMF) for al individuals, points on the map
indicate population location, map colors represent Tuax (mMaximum temperature of the warmest
month). Barplot indicates identified genetic ancedtral clustersfor each individual (bar) with an
optimal k-value of three. Inset shows the Australia-wide distribution of T. triandra as a heat map and

location of the study area.

Figure 3. Identification of the spatial component of genetic variation using Moran’s Eigenvector
Maps. Two digtinct spatia patterns accounted for most of the 54% of genetic variation explained
through isolation by distance. The first MEM variable (a) explained a greater proportion of the
variation than the second variable (b). Circles of similar size and colour represent individuals with

similar scores on this axis.

Figure 4. Generalised dissimilarity modelling (GDM). () Non-linear relationship between climate
distance and genomic distance, where points are site pairs. (b) Relationship between predicted
genomic distance and observed genomic distance, where points are site pairs. (¢) The geographic
spline showing the relationship between predicted genomic change and geographic distance. (d—g)
Predicted splines showing the estimated relationship between genomic distance and individual climate
variables: (d) mean annual precipitation (Tya), (€) maximum temperature of the warmest month
(Tmax), () mean annual precipitation (Pya), and (g) precipitation seasonality (Psgas); inset isthe
amount of variation explained by predicted ploidy polymorphisms (red lines are the model that
includes ploidy). Variation explained for the climate-only + spatial model is 31.3% (22% attributed to
climate), and with climate, ploidy, and spatial is 31.7% (23% attributed to climate).

Figure 5. Predicted spatial variation in genomic composition based on the outputs from the general
dissimilarity models (GDM). Mapsinclude the (a) climate-only GDM and (b) the predicted genomic
vulnerability based on comparing the current GDM and the predicted GDM for 2070. Whereas, the (c)
climate + ploidy GDM, and (d) and the predicted genomic vulnerability are shown for direct
comparison to the climate-only model. A 5% reduction in genomic vulnerability isindicated in the
most severely affected areas when including ploidy level in the GDM. The greater the difference
(dark orange), the more genomic change is needed to adjust to future climate conditions.
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882

sg3 lables

884 Table 1. Locations and genetic diversity indices for sampled populations. Tyax = maximum
885 temperature of the warmest month; Pszas = precipitation seasonality; HS = heterozygosity

886  within populations; Gs = inbreeding coefficient; Ay = number of alleles; Cp = predicted
887  chromosome number.

Pop X Y Tuax (°C) Pseas(mm) Ay Hs C Gis
MTG 138.754 -34.977 26.7 52 1.357 0.088 40 0.059
BBNP 153.028 -30.420 28.1 43 1.215 0.066 20 0.181
BCR 153.054 -28.646 28.2 45 1.241 0071 20 0.182
BL 151.737 -29.867 25.6 33 1.233 0068 20 02
BLAPT 152.807 -31.395 269 34 1.232 0.079 20 0.317
BLARD 150.444 -35.196 25.3 24 1.21 0.066 20 0.154
BNR 151.997 -29.113 252 32 1.169 0.064 20 0.156
BRA 151.996 -32.631 27.2 25 1212 0.064 20 0.179
BU 151.076 -30.189 29.5 31 1.164 0.064 20 0.207
BYR 153.620 -28.652 28.1 32 1.203 0.064 20 0.143
CB 150.674 -30.885 30.9 34 1.164 0.062 30 0.137
BCG 143.316 -37.612 26.1 23 1.142 0.043 20 0.085
DCD 150.728 -34.013 28.1 29 1.294 0083 40 0.121
DCR 149.982 -36.356 24.8 24 1.271 008 30 0.062
DW 151.997 -29.114 25.2 32 1.203 0.068 20 0.165
RWCK 146.817 -36.583 28.1 32 1.185 0.062 22 0.366
BUR 145.026 -37.834 26.0 17 1.136 006 20 0.328
ANG 144.153 -38.335 239 22 1.187 007 20 0.138
EUN 152.888 -30.811 217 39 1.234 0067 20 0.184
GHK 149.863 -36.979 24.0 18 1.259 0073 20 0.236
GOR 150.588 -35.009 252 23 1.397 0102 20 -0.04
GRES 151.219 -32.546 30.1 34 1.231 0068 20 0.171
QLD 149.878 -27.926 335 29 1.309 012 40 0034
JG 152.008 -30.514 253 38 1.187 0.065 20 0.196
KCK 152.579 -31.795 275 37 1.238 0.068 20 0.177
KOz 148.402 -35.889 224 29 1.255 0075 20 0.28
KUN 152.844 -31.196 27.3 37 1.20 0.069 20 0.205
L 152.292 -28.411 27.9 37 1.195 0073 20 0.17
LO 149.998 -33.167 26.4 20 1.203 0.082 20 0318
MGR 149.077 -36.244 25.0 19 1.254 0.07 20 0.051
ML 152.473 -28.380 26.9 40 1.285 0.083 20 0.218
MNP 150.373 -35.457 24.1 13 1.36 0089 20 0.127
Mong 149.944 -35.426 255 16 1.193 0.064 20 0.252
MS 150.881 -29.988 29.8 31 1.161 0.067 40 0.165
MSF 149.055 -34.825 28.1 13 1.293 0084 20 0334
NAB 152.370 -32.086 217 35 1.217 0063 20 0.226
NAM 152.976 -30.639 28.0 41 1.109 0.109 20 ---
OPC 153.037 -29.820 285 40 1.109 0064 20 0.116
PR 150.186 -31.418 317 34 1.366 0115 40 -0.135
MSCP 140.631 -37.145 28.1 44 1.242 0.072 20 0.257
SIW 153.146 -30.192 27.4 40 1.147 0062 20 0.17
SOM 151.286 -33.404 26.1 31 1.248 0.065 20 0.187
SPNR 149.747 -37.557 22.6 12 1.247 0.07 20 0.157
STCK 149.314 -35.360 26.7 13 1.257 0075 20 0.245
SwcC 149.707 -31.400 31.3 31 1.18 0105 41 -0.753
NSwW 148.142 -36.542 26.6 17 1.245 0.067 20 0.151
TOO 152.391 -28.453 28.7 39 1.221 0.068 20 0.183
uL 152.073 -30.537 252 39 1.234 0099 20 -0.326
WwOoL 150.806 -34.434 25.6 31 1.229 0.065 20 0.183
WYE 151.491 -33.175 26.6 30 1.235 0.065 20 0.195
YNGNP 150.693 -33.057 28.2 38 1.223 0063 26 0.196
YNR 151.076 -30.189 29.5 31 1.213 0076 20 0.319
Overal 1.842 0.074 0.134
888
889
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Supplementary information

Table S1. Fsr pairwise table and input for GDM analysis. (tsv file)

Figure S1. Elevation of the study area.

Figure S2. Histogram of MinlON long-read read-lengths and average read quality.
Figure S3. Principal components analysisfor all 19 bioclim variables.

Figure $4. Cross entropy plot to determine the k-value for SNMF resullts.

Figure S5. Mapsfor al four climate variables and ploidy distribution.
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