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Abstract

1. Abstract

The registration or alignment of diffusion weighted images (DWI) with other imaging modalities
is a critical step in neuroimaging analysis. Within-subject T1-DWI co-registration is particularly
instrumental. DWI-derived scalar images are commonly used as intermediates for T1-DWI co-
registration, and the resulting registration transforms are applied to all other scalar images for
analysis. The ideal registration intermediate should register well to T1 and other multimodal
images and be practically easy to obtain. It is however, currently unclear which DWI-derived scalar
image serves as the best intermediate. We aim to determine the best, practical, intermediate for
image co-registration. T1 and DWI images were acquired from 20 healthy subjects. DWIs were
acquired with 60 directions. Six DWI-derived scalar images were compared including: 1) fractional
anisotropy (FA); 2) generalized FA (GFA); 3) B0 images; 4) mean DWIs with the BO image
(MDWTI); 5) anisotropic power (AP) images. AP showed the smallest variability in registration
improvements across all the tested DWI derived scalar images, and show the highest average
percent changes with CC registration cost function (CC=1.2%, MI=15%). In contrast, the FA and
GFA transforms resulted in significantly poorer registration across DWI types. The AP image was
the DWI-derived scalar image that provided the most consistent registration to all other images.
Practically, it is generated easily and so could be implemented in basic and clinical research pipelines
currently using other intermediates. Given these findings, it is recommended that AP images be
used for T1-DWTI co-registration, and that FA and GFA images in particular be avoided.

2. Introduction

Diffusion magnetic resonance imaging

" ; (AMRI) allows for visualization and quan-
Corresponding author . . ., .

Email address: mojgan.hodaie@uhn.ca (Mojgan tification of the brain’s white matter by

Hodaie ) measuring the anisotropy of water molecules

December 11, 2019


https://doi.org/10.1101/864108
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/864108; this version posted December 11, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

(Lenglet et al., 2009). The resulting dif-
fusivity parameters are used to infer white
matter directionality which are visualized
using diffusion tensor images (Basser & Jones,
2002). These form the basis of study for a
wide range of disease processes (Chen et al.,
2016a; Ciccarelli et al., 2008; Hodaie et al.,
2012). DMRI has become an essential tool
in the in vivo analysis of brain white matter,
particularly when used at the group level
(Chen et al.,, 2016b) to compare diffusion
metrics and to model white matter tracts
using tractography (Chen et al., 2016b, 2015;
Hodaie et al., 2010). An increasing number of
neuroimaging techniques, including structural
connectivity analysis, also depend on dMRI
to segment white matter regions (Moayedi
& Davis, 2012; McGrath et al., 2013; Wiech
et al., 2014).

Image registration permits the transforma-
tion of different, individual, diffusion images
into one brain template and allows for group
analysis.  This multi-step process involves
the accurate co-registration of within-subject
diffusion-weighted images (DWI) and anatom-
ical T1-weighted (T1) images, followed by reg-
istration of between-subject T1ls to create a
common template. Individual T1 images typ-
ically serve as the intermediate space due to
their high spatial resolution and low incidence
of distortions (Avants et al., 2009; Brown, 1992;
Klein et al., 2009; Tustison et al., 2014). The
registration of T'ls to DWIs is critical to ensure
the validity, reliability, and interpretability of
the final results (e.g., in correlating DWI data
to other measures, and for use in group analy-
ses e.g. (Chen et al., 2016b). However, while
T1 to DWI co-registration is a common pro-
cedure in neuroimaging studies, it is currently
unclear which DWI-derived scalar image serves
as the best intermediate.

The greatest challenge of T1-DWI co-
registration is that DWI acquisitions are sus-
ceptible to both affine/linear (i.e. eddy-current
and head motion) and non-linear echo planar

image field distortions (Rohde et al., 2004).
The most common strategies to account for
such issues include: 1) correcting all DWI dis-
tortions before co-registration with a T1 im-
age, and/or 2) using non-linear co-registration
transformations to best warp the anatomical
image to DWI space. Corrections for DWI dis-
tortions generally involve affine registration of
each of the diffusion gradient images to a non-
diffusion-weighted image (B0), followed by a
rotational correction of the original diffusion
gradient b-matrix (Leemans & Jones, 2009).
This approach, however, does not account for
non-linear distortions, such as those typically
found in the brainstem and frontal and tempo-
ral cortices, that are due to MRI field inhomo-
geneity. Affine co-registration of the T1 image
directly to DWI results in poor and highly vari-
able overlaps — increasing the likelihood of both
type I and type II errors.

One strategy is to calculate an “anti-
distortion” image by acquiring either an ex-
tra set of B0 images, or a full DWI se-
quence with reversed phase-encoding, followed
by the construction of a displacement field
map which provides an estimate of the undis-
torted DWI using a least squares (Andersson
et al., 2003), diffeomorphic (Irfanoglu et al.,
2015), or Gaussian approach for acquisitions
with high b-values (Andersson & Sotiropoulos,
2015). However, most prevailing MR datasets,
particularly in the clinical domain, still use
lower b-values, and lack reversed B0 acqui-
sitions. In such cases, the most commonly
used strategy to minimize errors is to non-
linearly co-register the T1 image to an inter-
mediate DWI-derived scalar image. Although
it is also possible to indirectly perform T1-
DWI co-registration through high resolution
T2-weighted images, as with the other issues,
clinical researchers rarely acquire such scans.
As such, we have focused exclusively on di-
rect within-subject DWI-T'1 co-registration so-
lutions. An additional important consider-
ation is the ability of a registration trans-
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form to improve the registration for all rele-
vant DWI-derived scalar images. In addition
to the distortion issue, a reliable intermedi-
ate image must also be chosen for T1-DWI co-
registration, from which the registration trans-
form can be derived. Importantly, since MR
image intensities can be inverse (e.g. T1-like
and T2-like intensities), registration improve-
ments may not be uniform, and instead vary
depending on the intensity profiles similarities.
Despite these concerns, the co-registration util-
ity of the most common, easily producible,
DWI-derived intermediates has not yet been
investigated.

2.1. Image Intermediates

Currently, the five most common DWI-
derived scalar images, which are most likely
to be of practical use as co-registration in-
termediates, include: 1) fractional anisotropy
(FA) images (Basser & Jones, 2002; Sboto-
Frankenstein et al., 2013); 2) generalized FA
(GFA) images; 3) non-diffusion-weighted B0
images (B0); 4) mean DWIs (MDWI) where
the DWI acquisition, often represented as a 4D
image, is averaged across the sequences; 5) and
the anisotropic power (AP) image (Dell’Acqua
et al., 2014), which is an anisotropy map de-
rived from the spherical harmonics estimate co-
efficients of high angular resolution DWI im-
ages. AP directly derives a T1-like contrast
image from the diffusion weighted image it-
self, and therefore shows promise in improving
T1-DWI co-registration. Some images, such as
B0 and mean DWI, are derived directly from
the DWTI acquisition volume, while others (FA,
GFA, AP) are parametric image maps indi-
rectly calculated from mathematical diffusion
models.

The simplest scalar image is the B0 images
as part of the DWI acquisition. B0 is used
as part of the pipeline for grouped diffusion
studies (Gupta et al., 2016; Yeatman et al.,
2012)and to register T1 anatomical to diffu-
sion tensor images for structural connectivity

studies (Cao et al., 2013). Since B0’s inten-
sity profile matches well with T2 anatomical
images, there also has been attempts to use in-

verse intensity to optimize registration with T1
using BO (Bhushan et al., 2015).

The second set of scalar images is derived by
taking the mean of the DWI dataset (MDWTI)
by collapsing the gradient dimension, which
transforms the 4D dataset to 3D. MDWI is
commonly used in multi-modal registration
pipelines (Peng et al., 2009).

Fractional anisotropy (FA) image (Basser &
Pierpaoli, 2011) is also commonly used as a reg-
istration intermediate. Due to its high inten-
sity in white matter regions, FA is commonly
used with probabilistic tractography registra-
tion to standard T1 space (Mansour et al.,
2013; Salomons et al., 2012). Research also
shows that normalized cross-correlation and
template matching can improve FA-T1 regis-
tration (Malinsky et al., 2013).

An alternative to FA is to use the general-
ized fractional anisotropy (GFA) image. Since
FA shows low intensity in cross-fibre regions,
it may adversely affect registration in those ar-
eas. GFA can properly characterize crossing-
fibre intensities, and therefore may be a bet-
ter candidate than FA. The GFA is computed
from the SH coefficients of spherical harmonics
based methods such as Q-ball, where the diffu-
sion orientation distribution function (ODF) is
denoted as ¥ (u) (Tuch, 2004), such that:

s (W) — (1))
= \/ Ty TR

where n is the number of gradient directions.

Another promising candidate is the
anisotropic power (AP) image (Dell’Acqua
et al., 2014).
tensity to Ty, and can be computed from
HARDI acquisitions without any acquisition
modifications. Since AP are derived from
the SH model, it is also capable of proper
cross-fibre region characterization. AP images

AP have similar visual in-
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are derived from the even harmonic orders (1)
of SH coefficients (Descoteaux et al., 2006;
Frank, 2002) and are defined as

l
AP= 3 g Yl @

1=2.4,...

where | is the harmonic order, m is the I-th or-
der coeflicient index, a is the corresponding SH
coefficient. The AP values are then normalized
to non-negative scale by the function:

AP
in) (3)

In(

where AP, is the normalization constant. The
resulting image will closely match T; intensi-
ties, and can better capture contrasts in the
gray matter structures. AP values stabilize
at 6 harmonic orders (28 directions), meaning
that AP images can be reliably derived from
HARDI sequences with more than or equal to
28 gradient directions.

2.2. Quantification of Image Registration

Image registration methodologies involve it-
erative processing aimed at minimizing the out-
put of a cost function reflecting overlying image
differences, thus maximizing the similarity be-
tween reference and moving images. Two com-
monly used cost functions for assessing simi-
larity in medical imaging are cross-correlation
(CC) and mutual information (MI) (Liu et al.,
2013; Mercier et al., 2012). Mutual informa-
tion is based on the Shannon entropy score,
measuring the dispersion of values between two
images (Pluim et al., 2003), and by exten-
sion represents the likelihood that two images
share mutually dependent information (Mattes
et al., 2003). Cross-correlation measures im-
age similarities by the profile of their intensities
(Maintz & Viergever, 1998). While CC appears
to be a more sensitive measure of matching lo-
cal features, MI is thought to be a more global
measure of similarity (Crum, 2004). Further-
more, MI may be the optimal cost function

for affine registration, while CC may be a bet-
ter choice for non-linear registration where lo-
cal feature-matching is of greater importance
(Avants et al., 2011). Unlike T1 anatomical
registration comparisons (Klein et al., 2009),
where automated segmentation tools are avail-
able to serve as an independent metric of
comparison, there is currently no automatic
method available in DWI-T1 space that can be
used to judge the quality of registration. As
the best cost function to use for T1-DWI co-
registration remain unclear, we use both CC
and MI to independently assess the registra-
tions.

There is currently no consensus in the liter-
ature about which intermediate image should
be used for T1-DWI image registration pur-
poses. This information is pertinent to en-
sure the increased validity, reliability, and in-
terpretability of neuroimaging results. Our
present study aims to quantitatively evaluate
the use of each readily available DWI-derived
scalar image type (i.e. B0, MDWI, FA, GFA
and AP) in the registration process, using CC
and MI cost functions as quantitative assessors,
in order to determine the most efficient image
type for registration and its ability to trans-
late registration improvements to other image

types.

3. Methods

3.1. Acquisition and Preprocessing

T; and DWIs were acquired from 20
healthy subjects (mean age 31.1 & 10.2; 10 fe-
males). Ethics approval was granted by the
University Health Network Research FEthics
Board (Toronto, Canada), MR images were
acquired at the Toronto Western Hospital,
and all subjects gave their informed writ-
ten consent. DWIs were acquired on a GE
HDx 3 Tesla MRI scanner, 8-channels head
coil, with 60 directions and 1 non-diffusion-
weighted acquisition using the following pa-
rameters: 0.9375x0.9375x3 mm3 resolution,
matrix=256x256, b=1000 s/mm?, field of
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view (FOV)=240mm, TE=86.4 ms, TR=17000
ms, flip angle=90 deg. Tis were acquired
with 0.9375x0.9375x1 mm? resolution, slice
spacing=1 mm, TE=5.052 ms, TR=11.956
ms, flip angle=20 deg, FOV=240 mm, and
matrix=256x256. DWIs were initially cor-
rected for eddy-current and head motion with
affine registration using FSL FLIRT (Jenkin-
son & Smith, 2001), and appropriate rota-
tional corrections to gradient vectors (Leemans
& Jomes, 2009) using in house software written
in Python Numpy.

3.2. DWI Derived Scalar Image Processing

Brain masks were created for Tqy and DWI
using FSL bet (Smith, 2002), with bet frac-
tion=0.2. Brain masks were contracted by a
2 mm spherical kernel in FSL to minimize the
high-intensity skull halo that occurs in image
types such as FA that may interfere with regis-
tration. The brain mask is then applied to all
DWI derived scalar images.

B0, ADWI, MDWI, FA, GFA and AP im-
ages were each generated (Figures 1, 2) as fol-
lows: BO, ADWI and MDWI images were cre-
ated using FSL (Smith et al., 2004); FA im-
ages were created in 3D Slicer by calculating
the scalars following diffusion tensor estimation
(Pieper et al., 2006); GFA and AP images were
created with Dipy software library (Descoteaux
et al., 2007; Garyfallidis et al., 2014).

Two sets of AP images were generated with
an author-implemented AP algorithm in Dipy.
The first (denoted as AP1) is created with
matching normalization constant with the orig-
inal method from Dell’Acqua et al (Dell’Acqua
et al., 2014) (AP = 10-5 , then zero all im-
age values <0). The second (denoted as AP2),
is created with APt = 1, and then the entire
image values are shifted to the positive range
based on the image minimum. Pair-wise log
joint histogram of the DWI derived scalar im-
ages was plotted (Hunter, 2007) to evaluate im-
age intensity orthogonality.

3.3. T1 to DWI Co-registration

Registrations were performed using Anatom-
ical Normalization Tools (ANTs) (Avants
et al., 2008) with affine and symmetric dif-
feomorphic registration. MI was used as the
cost function for affine registration, while CC
and MI were used separately as the SyN reg-
istration cost-functions. Parameters for affine
registration: step size = 0.1, metric = mutual-
information (MI), convergence = 10000 x 10000
x 10000 x 10000 x 10000, shrink factors = 5 x
4 x 3 x 2 x 1, smoothing sigmas = 4 x 3 x 2
x 1 x 0 mm. Parameters for symmetric diffeo-
morphic registration (SyN): MI metric weight
= 1, MI bins = 32; CC metric weight = 1, CC
radius = 3; convergence = 50 x 35 x 15,1e-7,
shrink-factors = 3 x 2 x 1, smoothing sigmas
= 2 x 1 x 0 mm, and use-histogram-matching
= true.

The resulting registration transforms from
each DWI derived scalar image were applied
to all DWI derived scalar image types includ-
ing themselves using 3rd order B-spline in-
terpolation, where they were projected into
T, space. For each DWI scalar image, an
identity transformation (Tidentity), affine-only
transform (T'afine), and affine with SyN trans-
forms (Tafine+SyN) were applied separately.
MI and CC similarity metrics between the
transformed DWTI scalar and T images were
obtained using ANTSs. Percent change in both
CC and MI similarity scores for each type of
transformed images were calculated as:

Transformed — Identity "

1
Identity 00

(4)
The higher the percent change is, the more sim-
ilar the transformed DWI scalar and T; im-
ages are after accounting for the identity trans-
formation. ANOVA and Tukey post-hoc tests
were performed using R statistics software (R
Core Team, 2014) to compare differences in
percent changes between similarity scores of
images deformed by their own Tamine+SyN (au-
todeformation: Dguto; €.g. comparing pre- to

Percent Change =
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post-FA scores when FA image was used as the
intermediate) as well as similarity scores across
groups (Da,y; e.g. comparing scores resulting
from using the FA intermediate to transform
all other image types).

Additionally, we used a joint log-histogram
of all the DWI derived scalar images to exam-
ine possible group biases in DWI scalar types.
We intuited that the scalar maps can roughly
be divided into two primary groups: those that
are directly computed from the DWI direc-
tions (DSG), and share similar intensity pro-
files, such as BO, MDWI, ADWI; and those
computed from anisotropic diffusion models
(ASG), such as FA, GFA, and AP. It’s possi-
ble that there exists a degree of orthogonality
between image types, such that there may be
no single image type that can equally translate
the registration improvements to other images
with different intensity profiles. The joint log-
histogram is to check for the existence of this
type of orthogonality.

4. Results

Pair-wise joint log histogram (Figure 3) of
the DWI derived scalar images revealed dis-
tinct correlation patterns in some pairs of im-
ages. FA—AP and FA-GFA showed distinct di-
agonal correlations patterns with each other;
while BO showed no clear pattern of correla-
tion with other image types, with the excep-
tion of MDWI. The scalar images FA, GFA
and AP are parameter maps derived from dif-
fusion models, whereas B0 and MDWTI are di-
rectly derived from the DWI image sequence.
We thus grouped FA, AP, and GFA based on
their intensity histogram correlations as the
anisotropic scalar group (ASG), while BO and
MDWI form a directly derived scalar group
(DSG).

4.1. Differences in initial similarity scores af-
fect registration accuracy

Visual overlay of MDWI to T1 co-
registrations (Figure 4) suggests that DWI de-

rived scalar image with higher initial CC and
MI scores (Figures 5) appear to result in more
accurate registrations in the brainstem, insula,
temporal cortices, and lateral ventricles (espe-
cially around the ventricular-caudate bound-
ary where CSF/grey/white-matter are found
in close proximity) compared to the other im-
age types. Visually, BO, FA and GFA show
registration inaccuracies fitting the areas sur-
rounding the brainstem and the lateral ventri-
cles (Figure 4), while MDWI and AP result in
improved registration in these key areas. The
results of MDWI and AP are visually very sim-
ilar.

The initial T1-intermediate CC and MI sim-
ilarity scores without any applied transfor-
mation (Tidentity) showed varied initial values.
MDWTI showed the highest initial CC scores,
with FA images showing lowest initial CC (Fig-
ure 5); AP showed similar initial CC score with
B0 and GFA. For MI scores (it is important
to note that a more negative MI score implies
higher similarity in this study), AP showed
very similar initial MI score when compared
to MDWI (best), while GFA resulted in the
highest (worst) initial MI score.

4.2. Registration tmprovements are not uni-
formly transferred when applied to other
1mage types

The progression of similarity scores following

Tafiine and Tamne+SyN for each of the scalar

images (B0, ADWI, MDWI, FA, GFA, and

AP) showed similar trends between CC and

MI cost-functions (Figures 5, Figure 7; top

rows). In general, the similarities of the im-

ages between T1 and transformed DWI scalar

images increased marginally after Tagine, and
substantially after T'agine+SyN for most of the
co-registration transforms. An exception is FA
transforms, where CC scores decreased when
the transform was applied to other images (Fig-
ure 5; rows 1-2; column 4), with the exception
of AP.

Improvement in CC and MI measures were
not uniform for all DWI derived scalar images;
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this was better illustrated by percent changes
(Figures 5; bottom rows). Different intermedi-
ate transforms differentially affected the scores
in accordance with the degree of intensity cor-
relations as measured in Figure 3. Therefore,
DSG transforms preferentially improved DSG,
and ASG transforms improved ASG images.
FA transforms, however, are notable, where CC
scores across all DWI derived scalar images di-
verged for both CC and MI cost functions (Fig-
ures 5, Figure 8; column 4). In fact, FA trans-
forms substantially decreased DSG CC scores,
and also negatively impacted DSG MI scores
as well. FA transforms also showed exception
to GFA, where it affected GFA negatively sim-
ilar to DSG images. GFA behaved more like
DSG images, where B0 and MDWTI all favor-
ably affected its CC and MI scores, while at
the same time it was strongly affected by AP
as well. However GFA seem to behave differ-
ently under autodeformation, as evident by its
distinct MI changes (Figures 5; column 5). AP
transforms showed the least amount of variabil-
ity when applied to DWI derived scalar images,
and consistently improved all the image scores.

4.8. AP-derived transforms show the most
consistent improvements when applied to
other image types

Between-group statistical comparisons of
only Tamne+SyN percent change revealed sig-
nificant findings. Under the CC cost-function
(Figure 6), percent change in D,y (Figure 6,
bottom panel, column 3) showed that FA and
GFA have the highest percent change, while
AP has the lowest percent change. With MI
scores, Dauto showed that only GFA percent
changes are significantly greater than others
(Figure 6, bottom panel, column 4). GFA,
however, also shows the greatest variability
in distribution (Figure 6, top panel, column
4). Dy in contrast, showed that FA is an
outlier where its percentage change is signifi-
cantly lower than all other images; it is also
notable that it shows a distinct bimodal dis-
tribution (Figure 6, top panel, column 1);

GFA was shown to be significantly higher than
B0, MDWTI and FA, but not AP. MI percent
changes are not significantly different from each
other (Figure 6, bottom panel, column 2). MI
cost-function results were similar to that of the
CC cost-function (Figure 8).

5. Discussion

This study presents a comparison of the DWI
derived scalar image to use for T1 to DWI co-
registration. AP images showed the most con-
sistent improvements in image scores across all
of the intermediate scalar images tested, sug-
gesting that AP can offer the most consistent
T1-DWI co-registration improvements, while
FA and GFA images are poorer choices. We ob-
served, via CC and MI scores, that non-linear
registration shows similar trends in registra-
tion performance. DWI derived image regis-
tration improvements show biases that depend
on the intensity correlations with directly de-
rived scalar image group (DSG) or anisotropic
scalar image group (ASG) similarities. FA
showed significantly lower MI and CC similar-
ity scores that worsened registration results.
GFA showed a significant increase in similar-
ity scores, but also greater variability in per-
cent increases when its transform was applied
to other image types — suggesting that while
this measure is better than FA alone, it is still
highly unreliable across subjects.

5.1. Registration improvements are biased to-
wards similar image intensity groups

The log joint histogram showed that there
is a degree of intensity orthogonality between
FA, AP, and GFA as a group (ASG) com-
pared to B0, ADWI and MDWI (DSG), sug-
gesting that there is some connection between
co-registration performance and intensity sim-
ilarity (Figure 3). The greater the intensity
similarities between the two images, the greater
the effect of the same set of registration trans-
forms. Intensity similarity is not the only fac-
tor, however, as evident by the exception to
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this rule in FA and GFA deformation results
(Figure 5). This suggests that intensity or-
thogonality is not a limiting factor in registra-
tion transfer across these scalar images. There-
fore, our hypothesis that there exists a better
DWI intermediate scalar image that can im-
prove multimodal registration is correct.

5.2. Autodeformation is not sufficient to assess
registration intermediate performance

Our study demonstrates clear differences in
initial similarity scores (i.e. CC and MI) across
different DWI scalar images when compared to
T1, where MDWI had the highest initial CC
and MI scores. Moreover, the AP and MDWI
images clearly outperformed the B0, FA, GFA
and intermediates in visual inspections.

As expected, autodeformation (e.g. FA to
T1 registration applied to the FA image, from
greek autos: self) yielded the best metric of
similarity compared to when the transform
was applied to other image types. The op-
timal T1-DWI co-registration performance of
an intermediate image could be identified by
the image’s deformation by its own transform.
However, we show that only comparing the
autodeformation results is not ideal (Figure
7, 8). Specifically, while the FA autodefor-
mation (using Tamne+SyN) performed better
compared to all other autodeformations, reg-
istrations of other scalar images based on FA
transformations clearly resulted in the worst
results. Therefore, future comparisons of can-
didate intermediate images should consider not
only the autodeformation, but also the ability
of a transform to deform other scalar images.
It is also worth noting that affine transforma-
tions marginally improve MI scores — which is
expected as the head orientations within MR
scanners usually do not deviate very far be-
tween acquisitions, but most registration im-
provements stem from corrections to DWI dis-
tortions through non-linear registration.

The larger percent change improvements in
FA and GFA can be explained by the ceiling

effect of registration, where images that are ini-
tially more similar to the T1 anatomical image
(e.g. MDWI or AP) would have less room for
improvements compared to those that are less
similar (e.g. FA or GFA). As such, the abso-
lute difference in similarity scores should still
be included in the final assessment of registra-
tion. It is also important to note that com-
putational algorithms using CC and MI as the
optimization metric in the registration process
itself cannot fully characterize the goodness-
of-fit of one set of images when matched with
another. Therefore, our current use of these
scores does not preclude the possibility that
certain image sub-regions would be better reg-
istered using other scalar image types under
specific conditions. Moreover, the method of
estimating an undistorted DWI with reversed
phase-encoding images may still be superior to
the use of image intermediates, described here,
when this approach is possible. Nonetheless,
the post-processing use of intermediate images
combined with reverse-phase corrected DWI
may result in improved registrations.

As a new DWI derived scalar image, our
study is the first to evaluate AP for the pur-
pose of T1-DWI co-registration. AP images
can consistently improve similarity outcomes
for the various image types and shows more
consistent similarity outcomes when compared
to other modalities. Further research is needed
to determine the optimum method for AP nor-
malization.

5.3. Limitations

One important limitation is that the DWI
voxel sizes are not isotropic. For this study,
the DWI images were acquired at 0.94x0.94x3
mm? voxel resolution. The dataset was ac-
quired on a 3T GE HDx MRI with 8-channels
head coil, and therefore does not permit DWI
scans of less than 2.6 mm isovoxel resolution at
a clinically acceptable scanning time. As such,
we compromised on an anisotropic voxel res-
olution to gain in-plane resolution. Although
recent authors have suggested using isotropic


https://doi.org/10.1101/864108
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/864108; this version posted December 11, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

up-sampling of MR images to improve image
quality (Dyrby et al., 2014), we decided not
to introduce up-sampling into our processing
pipeline in order to avoid the possibility of ad-
ditional interpolation-introduced artifacts that
may bias towards certain image types. Clini-
cal datasets are often acquired under time and
resource constraints, and therefore we believe
our findings will be novel for the application of
clinical T1-DWI co-registrations at less than
ideal conditions.

6. Conclusions

This study demonstrated that for T1-DWI
co-registration, using AP as the DWI derived
scalar image type resulted in improved regis-
tration performance. AP offers more consistent
registration across DWI derived scalar images.
AP requires the calculations of spherical har-
monic coefficients as a preprocessing step, and
therefore stabilizes when there are greater than
28 gradient directions. It is thereby unsuitable
for some legacy DWI datasets acquired with
fewer than 28 directions. MDWTI can be read-
ily obtained from existing DWI sequences, and
is therefore suitable for all existing datasets.
We generally recommend the use of AP where
available. In the case where calculation of AP
images is not possible, MDWTI is a viable al-
ternatives as T1-DWI co-registration interme-
diates. FA and GFA were the poorest perform-
ers, and we recommend not using them for reg-
istration purposes.
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Figure 1: Illustrated overview of the processing steps to measure DWI to T1 registration similarities.
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Figure 2: DWI derived scalar images (B0, MDWI, FA, GFA, and AP) comparing to T1 (top left).
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Figure 3: Pair-wise joint log histogram of the DWI derived scalar images.

14


https://doi.org/10.1101/864108
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/864108; this version posted December 11, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Figure 4: Visual comparisons of MDWI to T'1 co-registrations. Shown are examples of MDWTI images from one subject
deformed using different registration transforms derived from the different image intermediates. T1 is overlaid as
thresholded outlines in red. Primary differences in registration quality can be found in the brainstem (left and middle
columns), and in the lateral ventricles, especially in the ventricular-caudate boundary (right column).
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Figure 5: Similarity scores between deformed dMRI scalar images and T1 following registrations with CC as cost
function for SyN. Three steps of the registration process are plotted: Initial identity transformation (none), affine
transformation (affine) and affine4+SyN transformation (SyN). Top panel shows similarity scores as measured by CC
and MI, and bottom panel shows average percent change progressions of CC and MI across dMRI scalar images from
Taffine t0 Tidentity, and from Tagine+SyN to Tamine. The error bars denote standard deviation across subjects.
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Figure 7: Similarity scores between deformed dMRI scalar images and T1 following registrations with MI as cost
function for SyN. Three steps of the registration process are plotted: Initial identity transformation (none), affine
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Figure 8: Percent changes of similarity score from Tagine+SyN to Tidentity with MI as cost function. Top row shows
the violin plot distribution of CC and MI percent change under All Deformations and Autodeformations. Bottom
row plots the statistically significant pair-wise correlations of the different transforms. Under all deformations (
Dan), CC percent change of FA is shown to be significantly lower (pj0.05) from that of other transform types. In
autodeformations (Dauto). FA has higher percent change. MI percent changes show little differences, and once again
highlights the high variability of GFA.
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