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Abstract 

 

The dopaminergic midbrain is associated with elementary brain functions, such as reward processing, 

reinforcement learning, motivation and decision-making that are often disturbed in neuropsychiatric 

disease. Previous research has shown that activity in the dopaminergic midbrain can be endogenously 

modulated via neurofeedback, suggesting potential for non-pharmacological interventions. However, 

the robustness of endogenous modulation, a requirement for clinical translation, is unclear. Here, we 

used non-invasive modulation of the dopaminergic midbrain activity by real-time neurofeedback to 

examine how self-modulation capability affects transfer and correlated activation across the brain. In 

addition, to further elucidate potential mechanisms underlying successful self-regulation, we studied 

individual prediction error coding during neurofeedback training, and, during a completely 

independent monetary incentive delay (MID) task, individual reward sensitivity. Fifty-nine participants 

underwent neurofeedback training either in a veridical or inverted feedback group. Post-training 

activity within the cognitive control network was increased only in those individuals with successful 

self-regulation of the dopaminergic midbrain during neurofeedback training. Successful learning to 

regulate was accompanied by decreasing prefrontal prediction error signals and increased prefrontal 

reward sensitivity in the MID task. Our findings suggest that the cognitive control network contributes 

to successful transfer of the capability to upregulate the dopaminergic midbrain. The link of 

dopaminergic self-regulation with individual differences in prefrontal prediction error and reward 

sensitivity indicates that reinforcement learning contributes to successful top-down control of the 

midbrain. Our findings therefore provide new insights in the cognitive control of dopaminergic 

midbrain activity and pave the way to improving neurofeedback training in neuropsychiatric patients.  

Keywords: real-time fMRI, neurofeedback, dopaminergic midbrain, substantia nigra, ventral 
tegmental area, dorsolateral prefrontal cortex, self-regulation, prediction error, reinforcement 
learning  
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1 Introduction 1 

The dopaminergic midbrain, including the ventral tegmental area (VTA) and substantia nigra (SN), plays 2 

a crucial role in reward processing, reinforcement learning (Schultz, 2016, 1998; Tobler et al., 2007), 3 

motivation (Bromberg-Martin et al., 2010; Wise, 2004), and decision-making (Friston et al., 2014). 4 

Dysfunctions of the reward system have far-reaching consequences and are associated with the 5 

development of several severe psychiatric disease such as addiction (Huys et al., 2014) and 6 

schizophrenia (Deserno et al., 2016; Maia and Frank, 2017). Despite decades of extensive neuroscience 7 

and imaging studies which have contributed to an impressive body of knowledge of normal and 8 

abnormal reward system function, the neural mechanisms controlling midbrain activity are still not 9 

fully understood (Meder et al., 2019). One key issue that has received increasing attention over the 10 

last years is whether humans are able to cognitively control brain activity within the reward system. 11 

Although the mechanisms remained unclear, it has already been shown that both healthy controls 12 

(MacInnes et al., 2016; Sulzer et al., 2013b), and patients with cocaine addiction (Kirschner et al., 13 

2018c) can learn to regulate SN/VTA activity during real-time functional magnetic resonance imaging 14 

(rt-fMRI) neurofeedback training. Yet, only little or no behavioral changes or increases in neural activity 15 

have been found so far to transfer beyond neurofeedback training, even though transfer, i.e., the 16 

ability to regulate activity also after training and without feedback is critical for clinical applications in 17 

disorders with reward system dysfunctions (Klein et al., 2019). The question therefore arises how 18 

individuals with successful transfer effects differ from individuals without transfer effects and what 19 

mechanisms underpin transfer effects. We narrowed this gap by combining data from two previous rt-20 

fMRI studies (Kirschner et al., 2018c; Sulzer et al., 2013b) and pursuing three aims.  21 

(1) Our first goal was to characterize individual differences in transfer effects between 22 

‘regulators’ and ‘non-regulators’ in the context of SN/VTA self-regulation. Individual differences in 23 

regulation success and high variability of transfer effects arises also in other neurofeedback modalities 24 

such as electroencephalography (EEG) and are often neglected (Alkoby et al., 2018). For rt-fMRI 25 
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neurofeedback control, neural activity in the cognitive (or executive) control network may play an 26 

important role especially when performing a demanding task such as imagery (Sitaram et al., 2016). 27 

Therefore, and based on the known direct and indirect connections between prefrontal cortex and 28 

SN/VTA (Frankle et al., 2006; Gao et al., 2007; Sesack et al., 2003; Wu et al., 2013) we hypothesize that 29 

successful transfer of SN/VTA regulation is associated with activation in brain regions that are part of 30 

the cognitive (executive) control network, especially prefrontal areas. 31 

(2) Our second goal was to determine whether mechanisms of (operant) associative learning 32 

can be used to explain neurofeedback training. In the associative learning framework of neurofeedback 33 

(Birbaumer et al., 2013; Sitaram et al., 2016), the chosen mental strategy is reinforced in proportion 34 

to the sign and magnitude of the feedback. If the feedback signal increases, reflecting a desired 35 

increase in brain activity within the target region, participants receive more reward than predicted 36 

corresponding to a positive prediction error. As a consequence, they would be more likely to repeat 37 

the strategy, expect higher feedback next time and gradually learn how to keep the feedback signal 38 

high. Accordingly, in regulators the size of the prediction error should gradually decrease as the 39 

expected feedback increasingly converges with the actual feedback. In contrast, for non-regulators and 40 

participants in a control group receiving unrelated or unstable feedback, the prediction errors would 41 

remain large and variable because these participants cannot learn any association between mental 42 

strategies and feedback. These straightforward implications of current theorizing about the 43 

mechanisms underlying neurofeedback remained largely untested (for a simulation study on the 44 

temporal dynamics of feedback: Oblak and colleagues (2017); for the correlation of BOLD with signal 45 

increase (‘success’) and decrease (‘failure’) during regulation: Radua and colleagues (2018)). Here, we 46 

directly investigate the prediction error mechanism in regions that control the SN/VTA, which itself has 47 

been traditionally associated with the coding of reward prediction errors (Schultz, 2016). Specifically, 48 

we hypothesize that decreasing prediction error signals during neurofeedback learning are associated 49 

with successful self-regulation and transfer effects.  50 
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(3) Our third aim was to identify individual differences in the ability to regulate the midbrain 51 

to general characteristics of the reward system, hoping to further distinguish regulators from non-52 

regulators. Thus, we asked whether successful neurofeedback training (as measured by transfer 53 

effects) taps into general properties of the reward system. Given that adaptive reward processing 54 

characterizes the SN/VTA (Schultz, 1998; Tobler et al., 2005) we used a variant of the monetary 55 

incentive delay (MID) task that captures differences in adaptive reward sensitivity between clinical and 56 

non-clinical populations (Kirschner et al., 2018a). Using this task, we tested the hypothesis that reward 57 

processing in regions that may control the dopaminergic midbrain is related to successful SN/VTA self-58 

regulation. 59 

 In sum, to study individual differences in capability to gain control of the SN/VTA we used rt-60 

fMRI neurofeedback training in healthy participants receiving either real feedback (veridical group) or 61 

inverted feedback (control group). We quantified the individual degree of successful transfer by 62 

comparing the individual post-training versus pre-training self-regulation capabilities. Moreover, we 63 

related individual differences in reward sensitivity in separately measured SN/VTA self-regulation 64 

success.  65 

2 Methods 66 

2.1 Participants 67 

Fifty-nine right-handed participants (45 males, average age 28.25±5.25 years) underwent 68 

neurofeedback training. We analysed data from two independent projects, which used highly similar 69 

rt-fMRI paradigms, rt-fMRI software and scanner hardware. The first dataset (Sulzer et al., 2013b) 70 

comprised male participants, randomly assigned to one of two groups. The experimental group 71 

received veridical neurofeedback (N = 15), the control group received inverted neurofeedback (N = 16) 72 

as training signal. The second dataset (Kirschner et al., 2018c) comprised the healthy control 73 

participants (N=28, 14 males) of a project investigating also cocaine users (these data are not 74 

presented here). This group received veridical neurofeedback. A subset of the participants in the 75 
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second dataset (N=25) also performed a variant of the monetary incentive delay (MID) task (Kirschner 76 

et al., 2018a). All participants provided written informed-consent and have been compensated for 77 

their participation. The Zurich cantonal ethics committee approved these studies in accordance with 78 

the Human Subjects Guidelines of the Declaration of Helsinki. 79 

2.2 Experimental setup and neuroimaging 80 

All participants underwent neuroimaging in a Philips Achieva 3 Tesla magnetic resonance (MR) scanner 81 

using an eight channel SENSE head coil (Philips, Best, The Netherlands) either at the Laboratory for 82 

Social and Neural Systems Research Zurich (SNS Lab, Study 1) or the MR Center of the Psychiatric 83 

Hospital of the University of Zurich (Study 2). First, we acquired anatomical images (Study1: gradient 84 

echo T1-weighted sequence in 301 sagittal plane slices of 250 × 250 mm2 resulting in 1.1 mm3 voxels; 85 

Study2: spin-echo T2-weighted sequence with 70 sagittal plane slices of 230 × 184 mm2 resulting in 86 

0.57 × 0.72 × 2 mm3 voxel size) prior to neurofeedback training and loaded them into BrainVoyager QX 87 

v2.3 (Brain Innovation, Maastricht, The Netherlands) to identify SN/VTA as target region (see 2.4 for 88 

details). To acquire functional data, we used 27 ascending transversal slices in a gradient echo T2*-89 

weighted whole brain echo-planar image sequence in both studies. The in-plane resolution was 2 × 2 90 

mm2, 3 mm slice thickness and 1.1 mm gap width over a field of view of 220 × 220 mm2, a TR/TE of 91 

2000/35 ms and a flip angle of 82°. Slices were aligned with the anterior–posterior commissure and 92 

then tilted by 15°. Functional images were converted from Philips par/rec data format to ANALYZE and 93 

exported in real-time to the external analysis computer via the DRIN software library provided by 94 

Philips. This external computer ran Turbo BrainVoyager v3.0 (TBV – Brain Innovation, Maastricht, The 95 

Netherlands) to extract the BOLD signal from the images and calculate the neural activation for the 96 

feedback signal. The visual feedback signal was presented using custom-made software with Visual 97 

Studio 2008 (Microsoft, Redmond, WA, USA) through either a mirror mounted at the rear end of the 98 

scanner bore (Study 1) or through MR compatible goggles (Study 2).  99 
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2.3 Neurofeedback paradigm 100 

The participants were instructed that their goal was to control a reward-related region-of-interest in 101 

their brains by imagining rewarding stimuli, actions, or events (note that we have previously shown 102 

that reward imagination activates SN/VTA with standard fMRI (Miyapuram et al., 2012)). Prior to 103 

scanning, we provided examples of such rewards, including palatable food items, motivating 104 

achievements, positive experiences with friends and family, favourite leisure activity or romantic 105 

imagery. We encouraged participants to use these different rewards as potential strategies for 106 

upregulating reward-related activity (during the cue ‘Happy Time!’, here referred to as 107 

IMAGINE_REWARD condition), which was fed back visually with a smiley vertically translating 108 

proportional to the SN/VTA BOLD signal (see below). In contrast, during the cue ‘Rest’ (here referred 109 

to as REST condition), participants were asked to perform neutral imagery, such as mental calculation 110 

to reduce reward-related activity. Prior to training, participants were familiarized with the 5s delay of 111 

the hemodynamic response affecting the display of the feedback and were asked not to move or 112 

change their breathing during the neurofeedback training.  113 

Each neurofeedback session comprised: a pre-training imagery baseline run without any 114 

feedback, three (Study 1) or two (Study 2) training runs during which neurofeedback was presented 115 

(as Study 2 also investigated patients, training was limited to two runs), and a transfer run (i.e., without 116 

feedback). Each of these runs comprised nine blocks of IMAGINE_REWARD and REST conditions, each 117 

lasting 20 s. To determine the current level of the feedback signal we used the average of the last five 118 

volumes of the previous REST condition as reference value and employed a moving average of the 119 

previous three volumes to reduce noise. In the veridical feedback group, the smiley moved up with 120 

increasing percent signal change of SN/VTA BOLD signal and changed colour from red to yellow (Fig. 1 121 

A). In the inverted feedback group, the smiley moved up and turned yellow with a decreasing SN/VTA 122 

BOLD signal.     123 

 124 
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 Figure 1 Neurofeedback paradigm: (A) All runs consisted of alternating blocks of REST and IMAGINE_REWARD conditions, 
with each block lasting 20 s. The regulation conditions (REST, IMAGINE_REWARD) were indicated by words (‘Rest’ or ‘Happy 
Time!’) and the feedback presented as moving smiley face during neurofeedback training runs. The preceding baseline and 
subsequent transfer runs comprised no feedback. The SN/VTA signal difference from these runs served to quantify the degree 
of regulation transfer (DORT) as (SN/VTA_BOLD{IMAGINE_REWARD, Transfer} - SN/VTA_BOLD{REST, Transfer}) - 
(SN/VTA_BOLD{IMAGINE_REWARD, Baseline} - SN/VTA_BOLD{REST, Baseline}). (B) Post-processed SN/VTA signal was extracted from the 
probabilistic atlas mask defined by Murty et al. (2014). 

2.4 Region-of-interest SN/VTA 125 

In both studies, the target region for neurofeedback, i.e. the substantia nigra (SN) and ventral 126 

tegmental area (VTA), was structurally identified using individual anatomical scans. Since the individual 127 

mask definition slightly differed between Study 1 and 2 (T1-weighted scans in Study 1 and T2-weighted 128 

scans in Study 2), we used an independent mask for our post-hoc analysis. By this, we can control for 129 

individual differences between experimenter ROI selection strategies, to avoid interpolation 130 

confounds due to warping by normalization and use a reliable seed region for functional connectivity 131 

analysis. The mask we are using here is a probabilistic mask of the SN and VTA as defined by (Murty et 132 

al., 2014), which is based on a large sample set (148 datasets) and available on 133 

https://www.adcocklab.org/neuroimaging-tools (download August 2018). Figure 1B illustrates this 134 

mask within the brain.  135 

2.5 Degree of regulation transfer (DORT)  136 

We assessed the effects of individual differences in performance to characterise participants in 137 

‘regulators’ and ‘non-regulators’. The measure of successful self-regulation was defined as individual 138 

degree of regulation transfer (DORT), i.e. as the condition-specific SN/VTA signal difference between 139 

post-training (Transfer) and pre-training (Baseline) runs:  140 
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𝐷𝑂𝑅𝑇 = (𝑆𝑁/𝑉𝑇𝐴_𝐵𝑂𝐿𝐷{0123045_657268,:;<=>?@;} − 𝑆𝑁/𝑉𝑇𝐴_𝐵𝑂𝐿𝐷{65C:,:;<=>?@;}) − (𝑆𝑁/141 

𝑉𝑇𝐴_𝐵𝑂𝐿𝐷{0123045_657268,E<>@FG=@} − 𝑆𝑁/𝑉𝑇𝐴_𝐵𝑂𝐿𝐷{65C:,E<>@FG=@})  142 

Thus, a positive DORT corresponds to a relative increase in post-training SN/VTA activity compared to 143 

pre-training SN/VTA activity for the contrast IMAGINE_REWARD minus REST. Please note that in these 144 

two runs (pre-training baseline, post-training transfer) no neurofeedback was presented. Thus to 145 

achieve positive transfer effects participants had to apply what they had learned during training runs. 146 

DORT distributions: To investigate potential group differences in DORT, we transferred the extracted 147 

data to R (R-project R3.4.1). Using an anova, we tested for differences of the mean between the three 148 

groups (i.e. the two groups receiving veridical feedback in Studies 1 and 2 and the control group 149 

receiving inverted feedback in Study 1). 150 

DORT in fMRI analysis: The DORT measure served to investigate the individual differences in successful 151 

transfer at the whole brain level. In particular, we were interested to identify regions that were 152 

positively associated with DORT and thus potentially contribute to regulation of the SN/VTA. For this 153 

analysis, we entered mean centered individual DORT levels in all fMRI second level statistical models 154 

(see 2.8). We excluded SN/VTA from all analyses to avoid any circularity. 155 

Spatial specificity control analysis: To bolster the spatial specificity of our analysis about dopaminergic 156 

midbrain regulation, we additionally performed an analysis using the directly neighbored brain region 157 

of the parahippocampus as control target ROI. This target area is also active during the self-regulation 158 

task since the participants perform memory-based strategies. We extracted this mask from the wfu 159 

atlas and performed the identical main effects analysis as described above. To compare the results 160 

between our target ROI SN/VTA and control ROI in parahippocampus, we performed a conjunction 161 

analysis between the resulting contrast images. This comparison revealed only two common areas 162 

within the cerebellum and the Temporal Gyrus. The limited commonalities between these two target 163 

ROI’s, especially in striatal and prefrontal areas, indicate the spatial specificity of our findings using the 164 

SN/VTA as target region (see Supplemental Material Figure S4 and Table S8). 165 
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2.6 MID Task 166 

In every trial of the MID task (Kirschner et al., 2018b, 2016; Simon et al., 2015) first one of three cues 167 

appeared (Fig. S1). One cue was associated with large reward (ranging from 0 to 2.00 CHF), one cue 168 

with small reward (0 to 0.40 CHF) and one cue with no reward. After a delay of 2.5 to 3 s, participants 169 

had to identify an outlier from three circles by pressing one of three buttons as quickly as possible. 170 

Depending on the cue, their response time and the correctness of the answer, participants gained an 171 

amount of money. Importantly, the use of large and small reward ranges enables investigation of 172 

individual differences not only in general reward sensitivity but also in how well the reward system 173 

adapts to different reward distributions, so-called adaptive reward coding (Kirschner et al., 2018a). 174 

2.7 MR Data pre-processing 175 

We despiked the functional data using AFNI (http://afni.nimh.nih.gov/afni). To account for differences 176 

in EPI slice acquisition times we employed temporal interpolation of the MR signal, shifting the signal 177 

of the misaligned slices to the first slice (Sladky et al., 2011) using FSL 5 (FMRIB Software Library, 178 

Analysis Group, FMRIB, Oxford, http://fsl.fmrib.ox.ac.uk). Furthermore, data were bias-field corrected 179 

using ANTs (http://stnava.github.io/ANTs), realigned using FSL 5, normalized to standard MNI space 180 

using ANTs in combination with a custom scanner-specific EPI-template resulting in a 1.5 181 

mm3 isotropic resolution and finally smoothed with a 6 mm FWHM Gaussian kernel using FSL 5.  182 

The spatial specificity control analyses (see Supplemental Material Figure S4 and Table S8) 183 

suggest that the data are not due to common physiological noise. To more directly account for noise, 184 

we additionally acquired physiological data in a subsample of participants. In the available subsample, 185 

neither changes in heart rate variability nor respiration were significantly correlated with VTA/SN 186 

activation during reward imagination (see details in Kirschner et al., 2018, Supplemental Material Table 187 

S1, Figure S1). Here, we also used an image-based correction to account for physiological artefacts in 188 

all participants. Since physiological artefacts are most prominently present in CSF and white matter 189 

due to the absence of BOLD effects, pulsations of the ventricles, and proximity to the large brain 190 

arteries (e.g., circle of Willis), we decided to use an established preprocessing procedure based on a 191 
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PCA approach (Sladky et al., 2013; Weissenbacher et al., 2009). Specifically, we calculated the global 192 

mean and the first 6 components of a temporal principal component analysis on the cerebrospinal 193 

fluid and white matter signal. These 6 components were used as noise regressors in the first level 194 

statistics (see 2.8) in addition to the 6 motion parameters. Along with the pre-processing of the fMRI 195 

data, the SN/VTA mask used as ROI for the analysis was resliced into the dimensions of the functional 196 

data using SPM 12 (v6906, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) within Matlab R2016b 197 

(www.mathworks.com).  198 

2.8 MR Data analysis  199 

For all of the following analyses, we used the toolbox SPM 12 (v6906) within Matlab R2016b. All figures 200 

were created using bspmview v.20161108 (Spunt, 2016) and ggplot2 within R 3.4.1. All group-level 201 

analysis included an additional covariate for the dataset to account for potential global signal 202 

differences between studies.  203 

2.8.1 Post-training effects: Correlation with DORT in veridical and inverted feedback group 204 

The first question of this study asked whether the individual degree of successful neurofeedback 205 

transfer is associated with individual differences in the cognitive control network. To answer this 206 

question, we conducted a general linear model (GLM) on the single subject level including one block-207 

wise regressor for the IMAGINE_REWARD condition and one for the REST condition with 190 timesteps 208 

(each condition comprised 9 onsets and lasted 20 s) for each of the four runs separately. Additionally, 209 

we modelled the first 5 TRs of every run as nuisance regressor and added also motion and physiological 210 

artefact regressors (see 2.7) in the design matrix. In total the GLM consisted of fifteen regressors. We 211 

formed the contrast IMAGINE_REWARD-REST and compared it between Transfer and Baseline runs, 212 

i.e. (IMAGINE_REWARD-REST)Transfer – (IMAGINE_REWARD-REST)Baseline. At the group level, we tested 213 

for correlation of DORT with this contrast in a one-sample t-test. We ran these analyses separately for 214 

both the veridical and inverted feedback groups. To test for common and separate activity between 215 

the groups, we performed conjunction and disjunction analyses over the two group maps. Additionally, 216 

we performed a two-sample t-test group comparison analysis to identify significant group differences. 217 
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To identify activity within the cognitive control network, we used a cognitive control template based 218 

on the coordinates from a meta-analysis (Niendam et al., 2012). We created this template with 219 

fslmaths and spheres of 15 mm around all coordinates from the meta-analysis. In table S1 we identify 220 

regions of the cognitive control network where transfer success correlates with DORT both within the 221 

template. For statistical maps, we used FWE-corrected cluster level threshold with p < .05 (cluster 222 

extent of 230 voxel) based on whole brain statistics p < .001. In addition, to test the functional 223 

specificity of our results, we performed a meta-analytic functional decoding analysis using the 224 

Neurosynth database (www.neurosynth.org). This relates the neural signatures of the cognitive control 225 

decoding network to other task-related neural patterns (Fig. S2). 226 

2.8.2 Prediction error coding analysis during NF training 227 

The second question of the study was to investigate whether successful neurofeedback performance 228 

was associated with a reduction in prediction error as assumed by a classic reinforcement learning 229 

mechanism. To address this issue specifically for the neurofeedback training runs we constructed a 230 

GLM that replaced the block (IMAGINE_REWARD and REST) regressors with corresponding event 231 

regressors that modelled every TR and that we parametrically modulated with a time-resolved 232 

continuous prediction error (PE) term. This PE term was defined as difference between the current and 233 

the previous TR within the SN/VTA mask, i.e. (BOLD_SN/VTAt- BOLD_SN/VTAt-1; accordingly, in the 234 

upregulation condition the parametric modulator corresponded to IMAGINE_REWARDt –235 

IMAGINE_REWARDt-1). To investigate if the prediction error decreases over time, we used the 236 

difference (parametric modulator PE (run 2) – parametric modulator PE (run 1), i.e. PE coding in 237 

neurofeedback training run 2 minus neurofeedback training run 1 (Figure 1A). This difference should 238 

become negative as prediction errors decrease with learning. On the group level, we correlated this 239 

contrast (difference in PE coding run2 – PE coding run1) with the DORT measure in a one-sample t-test 240 

to test for associations between a decrease in prediction error coding and successful self-regulation.  241 

The results of this analysis, showing prediction error coding in the dorsolateral prefrontal 242 

cortex (dlPFC), inspired a functional connectivity analysis. Specifically, we investigated the functional 243 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 3, 2019. ; https://doi.org/10.1101/863639doi: bioRxiv preprint 

https://doi.org/10.1101/863639
http://creativecommons.org/licenses/by/4.0/


13 
 

impact of the dlPFC prediction error signal on the SN/VTA using a psychophysiological interaction 244 

analysis using the gPPI v13 Toolbox (McLaren et al., 2012) based on the MNI coordinate of dlPFC (x=40, 245 

y=10, z=38) with a 5 mm sphere as seed region. We added activity from this seed region as 246 

physiological regressor to the original GLM (2.7.2) and interacted it with both the IMAGINE_REWARD 247 

and REST regressors to form interaction regressors. Functional connectivity was calculated by 248 

contrasting the interaction terms IMAGINE_REWARD-REST between second and first neurofeedback 249 

training run. We then correlated this contrast with DORT. The results were masked with the SN/VTA 250 

mask for illustration purposes. For statistical maps, we used a whole-brain threshold of p < .001 (50 251 

voxel extent). 252 

2.8.3 Relation between DORT and reward sensitivity in the MID Task  253 

To address the third aim of the study, we investigated the relationship between reward processing in 254 

the MID task and the capacity to successfully regulate the SN/VTA in the neurofeedback experiment. 255 

In particular, we considered two contrasts in the MID task (1) general reward sensitivity, defined as 256 

the sum of parametric modulators: small plus large reward (2) adaptive reward coding, defined as the 257 

difference between parametric modulators: small minus large reward. Again, we used correlation 258 

analysis at the group level to determine whether these two contrasts are related with individual 259 

transfer success (DORT) in the neurofeedback task. Moreover, to assess the commonalities of the 260 

neural activities in these different tasks, we performed a conjunction analysis of contrasts (1), (2) and 261 

the correlation of transfer-activity with DORT (see 2.8.1). For illustration purposes of this conjunction 262 

analysis, we used a threshold of p < .005, for reporting we used p < .001 (cluster extent = 50).  263 

 264 

2.9 Additional behavioral measurements 265 

Strategies: All participants were introduced to five example strategies (see 2.3) that might be used to 266 

up-regulate brain activity but also free to use their own strategies. At the end of the experiment, 267 

participants filled in a custom-made questionnaire on the strategies they used. To compare strategies 268 
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between the groups, we used a χ2-test to assess differences in the distribution of strategy usage. We 269 

did not observe any significant group differences in strategy use (p = .9), and therefore did not consider 270 

this measurement in any further analysis. 271 

Personality measures: To investigate whether individual differences in behavior and personality were 272 

associated with individual differences in DORT, Study 2 measured: (1) Smoking status in number of 273 

cigarettes per day; (2) verbal IQ as determined by the Multiple Word Test (MWT, Lehrl, 2005); (3) 274 

Positive and Negative Affect Score (PANAS) in the German version (Krohne et al., 1996); (4) attentional 275 

and nonplanning subscores of the Barratt Impulsivity Scale in the German version (Preuss et al., 2008). 276 

We tested for correlations with the DORT parameter using Pearson correlations. As none of these 277 

variables correlated significantly with the DORT parameter (all p > .5), we did not consider them 278 

further.  279 

3 Results 280 

3.1 No difference in degree of regulation transfer (DORT) across groups 281 

We first evaluated the DORT measure and compared it between the three datasets. There were no 282 

significant differences across all three groups (mean veridical group Study 1 = .01, mean veridical group 283 

Study 2 = -.02, mean inverted group Study 1= -.05; F(2, 56) = .13;  Fig. 1). Moreover, also the direct 284 

comparison between the two veridical groups was not significant (T(39) = -.26, p = .8).  Accordingly, we 285 

combined the two veridical groups for subsequent analyses. Importantly, our participants showed 286 

considerable variation in DORT, which allowed us to investigate the individual differences in brain 287 

activity accompanying more or less successful regulation of the SN/VTA through neurofeedback. Thus, 288 
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the groups showed similar mean levels and considerable individual differences in self-regulation 289 

success.  290 

3.2 Individual variation in transfer: DORT associated with cognitive control network in 291 
veridical and amygdala activity in inverted feedback group 292 

3.2.1 Veridical feedback group  293 

We investigated whether individual levels of successful SN/VTA self-regulation (DORT) were associated 294 

with increased post-training activity compared to pre-training activity (IMAGINE_REWARD-REST)Transfer 295 

– (IMAGINE_REWARD-REST)Baseline). This analysis revealed several areas consistently reported by 296 

neurofeedback studies (see Fig. 2 in the meta-analysis of Sitaram et al., 2016), including dorsolateral 297 

prefrontal cortex (dlPFC), anterior cingulate cortex (ACC), lateral occipital cortex (LOC), and thalamus 298 

(Figure 3A and Table 1). To formally test for a more general association with the cognitive control 299 

network, we applied a cognitive control network template from a meta-analysis (Niendam et al., 2012), 300 

which in addition revealed neural activity in precuneus and striatum (Fig. 3B for exemplary illustrations 301 

Figure 2 Distribution of DORT across groups. The DORT measure was distributed similarly in both groups 
receiving veridical feedback in Studies 1 and 2 and the control group receiving inverted feedback in Study 
1. Accordingly, we found no evidence supporting a main effect of feedback on transfer. However, DORT 
varied substantially across individuals, which motivated the analyses using the individual self-regulation 
success. 
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of dlPFC, ACC, temporal gyrus, and thalamus activity; Table S1 for full overview). Thus, regions of the 302 

cognitive control network showed transfer to the extent that neurofeedback training of the 303 

dopaminergic midbrain was successful. 304 

    

   MNI	Coordinates	

  Region	Label	 #	voxels	 t-value	 x	 y	 z	 	 	 	 	 	 	
Cingulate	Gyrus,	posterior	division	 895	 6.104	 -3	 -49	 7	
Middle	Frontal	Gyrus	
(dorsolateral	prefrontal	cortex)	

295	 4.609	 45	 31	 19	

Left	Thalamus	 1281	 4.472	 -9	 -24	 10	
Temporal	Occipital	Fusiform	Cortex		 715	 5.858	 32	 -46	 -22	

Figure 3: Correlation of DORT with transfer success after training in veridical feedback group: To investigate whole-brain neural 
activity correlating with successful SN/VTA self-regulation, we used DORT as measure of regulation success and correlated it with 
the contrast (IMAGINE_REWARDtransfer - RESTtransfer) - (IMAGINE_REWARDbaseline - RESTbaseline) as measure of learning related change 
in neural activity. A) The analysis revealed task-specific correlations primarily within the cognitive control network (whole brain 
overview FWE-corrected with p<.05 on cluster level, projected to lateral and medial sagittal sections). B) Exemplary correlations 
within the cognitive control network have been depicted, here in MFG/dlPFC, ACC, Thalamus, and bilateral Temporal Gyrus, to 
illustrate the association between neural activity with DORT. The correlations are for illustration purposes only without further 
significance testing to avoid double dipping. The grey shaded area identifies 95 % confidence interval.  
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Lingual	Gyrus	(Right	
Parahippocampal	Gyrus)	

715	 3.725	 20	 -46	 -6	

Right	Cerebral	White	Matter	
(Right	Hippocampus)	

298	 5.300	 20	 -18	 -10	

Left	Hippocampus	 408	 3.703	 -26	 -33	 -12	
Left	Cerebral	White	Matter	
(Left	Middle	Occipital	Gyrus)	

693	 5.056	 -36	 -73	 31	

Left	Cerebral	White	Matter	
(Left	Superior	Medial	Gyrus,	Anterior	
Cingulate	Cortex)	

579	 4.960	 -9	 28	 38	

Intracalcarine	Cortex	
(Right	Lingual	Gyrus)	

856	 4.048	 6	 -82	 1	

Occipital	Fusiform	Gyrus	 474	 4.928	 29	 -66	 -12	
Middle	Temporal	Gyrus	(Left	Inferior	
Temporal	Gyrus)	

1028	 4.913	 -62	 -37	 -16	

Middle	Temporal	Gyrus	(Left	Inferior	
Temporal	Gyrus)	

1028	 4.315	 -59	 -57	 -3	

Occipital	Fusiform	Gyrus	 658	 4.866	 -42	 -70	 -19	
Temporal	Fusiform	Cortex,	posterior	
division	

658	 4.638	 -39	 -43	 -28	

Temporal	Occipital	Fusiform	Cortex	 658	 4.401	 -23	 -66	 -19	

Superior	Frontal	Gyrus	 310	 4.736	 6	 2	 80	
Central	Opercular	Cortex	
(Left	Superior	Temporal	Gyrus)	

309	 4.636	 -59	 -16	 16	

Left	Cerebral	White	Matter	
(Left	inferior	Frontal	Gyrus)	

401	 4.589	 -39	 35	 -9	

Location	not	in	atlas	 408	 4.578	 -14	 -49	 -22	
Location	not	in	atlas	(Right	
Paracentral	Lobule)	

341	 5.003	 2	 -39	 82	

Location	not	in	atlas	
(Left	Cerebellum	IV)	

856	 4.947	 -6	 -66	 -15	

 	 	 	 	 	 	
Table 1 Correlation of transfer activity (IMAGINE_REWARDtransfer - RESTtransfer) - (IMAGINE_REWARDbaseline - RESTbaseline) with 
DORT in veridical feedback group (see Figure 3a). Table shows all local maxima separated by more than 20 mm; for	all	
clusters, p< 0.05 FWE-corrected on cluster level, t > 3.30; p < 0.001; df = 40. Regions were labelled using the Harvard-Oxford 
atlas and/or the Anatomy Toolbox in parentheses; the activity in SN/VTA has been excluded from the table to avoid circularity; 
x,y,z = Montreal Neurological Institute (MNI) coordinates in the left-right, anterior-posterior, and inferior-superior 
dimensions, respectively. 

3.2.2 Inverted feedback group  305 

For the inverted feedback group, the same analysis resulted in partly distinct activations. In contrast 306 

to the veridical feedback group, left amygdala activity correlated significantly with DORT (Fig. 4 and 307 

Table S2). Importantly, activity in cognitive control areas reported above, such as dlPFC and ACC, was 308 

significantly weaker in inverted than veridical feedback groups (Table S3 for disjunction and direct 309 

statistical comparison). These regions therefore appear to play a preferential role for successful 310 

transfer of SN/VTA self-regulation.  311 
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We also tested for common activity in the two feedback groups using conjunction analysis. 312 

Similar to the veridical group, the inverted feedback group showed correlations between DORT and 313 

activity in the precuneus, middle temporal gyrus, insula, IFG, thalamus, and parahippocampal gyrus 314 

(Table S4). These common areas appear to reflect non-specific regulation activity and may be 315 

associated with memory and introspection processes.   316 

Figure 4 Correlation of DORT with transfer success after training in inverted feedback group: (A) Receiving inverted feedback 
resulted in a correlation between DORT as measure of regulation success and the contrast (IMAGINE_REWARDtransfer - 
RESTtransfer) - (IMAGINE_REWARDbaseline - RESTbaseline) as measure of learning related change in the amygdala (p<.001). This 
region was not observed in the veridical group. (B) The correlation depicts the positive association of neural activity in the 
amygdala with DORT. The plot is for illustration purposes only without further significance testing to avoid double dipping. 
The grey shaded area identifies the 95 % confidence interval. 

3.3 Reinforcement learning: DLPFC prediction error coding during neurofeedback training 317 
correlates with DORT  318 

To investigate whether reinforcement learning mechanisms contribute to successful neurofeedback 319 

transfer, we tested for time-resolved parametric prediction error related activity during the training 320 

runs. We reasoned that prediction error activity should decrease from early to late phases of 321 

neurofeedback training for successful regulators. At any time during neurofeedback training, 322 

participants needed to come up with their own predictions of the upcoming feedback signal and 323 

compare the predictions with actual feedback at the next time point. Similarly, in temporal difference 324 

learning models, prediction errors are calculated at each moment in time (Sutton and Barto, 2018). 325 

Therefore, we operationalized prediction error by subtracting the immediately preceding SN/VTA 326 

activity (prediction) from the present SN/VTA activity (outcome). This analysis revealed that prediction 327 
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error signals in dlPFC decreased with ongoing neurofeedback training only for participants with high 328 

DORT (Fig. 5). To assess this finding in more detail, we also analysed the two neurofeedback training 329 

runs separately. This analysis confirmed that more successful participants showed more pronounced 330 

dlPFC coding of prediction error in early compared to later training (see Fig. S3 for run-wise PE coding 331 

in dlPFC). 332 

 

Figure 5: Prediction error coding in dlPFC decreases during NF training in participants with successful SN/VTA self-
regulation: (A) The time-resolved neural prediction error signal, corresponding to the parametric difference between the 
current and immediately preceding feedback activity from the SN/VTA decreased with ongoing feedback training within dlPFC 
as a function of degree of regulation transfer (p<.001). This finding is consistent with reinforcement learning theories, 
according to which prediction errors decrease as learning progresses. By extension, reinforcement learning mechanisms can 
explain successful neurofeedback training. (B) The plot depicts correlation of neural activity in the dlPFC with DORT. The plot 
is for illustration purposes only without further significance testing to avoid double dipping. The grey shaded area identifies 
the 95 % confidence interval. 

3.4 Learning-related functional coupling of DLPFC with SN/VTA  333 

Our finding of time-resolved prediction error coding in dlPFC inspired a complementary functional 334 

connectivity analysis. We used the prediction error coding area within the dlPFC as a seed region to 335 

investigate coupling to the SN/VTA region our participants aimed to regulate. Functional connectivity 336 

between the two regions increased with transfer success (Fig. 6; (t(40) = 3.79, cluster extent = 16, MNI 337 

x = -2, y = -16, z = -15). In other words, DORT and dlPFC to SN/VTA connectivity correlated positively. 338 

Note that this correlation of DORT with dlPFC-SN/VTA connectivity was task-related as it was enhanced 339 

during IMAGINE_REWARD relative to REST (which served as psychological regressor) and independent 340 

of SN/VTA activity.  341 
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 342 

 

Figure 6 Functional connectivity between dlPFC and SN/VTA correlates with transfer success: (A) A functional connectivity 
analysis based on the prediction error coding seed region in the dlPFC (MNI coordinate 40, 10, 38, 5 cm sphere) revealed that 
increasing connectivity to the SN/VTA correlated with increasing success of neurofeedback training (p<.001). (B) DORT 
increased with increasing connectivity between dlPFC and SN/VTA during IMAGINE_REWARD vs. REST in neurofeedback 
training runs. Thus, dlPFC appears to regulate SN/VTA in proportion to the degree to which neurofeedback training is 
successful. (C) The correlation plot depicts connectivity between dlPFC and SN/VTA with DORT. The plot is for illustration 
purposes only without further significance testing to avoid double dipping. The grey shaded area identifies the 95 % 
confidence interval. 

3.5 Individual differences in dlPFC reward sensitivity during MID task correlate with 343 
regulation success 344 

In Study 2 we used the MID task to independently measure reward sensitivity and the capability to 345 

adapt to different reward contexts (Kirschner et al., 2018a). We asked whether individual measures of 346 

reward processing (measured with parametric and adaptive coding of reward related BOLD activity) 347 

are predictive for individual regulation. Specifically, we tested for correlations between DORT and MID 348 

reward sensitivity (sum of small and large reward parametric modulators) and MID adaptive reward 349 

coding (difference of small minus large reward parametric modulators). A conjunction of three 350 

correlations with DORT – reward sensitivity in the MID task, adaptive reward coding in the MID task 351 

and the contrast (IMAGINE_REWARDtransfer - RESTtransfer) - (IMAGINE_REWARDbaseline - RESTbaseline) outside 352 

SN/VTA revealed common neural activity in the dlPFC (center at MNI x = 40, y = 10, z = 38; Fig. 7 and 353 

Table S6). Thus, the more successful individuals were at self-regulating SN/VTA as a result of 354 
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neurofeedback training, the more sensitive they were to reward and the more strongly they adapted 355 

to different reward contexts in the MID task. 356 

 

Figure 7 Reward-sensitivity in dlPFC correlates with successful SN/VTA self-regulation: (A) SN/VTA DORT in the 
neurofeedback task correlated with prefrontal reward sensitivity and adaptive coding in the MID task. A conjunction analysis 
around the peak coordinate in dlPFC showing prediction error coding during neurofeedback training (MNI x = 40, y = 10, z = 
38, left) revealed common neural activity reflecting transfer (IMAGINE_REWARDtransfer - RESTtransfer) - 
(IMAGINE_REWARDbaseline - RESTbaseline) and reward sensitivity (small + large reward magnitude parametric modulators in MID, 
all contrasts with p<.001). Moreover, individuals with more successful self-regulation of the SN/VTA showed stronger 
adaptive coding (which reflects higher sensitivity to small relative to large rewards) in the same region that also showed 
learning-related decreases in prediction error coding during neurofeedback training (right). (B) The correlation plot depicts 
the adaptive coding activity in dlPFC with DORT. The plot is for illustration purposes only without further significance testing 
to avoid double dipping. The grey shaded area identifies the 95 % confidence interval. 

4 Discussion 357 

In the present work, we used data acquired from two previous rt-fMRI neurofeedback studies to 358 

characterize individual differences and mechanisms in successfully transferred self-regulation of the 359 

dopaminergic midbrain after neurofeedback training. We found a strong relation between self-360 

regulation success and increases in post-training activity in the cognitive control network. Moreover, 361 

we found four correlations with increasing transfer effects: (i) decreasing dlPFC prediction error signals 362 

during neurofeedback training, (ii) increasing connectivity of dlPFC to the SN/VTA for reward 363 

imagination compared to rest during transfer, (iii) increasing reward sensitivity in dlPFC and (iv) 364 

increasing adaptive reward coding in dlPFC in the independent MID task. Together, our study 365 
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elucidates the mechanistic control of the dopaminergic midbrain via the cognitive control network and 366 

suggests that reinforcement learning contributes to successful neurofeedback training. 367 

Sustained self-regulation skills and the generalization of learning after neurofeedback training are key 368 

elements for practical applications and remain one of the major challenges in rt-FMRI neurofeedback 369 

research (Sulzer et al., 2013a). Results from previous neurofeedback studies of the reward system have 370 

been inconclusive (Greer et al., 2014; Kirschner et al., 2017; Sulzer et al., 2013b) and only one study 371 

(MacInnes et al., 2016) reported significant post-training activity in the VTA, and increased mesolimbic 372 

network connectivity. Methodological limitations might have hampered the ability to detect transfer 373 

effects. First, previous studies focused exclusively on self-regulation of one a priori target region, such 374 

as SN/VTA, instead of investigating large-scale post-training effects within the whole brain. Second, 375 

transfer effects were examined at the group-level, which did not reflect the individual learning success. 376 

In the present study we overcome both limitations by taking advantage of an individual measure of 377 

transfer success (DORT) and focusing on the whole brain.  378 

One insight of the present study is that transfer success associates with neural activity in cognitive 379 

control network areas (Niendam et al., 2012; Parro et al., 2018), such as dlPFC and ACC. This network 380 

overlaps with regions that have been associated with feedback-related information processing during 381 

training (Marco-Pallarés et al., 2007, Emmert et al., 2016). Together, these findings suggest that the 382 

same regions contribute to acquisition and transfer of neurofeedback and that sustained post-training 383 

self-regulation generalizes across a functional network of different brain regions. Intriguingly, similar 384 

networks have been reported in skill learning. Future studies might investigate commonalities 385 

between neurofeedback and particularly cognitive skill learning, taking into account the specific 386 

temporal dynamics of both functions (Birbaumer et al., 2013; Tenison et al., 2016). 387 

The finding that individuals with more successful regulation of the dopaminergic midbrain show 388 

stronger activation of cognitive control areas during transfer speaks to our understanding of how 389 

individual differences in cognitive control affect emotion regulation (Braver et al., 2010; Buhle et al., 390 
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2014; Friedman and Miyake, 2017; Kohn et al., 2014). For example the working memory component 391 

of cognitive control has been shown to predict negative affect reduction through reappraisal and 392 

suppression (Hendricks and Buchanan, 2016) Interestingly, dopamine action (particularly at D1 393 

receptors) in dlPFC sustains working memory performance (Arnsten et al., 2015). Thus, it is conceivable 394 

that frontolimbic loops contribute to successful transfer.  395 

Although speculative at this point, the positive post-training effects on the cognitive-control network 396 

activity might also have implications for transdiagnostic clinical applications. First, combining rt-fMRI 397 

neurofeedback training with different forms of psychotherapy such as cognitive behavioral therapy 398 

(Beck, 2005), dialectical behavioral therapy (Lynch et al., 2007), or psychodynamic therapy (Bateman 399 

and Fonagy, 2010; Have-de Labije and Neborsky, 2012; Maroda, 2010) could improve emotion 400 

regulation deficits prevalent in several psychiatric disorders including substance use disorders, 401 

depression, anxiety and personality disorders. With particular attention to substance use disorders, 402 

maladaptive changes in neuroplasticity within the cognitive control network are closely associated 403 

with loss of control and compulsive drug-seeking (George and Koob, 2010; Holmes et al., 2016; Koob 404 

and Volkow, 2010). In these patients, neurofeedback training might be able to directly target the 405 

biological correlates and reinstate function of the cognitive-control network.  406 

We found stronger reductions in prediction error coding in the DLPFC for regulators than non-407 

regulators. This finding suggests that prediction error-driven reinforcement learning was more 408 

pronounced in regulators than non-regulators and provides empirical evidence for previous theoretical 409 

proposals on the mechanisms of neurofeedback learning independent of feedback modality 410 

(Birbaumer et al., 2013). Thus, reinforcement learning mechanisms provide a framework for 411 

understanding how neurofeedback works. Future research may want to investigate whether the rich 412 

theoretical and empirical tradition of reinforcement learning, (e.g. Pearce, 2008), can be harnessed to 413 

facilitate neurofeedback training.   414 
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We found that successful SN/VTA self-regulation is associated with an increased functional coupling 415 

between dlPFC regions coding prediction error and the dopaminergic midbrain. This coupling fits well 416 

with anatomical connections between dlPFC and the dopaminergic midbrain (Frankle et al., 2006; 417 

Sesack et al., 2003) as well as functional connectivity studies on motivation (Ballard et al., 2011) and 418 

animal studies on prefrontal regulation of midbrain activity (Gao et al., 2007; Jo and Mizumori, 2016). 419 

The animal work suggests that prefrontal cortex controls dopaminergic neurons primarily indirectly, 420 

through inhibitory relay neurons. By showing top-down control of the midbrain, our data go beyond 421 

previous connectivity studies of the dopamine system, which primarily focused on coupling between 422 

the prefrontal cortex and the striatum (Chatham et al., 2014; Schenk et al., 2017; Weber et al., 2018).  423 

At the functional level, a recent study on creative problem solving in humans highlights that dlPFC is 424 

involved in experiencing a moment of insight, the so called Aha!-moment (Tik et al., 2018). According 425 

to this effective connectivity study, dlPFC could upregulate the VTA/SN via striatal connections during 426 

such a moment. On the other hand, in trials where no solution was found for a given problem, also no 427 

significant connectivity was observed. This study supports our finding that dlPFC-SN/VTA connectivity 428 

plays an important role in self-guided motivation and in internal reward processing. Our finding 429 

highlights that cognitive and affective mechanisms associated with different experiences also involve 430 

different neural pathways. Future studies should investigate to what degree individual differences in 431 

the functional architecture of brain networks (Hahn et al., 2014) influence these internal reward 432 

mechanisms and to which degree different strategies can influence neurofeedback training success. 433 

Our independent reward task revealed that individual differences in prefrontal reward sensitivity and 434 

efficient adaptive reward coding were associated with successful SN/VTA self-regulation. Adaptive 435 

coding of rewards captures the notion that neural activity (output) should match the most likely inputs 436 

to maximize efficiency and representational precision (Wark et al., 2007). Accordingly, we previously 437 

showed that reward regions encode a small range of rewards more strongly than the large range of 438 

rewards (Kirschner et al., 2018a, 2016). Interestingly, participants who were more sensitive to small 439 

rewards were also more successful in self-regulation of the dopaminergic midbrain in the present 440 
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study. When participants in a typical neurofeedback training paradigm succeed at increasing the 441 

activity of the self-regulated area, the ensuing change in visual stimulation (positive neurofeedback) 442 

may constitute a small reward. By extension, adaptive reward coding may therefore provide a useful 443 

handle on identifying regulators. Moreover, future neurofeedback experiments should consider 444 

scaling the feedback signal to avoid sensitivity limitations, particularly in individuals with reduced 445 

adaptive coding.  446 

A potential limitation of our study is that we used a combined mask for SN and VTA even though 447 

differences in functionality and anatomy have been reported for the two regions (reviewed e.g. in 448 

Trutti et al., 2019), with the SN more related to motor functions and the VTA to reward functions. 449 

However, it should be kept in mind that when viewed through the lens of recording and imaging rather 450 

than lesion techniques the differences are more gradual than categorical (Düzel et al., 2009). Still, 451 

future studies may want to use more specific feedback from one or the other region to more 452 

specifically target potential differences in functions. 453 

5 Conclusions 454 

We showed that successful transfer in SN/VTA self-regulation after neurofeedback training is 455 

associated with activity in the cognitive control network and dlPFC. Future studies could employ 456 

cognitive control activity during neurofeedback training to boost success rates and clinical outcomes. 457 

Furthermore, our findings of decreasing prediction error signals in dlPFC suggest that associative 458 

learning contributes to real-time fMRI neurofeedback effects. Finally, we show that higher individual 459 

reward sensitivity increases the chance of neurofeedback training success. Patients with reduced 460 

reward sensitivity may therefore benefit from careful scaling of the neurofeedback information. 461 
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