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Abstract

The dopaminergic midbrain is associated with elementary brain functions, such as reward processing,
reinforcement learning, motivation and decision-making that are often disturbed in neuropsychiatric
disease. Previous research has shown that activity in the dopaminergic midbrain can be endogenously
modulated via neurofeedback, suggesting potential for non-pharmacological interventions. However,
the robustness of endogenous modulation, a requirement for clinical translation, is unclear. Here, we
used non-invasive modulation of the dopaminergic midbrain activity by real-time neurofeedback to
examine how self-modulation capability affects transfer and correlated activation across the brain. In
addition, to further elucidate potential mechanisms underlying successful self-regulation, we studied
individual prediction error coding during neurofeedback training, and, during a completely
independent monetary incentive delay (MID) task, individual reward sensitivity. Fifty-nine participants
underwent neurofeedback training either in a veridical or inverted feedback group. Post-training
activity within the cognitive control network was increased only in those individuals with successful
self-regulation of the dopaminergic midbrain during neurofeedback training. Successful learning to
regulate was accompanied by decreasing prefrontal prediction error signals and increased prefrontal
reward sensitivity in the MID task. Our findings suggest that the cognitive control network contributes
to successful transfer of the capability to upregulate the dopaminergic midbrain. The link of
dopaminergic self-regulation with individual differences in prefrontal prediction error and reward
sensitivity indicates that reinforcement learning contributes to successful top-down control of the
midbrain. Our findings therefore provide new insights in the cognitive control of dopaminergic
midbrain activity and pave the way to improving neurofeedback training in neuropsychiatric patients.

Keywords: real-time fMRI, neurofeedback, dopaminergic midbrain, substantia nigra, ventral
tegmental area, dorsolateral prefrontal cortex, self-regulation, prediction error, reinforcement
learning
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1 Introduction

The dopaminergic midbrain, including the ventral tegmental area (VTA) and substantia nigra (SN), plays
a crucial role in reward processing, reinforcement learning (Schultz, 2016, 1998; Tobler et al., 2007),
motivation (Bromberg-Martin et al., 2010; Wise, 2004), and decision-making (Friston et al., 2014).
Dysfunctions of the reward system have far-reaching consequences and are associated with the
development of several severe psychiatric disease such as addiction (Huys et al., 2014) and
schizophrenia (Deserno et al., 2016; Maia and Frank, 2017). Despite decades of extensive neuroscience
and imaging studies which have contributed to an impressive body of knowledge of normal and
abnormal reward system function, the neural mechanisms controlling midbrain activity are still not
fully understood (Meder et al., 2019). One key issue that has received increasing attention over the
last years is whether humans are able to cognitively control brain activity within the reward system.
Although the mechanisms remained unclear, it has already been shown that both healthy controls
(Maclnnes et al., 2016; Sulzer et al., 2013b), and patients with cocaine addiction (Kirschner et al.,
2018c) can learn to regulate SN/VTA activity during real-time functional magnetic resonance imaging
(rt-fMRI) neurofeedback training. Yet, only little or no behavioral changes or increases in neural activity
have been found so far to transfer beyond neurofeedback training, even though transfer, i.e., the
ability to regulate activity also after training and without feedback is critical for clinical applications in
disorders with reward system dysfunctions (Klein et al., 2019). The question therefore arises how
individuals with successful transfer effects differ from individuals without transfer effects and what
mechanisms underpin transfer effects. We narrowed this gap by combining data from two previous rt-
fMRI studies (Kirschner et al., 2018c; Sulzer et al., 2013b) and pursuing three aims.

(1) Our first goal was to characterize individual differences in transfer effects between
‘regulators’ and ‘non-regulators’ in the context of SN/VTA self-regulation. Individual differences in
regulation success and high variability of transfer effects arises also in other neurofeedback modalities

such as electroencephalography (EEG) and are often neglected (Alkoby et al., 2018). For rt-fMRI


https://doi.org/10.1101/863639
http://creativecommons.org/licenses/by/4.0/

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

bioRxiv preprint doi: https://doi.org/10.1101/863639; this version posted December 3, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

neurofeedback control, neural activity in the cognitive (or executive) control network may play an
important role especially when performing a demanding task such as imagery (Sitaram et al., 2016).
Therefore, and based on the known direct and indirect connections between prefrontal cortex and
SN/VTA (Frankle et al., 2006; Gao et al., 2007; Sesack et al., 2003; Wu et al., 2013) we hypothesize that
successful transfer of SN/VTA regulation is associated with activation in brain regions that are part of
the cognitive (executive) control network, especially prefrontal areas.

(2) Our second goal was to determine whether mechanisms of (operant) associative learning
can be used to explain neurofeedback training. In the associative learning framework of neurofeedback
(Birbaumer et al., 2013; Sitaram et al., 2016), the chosen mental strategy is reinforced in proportion
to the sign and magnitude of the feedback. If the feedback signal increases, reflecting a desired
increase in brain activity within the target region, participants receive more reward than predicted
corresponding to a positive prediction error. As a consequence, they would be more likely to repeat
the strategy, expect higher feedback next time and gradually learn how to keep the feedback signal
high. Accordingly, in regulators the size of the prediction error should gradually decrease as the
expected feedback increasingly converges with the actual feedback. In contrast, for non-regulators and
participants in a control group receiving unrelated or unstable feedback, the prediction errors would
remain large and variable because these participants cannot learn any association between mental
strategies and feedback. These straightforward implications of current theorizing about the
mechanisms underlying neurofeedback remained largely untested (for a simulation study on the
temporal dynamics of feedback: Oblak and colleagues (2017); for the correlation of BOLD with signal
increase (‘success’) and decrease (‘failure’) during regulation: Radua and colleagues (2018)). Here, we
directly investigate the prediction error mechanism in regions that control the SN/VTA, which itself has
been traditionally associated with the coding of reward prediction errors (Schultz, 2016). Specifically,
we hypothesize that decreasing prediction error signals during neurofeedback learning are associated

with successful self-regulation and transfer effects.
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(3) Our third aim was to identify individual differences in the ability to regulate the midbrain
to general characteristics of the reward system, hoping to further distinguish regulators from non-
regulators. Thus, we asked whether successful neurofeedback training (as measured by transfer
effects) taps into general properties of the reward system. Given that adaptive reward processing
characterizes the SN/VTA (Schultz, 1998; Tobler et al., 2005) we used a variant of the monetary
incentive delay (MID) task that captures differences in adaptive reward sensitivity between clinical and
non-clinical populations (Kirschner et al., 2018a). Using this task, we tested the hypothesis that reward
processing in regions that may control the dopaminergic midbrain is related to successful SN/VTA self-
regulation.

In sum, to study individual differences in capability to gain control of the SN/VTA we used rt-
fMRI neurofeedback training in healthy participants receiving either real feedback (veridical group) or
inverted feedback (control group). We quantified the individual degree of successful transfer by
comparing the individual post-training versus pre-training self-regulation capabilities. Moreover, we
related individual differences in reward sensitivity in separately measured SN/VTA self-regulation

success.

2 Methods

2.1 Participants

Fifty-nine right-handed participants (45 males, average age 28.25+5.25 vyears) underwent
neurofeedback training. We analysed data from two independent projects, which used highly similar
rt-fMRI paradigms, rt-fMRI software and scanner hardware. The first dataset (Sulzer et al., 2013b)
comprised male participants, randomly assigned to one of two groups. The experimental group
received veridical neurofeedback (N = 15), the control group received inverted neurofeedback (N = 16)
as training signal. The second dataset (Kirschner et al., 2018c) comprised the healthy control
participants (N=28, 14 males) of a project investigating also cocaine users (these data are not

presented here). This group received veridical neurofeedback. A subset of the participants in the

5


https://doi.org/10.1101/863639
http://creativecommons.org/licenses/by/4.0/

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

bioRxiv preprint doi: https://doi.org/10.1101/863639; this version posted December 3, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

second dataset (N=25) also performed a variant of the monetary incentive delay (MID) task (Kirschner
et al., 2018a). All participants provided written informed-consent and have been compensated for
their participation. The Zurich cantonal ethics committee approved these studies in accordance with

the Human Subjects Guidelines of the Declaration of Helsinki.

2.2 Experimental setup and neuroimaging

All participants underwent neuroimaging in a Philips Achieva 3 Tesla magnetic resonance (MR) scanner
using an eight channel SENSE head coil (Philips, Best, The Netherlands) either at the Laboratory for
Social and Neural Systems Research Zurich (SNS Lab, Study 1) or the MR Center of the Psychiatric
Hospital of the University of Zurich (Study 2). First, we acquired anatomical images (Study1: gradient
echo T1-weighted sequence in 301 sagittal plane slices of 250 x 250 mm? resulting in 1.1 mm? voxels;
Study2: spin-echo T2-weighted sequence with 70 sagittal plane slices of 230 x 184 mm? resulting in
0.57 x 0.72 x 2 mm? voxel size) prior to neurofeedback training and loaded them into BrainVoyager QX
v2.3 (Brain Innovation, Maastricht, The Netherlands) to identify SN/VTA as target region (see 2.4 for
details). To acquire functional data, we used 27 ascending transversal slices in a gradient echo T2*-
weighted whole brain echo-planar image sequence in both studies. The in-plane resolution was 2 x 2
mm?, 3 mm slice thickness and 1.1 mm gap width over a field of view of 220 x 220 mm2, a TR/TE of
2000/35 ms and a flip angle of 82°. Slices were aligned with the anterior—posterior commissure and
then tilted by 15°. Functional images were converted from Philips par/rec data format to ANALYZE and
exported in real-time to the external analysis computer via the DRIN software library provided by
Philips. This external computer ran Turbo BrainVoyager v3.0 (TBV — Brain Innovation, Maastricht, The
Netherlands) to extract the BOLD signal from the images and calculate the neural activation for the
feedback signal. The visual feedback signal was presented using custom-made software with Visual
Studio 2008 (Microsoft, Redmond, WA, USA) through either a mirror mounted at the rear end of the

scanner bore (Study 1) or through MR compatible goggles (Study 2).
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100 2.3 Neurofeedback paradigm

101  The participants were instructed that their goal was to control a reward-related region-of-interest in
102  their brains by imagining rewarding stimuli, actions, or events (note that we have previously shown
103  that reward imagination activates SN/VTA with standard fMRI (Miyapuram et al., 2012)). Prior to
104 scanning, we provided examples of such rewards, including palatable food items, motivating
105 achievements, positive experiences with friends and family, favourite leisure activity or romantic
106 imagery. We encouraged participants to use these different rewards as potential strategies for
107 upregulating reward-related activity (during the cue ‘Happy Timel!’, here referred to as
108 IMAGINE_REWARD condition), which was fed back visually with a smiley vertically translating
109 proportional to the SN/VTA BOLD signal (see below). In contrast, during the cue ‘Rest’ (here referred
110 to as REST condition), participants were asked to perform neutral imagery, such as mental calculation
111 toreduce reward-related activity. Prior to training, participants were familiarized with the 5s delay of
112  the hemodynamic response affecting the display of the feedback and were asked not to move or
113 change their breathing during the neurofeedback training.

114 Each neurofeedback session comprised: a pre-training imagery baseline run without any
115  feedback, three (Study 1) or two (Study 2) training runs during which neurofeedback was presented
116 (as Study 2 also investigated patients, training was limited to two runs), and a transfer run (i.e., without
117  feedback). Each of these runs comprised nine blocks of IMAGINE_REWARD and REST conditions, each
118 lasting 20 s. To determine the current level of the feedback signal we used the average of the last five
119 volumes of the previous REST condition as reference value and employed a moving average of the
120  previous three volumes to reduce noise. In the veridical feedback group, the smiley moved up with
121 increasing percent signal change of SN/VTA BOLD signal and changed colour from red to yellow (Fig. 1
122 A). In the inverted feedback group, the smiley moved up and turned yellow with a decreasing SN/VTA
123 BOLD signal.

124
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Figure 1 Neurofeedback paradigm: (A) All runs consisted of alternating blocks of REST and IMAGINE_REWARD conditions,
with each block lasting 20 s. The regulation conditions (REST, IMAGINE_REWARD) were indicated by words (‘Rest’ or ‘Happy
Time!’) and the feedback presented as moving smiley face during neurofeedback training runs. The preceding baseline and
subsequent transfer runs comprised no feedback. The SN/VTA signal difference from these runs served to quantify the degree
of regulation transfer (DORT) as (SN/VTA_BOLD(|MAG|NE_REWARD, Transfer} - SN/VTA_BOLD(REST, Transfer)) -
(SN/VTA_BOLD{imaGINE_REWARD, Baseline} = SN/VTA_BOLDgesr, gaseline})- (B) Post-processed SN/VTA signal was extracted from the
probabilistic atlas mask defined by Murty et al. (2014).

125 2.4 Region-of-interest SN/VTA

126 In both studies, the target region for neurofeedback, i.e. the substantia nigra (SN) and ventral
127  tegmental area (VTA), was structurally identified using individual anatomical scans. Since the individual
128 mask definition slightly differed between Study 1 and 2 (T1-weighted scans in Study 1 and T2-weighted
129 scans in Study 2), we used an independent mask for our post-hoc analysis. By this, we can control for
130 individual differences between experimenter ROl selection strategies, to avoid interpolation
131 confounds due to warping by normalization and use a reliable seed region for functional connectivity
132 analysis. The mask we are using here is a probabilistic mask of the SN and VTA as defined by (Murty et
133  al.,, 2014), which is based on a large sample set (148 datasets) and available on

134  https://www.adcocklab.org/neuroimaging-tools (download August 2018). Figure 1B illustrates this

135 mask within the brain.

136 2.5 Degree of regulation transfer (DORT)

137  We assessed the effects of individual differences in performance to characterise participants in
138 ‘regulators’ and ‘non-regulators’. The measure of successful self-regulation was defined as individual
139 degree of regulation transfer (DORT), i.e. as the condition-specific SN/VTA signal difference between

140  post-training (Transfer) and pre-training (Baseline) runs:
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141 DORT = (SN/VTA_BOLD{IMAGINE_REWARD,Transfer} - SN/VTA_BOLD{REST,Transfer}) - (SN/

142 VTA_BOLD{IMAGINE_REWARD,Baseline} - SN/VTA_BOLD{REST,BaselirLe})

143 Thus, a positive DORT corresponds to a relative increase in post-training SN/VTA activity compared to
144 pre-training SN/VTA activity for the contrast IMAGINE_REWARD minus REST. Please note that in these
145  two runs (pre-training baseline, post-training transfer) no neurofeedback was presented. Thus to

146  achieve positive transfer effects participants had to apply what they had learned during training runs.

147 DORT distributions: To investigate potential group differences in DORT, we transferred the extracted
148  datato R (R-project R3.4.1). Using an anova, we tested for differences of the mean between the three
149  groups (i.e. the two groups receiving veridical feedback in Studies 1 and 2 and the control group

150 receiving inverted feedback in Study 1).

151  DORT in fMRI analysis: The DORT measure served to investigate the individual differences in successful
152 transfer at the whole brain level. In particular, we were interested to identify regions that were
153 positively associated with DORT and thus potentially contribute to regulation of the SN/VTA. For this
154  analysis, we entered mean centered individual DORT levels in all fMRI second level statistical models

155  (see 2.8). We excluded SN/VTA from all analyses to avoid any circularity.

156  Spatial specificity control analysis: To bolster the spatial specificity of our analysis about dopaminergic
157 midbrain regulation, we additionally performed an analysis using the directly neighbored brain region
158 of the parahippocampus as control target ROI. This target area is also active during the self-regulation
159 task since the participants perform memory-based strategies. We extracted this mask from the wfu
160 atlas and performed the identical main effects analysis as described above. To compare the results
161 between our target ROl SN/VTA and control ROl in parahippocampus, we performed a conjunction
162 analysis between the resulting contrast images. This comparison revealed only two common areas
163  within the cerebellum and the Temporal Gyrus. The limited commonalities between these two target
164 ROLI’s, especially in striatal and prefrontal areas, indicate the spatial specificity of our findings using the

165 SN/VTA as target region (see Supplemental Material Figure S4 and Table S8).

9
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166 2.6 MID Task

167 In every trial of the MID task (Kirschner et al., 2018b, 2016; Simon et al., 2015) first one of three cues
168  appeared (Fig. S1). One cue was associated with large reward (ranging from 0 to 2.00 CHF), one cue
169 with small reward (0 to 0.40 CHF) and one cue with no reward. After a delay of 2.5 to 3 s, participants
170 had to identify an outlier from three circles by pressing one of three buttons as quickly as possible.
171 Depending on the cue, their response time and the correctness of the answer, participants gained an
172 amount of money. Importantly, the use of large and small reward ranges enables investigation of
173 individual differences not only in general reward sensitivity but also in how well the reward system

174  adapts to different reward distributions, so-called adaptive reward coding (Kirschner et al., 2018a).

175 2.7 MR Data pre-processing

176  We despiked the functional data using AFNI (http://afni.nimh.nih.gov/afni). To account for differences

177 in EPI slice acquisition times we employed temporal interpolation of the MR signal, shifting the signal
178  of the misaligned slices to the first slice (Sladky et al., 2011) using FSL 5 (FMRIB Software Library,

179 Analysis Group, FMRIB, Oxford, http://fsl.fmrib.ox.ac.uk). Furthermore, data were bias-field corrected

180 using ANTs (http://stnava.github.io/ANTs), realigned using FSL 5, normalized to standard MNI space

181 using ANTsin combination with a custom scanner-specific EPIl-template resulting ina 1.5

182 mm? isotropic resolution and finally smoothed with a 6 mm FWHM Gaussian kernel using FSL 5.

183 The spatial specificity control analyses (see Supplemental Material Figure S4 and Table S8)
184 suggest that the data are not due to common physiological noise. To more directly account for noise,
185  we additionally acquired physiological data in a subsample of participants. In the available subsample,
186 neither changes in heart rate variability nor respiration were significantly correlated with VTA/SN
187 activation during reward imagination (see details in Kirschner et al., 2018, Supplemental Material Table
188  S1, Figure S1). Here, we also used an image-based correction to account for physiological artefacts in
189 all participants. Since physiological artefacts are most prominently present in CSF and white matter
190 due to the absence of BOLD effects, pulsations of the ventricles, and proximity to the large brain

191 arteries (e.g., circle of Willis), we decided to use an established preprocessing procedure based on a

10
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192 PCA approach (Sladky et al., 2013; Weissenbacher et al., 2009). Specifically, we calculated the global
193 mean and the first 6 components of a temporal principal component analysis on the cerebrospinal
194  fluid and white matter signal. These 6 components were used as noise regressors in the first level
195 statistics (see 2.8) in addition to the 6 motion parameters. Along with the pre-processing of the fMRI
196 data, the SN/VTA mask used as ROI for the analysis was resliced into the dimensions of the functional
197  data using SPM 12 (v6906, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) within Matlab R2016b

198 (www.mathworks.com).

199 2.8 MR Data analysis

200 For all of the following analyses, we used the toolbox SPM 12 (v6906) within Matlab R2016b. All figures
201  were created using bspmview v.20161108 (Spunt, 2016) and ggplot2 within R 3.4.1. All group-level
202 analysis included an additional covariate for the dataset to account for potential global signal

203 differences between studies.

204 2.8.1 Post-training effects: Correlation with DORT in veridical and inverted feedback group

205  The first question of this study asked whether the individual degree of successful neurofeedback
206  transfer is associated with individual differences in the cognitive control network. To answer this
207 guestion, we conducted a general linear model (GLM) on the single subject level including one block-
208  wise regressor for the IMAGINE_REWARD condition and one for the REST condition with 190 timesteps
209 (each condition comprised 9 onsets and lasted 20 s) for each of the four runs separately. Additionally,
210 we modelled the first 5 TRs of every run as nuisance regressor and added also motion and physiological
211 artefact regressors (see 2.7) in the design matrix. In total the GLM consisted of fifteen regressors. We
212 formed the contrast IMAGINE_REWARD-REST and compared it between Transfer and Baseline runs,
213 i.e. (IMAGINE_REWARD-REST)transter — (IMAGINE_REWARD-REST)gaseiine. At the group level, we tested
214 for correlation of DORT with this contrast in a one-sample t-test. We ran these analyses separately for
215 both the veridical and inverted feedback groups. To test for common and separate activity between
216  thegroups, we performed conjunction and disjunction analyses over the two group maps. Additionally,

217  we performed a two-sample t-test group comparison analysis to identify significant group differences.
11
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218  To identify activity within the cognitive control network, we used a cognitive control template based
219 on the coordinates from a meta-analysis (Niendam et al., 2012). We created this template with
220 fsimaths and spheres of 15 mm around all coordinates from the meta-analysis. In table S1 we identify
221 regions of the cognitive control network where transfer success correlates with DORT both within the
222  template. For statistical maps, we used FWE-corrected cluster level threshold with p < .05 (cluster
223 extent of 230 voxel) based on whole brain statistics p < .001. In addition, to test the functional
224 specificity of our results, we performed a meta-analytic functional decoding analysis using the

225 Neurosynth database (www.neurosynth.org). This relates the neural signatures of the cognitive control

226  decoding network to other task-related neural patterns (Fig. S2).

227 2.8.2  Prediction error coding analysis during NF training

228  The second question of the study was to investigate whether successful neurofeedback performance
229  was associated with a reduction in prediction error as assumed by a classic reinforcement learning
230 mechanism. To address this issue specifically for the neurofeedback training runs we constructed a
231 GLM that replaced the block (IMAGINE_REWARD and REST) regressors with corresponding event
232 regressors that modelled every TR and that we parametrically modulated with a time-resolved
233 continuous prediction error (PE) term. This PE term was defined as difference between the current and
234 the previous TR within the SN/VTA mask, i.e. (BOLD_SN/VTA:- BOLD_SN/VTA.1; accordingly, in the
235 upregulation condition the parametric modulator corresponded to IMAGINE_REWARD: -
236  IMAGINE_REWARD:1). To investigate if the prediction error decreases over time, we used the
237  difference (parametric modulator PE (run 2) — parametric modulator PE (run 1), i.e. PE coding in
238 neurofeedback training run 2 minus neurofeedback training run 1 (Figure 1A). This difference should
239 become negative as prediction errors decrease with learning. On the group level, we correlated this
240  contrast (difference in PE coding run2 — PE coding run1) with the DORT measure in a one-sample t-test

241  totest for associations between a decrease in prediction error coding and successful self-regulation.

242 The results of this analysis, showing prediction error coding in the dorsolateral prefrontal

243 cortex (dIPFC), inspired a functional connectivity analysis. Specifically, we investigated the functional
12
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244 impact of the dIPFC prediction error signal on the SN/VTA using a psychophysiological interaction
245  analysis using the gPPIv13 Toolbox (McLaren et al., 2012) based on the MNI coordinate of dIPFC (x=40,
246 y=10, z=38) with a 5 mm sphere as seed region. We added activity from this seed region as
247 physiological regressor to the original GLM (2.7.2) and interacted it with both the IMAGINE_REWARD
248 and REST regressors to form interaction regressors. Functional connectivity was calculated by
249  contrasting the interaction terms IMAGINE_REWARD-REST between second and first neurofeedback
250  training run. We then correlated this contrast with DORT. The results were masked with the SN/VTA
251 mask for illustration purposes. For statistical maps, we used a whole-brain threshold of p <.001 (50

252  voxel extent).

253 2.8.3 Relation between DORT and reward sensitivity in the MID Task

254  To address the third aim of the study, we investigated the relationship between reward processing in
255 the MID task and the capacity to successfully regulate the SN/VTA in the neurofeedback experiment.
256 In particular, we considered two contrasts in the MID task (1) general reward sensitivity, defined as
257 the sum of parametric modulators: small plus large reward (2) adaptive reward coding, defined as the
258  difference between parametric modulators: small minus large reward. Again, we used correlation
259 analysis at the group level to determine whether these two contrasts are related with individual
260  transfer success (DORT) in the neurofeedback task. Moreover, to assess the commonalities of the
261 neural activities in these different tasks, we performed a conjunction analysis of contrasts (1), (2) and
262  the correlation of transfer-activity with DORT (see 2.8.1). For illustration purposes of this conjunction

263 analysis, we used a threshold of p < .005, for reporting we used p < .001 (cluster extent = 50).

264

265 2.9 Additional behavioral measurements

266  Strategies: All participants were introduced to five example strategies (see 2.3) that might be used to
267 up-regulate brain activity but also free to use their own strategies. At the end of the experiment,

268 participants filled in a custom-made questionnaire on the strategies they used. To compare strategies
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269 between the groups, we used a x2-test to assess differences in the distribution of strategy usage. We
270  did not observe any significant group differences in strategy use (p = .9), and therefore did not consider

271  this measurement in any further analysis.

272 Personality measures: To investigate whether individual differences in behavior and personality were
273 associated with individual differences in DORT, Study 2 measured: (1) Smoking status in number of
274  cigarettes per day; (2) verbal 1Q as determined by the Multiple Word Test (MWT, Lehrl, 2005); (3)
275 Positive and Negative Affect Score (PANAS) in the German version (Krohne et al., 1996); (4) attentional
276  and nonplanning subscores of the Barratt Impulsivity Scale in the German version (Preuss et al., 2008).
277  We tested for correlations with the DORT parameter using Pearson correlations. As none of these
278  variables correlated significantly with the DORT parameter (all p > .5), we did not consider them

279 further.

280 3 Results

281 3.1 No difference in degree of regulation transfer (DORT) across groups

282 We first evaluated the DORT measure and compared it between the three datasets. There were no
283 significant differences across all three groups (mean veridical group Study 1 =.01, mean veridical group
284  Study 2 = -.02, mean inverted group Study 1= -.05; F(2, 56) = .13; Fig. 1). Moreover, also the direct
285  comparison between the two veridical groups was not significant (T(39) = -.26, p =.8). Accordingly, we
286  combined the two veridical groups for subsequent analyses. Importantly, our participants showed
287 considerable variation in DORT, which allowed us to investigate the individual differences in brain

288  activity accompanying more or less successful regulation of the SN/VTA through neurofeedback. Thus,
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289  the groups showed similar mean levels and considerable individual differences in self-regulation

290 success.
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Figure 2 Distribution of DORT across groups. The DORT measure was distributed similarly in both groups
receiving veridical feedback in Studies 1 and 2 and the control group receiving inverted feedback in Study
1. Accordingly, we found no evidence supporting a main effect of feedback on transfer. However, DORT
varied substantially across individuals, which motivated the analyses using the individual self-regulation

291 3.2 Individual variation in transfer: DORT associated with cognitive control network in
292 veridical and amygdala activity in inverted feedback group

293 3.2.1 Veridical feedback group

294  We investigated whether individual levels of successful SN/VTA self-regulation (DORT) were associated
295  withincreased post-training activity compared to pre-training activity (IMAGINE_REWARD-REST)transfer
296  — (IMAGINE_REWARD-REST)gaseline). This analysis revealed several areas consistently reported by
297 neurofeedback studies (see Fig. 2 in the meta-analysis of Sitaram et al., 2016), including dorsolateral
298 prefrontal cortex (dIPFC), anterior cingulate cortex (ACC), lateral occipital cortex (LOC), and thalamus
299 (Figure 3A and Table 1). To formally test for a more general association with the cognitive control
300 network, we applied a cognitive control network template from a meta-analysis (Niendam et al., 2012),

301  whichinaddition revealed neural activity in precuneus and striatum (Fig. 3B for exemplary illustrations
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302 of dIPFC, ACC, temporal gyrus, and thalamus activity; Table S1 for full overview). Thus, regions of the
303  cognitive control network showed transfer to the extent that neurofeedback training of the

304  dopaminergic midbrain was successful.
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Figure 3: Correlation of DORT with transfer success after training in veridical feedback group: To investigate whole-brain neural
activity correlating with successful SN/VTA self-regulation, we used DORT as measure of regulation success and correlated it with
the contrast (IMAGINE_REWARDyransfer - RESTiransfer) - (IMAGINE_REWARDpaseline - RESThaseline) @s measure of learning related change
in neural activity. A) The analysis revealed task-specific correlations primarily within the cognitive control network (whole brain
overview FWE-corrected with p<.05 on cluster level, projected to lateral and medial sagittal sections). B) Exemplary correlations
within the cognitive control network have been depicted, here in MFG/dIPFC, ACC, Thalamus, and bilateral Temporal Gyrus, to
illustrate the association between neural activity with DORT. The correlations are for illustration purposes only without further
significance testing to avoid double dipping. The grey shaded area identifies 95 % confidence interval.

MNI Coordinates
Region Label # voxels t-value X y z
Cingulate Gyrus, posterior division 895 6.104 -3 -49 7
Middle Frontal Gyrus 295 4.609 45 31 19
(dorsolateral prefrontal cortex)
Left Thalamus 1281 4.472 -9 -24 10
Temporal Occipital Fusiform Cortex 715 5.858 32 -46 -22
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Lingual Gyrus (Right 715 3.725 20 -46 -6
Parahippocampal Gyrus)

Right Cerebral White Matter 298 5.300 20 -18 -10
(Right Hippocampus)

Left Hippocampus 408 3.703 -26 -33 -12
Left Cerebral White Matter 693 5.056 -36 -73 31
(Left Middle Occipital Gyrus)

Left Cerebral White Matter 579 4.960 -9 28 38

(Left Superior Medial Gyrus, Anterior
Cingulate Cortex)

Intracalcarine Cortex 856 4.048 6 -82 1
(Right Lingual Gyrus)

Occipital Fusiform Gyrus 474 4.928 29 -66 -12
Middle Temporal Gyrus (Left Inferior 1028 4.913 -62 -37 -16
Temporal Gyrus)

Middle Temporal Gyrus (Left Inferior 1028 4.315 -59 -57 -3
Temporal Gyrus)

Occipital Fusiform Gyrus 658 4.866 -42 -70 -19
Temporal Fusiform Cortex, posterior ~ 658 4.638 -39 -43 -28
division

Temporal Occipital Fusiform Cortex 658 4.401 -23 -66 -19
Superior Frontal Gyrus 310 4.736 6 2 80
Central Opercular Cortex 309 4.636 -59 -16 16
(Left Superior Temporal Gyrus)

Left Cerebral White Matter 401 4.589 -39 35 -9
(Left inferior Frontal Gyrus)

Location notin atlas 408 4.578 -14 -49 -22
Location not in atlas (Right 341 5.003 2 -39 82
Paracentral Lobule)

Location notin atlas 856 4.947 -6 -66 -15
(Left Cerebellum IV)

Table 1 Correlation of transfer activity (IMAGINE_REWARDxransfer - RESTtransfer) - (IMAGINE_REWARDpaseiine - RESThaseline) With
DORT in veridical feedback group (see Figure 3a). Table shows all local maxima separated by more than 20 mm; for all
clusters, p< 0.05 FWE-corrected on cluster level, t > 3.30; p < 0.001; df = 40. Regions were labelled using the Harvard-Oxford
atlas and/or the Anatomy Toolbox in parentheses; the activity in SN/VTA has been excluded from the table to avoid circularity;
x,Y¥,2 = Montreal Neurological Institute (MNI) coordinates in the left-right, anterior-posterior, and inferior-superior
dimensions, respectively.

305 3.2.2 Inverted feedback group

306 For the inverted feedback group, the same analysis resulted in partly distinct activations. In contrast
307 to the veridical feedback group, left amygdala activity correlated significantly with DORT (Fig. 4 and
308 Table S2). Importantly, activity in cognitive control areas reported above, such as dIPFC and ACC, was
309  significantly weaker in inverted than veridical feedback groups (Table S3 for disjunction and direct
310 statistical comparison). These regions therefore appear to play a preferential role for successful

311  transfer of SN/VTA self-regulation.
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312 We also tested for common activity in the two feedback groups using conjunction analysis.
313 Similar to the veridical group, the inverted feedback group showed correlations between DORT and
314  activity in the precuneus, middle temporal gyrus, insula, IFG, thalamus, and parahippocampal gyrus
315 (Table S4). These common areas appear to reflect non-specific regulation activity and may be

316  associated with memory and introspection processes.
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Figure 4 Correlation of DORT with transfer success after training in inverted feedback group: (A) Receiving inverted feedback
resulted in a correlation between DORT as measure of regulation success and the contrast (IMAGINE_REWARDxransfer -
RESTiranster) - (IMAGINE_REWARDpaseline - RESThaseline) @s measure of learning related change in the amygdala (p<.001). This
region was not observed in the veridical group. (B) The correlation depicts the positive association of neural activity in the
amygdala with DORT. The plot is for illustration purposes only without further significance testing to avoid double dipping.
The grey shaded area identifies the 95 % confidence interval.

317 3.3 Reinforcement learning: DLPFC prediction error coding during neurofeedback training
318 correlates with DORT

319 To investigate whether reinforcement learning mechanisms contribute to successful neurofeedback
320 transfer, we tested for time-resolved parametric prediction error related activity during the training
321 runs. We reasoned that prediction error activity should decrease from early to late phases of
322 neurofeedback training for successful regulators. At any time during neurofeedback training,
323 participants needed to come up with their own predictions of the upcoming feedback signal and
324  compare the predictions with actual feedback at the next time point. Similarly, in temporal difference
325 learning models, prediction errors are calculated at each moment in time (Sutton and Barto, 2018).
326  Therefore, we operationalized prediction error by subtracting the immediately preceding SN/VTA
327 activity (prediction) from the present SN/VTA activity (outcome). This analysis revealed that prediction
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328  error signals in dIPFC decreased with ongoing neurofeedback training only for participants with high
329 DORT (Fig. 5). To assess this finding in more detail, we also analysed the two neurofeedback training
330 runs separately. This analysis confirmed that more successful participants showed more pronounced
331 dIPFC coding of prediction error in early compared to later training (see Fig. S3 for run-wise PE coding

332 indIPFC).
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Figure 5: Prediction error coding in dIPFC decreases during NF training in participants with successful SN/VTA self-
regulation: (A) The time-resolved neural prediction error signal, corresponding to the parametric difference between the
current and immediately preceding feedback activity from the SN/VTA decreased with ongoing feedback training within dIPFC
as a function of degree of regulation transfer (p<.001). This finding is consistent with reinforcement learning theories,
according to which prediction errors decrease as learning progresses. By extension, reinforcement learning mechanisms can
explain successful neurofeedback training. (B) The plot depicts correlation of neural activity in the dIPFC with DORT. The plot
is for illustration purposes only without further significance testing to avoid double dipping. The grey shaded area identifies
the 95 % confidence interval.

333 3.4 Learning-related functional coupling of DLPFC with SN/VTA

334  Our finding of time-resolved prediction error coding in dIPFC inspired a complementary functional
335 connectivity analysis. We used the prediction error coding area within the dIPFC as a seed region to
336 investigate coupling to the SN/VTA region our participants aimed to regulate. Functional connectivity
337 between the two regions increased with transfer success (Fig. 6; (t(40) = 3.79, cluster extent = 16, MNI
338 x=-2,y=-16, z = -15). In other words, DORT and dIPFC to SN/VTA connectivity correlated positively.
339 Note that this correlation of DORT with dIPFC-SN/VTA connectivity was task-related as it was enhanced
340  during IMAGINE_REWARD relative to REST (which served as psychological regressor) and independent

341 of SN/VTA activity.
19


https://doi.org/10.1101/863639
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/863639; this version posted December 3, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

342

A C
Seed ROI PY

S S
© _ 0.5 o0
>0
oJ
2" P
0’6)3 -0.5 o
7 4o ’
-2 -1 0 1
dIPFC-SN/VTA
45 50 connectivity

Figure 6 Functional connectivity between dIPFC and SN/VTA correlates with transfer success: (A) A functional connectivity
analysis based on the prediction error coding seed region in the dIPFC (MNI coordinate 40, 10, 38, 5 cm sphere) revealed that
increasing connectivity to the SN/VTA correlated with increasing success of neurofeedback training (p<.001). (B) DORT
increased with increasing connectivity between dIPFC and SN/VTA during IMAGINE_REWARD vs. REST in neurofeedback
training runs. Thus, dIPFC appears to regulate SN/VTA in proportion to the degree to which neurofeedback training is
successful. (C) The correlation plot depicts connectivity between dIPFC and SN/VTA with DORT. The plot is for illustration
purposes only without further significance testing to avoid double dipping. The grey shaded area identifies the 95 %
confidence interval.

343 3.5 Individual differences in dIPFC reward sensitivity during MID task correlate with
344 regulation success

345 In Study 2 we used the MID task to independently measure reward sensitivity and the capability to
346  adapt to different reward contexts (Kirschner et al., 2018a). We asked whether individual measures of
347 reward processing (measured with parametric and adaptive coding of reward related BOLD activity)
348 are predictive for individual regulation. Specifically, we tested for correlations between DORT and MID
349 reward sensitivity (sum of small and large reward parametric modulators) and MID adaptive reward
350 coding (difference of small minus large reward parametric modulators). A conjunction of three
351 correlations with DORT — reward sensitivity in the MID task, adaptive reward coding in the MID task
352 and the contrast (IMAGINE_REWARD:ransfer - RESTtranster) - (IMAGINE_REWARDpaseline - RESThaseline) OUtside
353 SN/VTA revealed common neural activity in the dIPFC (center at MNI x = 40, y = 10, z = 38; Fig. 7 and

354  Table S6). Thus, the more successful individuals were at self-regulating SN/VTA as a result of
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355  neurofeedback training, the more sensitive they were to reward and the more strongly they adapted

356 to different reward contexts in the MID task.

A Conjunction NF & MID task B
ALY 0’4”/‘ 60 .
D) BN % A O © 40
- j;’% N },— E -
- < '8 ()
i8N -
S i
:‘ L2} =g
'L'k = _('(: ©
""1.’(:_ , {%4
B Contrast NF r4 - r1 (A) -1.0 0.5 0.0 0.5
B Contrast MID reward outcome (B) degree of regulatlon
I Contrast MID adpative coding (C) transfer
Il Conjunction (A) + (B)

Conjunction (B) + (C)
[] Conjunction (A) + (B) + (C)

Figure 7 Reward-sensitivity in dIPFC correlates with successful SN/VTA self-regulation: (A) SN/VTA DORT in the
neurofeedback task correlated with prefrontal reward sensitivity and adaptive coding in the MID task. A conjunction analysis
around the peak coordinate in dIPFC showing prediction error coding during neurofeedback training (MNI x =40,y =10, z =
38, left) revealed common neural activity reflecting transfer (IMAGINE_REWARDanster -  RESTtranster)
(IMAGINE_REWAR Dpaseline - RESThaseline) and reward sensitivity (small + large reward magnitude parametric modulatorsin MID,
all contrasts with p<.001). Moreover, individuals with more successful self-regulation of the SN/VTA showed stronger
adaptive coding (which reflects higher sensitivity to small relative to large rewards) in the same region that also showed
learning-related decreases in prediction error coding during neurofeedback training (right). (B) The correlation plot depicts
the adaptive coding activity in dIPFC with DORT. The plot is for illustration purposes only without further significance testing
to avoid double dipping. The grey shaded area identifies the 95 % confidence interval.

357 4 Discussion

358 In the present work, we used data acquired from two previous rt-fMRI neurofeedback studies to
359  characterize individual differences and mechanisms in successfully transferred self-regulation of the
360 dopaminergic midbrain after neurofeedback training. We found a strong relation between self-
361 regulation success and increases in post-training activity in the cognitive control network. Moreover,
362  we found four correlations with increasing transfer effects: (i) decreasing dIPFC prediction error signals
363 during neurofeedback training, (ii) increasing connectivity of dIPFC to the SN/VTA for reward
364  imagination compared to rest during transfer, (iii) increasing reward sensitivity in dIPFC and (iv)
365 increasing adaptive reward coding in dIPFC in the independent MID task. Together, our study
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366  elucidates the mechanistic control of the dopaminergic midbrain via the cognitive control network and

367 suggests that reinforcement learning contributes to successful neurofeedback training.

368  Sustained self-regulation skills and the generalization of learning after neurofeedback training are key
369 elements for practical applications and remain one of the major challenges in rt-FMRI neurofeedback
370 research (Sulzer et al., 2013a). Results from previous neurofeedback studies of the reward system have
371 been inconclusive (Greer et al., 2014; Kirschner et al., 2017; Sulzer et al., 2013b) and only one study
372 (Maclnnes et al., 2016) reported significant post-training activity in the VTA, and increased mesolimbic
373 network connectivity. Methodological limitations might have hampered the ability to detect transfer
374  effects. First, previous studies focused exclusively on self-regulation of one a priori target region, such
375 as SN/VTA, instead of investigating large-scale post-training effects within the whole brain. Second,
376  transfer effects were examined at the group-level, which did not reflect the individual learning success.
377 In the present study we overcome both limitations by taking advantage of an individual measure of

378  transfer success (DORT) and focusing on the whole brain.

379 One insight of the present study is that transfer success associates with neural activity in cognitive
380 control network areas (Niendam et al., 2012; Parro et al., 2018), such as dIPFC and ACC. This network
381 overlaps with regions that have been associated with feedback-related information processing during
382  training (Marco-Pallarés et al., 2007, Emmert et al., 2016). Together, these findings suggest that the
383  same regions contribute to acquisition and transfer of neurofeedback and that sustained post-training
384  self-regulation generalizes across a functional network of different brain regions. Intriguingly, similar
385 networks have been reported in skill learning. Future studies might investigate commonalities
386 between neurofeedback and particularly cognitive skill learning, taking into account the specific

387 temporal dynamics of both functions (Birbaumer et al., 2013; Tenison et al., 2016).

388 The finding that individuals with more successful regulation of the dopaminergic midbrain show
389 stronger activation of cognitive control areas during transfer speaks to our understanding of how

390 individual differences in cognitive control affect emotion regulation (Braver et al., 2010; Buhle et al.,
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391 2014; Friedman and Miyake, 2017; Kohn et al., 2014). For example the working memory component
392 of cognitive control has been shown to predict negative affect reduction through reappraisal and
393  suppression (Hendricks and Buchanan, 2016) Interestingly, dopamine action (particularly at D1
394 receptors) in dIPFC sustains working memory performance (Arnsten et al., 2015). Thus, it is conceivable

395  that frontolimbic loops contribute to successful transfer.

396  Although speculative at this point, the positive post-training effects on the cognitive-control network
397 activity might also have implications for transdiagnostic clinical applications. First, combining rt-fMRI
398 neurofeedback training with different forms of psychotherapy such as cognitive behavioral therapy
399 (Beck, 2005), dialectical behavioral therapy (Lynch et al., 2007), or psychodynamic therapy (Bateman
400 and Fonagy, 2010; Have-de Labije and Neborsky, 2012; Maroda, 2010) could improve emotion
401 regulation deficits prevalent in several psychiatric disorders including substance use disorders,
402 depression, anxiety and personality disorders. With particular attention to substance use disorders,
403 maladaptive changes in neuroplasticity within the cognitive control network are closely associated
404  with loss of control and compulsive drug-seeking (George and Koob, 2010; Holmes et al., 2016; Koob
405 and Volkow, 2010). In these patients, neurofeedback training might be able to directly target the

406  biological correlates and reinstate function of the cognitive-control network.

407  We found stronger reductions in prediction error coding in the DLPFC for regulators than non-
408 regulators. This finding suggests that prediction error-driven reinforcement learning was more
409 pronounced in regulators than non-regulators and provides empirical evidence for previous theoretical
410 proposals on the mechanisms of neurofeedback learning independent of feedback modality
411 (Birbaumer et al., 2013). Thus, reinforcement learning mechanisms provide a framework for
412 understanding how neurofeedback works. Future research may want to investigate whether the rich
413  theoretical and empirical tradition of reinforcement learning, (e.g. Pearce, 2008), can be harnessed to

414  facilitate neurofeedback training.
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415  We found that successful SN/VTA self-regulation is associated with an increased functional coupling
416 between dIPFC regions coding prediction error and the dopaminergic midbrain. This coupling fits well
417 with anatomical connections between dIPFC and the dopaminergic midbrain (Frankle et al., 2006;
418  Sesack et al., 2003) as well as functional connectivity studies on motivation (Ballard et al., 2011) and
419 animal studies on prefrontal regulation of midbrain activity (Gao et al., 2007; Jo and Mizumori, 2016).
420  The animal work suggests that prefrontal cortex controls dopaminergic neurons primarily indirectly,
421  through inhibitory relay neurons. By showing top-down control of the midbrain, our data go beyond
422 previous connectivity studies of the dopamine system, which primarily focused on coupling between

423 the prefrontal cortex and the striatum (Chatham et al., 2014; Schenk et al., 2017; Weber et al., 2018).

424 At the functional level, a recent study on creative problem solving in humans highlights that dIPFC is
425 involved in experiencing a moment of insight, the so called Aha!-moment (Tik et al., 2018). According
426  to this effective connectivity study, dIPFC could upregulate the VTA/SN via striatal connections during
427 such a moment. On the other hand, in trials where no solution was found for a given problem, also no
428  significant connectivity was observed. This study supports our finding that dIPFC-SN/VTA connectivity
429 plays an important role in self-guided motivation and in internal reward processing. Our finding
430 highlights that cognitive and affective mechanisms associated with different experiences also involve
431  different neural pathways. Future studies should investigate to what degree individual differences in
432  the functional architecture of brain networks (Hahn et al., 2014) influence these internal reward

433 mechanisms and to which degree different strategies can influence neurofeedback training success.

434  Ourindependent reward task revealed that individual differences in prefrontal reward sensitivity and
435 efficient adaptive reward coding were associated with successful SN/VTA self-regulation. Adaptive
436  coding of rewards captures the notion that neural activity (output) should match the most likely inputs
437 to maximize efficiency and representational precision (Wark et al., 2007). Accordingly, we previously
438  showed that reward regions encode a small range of rewards more strongly than the large range of
439 rewards (Kirschner et al., 2018a, 2016). Interestingly, participants who were more sensitive to small

440 rewards were also more successful in self-regulation of the dopaminergic midbrain in the present
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441 study. When participants in a typical neurofeedback training paradigm succeed at increasing the
442  activity of the self-regulated area, the ensuing change in visual stimulation (positive neurofeedback)
443 may constitute a small reward. By extension, adaptive reward coding may therefore provide a useful
444  handle on identifying regulators. Moreover, future neurofeedback experiments should consider
445 scaling the feedback signal to avoid sensitivity limitations, particularly in individuals with reduced

446  adaptive coding.

447 A potential limitation of our study is that we used a combined mask for SN and VTA even though
448  differences in functionality and anatomy have been reported for the two regions (reviewed e.g. in
449 Trutti et al., 2019), with the SN more related to motor functions and the VTA to reward functions.
450 However, it should be kept in mind that when viewed through the lens of recording and imaging rather
451 than lesion techniques the differences are more gradual than categorical (Duzel et al., 2009). Still,
452 future studies may want to use more specific feedback from one or the other region to more

453 specifically target potential differences in functions.

454 5 Conclusions

455  We showed that successful transfer in SN/VTA self-regulation after neurofeedback training is
456  associated with activity in the cognitive control network and dIPFC. Future studies could employ
457  cognitive control activity during neurofeedback training to boost success rates and clinical outcomes.
458 Furthermore, our findings of decreasing prediction error signals in dIPFC suggest that associative
459 learning contributes to real-time fMRI neurofeedback effects. Finally, we show that higher individual
460 reward sensitivity increases the chance of neurofeedback training success. Patients with reduced

461 reward sensitivity may therefore benefit from careful scaling of the neurofeedback information.
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