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Abstract

One of the fundamental tenets of biology is that the phenotype of an organism (Y) is determined
by its genotype (G), the environment (E) and their interaction (GE). Quantitative phenotypes can
then be modeled as Y=G+E+GE+e, where e is the biological variance. This simple and tractable
model has long served as the bass for studies investigating the heritability of traits and
decomposing the variability in fitness. Increasingly, the importance of microbe interactions on
organismal phenotypes is being recognized, but it is currently unclear what the relative
contribution of microbiomes to a given host phenotype is and how this trandates into the
traditional GE model. Here we address this fundamental question and propose an expansion of
the original model, referred to as GEM, which explicitly incorporates the contribution of the
microbiome (M) to the host phenotype, while maintaining the simplicity and tractability of the
original GE model. We show that by keeping host, environment and microbiome as separate but
interacting variables, the GEM modd can capture the nuanced ecological interactions between
these variables. Finally, we demonstrate with an in vitro experiment how the GEM model can be
used to dtatistically disentangle the relative contributions of each component on specific host
phenotypes.

The genetic basis of ecological interactions

Leveraging the beneficial interactions between plant hosts and their microbiomes represents a
new direction in sustainable crop production. In particular, the emergence of microbiome-
associated phenotypes (MAPs) (Oyserman et al., 2018), such as growth promotion and disease
suppression, is expected to reduce our dependency on energy-intensive and environmentally
disturbing management practices. This may either be achieved through the addition of probiotics
and prebiotics, or through breeding programs targeting MAPs to develop a next generation of
‘microbiome-activated’ or ‘microbe-assisted’ crop production systems (Busby et al., 2017,
Oyserman et al., 2018). Hence, a mgjor challenge is to identify the genotypic underpinning of
emergent MAPs and understanding the pivotal role of the environment. To date, however, the
relative contribution of microbiomes to a given host phenotype is not known for most host
phenotypes. The interaction between genotype (G) and environment (E) has long been
recognized as an important factor both in evolutionary biology (Via & Lande, 1985; Anderson et
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al., 2013) and breeding programs (Allard & Bradshaw, 1964). While a significant body of
literature exists on quantitative investigations of GE interactions (El-Soda et al., 2014), the bulk
of this work has focused on abiotic parameters and has largely overlooked the microbiome.
Nevertheless, the interactions between hosts, microbiomes and their environments are coming
into increasing focus and scrutiny (Dal Grande et al., 2018; Wallace et al., 2018; Beilsmith et al.,
2019; Bonito et al., 2019).

One current opinion is that rather than viewing host plants and animals as individuals,
they should be viewed together with their microbiomes as single cohesive unit of selection
termed a 'holobiont” with a ‘hologenome’ (Bordenstein & Thels, 2015; Moran & Sloan, 2015;
Douglas & Werren, 2016). Under this view, the microbiome (M) could be integrated into the G
term of the GE model of host phenotypes. However, others have pointed out that treating hosts
and their microbiomes as a single unit does not capture the broad range of interactions and
fidelity between host and microbe (Douglas & Werren, 2016). Another popular opinion is that,
as the environment is classically defined to include “physical, chemical, and biotic factors (such
as climate, soil, and living things) that act upon an organism” (‘ Environment’, 2019), M should
be integrated into the E term of the GE model. However, an important distinction exists between
E and M components; M is dynamic (i.e., have many interdependencies and may adapt or evolve
through time), while E is driven through external processes. Here, we address these two
viewpoints and propose that it is useful to introduce microbiomes and MAPs as a discrete unit
within the GE model. In doing so, we put forth an updated GEM modd that explicitly
incorporates the microbiome (M) and its respective interactions with the genotype (G) and
environment (E). Using these mathematical representations, we conceptually emphasize
interesting cases that emerge from this framework (Figure 1). Finally, we present a simple ‘one-
microbe-at-a-time’ experiment to highlight key features and challenges of unearthing GEM
interactions, and to statistically disentangle the relative contributions of each of the GEM model
components (Figure 2).

The microbiome as a phenotype or microbiome-associated phenotypes?

The relationship between the host and its microbiome may be generally defined and viewed in
two ways. Firstly, microbiome community structure may be considered a phenotype of the host
(Y), henceforth *microbiome as a phenotype (Belheouane et al., 2017; Rothschild et al., 2018;
Walters et al., 2018). Under this view, taxonomic/functional features of the microbiome, are
treated as the phenotype of the host (Y). In this manner, Y (e.g. the abundance of a taxon or
functional gene) may be represented based on the contribution and interaction between the
genotype (G), the environment (E) and the remaining variance (e) (Equation 1).

Secondly, a microbiome may be quantified by their impact on the host phenotypes
(Kopac & Klassen, 2016; Oyserman et al., 2018). In this view, MAPs such as plant growth
promotion or plant health are treated as the phenotype (YY) (Zeevi et al., 2019). Here, we suggest
explicitly expanding the environmental parameter of the traditional GE model (Equation 1), such
that host genotype (G), environmental factors (E) and microbiome structure and function (M) and
their interactions al contribute to the observed host phenotype (Equation 2). Thus, measurements
of the microbiome structure and function are used in conjunction with genotypic and
environmental data to explain a MAP, an emergent phenotype of the host-microbe interaction.
Additional components may be added to the GEM model to accommodate additional complexity.
For example, M may be split into i components, where M; represents the i taxonomical or
functional feature. In this way, the GEM mode is amenable for investigating the role of
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88  microbe-microbe interactions within natural or synthetic communities, the interactions between
89 multiple environmental factors, or any complex arrangements (see supplemental materials for
90 discussion on an expanded GEM model). In Figure 1, we exhibit some basic features of the GEM
91 modd.

92 Extractingthe GEMs

93 To demonstrate how the GEM model may be used to disentangle the relative influence of
94  various factors on a particular host phenotype, we investigated GEM interactions in a smplified
95 in vitro assay with one bacterial strain (Bacillus sp., accession number MN512243) interacting
96 with two plant genotypes, a modern domesticated tomato cultivar (Solanum lycopersicum var
97  moneymaker) and a wild tomato relative (Solanum pimpinellifolium) under two environmental
98 conditions. In this model system, all genotype, environmental, microbial parameters are
99  controlled and therefore can be systematically explored in a fully factorial design (details are in
100 the supplementa material). For each tomato genotype, seedlings were grown in two
101  environments, i.e. Murashige and Skoog agar medium (MS0) and MS agar medium
102  supplemented with 10 g/L of sucrose (MS10). After germination, the root tips were inoculated
103  with the Bacillus strain, which was originally isolated from the wild tomato rhizosphere. Control
104  seedlings were inoculated with buffer only (Figure 2A). The plant phenotypes monitored were
105  root architecture (using WinRhizo™) and root and shoot dry mass (Figure 2B). An ANOVA was
106 done to test the significance of each variable in the GEM mode (Figure 2C). Together, the
107  microbiome (M) and all interacting variables (GM, EM and GEM) explained 26% of root dry
108 mass variance, 21% of shoot dry mass variance and 8% of root length total variance.
109  Furthermore, in all cases the interacting parameters, GM, EM, and GEM interactions explained
110  greater variance than GE interactions (Figure 2D).
111 A clear consensus is forming that microbiomes impact host phenotypes, but its relative
112  contribution to that host phenotype is, in most cases, not known. The GEM model provides a
113 simple, tractable and testable model demonstrating that the interactions of the microbiome and
114  other model terms (GM, EM and GEM) are also essential determinants of host phenotypes. It is
115 important to highlight that, in this case, GM interactions actually explain more variability than
116  canonical GE interactions. Furthermore, the expanded GEM model captures other important
117  features that may otherwise be easily overlooked, such as the genotype-independent interaction
118 between EM. This states that microbe and environment may interact to alter host fitness
119 independent of the genotype. For example, auxin is a plant hormone that promotes growth that is
120 also produced by bacteria. Many bacterial cultures have differential auxin production dependent
121  on their environment (Tsavkelova, 2005); therefore, it islikely that EM interactions can promote
122 auxin production and thus plant growth independent on genotype. In practice, identifying EM
123  may have important implications for synbiotics (mixtures of probiotics and prebiotics). In this
124  manner, the GEM model not only provides a model to disentangle the contribution of G, E and
125 M, but also serves as a powerful tool for conceptualization.

126 The GEM model captures complex ecosystem processes

127  Asdescribe above, genotype, environment and microbiome may influence organismal phenotype
128 directly, but also through their interactions. This dynamic is captured by the various terms that
129 make up the GEM moded, providing a ssmple means to conceptualize this otherwise complex
130 system. Inits most basic form (Equation 2), the GEM model has 8 terms in total. An example of
131 atermwith asinglevariableis‘G’, atwo variable term would be *GM’, and three variable term

3


https://doi.org/10.1101/863399
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/863399; this version posted December 3, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

132 would be ‘GEM’. While the basic GEM model contains terms related to inter-class interactions
133 (GE, GM, €tc.), it lacks terms representative of intra-class interactions (M:M, E:E, etc). By
134 simply adding additional variables to the GEM modd, M:M and other ecologically relevant
135 interactions may be introduced as additional terms. The number of termsin amodel is dependent
136  onthe number of variables (n) that can be mathematically represented by Supplemental Equation
137 1. In addition, the number of terms with r variables may be mathematically represented by
138 Supplemental Equation 2, where n is the total number of variables, and r is the number of
139 variablesin theterm. From this basis, a mode of organismal phenotype which takes into account
140 ecosystem-level processes may be constructed. To this end, we developed a simple Python script
141 to generate a GEM model based on user input for any number of G, E and M variables
142  (https://github.com/Oyserman/GEM).

143 To model the interactions between multiple microbiome members, such as those found in
144  natural or synthetic communities, in Equation 3, we provide a simple expansion of the basic
145 GEM Equation presented in the main text to add another microbiome variable. The result isa 4
146  variable (GEM;M,) modd that includes all r-way interactions terms necessary to model the
147  impact of a two member community on any number of plant genotypes or environments. For
148  clarity, Equation 3 is presented with all r-way interactions on separate lines. To show the
149 versatility of the GEM model, we provide another expansion in which multiple hosts are
150 interacting in a particular ecosystem (G1G,EM). In this case, the fitness of one plant genotype
151 (Gy) is influenced through interactions with a neighboring plant genotype (G;) and their
152  associated microbiomes. A prominent example of this in literature are intercropping systems in
153  which nitrogen fixation through legume-microbiome interactions benefit other non-leguminous
154  plantsin anitrogen limited soil ecosystem (Peopleset al., 1995).

155 Conclusions

156 A fundamental tenet of biology is that genotype and environment interact and impact the fitness
157  and phenotype of an organism. The GE model of organismal phenotype has been the cornerstone
158 of modern breeding programs. Part of the power of the GE modd is its ssimplicity and
159 interpretability. However, the important role of host-associated microbiomes has recently come
160 into focus. Here, we investigated how microbiomes (M) fit into the GE model, suggest an
161 explicit expansion to include M, and argue that, because of its dynamic and evolving nature, that
162 M should not be collapsed within E. We use a conceptual figure to show that the updated GEM
163 modd captures the diverse possible outcomes of between G, E and M. To support our model, we
164  present an in vitro experiment with one microbe demonstrating not only how to use the GEM
165 modé, but also showing that GM interactions may explain more variability than GE interactions.
166 Finaly, additional examples of expanded GEM models which take into account M:M and
167 GzE:M interactions are presented to demonstrate the ecological versatility of the GEM model.
168 Taken together, we propose that the GEM model provides a ssmple and interpretable expansion
169 of the GE moddl. Furthermore, given the important role of the microbiome, any investigations
170 into GE interactions must also account or control for M.
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Y=G+E+GE+e
234 Equation 1. The traditional model for GE interactions: In the canonical model of quantitative phenotypes, the host phenotype
235 (Y) is explained by the sum of G, E, their interactions (G:E), and e the residual error. This model may be used to calculate the
236 proportion of variance explained by the host genome and the environment on a host associated microbiome community. In other
237 words, the microbiome may be treated as Y, the phenotype of the host (e.g. ‘the microbiome as a phenotype’). When E has no
238 contribution to Y, only G determines the abundance or function of the microbiome (Figure 1C). On the other side of the spectrum,
239  only E determines to the abundance or function of the microbiome (Figure 1B).

Y=G+E+M+ GE+GM+EM+GEM+ e

240 Equation 2. The new GEM model: When a microbiome has a quantitative impact on host phenotype, the traditional GE model
241 may be expanded to incorporate M and all respective interactions (GM, EM, and GEM). Unlike the GE model, which may be
242 used to explain the microbiome, the expanded GEM model may be used to statistically disentangle the contribution of G, E and
243 M and their various interactions to changes in host phenotype. When M has no impact, this variable and those associated with it
244 fall out of the equation giving the GE model. These, and other special cases are conceptually explored further in Figure 2. Thus,
245 this model is capable of capturing the nuanced dynamics of host-microbiome interactions, such as host-microbe interactions that
246 are environment-specific, or otherwise have lower fidelity than strict symbiosis (Douglas & Werren, 2016).

Y=
G+E+M, + M, +
GE+GM + G:M,+E:M; +E:M, + M;: M, +
G:E:M; +G:E:M, + G:M;:M, + E:M;: M, +
G:E:M;: M,
+e

247 Equation 3. A GEMM model: The basic GEM model may be expanded to include any number of complex interactions. Here
248 we expand the GEM model to include microbe-microbe interactions. Thisresultsin the addition of 1-way, 2-way, 3-way and 4-
249 way interaction terms, which are shown on separate linesfor clarity.

250 Figure 1. Conceptualizing the GEM model: Here we graphically explore how the interactions between genotypes, environment
251 and microbiome may impact a host phenotype (Y). The two genotypes are indicated by G1 and G2, and the presence of a
252 microbiome is indicated by solid circles (as shown in panel a). The different environments are indicated as Env 1 and Env 2 on
253 the X-axis. In each case (panels a-0), the corresponding equation is depicted over the figure itself. In cases when we treat the
254 microbiome as a phenotype of the host, the relative abundance of a particular taxon, or other features of a microbiome, may be
255 considered as the sum of G and E interactions (panels a-€). In simple cases, the relative abundance is independent of genotype
256 (panel b) or environment (panel c). More likely, both genotype and environment, and their interactions will contribute to relative
257 abundance/function (panels d and e respectively). Panels a-e are special cases of the GEM model, indicating situations in which
258 the microbiome does not contribute to a particular host phenotype. Building complexity, each of G, E and M may contribute to
259 host phenotypes individually or in combination, but without interaction (panels a-d and f-i). Finally, the highest level of
260 complexity occurs once interactions between G, E and M occur (panels e, j-0). A salient feature of this representation is that
261 when no interaction between variables exists, the dope is equal between treatments. This model may also provide practical
262 insights, such as identifying optimal prebiotics which may be expected to have a broad host range (no G interaction) and be
263 conditionally neutral (panel 1). Additionally, this model may serve to characterize complex interactions, such as conditional
264 symbiosis where a host fitness is reduced to zero without a microbiome (taxon or function) in a particular environment (panel o).

265 Figure 2. Extracting the GEMs from the simplified GEM experiment: (Panel a) In thisin vitro experiment, the contribution of
266 G, E, M and their interactions were investigated in a fully factorial design. (Panel b) In total, two tomato genotypes, two
267 environments and one microbe treatment were investigated. Various plant phenotypes were measured, but for clarity, only the
268  average dry root mass of each treatment are visualized here. (Panel ¢) The GEM model shows that G, E, M, GM and GEM all
269 contribute significantly to root mass. The ANOVA table displays the reported Df (Degrees of freedom), Sum sq (Sum-of-squares),
270  Mean sq (Mean some-of-squares), the F-value (the test statistic of an ANOVA), Pr(>F) (the p-value), and Signif. (a visual
271 indication of the level of significance). (Panel d) Here we present the ANOVA outcome showing the percent of the total sum of
272 squares for dry shoot mass, dry root mass and root length. For shoot mass, plant genotype explained the greatest portion of
273 variance. In contrast, both E and M explained a greater amount of variation than plant genotype for root length. Importantly, for
274 each of the three plant phenotypic parameters measured, GM explained a greater amount of variation than GE.
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