

1 **Bacteriophages inhibit biofilms formed by multi-drug resistant bacteria isolated from septic
2 wounds**

3 Roja Rani Pallavali¹, Vijaya Lakshmi Degati², Vijaya Raghava Prasad Durbaka^{3*}

4 ^{1,2,3} Yogi Vemana University, Dept. of Microbiology, Kadapa, A.P-516005, India

5 p.rojarani.virology@gmail.com, dvlyvu@gmail.com, *dvrp@yogivemanauniversity.ac.in

6 **ABSTRACT**

9 Globally, indiscriminate use of antibiotics contributed to the development of antibiotic resistance
10 by the majority of microbial pathogens. As an alternative to antibiotics, using bacteriophages as
11 antibiofilm agents to tackle multi-drug resistant bacteria has gained importance in recent years. In
12 the present study, we explored the ability of bacteriophages to inhibit biofilm formation under
13 various conditions. Under dynamic condition (DR), wherein the medium is a renewal for every
14 12 h amount of biomass produced (0.74 ± 0.039), \log_{10} CFU count (6.3 ± 0.55) was highest when
15 compared to other physical conditions tested. Biomass of biofilms produced by *Staphylococcus*
16 *aureus*, *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, and *Escherichia coli* drastically
17 reduced when incubated for 2 or 4 h with bacteriophages vB_SAnS_SADP1, vB_PAnP_PADP4,
18 vB_KPnM_KPDP1, and vB_ECnM_ECDP3 respectively at the time points tested (24, 48 and 72
19 h). Among the phages, vB_ECnM_ECDP3 effectively inhibited the biomass of biofilm when
20 incubated for 2 h (0.35 ± 0.04 , (44 %) ($p < 0.0001$) or 4 h (0.17 ± 0.015 , (21.5%) ($p < 0.0001$)).
21 Bacteriophages of *E. coli* (vB_ECnM_ECDP3) *P. aeruginosa* (vB_PAnP_PADP4), *K.*
22 *pneumoniae* (vB_KPnM_KPDP1) and *S. aureus* (vB_SAnS_SADP1) also significantly inhibited
23 the biomass of biofilm formation as evidenced by Scanning Electron Microscopy and Confocal
24 laser scanning microscopy.

25

26

Introduction

27 Most multi-drug resistant microorganisms develop biofilms on the sites of wounds, posing
28 difficulties in treatment with available antibiotics and thereby causing morbidity or mortality in
29 infected patients (Karthik, 2014; Jin et al., 2019; Yuan et al., 2019). Biofilms are formed by the
30 association of a variety of complex extracellular components such as polysaccharides, proteins,
31 lipids, toxins, metabolites and DNA (Chan and Abedon, 2015; Sharma et al., 2016). Biofilms
32 always tend to adhere to reliable support for maintaining structural integrity (Deshpande Kaistha
33 and Kaistha, 2017; Liu and Yang, 2019). Pathogenic bacterial biofilms are associated with both
34 acute and chronic infectious sites and provide protection to the bacteria from antimicrobial
35 agents; since the drugs cannot penetrate this structural barrier (Costerton et al., 2003; Deshpande
36 Kaistha and Kaistha, 2017). Therefore, pathogenic bacteria that form biofilms develop antibiotic
37 resistance and are often found to be very difficult to be eliminated by the conventional antibiotics
38 (Nouraldin et al., 2016; Oliveira et al., 2017; Fang et al., 2018).

39 Contrary to the planktonic bacterial cells, pathogenic bacterial communities in the extracellular
40 matrix usually exhibit distinct features such as: a) intercellular signals between the community
41 (quorum sensing) (Sharma et al., 2016), which regulates the maturation and detachment of the
42 biofilms; b) activation of secondary messengers, which plays a role in the formation of biofilms,
43 flagellar movements and production of extracellular polysaccharides (Hoggarth et al., 2019) and
44 c) expression of DNA-binding proteins, amyloid and amyloid-like proteins, Biofilm Associated
45 Proteins (Bap), and critical proteins which play a significant role in the establishment of the
46 matrix association for the bacteria to encase in biofilms (Zhu et al., 2002; Le et al., 2013; Gondil
47 and Chhibber, 2018; Schiffer et al., 2019). Formation of biofilms depends on both internal and
48 external factors such as moist surface, energy source at the wound site, type of bacterial
49 interaction, availability of receptors on bacteria for its attachment, temperature, pH and other
50 factors (Merckoll et al., 2009; Bessa et al., 2015; Zhang et al., 2018). Hence, interventions at any
51 of the unique features of pathogenic bacterial communities using unconventional bacterial
52 clearing agents (bacteriophages) might provide newer strategies for the management of
53 pathogenic diseases (Alharbi and Zayed, 2014; Vinodkumar et al.; Kumari et al., 2009; Dias et
54 al., 2013).

55 Bacteriophage based therapy has been in practice for several years (Summers, 2001; Sillankorva
56 et al., 2008; Burrowes et al., 2011; Golkar et al., 2014; Dalmasso et al., 2016). Bacteriophages
57 also have been used as therapeutics for the treatment of bacterial diseases in plants, animals, as
58 well as in humans (Delfan et al., 2012; Azizian et al., 2013; Zaczek et al., 2015). Bacteriophages
59 when delivered at the infection site can replicate to produce a large number of active progeny,
60 which in turn produce elution factors and degrading enzymes that target the polysaccharide
61 components of the host bacteria, leading to bacterial lysis (Ghannad and Mohammadi, 2012;
62 Vieira et al., 2012; Nouraldin et al., 2016). Though many studies have shown bacteriophage
63 mediated mechanism of biofilm degradation, very few studies have used biofilms formed by
64 clinical isolates (Pires et al., 2011; Danis-Wlodarczyk et al., 2015; Deshpande Kaistha and
65 Kaistha, 2017; Oliveira et al., 2017; Ribeiro et al., 2018). Hence, there is an urgent need to
66 identify bacteriophages that can act on the biofilms formed by bacteria isolated from wounds.

67 In this study, we investigated the ability of bacteriophages to degrade biofilms formed by
68 single species pathogenic bacteria under different physical conditions (static and dynamic with
69 and without renewal of media for every 12 h of incubation). Single species bacteria used in this
70 study could form colony-forming units and biofilms with the maximum biomasses under the DR

71 condition, i.e., dynamic condition with the renewal of media for every 12 h of incubation.
72 Scanning and confocal electron microscopic studies indicated the inhibitory effect of respective
73 bacteriophages on gram-positive (*S. aureus*) and gram-negative (*P. aeruginosa*, *E. coli*, and *K.*
74 *pneumoniae*) bacterial biofilm biomasses. Our observations provide information that supports the
75 ongoing efforts for establishing bacteriophages as antibiofilm agents against multi-drug resistant
76 bacteria.

77 **Results**

78 **Characterization of bacteriophages**

79 For practical purposes, the phages were named based on Ackerman classification, which relies on
80 the morphology of tail features (Ackermann, 2001; Ackermann et al., 2015). Morphological
81 features of phages vB_PAnP_PADP4, vB_ECnM_ECDP3, vB_KPnM_KPDP1, and
82 vB_SAnS_SADP1 as observed by Transmission Electron Microscopy are shown in **Figures 1A,**
83 **1B, 1C and 1D** respectively. The one-step growth curve of vB_PAnP_PADP4,
84 vB_ECnM_ECDP3, vB_KPnM_KPDP1, and vB_SAnS_SADP1 are shown in Figures **1E, 1F,**
85 **1G and 1H** respectively. The morphological features, latent period, and the burst size obtained
86 basing on TEM, and the one-step growth curve is presented in Table 1.

87

88 **TABLE 1. Features of bacteriophages used in this study**

89

90 **Stability of phages**

91 The stability of vB_PAnP_PADP4, vB_ECnM_ECDP3, vB_KPnM_KPDP1, and
92 vB_SAnS_SADP1 was investigated under different thermal and pH conditions. The percentage
93 survival of phages were reduced by one order of magnitude after 60 and 90 min incubation
94 periods at 40°C, 50°C, and 60°C (**Supplementary Figure 1A-D**), and the stability of phages at
95 different range of pH showed that the phages were stable within the pH range 6 to 8 and showed
96 100 % activity (**Supplementary Figure 1E-H**). For all the phages tested, incubation at pH 5 and
97 9 caused 1 log decrease in the plaque-forming unit after 1 h, and incubation at pH 4 and 10
98 caused a 10-fold decrease in the plaque-forming units after 1h. Significant inactivation was
99 observed at pH 2.0, and pH 12 for all the phages and some phages of vB_PAnP_PADP4,
100 vB_ECnM_ECDP3, vB_KPnM_KPDP1, and vB_SAnS_SADP1 retain activity at pH 3 to pH 11
101 at different time intervals of 30, 60 and 90 min, the phages showed variations in their survival
102 rate at various temperature and pH. The results suggest that extreme temperatures and pH
103 conditions affect the stability of phages.

104 **Qualitative determination of biofilm formation of MDR-bacterial isolates**

105 Previously isolated and screened MDR-bacteria from wound infections (Pallavali et al., 2017)
106 were used for the qualitative determination of biofilm formation by various methods.
107 **Supplementary Figure 2A, 2B, 2C, and 2D** show the representative biofilm formation on
108 Congo red agar plates, 96 well culture plates, test tubes, and single-line well culture plates
109 methods, respectively. The number of bacterial isolates that can form strong to moderate or weak
110 biofilm is presented in **Figure 2A** basing on the intensity of color developed. The strength of
111 color developed in a crystal violet staining test as a result of strong or moderate or weak biofilm
112 formation is shown in **Figure 2B**. Among the total bacterial isolates used in this study, 28 strains
113 of the four pathogens showed 64.26%, 24.99%, and 10.71% strong, moderate, and weak biofilm

114 formation, respectively. Statistical comparisons among strong, moderate, and weak biofilm
115 formers are presented in **supplementary Table 1**.

116

117 **CFU count and biomasses of the bacterial biofilms under various physical conditions**

118

119 The dynamic condition with the renewal of media for every 12 h (DR) produced the highest CFU
120 count and biomass than the remaining conditions, i.e., DNR and SR at different time intervals of
121 24, 48, 72, and 96 h (**Figure 3A**). *E. coli* and *K. pneumoniae* (6.3 ± 0.55) at 48 h of incubation
122 under DR condition have the more \log_{10} CFU count than the remaining conditions. Interestingly
123 under SR condition at 48 h of incubation, *P. aeruginosa* (4.3 ± 0.66) has a higher CFU than the
124 remaining bacteria, whereas under DNR condition at 24 h of incubation *S. aureus* (3.5 ± 0.30)
125 had the highest CFU than the remaining bacteria. In almost all cases, after 72 h of incubation,
126 reduction in CFU count was noticed, and in SR condition, *E. coli* and *K. pneumoniae* (1.6 ± 0.21)
127 recorded the least CFU count than the remaining organisms used in the study. The mean log of
128 CFU/mL of the single species bacteria at various conditions such as in SR, DNR, and DR showed
129 the statistically significant at $p < 0.05$ by one way ANOVA (with p value = 0.0089 and R square
130 value = 0.4912) (**Supplementary Table 2**).

131

132 The biomasses of bacterial biofilms at various conditions (SR, DNR, and DR) and different
133 incubation periods (24, 48, 76, and 92 h) are shown in **Figure 3B**. DR condition produced a high
134 amount of biomass compared to other conditions. *E. coli* produced a high amount of biomass
135 (0.74 ± 0.03) than the other bacteria in all the conditions. *P. aeruginosa* produced the least
136 amount of biomass (0.13 ± 0.021) under DNR conditions than the remaining tested bacteria.
137 Repeated measures ANOVA was performed to analyze the biomass of the single species biofilm
138 biomasses with statistical significant at $P < 0.05$ (with $p = 0.005$, R square = 0.8257)
139 (**Supplementary Table 3**).

140

141 **Determination of biomasses of bacterial biofilm before and after respective phage treatment**

142

143 The lytic activity on biofilms formed by *P. aeruginosa*, *E. coli*, *K. pneumoniae* and *S. aureus*, by
144 vB_PAnP_PADP4, vB_ECnM_ECDP3, vB_KPnM_KPDP1, and vB_SAnS_SADP1 respectively
145 were evaluated by quantification of biofilm biomasses using crystal violet assay. Biomasses of
146 single-species biofilms with (for 2 or 4 h) or without phage treatment obtained after 24, 48, 76,
147 and 92 h after treatment are presented in **Figure 4**. The amount of biomass production by *P.*
148 *aeruginosa* was significantly reduced at all the time points tested and in all the physical
149 conditions when treated with the respective phage for 2 (**Figure 4A**). The reduction was more
150 pronounced when incubated with the phage for 4 hours. Biomass of *P. aeruginosa* at static
151 conditions (SR) was high (1 ± 0.0) and the lytic activity of phage vB_PAnP_PADP4 at 2 h (0.057
152 ± 0.03) (57%), and at 4 h (0.0238 ± 0.02) (23%), was observed which indicates a twofold
153 reduction in biomass. In DNR conditions, the biomass obtained (0.86 ± 0.03) (86%) at 24 h was
154 significantly reduced due to high lytic activity due to 2 h (0.39 ± 0.031) (31%) or 4 h ($0.19 \pm$
155 0.026) (19%) treatment by phage vB_PAnP_PADP4. One way ANOVA was performed to
156 analyze the biomass of 2, 4 h incubation with phage vB_PAnP_PADP4 at 24, 48 72 and 96 h

157 incubation of *P. aeruginosa* biomass is statistical significant at $P < 0.05$ ($p < 0.0001$, R square
158 value = 0.7891) and Bonferroni's Multiple Comparison Test were performed to compare the 2, 4
159 h phage action at 24, 48, 76 and 92 h biofilm and is statistically significant at $P < 0.005$
160 (**Supplementary Table 4A**).

161
162 The biomass of the three other MDR-bacterial pathogens under SR, DNR, and DR conditions
163 were also obtained (Figure 4B, C, and D). A high range of activity was noticed with *S. aureus*
164 (Figure 4B) with the highest biomass at 48 and 72 h under SR condition, at 48 h (0.89 ± 0.03)
165 under DNR and 48 h under DR conditions. Highest lytic activity was recorded at 4 h of
166 incubation with SA DP1 (0.121 ± 0.08 , 0.12 ± 0.051) (12%) and is statistically significant at $P <$
167 0.05 with p -value = <0.001 , R square value = 0.8857 (**Supplementary Table 4B**). For *K.*
168 *pneumoniae* (Figure 4C), high biomass was observed under SR condition at 48 h and high lytic
169 activity at 2 h (0.48 ± 0.03) (48%) and 4 h (0.21 ± 0.02) (21%) with phage KP DP1. Under DNR
170 condition at 48 h (0.86 ± 0.038) whereas under DR maximum effect on biomass and lytic activity
171 was observed at 48 h with similar activity noticed at 4 h (0.19 ± 0.02) (19%) with significant
172 value of $P < 0.05$, R square value = 0.8293 (**Supplementary Table 4C**). *E. coli* (Figure 4D))
173 bacteria showed the maximum extent of biomass at 48 h without phage application, whereas upon
174 2 h phage infection, the biomass was 0.47 ± 0.21 (47%) and it was 0.21 ± 0.02 (21%) when
175 infected for 4 hours with EC DP3 (**Supplementary Table 4D**).

176
177 **Biofilm eradication by bacteriophages was analyzed by SEM and CLSM**
178 Since biofilms incubated for 2 or 4 h with phages showed decreased biomass and lysis, we used
179 SEM and CLSM to gather more evidence on the morphological changes that occur during this
180 process. *P. aeruginosa*, *S. aureus*, *K. pneumoniae*, and *E. coli* treated with respective phages
181 under dynamic conditions (**Figures 6A, B, C, and D**) exhibited lesser biofilm formation when
182 compared to untreated control. Treatment with respective phages resulted in a significant
183 inhibition in biomass formation (**Figure 6 A1, B1, C1, and D1**). MDR-bacteria, when were
184 grown under static conditions (**Figure 7**), showed biofilm formation to a more significant extent
185 when compared to dynamic conditions (**Figure 7A, B, C, and D**). When these samples were
186 subjected to lytic phages, destruction in the biofilm architecture with clear areas were observed in
187 all the four cases (**Figure 7A1, B1, C1, and D1**).

188 The ability of bacteriophages to inhibit biofilm formation and the associated structural
189 changes were also evaluated by confocal microscopy. (**Figure 8A1, B1, C1 and D1**) The
190 arbitrary numbers of dead cells (red-colored) in the biofilm were evident due to bacteriophage
191 treatment for 2 h of incubation (**Figure 8A2, B2, C2 and D2**) and 4 h of incubation (**Figure 8A,**
192 **B, C, and D**). These results prove that phages effectively inhibit the biomasses of biofilms
193 *invitro*.

194
195 **MATERIALS AND METHODS**

196 **Bacteria, Bacteriophages and growth conditions**

197 MDR-bacterial isolates were isolated from patients suffering from burn wounds or post-
198 operative wounds, or diabetic surgical wounds. Isolation of bacteria and bacteriophages, selection
199 of phages against MDR-bacteria, and screening of multidrug-resistant bacteria were carried out as

200 described previously (Pallavali et al., 2017). Briefly, pus swab samples from the human subjects
201 were collected while dressing the wounds. Informed consent was obtained from the patient or the
202 guardian in case the patient is a minor. *P. aeruginosa* yvu1 (Genbank: KY018605.1), *S. aureus*
203 yvu2 (Genbank: KY496615.1), *K. pneumoniae* yvu3 (Genbank: KY496614.1) and *Escherichia*
204 *coli* yvu4 were selected and grown on Luria agar (Himedia, Mumbai, India), at 37°C.
205 Bacteriophages vB_PAnP_PADP4 for *P. aeruginosa*, vB_ECnM_ECDP3 for *E. coli*,
206 vB_KPnM_KPDP1 for *K. pneumoniae* and phage vB_SAnS_SADP1 for *S. aureus* were isolated
207 and characterized. The bacteriophages were stored in salts of magnesium buffer (5.8gL⁻¹NaCl,
208 2gL⁻¹ MgSO₄.7H₂O, 1M Tris HCl pH 7.5) at 4°C. Biofilms were grown in brain heart infusion
209 broth media with 5% glucose at 37°C, under various conditions such as dynamic condition
210 without renewal of media for every 12 h (DNR), dynamic condition with renewal of media for
211 every 12 h (DR) and static condition with renewal of media for every 12 h (SR) for 24 h to 96 h.
212 Growing bacteria detected biofilm formations on Congo red agar media, test tube adherence test,
213 and microtiter plate methods. The biofilm staining before and after phage treatment on the
214 coverslip was performed using Film Tracer™ LIVE/DEAD® Biofilm viability kit (Molecular
215 Probes, Life Technologies Ltd) according to the manufacturer's instructions. This study was
216 approved by the Institutional Ethics Committee (IEC) of Yogi Vemana University
217 (IEC/YVU/DVRP dt 11/10/2014)

218

219 **Characterization of Bacteriophages**

220 **Transmission electron microscopy**

221 Transmission electron microscopy (TEM) was carried out to determine the morphological
222 features of bacteriophages used in this study. TEM analysis was carried out with FEI Tecnai G2
223 S-Twin (Hillsboro, Oregon, US). The isolated bacteriophage filtrate was passed through 0.45-
224 micron filters (Hi-Media, Mumbai) and concentrated by centrifugation at 30,000 g for 60 min
225 (Beckmann Coulter Benchtop centrifuge, USA) the pellet obtained was mixed with the 5 ml of
226 SM buffer. 5 µL of phage filtrates were placed on formvar coated 200 x 200 copper grids. Excess
227 phage filtrates were removed with filter paper from the edges of the grid. 5 µL of 0.5% uranyl
228 acetate was then applied to the grids, and excess solution was immediately removed, and grids
229 were air-dried. Samples were viewed with the FEI Tecnai G2 S-Twin Transmission Electron at
230 an operating voltage at 80 KV (Sangha et al., 2014; Kwiatek et al., 2015; Stalin and Srinivasan,
231 2016).

232

233 **Single-step growth curve of bacteriophages**

234 One step or single-step growth curves were generated to determine the latent period and burst
235 size of the bacteriophages as described (Cave et al., 1985; Skurnik et al., 2007). In brief, 50 mL
236 of selected MDR-bacterial cultures were incubated to mid-exponential phase ($A_{600} = 0.6$), and
237 cells were harvested by centrifugation at 10,000 g for 30 sec at 4°C. The pellets were re-
238 suspended in 0.5 mL of LB media and mixed with 0.5 mL of the phage filtrates having a plaque-
239 forming unit (PFU) of 1×10^9 PFU. This mixture was allowed to stand for 3 min at 37°C to
240 facilitate phage adsorption on to the host cells. The mixture was then centrifuged at 13,000 g for
241 2 min to remove the free phage particles. The pellet was re-suspended in 100 mL of LB medium,
242 and culture was incubated at 37°C with shaking at 150 rpm. Samples were taken after every 5
243 min up to 70 min and after centrifugation at 13,000 g for 1 min, subjected to determination of

244 phage titer by double-layer agar method. The assay was performed in triplicates. The latent
245 period was defined as the time interval between the adsorption and the beginning of the initial
246 rise in the phage count. The burst size of respective phages was calculated as the ratio of the final
247 phage titer to the initial count of infected bacterial cells during the latent period (Agudelo Suárez
248 et al., 2002; Kwiatek et al., 2015).

249

250 **Thermal and pH stability of phages**

251 Thermal stability tests were performed according to the method described (Karumidze et al.,
252 2013; Mishra et al., 2014; Piracha et al., 2014). Phage filtrates (1×10^9 PFU) were taken in
253 micro-centrifuge tubes and treated at different temperatures (37°C, 40°C, 50°C, 60°C and 70°C)
254 for 0, 30, 60 and 90 min. Bacteriophage grown at 37°C was considered as control. After
255 incubation, the double-layer agar method was performed for each treated sample to evaluate their
256 lytic ability of phages (Al-Mola and Al-Yassari, 2010; Madsen et al., 2013; Mishra et al., 2014;
257 Silva et al., 2014). For the pH stability assay, phage filtrates (1×10^9 PFU/mL) was inoculated in
258 a series of tubes containing SM buffer at pH 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 and 11.0 and
259 incubated at 37°C for 4 h. Bacteriophage grown at pH 7.0 was considered as control. After
260 incubation double-layer agar method was performed for each treated sample to evaluate their
261 lytic ability of phages. All assays were performed in triplicates, and the results were tabulated.

262 **Qualitative determination of biofilm formation**

263 **Test tube method**

264 The establishment of biofilm was achieved by the tube adherence test (Christensen et al.,
265 1985). Briefly, 10 mL of brain heart infusion broth (Himedia, Mumbai) was inoculated with *P.*
266 *aeruginosa* or *S. aureus* or *E. coli* or *K. pneumoniae* ($\sim 10^6$ cells) and incubated for 24 h at 37°C
267 with 130 rpm. After incubation, the medium was removed, and the tubes were washed twice with
268 PBS (pH 7.4). The tubes were stained using 0.1% crystal violet and air-dried for 24 h. The
269 presence of stained layer material adhered to the inner wall of the tube indicates biofilm
270 formation.

271 **Congo red agar method**

272 Biofilm formation was also detected by Congo Red agar method (Christensen et al., 1985;
273 Harper et al., 2014). *P. aeruginosa* or *S. aureus* or *E. coli* or *K. pneumoniae* from septic wounds
274 were cultured on the BHI broth (Hi-Media, Mumbai) with the addition of 0.08% Congo red
275 (Kmphasol, Mumbai) supplemented with 1% glucose. The bacterial isolates were streaked on
276 BHI agar medium and incubated at 37°C for 24 to 48 h. After incubation, the plates were
277 observed for phenotypic characterization, change in the color of the colony formation. Biofilm
278 formers appear in black on Congo red agar, whereas non-biofilm producers appear red.

279 **Microtiter plate method**

280 Biofilm formation was investigated by a semi-quantitative method using 96 well flat bottom
281 tissue culture plates (Sanchez et al., 2013; Cassat et al., 2014). Overnight bacterial suspensions
282 made in BHI broth with 1% glucose and grown to mid-log phase ($A_{600} = 0.1$) (10^6 CFU/mL).
283 One hundred μ L of bacterial suspension was then inoculated into each well and incubated
284 overnight at 37°C for 48 h. After the incubation, the plates were gently aspirated and washed with
285 1X PBS (pH 7.4) followed by staining with 100 μ L of 0.1% crystal violet (Qualigens, Mumbai)
286 for 30 min at room temperature. Excess crystal violet was removed by gently washing with water.

287 In the present assay, the biofilms that were fixed using crystal violet were dissolved in 95%
288 ethanol. The biofilm was quantified by measuring the absorbance of the supernatant at 570 nm.
289 Biofilm assays were performed in triplicate for each bacterial strain tested, and their mean
290 absorbance values were determined and distinguished them as strong (> 0.24), moderate (0.12 to
291 0.24), weak (0.05 to 0.12) and zero biofilm formers (< 0.05) based on their O.D values at 570 nm
292 (Sanchez et al., 2013; Yadav et al., 2015; Zameer et al., 2016).

293

294 **Biofilm formation in 24 well tissue culture plates**

295 Overnight cultures of *P. aeruginosa* or *S. aureus* or *E. coli* or *K. pneumoniae* were diluted
296 to 10^6 CFU/mL into fresh BHI broth supplemented with 1% glucose (BHIG). 100 μ L of each
297 culture was diluted with 100 μ L of BHIG and placed into each well of 24 well plates. Three
298 different experimental conditions were applied: a) Static condition (SR) with renewal of media
299 for every 12 h without shaking; b) Dynamic condition (DNR) without renewal of media and
300 shaking at 130 rpm; and c) Dynamic condition (DR) with renewal of media for every 12 h of
301 incubation and shaking at 130 rpm. The development of biofilms was monitored after 24 to 96 h
302 after incubation.

303 After incubation, the planktonic bacteria were washed off with PBS buffer (pH 7.4)
304 subsequently four times, and biofilms were fixed with 200 μ L of methanol for 15 min, followed
305 by the addition of crystal violet (Qualigens, Mumbai) and incubated for 15 min. The wells were
306 then washed with water and dried for 2 h at room temperature. 200 μ L of ethanol (95%) was
307 added to dissolve the stain. The absorbance of eluted stain was measured at 570 nm in a
308 spectrophotometer (Bio-Rad Laboratories, Hercules, CA, USA). All the measurements were made
309 with samples obtained from triplicate experiments (Sillankorva et al., 2010; Cassat et al., 2014;
310 AbbatIELLO et al., 2018).

311

312 For the determination of colony-forming units, the adhered cells were collected by
313 scratching the bottom of the well ($n = 6$) from each bacterial sample, with a sterile swab and
314 subsequently suspended in 9 mL of PBS buffer by vigorous vortexing for 1 min. Serial dilutions of
315 these suspensions were plated on brain heart infusion agar medium, and the colonies formed were
316 counted and expressed as \log_{10} CFU/mL (AbbatIELLO et al., 2018).

317 **Determination of phage activity on biofilm biomass before and after phage treatment**

318 100 μ L of MDR- bacterial cultures (*P. aeruginosa* or *S. aureus* or *K. pneumonia* or *E. coli*)
319 and 100 μ L of the corresponding bacteriophages (10^9 PFU) were added to each well. Control wells
320 were loaded with 200 μ L of SM buffer. The above sets of cultures were incubated under SR, DNR,
321 and DR conditions for 2 or 4 h at 37°C for the analysis of cultures.

322 After incubation, the planktonic bacteria were removed by washing twice with PBS buffer.
323 The total biomass attached to each well in 24 well tissue culture plates were measured by crystal
324 violet assay. The wells were washed four times with PBS (pH 7.4), and then biofilms were fixed
325 with 200 μ L of methanol for 15 min. Methanol was removed, and each well was added 200 μ L of
326 crystal violet (1% v/v, Qualigens, Mumbai) and incubated for 15 min. The absorbance of eluted
327 stain was measured at 570 nm in a spectrophotometer (Bio-Rad Laboratories, Hercules, CA, USA),
328 and triplicates were maintained (Pires et al., 2011; Coulter et al., 2014; Fong et al., 2017).

329

330 **Scanning electron microscopy**

331 Biofilms were grown on borosilicate glass coverslips previously placed into the wells of a 24 well
332 microtiter plate. Biofilms formed on the coverslips were incubated with 100 μ L of respective
333 bacteriophages for 4 h. After treatment, the coverslips were washed twice with PBS and dried in an
334 incubator for 20 h at 37°C. The biofilms coated on glass slides were fixed with glutaraldehyde
335 (2.5%) and dehydrated through a series of graded ethanol (30-100%) for 5 minutes. Further, the
336 glass slides were sputtered with gold after critical point drying, and the aggregated biofilms were
337 examined using Scanning electron microscopy (FEI, Tecnai G-2S Twin) (Ceri et al., 1999; Ribeiro
338 et al., 2018).

339

340

341 **Biofilm slide preparation for CLSM**

342 24 h old biofilms of MDR-bacteria and their respective bacteriophage treated (2, 4 h) slides were
343 stained with SYTO ® stain and propidium iodide nucleic acid dyes. The following steps are
344 involved in the staining process. Briefly, a working solution of fluorescent stains was prepared by
345 adding 3 μ L of SYTO® nine stains and 3 μ L of propidium iodide (PI) stain to 1 mL of filter-
346 sterilized water. 200 μ L of staining solution was deposited on a glass coverslip surface coated with
347 biofilms of selected MDR-bacterial isolates treated with respective phages. After 15 min
348 incubation at room temperature in the dark, samples were washed with sterile saline for removing
349 the excess dye and rinsed with water from the base of the support material. In order to minimize
350 the air contact and maintain constant sample moisture conditions, a coverslip was used on the
351 specimen (González et al., 2017). Due to the bacteriolytic activity of phages leads to the disruption
352 of bacterial biofilm integrity and allows the propidium dye and appears in red color and live
353 bacteria present in the biofilm appears in green color. The massive amount of red color is due to
354 the bacteriolytic activity of phages on their respective bacterial biofilms.

355

356 **Confocal Laser Scanning Microscopy**

357 MDR-bacterial biofilms and respective phage treated slides were subjected to CLSM to detect the
358 effect of bacteriophages on the MDR-bacterial biofilms. The staining with FilmTracer™
359 LIVE/DEAD® Biofilm viability kit (Molecular Probes, Life Technologies Ltd) was performed
360 according to the instructions provided by the manufacturer (Ansari et al., 2015; Hu et al., 2015;
361 González et al., 2017).

362 .

363 **Statistical analysis**

364 The data were analyzed using the graph pad prism software (Graph Pad Software Inc, La Jolla,
365 CA, USA). All the values were expressed as mean SD, and a significant difference between
366 variations denoted by p-value <0.05 were estimated Dunn s and Bonferroni's multiple comparison
367 test using one-way ANOVA.

368

369 **Discussion**

370 Biofilm formation is one of the essential survival strategies of many bacteria. This process is
371 characterized by bacterial accumulation and wrapping in the extracellular matrix containing

372 bacteriological societies (Sanchez et al., 2013; Bjarnsholt et al., 2018). In the case of either acute or
373 chronic wound infections or septic wounds, pathogenic bacteria tend to form bacterial biofilms on the
374 surface of the wounded sites, and these colonized bacteria show enhanced resistance to existing
375 antibiotics (Merckoll et al., 2009; Alves et al., 2014). Antimicrobial agents become ineffective since
376 the biofilms encase the bacteria and hinder the movement and infiltration (Lu and Collins, 2007;
377 Burrowes et al., 2011; Sharma et al., 2016). The dual contributions of biofilms, i.e., allowing bacterial
378 survival during starvation and preventing the action of antibiotics, pose a serious to health risk
379 management in people with infectious diseases (Reisner et al., 2014; Gabisoniya et al., 2016).

380 In most scenarios wherein pathogenic bacteria become drug-resistant due to biofilm formation,
381 alternative treatment strategies have gained importance (Nouraldin et al., 2016; Oliveira et al., 2017;
382 Fang et al., 2018). Bacteriophages, which lyse bacteria, are increasingly being identified as alternatives
383 to antibiotics (Dalmasso et al., 2016; Deshpande Kaistha and Kaistha, 2017). Though in the recent years, several
384 studies have projected bacteriophages as potential antibiofilm agents, the mechanisms that underlie
385 their lytic ability, nature of interactions between bacteriophage and biofilm-embedded bacteria are not
386 well reported (Letkiewicz et al., 2010; Bolger-Munro et al., 2013; Abedon, 2015). In the present study,
387 we explored the biofilm-forming ability, CFU count and biomass formation of four pathogenic MDR
388 clinical bacterial isolates and their clearance by bacteriophages under various physical conditions
389 (dynamic with and without renewal of media for every 12 h of incubation and static condition with
390 renewal media for 12 h).

391
392 The bacteriophages isolated against the MDR-bacteria (*P. aeruginosa*, *S. aureus*, *K. pneumonia*,
393 and *K. pneumoniae*) were of sewage origin. Nomenclature of the bacteriophages as
394 vB_SAnS_SADP1, vB_PAnP_PADP4, vB_KPnM_KPDP1, and vB_ECnM_ECDP3 which act
395 on *P. aeruginosa*, *S. aureus*, *K. pneumonia*, and *K. pneumoniae* respectively was done as per
396 standard protocols. The isolated bacteriophages which showed the highest host specificity,
397 thermal and pH stability, less latent period, and high burst size were selected and were named
398 based on their tail morphological studies by using Transmission Electron Microscopy.
399 Bacteriophages against *P. aeruginosa* and *E. coli* were predominant than the remaining phages
400 against the *S. aureus*, *K. pneumonia*. Isolation of bacteriophages against *K. pneumoniae* (Kumari
401 et al., 2010), *E. coli* (Fan et al., 2012), *S. aureus* (Li and Zhang, 2014) *P. aeruginosa* (Piracha et
402 al., 2014) was reported earlier. The methodology and the characterization of bacteriophages
403 (latent period and burst size) followed in this study agrees with the earlier reports. The latent
404 period / burst size for PA DP4, SADP1, KP DP1, and EC DP3 was found to be 20 min / 102, 30
405 min / 126, 20 min / 76 and 15 min / 144 respectively. These parameters for the four
406 bacteriophages are in agreement with previous studies (Larcom and Thaker, 1977; Abedon et al.,
407 2001; Al-Mola and Al-Yassari, 2010; Mateus et al., 2014; Eriksson et al., 2015).

408
409
410 Physiological factors such as temperature, pH play a crucial role in phage – bacterial interactions.
411 Temperature is one of the essential external factors for the phage infectivity because it has a direct
412 effect on the metabolic activities of bacterial cells. Results from this study show that the isolated
413 phages were thermally active even at 40°C, 50°C, and 60°C and phages remaining viable up to
414 60°C after 90 min of incubation. The maximum infectivity was observed at 37°C, and the least
415 infectivity was found at 60°C (Kesik-Szeloch et al., 2013; Piracha et al., 2014; Wang et al., 2016).
416 We also observed that phages displayed maximum infectivity at pH 7, and their optimum range of
417 pH was 6-8, which is similar to the observations made in earlier studies (Taj et al.; Elbreki et al.,

418 2014; Silva et al., 2014). Thus, the isolation, characterization, and testing the lytic activity of
419 bacteriophages isolated in this study at different temperatures and pH confirmed with standard
420 protocols reported earlier.

421
422 According to the recent reports, it is increasingly projected that the phages can be used for the
423 eradication of both oral planktonic and biofilms formed by *Actinomyces naeslundii*,
424 *Aggregatibacter actinomycetemcomitans*, *Enterococcus faecalis*, *Fusobacterium nucleatum*,
425 *Lactobacillus spp.*, *Neisseria spp.*, *Streptococcus spp.*, and *Veillonella spp* (Ceri et al., 1999;
426 Sillankorva et al., 2010; Cornelissen et al., 2011; Khalifa et al., 2018; Shan et al., 2018). The use of
427 a phage cocktail (Phage DRA88 and phage K) exhibited intense lytic activity against the biofilm
428 formed by *S. aureus*. That the environmental bacteriophage, which extensively reduces the biofilm
429 formation by *V. cholera*, is a causal organism of gastroenteritis from freshwater contamination
430 (Naser et al., 2017). In this study, we report the lytic action of vB_PAnP_PADP4,
431 vB_SAnS_SADP1, vB_ECnM_ECDP3, and vB_KPnM_KPDP1, which act on *P. aeruginosa*, *S.*
432 *aureus*, *E. coli*, and *K. pneumoniae*, respectively. Our results add much more evidence to the
433 possible application of bacteriophages for the treatment of wounds infected with pathogenic
434 bacteria.

435
436 Bacteriophages inhibit the biomass of biofilms formed by corresponding host bacteria (Pires et al.,
437 2011; Alves et al., 2014; Taha et al., 2018). Lytic bacteriophages eradicate the biofilms by
438 releasing lytic enzymes (Sutherland et al., 2004; Lu and Collins, 2007; Azeredo and Sutherland,
439 2008). In this study, for evaluation of the lytic action of bacteriophages, two methodologies were
440 employed viz measurement of biomass and enumeration of CFU. In the present study, single-
441 species biofilms of *P. aeruginosa*, *S. aureus*, *K. pneumoniae*, and *E. coli* were exposed to
442 bacteriophages VB_PAnP_PADP4, VB_SAnS_SADP1, VB_KPnM_KPDP1, and
443 VB_ECnM_ECDP3, respectively. About 50 % to 80% inhibition of biomasses formation was
444 observed in a time-dependent manner (2 to 4 hours). Such a reduction in biomass was reported
445 (Webber and Hughes, 2017) wherein the maximum reduction was obtained within 2 h to 5 h,
446 depending on the type of biofilm studied. These results suggest that usage of phages on single-
447 species biofilms can effectively attach to the respective bacterial host cells and destroys the
448 structural integrity of bacteriological populations in the biofilms, and can cause the disassociation
449 of biofilms into individual non-adherent cells which are also subjected for lysis (Tait et al., 2002;
450 Abedon, 2015).

451 In the current study, the effect of bacteriophages on single-species biofilms of MDR-bacteria that
452 were isolated and characterized from septic wounds under various physical conditions were
453 investigated. To the best of our knowledge, we, at this moment, for the first time, report the
454 isolation of prevalent MDR-bacterial isolates from septic wounds comprising a mixture of gram-
455 negative and gram-positive bacteria, which can form biofilms and can be successfully grown on
456 coverslips. Further, we also show that isolated bacteriophages are effective in the elimination of
457 biofilms. A previous study indicated that the eradication of biofilms requires both antibiotics and
458 bacteriophages (Verma et al., 2010). Further, it is suggested that combinational therapy with
459 bacteriophages along with DNase enzymes degrades the biofilm matrix efficiently (Hughes et al.
460 2010). However, our studies demonstrate that the biofilm can be eradicated solely by the
461 bacteriophage itself, which is a significant development in the search for newer agents in place of
462 antibiotics.

463

464

465 Previous studies that focused on biofilm eradication under different physical conditions such as
466 static, dynamic renewal and dynamic non-renewal were reported (Sillankorva et al., 2010;
467 Williams, 2013; Coulter et al., 2014; Sagar et al., 2017). Most of the studies concluded that
468 dynamic conditions are more favorable than the other conditions to access the biofilms. Sillankorva
469 et al. reported that the high phage concentration ØIBB-PF7A bacteriophage could be highly efficient
470 in removing *P. fluorescence* biofilms within 4 h of incubation. The same group also demonstrated
471 that the cell lysis starts faster under dynamic than that of the static conditions, interestingly it was
472 noted that the total relative biofilm reduction was not significant during 4 h in dynamic biofilms as
473 compared to static biofilms. In principle under static conditions, the released progeny will attach to
474 the neighboring bacteria within the biofilms, whereas in case of dynamic conditions, the progeny of
475 virus can target and lyse the entire span of bacterial colonies within the biofilms because of
476 agitation in the experimental setup (Azeredo and Sutherland, 2008; Sillankorva et al., 2010;
477 Azeredo and Sillankorva, 2018). We observed that *K. pneumoniae* and *E. coli* showed a
478 significantly higher number of cells as compared to *P. aeruginosa* and *S. aureus* under DR
479 condition at 48 h of incubation; Under SR condition, significant growth of MDR-bacterial isolates
480 exhibited successful colonization These observations are in correlation with previous studies
481 (Hughes et al. 2010; Ribeiro et al., 2018). While in the case of single-species biofilm formed by *S.*
482 *aureus* and treated with phage (vB_SAnS_SADP1), we noticed degraded biofilm with some single
483 coccus spread on the coverslip.

484 The lytic activity of bacteriophages was examined and confirmed by the CLSM. Disruption of the
485 cell membrane due to lysis leads to penetration of propidium iodide stain, whereas live bacterial
486 cells that are not lysed stain with SYTO®9 appear in green color (Ansari et al., 2015; Hu et al.,
487 2015; González et al., 2017). The application of phages on MDR-bacterial pathogens present in the
488 single species biofilms showed decreased biomass to almost 80%.

489 In conclusion, we report the successful isolation of bacteriophages from sewage samples. Further,
490 it is observed that bacterial biofilm formation by *P. aeruginosa*, *S. aureus*, *K. pneumoniae*, and
491 *E. coli* is best achieved under the dynamic growth condition with media renewal. The same
492 conditions were found to be the best for the maximum lytic activity of bacteriophages. The single
493 species biofilms were effectively inhibited alone by specific lytic bacteriophages with a
494 concomitant reduction in biomass and CFU. SEM and CLSM confirm the physical changes that
495 occur during the bacteriophage mediated lysis. These findings support the possible use of
496 bacteriophages for the development of alternatives to antibiotics for the treatment of wounds
497 infected with MDR bacteria.

498

499 **Legends of Figures**

500

501 **Figure 1. Morphology and one-step growth curve of bacteriophages**

502

503 Phages are negatively stained with the 0.5% Uranyl acetate and visualized with scale bars
504 represented A. vB_PAnP_PADP4 (100 nm), B. vB_ECnM_ECDP3 (50 nm), C.
505 vB_KPnM_KPDP1 (50 nm), and D. vB_SAnS_SADP1 (50 nm) at 80,000 X magnification with
506 transmission electron microscopy. Latent period and burst size of phages as follows, E.
507 vB_PAnP_PADP4 (20 min, 102 / bacterial cell), F. vB_SAnS_SADP1 (30 min, 126/bacterial
508 cell), G. vB_KPnM_KPDP1 (20 min, 76 / bacterial cell) and H. vB_ECnM_ECDP3 (15 min, 144

509 / bacterial cell).

510

511 **Figure 2. Type and Number of bacteria were used in the present study**

512

513 a. The number of bacteria which were used for the present study and b. Based on O.D values
514 differentiated into strong, moderate, and weak biofilm formers.

515

516 **Figure 3. Determination of log CFU counts and biomasses of MDR-bacterial biofilms**

517 A. Determination of \log_{10} colony-forming units of biofilm of *P. aeruginosa*, *S. aureus*, *K.*
518 *pneumoniae*, and *E. coli* at 24, 48, 72, and 96 h of incubation under static and dynamic with and
519 without renewal of media for every 12 h of incubation (SR, DNR, and DR). The bars represent
520 the mean values \pm standard deviations (n = 6), each performed three times. Repeated ANOVA
521 was done by using Graph pad Prism software.

522

523 B. Determination of biofilm biomasses of *P. aeruginosa*, *S. aureus*, *K. pneumoniae*, and *E. coli* at
524 24, 48, 72, and 96 h of incubation under static and dynamic with and without renewal of media
525 for every 12 h of incubation (SR, DNR, and DR). ANOVA Bonferroni's multiple comparison
526 tests were done by using Graph pad Prism software.

527

528 **Figure 4. Bacteriophage lytic action towards their respective bacterial biofilm biomasses at**
529 **2 and 4 h incubation**

530 Bacteriophages vB_PAnP_PADP4 (*P. aeruginosa*), vB_SAnS_SADP1 (*S. aureus*),
531 vB_KPnM_KPDP1 (*K. pneumoniae*), and vB_ECnM_ECDP3 (*E. coli*) inhibited the biomasses
532 of their respective bacteria, at 2 and 4 h of phage incubation in SR, DNR and DR conditions. In
533 all cases phage incubation (at 2 and 4 h) inhibited the biomasses nearly by 50% (2 h) to 80% (4
534 h) at (P < 0.05). ANOVA and Bonferroni's selective comparison tests were done by using Graph
535 pad Prism software.

536

537 **Figure 5. Scanning electron microscopic images of MDR-bacterial biofilms under dynamic**
538 **condition treated with respective bacteriophages**

539

540 Scanning electron micrographs of bacterial biofilms formed under dynamic conditions before and
541 after the application of bacteriophages. A. *E. coli* A1 (vB_ECnM_ECDP3), B. *S. aureus*; B1
542 (vB_SAnS_SADP1), C. *K. pneumoniae*; C1 (vB_KPnM_KPDP1) and D. *P. aeruginosa*
543 (vB_PAnP_PADP4) respectively and treated slides revealed less or little growth on the coverslip
544 after 4 h of respective phage infections.

545

546

547 **Figure 6. Scanning electron microscopic images of MDR-bacterial biofilm under static**
548 **condition treated with respective bacteriophages**

549 Scanning Electron microscopic images of *P. aeruginosa*, *E. coli*, *K. pneumoniae*, and *S. aureus*
550 (A, B, C, and D) biofilm growing on the cover glass slip under static conditions. Control (only
551 biofilm without respective bacteriophages) bacterial biofilms (A, B, C and D) forms the denoted
552 bacterial associations and phage treated groups A1 (vB_PAnP_PADP4), B1
553 (vB_ECnM_ECDP3), C1 (vB_KPnM_KPDP1) and D1 (vB_SAnS_SADP1) have no or little
554 growth on the coverslip after 4 h of respective phage incubation.

555

556

557 **Figure 7. Determination of the lytic effect of bacteriophages on their specific bacterial**
558 **biofilm by CLSM analysis.**

559 The biofilms of MDR- *P. aeruginosa*, *S. aureus*, *K. pneumoniae*, and *E. coli* were stained with
560 SYTO ® 9 (green color indicates live cells) and propidium iodide (red color indicates dead cells).

561 A, B, C, and D, the biofilms were treated with 4 h of phage incubation, A1, B1, C1, and D1 were
562 treated with SM buffer (Control), and A2, B2, C2, and D2 were treated with 2 h of phage
563 incubation. Red stained cells (dead cells) in the slide indicated that the lytic effect of
564 bacteriophages on their respective bacteria. (Scale bars represented 20 μ M-100 μ M).

565

566 **Acknowledgments**

567 The authors are very grateful to the Yogi Vemana University for its facilities. Authors gratefully
568 acknowledge to Dr. Suresh Yenugu, Associate Professor, Department of Animal Biology, Hyderabad
569 Central University, for providing laboratory space and necessary instructions to complete the biofilm
570 analysis part of this work and Department of Nanotechnology and central lab facility for TEM,
571 CLSM, and SEM, University of Hyderabad, Telangana. The author (PRR) gratefully
572 acknowledges UGC for financial support in the form of JRF and SRF. This research did not
573 receive any specific grant from funding agencies in the public, commercial, or not-for-profit
574 sectors.

575

576 **Author contributions statement**

577 RRP and VRPD conceived and designed the experiments. RRP performed the experiments, data
578 collection, and analysis. RRP prepared figures, analysis of results, and tables. RRP drafted the
579 manuscript. RRP, VLD, VRN, KKV analysis, interpretation of findings. RRP, VLD, VRN, KKV,
580 VRPD read and revised the manuscript. All authors were involved in reviewing the manuscript
581 and approval for publication.

582

583 **Additional information**

584 **Competing interest**

585 The authors declare no competing financial and non-financial interests.

586

587 **Reference:**

588 Abbatiello, A., Agarwal, D., Bersin, J., Lahiri, G., Schartz, J., and Volini, E. (2018). Well-being: A
589 strategy and a responsibility. *2018 Deloitte Global Human Capital Trends* 62, 65–70.
590 doi:10.1016/S0168-1605(00)00406-2.

591 Abedon, S. T. (2015). Bacteriophage exploitation of bacterial biofilms: Phage preference for less
592 mature targets? *FEMS Microbiology Letters*. doi:10.1093/femsle/fnv246.

593 Abedon, S. T., Herschler, T. D., and Stopar, D. (2001). Bacteriophage Latent-Period Evolution as a
594 Response to Resource Availability. *Applied and Environmental Microbiology*.
595 doi:10.1128/AEM.67.9.4233-4241.2001.

596 Ackermann, H.-W. (2001). Frequency of morphological phage descriptions in the year 2000 Brief
597 Review. Available at: <http://www.phage.org/names.htm>.

598 Ackermann, H., Kropinski, A., Kuhn, J. H., and Lavigne, R. (2015). Renaming of all phage genera SEE
599 PROFILE. doi:10.13140/RG.2.1.4159.4725.

600 Agudelo Suárez, L. M., Giraldo Giraldo, C. A., Gaviria Londoño, M. B., Sandoval Casilimas, C. A., de
601 los Angeles Rodríguez Gasquez, M., Gallón Londoño, A., et al. (2002). Familias y escuelas de
602 niños (as) con comportamientos agresivos y prosociales: Claves para su intervención, Medellín,

603 Colombia, 2000-2002. *Saludarte* 3, 9–35. doi:10.1128/AEM.68.2.728.

604 Al-Mola, G. A., and Al-Yassari, I. H. (2010). Characterization of *E. coli* phage isolated from sewage.

605 Alharbi, S. A., and Zayed, M. E. (2014). Antibacterial susceptibility of bacteria isolated from burns and
606 wounds of cancer patients. *Journal of Saudi Chemical Society*. doi:10.1016/j.jscs.2011.05.006.

607 Alves, D. R., Gaudion, A., Bean, J. E., Perez Esteban, P., Arnot, T. C., Harper, D. R., et al. (2014).
608 Combined use of bacteriophage K and a novel bacteriophage to reduce *Staphylococcus aureus*
609 biofilm formation. *Applied and Environmental Microbiology* 80, 6694–6703.
610 doi:10.1128/AEM.01789-14.

611 Ansari, M., Khan, H., Khan, A., Cameotra, S., and Alzohairy, M. (2015). Anti-biofilm efficacy of silver
612 nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. *Indian
613 Journal of Medical Microbiology*. doi:10.4103/0255-0857.148402.

614 Azereido, J., and Sillankorva, S. (2018). *Bacteriophage Therapy*. doi:10.1007/978-1-4939-7395-8.

615 Azereido, J., and Sutherland, I. (2008). The Use of Phages for the Removal of Infectious Biofilms.
616 *Current Pharmaceutical Biotechnology*. doi:10.2174/138920108785161604.

617 Azizian, R., Dawood, S., Nasab, M., and Ahmadi, N. A. (2013). Bacteriophage as a Novel Antibacterial
618 Agent in Industry and Medicine.

619 Bessa, L. J., Fazii, P., Di Giulio, M., and Cellini, L. (2015). Bacterial isolates from infected wounds and
620 their antibiotic susceptibility pattern: Some remarks about wound infection. *International Wound
621 Journal*. doi:10.1111/iwj.12049.

622 Bjarnsholt, T., Buhlin, K., Dufr, Y. F., Gomelsky, M., Moroni, A., Ramstedt, M., et al. (2018). Biofilm
623 formation – what we can learn from recent developments. doi:10.1111/joim.12782.

624 Bolger-Munro, M., Cheung, K., Fang, A., and Wang, L. (2013). T4 Bacteriophage Average Burst Size
625 Varies with *Escherichia coli* B23 Cell Culture Age.

626 Burrowes, B., Harper, D. R., Anderson, J., McConville, M., and Enright, M. C. (2011). Bacteriophage
627 therapy: Potential uses in the control of antibiotic-resistant pathogens. *Expert Review of Anti-
628 Infective Therapy*. doi:10.1586/eri.11.90.

629 Cassat, J. E., Smeltzer, M. S., and Lee, C. Y. (2014). Investigation of biofilm formation in clinical
630 isolates of *staphylococcus aureus*. *Methods in Molecular Biology*. doi:10.1007/978-1-62703-664-
631 1_12.

632 Cave, D. R., Hendrickson, F. M., and Huang, A. S. (1985). Defective Interfering Virus Particles
633 Modulate Virulence.

634 Ceri, H., Olson, M. E., Stremick, C., Read, R. R., Morck, D., and Buret, A. (1999). The Calgary
635 Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial
636 biofilms. *Journal of Clinical Microbiology* 37, 1771–1776. doi:10.1111/1469-0691.12651.

637 Chan, B. K., and Abedon, S. T. (2015). Send Orders for Reprints to reprints@benthamscience.net
638 Bacteriophages and their Enzymes in Biofilm Control.

639 Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., Melton, D. M., et al.
640 (1985). * and the Departments of Medicine,2 Microbiology,3 and Pediatrics4 of the University of
641 Tennessee Center for the Health Sciences. Available at: <http://jcm.asm.org/>.

642 Cornelissen, A., Ceyssens, P. J., T'Syen, J., van Praet, H., Noben, J. P., Shaburova, O. V., et al. (2011).

643 The t7-related *pseudomonas putida* phage φ15 displays virion-associated biofilm degradation
644 properties. *PLoS ONE* 6. doi:10.1371/journal.pone.0018597.

645 Costerton, W., Veeh, R., Shirtliff, M., Pasmore, M., Post, C., and Ehrlich, G. (2003). The application of
646 biofilm science to the study and control of chronic bacterial infections. *Journal of Clinical*
647 *Investigation*. doi:10.1172/JCI200320365.

648 Coulter, L. B., McLean, R. J. C., Rohde, R. E., and Aron, G. M. (2014). Effect of bacteriophage
649 infection in combination with tobramycin on the emergence of resistance in *Escherichia coli* and
650 *Pseudomonas aeruginosa* biofilms. *Viruses*. doi:10.3390/v6103778.

651 Dalmasso, M., Strain, R., Neve, H., Franz, C. M. A. P., Cousin, F. J., Ross, R. P., et al. (2016). Three
652 new *Escherichia coli* phages from the human gut show promising potential for phage therapy.
653 *PLoS ONE*. doi:10.1371/journal.pone.0156773.

654 Danis-Włodarczyk, K., Olszak, T., Arabski, M., Wasik, S., Majkowska-Skrobek, G., Augustyniak, D.,
655 et al. (2015). Characterization of the newly isolated lytic bacteriophages KTN6 and KT28 and
656 their efficacy against *pseudomonas aeruginosa* biofilm. *PLoS ONE*.
657 doi:10.1371/journal.pone.0127603.

658 Delfan, A. S., Etemadifar, Z., Bouzari, M., and Emtiazi, G. (2012). Screening of novel bacteriophage
659 infection in *Pseudomonas putida* isolated from potato disease. *Jundishapur Journal of*
660 *Microbiology*. doi:10.5812/jjm.3786.

661 Deshpande Kaistha, S., and Kaistha, S. D. (2017). Citation: Shilpa Deshpande Kaistha.

662 Dias, R. S., Eller, M. R., Duarte, V. S., Pereira, Â. L., Silva, C. C., Mantovani, H. C., et al. (2013). Use
663 of phages against antibiotic-resistant *Staphylococcus aureus* isolated from bovine mastitis 1. *J.*
664 *Anim. Sci* 91, 3928–3937. doi:10.2527/jas2012-5884.

665 Elbreki, M., Ross, R. P., Hill, C., O'Mahony, J., McAuliffe, O., and Coffey, A. (2014). Bacteriophages
666 and Their Derivatives as Biotherapeutic Agents in Disease Prevention and Treatment. *Journal of*
667 *Viruses*. doi:10.1155/2014/382539.

668 Eriksson, H., Maciejewska, B., Latka, A., Majkowska-Skrobek, G., Hellstrand, M., Melefors, Ö., et al.
669 (2015). A suggested new bacteriophage genus, “Kp34likevirus”, within the Autographivirinae
670 subfamily of podoviridae. *Viruses*. doi:10.3390/v7041804.

671 Fan, H., Mi, Z., Fan, J., Zhang, L., Hua, Y., Wang, L., et al. (2012). A fast method for large-scale
672 isolation of phages from hospital sewage using clinical drug-resistant *Escherichia coli*. *African*
673 *Journal of Biotechnology* 11, 6143–6148. doi:10.5897/AJB11.3709.

674 Fang, K., Jin, X., and Hong, S. H. (2018). Probiotic *Escherichia coli* inhibits biofilm formation of
675 pathogenic *E. coli* via extracellular activity of DegP. *Scientific Reports* 8, 1–12.
676 doi:10.1038/s41598-018-23180-1.

677 Fong, S. A., Drilling, A., Morales, S., Cornet, M. E., Woodworth, B. A., Fokkens, W. J., et al. (2017).
678 Activity of Bacteriophages in Removing Biofilms of *Pseudomonas aeruginosa* Isolates from
679 Chronic Rhinosinusitis Patients. *Frontiers in Cellular and Infection Microbiology*.
680 doi:10.3389/fcimb.2017.00418.

681 Gabisoniya, T. G., Loladze, M. Z., Nadiradze, M. M., Chakhunashvili, N. K., Alibegashvili, M. G.,
682 Tamarashvili, N. G., et al. (2016). Effects of bacteriophages on biofilm formation by strains of
683 *Pseudomonas aeruginosa*. *Applied Biochemistry and Microbiology* 52, 293–297.
684 doi:10.1134/S0003683816030042.

685 Ghannad, M. S., and Mohammadi, A. (2012). Bacteriophage: Time to re-evaluate the potential of phage
686 therapy as a promising agent to control multidrug-resistant bacteria. *Iranian Journal of Basic
687 Medical Sciences*.

688 Golkar, Z., Bagasra, O., and Gene Pace, D. (2014). Bacteriophage therapy: A potential solution for the
689 antibiotic resistance crisis. *Journal of Infection in Developing Countries*. doi:10.3855/jidc.3573.

690 Gondil, V. S., and Chhibber, S. (2018). Exploring Potential of Phage Therapy for Tuberculosis Using
691 Model Organism. 9–15. doi:10.4103/bbrj.bbrj.

692 González, S., Fernández, L., Campelo, A. B., Gutiérrez, D., Martínez, B., Rodríguez, A., et al. (2017).
693 The behavior of *Staphylococcus aureus* dual-species biofilms treated with bacteriophage phiIPLA-
694 RODI depends on the accompanying microorganism. *Applied and Environmental Microbiology*.
695 doi:10.1128/AEM.02821-16.

696 Harper, D., Parracho, H., Walker, J., Sharp, R., Hughes, G., Werthén, M., et al. (2014). Bacteriophages
697 and Biofilms. *Antibiotics*. doi:10.3390/antibiotics3030270.

698 Hoggarth, A., Weaver, A., Pu, Q., Huang, T., Schettler, J., and Chen, F. (2019). Mechanistic research
699 holds promise for bacterial vaccines and phage therapies for *Pseudomonas aeruginosa*. 909–924.

700 Hu, H., Johani, K., Gosbell, I. B., Jacombs, A. S. W., Almatroudi, A., Whiteley, G. S., et al. (2015).
701 Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in
702 biofilms: Combined results of conventional culture, pyrosequencing, scanning electron
703 microscopy, and confocal laser microscopy. *Journal of Hospital Infection*.
704 doi:10.1016/j.jhin.2015.05.016.

705 Hughes, K. A., Sutherland2, I. W., and Jones3, M. V Biofilm susceptibility to bacteriophage attack :
706 the role of phage-borne polysaccharide depolymerase. Available at:
707 www.microbiologyresearch.org.

708 Jin, S., Hee, N., Kyung, M., Park, J., Park, E., Hyeon, G., et al. (2019). Microbial Pathogenesis
709 Antibacterial and anti-biofilm activity, and mechanism of action of pleurocidin against drug-
710 resistant *Staphylococcus aureus*. *Microbial Pathogenesis* 127, 70–78.
711 doi:10.1016/j.micpath.2018.11.052.

712 Karthik, K. (2014). Bacteriophages: Effective Alternative to Antibiotics. *Advances in Animal and
713 Veterinary Sciences*. doi:10.14737/journal.aavs/2014/2.3s.1.7.

714 Karumidze, N., Kusradze, I., Rigvava, S., Goderdzishvili, M., Rajakumar, K., and Alavidze, Z. (2013).
715 Isolation and characterisation of lytic bacteriophages of *klebsiella pneumoniae* and *klebsiella
716 oxytoca*. *Current Microbiology*. doi:10.1007/s00284-012-0264-7.

717 Kęsik-Szeloch, A., Drulis-Kawa, Z., Weber-Dąbrowska, B., Kassner, J., Majkowska-Skrobek, G.,
718 Augustyniak, D., et al. (2013). Characterising the biology of novel lytic bacteriophages infecting
719 multidrug resistant *Klebsiella pneumoniae*. *Virology Journal*. doi:10.1186/1743-422X-10-100.

720 Khalifa, L., Gelman, D., Shlezinger, M., Dossal, A. L., Copenhagen-Glazer, S., Beyth, N., et al.
721 (2018). Defeating antibiotic- and phage-resistant *Enterococcus faecalis* using a phage Cocktail in
722 vitro and in a clot model. *Frontiers in Microbiology*. doi:10.3389/fmicb.2018.00326.

723 Kumari, S., Harjai, K., and Chhibber, S. (2009). Bacteriophage Treatment of Burn Wound Infection
724 Caused by *Pseudomonas aeruginosa* PAO in BALB/c Mice. *Am. J. Biomed. Sci* 1, 385–394.
725 doi:10.5099/aj090400385.

726 Kumari, S., Harjai, K., and Chhibber, S. (2010). Isolation and characterization of *Klebsiella*
727 *pneumoniae* specific bacteriophages from sewage samples. *Folia Microbiologica*.
728 doi:10.1007/s12223-010-0032-7.

729 Kwiatak, M., Mizak, L., Parasion, S., Gryko, R., Olander, A., and Niemcewicz, M. (2015).
730 Characterization of five newly isolated bacteriophages active against *Pseudomonas aeruginosa*
731 clinical strains. *Folia Microbiologica*. doi:10.1007/s12223-014-0333-3.

732 Larcom, L. L., and Thaker, N. H. (1977). The effects of temperature and ultraviolet irradiation on
733 multiplication of bacteriophage phi29. *Biophysical Journal*. doi:10.1016/S0006-3495(77)85589-6.

734 Le, S., He, X., Tan, Y., Huang, G., Zhang, L., Lux, R., et al. (2013). Mapping the Tail Fiber as the
735 Receptor Binding Protein Responsible for Differential Host Specificity of *Pseudomonas*
736 *aeruginosa* Bacteriophages PaP1 and JG004. *PLoS ONE*. doi:10.1371/journal.pone.0068562.

737 Letkiewicz, S., Mie, R., Kłak, M., and Jo, E. (2010). IMMUNOLOGY & MEDICAL
738 MICROBIOLOGY. doi:10.1111/j.1574-695X.2010.00723.x.

739 Li, L., and Zhang, Z. (2014). Isolation and characterization of a virulent bacteriophage SPW specific
740 for *Staphylococcus aureus* isolated from bovine mastitis of lactating dairy cattle. *Molecular*
741 *Biology Reports*. doi:10.1007/s11033-014-3457-2.

742 Liu, Y., and Yang, J. (2019). Advances in Research on Resistance Mechanisms of Bacterial Biofilms.
743 8, 2019.

744 Lu, T. K., and Collins, J. J. (2007). Dispersing biofilms with engineered enzymatic bacteriophage.
745 *Proceedings of the National Academy of Sciences*. doi:10.1073/pnas.0704624104.

746 Madsen, L., Bertelsen, S. K., Dalsgaard, I., and Middelboe, M. (2013). Dispersal and survival of
747 *Flavobacterium psychrophilum* phages in vivo in rainbow trout and in vitro under laboratory
748 conditions: Implications for their use in phage therapy. *Applied and Environmental Microbiology*.
749 doi:10.1128/AEM.00509-13.

750 Mateus, L., Costa, L., Silva, Y. J., Pereira, C., Cunha, A., and Almeida, A. (2014). Efficiency of phage
751 cocktails in the inactivation of *Vibrio* in aquaculture. *Aquaculture*.
752 doi:10.1016/j.aquaculture.2014.01.001.

753 Merckoll, P., Jonassen, T. Ø., Vad, M. E., Jeansson, S. L., and Melby, K. K. (2009). Bacteria, biofilm
754 and honey: A study of the effects of honey on “planktonic” and biofilm-embedded chronic wound
755 bacteria. *Scandinavian Journal of Infectious Diseases*. doi:10.1080/00365540902849383.

756 Mishra, A. K., Sharma, N., Kumar, A., Kumar, N., Gundallahalli Bayyappa, M. R., Kumar, S., et al.
757 (2014). Isolation, characterization and therapeutic potential assessment of bacteriophages virulent
758 to *Staphylococcus aureus* associated with goat mastitis. *Iranian Journal of Veterinary Research*.
759 doi:10.1007/978-3-642-20227-8_12.

760 Naser, I. Bin, Hoque, M. M., Abdullah, A., Bari, S. M. N., Ghosh, A. N., and Faruque, S. M. (2017).
761 Environmental bacteriophages active on biofilms and planktonic forms of toxigenic *Vibrio*
762 cholerae: Potential relevance in cholera epidemiology. *PLoS ONE*.
763 doi:10.1371/journal.pone.0180838.

764 Nouradin, A. A. M., Baddour, M. M., Harfoush, R. A. H., and Essa, S. A. M. (2016). Bacteriophage-
765 antibiotic synergism to control planktonic and biofilm producing clinical isolates of *Pseudomonas*
766 *aeruginosa*. *Alexandria Journal of Medicine*. doi:10.1016/j.ajme.2015.05.002.

767 Oliveira, A., Ribeiro, H. G., Silva, A. C., Silva, M. D., Sousa, J. C., Rodrigues, C. F., et al. (2017).
768 Synergistic antimicrobial interaction between honey and phage against *Escherichia coli* biofilms.
769 *Frontiers in Microbiology*. doi:10.3389/fmicb.2017.02407.

770 Piracha, Z. Z., Saeed, U., Khurshid, A., Waqas, &, and Chaudhary, N. (2014). Isolation and Partial
771 Characterization of Virulent Phage Specific against *Pseudomonas Aeruginosa*. *Type: Double Blind*
772 *Peer Reviewed International Research Journal Publisher: Global Journals Inc* 14.

773 Pires, D., Sillankorva, S., Faustino, A., and Azeredo, J. (2011). Use of newly isolated phages for
774 control of *Pseudomonas aeruginosa* PAO1 and ATCC 10145 biofilms. *Research in Microbiology*.
775 doi:10.1016/j.resmic.2011.06.010.

776 Reisner, A., Maierl, M., Jörger, M., Krause, R., Berger, D., Haid, A., et al. (2014). Type 1 fimbriae
777 contribute to catheter-associated urinary tract infections caused by *Escherichia coli*. *Journal of*
778 *Bacteriology*. doi:10.1128/JB.00985-13.

779 Ribeiro, K. V. G., Ribeiro, C., Dias, R. S., Cardoso, S. A., de Paula, S. O., Zanuncio, J. C., et al.
780 (2018). Bacteriophage isolated from sewage eliminates and prevents the establishment of
781 *Escherichia coli* biofilm. *Advanced Pharmaceutical Bulletin*. doi:10.15171/adb.2018.011.

782 Sagar, S. S., Kumar, R., and Kaistha, S. D. (2017). Efficacy of Phage and Ciprofloxacin Co-therapy on
783 the Formation and Eradication of *Pseudomonas aeruginosa* Biofilms. *Arabian Journal for Science*
784 and *Engineering*. doi:10.1007/s13369-016-2194-3.

785 Sanchez, C. J., Mende, K., Beckius, M. L., Akers, K. S., Romano, D. R., Wenke, J. C., et al. (2013).
786 Biofilm formation by clinical isolates and the implications in chronic infections. *BMC Infectious*
787 *Diseases*. doi:10.1186/1471-2334-13-47.

788 Sangha, K. K., Kumar, B. V. S., Agrawal, R. K., Deka, D., and Verma, R. (2014). Proteomic
789 Characterization of Lytic Bacteriophages of *Staphylococcus aureus* Isolated from Sewage Affluent
790 of India. *International Scholarly Research Notices*. doi:10.1155/2014/265298.

791 Schiffer, C., Hilgarth, M., Ehrmann, M., and Vogel, R. F. (2019). Bap and Cell Surface Hydrophobicity
792 Are Important Factors in *Staphylococcus xylosus* Biofilm Formation. 10, 1–10.
793 doi:10.3389/fmicb.2019.01387.

794 Shan, J., Ramachandran, A., Thanki, A. M., Vukusic, F. B. I., Barylski, J., and Clokie, M. R. J. (2018).
795 Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture;
796 Insights from HT-29 cells. *Scientific Reports*. doi:10.1038/s41598-018-23418-y.

797 Sharma, G., Sharma, S., Sharma, P., Chandola, D., Dang, S., Gupta, S., et al. (2016). *Escherichia coli*
798 biofilm: development and therapeutic strategies. *Journal of Applied Microbiology*.
799 doi:10.1111/jam.13078.

800 Sillankorva, S., Neubauer, P., and Azeredo, J. (2008). Isolation and characterization of a T7-like lytic
801 phage for *Pseudomonas fluorescens*. *BMC Biotechnology*. doi:10.1186/1472-6750-8-80.

802 Sillankorva, S., Neubauer, P., and Azeredo, J. (2010). Phage control of dual species biofilms of
803 *Pseudomonas fluorescens* and *Staphylococcus lentus*. *Biofouling* 26, 567–575.
804 doi:10.1080/08927014.2010.494251.

805 Silva, Y. J., Costa, L., Pereira, C., Cunha, Â., Calado, R., Gomes, N. C. M., et al. (2014). Influence of
806 environmental variables in the efficiency of phage therapy in aquaculture. *Microbial*
807 *Biotechnology*. doi:10.1111/1751-7915.12090.

808 Skurnik, M., Pajunen, M., and Kiljunen, S. (2007). Biotechnological challenges of phage therapy.
809 *Biotechnology Letters*. doi:10.1007/s10529-007-9346-1.

810 Stalin, N., and Srinivasan, P. (2016). Characterization of *Vibrio parahaemolyticus* and its specific
811 phage from shrimp pond in Palk Strait, South East coast of India. *Biologicals*.
812 doi:10.1016/j.biologicals.2016.08.003.

813 Summers, W. C. (2001). BACTERIOPHAGE THERAPY.

814 Sutherland, I. W., Hughes, K. A., Skillman, L. C., and Tait, K. (2004). The interaction of phage and
815 biofilms. *FEMS Microbiology Letters*. doi:10.1016/S0378-1097(04)00041-2.

816 Taha, O. A., Connerton, P. L., Connerton, I. F., and El-Shibiny, A. (2018). Bacteriophage ZCKP1: A
817 potential treatment for *Klebsiella pneumoniae* isolated from diabetic foot patients. *Frontiers in*
818 *Microbiology*. doi:10.3389/fmicb.2018.02127.

819 Tait, K., Skillman, L. C., and Sutherland, I. W. (2002). The efficacy of bacteriophage as a method of
820 biofilm eradication. *Biofouling*. doi:10.1080/0892701021000034418.

821 Taj, M. K., Ling, J. X., Bing, L. L., Qi, Z., Taj, I., Hassani, T. M., et al. EFFECT OF DILUTION,
822 TEMPERATURE AND pH ON THE LYSIS ACTIVITY OF T4 PHAGE AGAINST E.COLI
823 BL21.

824 Verma, V., Harjai, K., and Chhibber, S. (2010). Structural changes induced by a lytic bacteriophage
825 make ciprofloxacin effective against older biofilm of *Klebsiella pneumoniae*. *Biofouling* 26, 729–
826 737. doi:10.1080/08927014.2010.511196.

827 Vieira, A., Silva, Y. J., Cunha, Â., Gomes, N. C. M., Ackermann, H. W., and Almeida, A. (2012).
828 Phage therapy to control multidrug-resistant *Pseudomonas aeruginosa* skin infections: In vitro and
829 ex vivo experiments. *European Journal of Clinical Microbiology and Infectious Diseases* 31,
830 3241–3249. doi:10.1007/s10096-012-1691-x.

831 Vinodkumar, C. S., Kalsurmath, S., and Neelagund, Y. F. I N D I A N J O U R N A L O F P A T H O
832 L O G Y A N D M I C R O B I O L O G Y - 5 1 (3) , J U L Y - S E P T E M B E R 2 0 0 8 Utility
833 of lytic bacteriophage in the treatment of multidrug-resistant *Pseudomonas aeruginosa* septicemia
834 in mice. Available at: <http://www.ijpmonline.org>.

835 Wang, Z., Zheng, P., Ji, W., Fu, Q., Wang, H., Yan, Y., et al. (2016). SLPW: A virulent bacteriophage
836 targeting methicillin-resistant *staphylococcus aureus* in vitro and in vivo. *Frontiers in*
837 *Microbiology*. doi:10.3389/fmicb.2016.00934.

838 Webber, M. A., and Hughes, G. (2017). Themed Section: Drug Metabolism and Antibiotic Resistance
839 in Micro-organisms Novel approaches to the treatment of bacterial biofilm infections LINKED
840 ARTICLES. doi:10.1111/bph.v174.14/issuetoc.

841 Williams, H. T. P. (2013). Phage-induced diversification improves host evolvability. *BMC*
842 *Evolutionary Biology*. doi:10.1186/1471-2148-13-17.

843 Yadav, M. K., Chae, S. W., Im, G. J., Chung, J. W., and Song, J. J. (2015). Eugenol: A phyto-
844 compound effective against methicillin-resistant and methicillin-sensitive *Staphylococcus aureus*
845 clinical strain biofilms. *PLoS ONE*. doi:10.1371/journal.pone.0119564.

846 Yuan, Y., Qu, K., Tan, D., Li, X., Wang, L., Cong, C., et al. (2019). Microbial Pathogenesis Isolation
847 and characterization of a bacteriophage and its potential to disrupt multi-drug resistant
848 *Pseudomonas aeruginosa* bio films. *Microbial Pthogenesis* 128, 329–336.

doi:10.1016/j.micpath.2019.01.032.

Zaczek, M., Weber-Dabrowska, B., and Górska, A. (2015). Phages in the global fruit and vegetable industry. *Journal of Applied Microbiology*. doi:10.1111/jam.12700.

Zameer, F., Rukmangada, M. S., Chauhan, J. B., Khanum, S. A., Kumar, P., Devi, A. T., et al. (2016). Evaluation of adhesive and anti-adhesive properties of *Pseudomonas aeruginosa* biofilms and their inhibition by herbal plants. *Iranian Journal of Microbiology*. doi:10.2753/CSA0009-4625430403.

Zhang, G., Zhao, Y., Paramasivan, S., Richter, K., Morales, S., Wormald, P. J., et al. (2018). Bacteriophage effectively kills multidrug resistant *Staphylococcus aureus* clinical isolates from chronic rhinosinusitis patients. *International Forum of Allergy and Rhinology*. doi:10.1002/alr.22046.

Zhu, J., Miller, M. B., Vance, R. E., Dziejman, M., Bassler, B. L., and Mekalanos, J. J. (2002). Quorum-sensing regulators control virulence gene expression in *Vibrio cholerae*. *Proceedings of the National Academy of Sciences*. doi:10.1073/pnas.052694299.

862

863

864

865

866

867

868

869

870

871

872

874

275

876

977

878

879

880

881

882

883

884

885 **Tables**

886

887 **Table . 1 Features of bacteriophages used in this study**

888

889

Host Bacteria →	<i>P. aeruginosa</i>	<i>E. coli</i>	<i>K. pneumoniae</i>	<i>S. aureus</i>
Phage	PA DP4	EC DP3	KP DP1	SA DP1
Name	vB_PAnP_PA DP4	vB_ECnM_ ECDP3	vB_KPnM_ KPDP1	vB_SAnS_S ADP1
Family	Podoviridae	Myoviridae	Myoviridae	Siphoviridae
Capsid (nm)	55.5	65.5	68.2	65.9
Tail length (nm)	7.8	98.5	95.4	130
Latent period	20	15	20	30
Burst Size	102	144	76	126

890

891 **Supplementary Table. 1. Statistical comparion of biofilm formation of used bacterial species in**
892 **the present studies**

893

Table Analyzed	Type of Biofilm formation
Repeated Measures ANOVA	
P value	< 0.0001
P value summary	***
Are means signif. different? (P < 0.05)	Yes
Number of groups	4
F	33.71
R square	0.9183
Was the pairing significantly effective?	
R square	0.1186
F	4.941
P value	0.0269
P value summary	*
Is there significant matching? (P < 0.05)	Yes

ANOVA Table	SS	df	MS			
Treatment (between columns)	95.50	3	31.83			
Individual (between rows)	14.00	3	4.667			
Residual (random)	8.500	9	0.9444			
Total	118.0	15				
Tukey's Multiple Comparison Test	Mean Diff.	q	Significant? P < 0.05?	Summary	95% CI of diff	
Strong vs Moderate	2.750	5.659	Yes	*	0.6047 to 4.895	
Strong vs Weak	3.750	7.717	Yes	**	1.605 to 5.895	
Strong vs total bacterial isolates	-2.500	5.145	Yes	*	-4.645 to -0.3547	
Moderate vs Weak	1.000	2.058	No	ns	-1.145 to 3.145	
Moderate vs total bacterial isolates	-5.250	10.80	Yes	***	-7.395 to -3.105	
Weak vs total bacterial isolates	-6.250	12.86	Yes	***	-8.395 to -4.105	

894 **Supplementary Table. 2** Statistical comparison of Mean log CFU count of bacteria under various
 895 conditions such SR, DNR, and DR

896 .	Table Analyzed	Single species	CFU	
Repeated Measures ANOVA				
898 P value		0.0089		
899 P value summary		**		
900 Are means signif. different? (P < 0.05)		Yes		
901 Number of groups		12		
902 F		2.896		
903 R square		0.4912		
905 Was the pairing significantly effective?				
906 R square		0.3304		
907 F		10.67		
908 P value		< 0.0001		
909 P value summary		***		
910 Is there significant matching? (P < 0.05)		Yes		
912 ANOVA Table	SS	df	MS	
913 Treatment (between columns)	16.24	11	1.476	
914 Individual (between rows)	16.31	3	5.438	
915 Residual (random)	16.82	33	0.5098	
916 Total	49.38	47		

918 **Supplementary Table. 3.** Statistical comparison of Mean log Biomass amount of bacteria under various
 919 conditions such SR, DNR, and DR

920

Table Analyzed	single species biofilm biomass				
Repeated Measures ANOVA					
P value	< 0.0001				
P value summary	***				
Are means signif. different? (P < 0.05)	Yes				
Number of groups	12				
F	14.21				
R square	0.8257				
Was the pairing significantly effective?					
R square	0.1095				
F	7.761				
P value	0.0005				
P value summary	***				
Is there significant matching? (P < 0.05)	Yes				
ANOVA Table	SS	df	MS		
Treatment (between columns)	1.052	11	0.09564		
Individual (between rows)	0.1567	3	0.05222		
Residual (random)	0.2221	33	0.006729		
Total	1.431	47			

923

924 **Supplementary Table. 4A.** Statistical comparison of Mean log Biomass amount of *P. aeruginosa* with
925 2, 4 h of Phage vB_PAnP_PADP4 treatment under various conditions such SR, DNR, and DR.

926

927

928

Table Analyzed	A. PA bp on biofilm				
One-way analysis of variance					
P value	< 0.0001				
P value summary	***				
Are means signif. different? (P < 0.05)	Yes				
Number of groups	3				
F	61.74				
R square	0.7891				
Bartlett's test for equal variances					
Bartlett's statistic (corrected)	13.99				
P value	0.0009				
P value summary	***				
Do the variances differ signif. (P < 0.05)	Yes				
ANOVA Table	SS	df	MS		

Treatment (between columns)	2.285	2	1.142		
Residual (within columns)	0.6106	33	0.01850		
Total	2.895	35			
Bonferroni's Multiple Comparison Test	Mean Diff.	t	Significant? P < 0.05?	Summary	95% CI of diff
0 hrs of phage infection vs 2 hrs of phage infection	0.3748	6.750	Yes	***	0.2444 to 0.5052
0 hrs of phage infection vs 4 hrs of phage infection	0.6119	11.02	Yes	***	0.4815 to 0.7423

929

930

931

932 **Supplementary Table. 4B.** Statistical comparison of Mean log Biomass amount of *Staphylococcus*
933 *aureus* with 2, 4 h of Phage vB_SAnS_SADP1 treatment under various conditions such SR,
934 DNR, and DR.

935

936

Table Analyzed	B. SA bp on biofilm				
One-way analysis of variance					
P value		< 0.0001			
P value summary		***			
Are means signif. different? (P < 0.05)		Yes			
Number of groups		3			
F		127.9			
R square		0.8857			
Bartlett's test for equal variances					
Bartlett's statistic (corrected)		14.57			
P value		0.0007			
P value summary		***			
Do the variances differ signif. (P < 0.05)		Yes			
ANOVA Table					
Treatment (between columns)	SS	df	MS		
3.161	2	1.580			
Residual (within columns)	0.4077	33	0.01236		
Total	3.568	35			
Bonferroni's Multiple Comparison Test					
	Mean Diff.	t	Significant? P < 0.05?	Summary	95% CI of diff
0 hrs of phage infection vs 2 hrs of phage infection	0.4903	10.81	Yes	***	0.3838 to 0.5969
0 hrs of phage infection vs 4 hrs of phage infection	0.7086	15.61	Yes	***	0.6020 to 0.8151

937

938 **Supplementary Table. 4C.** Statistical comparison of Mean log Biomass amount of *Klebsiella*
939 *pneumoniae* with 2, 4 h of Phage vB_KPnM_KPDP1 treatment under various conditions such
940 SR, DNR, and DR.

941
942
943

Table Analyzed	C. KP bp on biofilm				
One-way analysis of variance					
P value	< 0.0001				
P value summary	***				
Are means signif. different? (P < 0.05)	Yes				
Number of groups	3				
F	80.15				
R square	0.8293				
Bartlett's test for equal variances					
Bartlett's statistic (corrected)	13.74				
P value	0.0010				
P value summary	**				
Do the variances differ signif. (P < 0.05)	Yes				
ANOVA Table					
	SS	df	MS		
Treatment (between columns)	2.586	2	1.293		
Residual (within columns)	0.5324	33	0.01613		
Total	3.119	35			
Bonferroni's Multiple Comparison Test					
	Mean Diff.	t	Significant? P < 0.05?	Summary	95% CI of diff
0 hrs of phage infection vs 2 hrs of phage infection	0.4194	8.088	Yes	***	0.2886 to 0.5502
0 hrs of phage infection vs 4 hrs of phage infection	0.6472	12.48	Yes	***	0.5164 to 0.7780
2 hrs of phage infection vs 4 hrs of phage infection	0.2278	4.392	Yes	***	0.09696 to 0.3585

944
945
946
947

948 **Supplementary Table. 4D.** Statistical comparison of Mean log Biomass amount of *Escherichia coli*
949 with 2, 4 h of Phage vB_ECnM_ECDP3 treatment under various conditions such SR, DNR, and
950 DR.

951

Table Analyzed	D. EC bp of Biofilm				
One-way analysis of variance					
P value	< 0.0001				
P value summary	***				
Are means signif. different? (P < 0.05)	Yes				
Number of groups	3				
F	95.58				
R square	0.8528				
Bartlett's test for equal variances					
Bartlett's statistic (corrected)	17.42				
P value	0.0002				
P value summary	***				
Do the variances differ signif. (P < 0.05)	Yes				
ANOVA Table					
	SS	df	MS		
Treatment (between columns)	2.714	2	1.357		
Residual (within columns)	0.4685	33	0.01420		
Total	3.182	35			
Bonferroni's Multiple Comparison Test					
	Mean Diff.	t	Significant?	Summary	95% CI of diff
0 hrs of phage infection vs 2 hrs of phage infection	0.4220	8.676	Yes	***	0.3078 to 0.5362
0 hrs of phage infection vs 4 hrs of phage infection	0.6645	13.66	Yes	***	0.5503 to 0.7787

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

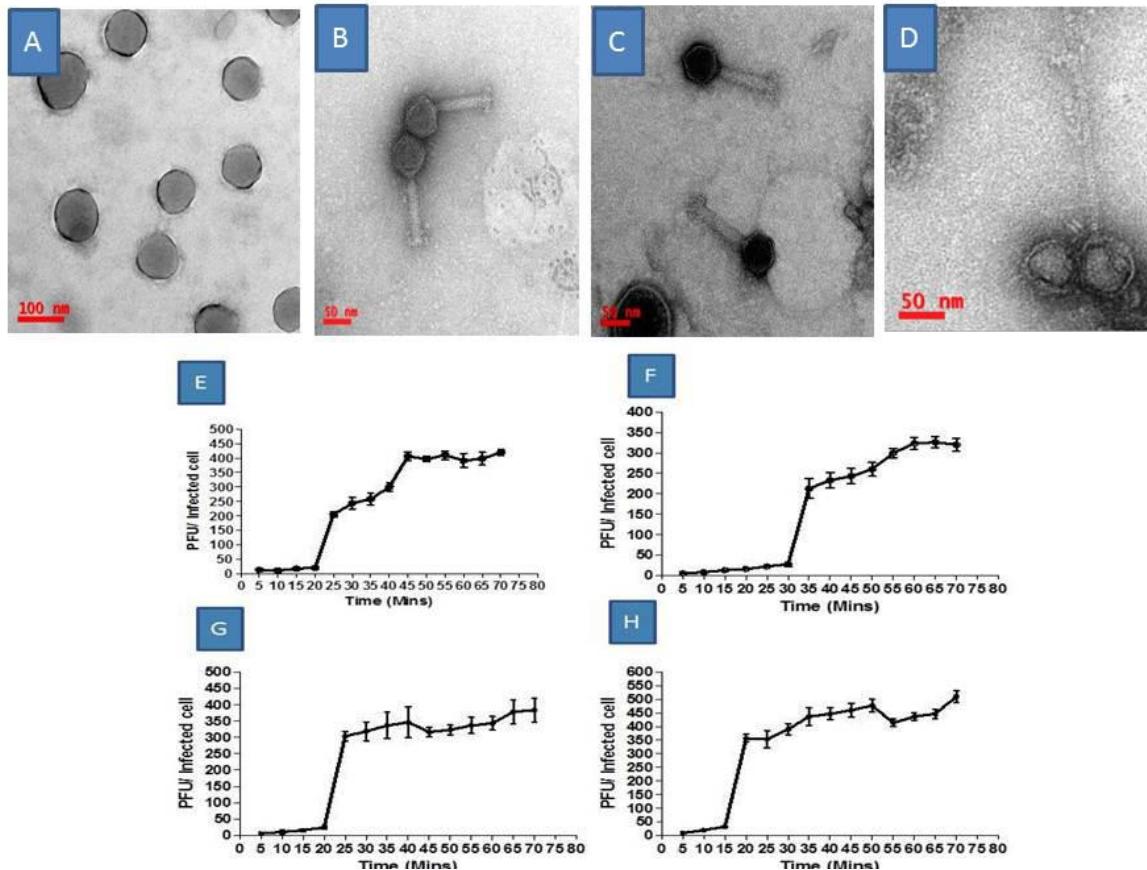
971

972

973

974

975


976

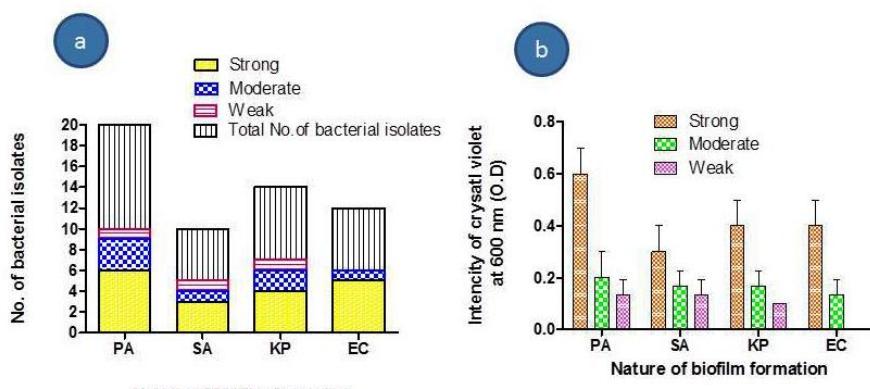
977 **Figures**

978

979 **Figure. 1**

980

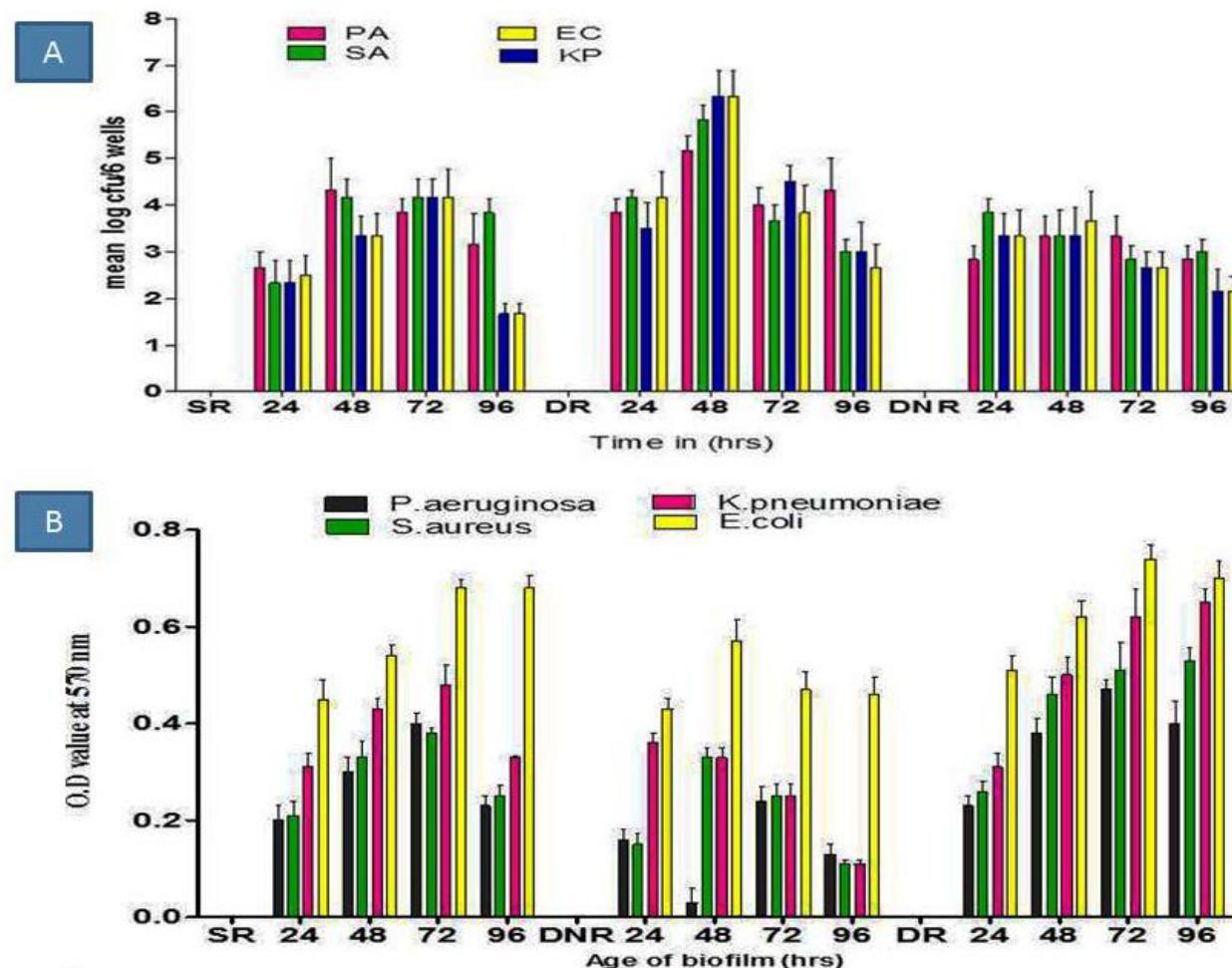
981


982

983

984 **Figure 2.**

985


986

987

988 **Figure 3.**

989

990

991

992

993

994

995

996

997

998

999

1000

1001

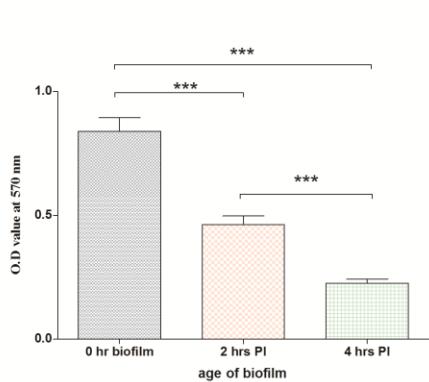
1002

1003

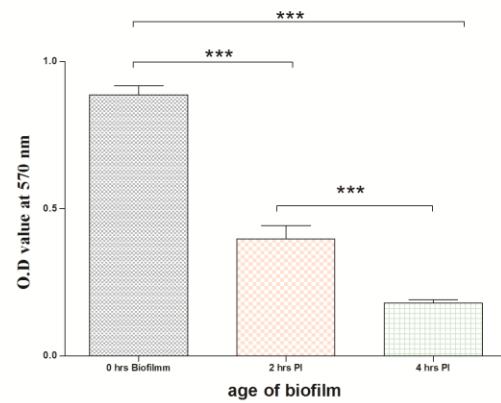
1004

1005

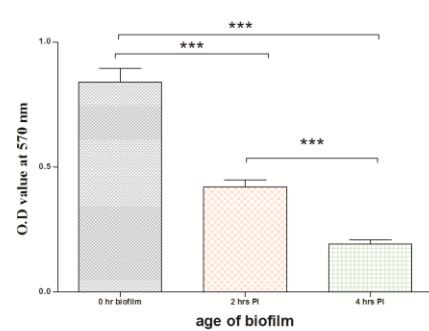
1006

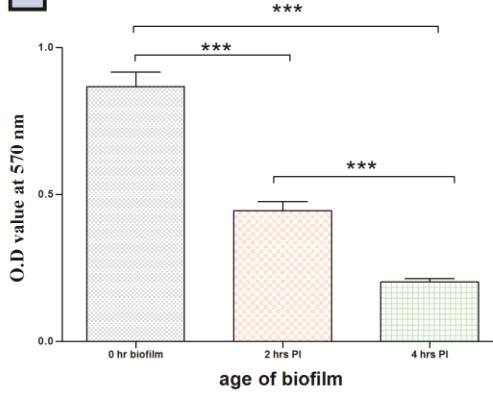

1007

1008


1009 **Figure 4.**

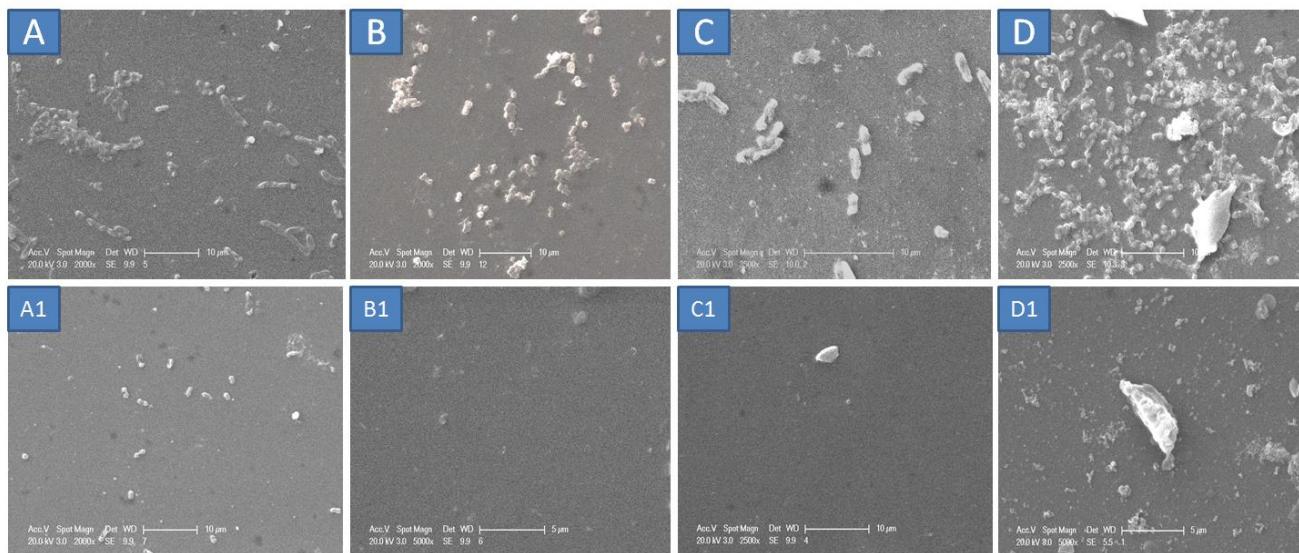
1010
1011
1012


A


B

C

D

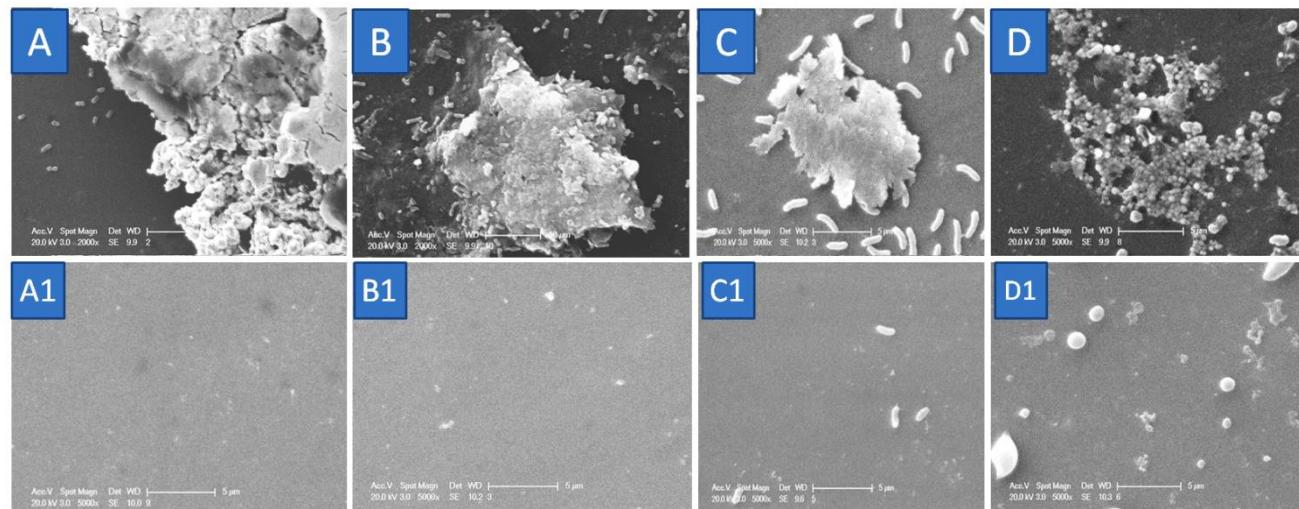


1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

1030 **Figure 5.**

1031

1032


1033

1034

1035

1036 **Figure 6.**

1037

1038

1039

1040

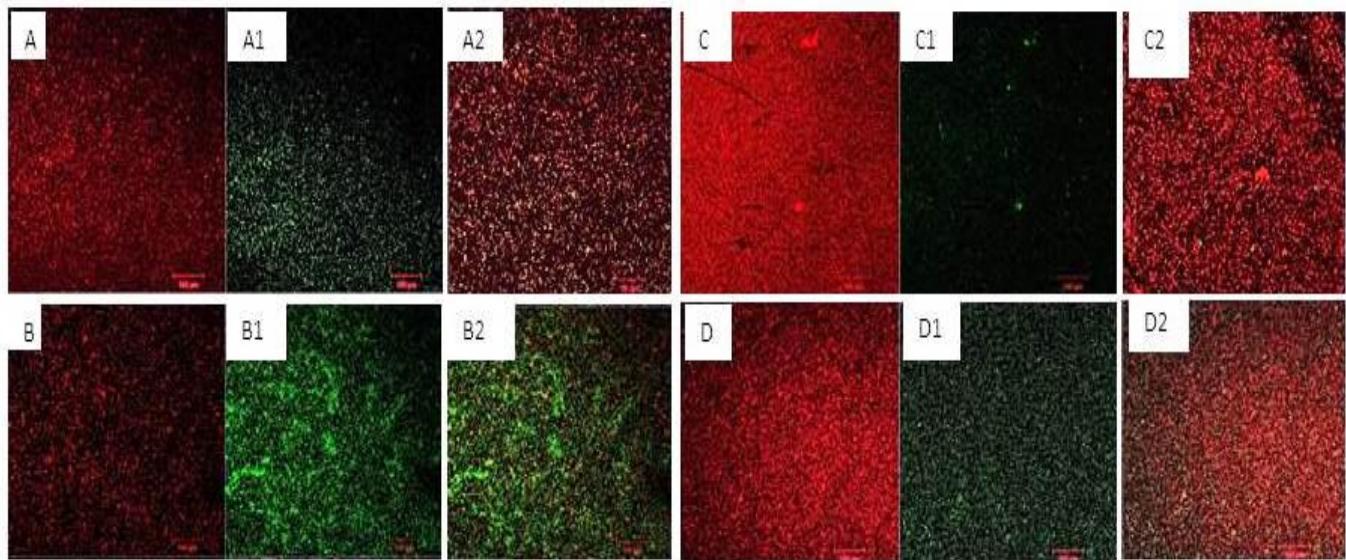
1041

1042

1043

1044

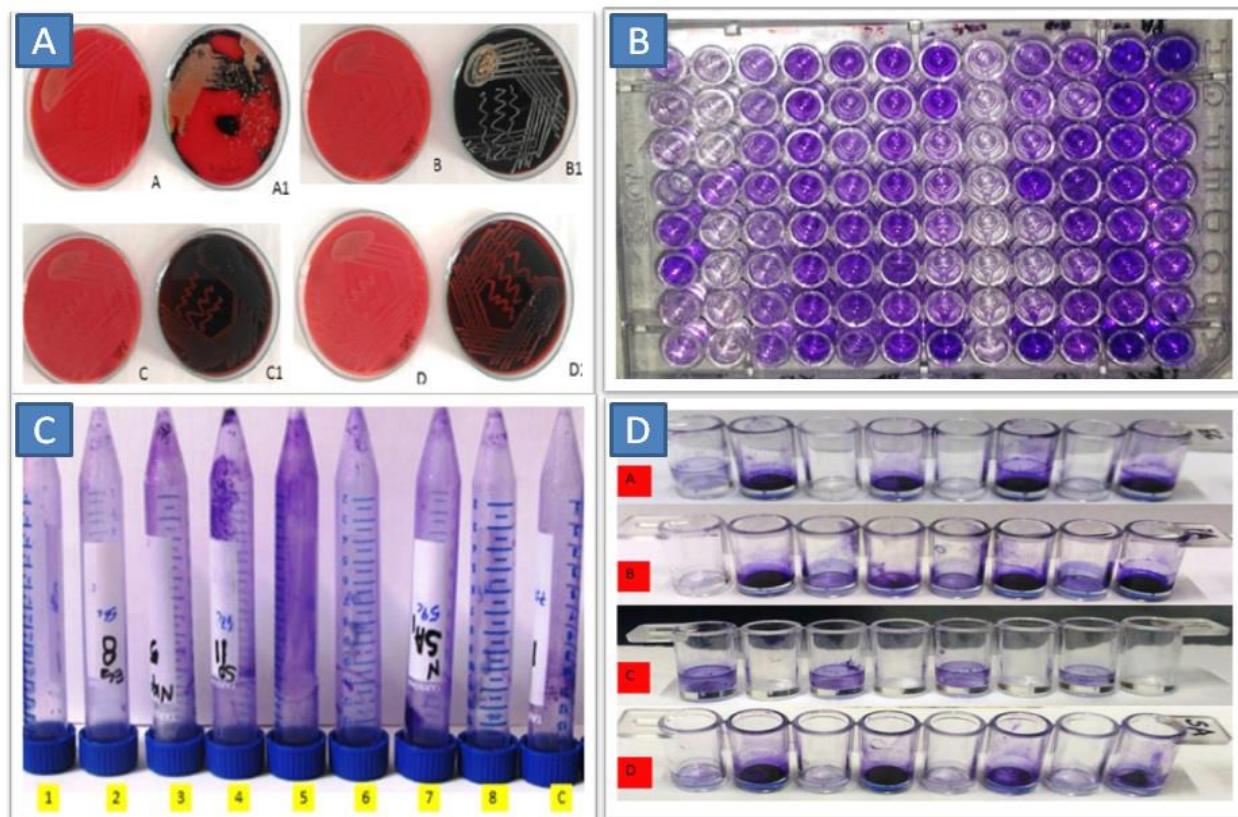
1045


1046

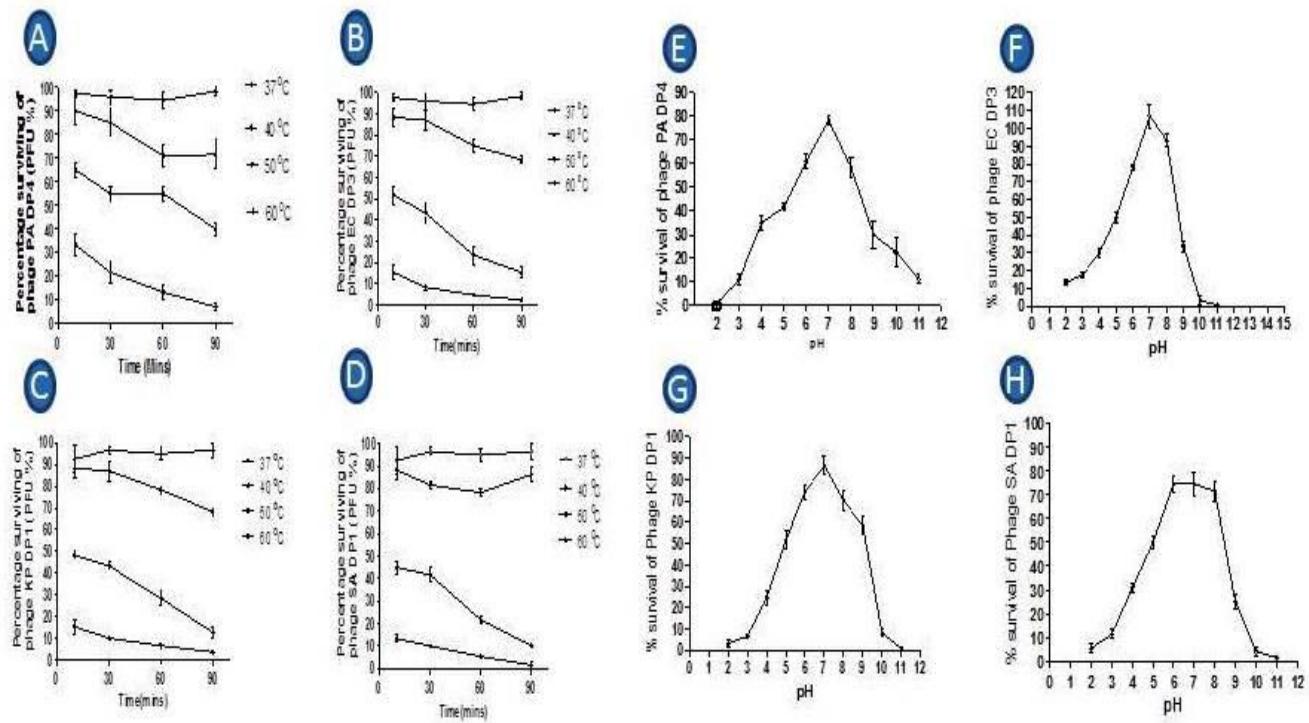
1047

1048

1049 **Figure 7.**


1050

1051
1052


Supplementary Figure 1. Qualitative detection of biofilm producers by Congo red agar,
Microtiter plate and plastic test tube methods

1053
1054
1055
1056

1057

1058 **Supplementary Figure 2.** Effect of pH and Temperature on the bacteriophages
1059 vB_PAnP_PADP4, vB_SAnS_SADP1, vB_KPnM_KPDP1 and vB_ECnM_ECDP3. On the graphs,
1060 all values represented mean of three determinations \pm SE by using Graph Pad Prism software.
1061
1062
1063

1064